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In this paper we study the computational feasibility of an algorithm to
prove orbifold equivalence between potentials describing Landau-Ginzburg
models. Through a comparison with state–of–the–art results of Gröbner basis
computations in cryptology, we infer that the algorithm produces systems of
equations that are beyond the limits of current technical capabilities. As
such the algorithm needs to be augmented by ‘inspired guesswork’, and we
provide two new examples of applying this approach.

1. Introduction

Initially a model to describe superconductivity, Landau-Ginzburg models
were promoted in the late 80s to 2-dimensional (2, 2)-supersymmetric sigma
models completely characterized by a polynomial W called potential [34].
Landau-Ginzburg models gained importance in string theory and algebraic
geometry as they form a family of quantum field theories which are related
under homological mirror symmetry [15, 35]. Furthermore, they are con-
nected to cohomological field theories via [28]. This makes it natural to ask
whether we can define some notion of “equivalence” between different poten-
tials. The notion of orbifold equivalence was inspired by the study of (defects
in) topological quantum field theories (see [6, 11, 16]) and it was first defined
in the context of the study of equivariant and orbifold completions of the bi-
category of Landau-Ginzburg models. Several examples have been explored
in detail in the recent years [9, 25, 26, 29].
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1

http://arxiv.org/abs/1901.09019v2


An extra reason to study orbifold equivalences is that it may be used to
generate examples of the so-called Landau-Ginzburg/conformal field theory
(LG/CFT) correspondence (see e.g. [31] for a review). This physics result
states that the infrared fixed point of a Landau-Ginzburg model with poten-
tial f is a 2-dimentional rational conformal field theory (CFT) with central
charge cf . At the defects level, this predicts some relation between two seem-
ingly different mathematical entities: matrix factorizations (which describe
defects for Landau-Ginzburg models [4]) and representations of the vertex
operator algebra of the CFT (describing defects for the rational CFT). We
lack a precise mathematical statement for this result, yet there are several
promising examples available of this correspondence. In the particular case
of simple singularities, it was proven in [9] that via orbifold equivalence one
finds exactly the predicted equivalences for the N = 2 supersymmetric mini-
mal models. Furthermore, there are physics results suggesting that this might
not be the only case, involving Landau-Ginzburg models with potentials de-
scribing singularities of modality greater than 0 [10, 22, 23]. Hence, finding
further orbifold equivalences is potentially a source of further examples of
equivalences within the LG/CFT correspondence. This would strongly en-
hance our mathematical understanding of this intriguing physics result.

The present paper is concerned with finding orbifold equivalences using
computer search. The current state of the art is the algorithm presented
in [29]. As recorded in Proposition 3.2, this algorithm terminates if and
only if two potentials are orbifold equivalent. In pertinent examples, we
quantify the size of these computations, and compare these sizes to current
bests in solving these systems: the Fukuoka MQ challenge [36]. As such, we
show that experimental infeasability was not an accident that can be solved
by choosing a different implementation (as was speculated in [29]) but that
these computations lie well beyond what current technology enables.
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2. Orbifold equivalence

In this section we introduce the necessary background for defining orbifold
equivalence. For the reader more familiar with higher categories, we refer to
Appendix A for a complete description of orbifold equivalence in the context
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of the bicategory of Landau-Ginzburg models.

Potentials

Definition 2.1. Let k be an algebraically closed field of characteristic zero.
We will consider the category R of polynomial rings in a finite number of
variables over k, each variable endowed with a fixed grading in Q>0.

We write
R =

⊕

q∈Q≥0

Rq

for the equal-grading direct summands of R ∈ R, and we call their elements
quasi-homogeneous. Note that R0 = k.

Definition 2.2. For R = k[x1, · · · , xn] ∈ R and f ∈ R, the Jacobian ideal
If of f is the ideal generated by the partial derivatives of f :

If = (∂x1
f, · · · , ∂xnf)

The Jacobian of f is Jac f = R/If . We call (R, f) a potential if f is quasi-
homogeneous and if Jac f is a non-trivial finite-dimensional k-vector space.
We often write f to represent the pair (R, f), and we may similarly write ‘let
f ∈ R be a potential’. We write P

k

for the set of potentials.

Remark 2.3. The polynomial f is quasi-homogeneous of degree d ∈ Q if
and only if it satisfies:

|x1|

d
x1∂x1

f + · · · +
|xn|

d
xn∂xnf = f

In particular, this implies that f ∈ If . We have an interesting converse in
the case of power series[32]: there is a coordinate transformation making f
quasi-homogeneous if and only if f ∈ If .

For future use, we record the following result.

Lemma 2.4. If f is a potential, then there exists an N such that
(x1, · · · , xq)

N ⊆ If .

Proof. This only uses the facts that If is quasi-homogeneous (i.e. for every
g ∈ If with quasi-homogeneous decomposition g =

∑

ℓ

gℓ, we have gℓ ∈ If for

all ℓ) and that R/If is finite dimensional over k.

Pick a variable xi. We will first prove that xMi

i ∈ If for some Mi. For this,
pick a lexicographical monomial order such that xi is smaller than all other
variables. Under this order, xMi (M ≥ 1) can only be a leading monomial of
a polynomial g if g is a function of only xi and no other variables. Let G be a
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Gröbner basis of If with respect to this monomial order. Because If is quasi-
homogeneous, we may choose G such that every g ∈ G is quasi-homogeneous
as well.

Because R/If is finite-dimensional, for large M , xMi must be reducible by
G. That means G contains a divisor of xMi as a leading monomial, and we
write Mi so that xMi

i is a leading monomial of some g ∈ G. But with the
chosen monomial order g is a function of only xi, and with g being quasi-
homogeneous, we find g = cxMi

i for some c ∈ k∗. Then xMi

i ∈ If .
To see that (x1, · · · , xq)

N ⊆ If , we need to show that monomials of total
degree N are in If for large enough N . But for

N > q
∑

i

Mi

at least one variable xi has, in such a monomial, an exponent greater than
Mi, and so the monomial is a multiple of xMi

i ∈ If . It is therefore an element
of If .

Graded modules

Convention 2.5. While R has a grading with values in Q≥0, graded R-
modules have a Q-grading.

Definition 2.6. For q ∈ Q we define the graded R-module R(n) (n ∈ Q) as
follows. As a non-graded R-module, it is isomorphic to R, and its grading is
given by

R(n)m = Rn+m.

A choice of grading on two R-modules induces a unique grading on the
space of maps between such modules. Let us make this explicit for maps
from R(n) to R(m). As non-graded modules we have

HomR(R(n), R(m)) ∼= HomR(R,R) ∼= R.

Comparing the quasi-homogeneous components of the left hand side and the
right hand side, one readily obtains the following explicit form:

HomR(R(n), R(m))ℓ ∼= Rm−n+ℓ.

Convention 2.7. We use the term quasi-homogeneous map for maps of any
degree, whereas morphism is reserved for quasi-homogeneous maps of degree
zero.

In particular, this convention implies that even though there is an invertible
map between R(n) and R(m) for any n,m, they are isomorphic if and only
if n = m.
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Definition 2.8. A finitely generated, free, graded R-module X is a graded
R-module X that has a decomposition

X ∼= R(n1) ⊕ · · · ⊕R(nℓ)

for some n1 ≥ · · · ≥ nℓ ∈ Q.

The choice of such a decomposition is equivalent to the choice of an R-basis
consisting of quasi-homogeneous elements.

Multi-variate residues We will make use of the multi-variate residue signal
as described by Lipman [20]. It is completely characterized by three simple
facts that we describe in this section. With a view towards our computational
objective, we will prove that this characterization is effective, i.e. it gives an
algorithm for computing it.

These three facts are as follows:

(F1)

res

(

gdx1 ∧ · · · ∧ dxq
f1, · · · , fq

)

= 0 if g ∈ (f1, · · · , fq)

(F2)

res

(

gdx1 ∧ · · · ∧ dxq

xd11 , · · · , x
dq
q

)

=
(

the xd1−1
1 · · · x

dq−1
q -coefficient of g

)

for all d1, · · · , dq ∈ N.

(F3) The transformation rule:

res

(

g det(M)dx1 ∧ · · · ∧ dxq
M(f1, · · · , fq)

)

= res

(

gdx1 ∧ · · · ∧ dxq
f1, · · · , fq

)

for any R-linear transformation M : Rq → Rq.

Remark 2.9. Note that (F3) preserves the applicability of (F1): if g ∈
(f1, · · · , fq), then also g det(M) ∈ (Mf1, · · · ,Mfq). Namely, write f =
(f1, · · · , fq) and suppose g = βf for some R-linear β : Rq → R. Writ-
ing M † for the adjoint of M , we have M †M = det(M) Id, and so we can
write g det(M) = (βM †)(Mf), which expresses g det(M) in the generators
of Mf = (Mf1, · · · ,Mfq).

These facts suffice to compute any residue symbol:

Lemma 2.10. Let R ∈ R and let f1, · · · , fq ∈ I be generators for an ideal
I ⊆ R such that (x1, · · · , xn)N ⊆ I for some N ∈ N. Then there exists a
q × q matrix M with coefficients in R such that for every i,

∑

jMijfj = xdii
for some di ∈ N. Moreover, this matrix can be computed explicitly.
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Proof. The assumption guarantees that for every i, some power xdii is an
element of I, and this power di can be found algorithmically by a Gröbner
basis computation as outlined in the proof of Lemma 2.4. This computation
yields the coefficients Mij for all j. Repeating the computation for all i yields
the matrix M .

Proposition 2.11. For given g ∈ R and I = (f1, · · · , fq) such that R/I is
finite-dimensional, the residue symbol

res

(

gdx1 ∧ · · · ∧ dxq
f1, · · · , fq

)

can be computed algorithmically.

Proof. Write I = (f1, · · · , fq). We first compute a Gröbner basis G of I.
Then, we check whether g ∈ I. If it is, the residue is 0 and we have finished
the computation.

If g 6∈ I, then we compute the matrix M such that M · (f1, · · · , fq) consists
of a vector of monomials (Lemma 2.10). We can then use (F3) to replace g
by g det(M), and (F2) to compute the residue as the appropriate coefficient
of g det(M).

Matrix factorizations

Definition 2.12. A finitely generated, free, graded R-module X is super-
graded if it has a decomposition

X = X+ ⊕X−

into an even and odd part, respectively, both of which are f.g., free, graded
R-modules themselves.

Convention 2.13. There is some risk of confusion from using two gradings:
the Q-grading on R-modules and maps between them is not to be confused
with the supergrading on X+ ⊕X−. These are our conventions:

◦ We use ‘grade’, ‘grading’, and ‘quasi-homogeneous’ exclusively to refer
to the Q-grading. We use ‘even’ and ‘odd’ exclusively to refer to the
supergrading. We use ‘even/odd’ for super-homogeneity.

◦ Just like in the case of the Q-grading (see Convention 2.7), maps may
be even or odd, but morphisms are assumed even.

◦ We use the Koszul sign rule for tensor products of supergraded modules.
In order to highlight its effect on the trace operator, we write str or
supertrace to emphasize this. Explicitly, it is given by

str ei ⊗ ej = (−1)sign(ei) sign(e
j)δji

for a basis {ei}i with dual basis {ei}i.
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Definition 2.14. Let f ∈ R be a potential. A matrix factorization of f is a
finitely generated, graded, supergraded R-module X together with an odd,
homogeneous map dX such that d2X = f · IdX .

Notation 2.15. We will write X to represent the pair (X, dX ) from this
definition.

Orbifold equivalence

Definition 2.16. Let two potentials f ∈ R and g ∈ S be given. Write
T = R ⊗

k

S. Then a matrix factorization of f − g is a matrix factorization
Q over T of the potential

f ⊗ 1 − 1 ⊗ g ∈ T

Note that the existence of Q implies that f and g have the same grad-
ing, since dQ and therefore d2Q are quasi-homogeneous endomorphisms by
assumption, and therefore so is (f − g) · IdQ.

Definition 2.17. Let f ∈ k[x1, · · · , xm], g ∈ k[y1, · · · , yn], and Q a matrix
factorization of f − g. Its quantum dimension with respect to f is

qdimf Q = res

(

str ∂x1
Q · · · ∂xmQ∂y1Q · · · ∂ynQdx1 ∧ · · · ∧ dxm

∂x1
f, · · · , ∂xmf

)

The left and right quantum dimensions are, respectively, the quantum di-
mensions w.r.t. f and w.r.t. g.

Remark 2.18. Since at present we are only interested in the (non)zero-ness
of quantum dimensions, we omit the signs [5, 9].

Definition 2.19. The potentials f and g are orbifold equivalent if there is a
matrix factorization of f−g with nonzero left and right quantum dimensions.

It is not quite trivial to see that this is an equivalence relation; in fact,
even reflexivity already requires a rather complicated matrix factorization
Q. Similarly, transitivity is ‘almost’ easy to obtain, namely through a suit-
ably defined tensor product of bimodules, but this results in a non-finitely
generated module and quite some machinery is needed to reduce it to one.

Here, we will content ourselves with citing the proof, contained at Section
2.1 of [9]:

Theorem 2.20. Orbifold equivalence is an equivalence relation on the set of
potentials P

k

.
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3. Search algorithm

Our task is as follows: given potentials f ∈ R and g ∈ S, find out whether
they are orbifold equivalent. We will present an algorithm that finishes in
finite time if they are. It is not a decision procedure, however: the algorithm
does not terminate if they are not. This section offers an exposition of parts
of [29], tailored towards our use in Section 4.

Let’s first describe an easy instance of the algorithm.

Example 3.1. Out of reflexivity of equivalence relations, it is clear that x3

is orbifold equivalent to y3, but let us analyze this case as an illustration.
One way of finding an orbifold equivalence is splitting the total grading 2
into 4

3 + 2
3 and then writing the most general rank 2 odd matrix with entries

of those gradings respectively:

dQ =

(

0 c1x+ c2y
c3x

2 + c4xy + c5y
2 0

)

with indeterminates c1, · · · , c5 ∈ k. Then the equation

d2Q = (x3 − y3) · IdQ

is equivalent to a set of equations in the variables c1, · · · , c5. In detail, we
find 4 distinct quadratic equations – one for each degree-3 monomial – in 5
variables.

We add to these equations the requirement that the quantum dimensions
do not vanish. Thanks to Proposition 2.11, we can compute e.g. the left
quantum dimension. It is a polynomial qℓ in c1, · · · , c5, namely

qℓ = −
2

3
c2c3 +

1

3
c1c4

Following [29], we encode the non-vanishing by adding a helper variable cℓ
and adding

cℓqℓ − 1 = 0

to our equations. This has at least one solution for cℓ, c1, · · · , c5 if and only
if the original system has at least one solution for which q does not vanish.

Adding two such equations, for left and right quantum dimension respec-
tively, we find 6 equations in 7 variables, and if they admit a solution in k7,
we found a matrix factorization proving orbifold equivalence of x3 and y3.

The existence of such a solution can be established or refuted, thanks to
the weak Nullstellensatz, by checking whether the ideal generated by these
equations is not equal to the trivial ideal (1). Algorithmically, this can be
decided by computing a Gröbner basis.

It is straightforward to generalize this example to a search procedure. For
this, we note the following:
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◦ There are only countably many ranks 2m ∈ 2N for Q;

◦ For every m, we can enumerate the possible gradings (n1, · · · , n2m) of
the free summands in

Q = R(n1) ⊕ · · · ⊕R(n2m)

Through a standard diagonal procedure, we can enumerate the union of all
modules appearing in this way. The gradings n1, · · · , n2m fix the grading of
the entries in dQ through |(dQ)ij| = nj − ni + |dQ|. Then a ‘most general’
version of (dQ)ij for these gradings is given by a polynomial with

dim
k

Tnj−ni+|dQ|

free variables at the (i, j) entry – one free variable for every quasi-homogeneous
monomial of grading nj − nI + |dQ| in T .

Having found this most general form, we compute the coefficient equations
from the matrix equation

d2Q = (f − g) · Id

Suppose they are given by

{si(c1, · · · , cN ) = 0}i∈I

for some finite index set I. We augment this set with the two equations

cℓqℓ(c1, · · · , cN ) − 1 = 0

crqr(c1, . . . , cN ) − 1 = 0

Just like in the example, the weak Nullstellensatz implies that determining
whether these allow a simultaneous solution in kN+2 is a finite computation.

We can summarize the discussion above in the following result:

Proposition 3.2. There is an algorithm that, given two potentials f ∈
k[x1, · · · , xq] and g ∈ k[y1, · · · , yn], terminates if and only if f and g are
orbifold equivalent.

4. Computational feasibility

The algorithm described above consists of a discrete part and a continu-
ous part: The discrete part is concerned with enumerating possible ranks
and gradings, and the continuous part is concerned with solving geometric
equations.

Compared to the way it is described above, it is possible to significantly
optimize the enumeration of possible gradings by taking into account the
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possible factorizations of the monomials appearing in f and g. In fact, it
is necessary to do so to avoid a combinatorial explosion. Details for such a
significant optimization are provided in [29].

In this section we look at the feasibility of the continuous part. It is
well known that Gröbner basis computations have a tendency to blow up;
in fact, doubly-exponential runtime has been proved for pathological cases
[24]. For this reason, algebraic problems such as the present one have at-
tracted the interest of the cryptology community as a potentially quantum-
computer resistent replacement for digital signatures now commonly imple-
mented through a discrete logarithm problem [33, 21].

To quantify computational difficulty and feasibility, this community main-
tains lists of open problems for the public at large to submit solutions. One
of these challenges is the Fukuoka MQ Challenge [36]. One of their published
lists consists of 2N quadratic equations in N variables – much like the ones
we encountered in the previous section – for ever increasing N .

In the remainder of this section, we will compare the difficulty of the
Gröbner basis computation corresponding to known matrix factorizations to
the top contenders in the MQ Challenge as of December 2018. This should
give an indication of the workability of this algorithm in practice.

Remark 4.1. In contrast to our present work, cryptology focuses on finite
fields and the MQ Challenge is no exception. We believe that a compari-
son for feasibility still makes sense, as finite fields often have very efficient
computer implementations. If anything, a problem stated over a field of char-
acteristic zero will be less feasible. If this belief holds true, the MQ Challenge
offers a lower bound for the difficulty of the problem we are trying to tackle.

Another difference is that the MQ Challenge concerns itself with dense
polynomials; i.e. with polynomials where almost all monomials of degree at
most two have a nonzero coefficient. The polynomials that appear for us are
less dense than that. In particular, no linear terms appear. We still believe
that denseness is a reasonable comparison.

For explaining Table 1 let us go over one of its entries in detail. The three-
variable potentials describing the singularities Q10 and E14 are known to be
orbifold equivalent [25]. Explicitly, they are given by fE14

= x4 + y3 + xz2

and fQ10
= u4w + v3 + w2 respectively.

The matrix factorization testifying that is given by

Q = T ⊕ T (
1

4
) ⊕ T (

1

3
) ⊕ T (

7

12
)

⊕T ⊕ T (
1

4
) ⊕ T (

1

3
) ⊕ T (

7

12
)

as a Q-graded module over T = k[x, y, z, u, v, w]. That implies that dQ’s
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entries have gradings given by the following matrix:

1

12

























12 15 16 19
9 12 13 16
8 11 12 15
5 8 9 12

12 15 16 19
9 12 13 16
8 11 12 15
5 8 9 12

























Following the procedure from the last section, this results in the variables
c1, · · · , c106 to describe the most general version of dQ with these gradings.

When taken coefficient-by-coefficient (both of the matrix and of the poly-
nomial entries), the equation

d2Q = (fE14
− fQ10

) · IdQ

gives 470 equations in c1, · · · , c106. Adding the quantum dimension helper
variables and constraints, we are faced with a system of 472 equations in 108
variables.

A significant optimization can be made. Since dQ is odd, it is of the form

dQ =

(

0 d♯Q
d♭Q 0

)

and d2Q = (f − g) IdQ reduces to the two equations

d♯Qd
♭
Q = (fE14

− fQ10
) · IdQ+

d♭Qd
♯
Q = (fE14

− fQ10
) · IdQ−

However, these two equations are equivalent to one another. We may there-
fore consider only the constraints arising from either one of them, and this
cuts the number of independent constraints on c1, · · · , c106 roughly in half.
In the specific case above, we are left with 237 equations in 108 variables.

For comparison, the current top contender in the MQ Challenge solved a
system of 148 equations in 74 variables over the field of 2 elements. This
strongly suggests that the described algorithm would not have been able to
find this orbifold equivalence within reasonable time.

Table 1 lists similar outcomes for different equivalences.
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Equivalence indeterminates equations

fQ10
∼ fE14

108 237
fQ18

∼ fE30
(*) 140 341

fQ12
∼ fE18

(*) 116 263

Table 1: Gröbner basis challenge size for known orbifold equivalences. An asterisk (*)
indicates equivalences first presented in this paper.

5. New examples of orbifold equivalence

Given this rather sobering view on computer explorations, it is useful to
still combine some ‘inspired guessing’ to reduce the amount of equations and
indeterminates with computer solution. Here we present two new examples
of orbifold equivalence obtained in this way.

A way to detect natural candidates for orbifold equivalence is via the fol-
lowing result:

Lemma 5.1. Let f ∈ k [x1, . . . , xn] be a potential with a Q grading assigned
to each variable which we will denote as |xi|. Define the central charge
associated to f to be:

cf =

n
∑

i=1

(1 − |xi|) .

If two potentials f, g are orbifold equivalent potentials, then they have the
same central charge1.

For a proof see [6, Proposition 6.4]. This is a necessary yet not sufficient
condition, but it is still a useful source of potential candidates for orbifold
equivalences. Here we focus on some instances related to the so-called bi-
modal singularities (see e.g. [14]).

In the following we will describe in detail the procedure for the case of the
singularities Q12 and E18, described by the potentials

fQ12
= u5 + v3 + uw2

fE18
= x5z + y3 + z2

(both with central charge cQ12
= 17

15 = cE18
) and include the case of Q18 ∼ E30

in the Appendix B.

◦ First we split the total grading 2 into 3 different pairs of two adequate
summands (consistent with the degree assigned to each of the variables).

1One can relate this to the so-called strange duality of singularities as described by Arnold [1, 2] (see
e.g. [25] for a detailed discussion in the case of unimodal singularities).
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Note that in this case, we have:

|x| =
1

5
,

|y| =
2

3
,

|z| = 1,

|u| =
2

5

|v| =
2

3

|w| =
4

5

Inspired by the charge of the entries at [17], we choose to split 2 in the
following way: 2 = 1 + 1 = 4

3 + 2
3 = 4

5 + 6
5 .

◦ Then we distribute these entries in a 23 = 8 odd matrix (again inspired
by the V0 indecomposable for fQ12

of [17]) as in:

1

15

























15 7 10 12
23 15 18 20
20 12 15 17
18 10 13 15

15 7 10 12
23 15 18 20
20 12 15 17
18 10 13 15

























(1)

◦ Here, notice that:

– The most general polynomial we can generate of charge 2
3 is c1u+

c2v, and of charge 4
3 is c1u

2 + c2uv + c3v
2 (ci ∈ C).

– There cannot be any monomials with associated charge 7
15 , 13

15 , 17
15 ,

23
15 , so these entries in the matrix will be automatically zero.

– Monomials of the required gradings factoring u5 and z2 are u3 and
u2 (each of grading 6

5 and 4
5 ) and z (of grading 1) respectively.

Let us specify the non-zero blocks of the twisted differential as in Equa-
tion 4. We insert these entries in the matrix and adjust ±1 coefficients
so the determinant of the d♯Q is u5+v3−y3−z2(= fQ12

−fE18
−uw2+x5z)

squared:

d♯Q =









z 0 y − v u2

0 z −u3 −v2 − yv − y2

v2 + yv + y2 u2 −z 0
−u3 v − y 0 −z









(with d♭Q =
√

Det[d♯Q](d♯Q)−1).

◦ At this point, we write for each entry in the matrix all possible remaining
monomials making them the most general instance of a polynomial of
each charge we can have. We get 68 variables.
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◦ Then we impose d2Q = (fQ12
− fE18

) · IdQ, and we reduce the number of
variables and equations to be satisfied solving by hand as many linear
equations as possible (66 in total). We are then left with a system of 6
equations in 8 variables.

◦ And last we compute its left and right quantum dimensions. Imposing
them to be non-zero we obtain two more inequations to be satisfied.

Remark 5.2. The reader may notice that this method of reducing the
amount of equations and variables in steps is similar to what was called
“progressive perturbation” in [25, 26], where the shape of our starting ansatz
is again suggested by the indecomposables of the triangulated categories of
matrix factorizations in [17].

In this way we construct a matrix factorization with non-zero quantum
dimensions and so we have proven:

Proposition 5.3. Consider the two potentials

fQ12
= u5 + v3 + uw2

fE18
= x5z + y3 + z2

describing the bimodal singularities Q12 and E18 respectively. They are orb-
ifold equivalent.

For the second new orbifold equivalence we refer for details to the Appendix
B, and here we just state the result.

Proposition 5.4. Consider the two potentials

fQ18
= x8 + y3 + xz2

fE30
= u8w − v3 − w2

describing the bimodal singularities Q18 and E30 respectively. They are orb-
ifold equivalent.

Remark 5.5. In both instances of orbifold equivalence, we observe that the
potentials involved have the following nice property. Let us write fQ18

as

fQ18
=

3
∑

i=1

3
∏

j=1
x
Aij

j with Aij =





8 0 0
0 3 0
1 0 2



 the matrix of coefficients. It

turns out that fE30
=

3
∑

i=1

3
∏

j=1
x
Aji

j , and similarly for fE18
and fQ12

. This is

what is called the ‘Berglund-Hübsch transposed potential’, and we refer to
the literature for further details on this [3, 13, 19].
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A. Categorical origins of orbifold equivalence

The concept of orbifold equivalence was first introduced in the context of
the study of bicategories, and in particular that of Landau-Ginzburg models.
Here, we aim to review the categorical origins of the definition of orbifold
equivalence [6].

First, consider the following categories of matrix factorizations:

mf (S, f): given a potential f ∈ S, objects are matrix factorizations of f as in
Definition 2.14, and given two objects (X, dX ), (Y, dY ) morphisms are
S-linear maps ϕ : X → Y . This category is differential supergraded,
and for such a ϕ there is a differential in the morphism space given by:
δϕ = dY ◦ ϕ− (−1)|ϕ| ϕ ◦ dX , where |ϕ| is the degree of ϕ.

We say that two morphisms ϕ,ψ : M → N are homotopy equivalent if
there exist a morphism θ of degree one such that ϕ − ψ = dN ◦ θ + θ ◦ dM .
Homotopy equivalence is an equivalence relation.

hmf (S, f): objects are those of mf (S, f), and morphisms are those of mf (S, f) that
are even and compatible with the twisted differential (i.e. satisfying that
dY ◦ ϕ = ϕ ◦ dX) modulo homotopy.

hmf (W )ω: idempotent completion of the category hmf (W ). That means, we take
objects isomorphic to direct summands of objects of hmf (W ).

Next, let us define a tensor product of matrix factorizations. Let f1 ∈ S1,
f2 ∈ S2, f3 ∈ S3 be three potentials, X be a matrix factorization of f1 − f2
and Y be a matrix factorization of f2 − f3. The tensor product matrix
factorization X⊗S2

Y is the matrix factorization of f1−f3 with base module
over S1 ⊗

k

S3 and twisted differential dX⊗Y = dX ⊗ IdY + IdX ⊗dY .

Remark A.1. Notice here that for S2 6= k, X ⊗S2
Y is of infinite rank over

S1⊗
k

S3. Yet the resulting matrix factorization is actually isomorphic to one
of finite rank [18].

For the case S1 = S2 = S, note that under this tensor product,

Proposition A.2 ([5, 7]). hmf
(

S⊗2, f ⊗ 1 − 1 ⊗ f
)ω

is a tensor category.

In fact one can prove more general cases than just this one [5] and even
compute dual matrix factorizations as well [5, 8], for which we refer to the
literature. Hence a legitimate question is if this category is in addition piv-
otal. For future convenience, in order to answer this question let us go one
step higher and define the following bicategory that we will denote as LG

k

:

◦ Objects are potentials as in Definition 2.2,

◦ For any two objects (S1, f1), (S2, f2), the morphism category is
hmf (S1 ⊗

k

S2, f1 − f2)
ω.

15



This is indeed a bicategory [7]. Furthermore,

Theorem A.3. LG
k

is a graded pivotal bicategory.

Graded pivotality means that the bicategory is pivotal up to shifts, and one
needs a detailed discussion of how these and adjunction maps are compatible.
For details we refer to the original source [5]. But, notice here that:

Remark A.4. The subbicategory LG′
k

whose objects are potentials with an
even number of variables is pivotal.

Moreover, we have explicit formulas for the adjunctions and more precisely
of the evaluation and coevaluation maps. These were constructed in the one-
variable case in [8] and then for more general cases in [5]. One may combine
these for example to get the explicit expressions of the so-called left and right
quantum dimensions as stated in Definition 2.17.

Using the theory of equivariant and orbifold completion of bicategories [7],
one finds the following result for LG′

k

:

Theorem A.5. Let f1 = f1 (x1, . . . , xm), f2 = f2 (y1, . . . , yn) be two poten-
tials and (M,dM ) ∈ hmf (f2 − f1) with invertible quantum dimension. Then

(M,dM ) :
(

(S1, f1) ,M
† ⊗M

)

⇄ ((S2, f2) , If2⊗1−1⊗f2) : (M,dM )†

(where
(

M,dM
)†

is the right adjoint of
(

M,dM
)

) is an adjoint equivalence
in LG′

k

, and M † ⊗M is a symmetric separable Frobenius algebra object in
hmf (S1 ⊗

k

S1, f1 ⊗ 1 − 1 ⊗ f1)
ω.

Let’s reformulate this theorem as an equivalence relation:

Definition A.6. Let f1 = f1 (x1, . . . , xm), f2 = f2 (y1, . . . , yn) be two poten-
tials and

(

M,dM
)

∈ Ob (hmf (f2 − f1))
ω. Assign to (M,dM ) two elements

in k, the left and right quantum dimensions qdiml (M) qdimr (M) as in Def-
inition 2.17. If there exists such an (M,dM ), then we say that V and W are
orbifold equivalent.

Remark A.7. Notice that this definition is equivalent to Definition 2.19.

Proposition A.8 ([9]). Denote as P
k

the set of potentials with any num-
ber of variables with coefficients in the field k. Orbifold equivalence is an
equivalence relation in P

k

.

Notice here that:

- Following the notation in Definition A.6, if f1 and f2 are orbifold equiv-
alent then clearly m = n mod 2.

- We are considering implicitly a Q-graded setting, and so the quantum
dimensions take values in k. This can be seen from counting degrees in
the formulas of Definition 2.18.
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- Quantum dimensions are independent of the Q-grading of a matrix fac-
torization.

Given two potentials f1, f2 and a matrix factorization X of f1−f2 proving
that f1 and f2 are orbifold quivalent, one finds as a corollary of Theorem A.5
that the following equivalence of categories holds:

Proposition A.9.

hmf (S, f2)
ω ≃ mod

(

X† ⊗X
)

In the Introduction it was mentioned that orbifold equivalence could be
used as a source of equivalences of categories in the context of the Landau-
Ginzburg/conformal field theory correspondence, and Proposition A.9 is the
key to do it. In the case of simple singularities [9], we found equivalences
of categories of matrix factorizations of these potentials and the expected
from CFT categories of modules over separable symmetric Frobenius algebra
objects [27]. For more details we refer to [12, 30]. For the remaining existing
orbifold equivalences we hope to find similar equivalences and their respective
CFT counterpart (hopefully not so distant) in the future [31].
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B. The orbifold equivalence Q18 ∼ E30

As stated in Section 4, here we describe the construction of the matrix fac-
torization proving the orbifold equivalence Q18 ∼ E30. The procedure is
pretty similar to the one we followed for E18 ∼ Q12: in this way, we reduce
once more the computational load of the algorithm basically via ‘inspired
guessing’.

Again, consider the two potentials:

fQ18
= x8 + y3 + xz2

fE30
= u8w − v3 − w2

Then,

◦ First we assign the Q-degree to the variables as:

|x| =
1

4

|y| =
2

3

|z| =
7

8

|u| =
1

8

|v| =
2

3
|w| = 1

Using this we decompose 2 in three different ways as: 2 = 1 + 1 =
4
3 + 2

3 = 9
8 + 7

8 .

◦ We distribute these pairs in a rank 23 odd matrix with charges dis-
tributed as:

1

24

























21 32 24 29
16 27 19 24
24 35 27 32
13 24 16 21

27 32 24 35
16 21 13 24
24 29 21 32
19 24 16 27

























This distribution is inspired from that of the case Q12 ∼ E18 (see Equa-
tion 1).

◦ Then we impose the following:

– With this grading, we cannot generate monomials of degree 13
24 and

29
24 , and these entries will be straightforward zero. For the entries
with degree 19

24 and 35
24 , we set them by hand to be zero as part of

the ‘inspired guess’.

– Similarly to the case of Q12 ∼ E18, the most general polynomial
we can generate of charge 2

3 is c1y + c2v, and of charge 4
3 is c1y

2 +
c2yv + c3v

2 (ci ∈ C).
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– Monomials potentially generating x8, w2 and xz2 could be x4 and
w (both of charge 1) and z and xz (each of charge 7

8 and 9
7 ) respec-

tively.

We insert these entries in the matrix and adjust ±1 coefficients so the
determinant of the d♯Q is v3 +w2 − x8 − y3 − xz2(= fE30

− fQ18
− u8w)

squared:

Following the notation of the previous example, then we take:

d1Q =









z v2 + yv + y2 x4 + w 0
y − v −xz 0 x4 + w
x4 − w 0 −xz −(v2 + yv + y2)

0 x4 − w v − y z









(again with d0Q =
√

Det[d1Q](d1Q)−1).

◦ At this point, we write for each entry in the matrix all possible remaining
monomials making them the most general instance of a polynomial of
each charge we can have. We get 84 variables.

◦ Then we impose d2Q = (fE30
− fQ18

) · IdQ, and we reduce the amount of
variables and equations to be satisfied solving by hand as many linear
equations as possible (77 in total). We are then left with a system of 5
equations in 7 variables.

◦ And last we compute its left and right quantum dimensions. Imposing
them to be non-zero we obtain two more inequalities to be satisfied.

As described in Section 3, a Gröbner basis computation now determines
whether this system admits a solution. The size of the system is now suf-
ficiently small to complete this in reasonable time. This proves Proposition
5.4.
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