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Orbifold autoequivalent exceptional unimodal
singularities
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Abstract. We prove that different expressions of the same exceptional unimodal sin-
gularity are orbifold equivalent in the sense of [CR2, CRCR, RCN]. As in our previous
paper [RCN], the matrix factorizations proving these orbifold equivalences depend again
on certain parameters satisfying some equations whose solutions are permuted by Galois
groups.
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1. Introduction

Thanks to the classification performed by Arnold in the late 60’s, we know that unimodal
singularities fall into 3 families of parabolic singularities, a three-suffix series of hyperbolic
ones, and 14 exceptional cases (more details can be found in e.g. [Ar, AGV]). A way to
describe them is via regular weight systems [Sai], that is, a quadruple of positive integers
(a1, a2, a3; h) with a1, a2, a3 < h (h is called the Coxeter number) satisfying:

– gcd (a1, a2, a3) = 1, and

– there exists a potential (meaning a polynomial W ∈ C [x1, x2, x3] that has an isolated
singularity at the origin) with the degrees of the variables xi being |xi| = 2ai

h
∈ Q≥0,

i ∈ {1, 2, 3} which is invariant under the Euler field E, that is,

E.W =

(

a1

h
x1

∂

∂x1

+
a2

h
x2

∂

∂x2

+
a3

h
x3

∂

∂x3

)

W = W.

We say that a potential is homogeneous of degree d ∈ Q≥0 if in addition it satisfies

W
(

λ|x1|x1, λ|x2|x2, λ|x3|x3

)

= λdW (x1, x2, x3)

for all λ ∈ C×. Requiring the potential W to be invariant under the Euler vector field turns
out to be equivalent to requiring W to be homogeneous of degree 2. This argument goes
as follows: a potential in three variables can only have seven possible shapes, as specified
in [AGV, Chapter 13], for example. Imposing invariance under the Euler field boils down
to some conditions on the powers of the monomials in the potential. With the assignment
of degrees made, one easily finds that these conditions are precisely the same as those we
should impose if we want homogeneity of degree 2.

From now on, when we write ‘potential’ we mean a potential that is homogeneous of
degree 2. Potentials are the central concept of the present paper.

Throughout this paper, we will work over the graded ring S := C [x1, x2, x3] (although
most of the definitions and results can be easily generalized to polynomial rings in n
variables over a field k ⊂ C). We denote the set of all possible potentials with complex
coefficients, and three variables, by PC. To a potential W ∈ PC, we can associate a number
called the central charge, which is defined as:

cW =
3
∑

i=1

(1 − |xi|)
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Type Potential (v1) Potential (v2) Potential (v3) (a1, a2, a3; h)

Q10 x4 + y3 + xz2 – – (9, 8, 6; 24)
Q11 x3y + y3 + xz2 – – (7, 6, 4; 18)
Q12 x3z + y3 + xz2 x5 + y3 + xz2 – (6, 5, 3; 15)
S11 x4 + y2z + xz2 – – (5, 4, 6; 16)
S12 x3y + y2z + xz2 – – (4, 3, 5; 13)
U12 x4 + y3 + z3 x4 + y3 + z2y x4 + y2z + z2y (4, 4, 3; 12)
Z11 x5 + xy3 + z2 – – (8, 6, 15; 30)
Z12 yx4 + xy3 + z2 – – (6, 4, 11; 22)
Z13 x3z + xy3 + z2 x6 + y3x + z2 – (5, 3, 9; 18)
W12 x5 + y2z + z2 x5 + y4 + z2 – (5, 4, 10; 20)
W13 yx4 + y2z + z2 x4y + y4 + z2 – (4, 3, 8; 16)
E12 x7 + y3 + z2 – – (14, 6, 21; 42)
E13 y3 + yx5 + z2 – – (10, 4, 15; 30)
E14 x4z + y3 + z2 x8 + y3 + z2 – (8, 3, 12; 24)

Table 1: Exceptional unimodal singularities with associated potentials and regular weight
systems. We use the labels v1, v2 and v3 to denote the different potentials asso-
ciated to each singularity.

The central charge is related to the Coxeter number by the formula cW = h+2
h

[Mar].1

The potential W associated to a singularity is not necessarily unique. For the case of
exceptional unimodal singularities, one can compute that {E14, Q12, U12, W12, W13, Z13}
have multiple associated potentials, see Table 1.

In previous work ([CRCR]), it was proven that potentials associated to simple singulari-
ties could be related by an equivalence relation which will be defined in the next subsection.
In [RCN], we proved that potentials associated to Q10 and E14 – strangely dual exceptional
unimodal singularities – could be related by this same equivalence relation. In this paper,
we prove that the potentials associated to an exceptional unimodal singularity are equiva-
lent in this sense.

1This formula is a special case of the following formula for potentials in n variables:

cW =
(n − 2) h − 2ǫW

h

where ǫW :=
n
∑

i=1

ai − h is the Gorenstein parameter of W [Sai]. In order to recover the formula of [Mar],

set n = 3 and use the fact that exceptional unimodal singularities have Gorenstein parameter ǫW = −1.
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On matrix factorizations

One can define an equivalence relation between potentials as follows.

Definition 1.1. ◦ Given a potential W ∈ S, a matrix factorization of W consists of a

pair
(

M, dM
)

where

– M is a Z2-graded free module over S;

– dM : M → M is a degree 1 S–linear endomorphism (the twisted differential)
such that:

dM ◦ dM = W.idM .

We may display the Z2-grading explicitly as M = M0 ⊕ M1 and dM =

(

0 dM
1

dM
0 0

)

.

If there is no risk of confusion, we will denote
(

M, dM
)

simply by M .

◦ We call M a graded matrix factorization if, in addition, M0 and M1 are Q-graded,
acting with xi is an endomorphism of degree |xi| with respect to the Q-grading on
M , and the twisted differential has degree 1 with respect to the Q–grading on M2.

We will denote by hmfgr (W ) the idempotent complete full subcategory of graded finite–
rank matrix factorizations: its objects are homotopy equivalent to direct summands of
finite–rank matrix factorizations. The morphisms are homogeneous even (with respect to
the Z2 degree) linear maps up to homotopy with respect to the twisted differential. This
category is monoidal and has duals and adjunctions which can be described in a very
explicit way. This leads to the following result which gives precise formulas for the left and
right quantum dimensions of a matrix factorization.

Proposition 1.2. [CM, CR1] Let V (x1, . . . , xm) and W (y1, . . . , yn) be two potentials and
M a matrix factorization of W − V . Then the left quantum dimension of M is:

qdiml (M) = (−1)(
m+1

2 ) Res





str
(

∂x1
dM . . . ∂xm

dM ∂y1
dM . . . ∂yn

dM
)

dy1 . . . dyn

∂y1
W, . . . , ∂yn

W





and the right quantum dimension is:

qdimr (M) = (−1)(
n+1

2 ) Res





str
(

∂x1
dM . . . ∂xm

dM ∂y1
dM . . . ∂yn

dM
)

dx1 . . . dxm

∂x1
V, . . . , ∂xm

V



 .

Quantum dimensions allow us to define the following equivalence relation:

2Note that these conditions imply that W is homogeneous of degree 2 (as desired).
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Definition and Theorem 1.3. [CR2, CRCR] Let V , W and M be as in the previous
proposition. We say that V and W are orbifold equivalent (V ∼orb W ) if there exists
a finite–rank matrix factorization of V − W for which the left and the right quantum
dimensions are non-zero. Orbifold equivalence is an equivalence relation in PC.

Remark 1.4. [CR2, Proposition 6.4] (or [CRCR, Proposition 1.3]) If two potentials V and
W are orbifold equivalent, then their associated central charges are equal: cV = cW .

Let us give some comments on quantum dimensions and orbifold equivalences [CRCR,
CR2]:

◦ [CRCR, Lemma 2.5] The quantum dimensions of graded matrix factorizations take
values in C. One can see this by counting degrees in the formulas given in Proposition
1.2.

◦ The definitions of the quantum dimensions are also valid for ungraded matrix factor-
izations (in which case they will take values in S instead of in C). Furthermore, the
quantum dimensions are independent of the Q-grading on a graded matrix factoriza-
tion.

◦ So far, the difficulty of establishing an orbifold equivalence lies in constructing the
explicit matrix factorization which proves it.

In [RCN], we proved that the potentials associated to the singularities Q10 and E14 (in
either of its two expressions) are orbifold equivalent. Since orbifold equivalence is an equiv-
alence relation, transitivity implies that the two potentials describing E14 are also orbifold
equivalent. The following question is hence a legitimate one: “are different expressions of
the same (exceptional unimodal) singularity orbifold equivalent to each other?” 3

Potentials associated to the same singularity obviously share the same Coxeter number
and central charge, which is a consequence of orbifold equivalence as noted in Remark 1.4.
Indeed we found the main result of this paper.

Theorem 1.5. We have the following orbifold equivalences between different potentials
associated to the same exceptional unimodal singularities:

Q12(v1) ∼orb Q12(v2)

U12(v1) ∼orbU12(v2) ∼orb U12(v3)

W12(v1) ∼orb W12(v2)

W13(v1) ∼orb W13(v2)

Z13(v1) ∼orb Z13(v2).

3This question was originally posed by W. Ebeling, to whom we express our gratitude for stimulating this
work.
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Some further motivation for this work is as follows. In [RCN, Section 1], we conjectured
that potentials associated to strangely dual singularities (meaning different singularities
that share the same Coxeter number) are orbifold equivalent. As mentioned above, we
proved in [RCN] that E14 and Q10 are indeed orbifold equivalent (independently of the
potential we take to describe E14), while orbifold equivalence for the pairs (S11, W13),
(Q11, Z13) and (Z11, E13) remains to be proven. Some of these singularities have two possi-
ble potentials describing them, and proving that both descriptions are orbifold equivalent
would allow us to use either of these potentials to pursue a proof of this conjecture. This
may ease that task, which is work in progress [RCN2]. In addition, for the interest of the
first author, these equivalences may shed new insights into the Landau-Ginzburg/conformal
field theory correspondence (LG/CFT) [HW, LVW, VW, RC] for CFTs with central charge
bigger than one. It would be interesting to identify what should be the interpretation on
the CFT side of these results and the role of Galois groups in them, à la [Gep]. Due to
computational difficulties, we postpone this analysis to [RCN2].

This paper is organized as follows. In the Section 2, we describe the method obtained
to generate the matrix factorizations proving the orbifold equivalences from Theorem 1.5,
give details for each of them, describe the equations the perturbation coefficients must
satisfy and compute the Galois groups that permute them and any possible constraints
from imposing non-vanishing of the quantum dimensions. For the sake of completeness,
we also include a matrix factorization proving orbifold equivalence between the potentials
describing E14. Due to their size, the explicit descriptions of each matrix factorization are
contained in Appendix A. To finish, we sum up the results and outlook in Section 3.

Acknowledgements

RN wishes to thank Bartosz Naskręcki for a useful Mathematica tutorial. ARC’s work
is supported by the French-German research project SISYPH (programme blanc ANR-
13-IS01-0001-01/02, DFG Program DFG No HE 2287/4-1, SE 1114/5-1). She also would
like to warmly thank Andrew Taggart and Alex Pall for providing the soundtrack which
supported the writing of this paper.

2. The proofs

All of the graded matrix factorizations (with |xi| = 2ai

h
given by the regular weight systems

associated to each singularity) that we use to prove Theorem 1.5 are built in the same way,
which we describe here. We start with a matrix factorization whose underlying module is
M = C [x, y, z, u, v, w]⊕8 and whose twisted differential dM = (dij)i,j∈{1,...,8} is constructed
as follows.

– Take d18 = d27 = d36 = d45 = d54 = d63 = d72 = d81 = 0.
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– Impose

d64 = d53 = −d28 = −d17

d73 = d62 = d48 = d15

d74 = −d52 = −d38 = d16

d82 = d71 = −d46 = −d35

d83 = −d61 = −d47 = d25

d84 = d51 = d37 = d26

4

– All the remaining entries are zero.

With this particular choice, we get a matrix factorization whose twisted differential
squares directly to −d17d35 + d16d25 − d15d26. Hence, we will only need to specify the
entries {d15, d16, d17, d25, d26, d35}, which are listed in detail for each case in Appendix A.

We take the d15, d16, d17, d25, d26 and d35 of the indecomposables V0 in [KST] associated
to each singularity. Then we start perturbing each of these entries à la [RCN, CRCR], in-
troducing in each entry monomials of the same total degree times some complex coefficient.
Adjusting these coefficients so that the total twisted differential squares to the desired po-
tential, we obtain the desired matrix factorization, together with several equations that
these coefficients need to satisfy.

2.1. E14(v1) ∼orb E14(v2)

Here we construct a matrix factorization of u8 + v3 + w2 − x4z − y3 − z2 (i.e. E14 (v2) −
E14 (v1)). A matrix factorization proving orbifold equivalence between these two potentials
is specified in Equation 8 and it depends on the complex parameters:

{a1, a2, a3, a4, b1, b2, b3, c}.

The parameter c must satisfy the following equation:

− 1 − c8

4
= 0 (1)

while the remaining 7 parameters are free.
We obtain the following left and right quantum dimensions:

qdiml (M) = −1
8

(a3 − b3 + 4c)

4These constraints happened to be the same as those required in the matrix factorizations proving orbifold
equivalence in [RCN].
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qdimr (M) = − c7

2

We need to impose on the values of {a3, b3, c} some constraints in order to avoid zero
values of the quantum dimensions. It is clear from Equation 1 that the right quantum
dimension cannot vanish. To ensure non-vanishing of the left quantum dimension, we need
to avoid the solutions of the system of equations formed by a3 − b3 + 4c = 0 and Equation
1.

2.1.1. Galois theory

The equation c8 +4 = 0 factorises as (c4 +2c2 +2)(c4 −2c2 +2) = 0. So we get two families
of solutions for c, one for each irreducible factor. Each family consists of four solutions for
c.

Family 1: c = ±
√

1 ± i
Family 2: c = ±

√
−1 ± i

The field generated over Q by each family of solutions for c is Q(
√

1 + i,
√

2) which has
Galois group D8 (dihedral of order 8) over Q. Family 1 and Family 2 are the two orbits
for the action of the Galois group on the solutions for c.

2.2. Q12(v1) ∼orb Q12(v2)

Here we construct a matrix factorization of u2w + w5 + v3 − y3 − x3z − xz2 (i.e. Q12 (v2) −
Q12 (v1)). A matrix factorization proving orbifold equivalence between these two po-
tentials is the one specified in Equation 9 and it depends on seven complex parameters
{a1, a2, a3, a4, a5, b1, b2} which must satisfy the following six equations:

b2
1 + b1b2 = 0

−1 + (−a2 − a4 + a5) b1b2 − a2b2
2 = 0,

(

a2a3 + a1a4 + a2
2a4 − a2a2

4 − a1a5 + a2a4a5

) (

a1 − a3 − a2a5 + a4a5 − a2
5

)

= 0,

b1 (a2 + a4 − a5)
(

a1 − a3 − a2a5 + a4a5 − a2
5

)

+

b2

[

a2
2 (−a4 − a5) + a1 (a2 − a4 + a5) + a2

(

−2a3 + a2
4 − a2

5

)]

= 0,
(

a1 + a2
2 + a3 − a2

4 + a2a5 + a4a5

)

b1 +
(

a1 + a2
2 − 2a2a4 + 2a2a5

)

b2 = 0

a1a3 + a2
2a3 + 2a1a2a4 + a3

2a4 − 2a2a3a4 − a1a2
4 − 2a2

2a2
4 + a2a3

4 − a1a2a5 + 2a2a3a5+

+a1a4a5 + a2
2a4a5 − a2a2

4a5 + a2
2a2

5 − a2a4a2
5 + a2a3

5 = 0

(2)
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We obtain the following left and right quantum dimensions:

qdiml =
a1

10
(a2 + a4 − a5) (2a3 + 3a5 (a2 − a4 + a5)) b1

+
a1

10

(

3a2
2a5 + a2 (2a3 + a4a5) + (3a4 − 2a5)

(

a3 − a4a5 + a2
5

))

b2

− 1

10
(a3 + a5 (a2 − a4 + a5)) ((a2 + a4 − a5) (2a3 + 3a5 (a2 − a4 + a5)) b1

−a2

30
(a3 + (a4 − a5) (3a2 − 3a4 + 2a5)) b2

)

qdimr = −1

5
(−a4b1 + 5a5b1 + 3a5b2 + a2 (b1 + b2))

No solution of Equations 2 makes the left quantum dimension vanish, but we need to
impose on the values of {a1, a2, a3, a4, a5, b1, b2} some constraints in order to avoid zero
values of the right quantum dimension. The solutions of the Equations 2 with

−a4b1 + 5a5b1 + 3a5b2 + a2 (b1 + b2) = 0

are to be avoided.

2.2.1. Galois theory

Solving the equations using Mathematica shows that a5 can be chosen freely and then the
values for the other parameters lie in the field Q(a5, 5

√
2, ζ5, i) where ζ5 denotes a primitive

5th root of unity. Generically, treating a5 as an indeterminate, we get the Galois group

Gal(Q(a5,
5
√

2, ζ5, i)/Q(a5)) ∼= Gal(Q(
5
√

2, ζ5, i)/Q) ∼= C2 × C5 ⋊ C4

where the action of C4 on C5 is via an isomorphism C4
∼= Aut(C5).

2.3. U12(v2) ∼orb U12(v3)

A matrix factorization of the potential u4+v3+w2v−x4−y2z−yz2 (i.e. U12(v2)−U12(v3))
proving orbifold equivalence is specified in Equation 10, and it depends on 6 complex
parameters {a1, a2, b1, b2, c1, c2}. The variables {a1, a2, b1, b2} have to satisfy the following
equations:

−1 + a2
1b1 − a1b2

1 = 0

2a1b1a2 − b2
1a2 + a2

1b2 − 2a1b1b2 = 0

−1 + b1a2
2 + 2a1a2b2 − 2b1a2b2 − a1b2

2 = 0

a2
2b2 − a2b2

2 = 0

(3)

9



while c1 and c2 can take any value. This matrix factorization has the following quantum
dimensions:

qdimr (M) = − 1

24
(8c1a2 − 4a1b2 + 8c1b2 + 4b1 (a2 − 2c2) + 8a1c2)

qdiml (M) = − 1

12

(

4b2
1 (−b1 + c1) a2 + 2a3

1b2 + a1b1 (2c1 (−a2 + b2)

+b1 (3a2 + b2 − 3c2)) + 4a2
1 (c1b2 + b1 (2a2 + 3b2 − 3c2))

)

In order to avoid vanishing of the quantum dimensions, we have to restrict the values of
{a1, b1, c1, a2, b2, c2} to only consider solutions of Equations 3 with

−8c1a2 − 4a1b2 + 8c1b2 + 4b1 (a2 − 2c2) + 8a1c2 6= 0

and

− 4b2
1 (−b1 + c1) a2 + 2a3

1b2 + a1b1 (2c1 (−a2 + b2)

+b1 (3a2 + b2 − 3c2)) + 4a2
1 (c1b2 + b1 (2a2 + 3b2 − 3c2)) 6= 0.

2.3.1. Galois theory

All solutions for a1, a2, b1, b2 lie in the field Q(i, ζ3, 3
√

2), where ζ3 is a primitive 3rd root
of unity. The Galois group over Q is S3 × C2. There are three families of solutions,
corresponding to a2 = 0, b2 = 0 and a2 = b2, respectively. Each family represents a distinct
orbit for the action of the Galois group on the solutions for a1, a2, b1, b2.

The family with a2 = 0. The equations give b3
1 = 1/2, a1 = 2b1, b2

2 = −b2
1. So b2 = ±ib1.

There are 6 solutions for a1, b1, a2, b2 in this family.

The family with b2 = 0. The equations give a3
1 = −1/2, b1 = 2a1, a2

2 = −a2
1. So

a2 = ±ia1. There are 6 solutions for a1, b1, a2, b2 in this family.

The family with a2 = b2. The equations give a3
1 = −1/2, b1 = −a1, a2

2 = −a2
1. So

a2 = ±ia1. There are 6 solutions for a1, b1, a2, b2 in this family.

2.4. U12(v1) ∼orb U12(v3)

A matrix factorization of u4 + v3 + w3 − x4 − y2z − yz2 (i.e. U12(v1) − U12(v3)) proving
orbifold equivalence is specified in Equation 11 and depends on six complex parameters:

{a1, b1, a2, b2, c1, c2}

10



{a1, b1, a2, b2} must satisfy the equations:

−1 + a2
1b1 − a1b2

1 = 0

2a1b1a2 − b2
1a2 + a2

1b2 − 2a1b1b2 = 0

b1a2
2 + 2a1a2b2 − 2b1a2b2 − a1b2

2 = 0

−1 + a2
2b2 − a2b2

2 = 0

(4)

c1 and c2 remain free. The quantum dimensions of this matrix factorizations are:

qdiml (M) = 1
9

(b1a2 − 2c1a2 − a1b2 + 2c1b2 + 2a1c2 − 2b1c2)

qdimr (M) = 4(a2
1b2(4a2 − 3b2 + 2c2) + a2b1(3a2b1 − 2b1b2 − 2a2c1 + 4b2c1 − 2b1c2) +

a1(−4a2
2b1 + 2b2(b1b2 + b2c1 − 2b1c2) + a2(−4b2c1 + 4b1c2)))

We are only interested in solutions to Equations 4 for which both right and left quantum
dimensions are nonzero.

2.4.1. Galois theory

Solving the equations using Mathematica shows that all solutions for a1, b1, a2, b2 lie in
Q(ζ3) for a primitive 3rd root of unity ζ3. The Galois group of Q(ζ3)/Q is C2, generated
by complex conjugation.

2.5. W12(v1) ∼orb W12(v2)

A matrix factorization of x4 + y5 + z2 − v5 − u2w − w2 (i.e. W12(v2) − W12(v1)) proving
the equivalence is given in Equation 12 and it depends on four complex parameters:

{a1, a2, b1, b2}

The parameters {a1, b1, b2} must satisfy the following equations:

a2
1 − a1b1 = 0

1

4

(

−4 − (2a1 − b1 + b2)2
(

(b1 − b2)2 + 4a1b2

))

= 0
(5)

This matrix factorization has quantum dimensions:

qdimr = −1

4
(2a1 − b1 + b2)

(

b2
1 + 4a1b2 − 2b1b2 + b2

2

)

qdiml =
1

2
(2a1 − b1)

Non-vanishing of the right quantum dimension does not impose any additional con-
straints, since no solution of Equations 5 gives qdimr 6= 0. The solutions of Equations 5
with qdiml = 0 are as follows: a1 = b1 = 0, b2 ∈ {η±1

√
2, η±3

√
2}. These four solutions

must be discarded.
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2.5.1. Galois theory

There are two main families of solutions, as described below.

Family 1: a1 = 0. The second equation of (5) can be written as 4+(b1 − b2)4 = 0. Define
a new variable t = b1 − b2. Note that (1 + i)4 = −4. Therefore, the solutions for t come in
two pairs: 1 ± i and −1 ± i. They lie inside Q(i), which has Galois group C2 over Q.

Family 2: a1 = b1. The second equation of (5) simplifies to 4 + (b1 + b2)4 = 0. Let
u = b1 + b2. By the same argument as above, the solutions for u are 1 ± i, −1 ± i.

So in both families, we can choose b2 freely and then a1, b1 ∈ Q(b2, i). Generically,
treating b2 as an indeterminate, we get the Galois group

Gal(Q(b2, i)/Q(b2)) ∼= Gal(Q(i)/Q) ∼= C2

generated by complex conjugation.

2.6. W13(v1) ∼orb W13(v2)

A matrix factorization of the potential u4+v4u+w2−x4y−y2z−z2 (i.e. W13(v2)-W13(v1))
proving orbifold equivalence is described in Equation 13 and it depends on the complex
parameters

{a1, a2, a3, b, c, d, f, g}
We need to impose the following conditions on the parameters:

−1 − 1

4
(a1 + b − c)2 (3a1 + 4a1a2 − b + 4a2b + c − 4a2c)2 = 0

−1 − (a1 + b − c) d
(

a2
3 − d + 2a3f + f2

)

= 0

(a1 + b − c) (a3 + f)
(

a2
3 − 2d + 2a3f + f2

)

= 0

−2 (a1 + b − c) (a1 + 2a1a2 − b + 2a2b + c − 2a2c) = 0

(6)

The quantum dimensions of this matrix factorization are:

qdiml (M) = −1

8
(a1 + b − c)2

(

a2
1 (4 + 6a2) + (b − c) ((−1 + 4a2) b + 2c − 6a2c)

+a1 (b + 10a2b − 2 (c + 6a2c)))
(

a3
3 + 3a2

3f + f3 − fg − a3

(

d − 3f2 + g
))

qdimr (M) = 1
16

(a1 + 2b − c) (2a3 + f) .

We are only interested in solutions to Equations 6 for which both right and left quantum
dimensions are nonzero.
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2.6.1. Galois theory

The equations above can be further simplified as follows:

−1 + d2 (a1 + b − c) = 0,

a3 + f = 0,

a1 + 2a1a2 − b + 2a2b + c − 2a2c = 0

4 + (a1 + b − c)4 = 0

Then the first equation gives a1 + b − c = d−2 and hence the last equation becomes
4 + d−8 = 0. The third equation becomes d−2(2a2 − 1) + 2a1 = 0 so finally the equations
reduce to

a1 + b − c = d−2,

a3 + f = 0,

d−2(2a2 − 1) + 2a1 = 0

4 + d−8 = 0.

The variables a2, a3, b may be chosen freely. The others are determined by these and by d.
Let t = d−1 so t8+4 = 0. The equation t8+4 = 0 factorises as (t4+2t2+2)(t4−2t2+2) = 0.
So we get two families of solutions, one for each irreducible factor. Each family consists of
four solutions for t.

Family 1: t = ±
√

1 ± i
Family 2: t = ±

√
−1 ± i

The field generated over Q by each family of solutions for t is Q(
√

1 + i,
√

2) which has
Galois group D8 (dihedral of order 8) over Q. Family 1 and Family 2 are the two orbits
for the action of the Galois group on the solutions for t.

2.7. Z13(v1) ∼orb Z13(v2)

A matrix factorization of the potential u6 + v3u + w2 − x3z − z2 − xy3 proving orb-
ifold equivalence is described in Equation 14. It depends on the complex parameters
{a1, a2, a3, b1, b2, c, d, f1, f2}. The parameters {c, d} must satisfy the following equations:

−1 − c6

4
= 0

−1 + cd3 = 0

(7)

The quantum dimensions of this matrix factorization are:

13



qdiml (M) = − c6

12
(2f1 − 3df2)

qdimr (M) = −1
9

(a3 − b1 + 3c) (3d + f2) .

We are only interested in solutions to Equations 7 for which both right and left quantum
dimensions are nonzero.

2.7.1. Galois theory

The equations give d3 = 1/c and c6 = −4. Let t = d−1. Then c = t3 (so c is completely
determined by t) and t18 +4 = 0. Let t0 denote a solution to t18 +4 = 0. Then all solutions
lie in the field Q(t0, ζ9), where ζ9 denotes a primitive 9th root of unity. We have

Gal(Q(t0, ζ9)/Q) = Gal(Q(t0, ζ9)/Q(ζ9)) ⋊ Gal(Q(ζ9)/Q) ∼= C18 ⋊ C6

Here C18 is normal and C6 acts on C18 via an isomorphism C6
∼= Aut(C18). Explicitly,

Gal(Q(t0, ζ9)/Q(ζ9)) is generated by σ, where σ(t0) = ζ18t0 = −ζ9t0 and σ(ζ9) = ζ9. And
Gal(Q(ζ9)/Q) is generated by τ where τ(ζ9) = ζ2

9 and τ(t0) = t0. We have τστ−1 = σ−7.
Note that Aut(C18) = Aut(C2 × C9) = Aut(C2) × Aut(C9) = Aut(C9). Therefore,

C18 ⋊ Aut(C18) = C2 × C9 ⋊ Aut(C9) = C2 × C9 ⋊ C6.

14



# Eqs # Vars # Vars Galois
(in eq) (in MF) group

E14(v1) ∼orb Q10 2 3 3 D8 × C2

E14(v2) ∼orb Q10 4 4 4 V4

E14(v1) ∼orb E14(v2) 1 1 8 D8

Q12(v1) ∼orb Q12(v2) 6 7 7 C2 × C5 ⋊ C4

U12(v1) ∼orb U12(v2) 4 4 6 S3 × C2

U12(v1) ∼orb U12(v3) 4 4 6 C2

W12(v1) ∼orb W12(v2) 2 3 4 C2

W13(v1) ∼orb W13(v2) 4 7 8 D8

Z13(v1) ∼orb Z13(v2) 2 2 9 C2 × C9 ⋊ C6

Table 2: Summary table. The action of C4 on C5 is via an isomorphism C4
∼= Aut(C5).

The action of C6 on C9 is via an isomorphism C6
∼= Aut(C9).

3. Summary

In Table 2, we collect all the orbifold equivalences between potentials associated to ex-
ceptional unimodal singularities we have found to date, along with their respective Galois
groups. We also include the number of equations we have, the number of variables in these
equations, and the number of variables in the whole corresponding matrix factorization.

There are several points to remark here. As in [RCN], we keep observing a recurrent
appearance of C2 in the Galois groups. The Galois groups do not share the same order,
and some are abelian while others are non-abelian. Some of them are repeated for different
singularities, like C2 (for U12 and W12) or D8 (for E14 and W13). We lack a conceptual
explanation for these apparent coincidences. Another limitation is the fact that the Galois
groups do not take into account the extra constraints coming from the non-vanishing of
the quantum dimensions.

Altogether, there are still many open questions concerning orbifold equivalences, and we
hope these intermediate results may be early steps on a path towards a deeper understand-
ing of this intriguing equivalence relation.
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A. Appendix

Due to their size, we include in this appendix the explicit expressions of the matrix factor-
izations proving orbifold equivalence in each of the cases covered.

E14

d15 = z + w + κ2u4 + a1x4 + a2u3x + a3ux3 + a4u2x2,

d16 = v2 + vy + y2,

d17 = x3z +

(

1

2
a2κ1 + b2κ2 − c

(

a2b2 − a4b2c − a2b1c + a3b2c2 + a2b3c2 + a4b1c2

−a2a1c3 − a1b2c3 − a4b3c3
1 − a3b1c3 + a4a1c4 + a3b3c4 + a1b1c4 − a3a1c5

−a1b3c5 + a2
1c6 + a4κ1 − a3cκ1 +

1

2
a1c2 (2κ1 + b1κ2) − b3cκ2

+a1c2κ2

))

u7 +
(

a2 + b2 − c
(

a4 + b1 − a3c − b3c + 2a1c2
))

u3w

+
(

a2b2 − a4b2c − a2b1c + a3b2c2 + a2b3c2 + a4b1c2 − a2a1c3 − a1b2c3

−a4b3c3 − a3b1c3 + a4a1c4 + a3b3c4 + a1b1c4 − a3a1c5 − a1b3c5 + a2
1c6 + a4κ1

−a3cκ1 + a1c2κ1 + b1κ2 − b3cκ2 + a1c2κ2

)

u6x + (a3 + b3 − 2a1c) uwx2

+
(

a4 + b1 − a3c − b3c + 2a1c2
)

u2wx +
(

a3a1 + a1b3 − a2
1c
)

ux6

+ (a4b2 + a2b1 + a3κ1 + b3κ2 − c (a3b2 + a2b3 + a4b1 − a2a1c − a1b2c

− a4b3c − a3b1c + a4a1c2 + a3b3c2 + a1b1c2 − a3a1c3 − a1b3c3 + a2
1c4

+a1κ1 + a1κ2)) u5x2 + (−a2 + b2 − c (−a4 + b1 − (−a3 + b3 − c) c)) u3z

+
(

a3b2 + a2b3 + a4b1 − a2a1c − a1b2c − a4b3c − a3b1c + a4a1c2 + a3b3c2

+a1b1c2 − a3a1c3 − a1b3c3 + a2
1c4 + a1κ1 + a1κ2

)

u4x3 + a2
1x7 + 2a1wx3

+ (a2a1 + a1b2 + a4b3 + a3b1 − c (a4a1 + a3b3 + a1b1

−c
(

a3a1 + a1b3 − a2
1c
)))

u3x4 + (−a3 + b3 − c) ux2z

+
(

a4a1 + a3b3 + a1b1 − c
(

a3a1 + a1b3 − a2
1c
))

u2x5

+ (−a4 + b1 − (−a3 + b3 − c) c) u2xz,

d25 = −v + y,

d26 = −z + w + κ1u4 + b2u3x + b1u2x2 + b3ux3 + a1x4,

d35 = x + cu,

(8)
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with

κ1 =
1

2

(

2b2c − 2b1c2 + 2b3c3 − c4 − 2a1c4
)

κ2 = a2c − b2c − a4c2 + b1c2 + a3c3 − b3c3 + c4 + κ1.

Q12

d15 = z + b1u + a1w2 + a2wx,

d16 = v2 + vy + y2,

d17 = xz + (a2b1 + a4b1 + a2b2) uw +
(

a2a3 + a1a4 + a2
2a4 − a2a2

4 + a2a4a5

)

w3

+ a2a4w2x + a5wz,

d25 = −v + y,

d26 = −xz + a5b2uw + a5

(

−a1 + a3 + a2a5 − a4a5 + a2
5

)

w3 + (b1 + b2) ux

+ a3w2x + a4wx2,

d35 = x2 + b2u +
(

−a1 + a3 + a2a5 − a4a5 + a2
5

)

w2 + (−a2 + a4 − a5) wx.

(9)

U12

(v2) vs (v3)

d15 = z + a1v + a2w,

d16 = yz +
(

−a2
1 + a1b1 + a1c1

)

v2 + (−a1a2 + b1a2 + c1a2 + a1 (−a2 + b2 + c2)) vw

+ a2 (−a2 + b2 + c2) w2 + c1vz + c2wz,

d17 = u3 + u2x + ux2 + x3,

d25 = y + b1v + b2w,

d26 = yz + b1c1v2 + (c1b2 + b1c2) vw + b2c2w2 + (−a1 + b1 + c1) vy + (−a2 + b2 + c2) wy,

d35 = x − u.

(10)
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(v1) vs (v3)

d15 = z + a1v + a2w,

d16 = −yz +
(

−a2
1 + a1b1 + a1c1

)

v2 + (−2a1a2 + b1a2 + c1a2 + a1b2 + a1c2) vw

+ a2 (−a2 + b2 + c2) w2 + c1vz + c2wz,

d17 = u3 + u2x + ux2 + x3,

d25 = −y + b1v + b2w,

d26 = −yz + b1c1v2 + (c1b2 + b1c2) vw + b2c2w2 − (−a1 + b1 + c1) vy

− (−a2 + b2 + c2) wy,

d35 = x − u.

(11)

W12

d15 = z + w + a1ux + a2x2,

d16 = uw + b1xz + b2wx + ((−a1 + b1) a2 + a1 (−a2 + b1 (−2a1 + b1 − b2))) x3,

d17 = v4 + v3y + v2y2 + vy3 + y4,

d25 = u + (−2a1 + b1 − b2) x,

d26 = z − w + (−a1 + b1) ux + (−a2 + b1 (−2a1 + b1 − b2)) x2,

d35 = −y + v.

(12)
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W13

d15 = z + w +
1

2

(

a2
1 + 2a2

1a2 + 4a1a2b − b2 + 2a2b2 − 4a1a2c + 2bc − 4a2bc − c2

+2a2c2
)

u2 + a1uy + a2y2,

d16 = yz +

(

−3a3
1

2
− 3a3

1a2 − a3
1a2

2 − a2
1b − 6a2

1a2b − 3a2
1a2

2b +
a1b2

2
− 3a1a2b2 − a2

2b3

−3a1a2
2b2 +

3a2
1c

2
+ 7a2

1a2c + 3a2
1a2

2c − a1bc + 8a1a2bc + 6a1a2
2bc − b2c

2
+ a2b2c

+3a2
2b2c +

a1c2

2
− 5a1a2c2 − 3a1a2

2c2 + bc2 − 2a2bc2 − 3a2
2bc2 − c3

2
+ a2c3 + a2

2c3

)

u3

− dgv4 + (a1 + 2a1a2 + 2a2b + c − 2a2c) uw + (−a3d − (−a3 − f) g) v3x + fvx3

+
(

a2
3 − d + a3f − g

)

v2x2 +
(

a1c − (−a1 − b + c)
(

a1a2 + a1a2
2 + a2

2b + a2c − a2
2c
)

+
a2

2

(

a2
1 + 2a2

1a2 + 4a1a2b − b2 + 2a2b2 − 4a1a2c + 2bc − 4a2bc − c2 + 2a2c2
)

+a2 (−a1 (a1 + 2a1a2 + 2a2b + c − 2a2c) − b (a1 + 2a1a2 + 2a2b + c − 2a2c)

+c (a1 + 2a1a2 + 2a2b + c − 2a2c) +
1

2

(

−a2
1 − 2a2

1a2 − 4a1a2b + b2 − 2a2b2

+4a1a2c − 2bc + 4a2bc + c2 − 2a2c2
)))

u2y + 2a2wy + a2
2y3 + buz

+
(

a1a2 + a1a2
2 + a2

2b + a2c − a2
2c
)

uy2,

d17 = x2y + (a1f + bf − cf) uvx + gv2y + a3vxy +
(

a1a2
3 + a2

3b − a2
3c − a1d − bd

+cd + 2a1a3f + 2a3bf − 2a3cf + a1f2 + bf2 − cf2 − a1g − bg + cg
)

uv2,

d25 = y + (−a1 − b + c) u,

d26 = −z + w + cuy + a2y2 + (−a1 (a1 + 2a1a2 + 2a2b + c − 2a2c) − b (a1 + 2a1a2

+2a2b + c − 2a2c) + c (a1 + 2a1a2 + 2a2b + c − 2a2c) +
1

2

(

−a2
1 − 2a2

1a2

−4a1a2b + b2 − 2a2b2 + 4a1a2c − 2bc + 4a2bc + c2 − 2a2c2
))

u2,

d35 = x2 + dv2 + (−a3 − f) vx.

(13)
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Z13

d15 = z + w +
(

a2c + b2c − a3c2 − b1c2 + 2a1c3 − γ
)

u3 + a1x3 + a2u2x + a3ux2,

d16 = xy2 + (−cf1 + cdf2) uv2 + (−f1 − d (−d − f2)) v2x − cf2uvy + (−d − f2) vxy,

d17 = x2z +
(

a2γ + b2

(

a2c + b2c − a3c2 − b1c2 + 2a1c3 − γ
)

−c
(

a2b2 + a3γ + b1

(

a2c + b2c − a3c2 − b1c2 + 2a1c3 − γ
)

−c
(

a3b2 + a2b1 − a2a1c − a1b2c − a3b1c + a3a1c2 + a1b1c2 − a2
1c3 + a1γ

+a1

(

a2c + b2c − a3c2 − b1c2 + 2a1c3 − γ
))))

u5 +
(

−d3 + df1 − d2f2

)

v3

+ (a2 + b2 − c (a3 + b1 − 2a1c)) u2w + (a3 + b1 − 2a1c) uwx + 2a1wx2 + a2
1x5

+
(

a2b2 + γa3 + b1

(

a2c + b2c − a3c2 − b1c2 + 2a1c3 − γ
)

−c
(

a3b2 + a2b1 − a2a1c − a1b2c − a3b1c + a3a1c2 + a1b1c2 − a2
1c3 + γa1

+a1

(

a2c + b2c − a3c2 − b1c2 + 2a1c3 − γ
)))

u4x

+
(

a3b2 + a2b1 − a2a1c − a1b2c − a3b1c + a3a1c2 + a1b1c2 − a2
1c3 + γa1

+a1

(

a2c + b2c − a3c2 − b1c2 + 2a1c3 + −γ1

))

u3x2

+
(

a2a1 + a1b2 + a3b1 −
(

a3a1 + a1b1 − a2
1c
))

u2x3 +
(

a3a1 + a1b1 − a2
1c
)

ux4

+ f1v2y + f2vy2 + (−a2 + b2 − (−a3 + b1 − c) c) u2z + (−a3 + b1 − c) uxz,

d25 = y + dv,

d26 = −z + w + a1x3 + b1ux2 + b2u2x + γu3,

d35 = x + cu,

(14)

where γ = 1
2

(

2b2c − 2b1c2 + c3 + 2a1c3
)

.
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