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Key Points (75-100 word or less) 1 
 2 
Question: Are APOE missense variants, other than the common APOE alleles ε2 and 3 
ε4, associated with AD risk? 4 

Findings:  We meta-analyzed multiple studies including 67,896 Alzheimer’s disease (AD) 5 
cases, 28,484 proxy-AD cases and 340,306 healthy controls. Two rare missense variants 6 
substantially reduced the risk of AD. APOE-ε3[V236E] reported previously but lacking 7 
large-scale validation, reduced risk by more than 60%. APOE-ε4[R251G], not previously 8 
associated with AD, reduced risk by more than 50% and reached genome-wide 9 
significance. 10 

Meaning:  Single amino acid alterations of the APOE-ε3 and APOE-ε4 isoforms can 11 
result in substantial risk reduction for AD. Functional studies examining these variants 12 
should elucidate the role of apoE in AD pathogenesis. 13 

 14 
  15 
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Abstract (350-word limit) 1 

Importance: The APOE-ε2 and APOE-ε4 alleles are, respectively, the strongest 2 
protective and risk-increasing genetic variants for late-onset Alzheimer’s disease (AD). 3 
However, the mechanisms linking APOE to (AD)—particularly the apoE protein’s role in 4 
AD pathogenesis and how this is affected by APOE variants—remain poorly understood.  5 
Identifying missense variants in addition to APOE-ε2 and APOE-ε4 could provide critical 6 
new insights. 7 
Objective: To determine whether rare missense variants on APOE are associated with 8 
AD risk. 9 
Design:  Association with case-control status was tested in a sequenced discovery 10 
sample (Stage 1) and followed-up in several microarray imputed cohorts as well as the 11 
UK Biobank whole-exome sequencing resource using a proxy-AD phenotype (Stages 12 
2+3). All data were retrieved between September 2015 and November 2021 and 13 
analyzed between April 2021 and November 2021. 14 
Setting: This study combined case-control, family-based, population-based, and 15 
longitudinal AD-related cohorts that recruited referred and volunteer participants.  16 
Participants: Stage 1 included 37,409 non-unique participants of European or Admixed-17 
European ancestry, with 11,868 cases and 11,934 controls passing analysis inclusion 18 
criteria. In Stages 2+3, 475,473 participants were considered across 8 cohorts, of which 19 
84,513 cases and proxy-AD cases, and 328,372 controls passed inclusion criteria, and 20 
were of European ancestry. Selection criteria were cohort specific, and this study was 21 
performed a posteriori on individuals who were genotyped. Among the available 22 
genotypes 76,195 were excluded. The number who declined to participate in the original 23 
studies was not available. 24 
Main Outcome(s) and Measure(s): In primary analyses, the AD risk associated with 25 
each missense variant was estimated, as appropriate, with either linear-mixed-model 26 
regression or logistic regression. In secondary analyses, we estimated associations with 27 
age-at-onset using linear-mixed-model regression, and risk of conversion to AD using 28 
competing risk regression. 29 
Results: A total of 544,384 participants (57.4% females, age range 40-110 years old) 30 
were analyzed in the primary case-control analysis. Two missense variants were 31 
associated with a two to three-fold decreased AD risk: APOE-ε4[R251G] (odds ratio, 32 
0.44; 95% confidence interval [CI], 0.33-0.59; P=4.7x10-8) and APOE-ε3[V236E] (odds 33 
ratio, 0.37; 95% CI, 0.25-0.56; P=1.9x10-6). Additionally, the cumulative incidence of AD 34 
in carriers of these variants was found to grow more slowly with age compared to non-35 
carriers. 36 
Conclusions and Relevance: We identified a novel variant associated with AD, R251G 37 
always co-inherited with ε4, which mitigates the ε4 associated AD risk, and confirmed 38 
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the protective effect of the V236E variant, always co-inherited with ε3. The location of 1 
these variants confirms that the carboxyl-terminal portion of apoE plays an important 2 
role in AD pathogenesis. The large risk reductions reported here, suggest that protein 3 
chemistry and functional assays of these variants should be pursued as they have the 4 
potential to guide drug development targeting APOE.5 
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Introduction 1 
Late-onset Alzheimer’s disease (AD) is a highly polygenic neurodegenerative disorder 2 

with, to date, 75 risk loci associated with AD risk1. Most of the common single nucleotide 3 

polymorphisms (SNPs) at these loci only contribute a small amount to an individual’s risk 4 

of AD2, with the exception of the APOE-ε2 and ε4 missense variants that are associated 5 

with substantially decreased3 and increased AD risk4, respectively. It is estimated that 6 

25% of the genetic variance of AD can be attributed to APOE-ε2 and APOE-ε45. Despite 7 

the outsized role of these two common APOE alleles, more than 25 years after the initial 8 

studies linking them to AD their role in pathogenesis remains ill-defined. Human studies 9 

have shown that ε4 speeds, and ε2 slows, the age-related misprocessing of beta-10 

amyloid, though how this occurs at the molecular level remains uncertain6,7. Even the 11 

most basic question, does ε4 act via a loss-of-function or gain-of-function mechanism, 12 

remains a point of contention8. Loss-of-function mutations on APOE are exceedingly 13 

rare and the sole case report describing a compound heterozygote with two loss-of-14 

function mutations involved a patient who was too young to be informative9. The study 15 

of additional missense variants on APOE may also help to answer this critical question 16 

and further elucidate the role of APOE in AD. In addition to ε2 and ε4, the only common 17 

missense variant (with a minor allele frequency (MAF) > 1%) is Arg145Cys (R145C) an 18 

African-ancestry variant always found co-inherited with APOE-ε3, which we have shown 19 

increases risk for AD10. The Arg136Ser (R136S) Christchurch variant has recently been 20 

posited to play a protective role in early-onset AD related to PSEN1 mutations, but this 21 

study had no statistical genetics support as it was based on data from a single patient11. 22 

Finally, strong functional evidence has been marshalled recently to support a protective 23 

role for the Val236Glu (V236E) variant, though this was based on data from an earlier 24 

case-control study with only ~9,000 subjects12,13, likely underpowered to provide firm 25 

estimates of disease risk. 26 

On this background, we aimed to investigate, at large scale, the association of rare 27 

missense variants on APOE with AD risk. We used the Alzheimer’s Disease Sequencing 28 

Project (ADSP) whole-genome (WGS) and whole-exome sequencing (WES) data as our 29 

discovery sample (Stage 1), and sought to replicate significant variants (Stages 2+3) in 30 
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multiple cohorts using micro-array data imputed on the TOPMed reference panel14, or 1 

by using directly sequenced and genotyped variants from a large Danish general 2 

prospective population cohort15, as well as using the proxy-AD phenotype1 in the UK 3 

Biobank WES data. After filtering, three variants, Leu28Pro (L28P), Val236Glu (V236E), 4 

and Arg251Gly (R251G), were tested for their association with AD risk after adjusting for 5 

ε2 and ε4 dosages. In complementary analyses, we assessed these associations in an 6 

APOE-stratified approach to account for the complete linkage disequilibrium of these 7 

variants with either the ε2, ε3, or ε4 allele. In secondary analyses, combining Stages 1 8 

and 2 datasets, we tested their association with age-at-onset in AD cases and with risk 9 

of conversion to AD using competing risk regression. 10 

11 
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Methods 1 
 2 
PARTICIPANTS AND SOURCES OF DATA 3 

Participants or their caregivers provided written informed consent in the original studies. 4 

The current study protocol was granted an exemption by the Stanford University 5 

institutional review board because the analyses were carried out on deidentified, off-the-6 

shelf data; therefore, additional informed consent was not required. For Stage 1 and 7 

Stage 2, phenotypic information and genotypes were obtained from publicly released 8 

genome-wide association study datasets assembled by the Alzheimer's Disease 9 

Genetics Consortium (ADGC) and derived from WES and WGS data generated by the 10 

Alzheimer Disease Sequencing Project (ADSP), with phenotype and genotype 11 

ascertainment described elsewhere16–20. The cohorts' queried accession numbers, as 12 

well as the sequencing technology or single nucleotide polymorphism (SNP) genotyping 13 

platforms are described in eTables 1 and 2. Information about Stage 3, which included 14 

external replication cohorts and UK Biobank, is provided as a Supplementary Note. 15 

Briefly, these included EABD-core, EADI, GERAD, DemGene, and GR@ACE/DEGESCO 16 

for which phenotype, genotype quality control and imputation have already been 17 

described in Bellenguez et al.1; and CCHS & CGPS APOE sequencing and genotyping 18 

were described in Rasmussen et al.15. The following sections describe quality control 19 

procedures and ancestry determination applied to the ADSP and ADGC samples 20 

respectively used as Stage 1 and Stage 2. The STREGA reporting guidelines were 21 

followed. 22 

 23 

QUALITY CONTROL PROCEDURES 24 

Prior to ancestry, principal components and relatedness determination, in each cohort-25 

platform, variants were excluded based on genotyping rate (< 95%), MAF < 1%, and 26 

Hardy-Weinberg equilibrium in controls (p < 10-6) using PLINK v1.921. gnomAD22 27 

database-derived information was used to filter out SNPs that met one of the following 28 

exclusion criteria23,24: (i) located in a low complexity region, (ii) located within common 29 

structural variants (MAF > 1%), (iii) multiallelic SNPs with MAF > 1% for at least two 30 

alternate alleles, (iv) located within a common insertion/deletion, (v) having any flag 31 
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different than PASS in gnomADv.3, (vi) having potential probe polymorphisms. The latter 1 

are defined as SNPs for which the probe may have variable affinity due to the presence 2 

of other SNP(s) within 20 bp and with MAF > 1%. Individuals with more than 5% 3 

genotype missingness were excluded. Duplicate individuals were identified with KING25 4 

and their clinical, diagnostic and pathological data (including age-at-onset of cognitive 5 

symptoms, age-at-examination for clinical diagnosis, age-at-last exam, age-at-death), 6 

as well as sex, race, and APOE genotype were cross-referenced across cohorts. 7 

Duplicate entries with irreconcilable phenotype or discordant sex were flagged for 8 

exclusion. For individuals with duplicated genotype in sequencing and imputed data, the 9 

sequencing entry was used in the Stage 1 discovery set and the imputed entry was not 10 

included in the Stage 2 replication set. To apply the PCAir and PCRelate methods described 11 

in the statistical analysis section, we simply considered the intersection of the variants passing 12 

quality control in both ADSP WES and ADSP WGS in the discovery, and similarly the intersection 13 

of the variants across cohorts genotyping platform in the replication. 14 

 15 

 16 

ANCESTRY DETERMINATION 17 

For each cohort, we first determined the ancestry of each individual with SNPWeights 18 

v226 using reference populations from the 1000 Genomes Consortium27. By applying an 19 

ancestry percentage cut-off > 75%, the samples were stratified into five super 20 

populations: South-Asians, East-Asians, Americans, Africans, and Europeans, and an 21 

Admixed group composed of individuals not passing the 75% cut-off in any single 22 

ancestry (eTable 3)10,23. Since the APOE missense variants of interest L28P, V236E, and 23 

R251G are too rare to assess reliably in non-European ancestry populations (eTable 4), 24 

we restricted our analysis to European and Admixed-European individuals. Admixed-25 

European individuals were also included in the main analysis and were part of the 26 

Admixed group defined above and had at least 15% European ancestry. We performed 27 

sensitivity analyses in increments of 30%, including Admixed-European individuals at 28 

45% and 75% cutoffs. The latter corresponding to the super population threshold. 29 

 30 
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IMPUTATION 1 

Each cohort-genotyping platform was imputed on the TOPMed imputation server per 2 

ancestry group to obtain an imputation quality (R2) per ancestry group. We retained 3 

cohorts with R2 > 0.70 at rs199768005 for the V236E analyses, and at rs26760661 for 4 

the R251G analyses. As there was no significant association signal for rs769452 (L28P) 5 

in the Stage 1 primary analysis, we did not check its imputation quality in Stage 2 6 

samples. 7 

 8 

APOE GENOTYPE ASCERTAINMENT 9 

We directed specific attention to the genotyping of the SNPs determining the main APOE 10 

genotype (rs429358 and rs7412), rs769452-C (APOE[L28P]), rs199768005-A 11 

(APOE[V236E]), and rs267606661-G (APOE[R251G]) and follow the procedure described 12 

in 10. Note that Leu28Pro (L28P), Val236Glu (V236E), and Arg251Gly (R251G) are also 13 

sometimes respectively referred to as L46P, V254E, and R269G, when the first 18 14 

codons of APOE encoding a signal peptide are included. 15 

 16 

SAMPLES ANALYZED 17 

Our discovery sample (Stage 1) was composed of European and Admixed-European 18 

ancestry individuals from the ADSP WES and WGS, corresponding to 11,868 AD cases 19 

and 11,934 cognitively normal controls (Table 1). eFigure 1 provides a flowchart of the 20 

filtering steps leading to the inclusion of these individuals and describes how these 21 

datasets were combined. To build a replication sample (Stage 2) for V236E and R251G, 22 

we queried for individuals of European and Admixed-European ancestry in all the 23 

publicly available microarray genetic datasets that we had access to at the time of the 24 

study in July 2021 (Table 1). These datasets are largely part of the ADGC and as such 25 

this replication will be referred to hereafter as the ADGC replication in Stage 2. After 26 

quality control and duplicate removal, 7,768 AD cases and 8,059 controls remained in 27 

the ADGC replication sample. eTable 5 presents the demographics of the remaining AD 28 

cases and cognitively unimpaired controls. In Stage 3, we pursued additional replication 29 

in external datasets (not publicly available) and in the UK Biobank WES using the proxy-30 
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AD phenotype (Table 1, Supplementary Note). Overall, the external replications 1 

included 36,393 cases and 150,943 controls, and the UK Biobank replication included 2 

28,484 proxy-AD cases and 157,436 controls. Across cohorts reported in Table 1, the 3 

APOE genotype were split as follows: ε2/ε2: 0.5%, ε2/ε3: 10.4%, ε3/ε3: 54.5%, ε2/ε4: 4 

2.5%, ε3/ε4: 27.7%, ε4/ε4: 4.4%. 5 

 6 

STUDY DESIGN & STATISTICAL ANALYSES  7 

In our analysis, we only considered missense variants with a minor allele count above 10 8 

in any APOE main genotype groups in our next generation sequencing discovery (Stage 9 

1) to avoid outlier-confounded effect size estimates28. Three APOE missense variants 10 

were retained for further analyses: L28P, V236E, and R251G (eTable 4). The V236E 11 

variant is always co-inherited with APOE-ε3, and the L28P and R251G are always co-12 

inherited with APOE-ε4 (eTable 6). Two variants are co-inherited when they are on the 13 

same chromosome copy and close enough to each other that a meiotic crossover event 14 

never occurs between them. We thus developed two complementary approaches to take 15 

into account these linkage disequilibrium structures. In primary analyses, we estimated 16 

the AD risk associated with L28P, V236E, and R251G on case-control diagnoses using 17 

linear-mixed-model regression (Stages 1+2, and UK Biobank) and logistic regression 18 

(Stage 3) model, adjusted for ε2 and ε4 dosages, in addition to the covariates described 19 

below for all analyses. The adjustment by the common ε3 and ε4 APOE alleles is 20 

necessary because the rare variants tested here are always co-inherited with either the 21 

ε3 or ε4 APOE allele. In complementary analyses, we also estimated the AD risk 22 

associated with V236E and R251G stratified by their associated common APOE allele 23 

genotype. V236E was assessed in APOE-ε3/ε3 and R251G was assessed in the APOE-24 

ε3/ε4 stratum. An association was considered significant in Stage 1, if it reached a 25 

Bonferroni-corrected p-value threshold of 0.017 (≈ 0.05/3) in the model adjusted for ε2 26 

and ε4 dosages. L28P was not associated with AD risk in this model and was not studied 27 

further. 28 

Sample sizes and demographics for the stratified analyses are shown in eTable 29 

6. In sensitivity analyses, we estimated AD risk associations for different European 30 
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ancestry inclusion thresholds. In secondary analyses, combining Stages 1 and 2 1 

datasets, we estimated the influence of significant Stage 1 variants on age-at-onset 2 

(AAO) in AD cases using linear mixed model regression, and risk of conversion to AD 3 

using competing risk regression. In secondary analyses, associations were considered 4 

significant when passing the nominal p-value threshold of 0.05. The case-control and 5 

age-at-onset analyses used linear mixed model regression available through the 6 

GENESIS package (v3.12)29. Multivariate competing risk regression and cumulative 7 

incidence estimation were implemented using the cmprsk package (v2.2)30. In this time-8 

to-event analysis, failure events were defined as age-at-onset for cases (conversion to 9 

AD) and age-at-death for controls. Controls without reported death were right censored 10 

at age-at-last-visit. Left censoring was set at 50 years old, and younger individuals were 11 

excluded from the analysis. All statistical analyses were adjusted for sex and four genetic 12 

principal components estimated with the PC-Air method31 implemented in GENESIS. 13 

Linear mixed model analyses were additionally covaried by a sparse genetic relationship 14 

matrix estimated with the PC-Relate method32 implemented in GENESIS. Case-control 15 

analyses were not adjusted for age given that correcting for age when cases are younger 16 

than controls leads to the model incorrectly inferring the age effect on AD risk, resulting 17 

in statistical power loss23.  18 

Case-control analyses in Stage 3, external replication cohorts and proxy-AD phenotype 19 

in UK Biobank, were implemented to be consistent with the Stage 1 primary analyses. 20 

Exact model/analysis details are described in a Supplementary Note. For the 21 

ADSP/ADGC cohorts, all statistical analyses were performed in R (v4.0.2). All meta-22 

analyses were implemented with a fixed-effect inverse variance weighted design 23 

implemented in the metafor R package (v.3.0.2)33.  24 
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RESULTS 1 

In Stage 1 primary analyses, V236E (rs199768005-A) and R251G (rs267606661-2 

G) were associated with a four to five-fold decreased AD risk in non-stratified analyses 3 

adjusted for ε2 and ε4 dosages (V236E: OR = 0.23; 95% CI; 0.09-0.56; P = 1.4x10-3; 4 

R251G: OR = 0.20; 95% CI; 0.08-0.49; P = 3.7x10-4, Figure 1, Table 2). Similarly, in 5 

APOE-stratified analyses, V236E was associated with a threefold decreased AD risk in 6 

ε3/ε3 individuals (OR = 0.31; 95% CI; 0.12-0.82; P = 0.02) and R251G was associated 7 

with a fivefold decreased AD risk in ε3/ε4 individuals (OR = 0.17; 95% CI; 0.06-0.48; P 8 

= 7.8x10-4, Table 2). The L28P variant (rs769452-C) was not associated with AD risk in 9 

the non-stratified analyses (odds ratio (OR) = 1.12; 95% confidence interval [CI]; 0.77-10 

1.62; P = 0.56). As such, it was not investigated further. 11 

In Stages 2+3, across multiple replication cohorts, the effects of V236E and 12 

R251G in non-stratified analyses were concordant and both were significantly 13 

associated with AD risk: V236E (OR = 0.42; 95% CI, 0.27-0.66; P=2.0x10-4) and R251G 14 

(OR = 0.48; 95% CI, 0.35-0.66; P= 5.8x10-6). The overall meta-analysis (Figure 1, Table 15 

2) provides robust effect size estimate for these two variants and confirmed their 16 

association with a two to three-fold decreased AD risk: V236E (OR = 0.37; 95% CI, 0.25-17 

0.56; P=1.9x10-6) and R251G (OR = 0.44; 95% CI, 0.33-0.59; P=4.7x10-8). Similar results 18 

were obtained in APOE-stratified meta-analyses (Table 2, eFigure 1). We further 19 

estimated the odds per APOE genotype group, using ε3/ε3 individuals that did not carry 20 

V236E as the reference (i.e., odds ratio of APOE-ε3/ε3 individuals equals 1), by meta-21 

analyzing the ADSP discovery and ADGC replication cohorts. Compared to the reference 22 

ε3/ε3 group, ε3/ε3[V236E] and ε3/ε4[R251G] individuals had AD risk lower than or similar 23 

to ε2/ε3 (Figure 2). 24 

Results of sensitivity analyses evaluating different European ancestry cutoffs are 25 

shown in (eTable 8, eFigure 2). Briefly, the results remained unchanged when selecting 26 

admixed ancestry individuals with at least 45% European ancestry, or when restricting 27 

the analysis to European ancestry individuals (75% cutoff). We note that the odds ratio 28 

in the combined ADSP/ADGC datasets for V236E and R251G remain unchanged at 29 
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different ancestry cutoffs. For example, using an ancestry cutoff at 75%, the non-1 

stratified meta-analysis yielded an odds ratio of 0.27 (95% CI, 0.12 to 0.58; P = 8.6x10-2 
4) for V236E as compared to an odds ratio of 0.26 using a cutoff of 15%. Similar 3 

observations were made for the R251G variant. As additional supplementary analyses, 4 

we assessed the effect of the inclusion of “all dementia” (rather than AD specifically) in 5 

the CCHS & CGPS dataset and we estimated the significance without including UK 6 

Biobank. Overall, the significance of the results slightly improved when including a 7 

broader dementia category (e.g. R251G, OR= 0.44; 95% CI, 0.33-0.59; P=3.5x10-8, 8 

eTable 9). While removing UK Biobank proxy-AD phenotype samples reduced the 9 

significance of our results slightly, the ORs became slightly more protective (e.g. R251G, 10 

OR= 0.39; 95% CI, 0.27-0.56; P=1.2x10-7, eTable 10). 11 

In secondary analyses, including data from Stages 1+2, we considered the meta-12 

analysis of ADSP/ADGC samples (eTable 5). In non-APOE stratified analyses adjusted 13 

for ε2 and ε4 dosages (eTable 7), V236E carriers had an age-at-AD-onset on average 14 

10.5 years older than non-carriers (β = 10.64; 95% CI, 1.78 to 19.49; P = 0.02) and slower 15 

incidence with age (HR = 0.30; 95% CI; 0.12-0.76; P = 0.01). While R251G’s association 16 

with age-at-onset was not significant (β = 0.97; 95% CI, -2.96 to 4.91; P = 0.63) and its 17 

association with reduced AD incidence with age was just nominally significant (HR = 18 

0.67; 95% CI; 0.46-0.97; P = 0.04). In APOE-stratified analyses (eTable 7), a similar effect 19 

of V236E on age-at-AD-onset was observed in ε3/ε3 (β = 10.93; 95% CI, 1.06 to 20.81; 20 

P = 0.03). R251G carriers had an age-at-AD-onset on average 6 years older than non-21 

carriers in ε3/ε4 but this association was only trending towards significance (β = 6.04; 22 

95% CI, -0.71 to 12.79; P = 0.08). The competing risk results emphasized that the 23 

cumulative incidence of AD in ε3/ε3 participants grows slower with age in individuals 24 

carrying the V236E variant (hazard ratio [HR] = 0.40; 95% CI; 0.17-0.97; P = 0.04), and 25 

similarly in ε3/ε4 participants carrying the R251G variant (HR = 0.26; 95% CI; 0.13-0.54; 26 

P = 2.9x10-4). 27 

  28 
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DISCUSSION 1 

We have shown that two missense variants V236E and R251G are each 2 

associated with a more than 2-fold reduction in AD risk (Figure 2). These variants have 3 

an allele frequency of less than 0.1% in gnomAD v3.1, even when restricting this 4 

frequency estimate to Europeans (eTable 4). Due to their rarity and linkage disequilibrium 5 

with the common APOE -ε3 and -ε4 alleles, they have not been identified in prior 6 

genome-wide association studies1. The protective effect of V236E has already been 7 

reported in a smaller prior study focused on APOE13 and was suggestive in a population-8 

based study15, but we validated this finding here in a large-scale genomic study and 9 

provide an improved estimate of its effect size. The association of R251G with AD risk 10 

has not been previously reported. This variant, carried on the same haplotype as ε4, is 11 

the first APOE variant found to mitigate the AD risk attributable to the ε4 isoform of the 12 

apoE protein. Notably, having R251G in association with APOE-ε4 results in a risk 13 

estimate similar to APOE-ε2, as shown in Figure 2 where APOE-ε3/ε4[R251G] and 14 

APOE-ε2/ε3 have an equivalent odds ratio. Our study has several limitations (i) the V236E 15 

association was not genome-wide significant, (ii) we included the UKB dataset that does 16 

not include a direct clinical diagnosis of AD, (iii) due to the paucity of variant carriers in 17 

non-European ancestries we did not assess these variants in other ancestries (although 18 

they can be found in African-Americans and Admixed-Latinos based on gnomAD 19 

estimates (eTable 4)). These three caveats point to the need for further confirmation of 20 

these variants as available AD datasets grow and become more ancestrally diverse. 21 

Regarding potential mechanisms driving these associations, it is notable that 22 

these two variants are on apoE’s C-terminal domain. The common APOE-ε2 and APOE-23 

ε4 alleles are located on the N-terminal domain of the protein near the receptor-binding 24 

region. Their outsized role in AD risk has, understandably, focused attention on the N-25 

terminal domain and the differential capacity of these alleles to, for example, bind apoE’s 26 

receptors34,35. The current results add support to studies suggesting that the C-terminal 27 

domain is also of critical importance for AD pathogenesis36–38. R251G is located within 28 

apoE’s lipid-binding region (amino acid residues 244 to 272), while V236E is adjacent to 29 
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this region8. A recent publication provided evidence for the protectiveness of V236E 1 

against AD pathology and explored the functional mechanism supporting its protective 2 

role12. The lipid-binding region, with its abundance of non-polar residues, is thought to 3 

be a region that can foster oligomerization39–41. Switching a non-polar valine for an acidic 4 

glutamic acid might be predicted to reduce the hydrophobicity of this region and reduce 5 

its tendency to oligomerize. Notably, the authors showed reduced levels of insoluble Aβ 6 

and apoE aggregates in the brain of V236E carriers compared to non-carriers12. In 5xFAD 7 

mice, they observed that APOE-ε3[V236E] reduced Aβ deposition, plaque-associated 8 

immune response, and neuritic dystrophy around amyloid plaques12. Chemically, they 9 

noted that APOE-ε3[V236E] primarily remains as a monomer and is less likely to form 10 

oligomers compared to the canonical APOE-ε3 allele12. This propensity of V236E to 11 

reduce apoE aggregation was also observed when this variant was introduced on an 12 

APOE-ε4 allele. It is worth noting, however, that V236E also appears to increase 13 

dimerization (see their Figure S1012), which may impact apoE’s ability to bind to its 14 

receptors42–44. 15 

Given that R251G is located squarely in the lipid-binding region of the protein, it 16 

is possible that R251G confers a protective effect by reducing apoE’s ability to form 17 

insoluble oligomers. The switch from a charged arginine amino acid to a non-polar 18 

glycine might, however, be expected to increase rather than decrease oligomerization. 19 

Changes in this region could also enhance apoE-ε4’s ability to bind lipids rendering it 20 

more like ε3 or ε2 in this capacity45. Alternatively, the introduction of glycine could disrupt 21 

the alpha-helix structure of the C-terminal impacting apoE-ε4’s hypothesized N-22 

terminal/C-terminal domain interaction34,35. In any case, pending protein chemistry 23 

experiments exploring potential structural and functional changes, the mechanism 24 

underlying the substantial protective effect of R251G remains to be elucidated. 25 

Our work, performed on the largest available sample to-date for these two 26 

variants, has validated the protective effect of the V236E variant and has uncovered a 27 

novel protective missense variant on APOE-ε4. Each variant has a substantial effect on 28 

reducing the risk of AD. While some compelling functional data suggest that V236E 29 

confers protection by reducing oligomerization of apoE, there are alternative 30 
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mechanisms that merit consideration (increasing dimerization, for one). The protective 1 

mechanism of R251G remains unexplored but finding a single amino acid substitution 2 

that renders the APOE-ε4 allele protective supports the idea that APOE-ε4-specific 3 

treatments are worth exploring46,47. We anticipate that the findings reported here will 4 

spark additional mechanistic work on apoE’s role in AD pathogenesis. 5 

  6 
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Data availability 1 

Data used in preparation of this manuscript can be obtained upon application at: 2 

- dbGaP (https://www.ncbi.nlm.nih.gov/gap/advanced_search/) 3 

- NIAGADS and NIAGADS DSS (https://www.niagads.org/) 4 

- LONI (https://ida.loni.usc.edu/) 5 

- Synapse (https://adknowledgeportal.synapse.org/) 6 

- RADC Rush (https://www.radc.rush.edu/) 7 

- NACC (https://naccdata.org/) 8 

- UK Biobank (https://biobank.ndph.ox.ac.uk/showcase/) 9 

eTables 1 and 2 provide the details of repositories and accession number per cohort-10 

platform group. UK Biobank WES data were analyzed under Application Number 45420. 11 
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Table 1. Demographics per APOE genotype. DX: diagnosis, CN: cognitively normal, AD: Alzheimer’s disease, N: number 
of individuals, %Females: percentage of female individuals, μ and σ: mean age and standard deviation. UK Biobank 
demographics are not reported in this table since cases correspond to proxy-AD phenotype mostly relying on self-report 
of first-degree relatives’ diagnosis without age-at-onset being specified. 
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    APOE ε2/ε2  APOE ε2/ε3  APOE ε3/ε3  APOE ε2/ε4  APOE ε3/ε4  APOE ε4/ε4 

Sample DX N  N 
(%Females) 

Age 
μ(σ)  N 

(%Females) 
Age 
μ(σ)  N 

(%Females) 
Age 
μ(σ)  N 

(%Females) 
Age 
μ(σ)  N 

(%Females) 
Age 
μ(σ)  N 

(%Females) 
Age 
μ(σ) 

AD
SP

 CN 11,934  73(54.8%) 82.6(8.3)  1481(62.4%) 83.0(8.0)  7429(62.4%) 82.3(8.1)  195(70.3%) 79.8(8.9)  2561(62.1%) 79.7(8.2)  195(63.1%) 76.6(7.5) 

AD 11,868  29(58.6%) 82.5(6.9)  583(63.3%) 80.1(9.7)  5313(60.9%) 77.0(10.1)  258(61.2%) 75.3(8.2)  4919(58.0%) 73.2(8.5)  766(53.0%) 67.9(8.1) 

AD
GC

 CN 8,059  56(46.4%) 79.1(10.2)  978(64.3%) 76.2(9.5)  4795(61.9%) 74.5(9.4)  209(63.2%) 73.8(10.1)  1847(61.9%) 71.4(10.1)  174(60.9%) 68.7(9.3) 

AD 7,768  10(60.0%) 72.5(8.2)  323(56.0%) 75.8(10.4)  2494(63.6%) 74.7(10.5)  237(63.3%) 75.7(8.8)  3258(63.2%) 73.0(8.6)  1446(57.4%) 69.7(7.2) 

EA
DB

-c
or

e CN 21,160  121(59.5%) 68.6(13.2)  2503(58.2%) 66.8(15.1)  13365(57.8%) 67.0(14.5)  396(55.6%) 66.7(13.3)  4390(55.7%) 66.3(13.6)  385(55.1%) 64.2(12.6) 

AD 19,873  27(51.9%) 76.4(11.7)  877(59.5%) 74.2(11.2)  8285(61.9%) 72.9(11.0)  435(66.0%) 73.2(10.7)  8003(63.0%) 71.7(9.7)  2246(57.4%) 67.6(8.8) 

GR
@

AC
E CN 8,539  33(57.6%) 53.1(17.6)  858(52.2%) 57.5(18.7)  6005(50.1%) 56.7(18.0)  99(49.5%) 56.7(17.6)  1459(49.8%) 56.7(17.6)  85(43.5%) 54.9(14.8) 

AD 7,355  16(84.6%) 84.6(3.5)  389(70.4%) 81.4(8.1)  3840(70.4%) 80.9(7.9)  115(73.0%) 78.7(7.4)  2590(69.8%) 78.7(7.4)  405(64.7%) 74.8(7.3) 

EA
DI  

CN 6,331  38(52.6%) 82.6(7.5)  772(59.2%) 81.0(7.5)  4247(60.8%) 80.1(7.7)  109(60.6%) 78.8(7.1)  1106(59.2%) 79.0(7.6)  59(71.2%) 77.1(6.7) 

AD 2,397  7(85.7%) 79.3(6.0)  128(68.8%) 78.0(10.8)  1078(65.3%) 76.5(10.6)  71(59.2%) 73.4(8.8)  888(66.0%) 72.6(9.2)  225(64.9%) 68.1(7.0) 

GE
RA

D

 
CN 7,007  47(55.3%) 49.3(11.0)  853(50.1%) 51.5(12.6)  4127(51.9%) 50.9(11.9)  180(51.7%) 49.8(10.9)  1627(51.8%) 49.9(10.9)  173(49.7%) 49.9(11.0) 

AD 2,989  10(60.0%) 81.2(9.7)  140(62.9%) 79.3(11.3)  1092(62.0%) 79.3(9.6)  90(63.3%) 80.4(7.6)  1306(64.2%) 77.7(8.9)  351(62.4%) 74.2(8.4) 

De
m

Ge
ne

 
CN 5,911  32(34.4%) 68.7(11.2)  685(49.1%) 69.2(12.4)  3236(47.6%) 68.9(11.0)  167(45.5%) 70.6(10.6)  1595(48.2%) 67.3(10.5)  196(44.4%) 64.7(11.0) 

AD 1,687  5(40.0%) 74.0(1.4)  72(58.3%) 71.6(10.6)  537(66.9%) 73.7(9.6)  43(72.1%) 75.4(7.0)  769(66.6%) 72.2(8.4)  261(61.7%) 69.3(8.1) 

CC
HS

 &
 

CG
PS

 CN 101,995  705(54.9%) 57.0(13.2)  12818(55.1%) 57.6(13.6)  57115(54.8%) 57.5(13.4)  2936(55.4%) 56.8(13.0)  25616(54.9%) 56.7(12.8)  2778(57.6%) 55.3(12.7) 

AD 2,092  12(50.0%) 72.6(5.3)  129(53.5%) 73.3(8.4)  844(58.8%) 73.3(8.4)  70(61.4%) 71.2(8.0)  821(62.4%) 70.9(8.0)  216(56.9%) 68.8(7.9) 
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Table 2. V236E and R251G are associated with a decreased AD risk. The significance 

of their association with AD risk is equivalent in non-stratified analyses adjusted by APOE 
ε2 and ε4 dosages, and in APOE-stratified analysis considering the main APOE genotype 
group with the most carriers for each variant, namely ε3/ε3 and ε3/ε4 respectively for 
V236E and R251G. 
N: Number of individuals, MAC: Minor allele count, OR: odds ratio, 95% CI: 95% 
confidence interval, P: p-value. 
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  AD Case-Control Regression Non-stratified  AD Case-Control Regression APOE-Stratified  

 Sample  N MAC OR [95% CI] P  N MAC OR [95% CI] P  

V2
36

E 
(a

ll 
AP

O
E  

(le
ft)

 a
nd

 ε
3/

ε3
 o

nl
y  (

rig
ht

))  

ADSP   23,427 20 0.23 [0.09; 0.56] 1.4E-03  12,604 17 0.31 [0.12; 0.82] 0.020  

ADGC imputed  11,652 11 0.35 [0.08; 1.51] 0.16  5,741 10 0.40 [0.1; 1.57] 0.19  

EADB-core  41,033 27.17 0.59 [0.19; 1.80] 0.34  21,650 21.28 0.53 [0.15; 1.92] 0.30  

GERAD  9,996 17.72 0.37 [0.07; 1.90] 0.18  5,219 9.43 0.77 [0.10; 6.06] 0.78  

DemGene  7,598 58.68 0.21 [0.05; 0.90] 8.5E-03  3,773 35.88 0.56 [0.13; 2.46] 0.40  

CCHS & CGPS  104,084 240 0.45 [0.11; 1.84] 0.23  57,955 191 0.18 [0.01; 2.97] 0.27  

UKB proxy-AD  185,741 277 0.45 [0.23; 0.89] 0.021  109,120 219 0.47 [0.21; 1.04] 0.063  

Meta-analysis  383,531 649.57 0.37 [0.25; 0.56] 1.9E-06  216,062 503.59 0.43 [0.27; 0.69] 4.4E-04  

R2
51

G  
(a

ll 
AP

O
E 

(le
ft)

 a
nd

 ε
3 /

ε4
 o

nl
y (

rig
ht

) )  

ADSP  23,314 26 0.20 [0.08; 0.49] 3.7E-04  7,335 18 0.17 [0.06; 0.48] 7.8E-04  

ADGC imputed  14,134 29 0.29 [0.12; 0.70] 5.8E-03  4,630 16 0.19 [0.07; 0.54] 1.7E-03  

EADB-core  41,033 59.16 0.51 [0.26; 0.99] 0.049  12,393 40.27 0.34 [0.15; 0.76] 7.8E-03  

GR@ACE  15,894 21.27 0.35 [0.12; 1.01] 0.049  4,049 17.81 0.22 [0.06; 0.77] 0.011  

EADI  8,728 19.21 0.68 [0.22; 2.09] 0.49  1,994 13.32 1.14 [0.32; 4.04] 0.84  

GERAD  9,996 23.17 0.50 [0.17; 1.47] 0.18  2,933 16.82 0.57 [0.18; 1.88] 0.34  

CCHS & CGPS  104,087 105 0.41 [0.10; 2.72] 0.23  26,437 75 0.33 [0.05; 2.43] 0.28  

UKB proxy-AD  185,735 335 0.57 [0.34; 0.98] 0.041  43,820 262 0.67 [0.36; 1.22] 0.19  

Meta-analysis  402,921 617.81 0.44 [0.33; 0.59] 4.7E-08  103,591 459.22 0.41 [0.29; 0.57] 3.2E-07  
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Figure 1. V236E and R251G are associated with decreased AD risk across all 
cohorts. Forest plots show the results for the non-APOE stratified analyses adjusted by 
ε2 and ε4 dosages. eFigure 1 presents equivalent forest plots for these two variants in 
the APOE-stratified sensitivity analyses, showing consistent findings. 
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Figure 2. APOE ε3/ε3[V236E] and APOE ε3/ε4[R251G] have a risk equivalent to 
ε2/ε3 carriers. Alzheimer’s disease (AD) risk per APOE genotype was compared to the 
APOE ε3/ε3 reference group (i.e., odds ratio (OR) for APOE ε3/ε3 equals to 1), meta-
analyzing results from the ADSP and ADGC cohorts (Stages 1+2). eFigure 2 presents 
equivalent results at different inclusion cutoffs for European ancestry. 

 
 


