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ABSTRACT

‘We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first
three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-C; method and
complement the analysis of the two-point correlation functions in real space, as the two estimators are known to compress and
select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and
theoretical uncertainties, making this analysis an important cross-check. Using the same fiducial Lambda cold dark matter model
as in the DES Y3 real-space analysis, we find Sz = 0g/Qm/0.3 = 0.79310.035, which further improves to Sg = 0.784 % 0.026
when including shear ratios. This result is within expected statistical fluctuations from the real-space constraint, and in agreement
with DES Y3 analyses of non-Gaussian statistics, but favours a slightly higher value of Sg, which reduces the tension with the
Planck 2018 constraints from 2.3¢ in the real space analysis to 1.50 here. We explore less conservative intrinsic alignments models
than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales,
using an increased Fourier mode cut-off up to kmax = 57 Mpc™!, which allows to constrain baryonic feedback while leaving
cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power
spectrum at present time, found to be about 20 per cent lower than predicted by Planck 2018, as reflected by the lower Sg value.
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1 INTRODUCTION

Gravitational lensing by the large-scale structure coherently distorts
the apparent shapes of distant galaxies. The measured effect, cosmic
shear, is sensitive to both the geometry of the Universe and the
growth of structure, making it, in principle, a powerful tool for
probing the origin of the accelerated expansion of the Universe and,
consequently, the nature of dark energy. After the first detections
two decades ago (Bacon, Refregier & Ellis 2000; Kaiser, Wilson &
Luppino 2000; Van Waerbeke et al. 2000; Wittman et al. 2000),
methodological advances in measurement algorithms were permitted
by newly collected data, e.g. from the Deep Lens Survey (DLS;
Wittman et al. 2002; Jee et al. 2013, 2016), the COSMOS survey
(Scoville et al. 2007), the Canada—France—Hawaii Telescope Legacy
Survey (CFHTLS; Semboloni et al. 2006) and Canada—France—
Hawaii Telescope Lensing Survey (CFHTLenS; Joudaki et al. 2017)
and the Sloan Digital Sky Survey (SDSS; Huff et al. 2014). These
were fostered by community challenges (see e.g. Heymans et al.
2006; Massey et al. 2007; Bridle et al. 2009; Kitching et al.
2012; Mandelbaum et al. 2014). Ongoing surveys, such as the
Dark Energy Survey' (DES; Flaugher 2005), the ESO Kilo-Degree
Survey? (KiDS; de Jong et al. 2013; Kuijken et al. 2015), and the
Hyper Suprime-Cam Subaru Strategic Program® (HSC; Aihara et al.
2018a, b), have produced data sets capable of achieving cosmological
constraints that are competitive with cosmic microwave background
observations on the amplitude of structure, og, and the density of
matter, Qp, through the parameter combination Sz = oga/Qn/0.3
(Troxel et al. 2018; Hikage et al. 2019; Hamana et al. 2020, 2022b;
Planck Collaboration VI 2020; Asgari et al. 2021; DES Collaboration
2022). These surveys are paving the way for the next generation of
surveys, namely the Vera Rubin Observatory Legacy Survey of Space
and Time* (LSST; Ivezié et al. 2019), the ESA satellite Euclid®
(Laureijs et al. 2012), and NASA’s Nancy Grace Roman Space
Telescope® (Akeson et al. 2019), which will improve upon current
observations in quality, area, depth, and spectral coverage, in the hope
of better determining the nature of dark energy. However, the level
of precision needed to fully exploit the cosmological information
contained in these future observations pushes the community to
dissect every component of the analysis framework, from data
collection to inference of cosmological parameters.

The two-point statistics of the cosmic shear field are most
commonly used to extract cosmological information. While it is
well known that the shear or convergence fields are, to some extent,
non-Gaussian (Springel, Frenk & White 2006; Yang et al. 2011),
i.e. that there is information in higher order statistics (e.g. in peaks,
Dietrich & Hartlap 2010; Martinet et al. 2018; Jeffrey, Alsing &
Lanusse 2021a; Harnois-Déraps et al. 2021; Ziircher et al. 2021,
or three-point functions, Takada & Jain 2003; Fu et al. 2014), the
two-point functions remain the primary source of information, as
they can be predicted by numerical integration of analytical models
(Zuntz et al. 2015; Joudaki et al. 2017; Chisari et al. 2019; Krause
et al. 2021) and efficiently measured (Jarvis 2015). The shear two-
point function can be characterized by its two components, &.(8)

Uhttps://www.darkenergysurvey.org/
Zhttp://kids.strw.leidenuniv.nl/
3https://hsc.mtk.nao.ac.jp/ssp/
“https://www.lsst.org/
Shitps://sci.esa.int/web/euclid
Shttps://roman.gsfc.nasa.gov/

and £_(0), as a function of angular separation 6, or by its Fourier
(or harmonic) counterpart, the shear angular power spectrum, Cg, as
a function of multipole £ (with an approximate mapping £ ~ /).
Both have been measured on recent data from the DES (DES Year 1;
Troxel et al. 2018; Camacho et al. 2021; Nicola et al. 2021, and DES
Year 3, Amon et al. 2022; Secco, Samuroff et al. 2022), KiDS (KiDS-
450; Hildebrandt et al. 2017; Kohlinger et al. 2017, and KiDS-1000,
Asgari et al. 2021; Loureiro et al. 2021), and HSC (Hikage et al.
2019; Hamana et al. 2020, 2022b).

While, in principle, the two statistics summarize the same informa-
tion, practical considerations require discarding some of the measure-
ments for cosmological analyses via scale cuts. As a consequence, the
information retained by the two statistics differs in practice, which
introduces some statistical variance in cosmological constraints, on
top of potential differences due to differential systematic effects.
Indeed, constraints reported for the analyses of cosmic shear with
KiDS-450 data showed a difference between the real- and harmonic-
space analyses of ASg = 0.094 (Hildebrandt et al. 2017; Kohlinger
et al. 2017), and that of HSC Year 1 data a difference of Aog =
0.24 and ASg = 0.045 (Hikage et al. 2019; Hamana et al. 2020,
2020a, b), both corresponding to about 2o discrepancies (see also
Fig. 11, discussed below). More recently, the comparison between
three different estimators presented for KiDS-1000 data, on the other
hand, showed excellent agreement (Asgari et al. 2021), including a
newly developed pseudo-C, estimator in Loureiro et al. (2021). In
a preparatory study (Doux et al. 2021), we quantified this effect for
DES Y3 by means of simulations and showed (i) that the difference
on the Sg parameter is expected to fluctuate by about o'(ASg) ~ 0.02
for typical scale cuts, and (ii) that the observed difference is the result
of the interplay between scale cuts and systematic effects, and how
these impact each statistic.

In this work, we present measurements of (tomographic) cosmic
shear power spectra measured from data based on the first three
years of observations by the Dark Energy Survey (DES Y3), which
we use to infer cosmological constraints on the ACDM model. We
then extend our analysis and vary scale cuts to derive constraints
on intrinsic alignments and baryonic feedback at small scales, the
two largest astrophysical sources of uncertainty on cosmic shear
studies (Chisari et al. 2018; Mandelbaum 2018; Secco et al. 2022).
Finally, we study the consistency of these constraints with those
inferred from other DES Y3 weak lensing analyses, using two-point
functions (Amon et al. 2022; Secco et al. 2022) and non-Gaussian
statistics (Gatti et al. 2021b; Ziircher et al. 2022).

The paper is organized as follows: Section 2 presents DES Y3
data; Section 3 introduces the formalism relevant to the estimation
of cosmic shear power spectra and the cosmological model, including
systematic effects, intrinsic alignments and baryonic feedback;
Section 4 highlights the different tests we performed to validate
both the measurement and modelling pipelines, some of which rely
on simulations (Gaussian, N-body, and hydrodynamical); Section 5
details the three-step blinding procedure we adopted in this work;
Section 6 presents our main results, i.e. cosmological constraints
inferred from the analysis of DES Y3 cosmic shear power spectra, and
compares them to other weak lensing studies; and finally Section 7
summarizes our results.

2 DARK ENERGY SURVEY YEAR 3 DATA

The Dark Energy Survey The Dark Energy Survey Collaboration
(DES, 2005) is a photometric imaging survey that covers around
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Figure 1. Maps of the two shear components, y1 and y», and density, ng, of the full DES Y3 weak lensing catalogue.

5000 square degrees of the Southern hemisphere in five optical and
near-infrared bands (grizY). Its observations were carried out at the
Cerro Tololo Inter-American Observatory (CTIO) in Chile, using the
570-megapixel DECam camera mounted on the Blanco telescope
(Flaugher et al. 2015), during a six-year campaign (2013-2019).
This work is based on data collected during the first three years
(Y3) of observations, in particular the DES Y3 weak lensing shape
catalogue presented in Gatti et al. (2021c), which is a subsample of
the Y3 Gold catalogue (Sevilla-Noarbe et al. 2021), and the inferred
redshift distributions presented in Myles et al. (2021).

2.1 Shape catalogue

Galaxy shape calibration biases are usually parametrized in terms of
multiplicative and additive components. The DES Y3 shape measure-
ments are based on the METACALIBRATION algorithm, which allows
to self-calibrate most shear multiplicative biases, including selection
effects, by measuring the response of the shape measurement pipeline
to an artificial shear (Huff & Mandelbaum 2017; Sheldon & Huff
2017). The residual multiplicative biases, at the 2-3 per cent level,
are dominated by shear-dependent detection and blending effects,
and the correction was measured on a suite of realistic, DES-Y3-like
image simulations presented in MacCrann et al. (2022).

The shape catalogue was validated by a series of (null) tests
presented in Gatti et al. (2021c) and found to be robust to both
multiplicative and additive biases. The fiducial DES Y3 catalogue
used here comprises ellipticity measurements for 100204026 galax-
ies, with inverse-variance weights based on signal-to-noise ratio and
size. The effective area of the sample is 4143 deg” (see Sevilla-
Noarbe et al. 2021, for details), corresponding to an effective density
of i = 5.59 gal/arcmin?. Fig. 1 shows the two ellipticity components
and the density of the entire sample. We will construct similar maps
for each of the four tomographic bin (see next section) and use them
to measure cosmic shear power spectra.

2.2 Redshift distributions

The DES Y3 shape catalogue was further divided into four to-
mographic bins, based on photometric redshifts inferred with the
SoMPz algorithm (phenotypic redshifts with self-organizing maps,
Buchs et al. 2019). The DES Y3 implementation is detailed in Myles
et al. (2021) and is based on measurements in the riz bands. The
g band was excluded in DES Y3 weak lensing analyses due to
known issues in modelling the point spread function (Jarvis et al.
2021) required by METACALIBRATION. This exclusion was shown to
degrade estimated redshift distributions in when five tomographic
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Figure 2. Redshift distributions (top) and corresponding lensing efficiency
functions (bottom) for the four tomographic bins. The upper panel shows the
mean (solid lines), +1¢ and +2¢ (light bands) percentiles of the ensemble
of redshift distributions (Myles et al. 2021; Gatti et al. 2022).

bins were used (Buchs et al. 2019), motivating the use of four bins.
The DES Y3 implementation of SOMPZ thus connects DES wide-field
photometry to (i) deep-field observations (Hartley et al. 2022), using
image injection with the Balrog software (Everett et al. 2022), and to
(ii) external spectroscopic and high-quality photometric samples, to
calibrate redshifts. This Bayesian framework allows to consistently
sample the posterior distribution of the four redshift distributions,
while propagating calibration and sample uncertainties. Given an
ensemble of realizations, uncertainties can be marginalized-over
during sampling by means of the HYPERRANK method (Cordero
et al. 2022). The initial ensemble that was generated for DES Y3
was subsequently filtered using constraints on redshifts from cross-
correlations with spectroscopic samples, as detailed in Gatti et al.
(2022). The residual uncertainty on the mean redshift of each
tomographic bin is of the order of o ;) ~ 0.01. Redshift distributions
are shown in the upper panel of Fig. 2, where, for each bin, the
ensemble mean is represented by a solid line, and the ensemble
dispersion is represented by the light bands. The lensing efficiency
functions corresponding to the mean distributions at the fiducial
cosmology are shown in the lower panel.

3 METHODS

In this work, we aim at extracting cosmological constraints from
the measurements of the angular auto- and cross-power spectra of
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the tomographic cosmic shear fields inferred from DES Y3 data.
This section describes the estimation of angular spectra from data
and the multivariate Gaussian likelihood model, including theoretical
predictions for power spectra and their covariance matrix.

3.1 Angular power spectrum measurements

Cosmic shear is represented by a spin-2 field y = (y1, y») on the
sphere that describes, to linear order, the distortions of the ellipticities
of background galaxies. A pixelized representation of the cosmic
shear field can therefore be obtained by computing the weighted
average of the observed ellipticities e = (e;, e,) of galaxies within
pixels on the sphere. For each pixel p at angular position 6 ,, we thus
compute
Dicp Wit

Zie p Wi ,
where the sums run over galaxies, indexed by i and with inverse-
variance weight w;, that fall into pixel p. The two components
of the shear field estimated from the full DES Y3 weak lensing
sample are represented in the left and middle panel of Fig. 1. For the
cosmological analysis, we compute maps of the two components of
the shear field for each tomographic bin using the HEALPY software
(Gérski et al. 2005; Zonca et al. 2019) with a resolution of Ng4. =
1024, following the same procedure. Note that, prior to equation (1),
observed ellipticities were corrected for additive and multiplicative
biases by subtracting the (weighted) mean ellipticity (as done in
Gatti, Sheldon et al. 2021c) and dividing by the METACALIBRATION
response, both of which were computed for each bin.

‘We now turn to the estimation of shear power spectra. For full-sky

observations, the true shear field for redshift bin a, y* = (37, v5),
can be decomposed on the basis of spherical harmonics as

O £iv$)0) = — Y [Ef, +iBf,]12Yen(8), @)

m

0, = 6))

where ;Y,,, are the spin-weighted spherical harmonics (Hikage et al.
2011). Here, we have used the decomposition of the field into E
and B modes, i.e. its curl-free and divergence-free components. The
shear power spectra are then defined by the covariance matrix of the
spherical harmonic coefficients

(EfnEl) = CEE, ¥*)800 S 3)
(E§, Bl = CEE@®, ¥")8008mms @
(B, Brrs) = CEE(r®, ¥*)Se08mm s ©)
which can be estimated by

CFEp® v") = 527 S EbnEln, ©6)
CPP0 v = 5 T Eu B (7)
CPP¥") = 5 Xom Bin Bl ®)

Gravitational lensing, to first order, does not create B modes,
therefore the cosmological signal is contained within E-mode power
spectra, and B-modes can be used to detect potential systematic
effects in the data, such as contamination by the point spread function
(PSF, see Section 4.2 and Appendix A). However, a number of effects
may generate small B-modes power spectra (small in comparison
to to E-mode spectra), including second-order lensing effects (e.g.
Krause & Hirata 2010), clustering of source galaxies (Schneider, van

1945

Waerbeke & Mellier 2002), and intrinsic alignments, as is the case
with the model used in our fiducial analysis (TATT, including tidal
alignment and tidal torquing mechanisms, from Blazek et al. 2019,
see Section 3.2.3). Therefore, we preserve both components of the
field and introduce the vector notation

CFE(r*, v")

CPP(re, v" &)
PPy vh)

to denote the vectors made of the two components of the shear power
spectra.

The formalism introduced so far is valid for a full-sky observations.
In practice, however, the cosmic shear field is only sampled within
the survey footprint, at the positions of galaxies. This induces a
complicated sky window function, or mask, that correlates different
multipoles and biases the estimators defined in equations (6) and
(8). We therefore estimate angular power spectra with the so-called
pseudo-C, or MASTER formalism (Hivon et al. 2002) using the
NAMASTER software (Alonso et al. 2019) to correct for the effect of
the mask. We provide a summary of the method here and refer the
reader to Hikage et al. (2011) for the development of the pseudo-C,
formalism for cosmic shear, to Alonso et al. (2019) for the NAMASTER
implementation and to Nicola et al. (2021) and Camacho et al. (2021)
for recent applications of the pseudo-C, formalism with NAMASTER
to DES Y1 and HSC cosmic shear data.

Let W?(@) be the mask for the shear field in bin a, which is zero
outside the survey footprint, and let us define the masked shear field
7%(0) = W?(0)y“(9). Then the cross-power spectrum of the masked
fields, i.e.the pseudo-spectrum of the fields, has an expectation value
given by

(€7 =) Mmghce, (10
ZV

ab __
Ceb =

where Mjf, is the mode-coupling (or mixing) matrix of the masks,
computed analytically from their spherical harmonic coefficients (see
e.g. Alonso et al. 2019 for formula). This matrix describes how
the mask correlates different multipoles, otherwise independent for
full-sky observations, as well as leakages between E and B modes.
While this equation may not be directly inverted due to the loss of
information pertaining to masking, one can define an estimator for
the binned power spectrum, defined as

CiP => wfC, an
LeL

where of is a set of weights defined for multipoles £ in bandpower

L and normalized such that ), , @f = 1. We also define the
mean multipole of each bin as L = }",.; w}£. The binned pseudo-
spectrum C% is similarly defined from the unbinned pseudo-power
spectrum C‘;b . The estimator for the binned power spectrum is then
given by

Gt = (M), (12)
L!
where the binned coupling matrix is
M7, =" " wfME. (13)
teL vel

The successive operations of masking, binning, and decoupling
described by equations (10)—(12) are generally not permutable, such
that the expectation value of the estimator in equation (12) can differ
from a naive binning of the theoretical prediction for C%, as in
equation (11). Instead, the estimated shear power spectra must be
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Figure 3. Bandpower window functions }'ﬁ from equation (15). Each curve
corresponds to one of the 32 bandpowers L from £pin = 8 to £max = 2Nside =

2048, which are equally spaced on a square-root scale throughout this work.
The naive binning function is shown by the filled histogram behind.

compared to

(€ = Fcy, (14)

£

where the bandpower windows F¢2 are given by

F =3 (ML Y ol My, (15)
v verL

Throughout this work, we adopt an equal-weight binning scheme
(i.e.we = 1if £ € L, 0 otherwise) with 32 square-root-spaced bins
defined between multipoles £y, = 8 and £y, = 2048 (shown by
the colored bars in Fig. 3). This choice ensures a good balance of
signal-to-noise ratio across bandpowers L while remaining flexible
for scale cuts at both low and high multipoles, i.e. large and small
scales (in comparison to linear and logarithmic bins that are too
coarse for low and high multipoles, respectively). We use weighted
galaxy count maps as masks (as done in Nicola et al. 2021), using
the weights computed by the METACALIBRATION algorithm. This
is a close approximation to inverse-variance masks since (i) the
METACALIBRATION weights are themselves inverse-variance weights
of ellipticity measurements and (ii) the pixel-wise dispersion of the
estimated shear maps is about an order of magnitude higher than
the expected dispersion of the shear signal (see also Singh 2021).
The exact bandpower windows JF2¢ for these binning and masking
schemes are compared to the naive binning (i.e. top-hat) windows
in Fig. 3. In particular, we observe that the exact windows extend
beyond the top-hat ones, with some negative terms, especially for
small multipoles below £ < 200.

We compute tomographic cosmic shear power spectra with
NAMASTER, given our binning and masking schemes, from the
shear maps computed from equation (2). These include a shape-
noise component due to the intrinsic ellipticities of galaxies, which
contributes an additive noise bias to the estimated autopower spectra
(whereas cross-spectra do not receive such contributions). For each
tomographic bin, the noise power spectrum N¢ is flat for full-sky
observations, and can be approximated by Ny ~ o7, /fi®, where 6,
is the standard deviation of single-component (measured) ellipticity
and 71 is the galaxy density in redshift bin a. We follow Nicola et al.
(2021) and estimate the binned noise pseudo-power spectrum, which
is constant, by

2 2
. ep; +éy;
N, = Qpix<2 w?'T'> , (16)

iep )
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where Qi is the pixel area in steradians (about 11.8 arcmin? for
Nsge = 1024), and the expectation value is computed for all pixels,
including those outside the survey footprint (where the value is
zero). The binned noise power spectrum can then be computed with
equation (12) and subtracted from the estimated spectra. We note
that this analytical estimation coincides with the expectation value
of the autopower spectra measured after applying random rotations
to galaxies. Random rotations preserve the density of galaxies and
the ellipticity distribution of the catalogue and therefore properties
of shape-noise (including its potential spatial variations), while
canceling any spatial correlation (that is, both in the E and B modes).
We also applied this procedure and verified that the result agrees with
the analytical estimation, which has the advantage of being noiseless
and is therefore preferred for our measurements. We finally note
that equation (16) assumes that noise is isotropic. Therefore, this
agreement between the two methods allows us to exclude significant
noise anisotropies.

We do not apply any purification of E and B modes (Lewis,
Challinor & Turok 2001; Smith 2006; Grain, Tristram & Stompor
2009; Alonso et al. 2019) since the B-mode signal is largely
subdominant and does not contain cosmological information, to first
order. Moreover, this would require an apodization of the mask,
that is speckled with empty pixels due to fluctuations in the density
of source galaxies and small vetoed areas, and thus significantly
decrease the effective survey area.

Finally, we correct for the effect of the pixelization of the shear
fields into HEALPIX maps. As noted in Nicola et al. (2021), it depends
on the density of galaxies, at fixed resolution: at low density, each
pixel contains at most one galaxy and the map is sampling the shear
field itself (but has many empty pixels), whereas at higher density,
we are estimating the average of the shear field within each pixel.
Here, for a resolution of N4, = 1024, we find that pixels with at
least one galaxy contain on average 17.2-17.5 galaxies for all four
tomographic bins, meaning that we are indeed sampling the averaged
shear field (although a small fraction of pixels, especially on the
footprint edges, have only one galaxy). This is then corrected for
by dividing the pseudo-spectra Cﬁb by the (squared) HEALPIX pixel
window function F, 132 or equivalently, assigning weights w¢ = 1/ F}
for £ € L for measurements (except for theoretical predictions). We
test the effect of the resolution parameter in Appendix C1, and verify
thatit has negligible impact on cosmological constraints. In Section 4,
we validate these hypotheses and the measurement pipeline with
Gaussian and N-body simulations.

The estimated shear power spectra for DES Y3 data are shown
in Fig. 4, along with the best-fitting model for our fiducial ACDM
results.

3.2 Modelling

In this section, we describe the theoretical model for the observed
shear power spectra, including systematic uncertainties.

3.2.1 Theoretical background

Gravitational lensing deflects photons from straight trajectories and
the deflection angle can be written as the gradient (on the sphere) of
the lensing potential 1/ (6). In the Born approximation, the lensing po-
tential up to comoving distance yx is given by the projection of the 3D
Newtonian gravitational potential ¥ along the line of sight, such that

X~ Xl
xx'

X
v, ) =2 /0 dx W(x'6, X)), (17)
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Figure 4. Cosmic shear power spectra measured from DES Y3 data. Each panel in the lower left triangle corresponds to a redshift bin pair indicated in the upper
left corner. The measured E-mode component of the binned, noise-bias corrected power spectra is shown in blue with error bars from an analytical covariance
matrix (see Section 3.3). The grey shaded regions show scales that are not used in the fiducial analysis (A )(2 = 1) where the effect of baryons is neglected, with
extra points removed when combining with shear ratios shown in light grey (see Section 3.5.1). The corresponding best-fitting model within ACDM, discussed
in Section 6.1, is represented by red solid lines. The grey dashed lines show the scale cuts corresponding to kmax = 1, 3, and 5 2 Mpc™1 (see also Section 3.5.2),
and the corresponding best-fitting model using HMCODE and kmax = 5k Mpc™, discussed in Section 6.3, is represented by red dashed lines. The upper right
panel shows the measured non-tomographic shear power spectrum of DES Y3 data in blue, along with the theory expectation corresponding to the best fit of
the tomographic analysis, in red. For readability, all measurements and errors bars are scaled by the mean multipole L of each bandpower L, i.e. the data points

show iéf E and are compared to theoretical predictions of £C;.

where we assumed a flat Universe (Bartelmann 2010). The Jacobian
of the deflection angle can further be decomposed into its trace and
trace-less parts, defining the spin-O convergence field, x, and the
spin-2 shear field, y. Both fields can therefore be expressed in terms
of second-order derivatives of the lensing potential. In the spherical
harmonics representation, we have

k=3 (08+39) v = 1Viy, 18)

Y =y +iy, = ;00¢, 19)

where 8 and & are the raising and lowering operators of the spin-
weighted spherical harmonics, ;Y;,, (see Castro, Heavens & Kitching
2005 for details and, e.g., Chang et al. 2018 for an application to
curved-sky lensing mass maps). The Newtonian potential is related
to the matter overdensity field § via the Poisson equation

3QmHE 5
2ac?

where €, is the matter density parameter, H, is the Hubble
constant today, and a = 1/(1 + z) is the scale factor. Combining

Viy = (20)

equations (17) and (18), we obtain

3QnHZ /" dx' x—x's
22 Jo a(x) xx'
where we have added the radial component of the Laplacian of the
potential, V)z( W, that vanishes in the integration.

For a sample of galaxies, the observable convergence and shear
fields are integrated over comoving distance and weighted by their
redshift distribution n,()), where a denotes the bin index. In the
Limber approximation (Limber 1953; Kaiser 1992, 1998; LoVerde &
Afshordi 2008), the convergence cross-power spectrum for bins @ and

k@, x) = x'0, x), @n

bis
a £+1/2
e = [ a2 b e = “22 2, @)
where the lensing efficiency is given by
3QuH; x /"” " o X— X'
a = — d a s 23
4a(x) 22 atn) J, X na(x") ¥ (23)

where g is the distance to the horizon (effectively, the comoving
distance where the redshift distributions vanish). The lensing effi-
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Figure 5. Residual shear power spectra with respect to the fiducial power spectra, C?d. The orange (HMCODE) and brown (EUCLID EMULATOR) curves show
residuals for alternative prescription of the non-linear power spectrum (see Section 3.2.2). The blue and red curves show the effect of baryons as predicted by
four hydrodynamical simulations (Illustris, OWLS AGN, Horizon AGN, and MassiveBlack II). Higher order lensing effects computed with COSMOLIKE are also
shown, in green, to be small. The error bars are shown by the grey step-wise lines which represent +o0(C;)/Cy on the same scale (only —a(C)/Cy is visible).
The grey-shaded regions show scales that are not used in the fiducial analysis where the effect of baryons is neglected. The grey dashed lines show the scale

cuts corresponding to kmax = 1, 3, and 5 h Mpc™~!(see Section 3.5.2).

ciency functions for DES Y3 galaxies are shown in the lower panel
of Fig. 2. Given equations (18) and (19), the cosmic shear E-mode
power spectrum is given by

Cy = T,Ci*, 4)

where the prefactor, T, = (£ + 2)(£ + 1)£(£ — 1)/(£ + 1/2)*, is often
replaced by 1, an excellent approximation for £ 2 10 Kitching et al.
(see 2017); Kilbinger et al. (see 2017, for a complete discussion). We
verified that these two approximations — Limber and prefactor 7, ~
1 — are correct, given our binning scheme, with an error of at most
0.2 per cent on the largest scales considered.

3.2.2 Non-linear power spectrum

Following the general methodology of the DES Y3 large-scale
structure analysis set in Krause et al. (2021), for our fiducial model
we compute the non-linear matter power spectrum Py (k, z) using the
Boltzmann code CAMB (Lewis, Challinor & Lasenby 2000; Howlett
et al. 2012) with the HALOFIT extension to non-linear scales (Smith
et al. 2003), with updates to dark energy and massive neutrinos
from Takahashi et al. (2012). HALOFIT is reported to be accurate
at the 5 percent level for k < 1hMpc™', when compared to N-
body simulations, and degrading for smaller scales. However, Krause
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et al. (2021) showed that DES Y3 cosmic shear is insensitive to
varying the prescription to model the small-scale power spectrum
by substituting HALOFIT for HMCODE (with dark matter only), the
EUCLID EMULATOR, or the MIRA-TITAN EMULATOR (Mead et al.
2015; Lawrence et al. 2017; Euclid Collaboration 2019). We show
a comparison of some of these prescriptions in Fig. 5 and we verify
the robustness of our fiducial choice in in Section 4.4.1.

3.2.3 Intrinsic alignments

Galaxies are extended objects and therefore subject to tidal forces.
Their intrinsic shapes, or ellipticities, are consequently not fully
random but rather tend to align with the tidal field of the gravi-
tational potential and therefore each other (Hirata & Seljak 2004;
Bridle & King 2007). As a consequence, the shear power spectrum
estimated from galaxies receives additional contributions from the
correlation of intrinsic shapes, Cg%;, and the cross-correlations of
intrinsic shapes with the cosmological shear field, C¢%; and Cg4;,
such that the theoretical spectrum of the observed signal reads
Ci* + Cilar + Cffi + Ci.

In this work, we follow the DES Y3 analysis of cosmic shear in
real space (Krause et al. 2021; Amon et al. 2022; Secco et al. 2022)
and use the so-called TATT framework (Blazek et al. 2019) as our
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fiducial choice to model these extra terms stemming from intrinsic
alignments (IA). This model unified tidal alignment (TA) with tidal
torquing (TT) mechanisms, proposed by Catelan, Kamionkowski &
Blandford (2001), Crittenden et al. (2001), and Mackey, White &
Kamionkowski (2002), thanks to a perturbative expansion of the
intrinsic galaxy shape field in the density and tidal fields, up to second
order in the tidal field. We refer the reader to Secco et al. (2022) for
full details of the implementation and a justification of this choice.
The TA and TT contributions are each modulated by an amplitude
(respectively, Ata and Arr) and a redshift-dependence parameter
(respectively, ata and orr), with an additional linear bias brs of
sources contributing to the TA signal. The non-linear alignment
model (NLA; Hirata & Seljak 2004; Bridle & King 2007), commonly
used in cosmic shear analyses (Troxel et al. 2018; Hikage et al. 2019;
Hamana et al. 2020, 2022b; Asgari et al. 2021) is contained in the
TATT framework and corresponds to the case At = bta = 0.

The TATT model also predicts a small, but non-zero B-mode
power spectrum, when byy # 0 or Aty # 0. In the main parts of
the analysis, the B-mode spectrum is not used for cosmological
analysis. Instead, it is demonstrated in Section 4.2.1 that DES Y3
data is consistent with no B modes, rejecting the hypothesis of
a strong contamination of the signal by systematic effects that
would source B modes, such as leakage from the PSF, measured
in Section 4.2.2 and Appendix A. This test thereby also excludes a
detectable contribution of the IA B-mode signal, with the unlikely
caveat that systematic effects and IA may cancel each other. In
addition, the PSF test allows us to predict the contamination of
B-mode spectra, which is found to be subdominant, by an order
of magnitude, to the TATT-predicted B-mode signal for Arr = 1,
which is well within current E-mode constraints. Therefore, we will
extend the cosmological analysis in Section 6.2 and include B-mode
measurements to improve constraints on the TATT parameters. To
do so, we employ the same pseudo-C, formalism and extend the
mode-coupling matrices in equations (10) and (14) to account for
the B-mode component. Note that NAMASTER computes both E and
B components of the mixing matrices as well as the cross-terms
accounting for leakages between the two components. The fiducial
analysis simply discards those terms, as B-to-E mode leakage is
found to be negligible. However, E-to-B mode leakage is found to
significantly contribute to the B-mode signal, in comparison to the
TATT-predicted B-mode signal (they are of comparable magnitude
for Ary of order unity). Therefore, the extended analysis including B-
mode measurements uses consistent modeling of multipole coupling
and E/B-mode leakage. The covariance matrix for the B-mode
measurement as well as the cross-covariance between E- and B-
mode measurements are computed from a set of 10000 Gaussian
simulations based on DES Y3 data, as detailed in Section 4.1.1.

3.2.4 Effects of baryons

Astrophysical, baryonic processes redistribute matter within dark
matter haloes and modify the matter power spectrum at small scales
(Chisari et al. 2018; Schneider et al. 2019, 2020; Huang et al. 2021).
Feedback mechanisms from active galactic nuclei and supernovae
heat up their environment and suppress clustering in the range k
~ 1-10 » Mpc™!, while cooling mechanisms enhance clustering on
smaller scales. The complex physics involved in these mechanisms
has been modelled in multiple hydrodynamical simulations (van
Daalen et al. 2011; Dubois et al. 2014; Vogelsberger et al. 2014;
Khandai et al. 2015). However, the absolute and relative amplitudes
of the various effects remain poorly understood and constitute a
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major source of uncertainty, at the level of tens of per cent, on the
matter power spectrum at scales k > 52 Mpc™!, and on the shear
power spectrum at multipoles as low as £ 2 100, as shown on Fig. 5
(see also Huang et al. 2019).

Our fiducial analysis follows the DES Y3 analysis and discards
scales that are strongly affected by baryonic effects, as detailed in
Section 3.5.1. In general, the impact of baryons on the shear power
spectrum can be computed by rescaling the matter power spectrum

Phydro(ks )
Poum(k,z)’

where Phyaro(k, z) and Ppm(k, z) are the matter power spectra
measured from hydrodynamical simulations, respectively, with and
without the effects of baryons. In particular, we will use four
simulations, selected to provide a diverse range of scenarios: Illustris
(Vogelsberger et al. 2014), OWLS AGN (van Daalen et al. 2011),
Horizon AGN (Dubois et al. 2014), and MassiveBlack II (Khandai
et al. 2015). We will use this approach to evaluate the impact of
baryons, shown in Fig. 5, and determine our fiducial set of scale cuts,
in Section 3.5.1.

‘We will later extend our analysis to smaller scales, which requires
to model and marginalize over baryonic effects. To do so, we will use
HMCODE’ (Mead et al. 2015), instead of HALOFIT, to simultaneously
model the effects of non-linearities and baryonic feedback on the
matter power spectrum. This adds one or two extra parameters,
namely the minimum halo concentration Apy and the halo bloating
parameter 1y, which were shown to approximately follow the linear
relation ngy = 1.03-0.11Agy for various simulations (see Mead et al.
2015). Although Mead et al. (2021) recently presented an updated
version of HMCODE with improved treatment of baryon-acoustic
oscillation damping and massive neutrinos, we will only consider
the 2015 version of the code, which was available at the onset of this
work. We note that Troster et al. (2021) found only a small impact of
HMCODE versions on cosmological constraints derived from cosmic
shear and Sunyaev—Zeldovich effect cross-correlations.

Pk, z) — Pno(k, 2) (25)

3.2.5 Shear and redshift uncertainties

We include uncertainties on the shear calibration and redshift
distributions following the DES Y3 real-space analysis (Krause et al.
2021; Amon et al. 2022; Secco et al. 2022).

In our fiducial model, uncertainties in redshift distributions are
captured by allowing overall translations of the fiducial redshift
distributions, shown in Fig. 2, such that

n4(2) = na(z + Az,). (26)

We parametrize the residual uncertainty in the shear calibration
following a standard procedure which amounts to an overall rescaling
of the shear signal in each redshift bin, such that

C — (14 m,)(1 +my)CsE. 1))

The four shear biases, m,, are assumed to be redshift-independent
within each bin. Both of these choices are approximations to the more
sophisticated approaches developed over the course of the DES Y3
analysis.

For redshift uncertainties, the SOMPZ method provides a ensemble
of redshift distributions encapsulating the full uncertainty (Myles
et al. 2021), and not just that of the mean redshift. However,
it was shown in Cordero et al. (2022) and Amon et al. (2022)

https://github.com/alexander-mead/HMcode
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Table 1. Cosmological and nuisance parameters in the baseline ACDM
model. Uniform distributions in the range [a, b] are denoted U(a, b) and
Gaussian distributions with mean p and standard deviation o are denoted

N(u, o).

Parameter Symbol Prior
Total matter density Qm U(0.1,0.9)

Baryon density Qp 4(0.03, 0.07)
Hubble parameter h U(0.55,0.91)
Primordial spectrum amplitude Ag x 10° U(0.5,5)

Spectral index ng U(0.87,1.07)
Physical neutrino density Q. 14(0.0006, 0.00644)
IA amplitude (TA) AT U(-5,5)

TA redshift dependence (TA) oTA U(-5,5)

IA amplitude (TT) AT U-5,5)

IA redshift dependence (TT) oTT U(-5,5)

IA linear bias (TA) bta U, 2)

Photo-z shift in bin 1 Azy N(0,0.018)
Photo-z shift in bin 2 Azz  N(0,0.015)
Photo-z shift in bin 3 Az3 N(0,0.011)
Photo-z shift in bin 4 Azs N(0,0.017)

Shear bias in bin 1 m N (—0.0063, 0.0091)

Shear bias in bin 2 my N(=0.0198, 0.0078)
Shear bias in bin 3 m3 N(—0.0241, 0.0076)
Shear bias in bin 4 my N(=0.0369, 0.0076)

that the simpler parametrization of equation (26) is sufficient for
DES Y3, which we test in Appendix C1. For shear calibration,
a new approach was developed alongside the image simulations
presented in MacCrann et al. (2022). In short, it was shown that the
redshift distribution of a sample, n(z), corresponds to the response
of the shear estimated from this sample to a cosmological shear
signal, as a function of the redshift of the signal. In the presence of
galaxy blending, the response is modified, which may be captured
by an effective redshift distribution, 7, (z), normalized to 1 + m.
Realistic simulations, that used the same pipelines as DES Y3 data for
co-addition, detection, and shear measurements, allowed to jointly
estimate residual uncertainties in shear and redshift biases. These
results were subsequently mapped on to the standard parametrization
of equations (26) and (27), thus defining the priors over these
parameters, as detailed in Table 1. Extensive testing demonstrated
that our fiducial approach is sufficiently accurate given the statistical
uncertainties in DES Y3 (see Cordero et al. 2022; MacCrann et al.
2022; Amon et al. 2022, for details).

3.2.6 Higher order shear

Our modelling ignores higher order contributions to the shear signal
due to the magnification and clustering of the galaxy sample as well
as the fact we can only access the reduced shear, given by y/(1 —
). These contributions are computed in Krause et al. (2021), Secco
et al. (2022), and found to be below 5 per cent for the scales used in
this analysis, as shown by the orange curves in Fig. 5. We verified
that they have a negligible impact on cosmological constraints for
DES Y3.

3.3 Likelihood and covariance

We assume cosmic shear spectrum measurements follow a multi-
variate Gaussian distribution with fixed covariance (see e.g. Hall &
Taylor 2022, for a justification). The theoretical predictions detailed
in the previous section are convolved with the bandpower windows,
following equations (14) and (15).
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The covariance of E-mode shear power spectra is computed
analytically as follows. It is decomposed as a sum of Gaussian and
non-Gaussian contributions from the shear field. The Gaussian con-
tribution is computed with NAMASTER using the improved narrow-
kernel approximation (iNKA) estimator developed in Garcia-Garcia,
Alonso & Bellini (2019) and optimized by Nicola et al. (2021).
This estimator correctly accounts for mode-mixing pertaining to
masking and binning, consistently with the pseudo-C, framework
presented in Section 3.1. It requires the mode-coupled pseudo-C,
spectra, computed from the theoretical full-sky spectra convolved by
the mixing matrix from equation (10), and including noise bias for
autospectra, computed from the data with equation (16). These are
then rescaled by the product of masks over all pixels Nicola et al.
(for details, see 2021).

The non-Gaussian contribution is the sum of two terms: the
connected four-point covariance (cNG) arising from the shear field
trispectrum, and the so-called supersample covariance (SSC), ac-
counting for correlations of multipoles used in the analysis with
supersurvey modes. Both non-Gaussian terms are computed using
the COSMOLIKE software (Eifler et al. 2014; Krause & Eifler 2017),
with formulae derived in Takada & Jain (2009) and Schaan, Takada &
Spergel (2014). These analytical expressions do not account for the
exact survey geometry and only apply a scaling by the fraction of
observed sky, fuy. Therefore, we interpolate these computations at all
pairs of integer-valued multipoles and use the bandpower windows
from equation (15) to obtain an approximation of the non-Gaussian
covariance terms for the binned power spectrum estimator described
in the previous section. The non-Gaussian terms (cNG + SSC) are
subdominant with respect to the Gaussian contribution (see the upper
left panel of Fig. 6) and this represents a good approximation to the
extra covariance of different multipoles (i.e. off-diagonal terms),
which becomes non-negligible only on the smallest scales.

Fig. 6 illustrates properties of the fiducial covariance matrix,
computed as explained above. First, as can be seen on the left-
hand panel, the non-Gaussian terms are largely subdominant in
the computation of the error bars. Then, the right-hand panel,
showing the correlation matrix, reveals that multipole bins are largely
uncorrelated in the Gaussian covariance, and only correlated at the
10 percent level at most due to the non-Gaussian contributions.
Adjacent multipole bins are actually slightly anticorrelated due to
mode coupling and decoupling, at the 6 per cent level for the lowest
bins to below 1 per cent for the highest bins.

The covariance matrix of B-mode shear power spectra and the
cross-covariance between E- and B-mode power spectra are com-
puted from Gaussian simulations, presented in Section 4.1.1, as the
original NKA estimator was found to be unreliable for these spectra
in Garcia-Garcia et al. (2019).

3.4 Parameters and priors

For our fiducial analysis, we vary six parameters of the ACDM
model, namely the total matter density parameter Qp,, the
baryon density parameter €2, the Hubble parameter i (where
Hy = 100 hkms~! Mpc™'), the amplitude of primordial curvature
power spectrum A and the spectral index ng, and the neutrino physical
density parameter ,4%.

We also vary the five parameters of the intrinsic alignments model,
TATT. When restricting to the NLA model, we fix Atr = ot = ba =
0. Our validation tests are carried out assuming the TATT model, but
using the NLA best-fitting values from Samuroff et al. (2019) based
on DES Year 1 data, since this work found no strong preference for
the more complex model.
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Figure 6. Features and validation of the analytical covariance matrix used in this work, computed with NAMASTER and COSMOLIKE. Upper left: error bars given
by the square-root of the diagonal of the Gaussian (dark blue) and non-Gaussian (light blue) contributions to the covariance matrix. Middle left: comparison of
the error bars computed from Gaussian simulations (dark red) and DARKGRIDV1 simulations (light red) with the fiducial error bars. Lower left: residuals of the
pseudo-C; measurements from the Gaussian simulations with respect to the input (binned) spectra. In all left-hand panels, the horizontal axis corresponds to
indices of the components stacked data vector. The corresponding redshift bin pairs are indicated at the top of the upper panel, with each block corresponding
to multipoles in the range 8-2048. Right: correlation matrix, with only the Gaussian contribution in the lower triangle, and both Gaussian and non-Gaussian
contributions in the upper triangle (note the normalization in the range —0.1 to +0.1).

In addition to the cosmological and astrophysical parameters
described above, our analysis includes two nuisance parameters per
redshift bin to account for uncertainties in shape calibration (m,) and
redshift distributions (Az,), as described in Section 3.2.5.

The full list of parameters for the baseline ACDM model with
their priors is shown in Table 1. Throughout this paper we assume the
Planck 2018 (Planck Collaboration VI 2020) best-fitting cosmology
derived from TT, TE, EE + lowE + lensing + BAO data as our
fiducial parameter values.

In addition, we will consider alternative models that require extra
varied parameters:

(i) When using HMCODE to model small scales, we vary either
Apwm only (using the relationship between Agy and 7y suggested
in Mead et al. 2015), or both Agyv and 7y parameters, applying
uniform priors Agy ~ U(0, 10) and ngm ~ U(O0, 2).

(i) When constraining the wCDM model, we vary the dark energy
equation-of-state w, with a uniform prior in the range [-2, —1/3].

Finally, we will, in some cases, include independent (geometric)
information from measurements of ratios of galaxy—galaxy lensing
two-point functions at small scales, as presented in Sénchez et al.
(2021). Given an independent lens sample Porredon et al. (here,
MAGLIM, presented in 2021), the ratios of tangential shear signals
for two redshift bins of the source sample around the same galaxies
from a common redshift bin of the lens sample depend largely on
distances to these samples. Shear ratios (SR) can therefore be used to
constrain uncertainties in the redshift distributions. We only exploit
small-scale measurements, corresponding to scales of approximately
2-6h~! Mpc, or £y ~ 360-1200 for redshift bins 1-4, that are
largely independent from the scales we use in this analysis (see
Fig. 4 and Section 3.5). In these cases, we incorporate shear ratios
at the likelihood level, using a Gaussian likelihood. The modelling
of shear ratios necessitates extra parameters, namely the clustering
biases and redshift distribution uncertainties for each of the three lens
bins used here. Details about the shear-ratio likelihood and priors can
be found in Sanchez et al. (2021).

3.5 Scale cuts

3.5.1 Fiducial scale cuts (Ax?)

As stated in Section 3.2.4, baryonic feedback is a major source of
uncertainty on the matter power spectrum at small scales. Therefore,
we follow the DES Y3 methodology presented in Krause et al. (2021),
Secco et al. (2022), and remove multipole bins that are significantly
affected by baryonic effects.

To do so, we compare two synthetic, noiseless data vectors
computed at the fiducial cosmology: one computed with the power
spectrum from HALOFIT, and one where the power spectrum has
been rescaled by the ratio of the power spectra measured in OWLS
simulations (van Daalen et al. 2011) with dark matter only and with
AGN feedback, as in equation (25). We then compute, using the
fiducial covariance matrix, the x2 distances between the two data
vectors for each redshift bin pair and determine small-scale cuts
by requiring that all x? distances be smaller than a threshold value
A XZ/Npair, where Np,ir = 10 is the number of redshift bin pairs. We
then follow the iterative procedure laid out in Secco et al. (2022) and
choose the threshold value Ax?2 such that the bias due to baryons
in the (Sg, Qm) plane is less than 0.3¢0. Specifically, we require that
the maximum posterior point for the fiducial data vector lies within
the 2D 0.30 confidence region of the marginal posterior for the
contaminated data vector, as shown in Fig. 7, using the same scale
cuts being tested for both runs. We find Ax2 = 1 allows to reach
that goal® and adopt the corresponding maximum multipoles as our
fiducial scale cuts, as shown by the greyed area in Figs 4 and 5. This
leaves 119 data points out of the 320 in total.

In comparison, the real-space analysis presented in Amon et al.
(2022) and Secco et al. (2022) uses scale cuts that account for
the full analysis of DES Y3 lensing and clustering data (the so-
called 3 x 2pt analysis), including shear ratios. In order to make our
analysis comparable, when using shear ratios, we will use slightly

8Note that since power spectra for different redshift bin pairs are correlated,
the requirement that each pair ab verifies A be < 0.1 yields a global Ax? ~
0.34.
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Figure 7. Validation of the Ax2 < 1 scale cuts. We compare constraints
from a noiseless data vector produced at the fiducial cosmology (dark blue)
to those obtained from a contaminated data vector obtained by rescaling the
matter power spectrum using equation (25) with the OWLS AGN simulation,
both using the fiducial model. The nested, filled regions show the 0.30, 10,
and 20 contours, corresponding to roughly 24, 68, and 95 per cent confidence
regions. The mean of the fiducial posterior, which is represented by the blue
plus sign, lies within the 0.30 contour of the contaminated posterior.

more conservative cuts, with Ax? = 0.5, similar to the real-space
analysis, which results in similar biases in the (Sg, ©2,) plane of about
0.150. This removes between one and two additional data points for
each bin pair, leaving a total of 102 data points. Finally, we keep
bandpowers L for which the mean multipole, L, is below £m4,.

We note that these multipoles £,,,x are in the range 200400
(except for bin 1,1, which has larger error bars), corresponding to
significantly larger angular scales than the cuts used in the HSC Y1
(Hikage et al. 2019) and KiDS-450 (Kohlinger et al. 2017) analyses,
who used redshift-independent multipole cuts at £, = 1900 and
£max = 1300, respectively. Both analyses tested these choices and
extensively demonstrated the robustness of their final cosmological
constraints. These varying approaches on scale cut choices, discussed
in Doux et al. (2021), motivate us to consider alternative scale cuts
in the next section.

3.5.2 Alternative scale cuts (Kygy)

‘We consider a second kind of multipole cuts derived from approxi-
mate, small-scale cuts of 3D Fourier modes, which is motivated by
theoretical considerations. Namely, assuming that the model for the
matter power spectrum is valid up to a certain wavenumber kpax,
we aim at discarding multipoles £ receiving significant contributions
from smaller scales (i.e.for k > kpax). To do so, we follow Doux et al.
(2021) and rewrite equation (22) as an integral over k-modes, using
the change of variables k = (£ + 1/2)/x(z). We then define the scale
k-(£) at which the integral for C, reaches a fraction o < 1 of its
total value, such that

Inksq(£)
/ dInkdCedInk = aC,. (28)

00
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For a given choice of o and kpy,x, we then obtain the small-scale
multipoles cut by numerically solving for £,,,x such that k.., (€max) =
kmax- Here, we set o = 0.95, such that scales at wavenumbers k larger
than k.., (£) contribute 5 per cent of the total signal. We will consider
different values of kmax in the range 1-5 A Mpc‘l.

Note that, in general, the validity of the model depends on redshift,
as non-linearities increase at lower redshift. However, we will use
the same kn,x value for all ten redshift bin pairs, which in practice is
limited by the low redshift bin. We show the cuts corresponding to
knax =1,3,and 5 h Mpc‘1 with dashed lines in Figs 4 and 5. These
cuts leave 71, 156, and 228 data points, respectively. The highest
multipole used in this work is £yax =~ 1600 for redshift bin 4, for
kmax = ShMpc!.

3.6 Sampling, parameter inference, and tensions

Throughout this work, we assume a multivariate Gaussian likelihood
(Hall & Taylor 2022), as detailed in Section 3.3, to carry out a
Bayesian analysis of our data. The theoretical calculations are per-
formed with the COSMOSIS framework (Zuntz et al. 2015). We sample
the posterior distributions using POLYCHORD (Handley, Hobson &
Lasenby 2015), a sophisticated implementation of nested sampling,
with 500 live points and a tolerance of 0.01 on the estimated evidence.
We report parameter constraints through 1D marginal summary
statistics computed and plotted with GETDIST (Lewis 2019), as

_ ~+upper 34 per cent bound
Parameter = 1D mean_, gy, 34 per cent bound (MAP value),

where the maximum a posterior (MAP) is reported in parenthesis.

We will compute a number of metrics to characterize and interpret
the inferred posterior distributions. For a number Npanm of varied
parameters, the number of parameters effectively constrained by the
data is given by

Negt = Nparam — Tt (C5'C,) , 29

where Cr; and C, are the covariance matrices of the prior and
posterior, approximated as Gaussian distributions, and Tr is the
trace operator (Raveri & Hu 2019). For a given posterior and its
corresponding prior, we will also compute the Karhunen—Loeve (KL)
decomposition that measures the improvement of the posterior with
respect to the prior (Raveri & Hu 2019; Raveri, Zacharegkas &
Hu 2020). We can then project the observed improvement on to
a set of modes that we restrict to power laws in the cosmological
parameters. Finally, we will characterize the level of disagreement
between posterior distributions using the posterior shift probability,
as described in Raveri & Doux (2021). This metric is based on the
parameter difference distribution obtained by differentiating samples
from two independent posteriors, and computing the volume with
the isocontour of a null difference. To do so, we will use the
tensiometer® package (see previous references and Dacunha
et al. 2022), which fully handles the non-Gaussian nature of the
derived posteriors.

4 VALIDATION

In this section, we present a number of tests of our analysis
framework. In Section 4.1, we introduce simulations that we use to
verify that measured spectra are not significantly impacted by known
systematic effects (B modes and PSF leakage) in Section 4.2, to
validate the measurement pipeline and the covariance in Section 4.3,

https://tensiometer.readthedocs.io
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and to test the accuracy of our theoretical model and its impact on
cosmological parameter inferences in Section 4.4.

4.1 Simulations

4.1.1 Gaussian simulations with DES Y3 data

In the following sections, we use a large number of Gaussian sim-
ulations to validate the cosmic shear power spectra measurements,
obtain a covariance matrix for B-modes spectra and cross-spectra
with the PSF ellipticities. To make them as close as possible to
DES Y3 data, we use the actual positions and randomly rotated
shapes of the galaxies in the DES Y3 catalogue. This ensures that
the masks and the noise power spectra are identical to those of the
real data measurements.

The generation of a single simulation proceeds as follows. Given
predictions for the shear E-mode spectra at the fiducial model, C%?,
we generate a full-sky realization of the four correlated shear fields
at a resolution of Ngg. = 1024. To do so, we use the definition of
the spectra, equation (3), as the covariance of the spherical harmonic
coefficients of the fields to sample 4D vectors, (E},,, EZ,, E3,, Ef),
for 0 < £ < 3Ngige, —¢ < m < +£, which are independent for different
(£, m). We then use the alm2map function of HEALPY (Zonca et al.
2019) in polarization mode, with T/, = B, = 0, to generate the four
correlated, true (but pixelated) shear maps. The next step consists
in sampling these fields. As explained above, we use the DES Y3
catalogue of (mean- and response-corrected) ellipticities, to which
we apply random rotations, and the positions of the galaxies as
input. The random rotations are obtained by multiplying the complex
ellipticities, e = e, + iep, by €*?, where 6 is the random rotation
angle. For a galaxy i in redshift bin a, the ellipticity in the mock
catalogue is given by

) Po + %%,

€ = 1+ 20pse,’ (30)
where p¢ is the value of the (complex) shear field corresponding
to the ath redshift bin at the position of galaxy i. This procedure is
justified by the fact that the variance of the shear fields is about 10°
times smaller than the variance due to intrinsic shapes, 6> ~ 0.32,
such that the variance of the new ellipticities remains extremely close
to that of the true ellipticities.

We then perform power spectra measurements on these mock
catalogues with the same pipeline that is used on data, except that
these spectra need not be corrected for the pixel window function. The
mean residuals with respect to the expected (E mode) power spectra
computed with equation (14) using mixing matrices are shown in the
lower left panel of Fig. 6 for 10 000 simulations, showing agreement
within 5 per cent of the error bars (the small difference reflects the
accuracy of the pseudo-C; estimator). We also find that the (small but
non-zero) B-mode power spectra measured in these simulations are
consistent, at the same level, with expectations from E-mode leakage
computed using equation (14).

Note that the real space analysis of DES Y3 lensing and clustering
data (DES Collaboration 2022) relied on lognormal simulations using
FLASK (Xavier, Abdalla & Joachimi 2016) to partially validate the
covariance, as detailed in Friedrich et al. (2021). However, those
were mainly used to evaluate the effect of the survey geometry,
which is already accounted for by NAMASTER (Alonso et al. 2019),
and need not be validated here. Therefore, we use simpler, Gaus-
sian simulations to validate the measurement pipeline and obtain
empirical covariance matrices (for B-mode and PSF tests). In order
to validate the full covariance matrix, including the non-Gaussian
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contributions, we will rely on the DARKGRIDV 1 suite of simulations
(see Section 4.1.2), which rely on full N-body simulations and are
tailored for lensing studies.

4.1.2 DArRkGRIDV1 suite of simulations

The DES Y3 analysis of the convergence peaks and power spectrum
presented in Ziircher et al. (2022) relied on the DARKGRIDV1 suite
of weak lensing simulations. They were obtained from fifty N-body,
dark matter-only simulations produced using the PKDGRAV3 code
(Potter, Stadel & Teyssier 2017). Each of these consists of 7683
particles in a 900 2~! Mpc box, which is replicated 143 times to
reach a redshift of 3. Snapshots are assembled to produce density
shells and the corresponding (true) convergence maps for the four
DES Y3 redshift bins. These simulations are then populated with
DES Y3 galaxies, in a way similar to what is done for Gaussian
simulations (see Section 4.1.1). This operation is repeated with
a hundred noise realizations per simulation, thus producing 5000
power spectra measurements.

We will use these measurements to compute an empirical covari-
ance matrix that includes non-Gaussian contributions, and that can
be compared to our analytical covariance matrix, thus providing a
useful cross-check.

4.1.3 BuzzARD v2.0 simulations

The BUzZZARD v2.0 simulations are a suite of simulated galaxy
catalogues built on N-body simulations and designed to match
important properties of DES Y3 data. These simulations were used
to validate the configuration space analysis of galaxy lensing and
galaxy clustering within the DES Y3 analysis and we refer the reader
to DeRose et al. (2022) for greater details.

In brief, the light-cones were obtained by evolving particles initial-
ized at redshift z = 50 with an optimized version of the GADGET N-
body code (Springel 2005). The lensing fields (convergence, lensing,
and magnification) were computed by ray tracing the simulations
with the CALCLENS code (Becker 2013), over 160 lens planes in
the redshift range 0 < z < 2.35, and with a resolution of Ngg. =
8192. The simulations were then populated with source galaxies so
as to mimic the density, the ellipticity dispersion and photometric
properties of the DES Y3 sample. The SOMPZ method was applied
to these mock catalogues so as to divide them into four tomographic
bins of approximately equal density, thus producing ensemble of
redshift distributions that were validated against the known true
redshift distributions (see Myles et al. 2021, for details).

We will use sixteen BUZZARD simulations to perform an end-
to-end validation of our measurement and inference pipelines in
Section 4.4.2. It is worth noting that these simulations do not
incorporate the effects of massive neutrinos on the matter power
spectrum, nor those imparted to intrinsic alignments. When analysing
these simulations, we will therefore fix the total mass of neutrinos to
zero, and assume null fiducial values of the IA parameters (though
they will be varied with the same flat priors).

4.2 Validation of power spectrum measurements

In this section, we study the potential contamination of the signal with
two measurements. First, we verify that the B-mode component of the
power spectra is consistent with the null hypothesis of no B mode, as
any cosmological or astrophysical source of B mode is expected to be
very small. Secondly, we estimate the contamination of the signal by
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Figure 8. EB and BB cosmic shear power spectra measured with DES Y3 data for each pair of tomographic bins in the lower triangle, and the entire sample in
the upper right panel (note that the EB and BE power spectra are different only for cross-redshift bin spectra). Error bars are computed from 10 000 Gaussian
simulations using the DES Y3 catalog ellipticities and positions, as explained in Section 4.1.1. We find a x 2 of 344.0 for 320 degrees of freedom for tomographic
B-mode power spectra, corresponding to a probability-to-exceed of 0.17. We find a x? of 535.4 for 512 degrees of freedom for EB tomographic cross-power
spectra (counting all 16 independent bin pairs), corresponding to a probability-to-exceed of 0.23. Individual x? are reported for each redshift bin pairs in the
corresponding panels. In the non-tomographic case, we find, for the B-mode power spectrum, a x2 of 40.0 for 32 degrees of freedom, corresponding to a

probability-to-exceed of 0.16.

the PSF, which, if incorrectly modelled, would leak into the estimated
cosmic shear E-mode spectra, and therefore bias cosmology.

4.2.1 B modes

As mentioned in Section 3.1, gravitational lensing does not produce
B modes, to first order in the shear field and under the Born
approximation, i.e. when the signal is integrated along the line of
sight instead of following distorted photon trajectories. Second-
and higher-order effects as well as source clustering and intrinsic
alignments are expected to produce non-zero, but very small B
modes. However, the contamination of the ellipticities by various
systematic effects, first and foremost by errors in the PSF model, are
expected to produce much larger B modes in practice. Indeed, the
PSF does not possess the same symmetries as cosmological lensing,
and its E- and B-mode spectra are almost identical. Therefore, any
leakage due to a mis-estimation of the PSF could induce B modes
in galaxy ellipticities. As a consequence, measuring B modes in the
estimated shear maps and verifying that they are consistent with a
non-detection (or pure shape-noise) constitutes a non-sufficient but
nevertheless useful test of systematic effects (Becker & Rozo 2016;
Asgari et al. 2017; Asgari et al. 2019; Asgari & Heymans 2019).
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Fig. 8 shows measurements of the tomographic B-mode power
spectra in blue for DES Y3 data. We use 10 000 Gaussian simulations
presented in Section 4.1.1 to compute the covariance matrix (we
have verified convergence) and obtain a total x2, for the stacked
data vector of B-mode spectra, of 344.0 for 320 degrees of freedom,
corresponding to a probability-to-exceed of 0.17. This is consistent
with the null hypothesis of no B modes. In addition, we show EB
cross-spectra in Fig. 8 for completeness, finding a x2 of 535.4 for
512 degrees of freedom, and a probability-to-exceed of 0.23. We
also show, for completeness, measurements of the non-tomographic
B-mode power spectrum, already presented in Gatti et al. (2021c).
In this case, we find a x? of 40.0 for 32 degrees of freedom and
a probability-to-exceed of 0.16. Note that Gatti et al. (2021c) also
included a test where the galaxy sample was split in three bins, as a
function of the PSF size at the positions of the galaxies, and found
agreement with the hypothesis of no B mode.

4.2.2 Point spread function

Jarvis et al. (2021) introduced the new software PIFF to model the
point spread function (PSF) of DES Y3 data, using interpolation in
sky coordinates with improved astrometric solutions. Although the
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impact of the PSF on DES Y3 shapes and real-space shear two-point
functions was already investigated in Gatti et al. (2021c) and Amon
et al. (2022), we investigate PSF contamination in harmonic space
as the leakage of PSF residuals might differ from those in real space.
‘We do so by measuring p-statistics (Rowe 2010) in harmonic space
and estimate the potential level of contamination of the data vector.
Our detailed results are presented in Appendix A. We conclude
that we find no significant contamination and that the residual
contamination has negligible impact on cosmological constraints.

4.3 Validation of the covariance matrix

We compare the fiducial covariance matrix to the covariances
estimated from Gaussian simulations described in Section 4.1.1 as
well as the DARKGRIDV 1 simulations described in Section 4.1.2.
The middle left panel of Fig. 6 shows the ratios of the square-
root of the diagonals of those covariance matrices. When compared
to the covariance estimated from Gaussian simulations, we find
excellent agreement, at the 5 percent level across all scales and
redshift bin pairs. Our fiducial, semi-analytical covariance predicts
only slightly larger error bars, at the 2-3 percent level. We also
find very good agreement with the covariance matrix computed
from DARKGRIDV1 simulations, with the fiducial covariance matrix
showing smaller error bars, at the 15 percent level, for the largest
scales only. This small discrepancy may be attributed to the limited
number of simulations (fewer large-scale modes to average over)
and/or the replication scheme that is used to build density shells.
For both sets of simulations, we also compared diagonals of the
off-diagonal blocks (i.e. the terms cov(C%?, Cf/d) with ab # cd but
£ = £') and found good agreement, up to the uncertainty due to the
finite number of simulations. Finally, we verified that replacing the
analytical covariance matrix by the DARKGRIDV1 covariance matrix
has negligible impact on cosmological constraints inferred from the
fiducial data vector (shifts below 0.10°), as shown in Appendix C1.

4.4 Validation of the robustness of the models

In this section, we demonstrate the robustness of our modelling using
synthetic data in Section 4.4.1, and using BUZZARD simulations in
Section 4.4.2.

4.4.1 Validation with synthetic data

Our fiducial scale cuts, as explained in Section 3.5.1, are constructed
in such a way as to minimize the impact on cosmology from uncer-
tainties in the small-scale matter power spectrum due to baryonic
feedback, as shown in Fig. 7.

We further test the robustness of our fiducial model, based on
HALOFIT, by testing other prescriptions for the non-linear matter
power spectrum. To do so, we compare constraints, inferred with the
same model, but for different synthetic data vectors computed (i) with
HALOFIT, (ii) with HMCODE with dark matter only (i.e. using Agy =
3.13), and (iii) with the EUCLID EMULATOR (Euclid Collaboration
2019). These data vectors are compared in Fig. 5 and the constraints
are shown in Fig. B1, which shows that contours are shifted by less
than 0.30 in the (Sg, Qn,) plane.

We also aim at constraining the effect of baryonic feedback using
alternative scale cuts based on a k. cut-off in Fourier space, as
explained in Section 3.5.2. In order to validate the robustness of
this alternative model, we follow a similar approach and consider
predictions for the shear power spectra from four hydrodynamical
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simulations (Illustris, OWLS AGN, Horizon AGN, and Massive-
Black II), as shown in Fig. 5. We then build corresponding data
vectors using HALOFIT and a rescaling of the matter power spectrum,
as in equation (25). Next, we analyse those data vectors using (i) the
true model considered here (i.e. HALOFIT and rescaling), and then (ii)
HMCODE with one free parameter. We finally test whether the (Ss,
Qm) best-fitting parameters for the true model are within the 0.3¢0
contours of the posterior assuming HMCODE.

When varying only Apy, we do find that this test passes for
kmax = 1, 3, and 5hMpc~! with biases of 0.220° at most (and
typically 0.1c0), even though the inferred Apy parameter largely
varies across simulations (we find posterior means 0f2.2,2.7, 3.4, and
3.6 for Illustris, OWLS AGN, Horizon AGN, and MassiveBlack II,
respectively). This means that biases introduced by HMCODE, if any,
are not worse than potential projection effects found when using
the true model, all of which are found to be below the level of
0.3¢. In addition, this also means that HMCODE allows us to properly
marginalize cosmological constraints over uncertainties in baryonic
feedback.

4.4.2 Validation with Buzzard simulations

In this section, we use Buzzard simulations (see Section 4.1.3) to
validate our measurement and analysis pipelines together. Precisely,
we verify that (i) we are able to recover the true cosmology used
when generating Buzzard simulations and (ii) the model yields a
reasonable fit to the measured shear spectra.

‘We start by measuring cosmic shear power spectra and verify that
the mean measurement (not shown) is consistent with the theoretical
prediction from our fiducial model at the Buzzard cosmology,
using the true Buzzard redshift distributions, and with a covariance
recomputed with these inputs.

We then run our inference pipeline on the mean data vector,
first with the covariance corresponding to a single realization, and
then with a covariance rescaled by a factor of 1/16, to reflect the
uncertainty on the average of the measurements. The first case is
testing whether we can recover the true cosmology on average, while
the second is a stringent test of the accuracy of the model, given that
error bars are divided by +/16 = 4 with respect to observations with
the DES Y3 statistical power. For these tests, the priors on shear
and redshift biases are centered at zero, with a standard deviation of
0.005.

The 68 and 95 per cent confidence contours are shown in Fig. 9 for
both covariances, using the fiducial x2? < 1 scale cuts. We only show
the contours for the best constrained parameters (2, 0's, and Sg) but
we verified that the true cosmology is recovered in the full parameter
space. We find that it is perfectly recovered in the first case and
within 1o contours in the second case, consistent with fluctuations
on the mean Buzzard data vector. We find that the effective number
of constrained parameters is N & 7.8 in the first case, whereas, in
the second case, we find N ~ 9.6 (recall we fix the neutrino mass
to zero for tests on Buzzard, S0 Nyaam = 18 here). In the second test,
we find that x? = 139.4 at the best-fitting parameters (maximum a
posteriori) for N = 119 data points, and N — N¢ degrees of freedom,
such that the best-fitting x2 corresponds to a probability-to-exceed
of 2.7 per cent. For kp,x cuts, we also recover the input cosmology
within error bars and find /(N — Neg) of 98.4/61.7,191.6/146.1, and
254.5/217.8, respectively, for kmax 0f 1,3, and 5 A Mpc‘1 (although
note we will not use this combination of model and scale cuts on
data). Together, these tests suggest that the accuracy of our fiducial
model exceeds that required by the statistical power of DES Y3 data.
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Figure 9. Validation of the analysis framework with Buzzard simulations.
‘We show the 1D and 2D marginal posterior distributions corresponding to
the mean Buzzard data vector with the data covariance (black) and the same
covariance rescaled by a factor 1/16 (blue). The posteriors obtained for each
realization are shown in yellow to red.

‘We then run our inference pipeline on each realization to visualize
the scatter in the posteriors due to statistical fluctuations. This exer-
cise allows us to verify that the model does not feature catastrophic
degeneracies that have the potential to bias the marginal posterior
distributions over cosmological parameters, in particular in the (Ss,
Qpm) plane. The contours are shown in Fig. 9, along with the contours
obtained from the mean Buzzard data vector. We also compute the
x2 at best fit for each realization and find that the distribution is
perfectly consistent with a x? distribution with N — N, degrees of
freedom, where we find Neg ~ 7.8(2) in these cases.

5 BLINDING

We follow a blinding procedure, decided beforehand, that is meant
to prevent confirmation and observer biases, as well as fine tuning
of analysis choices based on cosmological information from the
data itself. After performing sanity checks of our measurement and
modelling pipelines that only drew from the data basic properties
such as its footprint and noise properties, we proceeded to unblind
our results in three successive stages as described below. It is worth
noting, though, that as this work follows the real space analysis of
Amon et al. (2022) and Secco et al. (2022), the blinding procedure
is meant to validate the components of the analysis that are different,
such as the cosmic shear power spectrum measurements, the scale
cuts, and the covariance matrix.

Stage 1. The shape catalogue was blinded by a random rescaling of
the measured conformal shears of galaxies, as detailed in Gatti et al.
(2021c). This step preserves the statistical properties of systematic
tests while shifting the inferred cosmology. A number of null tests
were presented in Gatti et al. (2021c¢) to test for potential additive and
multiplicative biases before deeming the catalogue as science-ready
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and unblinding it. In the Section 4.2, we repeated two of these tests
in harmonic space, namely the test of the presence of B modes and
the test of the contamination by the PSF.

Once all these tests had passed, we used the unblinded catalogue
to measure the shape noise power spectrum and compute the
Gaussian contribution to the covariance matrix. We then repeated the
systematic and validation tests, in particular those based on Gaussian
simulations where shape noise is inferred from the data.

Stage 2. Using the updated covariance matrix, we proceeded to
validate analysis choices with synthetic data. We first determined
fiducial scale cuts based on the requirement that baryonic feedback
effects do not bias cosmology at a level greater than 0.30, as
detailed in Section 3.5.1. We then verified that baryonic effects as
predicted from a range of hydrodynamical simulations do not bias
cosmology for alternative scale cuts, provided that HMCODE (with a
free baryonic amplitude parameter) is used instead of HALOFIT, as
detailed in Section 4.4.1. Finally, we verified that effects that are not
accounted for in the model do not bias cosmology, e.g. PSF residual
contamination in Appendix A, and higher order lensing effects and
uncertainties in the matter power spectrum using the N-body Buzzard
simulations in Section 4.4.2.

Stage 3. Before unblinding the data vector and cosmological
constraints, we performed a last series of sanity checks. In particular,
we verified that the model is a good fit to the data by asserting that the
x? statistic at the best-fitting parameters corresponds to a probability-
to-exceed above 1 per cent. We found that the best-fit x? is 129.3 for
119 data points and Negs = 5.6 constrained parameters, corresponding
to a probability-to-exceed of 14.6 per cent. We also verified that the
marginal posteriors of nuisance parameters were consistent with their
priors. Finally, we performed two sets of internal consistency tests, in
parameter space and in data space. For the tests in parameter space,
we compared, with blinded axes, constraints for (Sg, Q) from the
fiducial data vector with constraints from subsets of the data vector,
first removing one redshift bin at a time, and then removing large or
small angular scales, as detailed in items a and b of Appendix C1.
The tests in data space, presented in Appendix C2, are based on the
posterior predictive distribution (PPD), and follow the methodology
presented in Doux et al. (2020). The PPD goodness-of-fit test yields
a calibrated probability-to-exceed of 11.6 percent. These tests are
detailed in Appendix C, along with other post-unblinding internal
consistency tests.

After this series of tests all passed, we plotted the data and
compared it to the best-fitting model, as shown in Fig. 4, and finally
unblinded the cosmological constraints, presented in the next section.

6 COSMOLOGICAL CONSTRAINTS

This section presents our main results. We use measurements of
cosmic shear power spectra from DES Y3 data to constrain the
ACDM model in Section 6.1. We then explore alternative analysis
choices to constrain intrinsic alignments in Section 6.2 and baryonic
feedback in Section 6.3. We compare our results to other weak
lensing analyses of DES Y3 data in Section 6.4, namely the comic
shear two-point functions (Amon et al. 2022; Secco et al. 2022),
convergence peaks and power spectra (Ziircher et al. 2022) and
convergence second- and third-order moments (Gatti et al. 2021b),
and to weak lensing analyses from the KiDS and HSC collaborations
in Section 6.5. Finally, as an illustrative exercise, we reconstruct the
matter power spectrum from DES Y3 cosmic shear power spectra
using the method of Tegmark & Zaldarriaga (2002) in Section 6.6. A
number of internal consistency tests are also presented in Appendix C
and the full posterior distribution is shown in Appendix D.
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Figure 10. Cosmological constraints on the amplitude of structure o, the
total matter density Qp, and their combination Sg = 0g+/$Qm/0.3. The inner
(outer) contours show 68 percent (95 percent) confidence regions. Con-
straints from DES Y3 cosmic shear power spectra with the two sets of fiducial
scale cuts are shown in blue, with (solid) and without (dashed) shear ratios
(Sénchez et al. 2021). Constraints obtained from Planck 2018 measurements
of cosmic microwave background temperature and polarization anisotropies
are shown in yellow (Planck Collaboration VI 2020).

Note that, for all the constraints that are presented in the following
sections, we have recomputed the effective number of constrained
parameters and verified that the 2 statistic at best fit corresponds to
a probability-to-exceed above 1 per cent.

6.1 Constraints on ACDM

We present here our constraints on ACDM assuming the fiducial
model presented in Section 3.2, that is, using HALOFIT for the matter
power spectrum and TATT for intrinsic alignments. Constraints are
shown in blue in Fig. 10 and compared to constraints from Planck
2018 measurements of cosmic microwave background temperature
and polarization anisotropies (Planck 2018 TT + TE + EE + lowE,
Planck Collaboration VI 2020), in yellow. The 1D marginal con-
straints are also shown in Fig. 11 along with constraints for all
variations of the analysis, and the full posterior is shown in Fig. D1.
Using only shear power spectra (i.e. no shear ratio information), we
find

Qm = 0.260109% (0.242), [C, TATT]
03 = 0.863 £ 0.096 (0.902), [C, TATT]
Ss = 0.7937003% (0.810), [C, TATTI,

where we report the mean, the 68 percent confidence intervals of
the posterior, and the best-fitting parameter values, i.e. the mode
of the posterior, in parenthesis. The corresponding theoretical shear
power spectra are shown in Fig. 4, showing good agreement with
data, consistent with the x? at best fit of 129.3. The best constrained
combination of parameters o g(£2,/0.3)%, inferred from a principal
component analysis, is given by

03(2m/0.3)" = 0.781 £ 0.032 (0.794). [C, TATT].

1957

We also compute the KL decomposition to quantify the improvement
of the posterior with respect to the prior using tensiometer (see
Section 3.6). We find that the KL. mode that is best constrained by the
data corresponds to o = 0.521, which is remarkably close to the Sg
(o = 0.5) parameter theoretically inferred in Jain & Seljak (1997). A
visualization of the KL decomposition is also given in Appendix D.
We then include shear ratio information (Sanchez et al. 2021) to
further reduce the uncertainty on Sg, as shown by the filled contours
in Fig. 10. We find this addition improves constraints on Sg by about
18 per cent and yields a more symmetric marginal posterior, with

Sz = 0.784 =+ 0.026 (0.798), [C,+SR TATT]
03(2m/0.3)%>® = 0.783 £ 0.021 (0.788). [C,+SR TATT].

This additional data noticeably removes part of the lower tail in Sg,
which is due to a degeneracy with IA parameters, as will be seen in
Section 6.2, and also improves constraints on redshift distributions
uncertainties by 10-30 percent. The volume of the 2D marginal
(Ss, ©2m) posterior, as approximated from the sample covariance, is
reduced by about 20 per cent when including shear ratios.

In comparison to constraints from Planck 2018, we find a lower
amplitude of structure S3. We estimate the tension with the parameter
shift probability metric using the tensiometer package, which
accounts for the non-Gaussianity of the posterior distributions
(Raveri & Doux 2021), and find tensions of about 1.40 and 1.5¢
with and without shear ratios, respectively.

Finally, we note that DES Y3 shear data alone is not able to
constrain the dark energy equation-of-state w. We find that the
evidence ratio between wCDM and ACDM is R,x = 0.68(18),
which is inconclusive, based on the Jeffreys scale. We thus find no
evidence of a departure from ACDM, consistent with Amon et al.
(2022) and Secco et al. (2022).

6.2 Constraints on intrinsic alignments

In this section, we focus on constraints on intrinsic alignments (IA)
and explore the robustness of cosmological constraints with respect
to the IA model.

The fiducial model, TATT, accounts for the possibility of tidal
torquing and has five free parameters in the DES Y3 implementation
(see Table 1). Fig. 12 shows constraints on the amplitude parameters
for the tidal alignment and tidal torquing components. As stated in
Blazek et al. (2019), the II component of the TATT model, which
is found to dominate over the GI and IG components (see fig. 16 of
Secco et al. 2022), receives contributions that are proportional to A% A
A%T, and AraArr. There is therefore a partial sign degeneracy be-
tween those parameters, which can be observed in the corresponding
panel of Fig. 12. We then find that including shear ratios significantly
reduces the marginal (Ata, Arr) posterior volume by a factor of about
3, which in turn improves cosmological constraints, as reported in
the previous section. In this case, we obtain

Ata = —0.14 +0.43 (—0.398), [C,+SR TATT]
Arr =04+£1.1(1.714). [C.+SRTATT].

These constraints alone do not exclude zero, potentially due to the
aforementioned sign degeneracy. If we restrict the prior to Apa >
0, we find Aty = 0.307033 and Aty = —0.6910%3, with essentially
unchanged cosmological constraints. We do not show constraints on
the redshift tilt parameters apa and arr, which are unconstrained
by the data (which might be due to amplitude parameters being
consistent with zero).
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Figure 11. Comparison of 1D marginal posterior distributions over the parameters Sg = 03(2m/0.3)%5, og and Qp, from DES Y3 data as well as other
experiments, and consistency tests for this work (in blue). (a) Constraints obtained from the harmonic (this work) and real (Amon et al. 2022; Secco et al. 2022)
space analyses of DES Y3 data are shown in blue and green (see also Fig. 14), both with and without shear ratio information (SR; Sénchez et al. 2021). (b)
Constraints from other weak lensing surveys, namely HSC Y1 (Hikage et al. 2019; Hamana et al. 2020, 2022b), KiDS-1000 (Asgari et al. 2021), and KiDS-450
(Hildebrandt et al. 2017; Kohlinger et al. 2017) are shown in grey, and constraints from cosmic microwave background observations from Planck 2018 are
shown in yellow (Planck Collaboration VI 2020). (c) Constraints from four weak lensing analyses of DES Y3 data are compared, including the analysis of mass
map moments (Gatti et al. 2021b) and peaks (Ziircher et al. 2022), and illustrating a high level of consistency (see also Fig. 15). (d) Consistency tests where
redshift bins are removed one at a time (first four) and where the data vector is split into its large- and small-scale data points (last two) (see also Appendix C).
(e) Various other consistency tests: removing autopower spectra, swapping the covariance matrix, and marginalizing over redshift distribution uncertainties with
HYPERRANK and MULTIRANK (see also Appendix C). (f) Modelling robustness test for intrinsic alignment (IA), including B-mode power spectra, or replacing
TATT by NLA, or removing IA contributions altogether (see also Section 6.2, Fig. 12). (g) Other robustness test, freeing the dark energy equation-of-state w or
fixing the neutrino mass to 0.06 eV. (h) Baryonic feedback tests where the matter power spectrum is computed with HMCODE instead of HALOFIT, and fiducial
scale cuts are replaced with kmax = 1, 3, and 5 » Mpc~! scale cuts (see also Section 6.3 and Fig. 13).

We also report constraints on the NLA model in Fig. 12, a subset
of TATT where At = bra = 0, which is not excluded by the data. We
exclude shear ratio information here, so as to compare constraints
obtained with shear power spectra alone (TATT constraints are shown
by dashed lines in Fig. 12). Because of the complex degeneracy
between Sg and Ary, visible in Fig. 12, fixing the tidal torquing
component to zero results in cosmological constraints that are
improved by about 27 percent on Sg, and which are found to be
consistent with the TATT case. Assuming the NLA model, we find

Ss = 0.810 4 0.023 (0.834), [C, NLA]
Ata =0.40=+0.51(0.701), [C,NLA],

MNRAS 515, 1942-1972 (2022)

i.e. a slightly larger value of Sg, albeit within uncertainties of the
fiducial model. Finally, we note that removing IA contributions
altogether further improves the constraint on Sg by about 16 per cent,
yielding

S = 0.80170:922 (0.836), [C, no IA],

also consistent with the NLA and TATT cases.

In terms of model selection, we find that going from no IA to
NLA, and then from NLA to TATT improves fits by Ax? = —0.3
and A x2 = —1.1, respectively, while introducing two and three more
parameters. The evidence ratios are given by Rnpaarr = 3.59(93),
Ruoiarrarr = 17.5(43), and Ryoiamra = 4.88(11), marking a weak
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Figure 12. Constraints on cosmological and intrinsic alignment (IA) param-
eters from DES Y3 cosmic shear power spectra. The three colours refer to
the assumed IA model: TATT in blue, NLA in orange, and no IA in red. The
filled blue contours include information from shear ratios while the dashed
ones do not. Shear ratios are not included for the NLA and no IA models.

preference for NLA over TATT, but a substantial preference for no
IA over TATT, according to the Jeffreys scale.

Cosmic shear analyses in harmonic space usually only exploit
the £ mode part of the power spectrum. However, as detailed in
Section 3.2.3, tidal torquing generates a small B-mode signal, which
may at least be constrained by our B-mode data. We validated
our analysis pipeline by checking that (i) the E-to-B-mode leakage
measured in our Gaussian simulations (see Section 4.1.1) is con-
sistent with expectations from mixing matrices, (ii) we do recover
correct IA parameters, with tighter constraints, for synthetic data
vectors for different values of the IA parameters (including non-
zero Art). We obtain constraints that are consistent for cosmological
parameters inferred without B-mode data. However, they seem to
strongly prefer non-zero Arr, and are not consistent across redshift
bins. This preference is indeed entirely supported by bin pairs 3,3 an
3,4, that have the highest x2 with respect to no B mode, as shown in
Fig. 8. Including B-mode data and freeing TATT parameters, the x2
for those bins are reduced by 13.5 and 17.4, respectively, while all
other bin pairs are unaffected (x? changed by less than 1). Indeed,
we find that removing bin 3 entirely makes the preference for non-
zero Arr disappear, with very small impact on the cosmology. We
obtain very similar results when including shear ratios. We conclude
from this experiment that DES Y3 data is not able to constrain the
contribution of tidal torquing to the TATT model efficiently, leading
to the model picking up potential flukes in the B-mode data, which
has been verified to be globally consistent with no B modes. Future
data will place stronger constraints on B modes and its potential
cosmological sources.

6.3 Constraints on baryons

‘We now turn our attention towards baryonic feedback. Our fiducial
analysis discards scales where baryonic feedback is expected to
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Figure 13. Constraints on cosmological and baryonic feedback parameters
from DES Y3 cosmic shear power spectra. In blue, we show constraints for
the fiducial model, i.e. using HALOFIT. In orange to red, we show constraints
using HMCODE with one free parameter, while varying the kyax cut-off from
1to 5h Mpc‘1 (see Fig. 4). We also show, with dashed lines, the constraints
for the fiducial HALOFIT model and the kmax = 14 Mpc_l cut, which is even
more conservative than our fiducial Ax? = 1 cut. Note that all constraints
shown here use TATT to model intrinsic alignments and none include shear
ratio information.

impact the shear power spectrum. However, we have shown in
Section 4.4.1 that HMCODE provides a model that is both accurate
and flexible enough for our analysis, for scale cuts with kp,x in the
range 1-5 h Mpc~!.

Fig. 13 shows constraints obtained assuming HMCODE with one
free parameter, for varying scale cuts, as well as a comparison to
the fiducial HALOFIT model. We find cosmological constraints to be
robust to the choice of kmax, With deviations below 0.5¢. In particular,
in Fig. 13 we show contours for both models for ky.x = 14 Mpc‘1 s
which is more conservative than our fiducial A x? = 1 scale cut, and
find very good agreement. We then find that extra data points included
when raising km,x from 1 to 5 hMpc‘1 (71-228) do constrain the
HMCODE baryonic feedback parameter Apy, but have a relatively little
impact on cosmological constraints, both in position and width. In
other words, given our current error bars, cosmological information
at small scales is partially lost by marginalizing over uncertainties in
the baryonic feedback model. For the kpax = 54 Mpc‘1 cut, we find
x2 = 2352 (p = 0.25) at best fit, and constraints given by

Qm = 0.297+5%2 (0.246), [C, HMCODETATT]
S = 0.7697 097 (0.762), [C, HMCODETATT]
Apv = 3.52799% (1.620). [C, HMCODETATT].

This is in good agreement with cosmological constraints reported
for the HALOFIT model in Section 6.1, although this model does
favour slightly lower Sg and o'g values, and a higher 2, value, which
happens to be closer to the Planck value, as seen in Fig. 11. As a
consequence, the tension with Planck rises to 1.7¢ in this case. The
corresponding best-fitting model is represented by dashed lines in
Fig. 4, where we observe that, on large scales, i.e. for multipoles
below the fiducial scale cuts, both models agree very well. However,
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Figure 14. Comparison of cosmological constraints obtained from the
analysis of cosmic shear two-point functions of DES Y3 data in real (in
green, Amon et al. 2022; Secco et al. 2022) and harmonic space (in blue, this
work). Solid contours indicate constraints that include shear ratio information
Sénchez et al. (2021). We find ASg = 0.025, with shear ratios, consistent with
the expected statistical scatter o (ASg) ~ 0.02 predicted in Doux et al. (2021).

on smaller scales, HMCODE yields shear power spectra 10-20 per cent
lower, which, visually, seems to provide a better fit to data (again,
those scales are excluded in the fiducial model).

When using HMCODE with two free parameters, we find that the
constraining power is entirely transferred to the second parame-
ter, num, with very little impact on cosmological constraints. For
kmax = ShMpc™!, we find num = 0.867033 while Apy is uncon-
strained.

The previous constraints are based on our fiducial IA model, TATT.
However, we showed in the previous section that the NLA model
seems favoured by the data (using evidence ratios). If we use this
model instead, as done in the KiDS-1000 analysis (Asgari et al.
2021), we find Sz = 0.790 % 0.024 and Agw = 3.67703), although
we note immediately that we have not validated our scale cuts against
this specific model and that these results should be interpreted with
caution.

Our results do not allow exclusion of the dark matter only
value of Agy = 3.13 in either direction. In comparison to the
hydrodynamical simulations we used in Section 3.2.4 to validate the
model, constraints from data are closer to Massive Black II, although
the uncertainty from shear power spectra alone is too large to discrim-
inate between baryonic feedback prescriptions. Fig. 13 suggests that
a better understanding of the effect of baryons on the distribution
of matter will be an important task in order to be able to capture
cosmological information at small scales. For the foreseeable future,
this will likely require cross-correlating shear data with other probes
that are sensitive to baryons, e.g. Compton-y maps of the thermal
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