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Introduction: The antigen presentation molecule MHC class I related protein-1

(MR1) is best characterized by its ability to present bacterially derived metabolites

of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells).

Methods: Through in vitro human cytomegalovirus (HCMV) infection in the

presence of MR1 ligand we investigate the modulation of MR1 expression. Using

coimmunoprecipitation, mass spectrometry, expression by recombinant

adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its

family members as potential regulators of MR1 expression. The functional

consequences of MR1 modulation by HCMV infection are explored in coculture

activation assays with either Jurkat cells engineered to express the MAIT cell TCR

or primary MAIT cells. MR1 dependence in these activation assays is established by

addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout.

Results: Here we demonstrate that HCMV infection efficiently suppresses MR1 surface

expression and reduces total MR1 protein levels. Expression of the viral glycoprotein

gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a

specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using

multiple mechanisms. Functional assays with primary MAIT cells demonstrated the

ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using

both neutralizing antibodies and engineered MR1 knockout cells.
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Discussion: This study identifies a strategy encoded byHCMV to disrupt theMR1:MAIT

cell axis. This immune axis is less well characterized in the context of viral infection.

HCMV encodes hundreds of proteins, some of which regulate the expression of

antigen presentation molecules. However the ability of this virus to regulate the MR1:

MAIT TCR axis has not been studied in detail.
KEYWORDS

human cytomegalovirus, herpesvirus, MHC class I related protein-1, MR1, mucosal-
associated invariant T cells, MAIT cells, immune modulation
Introduction

Human cytomegalovirus (HCMV) is a betaherpesvirus that

causes lifelong infection with latency and is endemic in both

developed and developing countries (1, 2). Infected individuals

often harbor multiple strains of HCMV, either as a result of

concurrent infection or superinfection (3, 4) and seroprevalence

generally increases with age (5, 6). HCMV carriage results in a

dramatic reconfiguration of the immune system which, combined

with its prevalence, makes it one of the leading non-heritable causes of

immune variation (7, 8). Despite this, public awareness of HCMV and

the risks associated with infection is low (9). In immunocompetent

individuals HCMV infection is generally asymptomatic in healthy

individuals but it can cause serious complications in the

immunonaïve (neonates) (10, 11) and immunocompromised people

(for example, immunosuppressed transplant recipients (12–14)).

Mucosal-associated invariant T (MAIT) cells are a subset of

predominantly CD8+ T cells involved in the innate response to

bacterial and viral pathogens. MAIT cells were initially labeled

invariant due to their consistent expression of the T cell receptor

(TCR) alpha chain Va7.2-Ja33 (15–18), however it is now accepted

that MAIT cell TCRs can contain Va7.2 paired with either Ja33, Ja12
or Ja20 and they are therefore considered to be semi-invariant (17,

19). MAIT cells are involved in the surveillance of mucosal surfaces

including the oral musoca (20), the female genital tract (21) and

breast tissue (22). MAIT cells can be activated by ligands presented on

MR1 (23) or by combinations of pro-inflammatory cytokines such as

IL-12 and IL-18 (24). MAIT cells were first characterized in MR1-

dependent control of bacterial infections (16, 21, 25–34) and more

recently have been implicated in MR1-independent antiviral

responses (24, 35–38).

MR1 is a non-classical MHC I-like molecule whose function is

known to include presentation of vitamin B-derived metabolites to

activate MAIT cells (23, 39). During HCMV infection, other non-

classical MHC I-like molecules have been reported to be regulated by

this virus. For example, in HCMV infected cells, human leukocyte

antigen-E (HLA-E), an inhibitor of NK cell activation, binds and is

stabilized by the HCMV gpUL40 leader peptide (40, 41). Conversely

HLA-G, a non-classical MHC I-like molecule that functions as an NK

activation inhibitor, is targeted for proteasomal degradation by

HCMV gpUS10 in infected HeLa cells (42) and trophoblasts (43).

MHC I chain-related proteins A and B (MICA and MICB) which are
02
highly polymorphic stress-induced NKG2D ligands that are similar to

the MHC I heavy chain but do not associate with b2M, are both

targeted for downregulation by HCMV (44–48). Our previous

demonstration of MR1 downregulation by herpesviruses, with a

focus on HSV-1 and VZV (49, 50), also indicated that both HCMV

and murine cytomegalovirus were capable of inhibiting MR1 surface

expression, however the functional outcome and the role of specific

gene functions in such regulation was not studied.

Here we report modulation of surface and total MR1 protein by

HCMV infection, and implicate the HCMV US9 gene product as

contributing to this phenotype. We also demonstrate the ability of

HCMV infected cells to inhibit bacteria-induced activation of primary

MAIT cells in a MR1-dependent manner.
Methods

Cell culture, viruses and E.coli

Primary human foreskin fibroblasts (HFs) (ATCC), 293-TREX

cells (invitrogen), HEK293Ts (ATCC), human telomerase

immortalised (hTERT) HFs (51, 52) (and CRISPR/Cas-9

derivatives) as well as HF and ARPE-19 cells overexpressing MR1

and MR1-GFP (49) were grown in DMEM media supplemented with

10% foetal calf serum (FCS) and penicillin streptomycin (100 units/

mL). TCR a/b deficient Jurkat-76 engineered to express the MAIT

TCR: Jurkat.MAIT cells (18, 39, 53) were propagated in RPMI 1640

media supplemented with 10% FCS and penicillin streptomycin (100

units/mL). Human peripheral blood mononuclear cells (PBMCs)

were isolated by density gradient centrifugation with Ficoll-Paque

PLUS (GE Healthcare) from donor buffy coats obtained through the

Australian Red Cross Blood Service. For use in MAIT activation

experiments PBMCs were cultured in supplemented RPMI 1640 (10%

FCS, 100 units/mL penicillin streptomycin). Before PBMCs were

cocultured with HFs they were washed in PBS and transferred to

folate free RPMI 1640 media supplemented with 10% human serum

and 100 units/mL penicillin streptomycin.

The bacterial artificial chromosomes (BAC) derived viruses based

on the low passage HCMV strain Merlin, RCMV1111 (Merlin) and

GFP expressing RCMV1158 (Merlin-GFP), were described previously

(54). AD169-UK strain was described previously (55). Stocks of

HCMV were generated by harvesting virus from the supernatant of
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infected HFs. Supernatant was collected when all infected HFs

displayed cytopathic effect (CPE) then spun at 845 xg for 10 min to

pellet cell debris, and a second centrifugation for 2h at 21875 xg to

pellet the virus. Virus pellets were resuspended in fresh supplemented

DMEM and stored at -80°C.

Ultraviolet (UV) irradiation of virus was performed by applying

720mJ/cm2 of UV light using a CL-1000 Ultraviolet Crosslinker

(Analytik Jena). Successful inactivation of virus was determined by

a lack of development of CPE after incubation of UV-irradiated virus

with fresh monolayers of HFs. For infection experiments, viable or

UV-irradiated virus was applied to cultures for 90 minutes before

being washed off; this point immediately after removal of the virus

was taken as time zero.

DH5aE.coli foruse in Jurkat.MAITandPBMCMAITcell activation

assays were grown by shaking at 37° overnight in LB broth then fixed in

1% formaldehyde for 3 mins, vortexing for the first 60s and last 30s (28,

56). Fresh E.coli cultures were grown and fixed for each assay.
Generation of viral recombinants

The US9 HCMV delet ion mutant was genrated by

recombineering of Merlin BAC as descibed previously (54) using

the following primers;

US9 SacB For: GCCGGCGTGAGCCAGCGTTACCCAACA

GCAGCCCAGGCCGACGAGGAGGCGCAGCCACCGCCTCA

TGGCGGCTTCGCCAGCCTGTGACGGAAGATCACTTCG

US9 SacB Rev:

GGTGGATACGTCCCTGGGTCCGAGGTCGGCACCGCG

CCACCGGAAGGACTTCACGGGAAGAAGAGGCTAAAGACGAT

TGACTGAGGTTCTTATGGCTCTTG

Delete US9 open reading frame (ORF):

GCCCAGGCCGACGAGGAGGCGCAGCCACCGCCTC

ATGGCGGCTTCGCCAGAGCCGCCGGCACCGCGGCCGG

CCGCAGGAAGCCGCCCGGCGCGTCGTCTG

Recombinant adenoviruses (RAds) expressing C-terminally V5-

tagged gpUS7 and gpUS9 were generated as described previously

using recombineering technology (57). The codon optimised US9

ORF was synthesised by Genscript and the US7 ORF was amplified

from the Merlin genome using gene specific primers (US7 FOR:

AAGACACCGGGACCGATCCAGCCTGGATCCttgacatacggta

ataccatgcgg, US7 REV: GAGCGGGTTAGGGATTGGCTTACCAGC

GCT gcccttgacaggataggtcaaa.RAds were generated from transfected

BACs in 293-TREX cells. RAds were amplified and titered in 293-

TREX cells as described previously (57).
Jurkat.MAIT activation assays

HFs were infected with HCMV in supplemented DMEM at MOI

10. 72 hours post infection (hpi) HFs were washed in PBS and

partially fixed E.coli (1000 CFU/HF) was added in folate free RPMI

1640 supplemented with FCS and penicillin streptomycin. 4 hours

later E.coli was removed by washing with PBS and LEAF-purified

anti-MR1 neutralizing antibody (clone 26.5, BioLegend) or

appropriate isotype control was added for 1 hour (5 µg/mL) in

folate free RPMI supplemented with FCS and penicillin
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streptomycin. Jurkat.MAIT cells were added at a Jurkat.MAIT : HF

ratio of 2:1 in folate free RPMI supplemented with FCS and penicillin

streptomycin. 20 hours later Jurkat.MAITs activation was assessed by

flow cytometry.
PBMC MAIT cell activation assays

HFs were infected with HCMV for 48 hours. Partially fixed E.coli

(1000 CFU/HF) was added to the infected HFs overnight. HFs were

washed extensively in PBS to remove E.coli and if applicable LEAF-

purified anti-MR1 neutralising antibody (clone 26.5, BioLegend) or

appropriate isotype control was added for 1 hour in folate free RPMI

1640 supplemented with human serum and penicillin streptomycin.

PBMCs resuscitated the day before were added at a PBMC : HF ratio

of 2:1 in folate free RMPI 1640 supplemented with human serum and

penicillin streptomycin. After 5 hours of coculture PBMCs were

stained for analysis by flow cytometry.
CRISPR/Cas-9

Genome editing using CRISPR/Cas-9 was performed with the

dual-vector lentivirus GeCKO system as described previously (58).

Briefly, Cas-9 expressing lentivirus was harvested from the

supernatant (filtered, 0.45 mm pore size) of HEK293T cells

transfected with the packaging plasmid pCMV8.91, expression

plasmid lentiCas-9-Blast and envelope plasmid pMD2G; 50%

confluent hTERT-HFs, chosen for their longevity, were transduced

with this lentivirus in the presence of 5 mg/mL polybrene. Successfully

transduced hTERTs were selected with 5mg/mL blasticidin. Next these

Cas-9 hTERT HFs were transduced with a lentivirus expressing guide

RNA (gRNA) specific for the desired target gene, in this case MR1. To

generate a gRNA specific for MR1 the following pair of DNA

oligomers were annealed and ligated into the lentiguide-Puro

expression plasmid following Esp3I (BsmBI) digestion: 5’-

CACCGGGATGGGATCCGAAACGCCC - 3 ’ a n d 5 ’ -

AAACGGGCGTTTCGGATCCCATCCC -3’. The resulting gRNA

(in bold) was designed to target MR1 (59). This expression plasmid

was transfected into HEK293T cells with the same packaging and

envelope plasmids as the Cas-9 expressing lentivirus (pCMV8.91 and

pMD2G, respectively). The filtered (0.45 mm pore size) supernatant of

these cells and applied to 50% confluent Cas-9 hTERT HFs in the

presence of 5 mg/mL polybrene. Cells successfully transduced with the

gRNA lentivirus were then selected for with 1 mg/mL puromycin. In

order to create clones, selected cells were seeded into 96 well plates at

the approximate concentration of 0.5 cells/well, minimizing the

chance of two cells ending up in the same well. Plates were

monitored for growth over a 3-week period.
Immunoblotting

Cell lysates from MR1 overexpressing cells were harvested in cell

lysis buffer (50 mM NaCl, 50 mM TRIS pH8, 1% IGEPAL, 1% Triton

X-100) as described previously (49). Lysates were resolved by precast

polyacrylamide gels (Biorad) before immunoblotting onto PVDF
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membranes. Membranes were probed with the designated primary

antibodies in 3% BSA in PBST, followed by incubation with an

appropriate horseradish peroxidase (HRP)-conjugated secondary

antibody (all Santa Cruz Biotechnology). The following primary

antibodies were utilized: anti-MR1 and anti-HLA-A, B, C (Abcam),

anti-GFP, anti-V5 and anti-GAPDH (all Santa Cruz Biotechnology).
Flow cytometry

Cells collected for analysis by flow cytometry were washed with

PBS and stained for viability with Zombie NIR fixable dye

(BioLegend). Surface staining followed with cells resuspended in

FACS buffer (PBS supplemented with 1% FCS and 10 mM EDTA)

and relevant antibodies added for 30 min at 4°C. Cells were acquired

on a BD LSR II cytometer (BD Biosciences, USA). Single stained

UltraComp eBeads™ were washed in FACS buffer and fixed in the

same way as surface stained cells, were used as compensation controls.

FCS files were exported and analysed in FlowJo Software (BD

Biosciences, USA).

The following antibodies were used to assess activation by flow

cytometry: MR1 (clone 26.5, conjugated to PE, BioLegend), MHC I

(clone G46-2.6, conjugated to APC, BD Biosciences), MICA (clone

159227, conjugated to APC, R&D Systems), CD3 (clone SK7,

conjugated to BUV395, BD), CD161 (clone HP-3G10, conjugated

to PE/Dazzle™ 594, BioLegend), TCR Va7.2 (clone 3C10, conjugated
to PE/Cyanine7, BioLegend), CD8 (clone SK1, conjugated to

AlexaFluor® 700), CD69 (clone FN50, conjugated to BV421).

Matched isotype control antibodies were used where appropriate.

Statistical analysis was performed in GraphPad Prism; when using the

two-way ANOVA with multiple comparisions, Sidak’s correction was
Frontiers in Immunology 04
employed when the variance of both data sets needed to be taken into

account e.g. neutralizing antibody and isotype control or knockout

and parental cells. Tukey’s correction was used when comparisions

were made within one set e.g. mock vs. mock + E.coli vs. HCMV vs.

HCMV + E. coli within the neutralizing antibody treated cells only.
Results

HCMV infection downregulates both cell
surface and total MR1 protein expression

To determine any impact on cell surface and total MR1 during

HCMV infection, we utilized a BAC derived virus based on the low

passage Merlin HCMV strain engineered to express GFP driven by an

internal ribosome entry site (IRES) downstream of the HCMV IE2

(Merlin-GFP) (10). GFP expression from this virus allows for

differentiation between infected and bystander cells. This concept

was of particular interest when examining regulation of MR1 during

HCMV infection because the closely related molecule MHC I is

downregulated on HCMV antigen positive cells but upregulated on

bystander cells that do not stain for HCMV antigens (60, 61).

Flow cytometry gates were established to separate GFP- bystander

cells from GFP+ infected cells in cultures exposed to Merlin-GFP

(Figures 1A, B). HFs were then assayed by flow cytometry for surface

MR1 at 24 hpi and 48 hpi timepoints with cells treated with the MR1

ligand Ac-6-FP for the last 18h of the assay. Ac-6-FP binds MR1 in

the ER, triggering a conformational change that facilitates association

with b2m and trafficking to the cell surface (62). This analysis

demonstrated that cell surface MR1 was significantly suppressed on

the GFP+ infected cells at both 24 hpi and 48 hpi (Figure 1C). Levels
A B

DC

FIGURE 1

Downregulation of cell surface MR1 by HCMV. Primary HFS were infected with GFP expressing HCMV strain Merlin-GFP at an MOI of 3. 18 h prior to
harvesting cells were treated with Ac-6-FP (2.5mM). At (A) 24 hpi and (B) 48 h.p.i. the expression of GFP and levels of cell surface MRI were assessed by
flow cytometry. Using GFP expression as a measure of HCMV infection, the HFs were classified as GFP+ infected cells (C) or GFP- uninfected bystander
cells (D). Expression of cell surface MRI was analysed in each of these subsets. n = 3, error bars represent SEM, Students’ paired two-tailed t-test, p-
value* <0.05, **<0.01, p ***<0.001.
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of surface MR1 on the GFP- bystander cells were unchanged at 24 hpi

but significantly elevated by 48 hpi (Figure 1D). The marked

reduction of surface MR1 on HCMV infected cells suggests that,

like MHC I, viral gene product(s) interfere with ligand-bound MR1

trafficking and/or stability, or targets it for degradation. The

enhancement of MR1 surface expression on GFP- bystander cells at

48 hpi indicates that soluble factor(s) or defective virus particles that

can bind to but not productively infect cells may mediate such

an effect.

To determine if HCMV downregulated total cellular MR1 protein

levels, HFs engineered to overexpress MR1 (49) were mock infected

or infected with RCMV111 (Merlin) or lab-adapted HCMV strain

AD169-UK. Cells were left untreated or treated with Ac-6-FP (5 mM)

before immunoblotting for MR1 and GAPDH. Infection with either

the Merlin or AD169 strains led to a potent reduction of total MR1

levels (Figure 2), consistent with the inhibition of cell surface levels as

described here and previously (49). These data demonstrate a

function conserved across HCMV strains downregulates MR1

expression levels and also show that the impact of HCMV infection

on total MR1 expression is independent of MR1 ligand availability.
The HCMV US9 gene product plays a role in
suppressing cell surface MR1

To identify potential HCMV proteins regulating MR1 protein

expression, interacting proteins were investigated using a co-

immunoprecipitation and mass spectrometry-based approach (63).

HF cells expressing MR1-GFP or control GFP were infected with

HCMV for 48 h, before proteins were immuno-affinity isolated using

the GFP tag, and interacting partners identified. A subset of HCMV

proteins were specifically enriched within MR1-GFP isolations, with a

top ranked HCMV candidate protein being gpUS9. This HCMV

protein is a member of the US6 gene family. Members of this family

are known to bind and regulate expression of other MHC and MHC-

like molecules, with US9 itself recently identified to target surface

expression of a specific allele of the NKG2D activating ligand MICA

(MICA*008) (48, 64). For these reasons, we focused on the role of

US9 in the context of potential modulation of MR1.
Frontiers in Immunology 05
The ability of US9 to regulate MR1 surface expression was assayed

using a replication deficient adenovirus (RAd) expressing US9. HFs

transduced with RAd US9 or control Rad were treated with Ac-6-FP

then stained for surface MR1 or MHC I (Figure 3A). There was a

limited but consistent reduction in MR1 surface levels but not MHC I

in cells expressing US9. This effect of gpUS9 on MR1 surface

expression was recapitulated in HeLa cells which are homozygous

for the MICA*008 allele where gpUS9 expression could also limit

MICA surface expression as previously described (48), confirming

functional expression of US9 (Figure 3B).

To determine if the capacity to target MR1 was a common feature

of US6 family members, the ability of gpUS7 to regulate MR1 was also

assayed. Initially we confirmed expression of gpUS9 and gpUS7 from

the RAds by immunoblotting (Figure 3C) before testing their effect in

MR1 overexpressing cells (ARPE-19 MR1). These cells express MR1

and GFP from the same expression cassette via an internal ribosomal

entry site (IRES) upstream of the GFP open reading frame (49). MR1

surface expression was also significantly reduced in ARPE-19 MR1

cells by gpUS9, however the related protein gpUS7 was not capable of

modulating MR1 surface expression (Figures 3D, E). Levels of MR1

expression were also reduced in gpUS9 expressing cells as measured

by immunoblotting, mirroring the effect on cell surface expression,

with MHC I and GFP levels unchanged with gpUS9 expression

(Figure 3F). gpUS9 expression also significantly reduced MR1

surface levels in MR1-GFP fusion protein expressing cells with GFP

fluorescence (a readout of total MR1 levels in this setting) also

reduced (Supplementary Figure 1) consistent with MR1

immunoblotting detailed in Figure 3F.

To test the ability of gpUS9 to regulate MR1 in the context of

HCMV infection we assayed a US9 deletion mutant, based on the

Merlin strain. However loss of US9 expression failed to rescue MR1

expression (Figure 3G), suggesting that additional functions reside in

the HCMV genome to potentially target MR1. This is unsurprising

given that HCMV often encodes multiple gene functions to target the

same pathway e.g. the downregulation of MHC I on infected cells can

be attributed to the actions of multiple HCMV genes that either target

it for degradation (e.g. US2, US11 (65–67)), interfere with peptide

loading (e.g. US6 (68–70)) or disrupt trafficking from the ER to cell

surface (e.g. US3 (66)) (reviewed in (71)). Indeed, although US9 is

capable of reducing MICA*008 surface expression in isolation, a

HCMV deletion mutant lacking US9 is still capable of reducing

MICA*008 surface levels (48) consistent with the recent definition

of pUL147A as an additional HCMV encoded immunevasin targeting

MICA*008 (47).
Productive HCMV infection inhibits
expression of cell surface MR1 in the
presence of E.coli derived MAIT cell
activating MR1 ligand

While the synthetic ligand Ac-6-FP is useful to study the

modulation of surface MR1 by HCMV infection because it stably

upregulates MR1 (31, 72–74), it does not activate MAIT cells (39,

74). To assess the functional consequences of ligand bound MR1

regulation by HCMV infection the source of MR1 ligand was

changed to partially fixed E.coli (a known driver of MAIT cell
FIGURE 2

Downregulation of total cellular MR1 protein by multiple strains of
HCMV. HFF-MR1 cells were mock infected, or infected with the HCMV
Merlin or AD169 strains for 48 h before immunoblotting for MRI and
GAPDH. The ligand Ac-6-FP (5 µM) was added at 16 h prior to
harvesting for cell lysates for the indicated samples.
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activation), described previously (75). Primary HFs were infected

with Merlin or AD169 strains at an MOI of 10 and harvested for

analysis of surface MR1 expression by flow cytometry at 24 hpi

and 48 hpi with the partially fixed E.coli added for the last 18

hours of the assay. Cells were also treated with UV-irradiated
Frontiers in Immunology 06
HCMV. UV irradiation damages viral DNA, generating virus

particles capable of binding and entry but unable to initiate de

novo gene expression or replicate allowing determination of the

requirement for de novo viral gene expression in the regulation

of MR1.
A

B

D

E

F G

C

FIGURE 3

HCMV gpUS9 regulates MRI expression. (A) HFS or (B) HeLa cells were infected at an MOI of 100 with RAD US9 or RAd Ctl, with 5 Ac-6-FP (Ac) added 16
h prior to harvesting before staining for surface MRI, MHC I, MICA or isotype control at 48 h p.i. (C) Lysates harvested from Rad US9 or Rad US7 infected
cells were immunoblotted with anti-V5 Ab (D) ARPE-19 MR1 cells were transduced with Rad US9 or Rad US7 as indicated, treated with 5 µM Ac-6-FP 16
h prior to harvesting, before staining for surface MRI or MHC I Rad Ctl (blue) or RADUS9/US7 (red) or isotype staining (grey) are indicated. (E) The fold
change in MRI, MHC I and GFP MFI +/- SEM compared to RAD Ctl are graphed (n = 3). **p<0.01. (F) Lysates harvested from ARPE-19 MRI cells
transduced with RAd Ctl or RAD US9 were immunoblotted for MR1, GFP, MHC I and GAPDH. (G) HFS were infected with HCMV or HCMV AUS9 at an
MOI of 10, treated with 5 µM Ac-6-FP 16 h prior to harvesting before staining for surface MRI, MHC I at 48 h.p.i., infected cells gated on MHC low cells.
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Treatment of HFs with E. coli for 18 hours resulted in

upregulation of surface MR1 as expected (Figure 4A) (75). This

expression of surface MR1 in response to E.coli was significantly

inhibited in primary HFs infected with either Merlin or AD169

strains (Figure 4B). Interestingly, MR1 surface expression was

enhanced on cells treated with UV-Merlin or UV-AD169 compared

to mock treated cells (Figure 4B) consistent with the upregulation of

MR1 seen in bystander cells (Figure 1). This demonstration of MR1

downregulation during productive HCMV in the presence of a

biologically relevant source of MR1 ligand suggests that HCMV-

mediated MR1 downregulation may have functional consequences for

microbe driven MAIT cell activation.
HCMV infection inhibits MAIT TCR activation

To determine whether a functional consequence of HCMV

mediated suppression of MR1 was impaired activation of the MAIT

TCR, HFs were mock infected or infected with HCMV Merlin or

AD169 for 48 hours. These cells were then exposed to partially fixed

E.coli for 4 hours, and then cocultured with Jurkat.MAIT cells. These

cells are immortalized Jurkat T cells, which naturally lack the ab TCR,
that have been transduced to express a MAIT TCR (18, 39, 53).

Jurkat.MAIT cells have been used previously to assess MR1-

dependent activation (18, 39, 49, 53). The activation profile of

Jurkat.MAIT cells was then determined by flow cytometry using the

activation marker CD69.

As determined by CD69 cell surface expression, exposure of

Jurkat.MAIT cells to E. coli treated HFs resulted in significant

activation (Figures 5A, B). However, when the HFs were infected
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with HCMV Merlin or AD169 strains prior to treatment with E.coli,

they were significantly less able to activate Jurkat.MAIT cells than

their mock infected, E. coli treated counterparts (Figures 5A, B). These

data indicate that E. coli driven activation of Jurkat.MAIT cells is

significantly reduced by both Merlin and AD169 strains of HCMV.
HCMV infection inhibits MR1-dependent
activation of primary human blood-derived
MAIT cells

To extend analyses of HCMV-mediated MR1 downregulation to

primary cell activation, the ability of HCMV infection to impair

activation of primary human PBMC-derived MAIT cells was assessed.

HFs were mock infected or infected with HCMV (Merlin) for 48

hours before being exposed to partially fixed E. coli for 18 hours and

then cocultured with PBMC for 5 hours. MAIT cells were identified

by flow cytometry as being positive for cell-surface CD3, CD8, CD161

and the invariant TCR chain Va7.2 (15, 76, 77), and their activation

state was determined by co-staining for CD69. Figure 6A depicts this

experimental approach. As MAIT cells can also be activated by

multiple viral infections in an MR1-independent manner

(predominantly by IL12 and IL18) (37, 78, 79), MR1 neutralising

antibody or its isotype control were included in this assay to

determine the degree of MR1-dependence.

When using median fluorescence intensity (MFI) to measure the

degree of MAIT cell activation, there was no significant difference in

the MAIT activating capacity of mock infected or HCMV infected

primary HFs in the absence of E. coli (Figure 6B). However, E.coli

treated, mock infected cells significantly activated primary MAIT cells
A

B

FIGURE 4

HCMV infection significantly inhibits E. coli-induced MR1 upregulation while UV-HCMV enhances it. (A) Primary HFs were treated with 1000 CFU/cell of
partially fixed E. coli or left untreated for 18 h before being stained for analysis of cell surface MRI by flow cytometry. (B) Primary HFS were infected with
HCMV (either Merlin or AD169) or treated with UV-HCMV (either Merlin or AD169) at an MOI of 10. 30 h.p.i cells were treated with 1000 CFU/cell of
partially fixed E. coli then 18 later stained for analysis of cell surface MRI by flow cytometry. Infected cells are gated for as MHC I low. Statistical
significance was determined by two-way ANOVA, n = 3 error bars represent SEM, p-value* <0.05, **< 0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1107497
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ashley et al. 10.3389/fimmu.2023.1107497
A

B

FIGURE 5

HCMV inhibits E.coli-induced Jurkat.MAIT cell activation. (A) Primary HFs were mock infected or infected with HCMV strain MERI111 or HCMV strain
AD169 at an MOI of 10. 48 h.p.i. cells were treated with 1000 CFU/cell of partially fixed E.coli. After 4 h the ligand source was washed off. After 1 h
Jurkat.MAIT cells were added to the HFS in folate-free RPMI medium at a ratio of 2:1. Cells were cocultured overnight before the Jurkat.MAIT cells were
harvested for analysis by flow cytometry with their activation assessed by surface CD69 expression. Error bars represent SEM, n = 3, *p<0.05, two-way
ANOVA, Dunnett's multiple comparisons to mock + E.coli. (B) Representative dot plots showing % Jurkat.MAIT CD69+. **<0.01, p ****<0.0001
A

B

DC

FIGURE 6

HCMV infection inhibits E. coli-induced MRI-dependent primary MAIT cell activation. (A) Primary HFS were infected with HCMV strain Merlin at an MOI of
20, and treated with partially fixed E. coli before the addition of MRI neutralising antibody and coculture with whole PBMCs in folate free RPMI medium
as depicted (A). Mock infected HFS were subjected to the same treatment and mock or infected HFS that had not been treated with partially fixed E. coli
were analysed in parallel. Levels of surface CD69 on CD3+CD8+CD161+Va7.2 MAIT cells were assessed by flow cytometry using MFI (B) and % CD69+
(C), representative dot plots shown in (D). Two-way ANOVA, n 3, error bars represent SEM. Sidak's multiple comparisons for MRI neutralising antibody vs.
isotype, Tukey's multiple comparisons for mock vs HCMV vs mock + E. coli vs. HCMV + E. coli * p<0.05, ** p<0.01, ***p<0.001.
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and this activation was inhibited by MR1 neutralizing antibody

(Figure 6B). HCMV infection also inhibited E.coli driven MAIT cell

activation consistent with efficient targeting of MR1 surface

expression by viral infection (Figure 6B). When % CD69+ was used

to assess MAIT cell activation all significance was lost (Figures 6C, D),

suggesting that in this assay set up both HCMV infection and the

MR1 neutralizing antibody were affecting the degree of activation

more significantly than the proportion of activated MAIT cells.

Together, these results demonstrate impairment of bacterial-driven,

MR1-dependent MAIT cell activation by HCMV infection.
Inhibition of primary MAIT cell activation by
HCMV infection is comparable to knockout
of MR1 expression

To further examine the ability of HCMV to inhibit MR1-

dependent MAIT cell activation, MR1 knockout fibroblasts were

engineered using CRISPR/Cas-9 technology. The dual-vector

lentivirus GeCKO system (58) was used to transduce human

telomerase immortalized (hTERT) HFs first to express Cas-9 and
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then with a MR1 specific gRNA. A MR1 knockout Cas-9 hTERT HF

clone was identified by screening for surface MR1 expression

following treatment with MR1 ligand Ac-6-FP and loss of ability to

activate Jurkat.MAIT cells following treatment with 5-OP-RU

(Supplementary Figure 2).

The primary MAIT cell activation assay was then performed in

parental Cas-9 hTERT HFs in parallel with MR1 knockout cells (MR1

KO hTERT HFs) as illustrated in Figure 7A. Flow cytometry

assessment of surface CD69 revealed no significant difference in the

MAIT activating capacity of mock infected or HCMV infected

parental or MR1 KO cells HFs in the absence of E. coli (Figure 7B)

consistent with the requirement of MR1 ligand to drive activation.

However, E.coli treated, MR1-expressing parental cells, activated

primary MAIT cells and this activation was significantly reduced in

MR1 KO cells (Figure 7B). HCMV infection of parental cells also

inhibited E.coli driven MAIT cell activation in parental cells

(Figure 7B) consistent with efficient targeting of MR1 surface

expression by viral infection. When % CD69+ was used to examine

at the proportion of activated MAIT cells in this assay, the significant

relationships observed with CD69 MFI were preserved (Figures 7C,

D), suggesting that the MR1 neutralizing antibody used in Figure 6
A

B

DC

FIGURE 7

The inhibition of primary MAIT cell activation during HCMV infection is comparable to that achieved by MRI knockout using CRISPR/Cas-9. (A) Parental
Cas-9 hTERT HFS and a successful MR1 knockout clone 2 were infected with HCMV strain MER1111 at a MOI of 20. At 48 h.p.i cells were treated with
partially fixed E. coli overnight. Cells were washed to remove the E. coli and whole PBMCs were added for 5 h in folate free RPMI medium. In parallel,
cells were mock infected and/or not treated with E. coli. Levels of surface CD69 on CD3+CD8+CD161+Va7.2 MAIT cells were assessed by flow
cytometry using MFI (B) and % CD69+ (C), representative dot plots shown in (D). n = 4. error bars represent SEM, two-way ANOVA, Sidak's multiple
comparisons for MRI KO vs. parental hTERT HFS. Tukey's multiple comparisons for mock vs HCMV vs mock + E. coli vs. HCMV + E. coli ** p<0.01,
***p<0.001.
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was insufficient to prevent MR1-dependent MAIT cell activation for

the entire 5 h coculture. Together, these results confirm impairment

of bacterial-driven, MR1-dependent MAIT cell activation by HCMV

infection. Thus, HCMV infection suppresses MR1-dependent

activation of primary MAIT cells.
Discussion

This study builds upon our previous reports identifying that

suppression of MR1 by viral infection is a feature of herpesvirus

infection (49, 50). Here we define the regulation of MR1 expression

by multiple HCMV strains. HCMV infection was capable of efficiently

suppressing MR1 surface expression driven by either synthetic MR1

ligand or provided by treatment with bacteria having an intact vitamin

B2 biosynthesis pathway. We identified a specific HCMV-encoded

glycoprotein, gpUS9, that was capable of targeting the surface

expression of MR1 and decreasing total MR1 protein. However, the

generation and use of a US9 deletion mutant suggested that there are

multiple MR1 targeting functions encoded by the virus, as this mutant

virus still efficiently suppressed MR1 surface expression. The functional

outcome of this MR1 regulation was tested using Jurkat.MAIT cells as

well as primary PBMC derived MAIT cells. Using both MR1

neutralizing antibody and cells engineered to knockout MR1

expression we confirmed that HCMV could efficiently inhibit MAIT

TCR dependent activation in an MR1-dependent fashion.

gpUS9 is a glycoprotein that is a member of the US6 gene family of

HCMV. A number of functional activities have been previously ascribed

to gpUS9 including regulation of type I interferon responses by targeting

MAVS and STING (80), regulation of cell to cell spread in epithelial cells

(81, 82) and most relevant to this study, targeting of a specific allele of

the MHC-like protein, MICA*008 (48, 64). Here we used a recombinant

adenovirus vector to demonstrate that gpUS9 was capable of inhibiting

MR1 but not MHC I surface expression. We also confirmed the

targeting of MICA*008 by gpUS9. gpUS9 expression in isolation lead

to a specific reduction in total MR1, using both untagged and GFP

tagged MR1 mirroring the reduction in MR1 levels demonstrated

following HCMV infection. A HCMV US9 deletion mutant based on

the Merlin strain was generated however this virus was still capable of

efficiently inhibiting MR1 expression. This is unsurprising given that

HCMV encodes a number of functional proteins to target the same

pathway e.g. MICA (44, 45, 47, 48), MHC I (71), FcgR activation (83).

We predict that HCMV encodes additional gene product(s) to target

MR1 that will be a focus of future studies.

gpUS9 targets MICA*008 for proteasomal degradation with the

N-terminal signal peptide recently implicated as playing a key role in

the specific targeting of MICA*008 (48, 64). Although we identified a

reduction in total MR1 protein levels with gpUS9 expression the

specific pathway leading to such regulation was not studied.

Additional studies will focus on how gpUS9 regulates MR1 levels as

well as identifying the importance of individual domains of the

protein in controlling MR1 expression.

The best characterized role of MAIT cells to date in responding to

viral infection is through virus induced, cytokine mediated activation

of MAIT cells, independent of the MR1:TCR axis (24, 78, 79). Here we
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have described the specific targeting of MR1 by HCMV. Therefore, in

the absence of any known virally expressed/induced MR1 ligand, we

tested the capacity of HCMV to regulate bacteria-driven MR1-

dependent MAIT cell activation. Using partially fixed E. coli as an

activating stimulus, HCMV was capable of efficiently inhibiting

MAIT cell activation using both primary MAIT cells and reporter

Jurkat.MAIT cells. To confirm that such regulation was dependent on

MR1, two approaches were tested, namely genetic ablation of MR1 by

CRISPR/Cas-9 technology as well as MR1 neutralization by specific

antibodies. Both approaches identified that HCMV suppression of

MAIT TCR dependent activation was MR1 dependent.

In the context of allogeneic hematopoietic stem cell transplantation

(HSCT), whereHCMV reactivation from latency is a frequent and often

life-threatening complication in HSCT recipients, increased HCMV

replication has been linked to development of acute and chronic graft

vs. host disease (GVHD) (84, 85), and poor MAIT cell reconstitution in

HSCT transplant recipients has been linked to the development of acute

and severeGVHD(86–88). Thesefindings suggest that there could be an

association between HCMV reactivation post-HSCT and poor MAIT

cell reconstitution. Indeed, we have reported that MAIT cell levels at the

initial detection of HCMV reactivation in HSCT recipients are

significantly lower in patients who subsequently go on to develop

high-level reactivation requiring antiviral intervention, compared to

those who go on to develop low-level, self-limiting reactivation (89).

Additionally, HCMV infection in HSCT patients can be correlated with

increased incidenceofbacterial and fungal infections (90, 91),whichmay

indicate suppressionofMAITcell function.While there is stillmore tobe

done in the context of natural HCMV infection and MAIT cells, these

observations raise the possibility that HCMV may impact on, or be

impacted by, the MAIT cell response during clinically significant

infection and/or co-infection.
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