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Abstract 

This paper studies the free vibration of size-dependent functionally graded material (FGM) 

microplates in contact with viscous fluid. The Mori-Tanaka model is applied to formulate the 

continuous gradual variation of material properties of FGM microplates along thickness 

direction. A non-classical microplate model is established based on the modified couple stress 

theory, which considers the size effect by introducing the material length scale parameter. A 

physical neutral plane is introduced to eliminate the stretching-bending coupling effect. The 

motion of viscous fluid is defined by Navier-Stokes equations, with which the hydrodynamic 

loading on microplates is determined with consideration of inertial effect and viscous damping 

effect. The governing equations for FGM microplates in contact with viscous fluid are derived 

using the Hamilton’s principle and solved by differential quadrature method. Numerical results 

are obtained to discuss the influences of the aspect ratio, fluid depth, slenderness ratio, fluid 

viscosity, gradient index, fluid density, and size parameter on the vibration behaviours of 

microplates in contact with viscous fluid. 

 

Keywords: FGM microplate; Size effect; Free vibration; Viscous fluid; Fluid-microplate 

interaction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Functionally graded materials (FGMs) are inhomogeneous composites that possess gradual 

variation of material properties by the mixture of two or more materials. The metal and 

ceramics are the common materials in construction of FGMs, in which their components 

continuously vary in thickness direction [1]. The performance of FGM structures, especially in 

extreme environments, can be improved by adjusting the strength and weight distribution. The 

material property distribution of FGM structures can be described by the power law function [2], 

linear function [3], exponential function [4], etc. The Voigt model and Mori-Tanaka model are 

often applied to estimate the effective material properties of FGMs, while Mori-Tanaka model 

has been widely applicable to a discontinuous particulate phase, especially in microstructures. 

Kiani and Eslami [5] analyzed the thermal postbuckling behaviour of FGM circular plates and 

compared the difference of Voigt model, Mori-Tanaka model, and the self-consistent estimate 

method [6] for the prediction of effective material properties of FGM structures. Shen and 

Wang [7] studied the difference between the Voigt and Mori-Tanaka models in the application 

for the nonlinear vibration of FGM plates.  

With the rapid progress of fabrication technologies, many microdevices and nanodevices, 

such as MEMS, NEMS, and biosensors, have been developed and received broad applications 

in many engineering fields [8, 9]. The investigation on the microscale FGM structures in 

previous works have observed the size-dependent behaviors from experiments. From the micro-

torsion and micro-bending experiments, it was found that the material length scale parameter 

played a key role on the mechanical behaviors of microscale structures when it was close to the 

thickness of microscale structures [10]. Therefore, several non-classical continuum theories 

considering the size effect have been developed, such as the nonlocal theory [11, 12], couple 

stress theory (CST) [13, 14], strain gradient theory (SGT) [15, 16], and modified couple stress 

theory (MCST) [17-19]. The modified couple stress theory (MCST) was firstly proposed by 

Yang et al. [20], which provided an easier way to consider the size effect in the model than the 

CST, because the MCST included the symmetric tensor and only required one additional scale 

parameter. Yin et al. [21] presented a vibration study of Kirchhoff microplates based on the 

MCST, and obtained the natural frequencies of microbeams and microplates. 

These non-classical continuum theories in mechanical analysis of FGM microscale 

structures have been widely employed to analyze the corresponding size effect [22-25]. Based 

on the MCST, Akbaş [26] contributed the analysis on the vibration of FGM cantilever beams 

with edge cracks. The bending and vibration behaviors of FGM piezoelectric microplates based 

on the MCST were studied by Li and Pan [27]. Ke and his collaborators [28, 29] 

comprehensively discussed the vibration of FGM rectangular and annular microplates with the 

MCST. By applying the MCST and finite element method, Ma et al. [30] analyzed the vibration 

of composite Reddy-microplates. 



Nowadays, many researchers have increasing research interests to study the vibration of 

structures in fluid environments because of their potential applications in micro-biosensors, 

bioprobe, shipbuilding, micro flowmeter, etc [31]. As for homogeneous structures, extensive 

research efforts have been put forwarded to consider various fluid conditions. When the 

vibration of structures was coupled with ideal fluid, the hydrodynamic loading was calculated 

through the potential flow theory [32-34]. In these studies, the inertial effect of the 

hydrodynamic loading was regarded as the added mass [35] or added virtual mass incremental 

factors [36]. When the vibration of structures was coupled with compressible fluid, the 

hydrodynamic loading was calculated through the method of separation of variables [37], 

Rayleigh’s formular [38], contour integration method [39], and finite element method [40].  

Except ideal fluid and compressible fluid, the vibration of structures coupled with viscous 

fluid was also concerned [41-45]. Tuck [46] studied the steady normal oscillation of cylinders in 

viscous fluid using the Laplace transforms and Green’s theorem, and the hydrodynamic loading 

was approximately computed by removing the singularity with unequal interval quadrature 

formula. Tuck’s method can accurately calculate the hydrodynamic loading for cantilever 

beams, but it is hard to determine the expression of the hydrodynamic loading for other 

boundary conditions. Based on the Tuck’s method, a detailed theoretical analysis was presented 

by Sader and his collaborators for the frequency response and hydrodynamic loading of a 

cantilever beam in viscous fluid [47-49]. Therefore, some approximate methods have been 

developed to estimate the hydrodynamic loading of other boundary conditions. Golzar et al. [50] 

analytically investigated the dynamic instability of fluid-loaded microbeams in the cavity of 

viscous fluid. They used the equivalent squeeze film damping to predict the dynamic response 

of microbeams with the viscous damping effect. The theory of squeeze film was often used to 

evaluate the viscosity effect [51]. Wu and Ma [52] applied the double Fourier transform method 

and Galerkin method to analyze the dynamic characteristics of microplates in contact with 

compressible viscous fluid. They evaluated the singular integration of the fluid impedance using 

a quasi-Monte Carlo method. Hosseini-Hashemi et al. [53] focused on the vibration of 

Kirchhoff nano-plates in contact with viscous fluid based on the nonlocal elastic theory. They 

derived a simplified expression for the hydrodynamic loading of viscous fluid on nanoplates. 

Furthermore, several studies were carried out to analyze the vibration of FGM structures in 

contact with ideal fluids. Khorshidi et al. [54] conducted the vibration of FGM sandwich 

microplates in sloshing fluids using the MCST. In bounded ideal fluids, the vibration of FGM 

microplates considering the effect of surface waves were studied by Bakhsheshy and Mahbadi 

based on the MCST [55]. Karimi et al. [56] reported the vibration behaviour of FGM 

microplates in ideal fluids based on the SGT. However, no work had been reported to address 

the viscosity effect of fluids on the vibration of FGM microbeams and microplates. 



In this paper, the size-dependent free vibration of FGM Mindlin microplates in viscous fluid 

is studied based on the MCST. The Mori-Tanaka method is applied to obtain the local 

properties of FGM microplates. The in-plane displacements in the Mindlin plate theory are 

neglected by introducing a physical neutral plane in the model. Both the added mass effect and 

the viscous damping effect of the hydrodynamic loading on the microplate are considered in the 

analysis. Hamilton’s principle is applied to establish the fluid-microplate coupled equations, 

which are solved using the differential quadrature (DQ) method. Finally, the influences of the 

aspect ratio, fluid depth, slenderness ratio, fluid viscosity, gradient index, fluid density, and size 

parameter on the vibration characteristics of microplates are discussed. 

 

2. Formulation 

The schematic of an FGM microplate in contact with viscous fluid is depicted in Figure 1. 

There is a rectangular tube filled with viscous fluid of height hf. In this rectangular tube, its 

bottom part is made of an elastic FGM microplate. As shown in Figure 1(a), only the 

hydrodynamic loading on its upper surface of the elastic bottom microplate is considered. 

Figure 1(b) illustrates the spatial geometry of the FGM elastic microplate with thickness h0, 

length Lx and width Ly. As shown in Figure 1(b), the coordinate system Oxyz is established for 

the FGM microplate, in which the microplate is symmetric about the geometric middle plane z = 

0. For FGM microplates, its components and mechanical properties are normally asymmetric 

about the geometric middle plane. The physical neutral plane where there are no nonzero 

components of stresses and strains is introduced to model the FGM microplate, and its location 

z = z0 varies with respect to the change of the gradient index of FGM microplates. 

 

2.1. Homogenization of material properties 

The FGM microplate with components that gradually vary in thickness direction is 

considered, and its top and bottom surfaces are made of ceramic and metal, respectively. The 

volume fractions are defined by 
cV  for ceramic and 

mV  for metal, and related by 1m cV V+ = . 

The distribution of ceramic follows a power law function 
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where subscripts c and m represent the ceramic and metal phases, respectively; n is the gradient 

index. To capture the local properties of FGM microplates, the Mori-Tanaka method [7] 

provides an effective way to predict the material properties. The effective Poisson’s ratio ν(z), 

elastic modulus E(z), and mass density ρ(z) are predicted by the Mori-Tanaka method 
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Ke(z) represents the effective value of the bulk modulus and μe(z) denotes the effective value of 

the shear modulus. 

 

2.2. Hydrodynamic pressure loading 

The incompressible viscous fluid is assumed in this fluid-microplate coupling system, and 

its density and viscosity are ρf and μf, respectively. The motion of viscous fluid is excited by the 

vibration of FGM microplates, and the resultant motion of the fluid reacts to the microplates, i.e., 

this is a fluid-microplate interaction problem. The following Navier-Stokes equation and 

continuity condition are applied to describe this interaction problem, 

2
f f

D
p

Dt
ρ µ= −∇ + ∇

v
v ,                                                  (7) 

0∇ ⋅ =v ,                                                            (8) 

where p represents the fluid pressure; v = (vx, vy, vz) is the velocity of viscous fluid. To simplify 

the problem and derive the analytical solution of the hydrodynamic pressure, the following 

hypotheses [53] are applied: 

(i) The components of velocity and pressure gradient in fluid domain in x- and y- directions are 

negligible, i.e., vx = 0, ∂p/∂x = 0, vy = 0, and ∂p/∂y = 0. 

(ii) The strain component of the microplate in z-direction is zero, i.e., ∂W/∂z = 0. 

Based on the first hypotheses, Equation (8) is reduced to ∂vz/∂z = 0, and Equation (7) is re-

written as 
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The interfacial conditions between the viscous fluid and microplate are  
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where vz and W are the z-axial fluid velocity and microplate displacement, respectively; the 

operator D/Dt refers to the material derivative about time t. Substituting Equation (10) into 



Equation (9), the pressure gradient at the interface between the fluid and microplate is 

0
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Regardless of the gravity effect of fluid, the hydrodynamic loading on the fluid-microplate 

interface is given by 
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where the first and second terms on the right-hand side of Equation (12) correspond to the 

added mass effect and viscosity damping effect, respectively.  

 

2.3. The modified couple stress theory 

In the analysis of microplates, the size dependent effect can be predicted by using the 

modified couple stress theory (MCST). Based on MCST described by Yang et al. [20], the 

strain energy ΠS of microplates is given by 

1Π ( : : )d ,
2

s Λ
= + Λ∫ σ ε m χ                                                (13) 

where Λ denotes the domain occupied by FGM microplates; tensor σ and m denote the Cauchy 

stress and deviatoric part of the couple stress, respectively; tensor ε and χ denote the Cauchy 

strain and symmetric curvature, respectively. They are formulated as 

 

where l represents the scale parameter; the displacement vector ( ), ,U V W=u     is expressed in 

Equation (19); μ and λ denote Lame’s constants; the rotation vector θ is 

1
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2
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2.4. Vibration of FGM microplates 

The components and physical properties of the FGM microplate are often asymmetric about 

the geometric mid-plane. By introducing the physical neutral plane in the model of FGM 

microplates, it results in no stretching-bending coupling effect in the vibration analysis of FGM 

microplates. The location of the neutral plane z = z0 is determined by the following expression 

[57]: 
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Specifically, the neutral plane is coincided with the geometric mid-plane for homogeneous 

plates. The effect of in-plane displacements can be neglected through the introduction of the 

neutral plane due to their independence of the out-of-plane deflection. Based on the Mindlin 

plate theory, the displacements u of FGM microplates are given by [29,58] 
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where W represents the out-of-plane deflection of the physical neutral plane; U , V , and 

W denote the x-, y-, and z-axial displacement components, respectively; Ψx and Ψy refer to the 

rotations of the physical neutral plane about y- and x-axes, respectively. Note that the Kirchhoff 

plate theory can be obtained by setting Ѱx = −dW/dx and Ѱy = −dW/dy. The stress tensor σ in 

Equation (14) are 
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where ε is strain tensor, its nonzero components are expressed as 
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and stiffness components are 
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According to Equation (17), curvature tensor χ is 
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and the rotation vector θ is 
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The couple moments {Yxx, Yxy, Yyy, Yzz}, bending moments {Mxx, Mxy, Myy}, transverse shear 

forces {Qx, Qy}, and high-order couple moments {Txy, Tyz}  are [29] 
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where κ = 5/6 is taken to approximate the shear correction factor. The terms of stiffness and 

inertia are defined as 
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According to the Hamilton principle 
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where the strain energy ΠS includes two parts, i.e., ΠS =ΠSC +ΠSNC. ΠSC is the strain energy 

derived from the classical thin plate theory, and ΠSNC denotes the strain energy contributed by 

introducing the MCST. They are formulated as: 
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The kinetic energy ΠT is: 
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The external work of microplates ΠF due to the hydrodynamic loading of viscous fluid at the 

fluid-microplate interface is: 
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where the hydrodynamic loading is expressed by Equation (12). 

Using the integration by parts, the governing equations of the microplate-fluid system are 

obtained 
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and the relevant boundary conditions require 
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where nx and ny are the direction cosines of unit normal vectors normal to the physical neutral 

plane. Several parameters are normalized as 
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where l0 is the non-dimensional size parameter; η1 and η2 are the length-thickness ratio and 

width-thickness ratio of microplates, respectively; I10 and A110 are equal to I1 and A11 of 

homogeneous plates, respectively; λ defines the aspect ratio; f
μ  represents the fluid viscosity 

and f
h  is the dimensionless fluid depth; Ω is the complex parameter and ω is its normalized 

form. 

The dimensionless forms of Equations (31)-(33) are 
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The non-dimensional boundary conditions are: 
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for all edges clamped (CCCC) microplates. The non-dimensional forms of boundary conditions 

are 
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for all edges simply supported (SSSS) microplates. 

 

2.5. Solution method 

In this work, the DQ method is a numerical technique to solve Equations (36)-(40) through 

the discretization of unknown variables w, ψx, ψy and their p1th, p2th partial derivatives as, 
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where N×M are the total number of sampling points. The selection of sampling points obeys the 

Chebyshev-Gauss-Lobatto collocation method [59] as 
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where 
1kζ  and 

2kξ  are the values of k1th and k2th sampling points along the ζ- and ξ- directions, 

respectively; the subscripts n and m correspond to the values at 
nζ  and 

mξ , respectively; 

Lagrange interpolation polynomials lm(ξ), ln(ζ), and weighted coefficients 1

2
( )p

k mC ξ , 2

1
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given in Shu [59]. 

Then, Equations (36)-(40) are discretized as 

      

1 2 1 2 2 1 2 1

1 2 2 1 1 2 1 2

2

2
(2) (1) (1) 2 (2) 0

66 1 66
1 1 1 1

2
(4) (4) (2) (2) (3)

2 2 2
1 1 1 1 11 2 2 1

2

2

+
4

1 2 1

N N M M

k n nk i k n xnk k m yk m k m k m

n n m m

N M N M N

k n nk k m k m k n k m nm k n xnk

n m n m n

k

l
a C w C C C w a

C w C w C C w C

C

= = = =

= = = = =

 
+ + − 

 


+ + −


−

∑ ∑ ∑ ∑

∑ ∑ ∑∑ ∑

κ η ψ η λ ψ λ

λ ψ
η η η η

λ
η

( )

1 1 2 1 2

1 2 2 1 1 2

(3) (1) (2) (2) (1)

1 1 1 1 12 2

(2) 2 (2)
1

1 1

1

,

M N M N M

m yk m k n k m xnm k n k m ynm

m n m n m

N M

f f k n nk k m k m f ik k

n m

C C C C

I C w C w I I w

= = = = =

= =


− − 


 

+ + = + 
 

∑ ∑∑ ∑∑

∑ ∑  

λψ ψ ψ
η η

µ λ

     (45) 



1 2 1 2 1 2 1 2

2 1 1 2 1 2 2 1

(2) (1) (1) (1) 2
11 12 66 66 1 1

1 1 1 1

2
2 (2) (1) (2) (3) 2 (3)0

66 66
1 1 1 1 12 1

( )

1
4

4

N N M N

k n xnk k n k m ynm k n nk xk k

n n m n

M N M N M

k m xk m k n k m nm k n nk k m xk m

m n m n m

d C d d C C a C w

l
d C a C C w C w C

= = = =

= = = = =

 
+ + − + 

 

+ − + −

∑ ∑∑ ∑

∑ ∑∑ ∑ ∑

ψ λ ψ κ η η ψ

λλ ψ λ ψ
η η

1 2 1 2 1 2

1 2 1 2 2 1 1

2
(1) (1) (2) (3) (1)0

66
1 1 1 1 11 2

2
(1) (3) (2) (2) (4)

32 2 2
1 1 1 1 12 2 2

1
3 +

4

1

N M N N M

k n k m ynm k n xnk k n k m ynm

n m n n m

N M N M M

k n k m ynm k n k m xnm k m xk m xk

n m n m m

l
C C C d C C

C C C C C I

= = = = =

= = = = =






+ − 

 


+ − − =


∑∑ ∑ ∑∑

∑∑ ∑∑ ∑ 

λ ψ ψ ψ
ηη

λ λψ ψ ψ ψ
η η η 2

,k

      (46) 

1 2 1 2 1 2 1 2

2 1 1 2 1 2 2 1

(2) (1) (1) (1) 2
11 12 66 66 1 1

1 1 1 1

2
2 (2) (1) (2) (3) 2 (3)0

66 66
1 1 1 1 12 1

( )

1
4

4

N N M N

k n xnk k n k m ynm k n nk xk k

n n m n

M N M N M

k m xk m k n k m nm k n nk k m xk m

m n m n m

d C d d C C a C w

l
d C a C C w C w C

= = = =

= = = = =

 
+ + − + 

 

+ − + −

∑ ∑∑ ∑

∑ ∑∑ ∑ ∑

ψ λ ψ κ η η ψ

λλ ψ λ ψ
η η

1 2 1 2 1 2

1 2 1 2 2 1 1

2
(1) (1) (2) (3) (1)0

66
1 1 1 1 11 2

2
(1) (3) (2) (2) (4)

32 2 2
1 1 1 1 12 2 2

1
3 +

4

1

N M N N M

k n k m ynm k n xnk k n k m ynm

n m n n m

N M N M M

k n k m ynm k n k m xnm k m xk m xk

n m n m m

l
C C C d C C

C C C C C I

= = = = =

= = = = =






+ − 

 


+ − − =


∑∑ ∑ ∑∑

∑∑ ∑∑ ∑ 

λ ψ ψ ψ
ηη

λ λψ ψ ψ ψ
η η η 2

.k

      (47) 

The discrete boundary conditions are given by 
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for CCCC microplates, the discrete boundary conditions are 
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for SSSS microplates. The matrix form of Equations (45)-(49) are expressed as 

( )vis addf+ + + =Gb C b M M b 0 µ ,                                               (50) 

where G, Cvis, M, and Madd are 3NM × 3NM matrixes, which represent the stiffness, damping, 

mass, and added mass, respectively.  

The unknown vector b is assumed as 



{ } { } { }{ }12 12 12

TT T T

, ,  k xk ykw ψ ψ=b ,                                       (51) 

where ( )12 1 2 12 1 ,   1,  2,  ,k M k k k N M= × − + = … × . The mode shape of vibration is assumed in 

the form of the decaying exponential function * Ωe t−=b b , where Ω = Ωr + iΩi is the complex 

parameter. Ωr = Re(Ω), namely the damping characteristic coefficient, is the exponentially 

decaying rate of the unknown vector function b; Ωi = |Im(Ω)| gives the natural angular 

frequency of the microplate. The symbols Re and Im denote the real and imaginary parts, 

respectively.  

Then, Equation (50) can be rewritten as 

( )2 *
add vis 0fω µ − + − = G M M C b ,                                       (52) 

where the parameter 
fµ  is defined in terms of the non-dimensional complex parameter ω, 

which is similar with the definition of Reynold number in Sader [48]. Equation (52) is solved 

using an iterative procedure as follows. The iterative steps are: 

(i) With the assumption of 0fµ = , the complex parameter ω is calculated from 

[ ]2
add 0ω− + =G M M ; 

(ii) Using ω obtained in step (i), 
fµ  is determined by Equation (35c), and ω is updated by 

Equation (52); 

(iii) Repeat step (ii) if the relative error is more than 0.1% between two consecutive iterations. 

 

3. Numerical results 

Several numerical examples are performed to study the free vibration of FGM microplates 

in contact with viscous fluid. The influences of related parameters, such as the aspect ratio, 

gradient index, fluid height, size parameter, fluid density, fluid viscosity, and slenderness ratio 

are investigated in detail. The material constants of the bottom surface made from SUS304 are 

elastic modulus Em = 207.78 GPa, Poisson’s ratio υm = 0.3177, mass density ρm = 8166 kg/m3, 

while the material constants of the top surface made from Si3N4 are elastic modulus Ec = 322.27 

GPa, Poisson’s ratio υc = 0.24, mass density ρc = 2370 kg/m3. Unless otherwise stated, physical 

parameters are taken as: the length Lx, width Ly and thickness h0 of microplates as 10×10×1 μm, 

gradient index n = 1, size parameter l = 1 μm, fluid depth hf = 10 μm and fluid density ρf = 1000 

kg/m3. The fundamental frequency f = Ωi/2π and the damping characteristic coefficient Ωr for 

the free vibration of CCCC and SSSS FGM microplates are discussed in following numerical 

examples.  

 

3.1. Model validation 



Table 1 demonstrates the convergence of the complex parameter Ω for the FGM microplates 

in viscous fluid with the viscosity μf = 1 Pa⋅s. The values of complex parameter Ω = Ωr + iΩi are 

listed with different discrete points N and M. Clearly, the complex parameter Ω is convergent 

with the increasing N and M for both CCCC and SSSS microplates. To achieve the accuracy, N 

= M = 24 and 10 are adopted for CCCC and SSSS microplates, respectively. 

Table 2 presents the fundamental frequency ( )2
0Im ( / ) /xL h EρΩ  of size-dependent Si3N4 

microplates without the fluid. Yin et al. [21] obtained the analytical results for the Kirchhoff 

microplate based on the MCST. The comparison between two results shows a good consistence. 

Table 3 provides the normalized fundamental frequency ( )0Im / 2(1 )h Eρ ν Ω +   of 

SSSS nanoplates in different fluid environments when Lx = Ly = hf = 10 nm, n = 0, l = 0, υ = 0.3. 

Four common fluid media are considered: air (ρf = 1.2 kg/m3, μf =16.5×10−6 Pa⋅s), vacuum 

(without fluid effect), water (ρf = 1000 kg/m3, μf =8.9×10−4 Pa⋅s) and honey (ρf = 1420 kg/m3, μf 

=10 Pa⋅s). Hosseini-Hashemi et al. [53] calculated the frequency of Kirchhoff nano-plates in 

different fluid environments. Again, the present results are verified by the Hosseini-Hashemi et 

al.’s results. 

 

3.2. Fundamental frequency 

Figure 2 displays the effect of the size parameters h0 / l on the frequency (f) ~ viscosity (μf) 

curves of CCCC and SSSS FGM microplates. The fundamental frequencies of CCCC and SSSS 

microplates decrease as the size parameter enlarges at a given fluid viscosity. As the fluid 

viscosity increases, the fundamental frequencies first decrease slightly, next decrease rapidly at 

a small interval, and then reduce to zero slowly. The small interval is regarded as the sensitive 

viscosity interval where the frequency decays sharply. In the sensitive viscosity interval, the 

frequency of CCCC microplates decays more sharply than that of SSSS microplates. 

Corresponding to h0 / l=1, 2, 5, and 10, the sensitive viscosity intervals are about [7.5, 8.7] Pa⋅s, 

[5, 6] Pa⋅s, [3.6, 4.5] Pa⋅s, and [3.4, 4.2] Pa⋅s for CCCC microplates, and about [7, 9] Pa⋅s, [4.3, 

6] Pa⋅s, [3.2, 4.5] Pa⋅s, and [3, 4] Pa⋅s for SSSS microplates. Clearly, the sensitive viscosity 

interval is shifted to the left with the increase of the size parameter. The results indicate that the 

viscous damping effect of fluids can reduce the fundamental frequency, and a large enough fluid 

viscosity can suppress the vibration of the structure. 

Figure 3 discusses the effect of the gradient index n on the frequency ~ viscosity curves of 

CCCC and SSSS FGM microplates. The fundamental frequencies decrease as the gradient index 

enlarges at a given fluid viscosity for CCCC and SSSS FGM microplates. The gradient index 

has a minor effect on the sensitivity viscosity interval. It can be seen that all sensitivity viscosity 

intervals are kept at the range of [7, 9] Pa⋅s for CCCC and SSSS microplates approximately. 



Figure 4 examines the influence of the fluid height hf / h0 on the frequency ~ viscosity 

curves of CCCC and SSSS FGM microplates. Notice that hf / h0 = 0 implies no fluid effect. At 

this case, the frequency is a constant with the change of the viscosity. The fundamental 

frequencies of CCCC and SSSS microplates decrease as the fluid height enlarges at a given 

fluid viscosity. The sensitive viscosity interval is shifted to left with the increase of the fluid 

height. 

Figure 5 examines the effect of the fluid density ρf on the frequency ~ viscosity curves of 

CCCC and SSSS FGM microplates. Four different fluid media are selected as: bromoform, 

honey, water and acetone with densities of 2820 kg/m3, 1420 kg/m3, 1000 kg/m3 and 788 kg/m3, 

respectively. The fundamental frequency of CCCC and SSSS microplates decrease as the fluid 

density enlarges when μf ∈ [0, 6] Pa⋅s, while the influence of the fluid density is unobvious 

when μf >13 Pa⋅s. Clearly, the sensitive viscosity interval is shifted to the right with the increase 

of the fluid density. As for the CCCC microplate, the sensitive viscosity interval is about [7, 8] 

Pa⋅s when ρf = 788 kg/m3, while it increases to [11.5, 13] Pa⋅s when ρf = 2820 kg/m3. The 

sensitive viscosity interval of the SSSS microplate is about [6.5, 8.5] Pa⋅s when ρf = 788 kg/m3, 

and [10.5, 13] Pa⋅s when ρf = 2820 kg/m3. 

Figure 6 shows the effect of the aspect ratio Lx / Ly on the frequency ~ viscosity curves of 

CCCC and SSSS FGM microplates. The frequencies of CCCC and SSSS microplates decrease 

as the aspect ratio reduces at a given fluid viscosity when μf ∈ [0, 6] Pa⋅s. With the increase of 

aspect ratio, the sensitive viscosity interval is shifted to the left for the CCCC FGM microplate, 

whereas it is slightly affected for the SSSS FGM microplate. 

Figure 7 plots the effect of the slenderness ratio Lx / h0 on the frequency ~ viscosity curves 

of CCCC and SSSS FGM microplates. The frequencies of CCCC and SSSS microplates 

decrease as the slenderness ratio enlarges at a given fluid viscosity. In particular, the sensitive 

viscosity interval is sensitive to the slenderness ratio, and it is shifted to the left as the 

slenderness ratio increases. 

 

3.3. Damping characteristic coefficient 

Figure 8 gives the effect of the size parameter h0 / l on the damping characteristic 

coefficient (Ωr) ~ viscosity (μf) curves of CCCC and SSSS FGM microplates. Interestingly, there 

is a critical viscosity μf0 corresponding to the peak of Ωr. As the fluid viscosity increases, the 

damping characteristic coefficient enlarges when μf < μf0, but it decreases when μf > μf0. The 

effect of the size parameter on Ωr is significant when μf > 3. As the size parameter enlarges, the 

peak of Ωr and the critical viscosity decrease rapidly. However, when μf > 8, the damping 

characteristic coefficient increases with the decrease of size parameter. 

The effect of the gradient index n on the damping characteristic coefficient ~ viscosity 



curves of CCCC and SSSS FGM microplates is plotted in Figure 9. A large gradient index leads 

to a reduction of Ωr and its peak for a given fluid viscosity. The variation of the critical viscosity 

on the gradient index is unobvious. 

Figure 10 analyzes the effect of the fluid height hf / h0 on the damping characteristic 

coefficient ~ viscosity curves of CCCC and SSSS FGM microplates. As the fluid height 

increases, the peak of Ωr and critical viscosity increase markedly. For both CCCC and SSSS 

FGM microplates, the damping characteristic coefficient increases with the larger fluid height 

when μf < 5, but it has a decrease trend when μf > 12.   

The effect of the fluid density ρf on the damping characteristic coefficient ~ viscosity curves 

of CCCC and SSSS FGM microplates is shown in Figure 11. For a smaller fluid density, the 

peak of Ωr has a larger value and the critical viscosity has a smaller value. The damping 

characteristic coefficient reduces as the fluid density increases when μf < 7, but it has an 

opposite trend when μf > 13. 

Figure 12 gives the effect of the aspect ratio Lx / Ly on the damping characteristic 

coefficient ~ viscosity curves of CCCC and SSSS FGM microplates. As the aspect ratio 

enlarges, the peak of Ωr increases, while the critical viscosity μf0 reduces. The damping 

characteristic coefficient of CCCC and SSSS FGM microplates increases as the aspect ratio is 

enlarged at a given fluid viscosity.  

Figure 13 shows the effect of the slenderness ratio Lx / h0 on the damping characteristic 

coefficient ~ viscosity curves of CCCC and SSSS FGM microplates. The damping characteristic 

coefficient enlarges slightly as the fluid viscosity increases when μf <3, but it has an opposite 

trend when μf >8. For a smaller slenderness ratio, the peak of Ωr reaches a larger value at the 

higher critical viscosity.  

 

4. Conclusions 

In this work, the free vibration for size-dependent FGM Mindlin microplates in contact 

with viscous fluid is conducted based on the MCST. The Mori-Tanaka method is applied for 

predicting the gradient variation of FGM microplates. The introduction of a physical neutral 

plane simplifies the microplate model because it can exclude the stretching-bending coupling 

effect. The hydrodynamic loading on the FGM microplate including both the inertial effect and 

viscous damping effect is taken into account based on the Navier-Stokes equation. The 

microplate-fluid coupling equations are established based on the Hamilton’s principle, and 

numerically solved using the DQ method. The influences of the gradient index, aspect ratio, 

fluid depth, slenderness ratio, fluid viscosity, fluid density, size parameter, and boundary 

condition on vibration characteristics are considered. It is concluded that: 

(1) There is a sensitive viscosity interval where the frequency decays sharply. 



(2) The viscous damping effect can reduce the fundamental frequency, and a large enough fluid 

viscosity can suppress the vibration of the structure. 

(3) The frequencies of CCCC and SSSS microplates decrease markedly as the slenderness ratio, 

fluid height, size parameter, and gradient index increase. 

(4) There is a critical viscosity μf0 corresponding to the peak of the damping characteristic 

coefficient. As the fluid viscosity increases, the damping characteristic coefficient enlarges 

when μf < μf0, but it decreases when μf > μf0.  

(5) The critical viscosity μf0 reduces as the slenderness ratio, aspect ratio, and size parameters 

enlarge. 
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Table 1. The complex parameter Ω (×108) for CCCC and SSSS FGM microplates in contact 

with viscous fluid on one side (Lx = Ly = hf = 10 μm, h0 =1 μm, μf = 1 Pa⋅s, n = 1, l = 1 μm, ρf = 

1000 kg/m3). 

N, M  CCCC  SSSS 

N = M = 8  12.362 + 1.0711i  0.54119 + 0.064375i 

N = M =10  10.715 + 0.89657i  0.54159 + 0.064380i 

N = M =12  10.043 + 0.83242i  0.54159 + 0.064380i 

N = M =18  9.4138 + 0.77530i  0.54159+ 0.064380i 

N = M =22  9.2872 + 0.76480i  0.54159+ 0.064380i 

N = M =24  9.2497 + 0.76183i  0.54159+ 0.064380i 

N = M =25  9.2351 + 0.76055i   −− 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 2. The fundamental frequency ( )2Im ( / ) /xL h EρΩ for size-dependent Si3N4 SSSS 

microplates with Lx / h0 =10. 

  
l (m)    

0 0.0005 0.001 0.003 

Lx =0.5, Ly =1 m 
present 3.6317 3.6325 3.6342 3.6614 

Yin et al. [21] 3.710 3.711 3.713 3.939 

Lx = Ly =1 m 
present 5.737 5.7373 5.7383 5.7482 

Yin et al. [21] 5.9356 5.9360 5.9369 5.9472 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 3. The fundamental frequency ( )( )Im / 2(1 )h Eρ νΩ + of SSSS nanoplate in different 

fluid environments (Lx = Ly = hf = 10 m, n = 0, l = 0, υ = 0.3). 

  Lx / h0 = 10 Lx / h0 = 20 

Air 

present 0.09279 0.02374 

Malekzadeh and Shojaee [11] 0.0930 0.0239 

Hosseini-Hashemi et al. [53] 0.0960 0.02396 

Vacuum 
present 0.0930 0.02386 

Hosseini-Hashemi et al. [53] 0.0963 0.02409 

Water 
present 0.04068 0.007722 

Hosseini-Hashemi et al. [53] 0.0429 0.007838 

Honey 
Present 0.035146 0.006583 

Hosseini-Hashemi et al. [53] 0.03690 0.006289 

Inviscid Honey 
Present 0.03515 0.006583 

Hosseini-Hashemi et al. [53] 0.037153 0.006683 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

(a) Fluid-plate coupled system 

 

(b) Spatial geometry of microplates 

Figure 1. An FGM microplate in viscous fluid: (a) Fluid-plate system and (b) Spatial geometry 

of microplates. 
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Figure 2. The effect of the size parameters h0 / l on the frequency ~ viscosity curves of CCCC 

and SSSS FGM microplates (Lx / Ly = 1, Lx / h0 = 10, n = 1, hf / h0= 10, ρf = 1000 kg/m3): (a) 

CCCC and (b) SSSS. 
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Figure 3. The effect of the gradient index n on the frequency ~ viscosity curves of CCCC and 

SSSS FGM microplates (Lx / Ly = 1, Lx / h0 = 10, h0 / l = 1, hf / h0= 10, ρf = 1000 kg/m3): (a) 

CCCC and (b) SSSS. 
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Figure 4. The influence of the fluid height hf / h0 on the frequency ~ viscosity curves of CCCC 

and SSSS FGM microplates (Lx / Ly = 1, Lx / h0 = 10, n = 1, h0 / l = 1, ρf = 1000 kg/m3): (a) 

CCCC and (b) SSSS. 
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Figure 5. The effect of the fluid density ρf on the frequency ~ viscosity curves of CCCC and 

SSSS FGM microplates (Lx / Ly = 1, Lx / h0 = 10, n =1, h0 / l = 1, hf / h0= 10): (a) CCCC and (b) 

SSSS. 
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Figure 6. The effect of the aspect ratio Lx / Ly on the frequency ~ viscosity curves of CCCC and 

SSSS FGM microplates (Lx / h0 = 10, n = 1, h0 / l = 1, hf / h0= 10, ρf = 1000 kg/m3): (a) CCCC 

and (b) SSSS. 

 

 

 

 

 



 

 

 

 

 

 

 

 

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

µ
f

CCCC:  L
x
/h

0
 = 10   L

x
/h

0
 = 16

             L
x
/h

0
 = 20   L

x
/h

0
 = 30

(a)

f (
×1

08  H
z)

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

µ
f

SSSS:  L
x
/h

0
 = 10   L

x
/h

0
 = 16

           L
x
/h

0
 = 20   L

x
/h

0
 = 30

(b)

f (
×1

08  H
z)

 

 

Figure 7. The effect of the slenderness ratio Lx / h0 on the frequency ~ viscosity curves of CCCC 

and SSSS FGM microplates (Lx / Ly = 1, n = 1, h0 / l = 1, hf / h0= 10, ρf = 1000 kg/m3): (a) 

CCCC and (b) SSSS. 
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Figure 8. The effect of the size parameters h0 / l on the damping characteristic coefficient ~ 

viscosity curves of CCCC and SSSS FGM microplates (Lx / Ly = 10, Lx / h0 = 10, n = 1, hf / h0= 

10, ρf = 1000 kg/m3): (a) CCCC and (b) SSSS. 

 

 

 

 

 



 

 

 

 

 

 

 

 

0 4 8 12 16 20
0

7

14

21

µ
f

CCCC:
  n = 0
  n = 0.5
  n = 1
  n = 2

(a)

Ω r (×
10

8  )

 

0 4 8 12 16 20
0

2

4

6

8

µ
f

SSSS:
  n = 0
  n = 0.5
  n = 1
  n = 2

(b)

Ω r (×
10

8  )

 

Figure 9. The effect of the gradient index n on the damping characteristic coefficient ~ viscosity 

curves of CCCC and SSSS FGM microplates (Lx / Ly = 10, Lx / h0 = 10, h0/ l = 1, hf / h0= 10, ρf = 

1000 kg/m3): (a) CCCC and (b) SSSS. 
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Figure 10. The effect of the fluid height hf / h0 on the damping characteristic coefficient ~ 

viscosity curves of CCCC and SSSS FGM microplates (Lx / Ly = 10, Lx / h0 = 10, n = 1, h0/ l = 1, 

ρf = 1000 kg/m3): (a) CCCC and (b) SSSS. 
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Figure 11. The effect of the fluid density ρf on the damping characteristic coefficient ~ viscosity 

curves of CCCC and SSSS FGM microplates (Lx / Ly = 10, Lx / h0 = 10, n = 1, h0/ l = 1, hf / h0= 

10): (a) CCCC and (b) SSSS. 
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Figure 12. The effect of the aspect ratio Lx / Ly on the damping characteristic coefficient (Ωr) ~ 

viscosity (μf) curves of CCCC and SSSS FGM microplates (Lx / h0 = 10, n = 1, h0/ l = 1, hf / h0= 

10, ρf = 1000 kg/m3): (a) CCCC and (b) SSSS. 
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Figure 13. The effect of the slenderness ratio Lx / h0 on the damping characteristic coefficient ~ 

viscosity curves of CCCC and SSSS FGM microplates (Lx / Ly = 10, n = 1, h0/ l = 1, hf / h0= 10, 

ρf = 1000 kg/m3): (a) CCCC and (b) SSSS. 


