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nNPipe: a neural network pipeline for automated analysis of
morphologically diverse catalyst systems
Kevin P. Treder 1✉, Chen Huang2✉, Cameron G. Bell3, Thomas J. A. Slater 4, Manfred E. Schuster5,6, Doğan Özkaya5,6,
Judy S. Kim 1,2 and Angus I. Kirkland1,2,5✉

We describe nNPipe for the automated analysis of morphologically diverse catalyst materials. Automated imaging routines and
direct-electron detectors have enabled the collection of large data stacks over a wide range of sample positions at high temporal
resolution. Simultaneously, traditional image analysis approaches are slow and hence unsuitable for large data stacks and
consequently, researchers have progressively turned towards machine learning and deep learning approaches. Previous studies
often detail work on morphologically uniform material systems with clearly discernible features, limited workable image sizes and
training data that may be biased due to manual labelling. The nNPipe data-processing method consists of two standalone
convolutional neural networks that were exclusively trained on multislice image simulations and enables fast analysis of
2048 × 2048 pixel images. Inference performance compared between idealised and real industrial catalytic samples and insights
derived from subsequent data analysis are placed into the context of an automated imaging scenario.
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INTRODUCTION
Materials analysis using (Scanning) transmission electron micro-
scopy ((S)TEM) is a key characterisation tool which provides access
to a variety of localised physical and chemical information with
sub-100 pm resolution1. In the field of heterogeneous catalysis, it
is commonly used for the analysis of nanoparticle size distribu-
tions and morphologies in various environments2–6, which are key
parameters in understanding catalytic performance7,8. However,
analysis post-image acquisition often involves manual system- and
instrument-dependent post-processing, which is time-consuming
for the large number of particles required to achieve statistically
significant metrics for comparison with bulk measurements of
properties.
One solution is to employ (semi-) automated approaches9–15.

However, the applicability of these remains limited as experi-
mental data with high contrast between the nanoparticles and the
support material, and human intervention in the analysis, are
often required. With the increasing use of direct-electron
detectors16–18 and automated image acquisition19, high data
throughputs are becoming common and thus, more robust
methods with minimal manual intervention are needed for full
analysis of large datasets20.
Artificial Intelligence (AI) approaches originally developed for

computer vision have been introduced to nanoparticle analysis in
electron microscopy. For example, machine learning (ML)
methods have been used by ref. 21, who employed a genetic
algorithm to analyse the morphological properties of more than
150,000 nanoparticles. Muneesawang et al.22. and Wang et al.23.
alternatively used a K-means approach and noted that perfor-
mance may be dependent on the image contrast and resolution.
Prevalent architectures and their applications in the fields of
Physical Sciences and Life Sciences, as well as error metrics, are
reviewed elsewhere20,24–29.

Deep learning (DL) based solutions have been applied in
various contexts for nanoparticle analysis in TEM imaging,
including Convolutional Neural Networks (CNNs) for object
detection and semantic segmentation at atomic30,31 and lower
resolution32–35, analysis of the performance of the U-Net neural
network36–38, as well as liquid-cell experiments39,40. The former are
appealing to studies of heterogeneous catalysts as they allow a
statistically significant determination of relevant material proper-
ties once the respective networks are trained. However, various
aspects remain unaddressed, especially in light of automated and
fast data acquisition and processing. Many studies32,37,38 are
based on a topologically uniform support material where
individual nanoparticles exhibit clear contrast with respect to
the background. Moreover, the ground truth in training datasets is
often provided using manual labelling, inevitably introducing a
human bias. Finally, the realistic workable array size of individual
images is linked to available GPU resources, limiting the range of
possible working scenarios.
In this study, we use computationally generated models to form

a training dataset of aberrated and augmented TEM image
simulations (see ‘Methods’) to train a neural network pipeline;
nNPipe. This passes fixed-sized raw TEM images (here 2048 × 2048
pixels) of various nanoparticle morphologies through the two
standalone CNNs; YOLOv5 (https://ultralytics.com/yolov5) and
SegNet41, and outputs semantically segmented maps of the same
size (Fig. 1). We illustrate this approach using a diverse set of raw
experimental images, taken from two datasets representing an
idealised sample and a realistic catalytic material. The two
nanoparticle systems used are as follows: A standard calibration
sample of gold nanoparticles on ultrathin amorphous germanium
(Au/Ge) film and an industrial model catalyst sample of
nanoparticles on active carbon (Pd/C). In comparison to Au/Ge,
the Pd/C system is morphologically much more diverse in terms of
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both particle size and local variations in substrate thickness. Thus,
the latter provides valuable insight into how DL-based methods
can be applied to realistic samples.
While other CNN-based approaches, such as instance segmen-

tation42 or pure semantic segmentation offer potential alterna-
tives, we have opted for a two-step pipeline procedure where
object detection and semantic segmentation are conducted in a
serial fashion. Our reasons for this approach are as follows:

(i) Speed
Object detection network architectures, YOLO43 and its

more recent versions, such as YOLOv344 and YOLOv5
(https://ultralytics.com/yolov5), are distinguished by very
high inference speed and competitive performance. Further-
more, the computational load is kept relatively low as all
images are resized to 640 × 640 pixels for object detection,
while only instances identified in bounding boxes of
256 × 256 pixels are passed to a subsequent SegNet41

network for semantic segmentation.
(ii) Precision

Our Pd/C system exhibits nanoparticles that are often
difficult to distinguish from the surrounding support film.
nNPipe initially filters relevant instances from the full image
and context before subsequently segmenting cropped
image regions at full resolution.

(iii) Modularity
Potential users can choose between using the whole

pipeline or using the object detection output only. In
addition, each module can be further developed and used
with different image sizes.

(iv) Feasibility

Our approach exploits established network architectures with
minimal modification. The performance is entirely dependent on
the training dataset instead of an optimised network architecture,
enabling fast deployment.
We examine the ramifications for materials characterisation in

differing imaging scenarios and sample morphologies that might
be encountered in automated imaging procedures, i.e. images with
varying nanoparticle load, discernibility of nanoparticles, support

material thickness, etc. (compare ‘Methods’ and Tables 2, 3). Lastly,
we compare the statistics obtained from the nNPipe approach
against a manually labelled ground truth and provide an assess-
ment metric for automated imaging. Information on the generation
of sample models and training datasets and methods used for
training are described in the ‘Methods’ section.

RESULTS
Inference performance
During inference (Fig. 1), experimental images were first processed
by the YOLOv5x object detection module that generated images
with inferred classes and bounding boxes, together with
corresponding lists containing vectors, di= [c,x,y,w,h] with a
confidence of 0.5. Here, c refers to the inferred classes of
‘nanoparticle’ or ‘cluster’, while x,y,w,h denote the relative
bounding box position, width and height, respectively. Clusters
are instances of multiple joint nanoparticles that may also
contribute to catalytic activity. However, a precise distinction
between the nanoparticles’ shapes in projection is challenging
and requires tailored data analysis approaches such as those
discussed by Frei et al.45. In this work, we have included cluster
instances in our training data (see ‘Methods’) such that their
detection and segmentation remains optional. The results
presented in this work focus on the analysis of individual
nanoparticles, and consequently, centred 256 × 256-pixel image
crops were only extracted from raw experimental images for
instances with c = nanoparticle. These were subsequently passed
as inputs to the SegNet module for semantic segmentation of
individual nanoparticles from the background. Finally, 256 × 256-
pixel images were subject to a post-processing routine to
reconstruct a 2048 × 2048 label. Different routines (Supplementary
Table 1) were used based on F1-scores for the Au/Ge and the Pd/C
systems, respectively. A Meyer water-shedding step was included
for the Pd/C system to enhance the separation of inferred
nanoparticles from the varying contrast from the amorphous
background. Full inference timings of respective datasets were
separately measured for object detection and semantic

Fig. 1 Workflow illustrating the training and inference stages of nNPipe. Training dataset generation is highlighted by green arrows: Au/Ge
and Pd/C model computation, simulated training dataset generation46–49 and individual network training of YOLOv5x and SegNet41 for object
detection and semantic segmentation, respectively. Red arrows highlight the inference stage, where an input image (in this case, an example
of Au/Ge) is first inferred by object detection and instances of nanoparticles are subsequently semantically segmented as 256 × 256 sub-
images by SegNet. The final post-processing stage reconstructs the label to its original size of 2048 × 2048 pixels.**.
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segmentation with both neural networks running on the same
GPU used for training. Table 1 compares full inference times for
both material systems and stated timings include image writing
processes. The resulting difference in the total inference time
between the two material systems is attributed to the post-
processing steps involved in the analysis of the Pd/C dataset.
Two experimental datasets respectively, containing 93 and 96

images for the Au/Ge and the Pd/C systems, were used for
performance evaluation. Binary ground truth images (2048 × 2048
pixels) were obtained by manual segmentation of the raw image
data by two experts working independently. A positive label was
exclusively applied to nanoparticles that were clearly distinguish-
able. Clusters and nanoparticles that were cut by the image edges
or exhibited an ambiguous contrast were assigned a negative
ground truth label. These were allowed to be inferred by nNPipe,
but were removed in the post-processing step (compare
Supplementary Table 1). It is noted that both material systems
contained a low number of indeterminate cases where an
individual subjective judgement was unavoidable and examples
of these are displayed in Supplementary Fig. 1.
Inference performance was determined by comparing pixel

values of the binary ground truth images with the generated
output as:

Recall ¼ TP
TPþ FN

(1)

Precision ¼ TP
TPþ FP

(2)

F1� Score ¼ 2 � Recall � Precision
ðRecallþ PrecisionÞ ¼

TP
TPþ 1

2 ðFPþ FNÞ (3)

whereby TP refers to true positive, FP to false positive and FN to
false negative pixels, respectively. For fully automated data
acquisition, it is not possible to select suitable sample positions

beforehand and it is, therefore, necessary to evaluate any method
for different acquisition scenarios (see ‘Methods’ and above).
Hence, TP, FN and FP pixels were colour coded into masks
generated from overlapping pairs of ground truth images and
inferred masks. Examples where nNPipe achieves particularly high
and also lower performance were selected based on the F1-Score
for further discussion. Figure 2 depicts exemplary cases of the
Au/Ge system.
From an examination of mostly TP pixel contributions and high

F1-scores in Fig. 2a, b, our method is clearly able to deliver a nearly
identical segmentation mask (F1-scores 0.961 and 0.967) com-
pared to the ground truth. However, closer inspection reveals FN
pixel contributions at the edge of individual nanoparticle
instances that can be attributed to a mismatch of the assigned
particle border in the ground truth and the generated output (see
Supplementary Fig. 2) with a border mismatch quantification
given in the ‘Measurement performance’ section.
In contrast, Fig. 2c, d shows an example where the neural network

pipeline achieves lower performance. Cut nanoparticles identified at
the image border that were missed in the post-processing, as well as
cluster instances mislabelled as nanoparticles in the object detection
step, generate FP pixels in the resulting image segmentation.
Conversely, nanoparticles mislabelled as clusters contribute to FN
pixels (Fig. 2c). In addition, unknown image features (for example,
lacy carbon at the top left in Fig. 2c, d) are identified as large clusters
and some nanoparticles are unsegmented. This behaviour is
attributed to comparable greyscale values of the lacy carbon with
respect to clusters and with the instance size being significantly
larger than a single nanoparticle. In Fig. 2d, it can also be observed
that some nanoparticles which are in close proximity are mislabelled
as clusters, although they are clearly separated. However, the
semantic segmentation gives an overall high performance: particles
cut by image edges (Fig. 2c, FP) and instances with shapes differing
from those included in the training data are reliably separated from
the background with high precision (Fig. 2).

Table 1. Comparison of inference times for individual network modules in nNPipe.

Au/Ge Pd/C

Experimental images 93 96

YOLOv5x inference time 16.72 s (0.03 s∙image−1) 19.42 s (0.03 s∙image−1)

SegNet inference + post-processing time 108.80 s (1.17 s∙image−1) 280.92 s (2.93 s∙image−1)

Total analysis time 125.25 s (1.35 s∙image−1) 300.34 s (3.13 s∙image−1)

Fig. 2 Object detection with colour-coded segmentation masks for the Au/Ge system. a, b Cases of high performance. c, d Cases with lower
performance. The colour legend on the right of (b) is used for all colour-coded segmentation masks. ‘Nanoparticle’ instances are labelled as
‘AuNP’ while ‘cluster’ instances are labelled as ‘Cluster’ in the object detection outputs. Scale bar: 20 nm.
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In an analogous manner, the final segmentation performance
was assessed for the Pd/C system, for which a differing
performance was expected as this sample is morphologically
more diverse and a more varied experimental imaging dataset
was considered. Nonetheless, high-performance segmentation
using the neural network pipeline was achieved, as highlighted in
Fig. 3.
An inference very close to the ground truth is shown in Fig. 3a,

where all clusters were correctly identified by YOLOv5x and
nanoparticles were accurately segmented by the SegNet41 module
(F1-score 0.889). Comparable to Fig. 2a, b, FN contributions in this
segmentation mask arise from nanoparticle border mismatch of
the generated mask and the original ground truth (see
Supplementary Fig. 4). In addition, some darker carbon features
were identified as nanoparticles, which were subsequently
segmented as FP nanoparticles. It should, however, be noted,
that the amorphous carbon background in Fig. 3a is uniform,
which gives rise to a high contrast difference between the
particles and background and, consequently, high segmentation
performance. This is different for Fig. 3b–d, where the support
material exhibits a differing morphology and thickness. However,
nNPipe is still able to achieve high F1-scores, as shown in Fig. 3b.
Nearly all nanoparticles are segmented correctly, whereby FP pixel
contributions arise from a wrong classification in the object
detection stage for a cluster, as well as for some nanoparticles that
exhibit poorly defined borders. As already illustrated in Fig. 2,
SegNet is also able to infer nanoparticle shapes correctly that were
not included in the original training dataset for images in this
sample system.
Higher rates of FN and FP pixels are observed for the cases

shown in Fig. 3c, where the support material is thicker as
compared to Fig. 3a. In this case, the contrast between individual
nanoparticles and the support material is also lower. This is
reflected in the object detection performance, where some
nanoparticle instances were not identified, leading to FN
nanoparticles in the segmentation mask. Contributions of FP
pixels can also be identified around nanoparticle instances due to
a border mismatch, as well as in darker areas of the support
material, which are falsely classified as nanoparticles in the object
detection stage due to these thickness variations.
To evaluate future automated acquisition strategies, an image

in which nNPipe does not perform well has been included for
completeness. Figure 3d shows the output from an image
acquired at a sample position which contains a clear, flat carbon
area and a thick area of support material. While nanoparticles

located on the flat carbon film are segmented with high TP pixel
contributions, the residual nanoparticles assigned in the ground
truth are omitted, leading to numerous FN pixels. This is due to
‘cluster’ instances inferred in the thicker amorphous carbon area,
which resembles the output generated by the YOLOv5x network
for the lacy carbon in the Au/Ge system. Specifically, large,
unknown image features exhibiting comparable greyscale values
for both ‘nanoparticles’ and ‘clusters’ are inferred as ‘cluster’.
Established automated segmentation methods have also been

used to put the performance of the method described into a
broader context. Combined global and local Otsu thresholding has
been used (with a rolling ball filter value of 600, a Gaussian kernel
size of 7, a local filter size of 50 pixels and a minimum nanoparticle
size of 50 pixels) to both datasets after contrast inversion and
without water shedding using the python package ParticleSpy
(https://zenodo.org/record/5094360). The resulting output was
subject to the same performance measurements defined by Eqs.
1–3. Figure 4 graphically compares Kernel density estimation
(KDE) plots for the F1-scores from these methods.
Considering firstly, the performances of the various methods for

the Au/Ge system (Fig. 4), both the achieved F1-score mean and
F1-score at KDE density maximum are higher for nNPipe compared
to combined global and local Otsu thresholding. Furthermore, the
distribution for nNPipe is sharper, underlining the high F1-score
probability around a maximum of 0.934. A similar trend holds true
for the Pd/C system, where the F1-score mean and F1-score at the
KDE density maximum achieve higher values for the neural
network pipeline. However, there is a broader distribution of the
F1-Scores in the Pd/C experimental dataset indicating a more
varied analysis performance. In turn, this distribution highlights
the morphological diversity and more variable imaging scenarios
of the Pd/C dataset and hence represents a likelihood for
inference errors.

Measurement performance
In addition to image inference, the measurement of selected
material properties plays an important role in automated image
acquisition and in the determination of the potential catalytic
performance of a given material. An insight into this was achieved
by applying the ‘particle_analysis’ function of the ParticleSpy
(https://zenodo.org/record/5094360) package on ground truth
images and neural network pipeline-generated masks. The
following results are based on calculated nanoparticle areas,
although we note that other properties such as major axis length,
minor axis length, circularity, eccentricity and others can be

Fig. 3 Object detection with colour-coded segmentation masks for the Pd/C system. a, b Cases of high performance. c, d Cases with lower
performance. The colour legend for this figure is shown only in (b). ‘Nanoparticle’ instances are labelled in orange as ‘PdNP’ while ‘cluster’
instances are labelled in yellow as ‘Cluster’ in the object detection outputs respectively. Scale bar: 20 nm.
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equally used to address the full spectrum of features important to
the functioning of the catalyst materials. Figure 5 shows
histograms of inferred and ground truth nanoparticle areas
alongside KDE-plots for the full Au/Ge dataset, as well as for
datasets with F1-scores above a given threshold. The respective
calculated mean areas and count instances are also displayed for
comparison.
The overall observable errors of the mean nanoparticle area and

nanoparticle counts are notably low across all the cases in Fig. 5.
The lowest error is observed for Fig. 5b, which shows the
evaluation for images that achieved an F1-score of 0.9 or higher.
Although this sub-dataset only considers images that were
inferred with the highest performance, an error of 7.37% remains
for the mean nanoparticle area, although counts do not deviate.
The inclusion of sub-datasets with lower F1-scores (Fig. 5c–e) does
eventually lead to an increase in the error in both metrics but does
not exceed 8.81% for the nanoparticle area and 2.73% for the
counts. Supplementary Fig. 2 shows selected experimental HRTEM
images that were included in specified F1-score intervals for
overview.
The KDE-plots reveal a close similarity of the nanoparticle area

distributions between the ground truth and inferred data.
Supplementary Table 2 summarises estimated values for the most
common nanoparticle areas (xymax) and full widths at half
maximum of the KDE-plots (FWHM) for Fig. 5b–e. While the
FWHM values remain similar in all cases, a nearly constant
difference of ca. 7 nm2 is calculated for xymax values.
In order to understand the error origin in the inferred data, i.e.

whether it mostly arises from a nanoparticle border mismatch or
nanoparticle instances entirely consisting of FN and FP pixels (see
results below Fig. 2), five inferred and ground truth image pairs were
reconsidered for F1-score intervals of 0.1. In this case, only instances
with mostly TP contributions were compared to isolate the error due
to nanoparticle border mismatch. This was done for F1-score
intervals of [0.9, 1], [0.8, 0.9], [0.7, 0.8] and [0.6, 0.7] to track changes
with decreasing segmentation performance, the results of which are
summarised in Supplementary Table 3 while representative example
images are shown in Supplementary Fig. 5.
Across all sub-datasets, the nanoparticle border mismatch error

remains constant in an interval between 8.16 and 10.07% with a
characteristic appearance where the inner edge of the mismatch is

considerably smoother than the outer one. This is consistent with
the data shown in Fig. 2, where small contributions of FP and FN
pixels were highlighted at the border of nanoparticles with high
TP ratios. Therefore, we conclude that the method used slightly
underestimates the individual borders of nanoparticles. As the
inner edge of the mismatch is smoother, the underestimation can
be understood by a bias of the SegNet network, originating from
network training with synthetic images where individual nano-
particles have predominantly smooth surfaces. These arise due to
approximations in the computational model building and the
corresponding training data with respect to experimental images
(see ‘Methods’). Within the error interval above, it is, therefore,
reasonable to conclude that the error originated in the inferred
data is predominantly a border mismatch leading to small
histogram shifts towards smaller nanoparticle areas. This type of
mismatch may be equally expected for manual ground truth
labels prepared by human experts.
Following the analysis shown in Fig. 5, the measurement

performance on the Pd/C system was evaluated by comparing
histograms and KDE-plots of nanoparticle areas determined for
the ground truth and inferred images (Fig. 6). As a consequence of
a higher number of images with lower F1-Scores (see Fig. 3), there
is a higher error in the histogram of the nanoparticle area
measurement results for the full Pd/C dataset (Fig. 6a) compared
to the Au/Ge dataset (Fig. 5a). This is particularly evident when
comparing Fig. 6a with Fig. 6e, wherein the latter only considers
the sub-dataset with images having an F1-score >0.5. While the
error for the mean nanoparticle area is comparable, the count
error is significantly higher for the full dataset, which can be
explained by considering FN nanoparticle instances, as illustrated
in Fig. 3d. Specifically, smaller nanoparticle areas are most affected
with both histograms differing most at ca. 15 nm2 (Fig. 6a). This is
consistent with local lower contrast affecting smaller particles
more than larger ones, leading to undetected instances or errors
in the segmentation stage. Nonetheless, errors calculated for sub-
datasets with F1-scores >0.8 and >0.7 remain significantly lower
than for the full dataset, particularly when the counting error is
considered. Supplementary Fig. 6 displays examples of experi-
mental images for indicated F1-score intervals.
High inference performance for selected sub-datasets is also

reflected in the shape and peak positions of the respective KDE-

Fig. 4 KDE-plots for achieved F1-Scores. Graphs were generated using a Gaussian kernel and Scott’s rule53. Calculated F1-score means are
illustrated by red dash-dotted lines, while maximum values of the KDE-plots are denoted with red crosses. F1-score values: Au
GlobLocOtsu= 0.431, Au neural network= 0.883, Pd GlobLocOtsu= 0.260, Pd neural network= 0.598. KDE maxima at Au GlobLocOtsu=
0.578, Au neural network= 0.934, Pd GlobLocOtsu= 0.300, Pd neural network= 0.663.
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plots when compared to the ground truth (Supp. Table 4). Both,
the xymax prediction as well as the FWHM settle at xymax= 13.23,
FWHM= 32.69 and xymax= 10.45, FWHM= 24.08 for the inference
and ground truth respectively, once the sub-dataset F1-score >0.6
is included. Although the estimates in the KDE plot from the
inference are higher, they remain close to the ground truth,
indicating a high measurement performance for those sub-
datasets, especially when considering the full shapes of both
KDE-plots.
Both, nanoparticle border mismatch errors and entire FN and

FP nanoparticle instance errors were separated in the same
way as for the Au/Ge system with values provided in
Supplementary Table 5, while image differences between the
ground truth and inferred images in Supplementary Fig. 7. In
contrast to the border mismatch edges highlighted in
Supplementary Fig. 5, those generated for the Pd/C system

have a more varied appearance. While smooth shapes
indicating network bias are encountered for both the inner
and outer edge, some mismatches also exhibit thick bulges.
The latter are likely to arise due to contrast variations between
the supporting amorphous carbon and individual nanoparti-
cles, which was not included in the training of the segmenta-
tion network (Fig. 3). However, if Supplementary Table 5 is
additionally considered, a low average error of 3.82% in the
border mismatch for datasets with an F1-score >0.7 is
obtained. Compared to the Au/Ge system, this indicates that
a significantly larger part of the nanoparticle area error shown
in Fig. 6 is likely to stem from ‘pure’ FP and FN instances
originally passed from the object detection network for the
corresponding sub-datasets. When sub-datasets with F1-scores
>0.6 and >0.5 are considered, the border mismatch increases
to an average of ca. 14.1% (Fig. 3b, c).

Fig. 5 Histograms (1 nm2 ∙ bin−1) and KDE-plots of calculated nanoparticle areas (nm2) for the ground truth and inferred datasets for the
Au/Ge system. KDE-plots were generated using a Gaussian Kernel and Scott’s rule53. Tables containing the calculated mean nanoparticle area
(nm2), nanoparticle counts in the dataset (|D|) and calculated errors with respect to the ground truth are also shown. A minimum nanoparticle
size of 50 pixels was assumed for all images. a The full dataset, b Images with an F1-Score of >0.9, c Images with an F1-Score of >0.8, d Images
with an F1-Score of >0.7 and e Images with an F1-Score of >0.6.
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DISCUSSION
As is evident from the high image inference performances shown
in Figs. 2, 3, it is clearly possible to train neural networks for
analysis tasks on large sample volumes using synthetic datasets
generated using multislice image simulations46–49. This is particu-
larly significant for the heterogeneous Pd/C sample system (Fig. 3),
where the experimental morphological diversity was simplified in
the sample modelling (see ‘Methods’). Nevertheless, it was
possible for the neural network pipeline to achieve F1-scores
higher than 0.85, which underlines the potential of deep learning
methods to apply a learned task with high performance to images
differing from those provided in training.
It follows that the advantages of this training approach are

threefold:
(i) there is an opportunity to tailor sample models for individual

purposes,

(ii) it is feasible to extract exact image-labels as pairs from image
simulations and
(iii) there are virtually unlimited models and training images.
However, steps including model generation, image simulation

and augmentation, as well as training of the individual networks,
require considerable processing time before experimental data
can be analysed. For cases where only small datasets are
considered, it might therefore be advantageous to use shallow
network segmentation or other machine learning techniques
which have been shown to achieve high performance for uniform
sample morphologies such as the Au/Ge system considered here
without a significant training overhead37,50,51.
Certain limitations of our training approach have been high-

lighted in the results presented. Very thick support material (which
included buried nanoparticles with unclear borders) posed a
challenge to the object detection network, resulting in high FN

Fig. 6 Histograms (1 nm2 ∙ bin-1) and KDE-plots of calculated nanoparticles areas (nm2) for the ground truth and inferred datasets for the
Pd/C system. KDE-plots were generated using a Gaussian Kernel and Scott’s rule53. Tables containing the calculated mean nanoparticle area
(nm2), nanoparticle counts in the dataset (|D|) and calculated errors with respect to the ground truth are shown. Plots were generated for
a The full dataset, b Images with an F1-Score of >0.8, c Images with an F1-Score of >0.7, d Images with an F1-Score of >0.6 and e Images with
an F1-Score of >0.5.
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particle rates in the subsequent segmentation. This can be
understood as adequate image simulations of this scenario were
not included in the training dataset and were therefore not
addressed appropriately during inference. This also holds true for
nanoparticle shapes that showed a larger variety in appearance in
experimental images than in image simulations. The identified
border mismatch highlighted in Figs. 2, 3 as well as in
Supplementary Tables 3, 5 is hence likely to stem from a bias of
the neural network expecting shapes present in the training data.
A potential expedient to this would be to retrain. Sub-sets of

experimental images and corresponding manually labelled
ground truths could be exploited for image augmentation to
form a sufficiently large training dataset. The disadvantage of this
strategy would be a potential expert bias, where cases with
subjective labelling play a particular role (Supplementary Fig. 1).
Investigation of whether retraining increases the image inference
performance, and the nanoparticle area measurement is, however,
important and will be the subject of future work.
The very high similarity of nanoparticle area distributions with

respect to the ground truth was achieved for the whole Au/Ge
dataset (Fig. 5a), and the F1-scores >0.8 are especially significant.
For the sub-datasets with F1-scores >0.9 and >0.8, the counting
error remains below 2% while the determined mean nanoparticle
area differs by only 7.37 and 8.60%, respectively (Fig. 5b, c). For the
analysis summarised in Supplementary Tables 3, 4, it can be
concluded that nNPipe can achieve a virtually close-to-human-like
performance for sample systems with a uniform sample morphol-
ogy on the full dataset acquired during automated image
acquisition.
High performance has also been demonstrated for the

morphologically more diverse Pd/C system. However, for this
system, it is necessary to record data from sample positions where
very thick amorphous carbon is avoided. While the measurement
performance remains close to the one shown for the Au/Ge
system for datasets with F1-scores >0.7, higher deviations in the
inferred mean nanoparticle area and count become more likely for
images at F1-scores <0.7. This can be understood by examining
images such as those in Fig. 3c, d, in which the image fields of
view include thicker areas of the support material, which cause
blurring of the nanoparticle borders. A close-to-human perfor-
mance can, therefore, only be expected for images with more
uniform background contrast (Fig. 3a, b).
In the context of a practical automated imaging scenario,

selecting acquired images based on F1-scores is not possible due
to the lack of ground truth. However, a reasonable estimate can

be obtained by comparing the number of instances generated at
the YOLOv5x object detection stage with the ones generated at
the SegNet segmentation stage: If the difference is below a
dataset-dependent threshold, a higher chance for TP nanoparticle
instances should follow. To illustrate this, Fig. 7 shows a point
distribution plot of the F1-score in each image as a function of the
introduced instance difference (ID).
As the overall F1-score for the Au/Ge system was high, selecting

data according to the ID is not a strict requirement. For instance,
setting a boundary criterion of ID <10% leads to a mean F1-score
of 0.91. However, this only holds true for 52.63% of the acquired
images of the full dataset to give only an increase of 0.03 in the
F1-score.
This contrasts with the Pd/C system, for which the ID was

originally implemented. As shown in Fig. 8, the likelihood of a high
F1-score is significantly higher at low IDs. In this case, a boundary
criterion of ID <7.5% leads to an F1-score of 0.70, which is a more
significant improvement compared to the overall F1-Score of
0.598 (Fig. 4). For this dataset, the suggested boundary condition
would be applicable to 40.82% of the data. However, it would
ensure a close-to-human performance measurement (Fig. 8)
As highlighted in the results section, nNPipe also gives access to a

range of nanoparticle properties of relevance to catalytic perfor-
mance. Figure 9 shows examples in which the nanoparticle area is
plotted against the nanoparticle eccentricity via bivariate KDE-plots,
while sub-datasets can be obtained using the ID (Figs. 7, 8).
In the method described, nNPipe implements a deep learning

approach for the analysis of large-scale morphologically diverse
catalyst systems. Only a few computationally generated models
are required to generate large synthetic datasets approximating
experimental EM images, which are suitable for successful training
of a two-step neural network pipeline to high performance (F1-
score up to 0.883). Given that manual segmentation of a single
experimental image takes ~30 min, this method provides a
significant advance in efficiency. nNPipe requires only 125.25 s
(2.08 min) and 300.34 s (5.01 min) on an NVIDIA GeForce RTX 2080
Ti GPU, while manual segmentation would require typically 1100x
and 580x more time for the analysis of the Au/Ge or Pd/C data
consisting of 93 and 96 images, respectively.
Once suitable datasets are selected and analysed, relevant

material properties such as nanoparticle area distributions and
outliers or eccentricity could be extracted with marginal accuracy
losses when compared to respective ground truth plots. This is of
relevance for industrial applications where access to statistically
significant metrics of morphologically diverse heterogeneous

Fig. 7 F1-score in dependency of the instance difference (ID) given as a % for the Au/Ge system. A table summarising selected ID values
with respective data efficiency and calculated F1-scores is inset.
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catalyst systems, such as the nanoparticle size distribution,
nanoparticle aspect ratios, etc., can be directly linked to the
system’s catalytic activity and offer a fast pathway for materials
optimisation. Whilst feasible and performance-enhancing retrain-
ing methods are currently under investigation to ensure applic-
ability to other nanoparticle catalyst systems, it can be foreseen
that nNPipe is equally suitable in other imaging scenarios, for
example, in situ heating or gas-cell experiments. Those are part of
continuing research and will be published subsequently. Finally,
further optimisations of the neural network architectures, an
extension of training datasets or post-processing routines may
enable new analytical modes, such as a determination of the z-
height of individual nanoparticles for 3D distribution on the
support material.

METHODS
Sample preparation
A standard calibration sample of gold nanoparticles supported on
ultrathin amorphous germanium (Au/Ge) film (ca. 4 nm) was
prepared by JEOL Ltd. and provided on a standard copper TEM
grid. Samples of palladium nanoparticles (1 wt%) on active carbon
(Pd/C) were prepared as powder supplied by Johnson Matthey plc.
The powder was derived from alginate and fired at 450 °C. TEM
grids of this sample were prepared by a dry deposition method,
where the Pd/C powder was mechanically crushed using two
clean glass slides. A TEM copper grid with a lacy carbon film was
subsequently sandwiched between the two exposed sides of the
glass without additional mechanical force. This as-prepared TEM
grid was used for image acquisition.

Fig. 9 Bivariate histograms with KDE-plots of nanoparticle area against eccentricity. Histograms were binned at 1 nm2 ∙ bin−1 for the
nanoparticle area and at 0.01∙bin−1 for eccentricity. All KDE-plots were obtained using Gaussian kernels and Scott’s rule53 a Au/Ge sub-
datasets with F1-scores >0.8. b Pd/C sub-datasets with F1-scores >0.7.

Fig. 8 F1-score in dependency of the instance difference (ID) given in % for the Pd/C system. A table summarising selected ID values with
respective data efficiency and calculated F1-scores is inset.
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Experimental HRTEM imaging
TEM images were acquired using a double-corrected JEOL-
ARM300CF instrument operated at 300 kV on a Gatan OneView
Model 1095 4096 × 4096 pixel CCD-camera, at magnifications
between 300,000–400,000X. Images were binned by 2 × 2 pixels
during acquisition, resulting in a final resolution of 2048 × 2048
pixels with a sampling size of 0.0824–0.0618 nm∙pixel−1. Images of
a variety of scenarios, i.e. a low and high particle load, in- and out-
of-focus images, favourable and unfavourable contrast from the
support material as examples, were included to mimic a more
realistic automated imaging procedure and to explore the
working limits of the method.

Sample model generation
In order to obtain a sufficiently large training dataset containing
different sample configurations, sample models composed of
{x,y,z}-coordinate lists were generated in customised Mathematica
12.1 notebooks and later used as input for TEM multislice
simulations. Relevant system properties such as nanoparticle size
and aspect ratio distributions were manually measured on ca. 200
individual nanoparticles from initial experimental images using an
elliptic approximation and included in the sample model
generation process.
Morphologies of the support material were approximated by

qualitative comparisons of multislice simulations (see ‘Training
Data’) and experimental images. While a flat amorphous Ge film
was assumed for the Au/Ge system, a different strategy was
applied for the Pd/C system, as the amorphous carbon support
material was morphologically more diverse. 2D country outlines
from a polyconic map projection were processed using a random
set of erosion, blur and rotations to generate a diverse set of
shapes mimicking the support material observed in experimental
images. Subsequently, multiple country-shaped polygons—‘Coun-
trygons’—were merged and linearly extended along the z
direction to create a 3D structure, within which carbon atom
positions were assigned. Up to five layers were shifted in the x–y-
plane and stacked to better model the experimental support (see
Supplementary Fig. 8). For both systems, different thicknesses and
widths of the support material were considered. Atom coordinates
inside the layers were assigned randomly, whereby the minimum
average interatomic distance was calculated from respective
densities (Table 2) and set as the sole boundary condition.
A randomised number of nanoparticles were placed on the

generated substrates with icosahedral, cuboctahedral, decahedral
and ellipsoidal morphologies considered. In addition, nanoparticle
clusters consisting of multiple joined nanoparticles were incorpo-
rated to account for the presence of aggregates of nanoparticles
in the experimental images. Atom coordinates were assigned with
a cubic F lattice symmetry with lattice parameters of
aAu=0.40782 nm and apd= 0.38907 nm, respectively. Table 2
summarises the properties assigned to the respective sample

systems, while Supplementary Fig. 9 shows two examples of 3D
hull models taken from the notebooks used. Note that for the Pd/
C system, nanoparticles were also placed on the support materials’
sides, but such cases did not occur for the Au/Ge system. The
models were not subject to molecular dynamics (MD) or density
functional theory (DFT) calculations for energy-state relaxation.

Training data
The as-generated sample models were used as input for
simulation using the multislice algorithm implemented in
MULTEM code46–49. For augmentation, each of the 3500 sample
models was subject to five randomised combinations of aberra-
tion values that matched typical experimental conditions (Table 3).
In addition, the defocus spread modelling of the partial temporal
coherence was randomised to introduce blurring into the image
simulations. Image histograms of the resulting outputs were
adjusted to histograms of a selection of experimental images and
noise functions, including Gaussian- and Poisson-noise, beam-
shape dependent brightness variations and different signal-to-
noise ratio (SNR) were applied. The sampling of the image
simulations was adjusted to 0.0824 nm∙pixel−1, to account for the
sampling in most experimental images acquired. As the generated
sample models varied in size, this adjustment naturally led to
varying image sizes.
The as-generated models contained a number of nanoparticles

exhibiting significantly lower contrast with respect to the back-
ground than those observed experimentally. Initial CNN training
attempts (see ‘Architectures, Training and Inference’) concluded
that such training examples would diminish the quality of the
training dataset as the computer vision tasks became unclear,
resulting in the inference of nanoparticles where none should be
visible. Energetic relaxation of the models through MD calcula-
tions was not pursued due to the significant computational
resources required for models of this size. As an alternative,
nanoparticles were removed from the model coordinate list based
on an empirically set minimum Grey-Level Difference (GLD)
criterion (Table 3) that accounts for the contrast between
individual nanoparticle instances and their surroundings. Pruned
lists were then simulated for a second time with identical
aberration and noise values, as applied previously. A comparison
before and after Grey-Level Difference (GLD) pruning is provided
in the Supplementary Information (Supplementary Fig. 10) and
Supplementary Fig. 11 shows a side-by-side comparison of
simulated and experimental images for both systems. Ultimately,

Table 2. Properties of computationally generated sample system
models.

Sample system Au/Ge Pd/C

Layer properties ρ= (3.96 ± 0.08g·cm−3)54 ρ= 1.7 g cm−3, 55

w= [100; 170] nm w= [100; 130] nm

d= [1.0; 2.2] nm d= [4.0; 12.0] nm

Model properties No. of layers= 1 No. of layers= [1; 5]

No. of
nanoparticles= [10; 25]

No. of
nanoparticles= [10; 25]

No. of clusters= [1; 3] No. of clusters= 2

Total number 3500 3500

Table 3. Aberrations and resulting dataset size used in simulated
training datasets.

Applied aberration values C0= [−50; −500] Å C0= [−300; −1600]
Å

C3,0= [−0.05;
0.5] mm

C3,0= [−0.05;
0.5] mm

A1= [0; 250] Å A1= [0; 250] Å

A1,θ= [0; 360] ° A1,θ= [0; 360] °

B2= [0; 500] Å B2= [0; 500] Å

B2,θ= [0; 360] ° B2,θ= [0; 360] °

A2= [0; 1200] Å A2= [0; 1200] Å

A2,θ= [0; 360] ° A2,θ= [0; 360] °

σ= [90; 160] Å σ= [90; 160] Å

GLD criterion 0.025 0.025

Images for object
detection

140,000 140,000

Images for semantic
segmentation

480,730 618,090
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the training examples also included images in which no
nanoparticles were present. Labels for object detection and
segmentation were obtained by correlating the coordinate lists
with as-obtained image simulations, whereby a positive label was
applied to pixels referring to nanoparticles and clusters, respec-
tively. In the final step, the image simulations were subject to
rotations and flipping operators for further augmentation. Table 3
contains all relevant information for the training dataset genera-
tion. Note that as for Table 2, ranges refer to limits from which a
random number was drawn and applied, while aberration values
use the notation described in ref. 52.

Architectures, training and inference
YOLOv5x (https://ultralytics.com/yolov5) was downloaded from
github (https://github.com/ultralytics/yolov5) while SegNet was
rebuilt in Mathematica 12.1 as outlined in ref. 41. A logistic sigmoid
function was exploited instead of a softmax function for the
output layer to adjust to binary classification. In all training cases,
the individual networks were trained ab initio on a single NVIDIA
GeForce RTX 2080 Ti GPU with a 90/10 training/validation data
split and ADAM optimisation with a learning rate of 0.001. For
YOLOv5x, the training was stopped after 100 epochs whereby the
weights obtained at best mean Average Precision (mAP) were
saved for the image inference. In the case of SegNet, training was
stopped when the validation error did not improve over multiple
epochs, which occured after 82 epochs for the Au/Ge and after 71
epochs for the Pd/C system. Weights with the lowest training and
validation set errors were chosen for image inference. Further
relevant hyperparameters, as well as respective training curves for
both systems, are provided in the Supplementary Information
(Supplementary Tables 6, 7 and Supplementary Figs. 12, 13).

DATA AVAILABILITY
Resources comprising of image and ground truth datasets, as well as relevant code, a
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