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A B S T R A C T   

This paper presents a novel parallel optimization method for obtaining blended layups of composite laminates 
which closely match target lamination parameters. Firstly, a guide-based adaptive genetic algorithm (GAGA) 
which stochastically searches the layups is developed. Then the parallel optimization method DLBB-GAGA is 
developed by combining GAGA and a dummy layerwise branch and bound method (DLBB) which performs a 
logic-based search in a parallel computation, during which optimization information is shared between the two 
methods. The combination of these two different methods gives the parallel DLBB-GAGA method the advantages 
of both, enhancing the searching ability for the blended layup optimization. The superiority of the parallel DLBB- 
GAGA method is demonstrated through comparisons between the three methods, and it is concluded that the 
method is particularly effective for practical design where more layup design constraints are considered.   

1. Introduction 

Because of their excellent mechanical performance, laminated 
composite structures are increasingly being adopted in various fields of 
engineering such as aerospace, marine, automotive and civil. In prac-
tical design, the ply orientations are usually limited to a set of predefined 
values (e.g. 0◦, 90◦, + 45◦ and − 45◦), leading to discrete optimization 
problems. 

In large scale built-up structures, in order to avoid stress concen-
trations, continuity between stacking sequences in adjacent component 
panels should be ensured, commonly referred to as the blending problem 
[1]. By utilizing genetic algorithms (GAs), Liu and Haftka [2] conducted 
a mass minimisation optimization subject to blending constraints which 
was implemented by measuring the continuities of layups between 
adjacent laminates using mathematical expressions. These measure-
ments were treated as general design constraints which were easy to 
impose on the design variables. The disadvantage of this method, 
however, was that it could lead to highly constrained problems if the 
number of design variables was large. Therefore, several blending 
optimization methods which are able to output blended layups without 
adding extra constraints have been developed, including methods based 
on a stochastic search such as the sublaminate-based method [3], guide- 
based method [4–6], stacking sequence table method (SST) [7,8], shared 

layer blending method (SLB) [9,10], global shear-layer blending method 
(GSLB) [11,12], shared-layer and mutation method (SLM) [13], ply drop 
sequence method (PDS) [14], and a method based on GAs with the use of 
a ply-composition and a ply-ranking chromosome for each individual. 
[15]. Although GAs have become the most popular technique for this 
discrete layup optimization problem, the disadvantages of conducting a 
random search and the fact that the predetermined parameters have 
significant influence on optimization performance cannot be ignored. 
Several alternative methods have therefore been developed, such as the 
constraint satisfaction programming method (CSP) [16,17] based on a 
branch and bound tree, the mixed integer linear programming (MILP) 
method [18], the multi-scale two-level optimization strategy (MS2LOS) 
[19–21], and topology inspired methods such as the discrete material 
and thickness optimization method (DMTO) [22,23]. A detailed review 
of the methods discussed above can be found in [24]. 

In order to reduce the large number of design variables in layup 
optimization, lamination parameters [9,10,24–28] and polar parame-
ters [29,30] can be used as design variables in the optimization process. 
The stiffness matrix can be expressed as a linear function of the lami-
nation parameters instead of the conventional set of equations with 
large numbers of ply angles. The use of lamination parameters usually 
divides the optimization into two stages where the continuous optimi-
zation of the lamination parameters and laminate thicknesses is 
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implemented in the first stage and the discrete optimization of layups to 
match the lamination parameters found follows in the second stage. 

As the performance of GAs is mainly dependent on the predefined 
parameters, efforts have been made to develop adaptive GAs (AGAs) to 
improve the efficiency of the optimization process. Srinivas and Patnaik 
[31] first introduced an AGA which uses variable probabilities of 
crossover and mutation according to the performance of each individ-
ual. In the work of Hwang et al. [32], an AGA was utilized for stacking 
sequence optimization to maximise the natural frequencies of composite 
laminates. An et al. [33] employed AGAs for the weight optimization of 
composite laminates under strength and buckling constraints, in their 
later work [13] an AGA was applied for blending optimization. As 
parallel computation techniques become more accessible to researchers, 
parallel computation methods have also been applied to layup optimi-
zation to achieve high efficiencies. Punch et al. [34] conducted an 
optimization using a coarse-grain parallel GA, in which the population 
was partitioned into several small subpopulations. The optimization was 
then speeded up by solving small problems, and information was 
exchanged between these subpopulations, decreasing the probability of 
premature convergence. In the work of Henderson [35], a master–slave 
parallel GA was used for layup optimization in which the time- 
consuming fitness evaluations were parallelized while the selection, 
crossover and mutation operations were implemented in the main pro-
cessor for the whole population. Rocha et al. [36] developed a hybrid 
parallel GA for the optimization of composite laminates. The population 
was divided into several small subpopulations each of which was 
assigned different genetic parameters using a coarse-grain parallel GA. A 
master–slave parallel process was then implemented so that the fitness 
evaluations of each subpopulation were parallelized to further improve 
efficiency. 

For composite laminates with ply drop-offs, the use of parallel 
computation methods becomes more necessary. In the work of Adam 
et al.[4], blended composite laminates were optimized using parallel 
GAs, with each component panel simultaneously optimized on a 
different processor. The best individuals from each component panel 
were exchanged between adjacent populations with local individuals 
close to the migrants rewarded by giving them higher fitness values, 
increasing the similarities between adjacent panels. However, fully 
blended stacking sequences cannot be ensured using this method. In 
their later work [5], instead of implementing concurrent panel optimi-
zations, a guide-based method using master–slave parallel GAs was 
developed for blending optimization, with fitness evaluations distrib-
uted to different processors to reduce solution time. This parallelization 
process is particularly beneficial when the fitness values are obtained 
based on finite element analysis (FEA). In the blending optimizations in 
[6,37–39], master–slave parallel GAs were utilized to reduce the large 
amount of computational time incurred by using FEA during the fitness 
evaluation process. However, whilst parallelization of GAs, splitting one 
large, time-consuming problem into several small parallel ones can 
significantly reduce processing time, the inherent drawback of GAs in 
random searching cannot be overcome. 

In the authors’ previous work [40], a two-stage layup optimization 
method based on lamination parameters was developed. In the first 
stage, the highly efficient software VICONOPT [41,42] based on exact 
strip analysis and the Wittrick-Williams algorithm [43,44] was used to 
optimize the lamination parameters and laminate thicknesses with a 
logic-based layerwise branch and bound method (LBB) employed in the 
second stage to optimize the layup based on these optimized lamination 
parameters. This two-stage method was then extended to blending 
optimization [24], where the lamination parameters and laminate 
thicknesses of component panels were optimized using the multilevel 
optimization framework VICONOPT MLO [45,46] in the first stage, and 
blended stacking sequences were then obtained based on a logical search 
using the dummy layerwise branch and bound method (DLBB) in the 
second stage. 

The present work focuses on the second stage of this optimization, 

developing a guide-based adaptive GA (GAGA) which stochastically 
searches the stacking sequences and then incorporates this into a novel 
parallel computation method DLBB-GAGA by combining it with the 
DLBB method. Unlike the parallel methods discussed above, the DLBB- 
GAGA method combines two types of searches. During the parallel 
process, GAGA performs a stochastic-based search to optimize the 
blended stacking sequences, whilst, a logic-based method is performed 
simultaneously using DLBB. The combination of these two methods 
gives the parallel method the advantages of both, whilst overcoming the 
disadvantages of each. Besides, in order to reduce the effect of the 
predetermined parameters of the GAs on the optimization performance, 
adaptive probabilities of crossover, mutation and permutation are 
implemented. The adaptive procedure proposed in this study is further 
improved by assigning poor individuals higher probabilities of being 
selected as cross points and mutating to the outer plies. The superior 
performance of this parallel method is demonstrated through compari-
sons between these three methods. Section 2 of this paper introduces the 
lamination parameters. Section 3 describes the process of the two-stage 
optimization and the newly proposed methods. Numerical results with 
comparisons between the methods are presented in Section 4. Section 5 
provides a brief conclusion. 

2. Lamination parameters 

The stress-strain relationships in classical laminate theory [47] are 
presented as: 
[

N
M

]

=

[
A B
B D

][
ε0

κ

]

(1) 

where N and M are vectors of in-plane forces and moments per unit 
width,A,B and D are the membrane, coupling and bending stiffness 
matrices, ε0 is a vector of in-plane strains and κ is a vector of the mid 
plane curvatures. 

The coupling matrix B is null for symmetric laminates, and hence 
will be ignored in this paper. The stiffness matrices Aand D can be 
expressed in terms of material stiffness invariants U, the thickness of the 
laminate h and 8 lamination parameters ξk

j (j = 1,2,3,4; k = A, D) [48] as: 
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The material stiffness invariants U and stiffness properties Q are 
presented as follows: 
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Where E11 is the longitudinal Young’s modulus, E22 is the transverse 
Young’s modulus, G12 is the shear modulus, υ12 is the major Poisson’s 
ratio. 

The lamination parameters are obtained by the following integrals: 
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Where θ represents the ply angle at depth z below the mid-surface. 
ξA,D

4 are zero when the ply angle is limited to 0◦, 90◦, +45◦ and − 45◦, 
and ξA

3 is zero for a balanced laminate. 

3. Optimization procedure 

Based on the use of lamination parameters, the optimization process 
is divided into two stages. The aim is to minimize the weight of a 
blended composite laminate subject to buckling, blending, lamination 
parameter, and layup design constraints. The lamination parameters and 
laminate thicknesses of each of the component panels are used as design 
variables to minimize the weight of the structure in the first stage. Then 
in the second stage, ply orientations, which are restricted to 0◦, 90◦, 
+45◦ and − 45◦ are used to build the actual blended stacking sequences, 
based on the layup design constraints to match the optimized lamination 
parameters obtained in the first stage. 

3.1. First stage optimization 

For the first stage optimization, the multilevel optimization frame-
work VICONOPT MLO [24,45,46] is used to conduct mass minimization. 
During the iterative optimization process, FEA is utilized for the static 
analysis of the whole structure to obtain the load distributions at the 
start of each design cycle, using stiffness matrices generated based on 
lamination parameters and laminate thicknesses. The exact strip 

software VICONOPT is then employed to optimize the lamination pa-
rameters and laminate thicknesses of each component panel based on 
the results from the FEA (stress distribution, geometry, etc), following 
which the FEA model is updated according to the optimized structural 
configurations and a new static analysis is implemented to obtain the 
new load distributions. This process is repeated until convergence 
criteria on the total mass, individual mass and stress distributions of 
each panel are reached. Details of this optimization process can be found 
in [24]. 

3.2. Second stage optimization 

3.2.1. DLBB method 
After the optimized lamination parameters are obtained, they are 

used as targets in the second stage optimization. For the optimization of 
a single laminate, in the authors’ previous work [36] a logic-based LBB 
method combining a global layerwise technique with the branch and 
bound method was developed to search stacking sequences to find the 
one which has lamination parameters closest to the target values subject 
to layup design constraints (i.e. symmetry, balance, contiguity, disori-
entation, minimum percentage, and damage tolerance constraints). In 
order to obtain the layups for large composite structures with ply drop- 
offs, the DLBB method which incorporates a dummy layerwise technique 
with the branch and bound method is developed [20]. This DLBB 
method performs a logical search rather than a stochastic search con-
ducted by a heuristic algorithm. The objective function Γ is obtained by 
calculating the absolute difference between the target and actual lami-
nation parameters. The dummy layers embedded in the layerwise 
technique do not contribute to the stiffness but are used to impose the 
blending constraint. An illustrative example is given in [20] . 

3.2.2. Guide-based adaptive GA 
Several guide-based methods have been developed and widely used 

for blending optimization [5,6,14,37,49,50]. The blending procedure in 
this method is proposed based on the concept of the PDS method [14]. In 
the GAGA method, each individual comprises two chromosomes with 
the guide layup which represents the ply angles 0◦, 90◦, +45◦ and − 45◦

with 1, 2, 3, and 4, respectively stored in the first chromosome. The 
second chromosome stores the positions for the plies in the guide layup 
in a random order. In the optimization, the guide is used as the layup for 
the thickest panel, and the layups of the thinner ones are obtained by 
deleting plies from the guide according to the position values from top to 

Fig. 1. An illustration example for the implementation of blending constraint in GAGA.  
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bottom stored in the second chromosome. 
In this paper, a repair procedure is developed for implementing the 

balance constraint. First, the method used to implement the balance 
constraint proposed in [40] is utilized to repair the guide layup. Then, 
the second chromosome is repaired using the following procedure: the 
position values of each − 45◦ are placed just behind a + 45◦ ply so that 
the position values of the + 45◦ and − 45◦ plies appear as a set in the 
second chromosome. During the blending process, if the position value 
selected for deleting a ply for the generation of a thinner panel is related 

to a + 45◦ ply, the next position value related to a 0◦ or 90◦ ply below 
this set is moved so that it is above it, ensuing the number of deleted +
45◦ and − 45◦ plies are same. For the case where a thicker panel with an 
odd number of layers is adjacent to a thinner panel with an even number 
of layers, the middle layer in the thicker panel should be deleted to 
satisfy the blending constraint. Hence, the position value of the middle 
layer in the second chromosome is moved to the top, leading to the 
middle layer being deleted first. 

Fig. 1 shows the GAGA optimization process with an illustrative 
example, where S denotes a symmetric layup (with a single middle ply if 
there are an odd number of plies). For each component panel, the left 
hand side column stores the guide layup and the deleted plies are 
crossed out, the right hand column gives a random sequence based on 
which plies are to be deleted, and the plies above the red line have been 
deleted. The blue box in the right hand column shows a set of + 45◦ and 
− 45◦ plies which must be retained or deleted together to satisfy the 
balance constraint. In this example, the number of layers for each panel 
are 16, 9, 8, and 4 respectively, the guide layup is 0/90/− 45/90/0/45/ 
0/90, and the order of the position values is (5 2 6 3 8 7 1 4). The guide 
layup is used for the thickest panel. For the second thickest panel, the 
fifth, second and sixth plies in the guide layup are deleted based on the 
position values in the second chromosome. If the balance constraint is 
considered, the position value 8 will be inserted above the set of 6 and 3, 
so the eighth ply will be deleted instead of the sixth ply, ensuring the 
second panel is balanced. In addition, it should be noted that as the 
second thickest panel has an odd number of plies, there is just one 0◦ ply 
in the middle. When obtaining the layup for the third panel therefore, 
the position value 7 will be moved to the top of the second chromosome, 
and the middle layer of the second panel will be dropped off. Finally, the 
layup of the fourth panel is obtained by deleting a set of + 45◦ and − 45◦

plies. 
The GAGA optimization process is shown in the flow chart in Fig. 2. 

As can be seen, the first chromosomes are optimized using two-point 
crossover and mutation operators, and for the second chromosomes a 
permutation operator is implemented. The roulette wheel method is 
utilized in the selection procedure and the elitism operator which keeps 
the best individuals directly for the next generation is utilized in the 
optimization process as well. The fitness function in GAGA is repre-
sented as: 

f =

[
∑n

k=1
Γpanel k

]− 1

(7)  

Γpanel k =
∑3

i=1

∑

j=A,D
wj

⃒
⃒
⃒ξj

i(k)(actual) − ξj
i(k)(target)

⃒
⃒
⃒+α+ β+ δ+ ε (8) 

where n is the number of panels in the structure, ξA,D
1,2,3(k)(target) are the 

target lamination parameters for panel k, and ξA,D
1,2,3(k)(actual) are the actual 

lamination parameters of the chosen layup of panel k, wA,D are the 
weighting factors, and α, β, δ, and ε are penalty terms for the layup 
design constraints. 

The performance of standard GAs mainly depends on the predefined 
crossover and mutation parameters. For stacking sequence optimization, 
a high probability of crossover Pc with a small probability of mutation 
Pm is normally used, because frequent crossovers guarantee a random 
search toward a local or global optimum and mutations are required to 
prevent the results getting stuck in local optima. Nevertheless, the 
values of Pc and Pm in standard GAs are left for the user to determine 
based on empirical experience. In this paper, the values of Pc, Pm as well 
as the probability of permutation Pp are varied adaptively for each in-
dividual and different layers are given different probabilities of being 
selected as cross points and mutating during the GAGA operations based 
on their fitness values. The adaptive parameters are obtained by the 
following equations: 

Fig. 2. The flow chart of the GAGA optimization process.  
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where Pcmax, Pmmax and Ppmax are the maximum values of Pc, Pm and Pp, 
respectively; Pcmin, Pmmin and Ppmin are the minimum values of Pc, Pm and 
Pp, respectively; f is the fitness value of each individual, f ′ is the larger of 
the fitness values of the two individuals to be crossed; fmax and fave are the 
maximum and average fitness values in the population, respectively; 
Pcp(i) are the probabilities of each gene being selected as a cross point; 
ne is the number of genes in the chromosome; d is the difference between 
the values of Pcp(i) for adjacent genes; fm(j) is the mutation factor giving 
different genes different values of Pm; Zu and Zl are the upper and lower 
limits of fm(j); i and j take values from 1 to ne to calculate Pcp(i) and fm(j)

from the outermost genes which represent the outermost layers to the 
innermost ones. In this paper, the parameters discussed above are set 
with Pcmax = 0.8, Pcmin = 0.3, Pmmax = 0.2, Pmmin = 0.05, Ppmax = 0.8,
Ppmin = 0.5, d = 0.0002, Zu = 1.1, Zl = 0.9, and the population size is 
200. 

By using equations (9), (11) and (13), Pc, Pm and Pp increase when all 
the individuals converge to one layup to prevent premature conver-
gence, and the individuals who have fitness values lower than the 
average value of the population are implemented with the highest Pc, Pm 
and Pp to provide sufficient ability to remove poor results, with Pc, Pm 

and Pp decreasing as individuals’ fitness values increase to avoid 

disrupting the convergence of good results. 
In a standard two-point crossover operation, two genes in each 

parents’ chromosomes are randomly selected as cross points, and the 
genes between these two cross points are swapped between parents to 
create a new generation. All the genes in the chromosome have the same 
probability Pcp of being selected as cross points. For individuals whose 
fitness values are lower than average, higher values of Pcp are given to 
the outer layers which have greater contributions to ξD

1,2,3 using equation 
(10). Based on equation (12), values of Pm are also increased for layers 
from the innermost to the outermost in these poor individuals. There-
fore, for layups which have a poor match with the target lamination 
parameters, the outer layers are implemented with a higher probability 
of being selected as cross points and mutating, providing more potential 
for the improvement of the blending optimization. 

3.2.3. Parallel DLBB-GAGA method 
As the DLBB method is a logic-based search method which progres-

sively optimizes blended layups from the outer plies to the inner ones, 
good results can be obtained quickly by solving small problems with 
small decision trees in the first few cycle loops. However, when the case 
loop consists of large numbers of plies in later cycle loops, it takes a long 
time to complete the optimization during which only parts of the lam-
inates are being optimized, limiting the rate of decrease in the value of 
objective function Γ. As for the stochastic search method GAGA, blended 
layups at each generation are obtained by randomly deleting plies from 
the guide layup. Instead of logically implementing the layup design 
constraints as in the DLBB optimization, GAGA imposes the layup design 
constraints for each panel using penalty functions, making blended 
structures with large numbers of component panels easily penalized. In 
order to combine the advantages of both methods and overcome the 
disadvantages of each, a parallel DLBB-GAGA method, which conducts 
the two different methods in parallel computation is developed. 

MATLAB is employed for this parallel optimization. The single pro-
gram multiple data (SPMD) structure in MATLAB makes executing 
different codes on different cores simultaneously possible, and infor-
mation can be shared between parallel cores by sending and receiving 
messages using message passing interface (MPI) based functions such as 
LabSend and LabReceive. 

As can be seen from Fig. 3, the parallel DLBB-GAGA method simul-
taneously conducts the logic-based DLBB search and the heuristic-based 
GAGA search on two cores to solve the same blending optimization 

Fig. 3. Parallel optimization process of the DLBB-GAGA method.  
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problem. Once a new result is obtained by the DLBB search, it is then 
sent to the GAGA search. If the value of Γ of the received result is smaller 
than that of the current best result in GAGA, the received result is 
accepted. After that, the two chromosomes used in GAGA are created 
based on the received blended layup, and the worst individual in the 
population is replaced with the received result. GAGA then continues 
optimizing the blended layup with the updated population. Similarly, 
when GAGA obtains a new result, the Γ and the layup are sent to DLBB. 
Once the received result is accepted by DLBB, the dummy layerwise 
table is updated corresponding to the received blended layup. In addi-
tion, if the result from GAGA is received before a case loop, the current 
Γ, blended layup and dummy layerwise table are replaced with the new 
result, based on which the optimization of the following case loop is 
carried on. However, if the result is received during a case loop where 
the layers to be optimized have been decided in the decision tree, only 
the Γ is updated and used as a new upper bound during the branch and 
bound optimization of the current case loop, meaning more branches 
can be pruned without being explored. The blended layup and dummy 
layerwise table are replaced with the received result at the end of this 
case loop, if DLBB has not obtained a better result by itself during the 
loop. 

The benefits of conducting the parallel method are that, at any time 

both methods are optimizing the blended layups based on the current 
best result, improving the optimization efficiency. The results received 
from DLBB bring more diversity to the population of GAGA, speeding up 
the process of removing local optima result especially when layup design 
constraints are considered. The disadvantage of the DLBB method in 
requiring a long time to complete large case loops in later cycles during 
which only some of the plies in the laminate are allowed to be optimized 
is also overcome by the parallel process, as any ply in the structure can 
be optimized by GAGA during that time. 

4. Results and discussion 

The methods presented herein are proposed for optimizing blended 
layups to match target lamination parameters as closely as possible. The 
target lamination parameters provided in [24] are used as targets in this 
paper to make comparisons between the DLBB method, GAGA and the 
parallel DLBB-GAGA method. The details of the benchmark wing box 
used in [24] are shown in Fig. 4, as can be seen each panel has three L- 
shaped stringers reinforcing longitudinal stiffness. The five separate 
blending problems in [24] are used herein, including the skins of all of 
the top panels, the webs of the left hand side panels (i.e. panels 1, 3 and 
5) and the right hand side panels (i.e. panels 2, 4 and 6) respectively, and 

Fig. 4. Details of the wing box structure (dimensions in mm).  
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the flanges of the left and right hand panels respectively. There are two 
sets of results. In the first set, the blended laminates are only required to 
be symmetric. In the second, the balance constraint as well as the four 
layup design constraints are imposed to ensure a more practical design. 
Since GAGA is a stochastic search method, GAGA and the parallel DLBB- 
GAGA method are run 10 times for each example to guarantee the 
reliability of the comparison. The same starting layups however are used 
in all three methods to enable a fair comparison. 

4.1. Symmetric case 

In the first set of results, the five blending problems in [24] are only 
restricted to symmetric designs. A comparison between the DLBB 
method, GAGA and the parallel DLBB-GAGA method for the blended 
skins is shown in Fig. 5 (a). It can be seen that GAGA finds better results 

earlier than the other two methods in the early stages. However, after 
roughly 10 s the differences among the three methods become relatively 
small and then the parallel method takes the lead until the end. GAGA is 
more efficient than the DLBB method most of the time, but the final 
result obtained by the DLBB method is better than that of GAGA. The 
parallel method achieves the same result as the final result of GAGA after 
approximately 100 s, and the final result of the parallel method is 
slightly better than that of the DLBB method, demonstrating its perfor-
mance in searching blended layups. Note that the parallel method takes 
longer to obtain its first result because of the overhead of the parallel 
process. Fig. 5 (b) shows a comparison between DLBB, a GAGA run and a 
DLBB-GAGA run, the blue circles and green triangles represent the re-
sults obtained by the DLBB method and GAGA, individually. The results 
obtained by the DLBB and GAGA in the parallel method are represented 
by red circles and red triangles, respectively. It can be seen that both 

Fig. 5. Comparisons between the DLBB method, GAGA and the parallel method for blended skins. (a) The results of GAGA and the parallel method are averaged 
values of 10 runs. (b) Examples of a GAGA run and a parallel method run are shown in comparison. 
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methods make significant contributions to the reduction of Γ in the 
parallel optimization and the message passing between the two methods 
leads to obvious mutual promotion throughout the whole period of the 
parallel process, their combination improving the searching capability 
of each on their own. 

For the blended webs and flanges problems which are relatively 
small, the performances of the three methods are again compared. 
Comparisons for the right hand side blended flanges are shown in Fig. 6 
(a), where it is observed that GAGA performs better than the DLBB 
method in the first 20 s, after which the results of the two methods are 
closely aligned until the end. The parallel method finds better results 
more quickly than the other two from a very early stage in this opti-
mization. Fig. 6 (b) shows the comparisons for the blended left flanges, 
and it can be seen that the parallel method not only achieves a higher 
efficiency but also performs better in finding lower values of Γ than each 
of the two component methods. It only takes the parallel method 10 s to 
reach the same value of Γ that is achieved by the other two methods at 
almost 1000 s. As can be seen from Fig. 6 (c), GAGA finds better results 
earlier than the DLBB method in the first 50 s, after which the DLBB 
method obtains better results earlier than GAGA. The parallel method 
performs well during the whole optimization period taking the lead after 
around 90 s. Fig. 6 (d) shows the comparison for the blended left hand 
side webs. It is observed that GAGA performs better than the DLBB 
method in this optimization, and the parallel method surpasses GAGA 
from approximately 200 s. Thus overall, the parallel method performs 
better than the other two methods for the blended layup optimization 
for this set of problems. 

4.2. Constrained case 

In this set of problems, more practical designs are obtained by 
enforcing balanced lay-ups and applying four layup design constraints. 
Fig. 7 (a) presents a comparison between the three different methods for 
the blended skin problem. As can be seen the values of Γ are larger than 
those obtained without imposing the extra layup design constraints 
which narrow the design space. GAGA does not achieve the same final 
value of Γ as the DLBB method and the parallel method, and the dif-
ferences between the solutions obtained by the three methods are 
greater than those obtained without considering these layup constraints. 
The reason for this is that the constraints are easily violated in the sto-
chastic search of the GA process, especially in the case of a blended 
structure with several component panels, and because results violating 
these constraints are penalized in the optimization process, the search 
capability of GAGA is diminished. This is not the case however for the 
parallel method; on the contrary, the superiority of the parallel method 
is more obvious as it leads from the beginning of the optimization with a 
more distinct advantage. It takes the parallel method around 200 s to 
achieve the final value of Γ achieved by GAGA in this example. The 
results support the suggestion that the combination of these two 
methods overcomes the disadvantages of each and even provides further 
improvements, making it more appropriate for blended layup 
optimization. 

The comparisons for the right and left hand side flange problems are 
shown in Fig. 7 (b) and (c), respectively. In contrast to the results ob-
tained without imposing the layup design constraints, the DLBB method 

Fig. 6. Comparisons between the DLBB method, GAGA and the parallel method for (a) blended right hand side flanges, (b) blended left hand side flanges, (c) blended 
right hand side webs, and (d) blended left hand side webs. 
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performs better than GAGA most of the time during the optimizations, 
and obtains lower final values of Γ than GAGA. With the extra layup 
design constraints being added, the lead of the parallel method is again 
more apparent from the start of the optimization. Better still, the parallel 
method achieves lower final values of Γ than the other two methods. For 
the right hand side flanges, it takes the DLBB method and GAGA roughly 
1,000 and 10,000 s, respectively, to reach the same value of Γ achieved 
by the parallel method in 100 s. The comparisons for the right hand side 
web problem are shown in Fig. 7 (d), and it can be seen that after 
roughly 1 s the parallel method starts to find better results more quickly 
than the other two methods, and achieves a lower value of Γ at the end. 
The competition between the DLBB method and GAGA is intense, and in 

the final stage the DLBB method obtains lower values of Γ than GAGA. 
The comparisons for the left hand side webs are shown in Fig. 7 (e). In 
this case the DLBB method performs better than GAGA in the first 10 s, 
after which GAGA gradually surpasses the DLBB method, but the DLBB 
method achieves the same value of Γ as the other two methods at a later 
stage. The parallel method, again, takes a good lead during the opti-
mization, and almost achieves its final value of Γ after just 10 s. 

For these more practical designs with additional constraints imposed 
to ensure manufacturability, the layups obtained at 350 s using the three 
methods with the dropped plies shown in bold are presented in Tables 1- 
9. The layups obtained by the DLBB method, a typical GAGA run and a 
parallel run are listed in Tables 1-3, Tables 4-6 and Tables 7-9, 

Fig. 7. Comparisons between the DLBB method, GAGA and the parallel method for (a) blended skins, (b) blended right hand side flanges, (c) blended left hand side 
flanges, (d) blended right hand side webs, and (e) blended left hand side webs, under symmetry, balance, and four layup design constraints. 
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Table 1 
Stacking sequences of skins obtained by DLBB method.  

Panel 
no. 

Stacking sequences 

5 [45/− 45/0/− 45/(90/452)2/90/− 452/90/45/0/0/− 453/90/− 45/ 
902/45/02/45/90/− 452/(0/45)2/03/45/903/− 45/0/0]MS 

6 [45/− 45/0/− 45/90/45/45/90/45/45/90/− 452/90/45/0/− 45/−
452/90/− 45/902/45/0/0/45/90/− 452/0/45/0/45/03/45/902/90/−
45/0/0]MS 

4 [45/− 45/0/− 45/90/45/902/90/45/0/(− 45/90)2/90/45/0/45/90/−
452/0/45/04/45/902/− 45/0]S 

3 [45/− 45/− 45/90/45/90/90/45/0/− 45/90/− 45/90/45/0/45/90/ 
− 45/− 45/0/45/03/0/45/902/− 45/0]S 

2 [45/− 45/902/− 45/0/− 45/0/45/0/02/45/902]S 

1 [45/− 45/902/− 45/03/45/902]S  

Table 2 
Stacking sequences of left and right hand side flanges obtained by DLBB method.  

Panel 
no. 

Stacking sequences  

left hand side flanges 
5 [45/− 454/90/453/902/− 454/90/454/0/45/90/− 45/− 45/90/− 45/ 

− 45/0/452/02/0/− 45/904/45/03/45/0/0/− 45/04/45/0/0]MS 

3 [45/− 45/− 453/90/453/902/− 45/− 453/90/454/0/45/(90/− 45)2/ 
− 45/0/45/45/02/− 45/904/45/0/03/− 45/04/45/0]S 

1 [45/− 45/903/− 45/0/452/02/− 45/03/− 45/04/45/0]MS  

right hand side flanges 
6 [45/− 454/90/− 452/90/− 45/90/453/90/− 45/− 45/02/45/90/452/ 

45/0/0/45/(90/− 45)2/03/45/903/− 45/03/45/04/45/0/0]MS 

4 [45/− 453/− 45/90/− 45/− 452/90/453/90/− 45/02/45/90/452/0/ 
45/90/− 45/90/− 45/03/45/903/− 45/02/0/45/04/45/0/0]MS 

2 [45/− 452/(− 45/90)2/453/03/− 45/03/45/02]S  

Table 3 
Stacking sequences of left and right hand side webs obtained by DLBB method.  

Panel 
no. 

Stacking sequences  

left hand side webs 
3 [45/(− 45/90)2/45/90/45/903/− 45/03/− 45/0/45/0/02/45/04/−

45/0/0]MS 

1 [45/− 45/90/− 45/90/45/02/0/− 45/0/45/0]MS 

5 [45/− 45/90/− 45/02/45]S  

right hand side webs 
6 [45/− 45/− 453/903/454/90/− 45/− 452/02/− 45/90/45/903/− 45/ 

02/45/0/45/03/− 45/902/− 45/902/90/45/903/45/0/45/0/03/ 
45/04/− 45/90]MS 

4 [45/− 45/90/903/− 45/02/02/45/03/0/− 45/90/903/45/02]S 

2 [45/− 45/90/− 45/02/45/03/− 45/90/45/0/0]MS  

Table 4 
Stacking sequences of skins obtained by GAGA.  

Panel 
no. 

Stacking sequences 

5 [45/− 453/0/− 45/(90/452)2/45/903/− 45/02/45/902/45/0/− 45/ 
903/− 45/0/45/(0/− 45)2/02/− 45/90/− 45/0/452/0/0]MS 

6 [45/− 453/− 45/90/452/90/45/452/903/− 45/0/0/45/902/45/0/−
45/902/90/− 45/0/45/0/− 45/0/− 45/02/− 45/90/− 45/0/452/0/ 
0]MS 

4 [45/− 452/− 45/90/452/45/903/− 45/0/45/(902/− 45)2/0/45/03/0/ 
− 45/90/− 45/0/452/0]S 

3 [45/− 45/− 45/90/452/90/902/− 45/0/45/902/− 45/902/− 45/0/ 
45/0/02/− 45/90/− 45/0/452/0]S 

2 [45/− 45/902/(− 45/0)2/45/0/− 45/0/45/45/0]S 

1 [45/− 45/902/(− 45/0)2/452/0]S  

Table 5 
Stacking sequences of left and right hand side flanges obtained by GAGA.  

Panel 
no. 

Stacking sequences  

left hand side flanges 
5 [45/− 454/90/− 452/− 45/90/454/90/− 452/90/45/903/− 45/03/(−

45/0)3/0/45/903/45/03/0/45/45/90/45/03/(45/0)2/0]MS 

3 [45/− 452/− 452/90/− 452/90/45/453/90/− 452/90/45/90/902/−
45/03/− 45/0/− 45/0/− 45/0/45/903/45/02/0/45/90/45/ 
0/02/45/0/45/0]S 

1 [45/− 452/90/45/903/(− 45/04)2/45/0/45/0]MS  

right hand side flanges 
6 [45/− 453/90/− 45/− 45/90/− 45/0/(45/90)2/− 453/90/45/90/45/ 

0/− 45/90/452/02/45/0/− 45/90/45/903/45/03/− 45/02/45/ 
03/45/0/0]MS 

4 [45/− 454/90/− 45/0/45/90/45/90/− 453/90/45/90/− 45/90/452/ 
02/45/0/− 45/90/45/903/45/03/− 45/0/0/45/0/02/45/0/0]MS 

2 [45/− 454/90/452/90/45/03/− 45/04/45/0]S  

Table 6 
Stacking sequences of left and right hand side webs obtained by GAGA.  

Panel 
no. 

Stacking sequences  

left hand side webs 
3 [45/− 45/90/45/902/− 45/904/45/0/− 452/03/0/45/0/− 45/0/03/ 

45/0/0]MS 

1 [45/− 45/90/902/− 45/0/03/45/0/0]MS 

5 [45/− 45/90/− 45/0/45/0]S  

right hand side webs 
6 [45/− 45/− 453/90/45/90/− 45/90/45/90/− 45/0/45/90/90/45/ 

45/0/− 45/90/− 45/902/− 45/0/45/0/45/904/45/03/− 45/903/45/ 
02/− 45/0/02/45/90/− 45/03/45/0/0]MS 

4 [45/− 45/90/90/− 45/902/90/45/03/− 45/03/45/90/− 45/03/45/0]S 

2 [45/− 45/90/− 45/03/45/90/− 45/03/45/0]MS  

Table 7 
Stacking sequences of skins obtained by parallel method.  

Panel 
no. 

Stacking sequences 

5 [45/− 453/90/454/90/− 45/0/452/0/45/90/− 453/903/− 45/902/−
45/02/45/0/− 45/03/45/903/45/02/− 45/0/0]MS 

6 [45/− 452/− 45/90/453/45/90/− 45/0/453/90/− 452/− 45/903/−
45/90/90/− 45/02/45/0/− 45/03/45/903/45/02/− 45/0/0]MS 

4 [45/− 45/− 45/90/452/45/(90/− 45)2/− 45/904/− 45/02/45/03/0/ 
45/903/45/02/− 45/0]S 

3 [45/− 45/90/452/90/− 45/90/− 45/− 45/904/− 45/02/45/02/0/45/ 
90/902/45/02/− 45/0]S 

2 [45/− 45/902/− 45/− 45/04/45/90/45/02]S 

1 [45/− 45/902/− 45/04/45/90]S  

Table 8 
Stacking sequences of left and right hand side flanges obtained by parallel 
method.  

Panel 
no. 

Stacking sequences  

left hand side flanges 
5 [45/− 454/90/454/90/− 453/− 45/90/452/45/90/− 452/903/45/0/−

45/02/02/45/903/(45/03)2/− 45/90/− 45/04/45/0/0]MS 

3 [45/− 452/− 452/90/454/90/− 453/90/45/45/90/− 452/903/45/0/−
45/02/45/903/45/0/02/45/03/− 45/90/− 45/03/0/45/0]S 

1 [45/− 452/903/45/0/− 45/03/45/03/− 45/03/45/0]MS  

right hand side flanges 
6 [45/− 454/90/45/90/− 454/90/454/0/− 45/90/45/90/90/− 45/903/ 

45/0/03/− 45/04/(45/04)2/45/90/90]MS 

4 [45/− 453/− 45/90/45/90/− 45/− 453/90/453/45/0/− 45/90/45/ 
90/− 45/903/45/0/− 45/04/45/02/02/45/04/45/90/90]MS 

2 [45/− 453/90/− 45/90/453/02/− 45/04/45/02]S  
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respectively. The buckling performance of the obtained stacking se-
quences are checked using ABAQUS. For the results obtained by the 
DLBB method, the first and second buckling modes are local buckling 
modes with buckling load factors equal to 1.06 and 1.11, respectively, 
with the third buckling mode being a global buckling mode with a 
buckling load factor equal to 1.15. The same buckling modes occur for 
the results obtained using GAGA, with buckling load factors of 1.03, 
1.13, and 1.15, respectively. As expected, the buckling load factors for 
the results obtained by the parallel method are slightly higher at 1.08, 
1.14, and 1.15, respectively. 

These comparisons confirm the advantages of the parallel method in 
optimizing blended stacking sequences, which are more obvious when 
imposing the extra layup design constraints. The combination of the 
logic-based search and stochastic-based searches significantly enhances 
the searching capability over the whole optimization period, resulting in 
the value of Γ decreasing until the end. Note that for practical design, the 
optimization can be terminated as soon as an acceptable result is found 
(e.g. when the value of Γ of each component panel is less than 0.3). 

5. Conclusions 

In this paper, a parallel optimization method which simultaneously 
executes two different methods in a parallel process is developed for the 
problem of finding a blended layup with lamination parameters that are 
as close as possible to the target lamination parameters calculated for 
optimum design. In order to develop the parallel method, a guide-based 
blending optimization method incorporated within an improved adap-
tive genetic algorithm is developed. Different probabilities of crossover, 
mutation and permutation are implemented to different individuals 
according to their fitness. For individuals whose fitness values are lower 
than average, higher probabilities of being selected as cross points and 
mutating are given to the outer plies of the laminate. The resulting 
stochastic search method GAGA is run in parallel with the logic-based 
search method DLBB in the parallel DLBB-GAGA method, combining 
the advantages of both. Comparisons between the DLBB, GAGA and the 
parallel DLBB-GAGA methods show that benefit is gained from 
combining the advantages of the different methods, and the parallel 
DLBB-GAGA method performs with significant superiority in terms of 
both efficiency and ability of achieving closer matches to the target 
lamination parameters, especially when extra layup design constraints 
are imposed in practical design. It should be noted that the parallel 
computation allows several tasks to be executed simultaneously. In this 
paper, only two methods are combined together in a parallel process, 
therefore the advantages of the parallel computation may not be fully 
utilized. Hence, as a line of future research, the adding of new optimi-
zation methods into the parallel method could further improve the 
optimization performance. Adaptive parameters are applied for cross-
over, mutation, and permutation operations in this study. Nevertheless, 
the population size and number of elite in each generation could also 
affect the optimization performance, hence, applying adaptive proced-
ure for them is also suggested for future work. In addition to this, the 

results of this paper are obtained based on the use of four ply angles 
limited to 0◦, 90◦, +45◦ and − 45◦. The performance of the parallel 
method for larger blending problems considering a larger number of 
permissible fibre orientations or panels deserves future study. 
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5 [45/− 452/90/45/02]S  

right hand side webs 
6 [45/− 45/− 45/90/45/90/90/− 452/90/− 452/90/45/453/90/− 452/ 

90/45/0/− 45/03/45/90/902/− 45/04/− 45/904/− 45/90/ 
45/02/02/45/90/45/04/45/0/0]MS 

4 [45/− 45/90/903/− 45/− 45/90/45/02/02/45/90/− 45/04/45/0/0]S 

2 [45/− 45/90/− 45/02/45/90/− 45/04/45/0]MS  
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