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Abstract

Envelope methodology is a promising dimension reduction approach. It was introduced

in the regression framework. In this work, we extended envelope application and focused

on the reduce-and-classify approach in supervised learning. The first contribution is that

we extended this method to classification and developed a new projection-based approach

based on a Support Vector Machine (SVM) classifier. Our proposed classifier ESVM

(Envelope-based Support Vector Machines) is obtained by combining the envelope method

and SVM to achieve a better and more efficient classification. Using the idea of the

envelope to extract a lower-dimensional subspace projected the data on has advanced the

classification performance. The empirical results show a low misclassification rate based

on ESVM

Furthermore, we extended the ESVM classifier to sparse data. In that, the reducing

subspace reduces the dimension and selects significant variables simultaneously. We em-

ploy an adaptive group lasso penalty to impose the sparsity in the reducing subspace. The

classifier is evaluated based on simulation and real data.
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Chapter 1

Introduction

1.1 Background

The collection of high-dimensional data across many disciplines has increased exponen-

tially in the last two decades. The advances in technologies and computation facilities with

less cost allow big data collection in many fields. Examples include microarray analysis,

image analysis, document classification, astronomy, and atmospheric science (Johnstone

and Titterington, 2009). If we denote the number of collected samples by n and the num-

ber of features by p, one common characteristic among this type of data is the growth of

the number of features compared to the number of samples, that is p > n. One possible

reason for the increase in the number of features is the lack of knowledge about the infor-

mative features (Verleysen et al., 2003). Despite the field in which the data were collected

or the study’s objective, classification, clustering, or regression, the challenge remains the

same. That is, many statistical results were designed for well-behaved data where the

ratio n/p ≥ 5 is satisfied (Johnstone and Titterington, 2009).

The objective in many of these datasets is to explain the relationship between the

outcome (response(s)) and a set of explanatory variables. This relationship is represented

by:

Y = f(x) + E , (1.1)

where Y is the univariate or multivariate response(s), f(x) is the function which facilitates

the nature of the relationship between the response(s) and the predictor variables (also

known as the link function), and E is the normally distributed errors. The relationship

represented by f(x) could be linear or nonlinear; however, the nonlinear models are beyond

1
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the scope of this work; our focus is on linear models with univariate responses.

The existence of high dimensionality in a dataset arises undesirable consequences.

One difficulty caused by large p is that most data points are concentrated at the decision

boundary. That is, having p dimensional data points divided into K groups, as p→∞ that

makes finding the decision boundary between the groups challenging. This phenomenon

makes the prediction of the training sample points that are near the edges difficult. The

other issue is that the required data samples grow with the dimension. That is, the

sampling density is proportional to (n1/p), for example if we have n = 50 for p = 1, hence

we need 5010 when we increase the dimension to p = 10 to gain the same information

(Hastie et al., 2009).

The other issue that one may encounter is the multicollinearity among predictor vari-

ables. Multicollinearity indicates a dependency between the features, which affects the

estimation of the parameters. Indeed, the problem of multicollinearity causes the variance

of the coefficients estimators for the dependent variables to be large. Consequently, other

effects might include; the estimates of the coefficients may be unacceptably large, and

the sign of the estimates might differ from what is theoretically expected. That leads to

unreliable statistical tests conclusion (Mansfield and Helms, 1982). It is worth noting that

multicollinearity may exist even when n > p. A proper multicollinearity detection test is

an important initial step in the latter case.

Hence, one aim is to eliminate the effect of the non-informative predictors and select

the informative variables among the large group of predictors. Regression-based tech-

niques are considered the most commonly used statistical tools to explain the relationship

between response and predictor variables. However, some techniques have limitations in

that they do not handle multicollinearity, ordinary least squares is an example. In statisti-

cal literature, the dimensionally and multicollinearity problems are tackled via dimension

reduction in two ways: feature extraction and feature selection.

Formally, dimension reduction is a procedure applied prior to model formulation to

extract a linear combinations of the original variables (known as feature extraction), or

to select a small subset of the original variables (denoted by feature selection) (Li, 2007).

Feature extraction can be defined as a function D(X) that maps X into a d-dimensional

subspace, where p > d. Precisely, suppose D(X) = ηTX, η ∈ Rp×d (Weng and Young,
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2017). To date, a variety of feature extraction procedures have been proposed in sta-

tistical literature. Among others, Principal Components Analysis (PCA) (Jolliffe, 1986),

Supervised Principal Components (Bair et al., 2006), Sliced Average Variance Estimation

(SAVE) (Cook and Weisberg, 1991), Principal Support Vector Machines (Li et al., 2011),

Lasso Principal Support Vector Machines (Pircalabelu and Artemiou, 2022), Principal

Distance-Weighted Discrimination (Randall et al., 2021), Graph Sliced Inverse Regression

(Pircalabelu and Artemiou, 2021).

The other method to handle high dimensionality is feature selection. Feature selec-

tion involves selecting the best subset of the predictor variables then fit the model based

on the selected variables. This approach can be performed via classical methods such as

best subset selection and forward/backward stepwise selection or via regularization (James

et al., 2013). The regularization method relies on the sparsity assumption, that is, among

a large number of predictor variables, only a few have non-zero coefficients and, hence

informative. The regularization technique works by imposing a pre-determined penalty

to the minimization/maximization criterion such that it shrinks the coefficients of the

non-informative predictor variables to zero. Thus, the final model includes only the pre-

dictor variables whose coefficients estimates are non-zero. Least absolute shrinkage and

selection operator (LASSO) (Tibshirani, 1996), elastic net penalty (Zou and Hastie, 2005),

ridge regression (Hoerl and Kennard, 1970), and the smoothly clipped absolute deviation

(SCAD) penalty (Fan and Li, 2001) are examples of commonly used penalties in statistical

literature.

On the other hand, classification is the process of allocating an individual to the original

group. The high dimensionality, however, has an impact on classification accuracy. The

presence of the noise predictor variables increases the misclassification rate. Further,

some classifiers may break down when the number of features is large; linear discriminate

analysis is an example. In the cases, if the fitting is possible, the classification may as bad

as random guessing due to accumulation noise (Fan and Fan, 2008).

In this thesis, we focus on classification based on reduced data. Motivated by the

efficiency gain that the envelope method (Cook et al., 2010) achieved in regression we

apply this method to extract a lower-dimensional subspace that captures all information

related to the classification. Support vector machines is considered a robust classifier.

Hence, we combine the two techniques with an aim to improve classification accuracy.
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That is, we use the envelope technique as an initial step to reduce the dimension of the

data then we classify the data based on classic SVM.

1.2 Notation

In this section we define the notations that are used throughout this thesis. The scalar

is denoted by (a, b, c). For vectors we use lower case bold symbols (x, y). The vectors are

a column vectors with number of elements denoted by x ∈ Rd. However, to distinguish

column vector from row vector we emphasize that via the subscript in that x·j is a column

vector while xi· is row vector. Matrices are denoted by upper case bold letters (A,B).

The dimension of a matrix is denoted by a × b and is written as (X ∈ Ra×b) or as a

subscript Xa×b. The identity matrix is denoted by Id where the subscript d referred to

the dimension. The notation 1d referred to a vector of ones of length d.

The superscript XT indicates the transpose of a matrix X and X−1 is the inverse of

a matrix.

The `1 norm of a vector x ∈ Rp is given by:

|x| =
p∑
i=1
|xi|,

where |xi| is the absolute value of xi. The `2 norm of a vector x ∈ Rp is:

||x|| =

√√√√ p∑
i=1

x2
i .

1.3 Thesis structure

The thesis is organized as follows: In Chapter 2, we discuss topics including a review

of regression and classification techniques. We review the linear regression for uni and

multivariate response variables. We explore the limitations encountered by researchers

and discover the remedies for these limitations. We review the projection-based methods

to deal with the dimensionality issue, as well as the regularization technique. Further, we

define the classification problem and introduce some well-known classifiers. In Chapter 3,

we rigorously define envelope method. We discuss the response envelope model, which aims

to reduce the dimension of response variables. Similarly, we review the predictor envelope,
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which targets reducing the dimension of the predictor variables. In both models, we show

the theoretical method to estimate the envelope subspace. Further, we demonstrate the

algorithm for extracting the reducing subspace. Chapter 4 we review the support vector

machines classifier. We illustrate the classification rule in the linear dataset in both cases;

separable and non-separable data. Further, we introduce kernel support vector machine or

equivalently nonlinear SVM. Chapter 5 we introduce our proposed classifier, the Envelope-

based support vector machines (ESVM). We demonstrate how to estimate the reduced

basis. The performance of our classifier has been tested on simulated and real data. In

Chapter 6 we extended our proposed classifier ESVM to sparse data. We have introduced

the adaptive group lasso as a penalization to impose the sparsity in the estimated subspace.



Chapter 2

Preliminaries

2.1 Linear regression model

The general concept of regression in modelling the data is to study the relationship

between a set of variables. Simple linear regression facilitates the linear relationship be-

tween dependent variable and an explanatory variable(s). Generally speaking, by fitting a

linear model to a scientific data we want to detect an evidence of association between pre-

dictor variables and the outcome. The strength of the relationship impact the prediction

accuracy.

2.1.1 Model formulation

Suppose we have dependent variable y with n observations, y = (y1, ..., yi, ..., yn)T , and

a set of explanatory variables X ∈ Rp×n. Hence, if we want to predict observation i as

a linear combination of (p) independent explanatory variables, we can do so by assuming

the following model:

yi = β0 + βTxi + ei, i = 1, ..., n (2.1)

where β0 is the intercept, β ∈ Rp is the model coefficients vector and ei is the error terms

and assumed to be independent normally distributed with equal variance, ei ∼ N(0, σ2).

In model (2.1), yi is assumed to be continues normally distributed with mean µy =

β0 +βTxi and variance σ2. If the normality assumption for the response data is violated,

we may model our data with a generalisation of model which is known as the generalized

linear model (GLM). A GLM consists of three components (Dobson and Barnett, 2018):

6
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• Dependent variable which follows a member of the exponential family such as: Pois-

son, Gamma, Normal or Binomial distribution,

• Explanatory variable(s) and set of coefficients; βTX and,

• Link function η explains the relation between the expected value of the response

(E(y) = µ) and βTX such that η = g(µ) = β0 + βTX. The link function can be

specified based on the selected model. The estimation of the model parameters (β)

will be discussed in the next section.

2.1.2 Estimation

Having a specified model, the estimation of its parameters is required. Consider model

(2.1), the estimation of the model coefficients vector (β0,β) has been studied extensively

in statistical literature. The parameters can be estimated either via maximum likelihood

estimation or the least squares fit.

To demonstrate the least squares method, define the residual as:

ei = yi − β0 − βTxi. (2.2)

Equivalently, (2.2) can be written in matrix form:

e = y −XTβ, (2.3)

where β = (β0,β) ∈ Rp+1 and X ∈ R(p+1)×n.

The least squares estimation of β is the parameters that minimize the sum of squares

residuals (McCullagh and Nelder, 1989). That is

eTe = (y −XTβ)T (y −XTβ)

That yields:

β̂ = (XXT )−1Xy. (2.4)

On the other hand, the maximum likelihood estimation is obtained based on the as-

sumption that yi ∼ N(βTxi, σ2). Thus the maximum likelihood estimation of β is given

by:

β̂ = (XXT )−1Xy. (2.5)
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2.2 Multivariate linear regression

2.2.1 Model formulation

Multivariate linear regression (MLR) describes the linear relationship between a set of

r response variables and p predictors (Chatfield and Collins, 1981). This relationship is

described via statistical model. The model coefficients facilitate the effect of the predictors

on the response variables. That is, consider the multivariate linear regression model:

Y = α+ βX +E, (2.6)

where α is a vector of r elements (intercepts), Y is (r×n) matrix of r responses, β is an r×p

regression coefficients matrix, X is p×n the predictor matrix and E (r×n) is the normally

distributed errors such that e·j ∼ N(0, σ2
j In), j = 1, ..., r, and ei· ∼ N(0,Σ), i = 1, ..., n,

where the diagonal elements of Σ are var(yj) = σ2
j and the off diagonal elements are

cov(yj , yk) = 0, j 6= k.

2.2.2 Estimation

MLR is used for prediction and estimation, where the main interest is to estimate the

regression coefficients (α, β). If the dataX is of full rank the estimated coefficients matrix

β̂ is achieved via ordinary least squares(OLS) or equivalently the method of maximum

likelihood estimation can be used for each response variable simultaneously. That is,

suppose B ∈ Rr×(p+r) is the parameters of interest matrix, and X ∈ R(p+r)×n is the

design matrix. Hence, the OLS estimates is given by:

B̂ols = Y XT (XXT )−1 (2.7)

In (2.7) the dependency among the response variables is ignored, however it should be

taking into consideration when the aim is to estimate the coefficients jointly.

In the world of high dimensional data when the number of features is high it is common

to encounter the multicollinearity in univariate and MLR. Thus, the method of OLS breaks

down due to rank deficiency i.e (XXT )−1 does not exit.

To solve this problem it is assumed that only a small subset of the features is relevant

to the analysis. A class of statical techniques restrict the analysis on a set of linear
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combinations less than the original dimension without losing the information. In section

2.3, we discuss the dimension reduction via feature extraction methods while in section

2.4 we review the variable selection methods.

2.3 Dimension reduction

2.3.1 Problem statement

Dimension reduction is a very active area in statistics and machine learning due the

exponential growth of scientific data in size and complexity. This complexity has made

the determination of the relation between response variable(s) and predictor variables

challenging. Statistics literature tackled this problem via two approaches: variable selec-

tion and feature extraction. Variable selection is the technique where out of large group

of predictor variables only a few are significantly related to the outcome. While feature

extraction methods task is to come up with a set of linear combinations of the original

covariates that is related to the response. That is, suppose X ∈ Rp×n is the predic-

tors matrix, feature extraction aims to find η ∈ Rp×d, d < p that satisfies the following

condition:

Y |X ∼ Y | ηTX, (2.8)

This condition indicates that the conditional distributions of Y | X and Y | ηTX are

the same. That is, ηTX can replace the original data without loss of information. η is

denoted by projection matrix and the estimation of η, hence, is of special interest. In the

following section we discuss the construction of the projection matrix η.

2.3.2 Sufficient dimension reduction

The objective of sufficient dimension reduction is to estimate a lower dimensional

subspace that contains all the information in the data. Suppose S is a subspace with the

following property:

Y ⊥X|PSX, (2.9)

where PS is the projection matrix. If S is a reducing subspace, then PSX contains all

the information that X has about Y . Further, assume η ∈ Rp×d, d < p is a basis for

S, then ηTX is used for regression (Cook et al., 2010), (Li, 2018). Any subspace which
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satisfies (2.9) is a dimension reduction subspace; however, the intersection of all subspaces

if itself a dimension reduction subspace is known as a central subspace (CS) and denoted

by SY⊥X , (Cook, 1994), (Cook, 1998), (Cook et al., 2010). The central subspace does not

always exist; however, it has been shown that if it exists it is unique under mild regularity

conditions (Cook, 1998), (Yin et al., 2008). Sliced inverse regression (SIR) (Li, 1991) and

sliced average variance estimation (SAVE) (Cook and Weisberg, 1991) are the pioneers

work to estimate CS.

2.4 Penalized likelihood methods

In this section we discuss the dimension reduction via variable selection techniques. In

particular, we study the variable selection via penalization. The penalized log-likelihood

is simply a log-likelihood accompanied with a penalty that will shrink the final likelihood

estimates (Cole et al., 2014). The ultimate goal of penalized likelihood methods is to

improve the model efficiency by producing a set of coefficients that are exactly zero. These

method can be viewed as reducing the variability of the model coefficients estimates and

raising some degree of bias. In this section we demonstrate some of the most widely used

penalties.

2.4.1 Ridge regression

Ridge regression or equivalently `2 norm is one of the widely used penalty. It shrinks the

parameters by imposing a quadratic constraint to the objective function. In the regression

content; the ridge coefficients are the values that minimizes the penalized sum of squares:

β̂ridge = arg min
β

{1
2

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ
p∑
j=1

β2
j

}
, (2.10)

where λ is the imposed penalty and λ
∑p
j=1 β

2
j denoted by the shrinkage penalty. The

shrinkage term works to shrink the coefficient values towards zero, not to set them to

zero. The value of λ affects the amount of the shrinkage, as a larger value indicates more

shrinkage (Hastie et al., 2009). In other words, the model fitted by ridge regression will

include all predictor variables, which causes interpretation challenges, especially when p

is large.
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2.4.2 LASSO

The least absolute shrinkage and selection operator (LASSO) or `1-norm (Tibshirani,

1996) is probably the most commonly used penalties. For linear regression model, LASSO

is defined as:.

β̂lasso =arg min
β

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 (2.11)

subject to
p∑
j

|βj | ≤ t,

where |.| is `1-norm, however, (2.11) can be written with different parametrization as

follows:

β̂lasso = arg min
β

{1
2

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ
p∑
j=1
|βj |

}
, (2.12)

where λ is the tuning parameter. In contrast to ridge regression, LASSO produces sparse

estimates as it sets the coefficients that have small OLS estimates to zero. In other words,

making t sufficiently small in (2.11) leads to some coefficients to be exactly zero (Hastie

et al., 2009). However, LASSO ignores the relative importance of each variable and applies

an equal amount of shrinkage for each coefficient which lacks model selection consistency.

Hence, adaptive LASSO was proposed as a remedy to this problem.

Adaptive LASSO

Adaptive LASSO (aLASSO) (Zou, 2006), is a modified version of LASSO that was

proposed as a remedy for the inconsistency in variable selection with LASSO. The key

difference is that aLASSO uses adaptive weight for penalizing different coefficients instead

of penalizing the coefficients equally. That is, the aLASSO is defined as follows:

β̂alasso = arg min
β

{
||y −

p∑
j=1

βjxj ||2 + λ
p∑
j=1

ŵj |βj |
}
, (2.13)

where ŵj is the adapted weight and defined as: w = 1/|β̂|τ , τ > 0, and β̂ is a
√
n

consistence estimates of β, for instance it can be the OLS estimates. This modification

allows aLASSO to enjoy the oracle property as indicated in the following proposition that

is given in (Zou, 2006).

Proposition 2.4.1. Let A∗ = {j : β̂alasso 6= 0}. Suppose λ/
√
n→ 0 and λn(τ−1)/2 →∞.

Then the adaptive lasso estimates must satisfy the following:
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1. Consistenc in variable selection: limn P (A∗ = A) = 1

2. Asymptotic normality:
√
n(β̂alasso,A − βA)→d N(0, σ2 ×C−1

11 ).

where A = {j : β̂ 6= 0} and |A| = p0 < p. C11 is a p0× p0 is a positive definite matrix.

Group lasso and adaptive group lasso

Group LASSO (gLASSO) (Yuan and Lin, 2006), is the natural extension of LASSO

that selects variables in a group manner. The motivation behind it is that if we aim to

exclude a group of predictor variables instead of selecting predictor variables individually.

The group lasso solves the following:

β̂ = arg min
β

{ n∑
i=1

1
2
(
yi −

p∑
j=1

xijβj
)2 + λ

p∑
j=1
||βj ||

}
, (2.14)

where ||.|| is the `2-norm.

(Wang and Leng, 2008) have argued that similar to LASSO, gLASSO suffers from

estimates inefficiency as well as variable selection inconsistency. Hence, they proposed

adaptive group LASSO (agLASSO) as a solution:

β̂ = arg min
β

{ n∑
i=1

1
2
(
yi −

p∑
j=1

xijβj
)2 + λ

p∑
j=1

wj ||βj ||
}
, (2.15)

where the weight wj = ||β̂j ||−τ , β̂j can be OLS.

2.4.3 Elastic net

Elastic net (Zou and Hastie, 2005) combines `1-norm (LASSO) and `2-norm (ridge)

to improve the performance of LASSO. In scenario where p > n LASSO selects at most

n variables. Further, in the classical settings where n > p, if the predictor variables

are highly correlated LASSO tends to select only one variable. Hence, elastic net was

introduce to overcome the limitations by LASSO such that it encourages group selection

and removes the limitations on the number of selected variables. Elastic net is defined as:

β̂ = arg min
β

{1
2

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + (1− λ)
p∑
j=1
|βj |+ λ

p∑
j=1

β2
j

}
. (2.16)

The function λ
∑p
j=1 |βj | + (1 − λ)

∑p
j=1 β

2
j referred to as elastic net. When the tuning

parameter λ = 1 the elastic net reduced to ridge regression. In this setting, `1 part of
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the penalty introduce the sparse model while the quadratic part encourages the grouping

effect as well as removes the limitations on the number of selected variables.

2.4.4 Smoothly clipped absolute deviation penalty

The Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001) was

proposed to improve the biasedness in LASSO estimates. (Fan and Li, 2001) argued that

a good panelized estimator should have properties: unbiasedness, sparsity and continuity.

They showed that in case of LASSO penalty the sparsity and continuity hold where SCAD

satisfied all three properties. The SCAD penalty is defined as:

pλ(θ) = λ

{
I(θ ≤ λ) + (aλ− θ)

(a− 1)λ + I(θ > λ)
}
, for some a > 2 and θ > 0. (2.17)

2.5 Classification

In the previous sections, we have discussed the regression and dimension reduction. In

this section, we will discuss the other major topic in this thesis; that is classification.

2.5.1 Problem statement

In many scientific datasets the response is a qualitative variable, such as the type of

treatment the participant is taken (treatment A or treatment B), the level of education,

or any similar problem in which the outcome describes a category or a status. In such

data, the observations are assumed to be grouped into Z, (Z ≥ 2) distinct groups, which

are also known as classes. This type of data is referred to as labeled data where the

response is a qualitative or categorical variable and represents the label associated with

each object. For a new observation, the task is to predict a discrete value ( label) that

represents the class to which it belongs. The procedure of assigning the new object into

a class is known as classification. The classification process acquires two elements: first

is a classification rule or decision function which is a mathematical formula that creates

decision boundaries between the distinct classes. The other element is a classifier, which is

a developed algorithm that employs the classification rule to allocate the observations into

the appropriate class with reasonable accuracy (Abe (2005), Hastie et al. (2009), James

et al. (2013)).
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Suppose we have n independent observations: (x1, y1), ..., (xn, yn) where xi ∈ Rp is

known as the features, and a prespecified yi ∈ {1, ..., Z}, Z ≥ 2, the class label. Hence, the

classifier works to allocate objects into the distinguish groups based on the decision rule.

In statistics and machine learning literature various classifiers have been studied such as:

linear discriminant analysis (Fisher, 1936), logistic regression (Efron, 1975), decision trees,

random forests, neural network (Bishop et al., 1995) and support vector machines(Cortes

and Vapnik, 1995). The performance of theses classifiers is measured via misclassification

rates. That is, suppose τ(x) is the estimated class for observation x, hence the mis-

classification rate is Pr(y 6= τ(x)) where y is the true class. A good classifier gives low

misclassification rate.

In the next section we explore some of the most commonly used classifiers:

2.5.2 Linear discriminate analysis

Linear discriminate analysis (LDA) is one of the oldest and most widely used classifiers.

If we have {yi,xi}ni=1, are n independent observations such that yi represents the class

label and xi is a p-dimensional normally distributed predictor variable; however, LDA

assumes that each class has different mean and shared variance such that:

fz(x) = 1
(2/π)p/2|Σ|1/2

exp{−1
2(x− µz)TΣ−1(x− µz)}.

In case Z > 2 the Bayes rule is used to determine the classification decision (Mai,

2013):

δz(x) = arg max
z
{log πz + µTz Σ−1(x− µz)}.

In practice the parameters (µz,Σ, πz) are unknown. Hence, LDA tends to estimate them

from the training sample:

π̂z = nz
n
, µz =

∑
yi=z

xi/nz, Σ̂ =
Z∑
z=1

∑
yi=z

(xi − µ̂z)(xi − µ̂z)T /n− z.

Another property of LDA is that it reduces the data dimension while perceiving the

class separation. Given a p-dimensional dataset that has Z classes; the Z centroids lie in a

subspace of dimension ≤ Z (Hastie et al., 2009). The reduction is performed by projecting

the data into a subspace spans by the centroids. The subspace can be extracted as follows:
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• compute M ∈ RZ×p whose entries are the class centroids and the within class

covariance W ;

• compute M∗ = MW−1/2 using the eigen-decomposition of W ;

• compute the covariance matrix ofM∗,B∗ and its eigen-decompositionB∗ = V ∗DBV
∗T .

The coordinate of the desired subspace are defined by the columns of V ∗, v∗z .

Performing the steps explained above, the zth discriminant variable is Az = vTzX where

vz = W−1/2v∗z .

2.5.3 Logistic regression

Logistic regression model comes from the desire to model the posterior probabilities

of the Z classes through linear functions in x. That is, logistic regression models the

probability that yi belongs to a specific category instead of modelling the response yi

directly. In other words, the linear regression to produce the probabilities via:

p(X) = βTX. (2.18)

Using (2.18) to compute the probabilities is inappropriate because it gives negative prob-

abilities and probabilities larger than one. To avoid this problem logistic regression model

is detailed in terms of Z − 1 logit-odds transformations assuring the constraint that the

probabilities sum to one. That is, the conditional probabilities are given by:

log Pr(Y = z|X = x)
Pr(Y = Z|X = x) = βz0 + βTz x, z = 1, ..., Z − 1. (2.19)

(2.19) simplified as follows:

Pr(Y = z|X = x) = exp(βz0 + βTz x)
1 +

∑Z−1
j=1 exp(βj0 + βTj x)

, z = 1, ..., Z − 1,

P r(Y = Z|X = x) = 1
1 +

∑Z−1
j=1 exp(βj0 + βTj x)

. (2.20)

Since the Pr(Y |X) is completely specified, the parameters of the model are estimated

via the maximum likelihood method (Hastie et al., 2009), (James et al., 2013). For binary

class data the problem is straightforward via binomial distribution and the multinomial

is suitable in the case of multi-classes. Once the parameters are estimated, for a given x

the probability is calculated as given in (2.20). The decision is determined by a specifying
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a threshold probability a ∈ (0, 1). For binary class problem, that is y ∈ {0, 1} then the

prediction of y is given by:

y = 1 if p̂(x) ≥ a;

y = 0 if p̂(x) < a.

For multi-class problems we use the techniques explained in Chapter 4.

2.5.4 Classification evaluation

In developing a classifier, the classification evaluation is crucial. It shows the general-

ization ability of such classifier. A number of ways are used to evaluate the classification

process. Suppose we generate data from Z classes one way to evaluate the classifier on

the test data is to create a confusion matrix (A) whose entries aij is the number of data

points from class i that classified in class j, Table 2.1 (Abe, 2005).

Assigned.positive Assigned.negative
Actual positive TP FN
Actual negative FP TN

Table 2.1: The confusion matrix for diagnosis data.

The other way is the recognition rate (R) or accuracy which is given by:

R =
∑Z
i=1 aii∑Z
i,j=1 aij

× 100.

Alternatively, the error rate is used to measure the overall performance of a classifier and

given by:

E =
∑Z
i 6=j,i,j=1 aij∑Z
i,j=1 aij

× 100.

Under the assumption that there is no unclassified data, R + E = 100%. To the purpose

of comparing classifiers one may generate several dataset that divided into training and

test data. For each data the error rate is obtained then investigate if there is a statistical

difference in the mean error rate and their standard deviations of the classifiers.

In some situations where one class is dominant; that is, the data in hand has imbalanced

classes. For instance, data for diagnosis problem with negative (normal) and positive

(abnormal) outcome. The imbalanced caused by the difficulty in obtaining samples for
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positive class while data samples for negative class are easy to obtain. The misclassification

of positive sample into negative class is more risky compared to the misclassification of

negative sample into positive class (Abe, 2005). In this case, the commonly used measures

are precision, recall and the receiver operator characteristic (ROC). The precision given

by:

Precision = TP
TP+FP .

while the Recall is:

Recall = TP
TP+FN ,

where

• True Positive (TP)=number of subjects that correctly classified as positive.

• True Negative (TN)=number of subjects that correctly classified as negative.

• False Positive (FP)=number of subjects that falsely classified as positive.

• False Negative (FN)=number of subjects that falsely classified as negative.

The other measure is the ROC that is plotted using the calculated values of the true

positive rate on the y-axis and the false positive rate on the x-axis. The true positive rate

is given by:

True-positive rate = TP
TP+FN (2.21)

while the false-positive rate is:

False-positive rate = FP
FP+TN. (2.22)

The ROC is used to determine a threshold based on the classification is performed. For

instance, let t ∈ {0.1, 1} be the threshold, Figure 2.1 shows a ROC for classifying binary

two dimensional data. The numbers on the curve indicate different values of t. Once the

optimal value of t is selected the classification is performed. That is, suppose the class

membership associated with individual i is πi, then xi allocated in class 1 if πi > t and

allocated in class 2 otherwise.
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Figure 2.1: The ROC based on classifying two dimensional binary data using logistic
regression.



Chapter 3

Review of Envelope Method for
Linear Dimension Reduction

3.1 Introduction

In this chapter we review the envelope model, the technique for dimensionality reduc-

tion. It was introduced by Cook et al. (2010) and has been developed and expanded since

then by several authors. For an overview of the envelope methodology see Lee and Su

(2019) and Cook (2019).

The argument is that in regression setting, especially when the number of features

is large, we believe not all of the features are informative. Hence, it is important to be

able to distinguish the informative features from the non-informative ones. Consider the

model given in (2.6), this technique can be applied to reduce the dimension of the re-

sponses, predictors, or responses and predictors simultaneously. Envelope was introduced

in regression framework and aims to increase the efficiency in parameter estimation (β̂).

The gain in efficiency is achieved by excluding the non important variation which might be

present in the data. In other words, the response (or predictor) variables can be divided

into two parts: material part and immaterial part. The first part (material part) contains

the information related to the goal of the study. The other group (immaterial) has no

impact on estimating β. Envelope procedure relies on reducing the dimensionality of the

data by extracting a projection matrix out of the material part only then project the data

on. Thus, it improves the efficiency via based the estimation only on the material part.

This chapter is organised as follows: in Section 3.2 we introduce the model notation and

19
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demonstrate the method for response reduction. Similarly, in Section 3.3 we explore the

envelope model for reducing the predictor variables. In Section 3.4 we discuss the algorithm

for estimating the envelope basis. In Section 3.5 we review some of the developed envelope

based methods. We emphasise that the content of this chapter depends heavily on the

material from Cook (2019).

3.2 Response envelope

Suppose we have the model

y = α+ βx+ e, (3.1)

where

• y is the response variables vector of r > 1 responses,

• α is a vector of r elements (intercepts),

• β is an r × p regression coefficients matrix,

• x ∈ Rp the predictor variables, and

• e is the normally distributed errors such that e ∼ N(0,Σ).

Having r > 1 response variables, the classical method of estimating β is to perform an

independent univariate regression of y on x for each response. This technique ignores the

relationship among the response variables. The motivation behind the response envelope

is that there exists a linear combination of the response variables that is irrelevant to the

analysis. Keeping this group will affect the estimation of β. In other words, the response

envelope aims to reduce the dimension of the multivariate response and base the analysis

on the relevant response variables, which will improve the estimation efficiency. Obtaining

the estimation of the model coefficients based on the relevant part only, as the envelope

suggested, will reduce the variance of the estimates.

To construct the reducing basis consider model (3.1), furthermore, suppose M is a

u-dimensional subspace (u < r). Let (Γ,Γ0) be an r × r semi-orthogonal matrix, where

Γ ∈ Rr×u is orthogonal basis of M, Γ0 ∈ Rr×(r−u) be an orthogonal basis of M⊥; the

orthogonal complement of M, and u is the envelope dimension such that u < r. When
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the goal is to reduce the response variables, ΓTy forms the reduction in y. Γ known as

the envelope subspace and has to satisfy the following conditions:

i. The marginal distribution of ΓT0 y does not depend on x and is not affected by the

change in x; that is, ΓT0 y ∼ ΓT0 y | x, where ∼ means has the same distribution, and

ii. ΓTy and ΓT0 y are uncorrelated; that is, ΓTy ⊥ (ΓT0 y | x).

As stated in Cook et al. (2010), the above conditions hold if and only if:

i. span(β) ⊆ span(Γ), and

ii. cov(ΓTy,ΓT0 y | x) = 0.

This approach establishes a parametric link between the covariance matrix Σ and the

coefficients β. This link is defined via the envelope subspace (Γ) that satisfies the condi-

tions i, and ii. However, this subspace is not unique but its span, span(Γ), is identifiable.

Hence envelope extracts the smallest subspace contains β that is called Σ-envelope of

span(β), and denoted by EΣ(B), where B=span(β). However, based on the classification

of the response variables into material and immaterial parts, the covariance matrix de-

composes into two semi-orthogonal matrices; Σ = ΓΩΓT + Γ0Ω0Γ
T
0 where Ω,Ω0 carried

the coordinate of Γ and Γ0 respectively.

The following definition facilitates the decomposition of a matrix by a subspace; for a

subspace R ∈ Rr and M ∈ Rr×r.

Definition 3.2.1. R reduces M ∈ Rr×r if and only if M can be written in the form

M = P T
RMPR +QT

RMQR,

where P(A) is the projection onto the column space of A and Q(A) is the orthogonal

complement of P(A) such that Q(A) = Ir − P(A); Ir is the r × r identity matrix.

The response envelope model is obtained via the re-parametrisation of model (2.6) be

become:

y = α+ Γηx+ e, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 . (3.2)
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To demonstrate the gain achieved by envelope in the estimated parameters we gave

example in Section 3.2.1 then in Section 3.2.2 we show the the parameters estimation for

model (3.2).

3.2.1 Illustrative example

To give an illustration of the envelope methodology on dimension reduction. Consider

the case for response dimension reduction (response envelope), with Berkeley dataset (Tud-

denham, 1954). This data has the height measurements for 93 individuals (39 boys, 54

girls) were born between 1928 and 1929 in Berkeley, CA. The dataset has 31 response

variables and a univariate predictor, for illustration purpose, consider (Y2×93) is bivariate

response that contains the height measurement for age 13 and 14, while the predictor x

is the gender indicator binary variable (0 indicates boys, 1 for girls). That is, we have the

following linear model:

yi =
(
y1
y2

)
=
(
α1
α2

)
+
(
β1
β2

)
xi +

(
e1
e2

)
,

where

α1 = E(y1|x = 0), β1 = E(y1|x = 1)− E(y1|x = 0),

α2 = E(y2|x = 0), β2 = E(y2|x = 1)− E(y2|x = 0).

The main interest here is to estimate β = (β1, β2)T . First, we estimated the coefficient via

OLS i.e the standard method by regressing each of the response variables on the binary

predictor then estimate the parameters simultaneously. Figure 3.1 (a) shows the standard

inference on β1, the dotted line shows the projection path for randomly chosen point x.

While the two curves represent the projection distribution of the two groups onto Y1.

It can be seen clearly that the two curves are not distinguishable. Envelope suppose to

improve the inference by eliminating the immaterial variance and make clear separation.

Figure 3.1 (b) shows the envelope subspace (ΓTY ) and its orthogonal complement (ΓT0 Y ),

and clearly we can see that the variation among the envelope subspace is less than on its

complement. Hence, projecting the data points onto the envelope subspace eliminates the

immaterial variation. In fact this is reflected on the distribution curves of the two groups

that are now distinguishable. That is because envelope based the inference on the material

part only by projecting the data points onto ΓTY first.
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In the following section we discuss the estimation method of the envelope basis Γ and

the parameters of response envelope model.

(a) (b)

Figure 3.1: Height measurement for age 13 and age 14. (a) shows inference under linear
model; (b) inference under envelope model.

3.2.2 Estimation

In this section we discuss the estimation of the parameters of the response envelope

model (3.2). The parameters to be estimated for model (3.2) are (Γ,Γ0,η,Ω,Ω0) and

estimated via maximum likelihood estimation.

Let y ∈ Rr be the vector of response variables, and x ∈ Rp be the vector of the

predictor variables. Further, let multivariate linear regression is given by:

yi = α+ βxi + ei, (3.3)

where α ∈ Rr is the intercept and β ∈ Rr×p is the regression coefficients matrix. The

conditional distribution of Y |X = x is:

Y |x ∼ N(µy,ΣY |X), (3.4)
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where µy = α+ βxi. Hence, the likelihood function is given by:

L(y,µ,Σ) = (2π)−nr/2|Σ|−n/2 exp{
n∑
i=1

−1
2 (yi −α− βxi)TΣ−1(yi −α− βxi)} (3.5)

The log likelihood function is:

` = −nr2 log(2π)− n

2 log |Σ| −
n∑
i=1

1
2(yi −α− βxi)TΣ−1(yi −α− βxi) (3.6)

The previous equation can be re-parametrised based on envelope model. That is, β = Γη,

Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , where Γ ∈ Rr×u, Γ0 ∈ Rr×(r−u), u =dimension of envelope basis,

and (Γ,Γ0) ∈ Rr×r is an orthogonal matrix, η ∈ Ru×p carries the coordinates of β relative

to the basis matrix Γ, Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are positive definite matrices.

Assume the envelope dimension u is fixed, and substituting theses quantities in (3.6):

` = −nr2 log(2π)−n2 log |ΓΩΓT+Γ0Ω0Γ
T
0 |−

n∑
i=1

1
2(yi−α−Γηxi)T (ΓΩΓT+Γ0Ω0Γ

T
0 )−1(yi−α−Γηxi)

(3.7)

Now, to simplify, (Cook, 2018) introduced the following corollary.

Corollary 3.2.1. Let R reduce M ∈ Rr×r, let A ∈ Rr×u be a semi-orthogonal basis

matrix for R, and let A0 be a semi-orthogonal basis matrix for R⊥. Then

1. M and PR, and M and Q commute.

2. R ⊆ span(M) if and only if ATMA is full rank.

3. |M | = |ATMA| × |AT
0MA0|.

4. If M is full rank, then M−1 = A(ATMA)−1AT+A0(AT
0MA0)−1AT

0 = PRM
−1PR+

QM−1Q.

5. If R ⊆ span(M), then: M = A(ATMA)−1AT +A0(AT
0MA0)AT

0 .

Using (3) from corollary 3.2.1,thus (3.7) becomes: :

Lu = −nr2 log(2π)−n2 log |Ω|−n2 log |Ω0|−
1
2

n∑
i=1

(yi−α−Γηxi)T (ΓΩ−1ΓT+Γ0Ω
−1
0 ΓT0 )(yi−α−Γηxi)

(3.8)
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substituting α̂ = ȳ;

Lu = −nr2 log(2π)− n

2 log |Ω| − n

2 log |Ω0|

− 1
2

n∑
i=1

(yi − ȳ − Γηxi)T (ΓΩ−1ΓT + Γ0Ω
−1
0 ΓT0 )(yi − ȳ − Γηxi)

(3.9)

Now, decompose (yi − ȳ) as (yi − ȳ) = PΓ(yi − ȳ) + QΓ(yi − ȳ), where PΓ =

Γ(ΓTΓ)−1ΓT ,QΓ = I − PΓ. Then (3.9) becomes:

Lu = −nr2 log(2π)− n

2 log |Ω| − n

2 log |Ω0|

− 1
2

n∑
i=1
{(PΓ(yi − ȳ) +QΓ(yi − ȳ)− Γηxi)T (ΓΩ−1ΓT + Γ0Ω

−1
0 ΓT0 )(PΓ(yi − ȳ)

+QΓ(yi − ȳ)− Γηxi)}
(3.10)

after simplification:

Lu = −nr2 log(2π)− L(11)
u − L(12)

u , (3.11)

where L(11)
u = n

2 log |Ω| − 1
2
∑n
i=1{ΓT (yi − ȳ)− ηxi}TΩ−1{ΓT (yi − ȳ)− ηxi},

L
(12)
u = n

2 log |Ω0| − 1
2
∑n
i=1(yi − ȳ)TΓ0Ω

−1
0 Γ0(yi − ȳ).

L
(11)
u can be considered as the log-likelihood for multivariate regression of ΓT (yi − ȳ)

on xi. Hence, L(11)
u is maximised over η at η̂ = ΓTβols. Substituting this in L

(11)
u

L(11)
u = −n2 log |Ω| − 1

2

n∑
i=1
{ΓT (yi − ȳ)− ΓTβolsxi}TΩ−1{ΓT (yi − ȳ)− ΓTβolsxi}

= −n2 log |Ω| − n

2

n∑
i=1

(ΓTri)TΩ−1ΓTri,

(3.12)

where ri is the rth residual. Now, maximise L
(11)
u over Ω, Ω̂ = ΓTSY |XΓ. Putting

everything together, L(11)
u becomes:

L(11)
u = n

2 log |ΓTSY |XΓ| − nu

2 (3.13)



CHAPTER 3. REVIEW OF ENVELOPE METHOD FOR LINEAR DIMENSION
REDUCTION 26

Similarly, L12
u is maximised over Ω0 at the value Ω̂0 = ΓT0 SY Γ0, Hence

L(12)
u = −n2 log |ΓT0 SY Γ0| −

n(r − u)
2 (3.14)

Since log |ΓT0 SY Γ0| = log |S|Y + log |ΓTS−1
Y Γ|. Now, substituting in Lu yields:

Lu = −nr2 log(2π)− nr

2 −
n

2 log |SY | −
n

2 log |ΓTSY |XΓ| − n

2 log |ΓTS−1
Y Γ| (3.15)

Hence, the maximum likelihood estimate of envelope subspace is obtained by optimising

the following objective function over a Grassman manifold:

Lu(Γ) = span
{

arg min
Γ

(
ln |ΓTSY |XΓ|+ ln |ΓT (SY )−1Γ|

)}
, (3.16)

To summarize, the maximum likelihood estimates for parameters given in the response

envelope model are given by:

η̂ = ΓTβols

β̂env = Γη

Ω̂ = Γ̂TSY |XΓ̂

Ω̂0 = Γ̂T0 SY Γ̂0

Σ̂ = Γ̂Ω̂Γ̂T + Γ̂0Ω̂0Γ̂
T
0 .

3.3 Predictor envelope

In Section 3.2 we discuss the concept of response envelope model; similarly, in this

section we discuss the development of predictor envelope model. Predictor envelope was

developed by Cook et al. (2013) and aims to increase the efficiency of the model coefficients

estimation. To explore the predictor model, consider the regression model:

y = α+ βTx+ e, (3.17)

where y ∈ R could be a univariate or multivariate response variable; in this context we

assume a univariate response, x ∈ Rp the predictor variables that is normally distributed
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with mean µX and variance ΣX , α ∈ R is the intercept and β ∈ Rp is the model co-

efficients. Further, suppose S is a subspace in Rp such that, PS is the projection onto

S and QS = Ip − PS is the projection complement. The predictor envelope decomposes

the predictor variables x into material and immaterial, such that PSx and QSx form the

material and immaterial parts, respectively. The choice of PS and QS has to satisfy the

following conditions:

i. y and QSx are uncorrelated, i.e Cov(y,QSx|PSx) = 0, and

ii. PSx and QT
Sx are uncorrelated; that is, Cov(PSx,QSx) = 0.

S that satisfies properties in i and ii is referred to as the reducing subspace of ΣX that

contains span(β), and denoted by S = EΣX (span(β)), (Cook et al., 2013). Let u be known

envelope dimension, and (Γ,Γ0) ∈ Rp×p is an orthogonal matrix such that Γ ∈ Rp×u is

a semi orthogonal basis of EΣX (span(β)), and Γ0 ∈ Rp×(p−u) is a semi orthogonal basis

of E⊥ΣX (span(β)). Thus, model (3.17) is re-parametrised to form the envelope predictor

model:

y = α+ (Γη)Tx+ e ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 , (3.18)

where β = Γη , η ∈ Ru carries out the coordinate of β with respect to Γ, the matrices

Ω ∈ Ru×u and Ω0 ∈ R(p−u)×(p−u) are positive definite.

Given the model described earlier, in the following section, we discuss the estimation

procedure of the model parameters.

3.3.1 Estimation

In this section we will discus the estimation of the parameters involved in model (3.18).

The parameters to be estimated are (Γ,Γ0,Ω,Ω0,η), where we assume that the envelope

dimension u, is known. The estimation of the parameters is based on the maximum

likelihood is of the joint distribution of (X, Y ) as a product of the conditional distribution

(f(Y |x)) and the marginal distribution of x, that is,

f(x, y) = f(Y |x)f(x), (3.19)
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where f(x) = (2π)−p/2|Σ(x)|−1/2 exp{−1
2 (x− µx)TΣ−1

x (x− µx})

and f(y|x) = (2π)−r/2|Σ|−1/2 exp{−1
2(y − µY |x)TΣ−1(y − µY |x)}

Thus, the likelihood function is given by:

L = (2π)
n
2 (r+p)|ΣX |−n/2|ΣY |x|−n/2 exp{−1

2

n∑
i=1

(yi − βTxi)TΣ−1
Y |x(yi − βTxi)}

× exp{−1
2

n∑
i=1

(x− µx)TΣ−1
x (x− µx}

The log-likelihood is given by:

` = c− n

2 log |ΣX | −
n

2 log |ΣY |x| −
1
2 tr(Σ

−1
Y |x

n∑
i=1

(yi − βTxi)T (yi − βTxi))

− 1
2 tr(Σ

−1
x

n∑
i=1

(x− µx)T (x− µx)

` = c− n

2 log |ΓTSXΓ| − n

2 log |ΓT0 SXΓ0| −
n

2 log |ΣY |x| (3.20)

where c is a constant. Note:

SY |X = SY − STXY S−1
X SXY

= SY − SXY Γ(ΓTS−1
X Γ)ΓTSXY (3.21)

ΓT0 S
−1
X Γ0 = |SX ||ΓTS−1

X Γ|

(SY − SXY Γ(ΓTS−1
X Γ)ΓTSXY )||ΓTS−1

X Γ| = SY |ΓT (SX − S−1
Y SXY S

T
XY )Γ|

Thus, substituting (3.21) in (3.20), gives the following:

Lu(Γ) = log |ΓTSX|Y Γ|+ log |ΓTS−1
X Γ|. (3.22)

Thus, the maximum likelihood estimate of the predictor envelope subspace is obtain by

optimizing the following objective function over Grassmann manifold:

Γ̂ = span
{

arg min
Γ
Lu(Γ)

}
, (3.23)



CHAPTER 3. REVIEW OF ENVELOPE METHOD FOR LINEAR DIMENSION
REDUCTION 29

where Lu(Γ) is given in (3.22). The model parameters are given by:

η̂ = ΓTβols

β̂env = Γη

Ω̂ = Γ̂TSXΓ̂

Ω̂0 = Γ̂T0 SXΓ̂0

Σ̂X = Γ̂Ω̂Γ̂T + Γ̂0Ω̂0Γ̂
T
0 .

3.4 Envelope subspace estimation

In this section, we discuss the algorithm for estimating envelope subspace. The goal

of the envelope method is to estimate the basis that employs as reducing subspace. For a

given dimension u, the envelope subspace can be constructed via optimising a non-convex

likelihood-based objective function over Grassmann Manifold, denoted by G(d, u) where d

can be the number of response or predictor variables (Cook (2018), and Cook and Zhang

(2016)). The usual practice is to construct the envelope basis via direct optimization over

suitable Grassmannian. This technique requires a carefully chosen initial value for Γ.

Further, the optimization is computationally expensive, especially in the case where the

required number to specify an element in G(d, u); u(d− u) is large.

Cook and Zhang (2016) proposed an algorithm that breaks down the Grassmann op-

timization into a series of one dimensional (1D) optimization. This way is proven to be

faster, and the starting value is no longer an issue. Given the dimension of the envelope

basis u, as well as the positive definite matrices M > 0 and U > 0, the algorithm esti-

mates one dimension at a time until the desired dimension is obtained. Please note that

in sample version of M and U are substituted by M̂ and Û . In the case of response en-

velope, M̂ denotes the covariance matrix of the residuals from the ordinary least squares

(SY |X), while M̂ + Û is SY , the marginal sample covariance of Y . While for predictor

envelope M̂ = SX|Y ,M̂ + Û = SX . The following proposition explains the concept of

the sequential optimization:

Proposition 3.4.1. Assume (G,G0) are an orthogonal basis of Rd, such that G ∈

Rd×q,G0 ∈ Rd×(d−q), and span(G) ⊆ EM (B). Then v ∈ EGT0 MG0
(GT

0 B) implies that

G0v ∈ EM (B).
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In the light of proposition 3.4.1, if we assume that G is a known semi-orthogonal basis

for envelope subspace EM (B), we can obtain the rest of EM (B) via considering EGT0 MG0
(B).

Further, suppose span(γ1, ...,γu) = EM (B), the algorithm for constructing γi, i = 1, ..., u

is summurized in algorithm 1.

Algorithm 1 one dimensional optemization
1. initiate γ0 = Γ = 0.
2. For i = 1, 2, ..., u− 1
(a) Γi = (γ1, ...,γi) if i ≥ 1, and let (Γ,Γ0) be an orthogonal basis for Rd.
(b) Define a stepwise objective function.

Di(g) = log(gTMig) + log{log(gT (Mi +Ui)−1g)}, (3.24)

where Mi = ΓT0iMΓ0i,Ui = ΓT0iUΓ0i and g ∈ Rd−i.
(c) Solve gi+1 = arg mingDi(g) such that gTg = 1.
(d) Define γi+1 = G0igi+1 to be the unit length (i+ 1) stepwise direction.

However, Cook et al. (2016) proposed a new non-Grassmann algorithm that improves

the optimization process to estimate the envelope basis. The new algorithm proposed here

relies on choosing a starting value effectively and a re-parametrization of Γ. That is, the

commonly used objective function for envelope estimation is

Lu(Γ) = ln |ΓTMΓ|+ ln |ΓT (M +U)−1Γ|. (3.25)

Under normality assumption, the maximum likelihood estimation of the envelope is given

by:

Ê = Span{arg minΓ(Lu(Γ))} (3.26)

The objective function given in (3.25) is a non-convex. Therefore, finding a solution

that is a global minimum might be challenging. Trying various starting values is an

inefficient way and time-consuming. Hence, the choice of starting values is crucial.

Cook et al. (2016) proposed an iterative non-Grassmann method to find the arg min of

Lu(Γ). Their approach relies on selecting the starting value that makes the optimization

possible. The authors show how to select a u columns from the eigenvectors of M̂ or M̂ +

Û . The key to selecting which matrix the starting value is chosen out of its eigenvectors

can be explained as follows, knowing that :
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U = ΓV ΓT

M = ΓΩΓT + Γ0Ω0Γ
T
0

(M +U)−1 = Γ(Ω + V )−1ΓT + Γ0Ω
−1
0 ΓT0

(3.27)

where Γ = arg minΓ(Lu(Γ)), V ∈ Ru×u, is a positive semi-definite matrix. For selecting

the starting value from the eigenvectors of M , the eigenvalues of Ω has to be distinguish-

able from the eigenvalues of Ω0. If this condition is violated, i.e some eigenvalues of Ω are

closed to the eigenvalues of Ω0 attempting the minimization of (3.25) will be miss-leading.

That is, a vector near span(Γ0) will be chosen instead of picking a vector near span(Γ) = Ê ,

and hence choosing the starting value from M +U is more efficient. Similarly, to choose

the starting value from the eigenvectors of M +U requires the eigenvalues of Ω + V to

be well distinguished from the eigenvalues of Ω0. The starting value may be chosen from

the scaled M̂ or M̂ + Û , as well. In Cook et al. (2016), the authors have shown 4 ways

to choose the starting values; from the scaled or unscaled M̂ or M̂ + Û . The starting

value that minimises Lu(Γ) is used. Once the starting value is selected, the optimisation is

carried out based on re-parametrized version of Lu(Γ) that does not required optimisation

over a Grassmannian. That is, (3.25) becomes:

Lu(A) = −2 ln |CT
ACA|+ ln |CT

AM̂CA|+ ln |CT
A(M̂ + Û)−1CA|, (3.28)

this new objective function depends on partitioned the starting value (Gstart ∈ Rr×u) as

follows:

G =
[

(G1)u×u
(G2)(r−u)×u

]
=
[
Iu
A

]
G1 = CAG1, (3.29)

where G1 is non-singular, A = G2G
−1
1 ∈ R(r−u)×u, and CA = (Iu,AT )T . This algorithm

estimates Γ row by row. When u is large, the authors claimed that it shows superiority

over the 1D algorithm.

3.5 Review of envelope-based methods

In this section, we discuss some of the developed envelope-based methods. Several

authors have employed the efficiency of the envelope basis Γ, to improve the outcome of

existing statistical methods.
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3.5.1 Envelope-based sparse partial least squares

In principle, there is a link connection between the envelopes and the Partial Least

Squares (PLS), which are shown in Cook et al. (2013). In their work, the authors showed

a connection between PLS and envelope; however, envelope outperforms PLS in predic-

tion and estimation. Zhu and Su (2019) extended this work and proposed a developed

version of sparse PLS via the link between PLS and envelope. The connection comes from

dividing the predictors into active, and inactive variables, where active variables refer to

the predictor variables whose coefficients are not zero, and inactive variables refer to the

predictor variables that have zero coefficients. This classification is reflected in Γ by seeing

zero and non-zero rows, where the zero rows correspond to the inactive predictors. Thus,

the predictor envelope subspace has the following structure:

Γ =
[
ΓA
0

]
(3.30)

where ΓA is the active predictor variables. The regression coefficient β is estimated based

on the active predictor and denoted by βA = ΓAη. Recall (3.29), the parameterisation of

A serves the sparse structure of Γ. That is, Γ has zero row if and only if the corresponding

row in A is zero. Hence, inactive predictors are identified via sparsity structure of A. To

make the envelope-based sparse PLS estimator β a sparse estimator, the author induce

the sparsity in A by adding an adaptive group lasso penalty to the objective function in

(3.28) to be as follows:

Lu(A) = −2 ln |CT
ACA|+ ln |CT

AM̂CA|+ ln |CT
A(M̂ + Û)−1CA|+ λ

p−u∑
i=1

wi||ai||, (3.31)

where ||.|| is the `2 norm of a vector, λ is the tuning parameter and wi is the adaptive

weights vector. On the other hand, in high dimensional data Sx|y is replace by the sparse

permutation invariant covariance (SPICE), Sx|y,spice. Then the optimisation is carried out

over (3.29) and (3.31) to find Â. Once Â is determined thus the estimate of the regression

parameter vector β̂ under the envelope based sparse PLS is given by:

β̂ = Γ̂(Γ̂TSXΓ̂)−1Γ̂SXY ,

= PΓ̂(SX)β̂ols.
(3.32)
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3.5.2 Envelope quantile regression

Ding et al. (2019) adapted envelope methodology to Quantile Regression (QR) and

proposed Envelope Quantile Regression (EQR) to improve the efficiency of the standard

QR. This method builds the estimation inference on the material part only via estimating

the envelope subspace. However, this work varies from the previous work in the point

that the inference and the estimation were derived based on the Generalised Method

of Moment (GMM). In contrast, previous work was developed based on the maximum

likelihood principle. To illustrate the technique in estimating the envelope subspace in

EQR, suppose:

QY (τ |X = x) = µτ + βTτ x, (3.33)

is the linear quantile regression which describes the relation between the τ th- conditional

quantile of the univariate response y and the predictor vector x ∈ Rp; where QY (τ |X =

x) = inf{y : FY (y|X = x) ≥ τ}, 0 < τ < 1, FY (y|X = x) = P (Y ≤ y|X = x) is the

cumulative distribution function of Y , µτ is the intercept and βτ ∈ Rp is the coefficients

vector. Under model (3.33) the estimates of the model parameters (µ̂τ , β̂τ ) is

(µ̂τ , β̂τ ) = arg min
µτ∈R,βτ∈Rp

n∑
i=1

ρτ (yi − µi − βTτ xi), i = 1, ..., n, (3.34)

where ρτ (z) = z[τ − I(z < 0)]. Now, under the EQR the parameters to be estimated are

(µτ , EΣX (βτ ), vech(ΩT
τ ),ηTτ , vech(ΩT

0τ )). Ding et al. (2019) introduced a distribution free

objective function that depends on GMM:

θ̂ = argminθh(θ)T ∆̂h(θ), (3.35)

where θ̂ = (µ̂τ , ÊΣX (βτ ), vech(Ω̂T
τ ), η̂Tτ , vech(Ω̂T

0τ )) is the parameters vector, ∆̂ is chosen

to be
√
n-consistent estimator of [E(hhT )]−1, where h is defined as follows:

h =

h1
h2
h3

 =


1
n

∑n
i=1(1,xTi )T [I(Yi < µτ + ηTτ Γτxi)− τ ]

vech(ΓτΩτΓ
T
τ + Γ0τΩ0τΓ

T
0τ )− vech(SX)

µX − X̄

 ,
where vech denotes the vector-half operator that stretches the lower triangle of a symmetric

matrix into a vector. The optimisation of (3.35) is done using to Nelder-mead method

over the parameters vector θ. Once the envelope subspace EΣX (β)τ is estimated, then

Γτ = span(EΣX (βτ )). Hence, the EQR parameters β̂τ = ΓTτ ητ . The authors argued that
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asymptotically the estimates found via EQR are at least as efficient as the standard QR

estimators.

3.5.3 Non-linear envelope

Zhang et al. (2020) proposed methods to tackle the response reduction when there

is a nonlinearity relationship between Y and X, and heterogeneity in the conditional

covariance. The authors proposed a Central Mean Envelope (CME), which detects the

heterogeneity on the conditional variance (ΣY |X), and Martingale Difference Divergence

Envelope (MDDE), which captures the nonlinearity in the conditional mean E(Y |X).

The CME method differs from the standard envelope in that it focuses on the conditional

mean. In contrast, the standard envelope focuses on the characteristics of the conditional

distribution of Y |X when performing the reduction. The martingale difference divergence

matrix is applied to measure the dependency in the mean.

In CME the interest is in the conditional mean function E(Y |X), that is, the goal

is to find a subspace S such that E(Y |X) = E(PSY |X) + E(QSY |X) = E(PSY |X) +

E(QSY ) and denoted by EE(Y |X). The following proposition facilities the definition of

CME.

Proposition 3.5.1. The CME of Y on X reduces ΣX . Moreover, EE(Y |X) =
∑
x(MY |X).

Where (MY |X) is the martingale difference divergence matrix (MDDM) and defined as:

MY |X = MDDM(Y |X) = −E
[
{Y − E(Y )}{Y ′ − E(Y ′)}T ||X −X′||

]
, (3.36)

where (Y ′,X′) is an independent copy of (X,Y ). Direct estimation of CME as the

sum of subspace
∑
x(MY |X) is difficult. Hence, MDDE is introduced to facilitate the CME

estimation. MDDE is a portion of CME which defined based on the expectation of the

conditional covariance Σ = E{cov(Y |X)} as follows:

Definition 3.5.1. The martingale difference divergence envelope of Y ∈ Rr on X ∈

Rp, denoted as EΣ(MY |X), is the intersection of all the reducing subspaces of Σ =

E{cov(Y |X)} that contain span(MY |X) = span [cov{E(Y |X)}].
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Now, since it is challenging to find Σ = E{cov(Y |X)} in the nonlinear regression

and because ΣY = cov(Y ) = cov {E(Y |X)} + E {cov(Y |X)} = cov {E(Y |X)} + Σ the

following proposition shows that the marginal covariance ΣY instead of Σ in the MDDE.

Proposition 3.5.2. The martingale difference divergence envelope EΣ(MY |X) = EΣY (MY |X)

and is the intersection of all S ⊆ Rr such that:

(i)E(QY |X) = E(QY ), and

(ii)cov(QY,PY ) = 0.

Given the envelope dimension u1 = dim
{
EΣY (MY |X)

}
, on one hand, the MDDE=span(Ĝ)

can be estimated by optimising the following objective function:

Ĝ = arg min
GTG=Iu1

log |GT (Σ̂Y + M̂Y |X)−1G|+ log |ĜΣ̂YG|, (3.37)

where M̂Y |X is the sample MDDM and Σ̂Y is the sample covariance of Y .

On the other hand, since the CME is defined as EE(Y |X) =
∑
x EΣX (MY |X), the esti-

mation process is performed by slicing X into H slices and approximate ΣX by a finite

number of covariance matrices Σh, h = 1, ...H,H ≥ 2. Each of the covariance matrices Σh

represents the conditional covariance matrix for each slice or cluster Σh = cov(Y |X ∈ Rh),

where R1, ...,RH is the partition of the support of X. For a univariate X it is par-

titioned into H non-overlapping slices similar to sliced inverse regression. For multi-

variate X, H clusters are constructed similar to the idea of K-mean inverse regression.

If normality is assumed for each slice Rh, that is, (Y |X ∈ Rh) ∼ N(µh,Σh). Then

CME= span(Γ̂) becomes the smallest subspace reduces all Σh and contains the mean sub-

space span(µ1−E(X), ...,µH−E(X)). Hence, is estimated via optimising the likelihood-

based objective function:

Γ̂ = arg min
ΓTΓ=Iu

log |ΓT Σ̂−1
Y Γ|+

H∑
h=1

nh
n

log |ΓT Σ̂hΓ|. (3.38)



Chapter 4

Support Vector Machine

4.1 Introduction

In Chapter 3, we define the envelope-based techniques in the regression framework,

where the response is a continuous variable (a scalar or a vector). In contrast, consider

classification and discriminate analysis setting where the response y is a categorical vari-

able. Each element (category) yi indicates the class where the observation belongs. Hence,

the classification task is to predict to which class each object belongs with a low misclassi-

fication rate. The successful process of such data requires a classifier of high classification

accuracy. Support Vector Machines (SVM) is one of the widely used classifiers. Since its

first proposal by Cortes and Vapnik (1995), wide range of SVM-based researches devel-

oped in machine/statistical learning. Numerous researchers have studied SVM in linear

and non-linear cases. Among others, (Suykens and Vandewalle (1999), John Lu (2010),

James et al. (2013), Li et al. (2011)). In this chapter, we discuss in more detail the classic

SVM classifier. The cornerstone in performing SVM is constructing the hyperplane. That

is, the process of constructing a linear decision boundary that separates the data under

consideration into distinguished groups as possible. We review the hyperplane construc-

tion as well as other SVM related terminologies.

In this chapter, we discuss support vector machines in classification. In Section 4.2

we give the geometrical illustration of the concept of the separating hyperplane. Section

4.3 we investigate the linear SVM for separable and non-separable data. In Section 4.4

we discuss the classification of non-linear data, in which we define the kernel functions

and demonstrate some of the commonly used kernels. Finally in Section 4.5 we discuss

36
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the multi-class classification. Please note that, the content of this chapter was based on

the content of the following Gareth et al. (2013), Abe (2005), Hastie et al. (2009), and

Christmann and Steinwart (2008).

4.2 Hyperplane

Generally, the hyperplane in a p-dimensional space is a (p − 1) flat subspace. For

instance, the hyperplane is a line in two-dimensional space, while in three-dimensional

space, the hyperplane is a flat plane (two-dimensional subspace). From a mathematical

point of view, the hyperplane in a p-dimensional space is given by:

b+ w1x1 + ...+ wpxp = c, (4.1)

where c is a constant, b is the offset of the decision boundary from the origin, and w1, ..., wp

are the weights. The value of c in (4.1) determines where x lies. That is:

c = 0 x lies on the hyperplane,

c > 0 x lies on one side of the hyperplane,

c < 0 x lies on the other side of the hyperplane.

It can be seen that the location of x with respect to the hyperplane is affected by the

value of c. According to the value of c associated with each data point, some points lie on

the hyperplane, some lie above, and others lie below. Hence, the hyperplane can be viewed

as a separating decision boundary. For instance, if we have two groups of data points in

two-dimensional space, the separating hyperplane is defined as a line drawn to create the

widest space possible that separates one group of data (say class one) from the other.

The optimal separating hyperplane is the one that maximizes the distance between the

nearest point from each class and the hyperplane. This distance is known as the margin.

Maximizing the margin decreases the chance of misclassification. To illustrate the idea

of finding the optimal hyperplane suppose we have n data points (xi, yi), i = 1, ..., n.

Further, suppose the data of interest come from two classes that are linearly separable

datasets; where xi is a p-dimensional input and yi is defined as follows

yi =
{

1, if xi ∈ class 1
−1, if xi ∈ class 2

(4.2)
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There are infinitely many separating hyperplanes that can be found between the two

classes. However, the optimal hyperplane is the one that has the widest margin, see

Figure 4.1. Let the distance from the closest point from each class to the hyperplane

is M . That is, the margin on each side is equal, and M units are far away from the

hyperplane. Hence, the optimal hyperplane seeks to solve the following optimization:

L = max
b,w,||w||

M (4.3)

such that yi(wTx+ b) ≥M,

where ||.|| is the `2 norm. The constraint in (4.3) is to assure that the closest data point is

at least M units far away from the decision boundary. Hence, the larger M is, the better.

The alternative way of writing (4.3) is as follows:

1
||w||

yi(wTx+ b) ≥M, (4.4)

or

yi(wTx+ b) ≥||w||M. (4.5)

We will use (4.5). For any (w, b) satisfying these inequalities, any positively scalar

multiplication satisfies them too. Set ||w|| = 1
M , i.e minimizing ||w|| indicates maximizing

M thus (4.5) becomes:

L = min
w,b

1
2 ||w||

2 (4.6)

such that yi(wTx+ b) ≥ 1, i = 1, ..., n.

The constraint in (4.6) define a margin around the decision boundary of width 1
||w|| .

Hence, when solving this optimization, one seeks (b,w) that maximizes the width. (4.6) is

a convex (quadratic) optimization problem with linear constraints. A Lagrangian method

is used to find the minimum of the objective function. Thus, we introduce a Lagrangian

multiplier (α) to the objective function L in (4.6). The modified objective function is given

by:

L = 1
2 ||w||

2 −
n∑
i=1

αi[yi(wTx+ b)− 1]. (4.7)

The hyperplane is determined by the values of (w, b); however, the solution has to satisfy

Karush Kuhn Tucker (KKT) conditions (Fletcher, 1987) (given in the appendix). That is,
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∂L(w, b, α)
∂w

= 0,

∂L(w, b, α)
∂b

= 0.

Thus, finding the derivatives and equating it to zero yields:

w =
n∑
i=1

αiyixi, (4.8)

0 =
∑

yiαi, (4.9)

This gives the solution to the primal form of optimization. Hence, we need to solve the

dual part of the original optimization, i.e., to solve for αi. Substituting (4.8) and (4.9) in

(4.7) we get Wolfe dual that is given by:

L(α) =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj , (4.10)

subject to 0 ≤ α ≤ c,
∑

yiαi = 0. (4.11)

To find the values of α, we maximize (4.10).

For new test data x∗, the decision function is given by:

D(x∗) = sign(wTx∗ + b), (4.12)

hence, x∗ is located in class 1 or class 2 based on the sign of D(x∗). If D(x∗) > 0 it

belongs to class 1 and if D(x∗) < 0 it belongs to class 2.
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Figure 4.1: The optimal separating hyperplane (the solid black line) for separable data.
The dotted green and blue lines are possible hyperplane.

4.3 Linear support vector machines

Suppose we have a sample of n = 12 observations divided into two classes as in Figure

4.1. In this example, the two classes are well separated and represented by two colors.

A linearly separating decision boundary is drawned to produce homogeneity between the

classes. In fact, there are countless possible hyperplanes; however, the one drawn with a

view to maximize the distance that separates the classes is the optimal one. In SVM lan-

guage, the nearest points to the decision boundary are known as support vectors. Through

the support vectors, one seeks two parallel lines that maximize the perpendicular distance

from the decision boundary (margin) (Berk et al., 2008).

Considering Figure 4.2, it is clear that some of the data points from both classes are

misclassified. Practically, such a dataset is more realistic, and it is common to have points

cross their margin (misclassification). When constructing the optimal hyperplane, one

needs to be more flexible in allowing misclassification. In such a case, a small positive

number indicates how far the point crosses the margin, denoted by a slack variable, is

introduced to construct the optimal hyperplane.
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Figure 4.2: The optimal separating hyperplane (the solid black line) for non-separable
data.

Figures 4.1, and 4.2 demonstrate the two types of linear SVM. Both are denoted by

linearly separable data. However, the theory for constructing the separating hyperplane

differs between them. The former case where the data is well separated and no data point

is allowed to cross its margin is theoretically known as hard margin. In contrast, the later

case where this condition is relaxed is referred to as soft margin. In the next section, we

explain both cases.

4.3.1 Hard margin SVM

Suppose we have n data points (xi, yi), i = 1, ..., n. Further, suppose the data of

interest come from two linearly separable classes, where xi is a p-dimensional input, and yi
is defined as in (4.2). The optimal hyperplane is obtained by solving the objective function

given by (4.6); however, the process of constructing the optimal separating hyperplane

was explained in section 4.2. The dual optimization given by (4.10) is known as hard



CHAPTER 4. SUPPORT VECTOR MACHINE 42

margin support vector machines. If the data are linearly separable and the solution exists

that implies the optimal solutions for α ∈ Rn exists. The solution of dual parameter

αi, i = 1, ..., n either αi = 0 or αi 6= 0. The data points xi whose dual parameter αi 6= 0

are support vectors.

The decision function is given by:

D(x) = sign(wTx+ b). (4.13)

If the data point was classified correctly then yiD(xi) > 0.

4.3.2 Soft margin SVM

Practically, it is common to have points that cross their margin (misclassification).

This is the case where the data points are non-linearly separable 4.2. In SVM, some of

the data points are allowed to cross the margin. That means yi(wTxi + b) ≥ 1 is not

satisfied for these points. A slack variable is introduced in such a case. The slack variable

is a small positive number indicating how far the point crosses its margin. Hence, the

only difference between this case and the former is that the optimization function in (4.6)

becomes:

argminw
1
2w

Tw + γ
n∑
i=1

ξi,

subject to yi(wTxi + b) ≥1− ξi,
n∑
i=1

ξi ≥0.

(4.14)

where γ
∑n
i=1 ξi added to account for the points that violate the margin. Similar to

the linearly separable case, we convert this constrained problem to unconstrained and

introduce Lagrangian multipliers (α, λ) such that:

L(w, b, ξ, α, λ) = 1
2w

Tw + γ
n∑
i=1

ξi −
n∑
i=1

αi(yi(wTxi + b)− 1 + ξi)−
n∑
i=1

λiξi, (4.15)
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Similarly,

∂L(w, b, ξ, α, λ)
∂w

= 0

∂L(w, b, ξ, α, λ)
∂b

= 0

∂L(w, b, ξ, α, λ)
∂ξ

= 0

That yields:

w =
n∑
i=1

αiyixi (4.16)

subject to ∑
yiαi = 0, 0 ≤ αi ≤ γ

γ − αi − λi = 0

The scenario demonstrated here is known as soft margin SVM. The decision boundary

is given by:

D(x) = sign(wTx+ b). (4.17)

4.4 Non linear support vector machine

In this section, we investigate the case where a strong non-linear relationship is present.

For this scenario, the linear statistical methods become not applicable. Hence, there is a

need to develop methods that overcome this limitation. These methods should effectively

capture the useful information and consider the non-linearity in such a dataset. In Section

4.3 we discussed the different types of linear SVM and demonstrated how to construct the

separating hyperplane in each case. Naturally, the SVM classifier is designed to deal with

linear data; however, one may encounter non-linear data in practice. For instance, consider

the data shown in Figure 4.3 a; the figure shows the scatter plot of two-dimensional

data with binary class. It can be clearly seen that the data are non-linearly separable.

Hence, applying linear SVM to such data will perform poorly, as shown in Figure 4.3

b. In SVM literature, the technique to handle this problem is to linearize the data via

mapping it to a higher dimensional space known as feature space (Abe, 2005). If the data

under consideration is not linearly separable, one possible solution is to transform the
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data to a higher dimension where a hyperplane becomes possible to construct. The data

is transformed via kernels to a subspace referred to as reproducing kernel Hilbert space

(RKHS), where the inner dot product is possible. In the following section, we introduce

the RKHS then we define kernels.

(a) (b)

Figure 4.3: a: scatter of non-linear data. b decision boundary based on linear SVM.

4.4.1 Kernels and Reproducing Kernel Hilbert Space

The idea in kernel-based methods is to embed the data into an RKHS (with a feature

map) and then perform the linear techniques on the embedded data. These models are

derived from a direct connection between a Reproducing Kernel Hilbert Space (RKHS)

and the corresponding feature space representation where the input data are mapped.

That is, suppose we have a set of an input data {xi}ni=1 ∈ Rp. Further, suppose Φ is

mapping function such that Φ : Rp → F , where Φ(x) is d × n a random transformation

function in the RKHS that maps X into the d-dimensional feature space, d > p.

The following definition given in Steinwart and Christmann (2008) facilitates the mean-

ing of three terminologies that will be used throughout this section. Namely, kernel, feature

space, and feature map.

Definition 4.4.1. Suppose X is a non-empty set. The the function K : X × X → R is

called kernel on X if there is exists a Hilbert space F and a map Φ : X → F such that

∀x,y ∈ X we have

k(x,y) = 〈Φ(x),Φ(y)〉,
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where Φ is referred to as feature map and F is a feature space.

The main objective of mapping the input data to a feature space where the dot product

is possible. The mapping Φ : X → F allows SVM to construct the decision boundary for

the non-linear data. In this process SVM application requirement is to compute the inner

products 〈Φ(x),Φ(y)〉 instead of finding Φ explicitly. The kernels have to be symmetric

positive definite, and for any kernel, there exists a unique reproducing kernel Hilbert space

(RKHS) that will be established by Mercer’s theorem. The following proposition states

Mercer’s theorem (Steinwart and Christmann, 2008).

Proposition 4.4.1. (Mercer’s theorem) Let X be a compact metric space and k :

X × X → R be a continuous kernel. Further, let µ be a finite Borel measure; then, for

(ei)i∈I and (λi)i∈I we have

k(x,y) =
∑
i∈I

λiei(x)ei(y), x,y ∈ X .

where the convergence is absolute and uniform.

As it can be seen, the non-linear SVM relies on reproducing kernel Hilbert space theory.

That is, because of the association between the positive definite (or semi-definite) kernels

and the RKHS, SVM is able to construct the decision boundary for the non-linear data

via kernel trick. The following proposition given in Berg et al. (1984) will define RKHS

then we will explain the kernel trick.

Proposition 4.4.2. (Reproducing kernel Hilbert space ) Let X be an input data and

k(x,y),x,y ∈X be a positive semidefinite kernel. Further, suppose F0 is a space spanned

by the functions {kx|x ∈X} where

ky = k(x,y).

Then there exist a Hilbert space F , that is a complete space of F0, and mapping from X

to F such that

k(x,y) = 〈kx, ky〉.

The determination of the appropriate kernel is a challenging task. The kernel trick

is the name of the process of transforming the inseparable data into separable one via
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special functions known as kernels (also known as variance function). In this section, we

will demonstrate the commonly used kernels in literature.

From a statistical point of view, kernels can be classified into three classes: stationary,

non-stationary, and Locally Stationary Kernels (Genton, 2001). Each of which has its

properties and spectral representation. In the following, we will give a summary of the

kernel classes:

• Stationary kernels: a stationary kernel implies that the value depends on the

difference between the two objects, not on the objects themselves; that is, stationary

kernels have the following form:

K(x1,x2) = K(x1 − x2). (4.18)

This class includes a wide range of commonly used kernels, Circular, Spherical,

Rational quadratic, Exponential, Gaussian, and Wave kernels.

• Non-stationary kernels: In contrast to the stationary class, the predicted value in

non-stationary kernels depends on the objects. The polynomial kernel is an example

of a non-stationary kernel.

• Locally stationary kernels: This class of kernels is of the following form:

K(x1,x2) = K1(x1 + x2
2 )K2(x1 − x2), (4.19)

where K1 and K2 are nonnegative functions and stationary kernels, respectively.

Locally stationary kernels include some sceptical cases; from (4.19) and (4.18), we

can see that the stationary kernels class is a special case of the local stationary class

if K1 = 1. The other case is inherited from the exponentially convex kernels, that is

K(x1,x2) = K1(x1 + x2). (4.20)

Hence, since the product of two kernels is a kernel, a vast class of locally stationary

kernels can be introduced via the multiplication of stationary kernel and exponen-

tially convex kernel.

In non-linear SVM, a wide range of kernel functions can be used. We will illustrate

the most frequent kernels in SVM literature.
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• Linear kernel: This is the simplest type of kernels. It is used when the data is

linearly separable and there is no need for mapping to a higher dimensional feature.

The linear kernel has the following form:

K(x1,x2) = xT1 x2. (4.21)

• Radial Basis Function Kernels: The radial basis function (RBF) kernel can be

written as:

K(x1,x2) = exp(−γ||x1 − x2||2), (4.22)

where γ is a positive number controlling the radius. The decision boundary hence

becomes

D(x) =
∑
i∈S

αiyi exp(−γ||xi − x||2) + b.

• Polynomial kernels: The other possible kernel is the polynomial kernel that takes

the form:

K(x1,x2) = (xT1 x2 + 1)d, (4.23)

where d is the degree of the polynomial.

4.5 Multi-classes support vector machine

Suppose we have {xi, yi}ni=1 an n independent data points, where y represents the

class label. Further, suppose the data points come from more than 2-classes such that

each group of observations belongs to a different class. Since many algorithms in machine

learning, including SVM, are formulated to handle the binary-class problem, applying

these classifiers to multi-class data is not straightforward (Rokach, 2010). A modification

needs to be applied to the data to apply SVM. A number of approaches were introduced in

the literature to handle the multi-classes problem (Abe, 2005). These approaches included

and were not limited to:

• one against one (pairwise) classification,

• one against all classification,

• error-correcting output code classification, and
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• all at once classification.

The central concept of the approaches listed above is to allow the multi-class problems to

be reframed into multiple binary classes and then perform the SVM sequentially. That

is, classifying multi-class data is not a one-step task; one needs to perform a sequence of

decision boundaries. The number of classes determines the number of decision boundaries

one needs to be obtained. We will explain how each method performs the classification:

• One against one classification: this approach performs classification based on

all possible pairs, that is, it constructs
(Z

2
)

SVM classifiers (James et al., 2013). In

other words, for classification, one might compare class i versus class j coded as +1

and −1, respectively. Hence, all possible
(Z

2
)

pairwise SVM classifiers are performed

for new test data. The observation is assigned to the class most frequently assigned

in the pairwise classification.

• One against all classification: This alternative approach converted the multi-

class classification into Z binary classification. Each time we compare class i coded

as +1 against the remaining Z−1 classes coded as −1. The new test data is assigned

to the class assigned to it the most.

• Error correcting output code classification: This approach required r = dlog2 Ze

SVMs, where d.e is the ceiling operator. The concept of this approach is to assign a

unique r-bits (binary string) known as code. That is, for a Z-class problem, one needs

to construct an Z × r matrix, say J . Each row of J represents the code associated

with class z, and the column represents the classifiers. Then for each column, we fit

an independent classifier. For new instance x, we find a bit-string, say b(x) of length

r based on training the classifiers. The decision is taken by finding the minimum

Humming distance between b(x) and Jz. That is, suppose Humming distance be-

tween b(x) and the zth class Jzdenoted by hz, one seeks to find arg minz hz(b(x),Jz).

The new input is hence assigned to the class that is closest in the distance.

• All at once classification: This alternative approach converted the multi-class

problem into a binary classification. The conversion is achieved by expanding the

input data’s dimension from p dimensional into p×Z and simultaneously performing

all the decision boundaries.



Chapter 5

Envelope-based support vector
machine classifier

5.1 Introduction

In this chapter, we employ the efficiency of an envelope method to improve classifica-

tion accuracy by extending the envelope model to supervised learning. We propose a new

classifier, namely an envelope-based support vector machine classifier (ESVM). By intro-

ducing ESVM, we aim to enhance classification accuracy via tackling the dimensionality

problems in classification. In our approach, we aim to eliminate the effect of redundant

features that might affect classification efficiency. We assume the features that are cor-

related to the outcome form a reducing lower-dimensional subspace in which the data

are projected. Hence, one objective is to extract a reducing subspace that contains the

informative features only. This reducing subspace is used as a projection matrix to reduce

the dimension of the data under consideration. The classification based on classic SVM is

then performed on the reduced data.

Consider classification and discriminant analysis settings where the response is a cate-

gorical variable. The successful classification process requires a classifier of high classifica-

tion accuracy. However, when the data is high dimensional, due to its nature, classifying

such data might be computationally expensive. Hence, in such data analysis, reducing the

data’s dimension without loss of information is a primal interest.

In statistical analysis, including classification and discriminant analysis, the problem of

dimensionality is addressed in two ways. One approach via performing features selection

49
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and classification simultaneously. The other approach is the projection-based techniques

and known as reduce and classify. That is, we assume that there exists a reducing sub-

space that contains the classification-related information. The classification based on the

latter approach is a two stages process: in the first stage projecting the data onto a

lower-dimensional subspace. Then the second stage is performing the classification of the

projected data.

The majority of research has intensively studied and improved the dimension reduction

methods in the regression framework to enhance prediction ability. Similarly, the accuracy

of classification might be affected by a large number of variables. Hence, reducing the

dimensionality improves the generalization and reduces the complexity of the classifier

(Aksu et al., 2010). Several authors have considered reducing the dimension of the features

as a preliminary step before performing classification. See for example, (Paul et al., 2013),

and (Kumar et al., 2007). (Moradibaad and Mashhoud, 2018) have performed singular

value decomposition (SVD) as a dimension reduction methods. That is, the data matrixX

is decomposed based on SVD and written as X = USV T , then apply SVM to perform the

classification. (Bura and Pfeiffer, 2003) used sliced inverse regression and sliced average

variance estimation to extract the sufficient dimension reduction and then obtain the

graphically based classification. (Shao et al., 2014) proposed classification based on PCA

and kernel PCA. (Antoniadis et al., 2003) used minimum average variance estimation to

reduce the dimension prior to the classification. (Chen et al., 2018) introduced maximal

mean-variance as a dimension reduction method.

Our approach differs in that we employ the effectiveness of the envelope principle to

extract the reducing subspace. That is, the reducing subspace estimation algorithm works

to include only the informative (material) predictor variables and excludes the redun-

dant (immaterial) predictor variables. Hence, the components of the material predictor

variables form the lower-dimensional subspace onto which the dataset is projected. The

classification based on the projected data performs better or at least as good as the clas-

sification based on full data. However, working with lower dimension data advances the

classification process in accuracy as well as in computation costs, as working with lower di-

mensions is less expensive. The critical point in our approach is the efficiency of estimating

the reducing basis.

This chapter is organized as follows: the geometry of the projection-based classification
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is given in Section 5.2. An overview of envelope methods for labeled data is given in Section

5.3. The formal introduction of our proposed classifier is given in Section 5.4, in which

we show the model, the estimation of the ESVM projection basis, and the classification

rule. The link between SVM and linear discriminate analysis is discussed in Section 5.5.

The criterion to select the dimension of ESVM basis is demonstrated in Section 5.6. The

asymptotic properties of the model parameters are given in Section 5.7. Lastly, Section

5.8 contains numerical studies, which include a collection of public data as well as different

scenarios of synthetic data.

5.2 Projection and margin preservation in support vector
machine

In chapter 4, we have demonstrated the SVM algorithm for constructing the separating

hyperplane. The key concept in constructing the optimal hyperplane is to maximize the

distance between the nearest point from each class and the hyperplane, i.e., maximizing

the margin. Hence, it is preferable to keep the margin preservation when transforming the

data via projecting it into a projection matrix. The projection matrix can be extracted

at random or non-random methods. Gaussian random projection (Shi et al., 2012), for

instance, is a widely used technique for random projection. Paul et al. (2013) argued that

the Euclidean distance is preserved if the random projection is carefully chosen. They have

proved that SVM optimization based on the projected data results in comparable margin

and data radius as in the original space. On the other hand, the non-random projection

matrix construction techniques include PCA, PLS, SIR, and SAVE.

Furthermore, if we assume that the original data fall within a ball with a random

radius; thus, the radius of the minimal ball enclosing the projected data is very close

to the minimal ball enclosing the original data. This result is an indication of margin

preservation and no classification-related loss of information based on reduced data. On

the other hand, it is worth mentioning that classification based on reduced data decreases

the computation complexity and memory usage.
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5.3 Envelope for labeled data

In this section, we discuss constructing envelope subspace for labeled data. As shown

in chapter 3, envelope method originaly was developed in regression framework. The

concept of envelope-baed reducing basis in discriminant analysis was introduced in Zhang

and Mai (2018). The authors proposed envelope based technique for constructing sufficient

dimension reduction in discriminate analysis, namely envelope in discriminant subspace

(ENDS). Suppose yi is a categorical response variable that represents the class label such

that yi ∈ {1, ..., Z} where Z ≥ 2, i =, 1, ..., n. Further, suppose X ∈ Rp×n is the data

matrix repesenting n observations in p dimensional space. Given a subspace S ⊆ Rp, let

ΦS(X) ≡ arg maxz=1,...,Z Pr(y = z|PSX). If S satisfies the condition ΦS(X) = Φ(X),

where Φ(X) ≡ arg maxz=1,...,Z Pr(y = z|X), then S is known as discriminant subspace.

Similar to the CS, if the intersection of all discriminate subspace is itself subspace then it

is referred to as central discriminate subspace (CDS) and denoted by SD(Y |X).

The envelope discriminate subspace is defined as the smallest subspace that satisfies

the following conditions:

• ΦS(X) = Φ(X)

• cov(PSX,QSX) = 0

The first condition assures that classification based on the reduced dataset is as efficient

as classification based on the complete dataset. While the second condition indicates that

the material part PSX is linearly independent of the immaterial part QSX = X −PSX.

The second condition is to assure that the immaterial part will not affect the classification

directly nor indirectly via its relationship with the material part.

On the other hand, Wang et al. (2020) extended envelopes for unsupervised learning

and model-based clustering. They proposed a new mixture model, namely the cluster-

ing envelope mixture model (CLEMM), which is based on the commonly used Gaussian

mixture model assumptions. The new method is developed based on the belief that there

exist two orthogonal subspaces, say (S,S⊥). That is, projecting the data onto one of

these subspaces has no information about the clustering structure and hence immaterial

to the clustering algorithm, while projecting the data onto the other subspace contains all

relevant information about variation across clusters and hence of interest. To put every-
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thing together; let X ∈ Rp×n be the observations matrix and assumed to be the Gaussian

mixture model distributed, that is:

X ∼
Z∑
z=1

πzN(µz,Σz), (5.1)

where πz ∈ {0, 1},
∑Z
z=1 πz = 1 is the mixing weight, µz ∈ Rp is the mean of cluster z,

and Σz ∈ Rp×p is the covariance matrix of cluster z.

Suppose S is the subspace of interest, further suppose Γ ∈ Rp×u, u < p is the basis

of S and Γ0 ∈ Rp×(p−u) is the basis of S⊥. Under the CLEMM, X is partitioned into

material and immaterial part, such that XM = ΓTX, denotes the material part of X and

XIM = ΓT0X denotes the immaterial part of X. The distributions of the material and

immaterial parts are given by:

XM = ΓTX ∼
Z∑
z=1

πzN(αz,Ωz), XIM = ΓT0X ∼ N(0,Ω0), XM⊥XIM (5.2)

which states that the distribution of the material part varies across clusters while the

distribution of immaterial is unimodal and fixed across clusters.

5.4 Definition and notation

In this section, we define the notations of our approach. Suppose y = (y1, ..., yn) is

a categorical response variable representing the class label, and X ∈ Rp×n is the data

matrix. Further, assume that there is an orthogonal basis (Γ,Γ0), such that Γ ∈ Rp×u

(u < p) is a semi-orthogonal basis and Γ0 ∈ Rp×(p−u). Let the S ∈ Rp be the subspace

spanned by columns of Γ, S = span(Γ). Let the complement of S denoted by S⊥ and

constructed with the usual inner product. Given that ΓTΓ is positive definite; we define

the orthogonal projection of Γ onto S as: PΓ = Γ(ΓTΓ)−1ΓT , while the projection onto

S⊥ is denoted by QΓ = Ip − PΓ.

For a subspace S ∈ Rp and M ∈ Rp×p, the following definition facilitates the descrip-

tion of a subspace and an envelope, and equivalent to that given in Cook et al. (2010).

Definition 5.4.1. S reduces M ∈ Rp×p if and only if M can be written in the form

M = P T
SMPS +QT

SMQS .
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In our work, M is represented by the covariance matrix Σ. We assume the that the

transformed predictors, ΓTX captures all the information needed for the classification.

That is, the classification based on ΓTX is equivalent to the classification based on X.

Now, estimating the ESVM basis, Γ is of interest, and since the only requirement for Γ is

to be semi-orthogonal, there are a number of ways that one can estimate such a matrix.

One is, for example, the use of dimension reduction techniques; the other is the use of

likelihood estimation in a similar manner suggested by Cook et al. (2010). The following

section facilitates the estimation process.

5.4.1 The estimation of envelope basis

In this section, we discuss the estimation of the ESVM basis. It is well known that

SVM is a distribution-free classifier; however, for the sake of developing the algorithm

to estimate the semi-orthogonal matrix Γ, suppose X is normally distributed with class

mean and shared variance, X ∼ N(µz,Σ). Since we assume the existence of a lower-

dimensional semi-orthogonal basis Γ that captures all relevant information across classes,

suppose (Γ,Γ0) ∈ Rp×p is an orthogonal basis such that Γ ∈ Rp×u and Γ0 ∈ Rp×(p−u).

Further, let ΓTX is the material part, the part that contains all the information about

classification, and ΓT0X is the immaterial part. The ESVM basis Γ can be estimated,

without loss of generality, via a likelihood-based technique. That is, Γ is a solution to an

optimization over Grassman manifold G(p, u) under the constraint ΓTΓ = Iu.

Under the normality assumption of the data, X ∼ N(µz,Σ), that is:

f(x) = (2π)−p/2|Σ|−1/2 exp
{−1

2 (x− µz)TΣ−1(x− µz)
}

(5.3)

Now, assume µz = Γαz is the class mean, where α ∈ Ru and Σ = ΓΩΓT + Γ0Ω0Γ
T
0 .

The likelihood function becomes:

L =
n∏
i=1

(2π)−p/2|ΓΩΓT+Γ0Ω0Γ
T
0 |−1/2 exp

{−1
2 (xiz − Γαz)T (ΓΩ−1ΓT + Γ0Ω

−1
0 ΓT0 )(xiz − Γαz)

}
(5.4)

The log-likelihood is given by:

` = constant−n2 |ΓΩΓT+Γ0Ω0Γ
T
0 |−

1
2
∑
z

∑
i

(xiz−Γαz)T (ΓΩ−1ΓT+Γ0Ω
−1
0 ΓT0 )(x−Γαz)

(5.5)
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The parameters to be estimated are (Γ, αz,Ω,Ω0). To find the MLE for the parameters,

we find the derivatives with respect to each parameter then equate it to zero. The MLEs

for the parameters are given by:

α̂z = ΓT x̄z,

Ω̂ = ΓTSΓ,

Ω̂0 = ΓT0 SxΓ0,

where S is the shared class variance and Sx is overall variance. Substituting the MLEs in

the log-likelihood yields:

Γ̂ = arg min
Γ∈G(u,p)

[
log |ΓTS−1

x Γ|+
Z∑
z=1

nz log |ΓTSΓ|
]
. (5.6)

Thus, Γ can be estimated by optimising (5.6) over Grassman manifold. In the following

section we explain the algorithm to estimate ESVM basis.

5.4.2 Algorithm for ESVM

In this section the algorithm for constructing the ESVM basis Γ is presented. The

estimated basis, Γ̂ is a solution to an optimisation over Grassman manifold G(u, p) under

the constraint ΓTΓ = Iu. The estimation is not straightforward and challenging task.

Recall (5.6), is a function that is invariant under right orthogonal transformation; precisely,

for any U ∈ Ru×u orthogonal matrix, f(ΓU) = f(Γ). Now, suppose SΓ is the subspace

spanned by the columns of Γ. Then

SΓ =
{
ΓU |U ,UTU = Iu

}
∈ G(u, p), (5.7)

where G(u, p) is the Grassmann manifold of all u−dimensional subspace in Rp (Adragni

et al. (2012), Zhang et al. (2018)). The task now is to find an estimate of Γ, such that:

Γ̂ = arg max
Γ∈G(u,p)

f(Γ). (5.8)

The algorithm for estimating Γ is an iterative procedure that computes an ascent direction

where f(Γ) increases. Let Γ∗ = (Γ,Γ0) ∈ Rp×p be an orthogonal matrix, where Γ0 ∈

Rp×(p−u) is the completion of Γ. Further, let V = (∇f(Γ))TΓ0 be the rate of change

of f(Γ) in the direction of Γ0. Let J ∈ Rp×p a skew−symmetric matrix depends on the

directional derivative V , and updated until the stopping criteria is met. J is defined as

follows:

J =
(

0u V
−V T 0p−u

)



CHAPTER 5. ENVELOPE-BASED SUPPORT VECTOR MACHINE CLASSIFIER 56

The sufficient condition ŜΓ be a maximizer of f is that ||V || < δ, where δ is sufficiently

small number. Hence, the algorithm can be summarised as follow:

Algorithm 2 Grassmann manifold optemization
1. initiate Γ∗0, the initial value of Γ∗ at step m0.
2. For m = 1, 2, ... until the convergence reached do the following:
(i) Compute the directional derivative V then form the matrix J .
(ii) Update Γ∗m+1 = Γ∗m exp {γJ} , where γ ∈ (0, 1).
3. Γ̂ is the first u columns of Γ∗ at the last iteration.

5.4.3 Classification mechanism of Envelope Support Vector Machine
classifier

In this section, we discuss the classification mechanism of our proposed classifier,

ESVM. Recall that in classic SVM, the key point is to estimate the optimal hyperplane.

This hyperplane is determined by the model parameters (w, b). The parameters of interest

can be estimated by optimizing the following objective function:

wTw + λE[1− (wTx− b)] (5.9)

The material part ofX is given byX = ΓTX, hence one can substitute x by its reduction.

The objective function in the envelope projected space is:

wT
ΓwΓ + λE[1− (wT

Γ ΓTx− b)], (5.10)

where wΓ ∈ Ru is the weight and the subscript to distinguish it from the full data based

weight. To estimate wΓ one needs to solve the objective given in (5.10).

Similar to the classic SVM, to estimate wΓ consider the following optimisation

arg min
wΓ

1
2w

T
ΓwΓ + γ

n∑
i=1

ξi

subject to yi(wT
Γ ΓTxi + b) ≥1− ξi

n∑
i=1

ξi ≥0.

(5.11)
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we introduce Lagrangian multipliers (α, λ) such that:

L(wΓ, b, ξ, α, λ) = 1
2w

T
ΓwΓ + γ

n∑
i=1

ξi −
n∑
i=1

αi[yi(wT
Γ ΓTxi + b)− 1 + ξi]−

n∑
i=1

λiξi, (5.12)

Similarly,

∂L(wΓ, b, ξ, α, λ)
∂wΓ

= 0

∂L(wΓ, b, ξ, α, λ)
∂b

= 0

∂L(wΓ, b, ξ, α, λ)
∂ξ

= 0

That yeilds:

ŵΓ =
n∑
i=1

ΓTαiyixi = ΓTw (5.13)

subject to ∑
yiαi = 0, 0 ≤ αi ≤ γ

γ − αi − λi = 0

Thus, the classification decision for given data point x is given by:

D(x) = sign(wT
Γx+ b). (5.14)

From the above, it is obvious that ŵenv = ŵΓ = ΓTw, where ŵenv is the estimator in

the envelope space, w is the SVM solution in the original p-dimensional space.

5.5 Relation to envelope discriminant analysis

Linear Discriminant Analysis (LDA) and support vector machine in concept, both

classifiers compute an optimal hyperplane. In this section, we investigate the relation

between SVM and LDA. Further, we will revisit the work proposed by Zhang and Mai

(2018) to show that span(Γ) in (5.6) is equivalent to the envelope discriminant subspace.

In the simplest case, if we have two-classed data, let wsvm and wLDA be the norms cal-

culated by SVM and LDA, respectively. Generally speaking, since the optimal hyperplane

is unique, then we have:

||wsvm|| ≤ ||wLDA||,
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where wsvm =
∑n
i=1 αiyixi and wLDA = Σ−1(µ1 − µ2). If x ∈ R2, and tranformed via

x = Σ−1/2x, hence the norm of LDA reduces to the difference between the classes means

wLDA = (µ1 − µ2), (Gokcen and Peng, 2002). The equality between the norms in the

spherical space can be written as:

µ1 − µ2 =
n∑
i=1

αiyixi,

where µz is the class centroids z = 1, 2, αi is the Lagrange coefficient, and yi is the

class label. Given a data set; if all Lagrange coefficients are equal, then SVM normal is

equivalent to LDA normal. That is, SVM is a special case of LDA if the support vectors

contain all the data points.

Recently, Zhang and Mai (2018) proposed envelope discriminant subspace (ENDS-

LDA), see section 5.3. Let

X|y = z ∼ N(µz,Σ), µz = Γαz,Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , (5.15)

where Σ is the class covariance and assumed to be the same for all classes, i.e. Σ1 = Σ2 =

... = ΣZ = Σ. LDA classifier aims to obtain Bayes rule associated with lowest error rate.

Zhang and Mai (2018) introduced envelope discriminant subspace where span(Γ) is the

smallest subspace that reduces Σ and have shown that the projected data preserves the

Bayes rule. Under the normality assumption, ENDS-LDA has a similar parametrization

for µz and Σ as ESVM as shown in (5.3).

5.6 Selecting the dimension of ESVM

Determining the number of components or, equivalently, the dimension of ESVM sub-

space u is an essential step. This section will discuss the criteria for selecting optimal

u. To select the optimal u, we use the K-fold Cross-Validation (CV) method. That is,

given a dataset of size n, we split it into K groups (folds) such that one group is used for

validation, and the method is trained on the remaining (K − 1) folds. Then the method

accuracy is calculated on the validation or hold-out group. The u that produces the best

accuracy is then chosen (Cook (2018) and James et al. (2013)). The CV technique for

dimension selection can be summarized as follows:

1. Split the data into K almost equal size folds, G1, ..., GK .
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2. For k = 1, ...,K

(i) Train the method on (xi, yi) /∈ Gk and validate it on the hold-out fold whose

elements (xi, yi) ∈ Gk.

(ii) For each value of u = {1, 2, .., p−1} estimate the label of validate set and calculate

the prediction accuracy as:

Acck = number of correctly classified observations
nGk

,

where nGk is the number of elements in the validation fold.

(iii) Calculate the K-fold CV estimate by averaging the values of Acc1,...,AccK :

CVK = 1
K

K∑
j=1

Accj

3. Repeat steps 1 and 2 M times and find the accuracy average:

CV (u) = 1
M

M∑
m=1

CV
(m)
K .

4. The optimal u; hence, is the one that is associated with the maximum accuracy;

that is:

u = arg max
u

CV (u).

5.7 Asymptotic properties

In this section, we discuss the asymptotic properties of the coefficients in the solution of

ESVM classifier. We mainly derive the asymptotic normality of the coefficients of ESVM,

namely (wΓ, b). We apply Bahadur representation to derive the asymptotic properties

of the coefficients (Bahadur, 1966) in a similar manner to the work presented by Koo

et al. (2008). However, in the former work, the hessian matrix was derived via Radon

transformation, while in our work, we employ the result presented in Li et al. (2011).

For simplicity, we developed the results for binary classes. Let θ = (wΓ, b), θ∗ = wΓ,

m = (xT , y)T and x̃ = (x,−1). Further, suppose we have linear classification with

hyperplane defined by: g(x, θ) = b+ θ∗TΓ x. Thus, the support vector machine minimizes

the following function:

J (θ,m) = θ∗Tθ∗ + λE[1− yig(xi,θ)] (5.16)
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Let the minimizer of (5.16) denoted by θ̂. Further, let Ωm be the support of m and h

be a function of (θ,m) such that: h = Θ × Ωm → R. Suppose ∆θ denote the (u + 1)-

dimensional vector of derivatives, ∆θ = (∂/∂θ1, ..., ∂/∂θu+1). The following propositions

give the gradient of θ.

Proposition 5.7.1. Suppose the distribution of X|Y = yi ∀yi ∈ {−1, 1}, is dominated

by Lebesgue measure and E(||x||2) <∞ then:

G(θ) = ∆θE[J (θ,m)] = 2θ∗T − λE[x̃yI(1− θT x̃y > 0)]. (5.17)

Now, in order to develop the asymptotic covariance of θ̂, the following proposition

demonstrates the hessian matrix

Proposition 5.7.2. Suppose x has a convex and open support and the conditional distri-

bution X|Y = yi ∀y ∈ {−1, 1}, is dominated by Lebesgue measure. Further, suppose

1. If we have any linearly independent θ∗, δ ∈ Ru, yi ∈ {−1, 1}, and v ∈ R, the

following function is continuous:

d 7−→ E(x̃|θ∗Tx = d, δTx = v, Y = y)fθ∗Tx|δTx,Y (d|v, y); (5.18)

2. For any i = 1, ..., u and y ∈ {−1, 1}, there is a nonnegative function ci(v, y) with

E[ci(V, Y )|y] <∞ such that

E(x|θ∗Tx = d, δTx = v, Y = y)fθ∗Tx|δTx,Y (d|v, y) ≤ ci(v, y); (5.19)

3. There is a nonnegative function c0(v, y) with E[c0(V, Y )|y] <∞ such that fθ∗Tx|δTx,Y (d|v, y) ≤

c0(v, y). Then, the function θ 7−→ ∆θE[J (θ)] is differentiable in all direction with

the following derivative matrix:

H(θ) = 2 + λ
∑

P (Y = y)fθ∗Tx|Y (b+ y|y)E(x̃x̃T |θ∗Tx = b+ y). (5.20)

The proof of the propositions are given in (Li et al., 2011) and for ease we provide it in

the appendix. Lastly, we develop the
√
n consistency and asymptotic normality of ESVM

coefficients estimators.

Proposition 5.7.3. Let {xi, yi}ni=1 be a set of n data points drawn independently from

the distribution of (X, Y ). Then
√
n(θ̂ − θ) converges to normal distribution with mean

0 and variance H(θ)−1G(θ)H(θ)−1.
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5.8 Numerical study

In this section, we conducted several simulation studies to evaluate the performance

of the proposed classifier. Public real data have been used for the same purpose as well.

The evaluation of our method was set against the wildly known classifiers: support vector

machine (SVM), linear discriminant analysis (LDA), and logistic regression. We used

classification accuracy as an evaluation measure, which calculated as follows:

Accuracy = TP+TN
TP+TN+FP+FN , (5.21)

where

• True Positive (TP)=number of subjects that correctly classified as positive.

• True Negative (TN)=number of subjects that correctly classified as negative.

• False Positive (FP)=number of subjects that falsely classified as positive.

• False Negative (FN)=number of subjects that falsely classified as negative.

The built-in R functions are used for SVM (e1071), LDA (lda), and for grassmann opti-

misation we used (GrassmannOptim). The following sections demonstrate the outcome

based on real and simulated data.

5.8.1 Simulation

In this section, we discuss various simulation settings to compare the classification

performance of our method, ESVM classifier, against other popular classifiers. The sim-

ulated data have been divided into training and test data as 80% and 20% respectively.

We conducted the simulation with different sample sizes n = 30, 60, 100, 120, 200, each

of which with different choice of parameters (p, u, Z,Γ,Γ0,Ω,Ω0). The summary of the

simulation setting is given in Table 5.1. To evaluate the performance of each method, the

classifiers were trained on training data and evaluated on test data. For ESVM, the classi-

fier was evaluated at different choices of components, while other classifiers were evaluated

based on full dimensioned data. Then the average percentage of classification accuracy

was calculated over 100 independent replicates.
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The model parameters are generated as follows: the elements of the basis Γ ∈ Rp×u

were randomly generated from uniform distribution (0, 1) then orthogonalised such that

(Γ,Γ0) forms an orthogonal matrix. The class mean µz = Γηz, where ηz ∈ Ru×1 is gen-

erated from standard normal. The symmetric positive definite matrices Ω ∈ Ru×u,Ω0 ∈

R(p−u)×(p−u) are diagonal matrices with Ω = τ1Iu and Ω0 = τ2I(p−u). The parameters τ1

and τ2 vary to manifest the collinearity among the predictor variables (Cook et al., 2013).

The predictor variables are assumed to be multivariate normal vectors with class mean µz
and shared covariance Σ, where µz = Γηz when the subject xi ∈ class z, the covariance

matrix Σ = ΓΩΓT + Γ0Ω0Γ
T
0 .

The data is assumed to be coming from Z classes such that, the label; yi is defined as

follows:

yi =
{
z, if xi ∈ class z (5.22)

The simulation has been carried out as follows:

1. Fix the envelope basis dimension u, then generate the parameters (Γ,Γ0,Ω,Ω0,η)

as explained above.

2. Fix n, p, Z and accordingly generate the data X ∼ N(µz,Σ) and the label y.

3. Divide the date into training and test data.

4. Estimate the ESVM basis Γ̂ from the training data following algorithm 5.4.2.

5. Reduce the full data by projecting it into Γ, that is X∗ = ΓTX.

6. Apply SVM algorithm to full dimension and reduced data as well as LDA and logistic

regression for full dimension data. The average classification accuracy is reported

for each method.
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n p u z τ1 τ2
30,60,100 10 3 2 2 0.2

2 20 0.4
60 15 3 3 2 0.2

6 3 4 0.25
120 15 3 2 0.2

6 3 4 0.25
200 30 8 4 2 0.2

4 0.25

Table 5.1: The different choices of the model parameters for the simulation.

In all simulation settings, the classification accuracy varies. The focus was on ESVM

in terms of performance against other classifiers. As shown in table 5.1, we vary the

parameters and sample size to observe classifiers’ behaviour. The outcome; however,

showed that ESVM was uniformly better across all settings.

The first study was based on a sample n = 30 divided into two equal groups with 10

predictors. For this choice of n we vary the number of components as well as the values of τ1

and τ2 to account for multicollinearity. That is, large τ1/τ2 means large correlation among

predictors (Cook et al., 2013). The results are shown in Figure 5.1; for the first setting,

where the collinearity is moderate, ESVM and SVM performed equally well and achieved

the highest classification accuracy. However, ESVM obtained slightly better accuracy

performance with fewer components. For the second setting, where the multicollinearity

is higher that reflected via the values of τ1 and τ2. The overall performance is affected

by the multicollinearity; however, we can see that ESVM performs better than the other

classifiers.

Figures 5.2 and 5.3 show the outcome of different simulation scenarios when n =

60. Figure 5.2 summarizes the binary setting while Figure 5.3 summarizes the multi-

classes settings. In both figures, the plot on the left shows the average accuracy when the

collinearity is mild, while the plot on the right when the collinearity is higher. Having other

factors fixed and varying the number of predictors, the binary class data when p = 10 and

the size class is n = 60 the classifiers performance is better than the multi-classes settings.

The ESVM classifier in both settings produces the best accuracy.
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(a) (b)

Figure 5.1: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM. a: sample size n = 30, p = 10, Z = 2, (τ1, τ2) = (2, 0.2). b
sample size n = 30, p = 10, Z = 2, (τ1, τ2) = (20, 0.4).

(a) (b)

Figure 5.2: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM. a: sample size n = 60, p = 10, Z = 2, (τ1, τ2) = (2, 0.2). b
sample size n = 60, p = 10, Z = 2, (τ1, τ2) = (20, 0.4). The dashed vertical line is the true
number of components.
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(a) (b)

Figure 5.3: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM. a: sample size n = 60, p = 50, Z = 3, (τ1, τ2) = (2, 0.2). b
sample size n = 60, p = 15, Z = 3, (τ1, τ2) = (4, 0.25). The dashed vertical line is the true
number of components.

In the following scenario, we increased the sample size to be n = 100 and n = 120 with

three different choices of the number of predictor variables and the classes p = 10, Z =

2, u = 3 and p = 15, Z = 3, u = 6, respectively. We vary the level of collinearity as well

from moderate to high. The intention here is to see the effect of the number of classes as

well. From Figures 5.4 and 5.5, the same can be said about the ESVM performance being

better than other classifiers.
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(a) (b)

Figure 5.4: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM. a: sample size n = 100, p = 10, Z = 2, (τ1, τ2) = (2, 0.2). b
sample size n = 100, p = 10, Z = 2, (τ1, τ2) = (20, 0.4). The dashed vertical line is the true
number of components.

(a) (b)

Figure 5.5: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM. a: sample size n = 120, p = 15, Z = 3, (τ1, τ2) = (2, 0.2). b
sample size n = 120, p = 15, Z = 3, (τ1, τ2) = (4, 0.25). The dashed vertical line is the true
number of components.
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The last study was based on n = 200, with two choices of τ1 and τ2 was selected

to produce moderate and high correlation. As results shown in 5.6, for multiple classes,

ESVM performs better than other candidates.

Overall, ESVM performs well in all simulation settings. In some scenarios we noticed

that the best accuracy is achieved when the number of components (u) is closer to the

number of predictors (p). However; we noticed as well a number of components less than p

produces slightly lower accuracy could be chosen to be the ideal number of components by

which the dimension reduction is achieved. For instance Figure 5.1 (b) where p = 10, the

maximum accuracy is obtained at u = 9, however by choosing u = 5 we achieve dimension

reduction. Further, we noticed that if the number of the predictor variables is closer to

the class size, that is; p ≈ nz the classification performance reduces.

(a) (b)

Figure 5.6: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM. a: sample size n = 200, p = 30, Z = 4, (τ1, τ2) = (2, 0.2). b
sample size n = 200, p = 30, Z = 2, (τ1, τ2) = (4, 0.25). The dashed vertical line is the true
number of components.

On the other hand, the 5-fold cross-validation is used on ESVM dimension selection.

That is, for each of the simulation scenarios described in this section, we ran a 5-fold

cross-validation method based on 30 samples and reported the optimal suggested number

of components. For n = 30, the simulation was based on u = 3. In the first setting,
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the cross-validated accuracy suggested that 3, 4 are similar with an accuracy 0.75, 0.77,

respectively. While for the second setting, the accuracy at u = 5 and u = 8 is similar; 0.53

and 0.54, respectively. For n = 60 we have 4 scenarios. The first scenario, as explained

earlier, was binary class data with p = 10, u = 3 while the other is based on multi-class

data with p = 15, u = 3 and 6; both with two levels of multicollinearity. The optimal

number of components for the two binary class data settings is 4, with accuracy 0.82 and

0.55, respectively. For multi-class settings when n = 60, for the first scenario, the cross-

validated accuracy suggested that the optimal number of components is 5 and 9 with a

very similar accuracy of 0.56 and 0.59 and u = 6 for the other scenario. For n = 100, u = 3,

the optimal u = 4 with accuracy 0.81 and 0.56 respectively. The other choice of sample

size is n = 120, which was simulated with u = 6. The suggested number of components

based on cross-validated accuracy for both settings for this choice of sample size are 5 and

6 with an accuracy of 0.54 and 0.62, respectively. Lastly, for the setting n = 200 where

the true number of components is u = 8, the cross validated accuracy suggested u = 12

with associated accuracy 0.63 for the first scenario and 0.48 for the second scenario.

5.8.2 Real data

In this section, we tested our method based on 3 publicly available datasets. Each

dataset was divided into training and test data, 80% and 20% respectively. ESVM was

compared against SVM, LDA, and logistic regression. In a similar manner to simulated

data, the classifiers were trained on training data and then evaluated on test data. The

process was repeated 50 times then the average classification accuracy was reported. To

determine the optimal number of components, we used the 5 fold cross-validated accuracy.

Berkeley dataset

This dataset contains the height of 93 children born in 1928-29 in Berkeley, of which

54 girls and 39 boys. For each child, the height measurement obtained at 31 age points

between the age of 1 and 18 (RD, 1954). The children’s height measurements were taken

at 31 various age points while conducting the study, representing the predictor variables,

i.e p = 31.The data was classified based on gender into two groups. We evaluated the

classification accuracy for ESVM at different choices of u, while for SVM, LDA as well

as logistic regression based on full dimensioned data. We repeated this process 50 times
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with a random split of the data. Figure 5.7 shows the average classification accuracy that

the classifiers scored. The data has a considerably large number of predictor variables,

p = 31; however, we can see that ESVM achieved better classification accuracy compared

to other classifiers with only 10 components.

To determine the optimal number of components for this dataset, the cross-validated

accuracy suggested that u = 10 with 0.96 accuracy.

Figure 5.7: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM for Berkeley dataset. The dashed vertical line is the estimated
number of components.

Cattle dataset

The Cattle data (Kenward, 1987) investigated two treatments that were applied to

control roundworm in cattle. A sample of 60 cows was divided into two groups equally such
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that each group had 30 cows. The weights of the cows were measured at the beginning

of the study, then every two weeks at time intervals from week 2 till week18; the last

measurement was taken after one week (week 19). We classified the data using ESVM,

SVM, LDA, and logistic regression, then computed the classification accuracy. The results

are shown in Figure 5.8; we can see that the classifiers perform equally well. ESVM

achieved classification accuracy similar to SVM only 4 components. That agreed with the

optimal number of components suggested by cross-validated accuracy as well .

Figure 5.8: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM for Cattle dataset. The dashed vertical line is the estimated
number of components.
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Breast cancer dataset

The breast cancer data is public real data variable at UCI Machine Learning Repository

Dua and Graff (2017). The data has 569 observations and p = 30 predictor variables. The

features are computed from a digitized image of a fine needle aspirate (FNA) of a breast

mass while the response variable indicates the diagnosis status (malignant or benign). We

divide the dataset into training and test data. The classifiers are trained on the training

data and evaluated on the test data. Figure 5.9 shows the average classification accuracy.

ESVM achieved %91 accuracy with only 3 components and %95 with 7 components. In

contrast, the other classifiers (SVM, LDA, and LR) performed equally based on full data.

In other words, ESVM performed as well as other classifiers with low cost.

The 5-fold cross-validated accuracy showed that u = 8 is the optimal choice for the

number of components.
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Figure 5.9: The average classification accuracy percentage based on SVM, LDA, logistic
regression (LR) and ESVM for breast cancer dataset. The dashed vertical line is the
estimated number of components.

5.9 Conclusion

In this chapter, we introduce a new projected-baed classifier, Envelope-based Support

Vector Machine (ESVM). This work was inspired by the efficiency that envelope-based

techniques achieved in regression. Our approach assumes that the misclassification rate

increases if the data includes redundant variables. Hence, excluding these variables ad-

vances the classifier generalization. We have discussed the algorithm for extracting the

reducing subspace that contains the classification-related information. To evaluate the

method, we conducted several settings of simulated data. The simulation scenarios ad-

dressed issues such as: level of multicollinearity among the predictor variables and the
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relation between the sample size and the number of predictor variables. Our method has

shown promising results when compared to other classifiers: classical SVM, LDA, and lo-

gistic regression. We have demonstrated the efficiency of our classifier via different settings

of simulated data as well as in real data.



Chapter 6

Sparse Envelope Based Support
Vector Machine

6.1 Introduction

In this chapter, we further extend our ESVM classifier to accommodate the sparsity

problem. An important feature of a good classifier is the ability to predict the class of

future data with a low misclassification rate. However, due to the large p small n setting,

many classifiers may perform well in the training data, but it generalizes poorly with the

test data (Bradley and Mangasarian, 1998). A common problem that affects classification

performance is sparsity, which implies that only a small portion of the predictor variables

contributes to the classification procedure. Keeping the irrelevant variables while per-

forming the classification reduces the accuracy of classifications, (Merchante et al. (2012),

Guyon et al. (2002), Tibshirani et al. (2002),Mai et al. (2012),Clemmensen et al. (2011)).

In such a situation, one may aim to reduce the data dimensionality by deducting the

classification-related subset of the predictor variables and base the classification on this

subset. In classification problems, the reduction of the dimension of the features is ap-

proached in two ways. The first methodology is to add a penalty to the objective function

in such a way the penalty works to estimate sparse coefficients. This is known as regular-

ization or shrinkage, the technique by which the estimated coefficients of non-significant

predictor variables shrink towards zero by the added penalty to the objective function.

Precisely, the natural approach to tackle the sparsity problem is to regularize the weight

associated with the non-significant variables. One may employ one of the various penal-

ties that exist in statistical literature; see Chapter 2. The other way is to process the

74
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reduction via the projection technique. In other words, the initial step is preserved to es-

timate a new subspace with dimension (d < p) that contains all the required information

about the classification and then project the data into this subspace. The sparse principal

component analysis (Zou et al., 2006) is a common dimension reduction technique in the

presence of sparsity.

In Chapter 5, we introduced an envelope-based support vector machine classifier, in

which we show the procedure of constructing a projection matrix. This projection matrix is

used to reduce the dimensionality of the data prior to the classification. In this chapter, we

modified our method to accommodate the sparseness in the data. We added an adaptive

group lasso penalty to impose the sparsity in the data. That is, our approach is meant to

perform variable selection and feature extraction simultaneously.

This chapter is organized as follows: in Section 6.2 we review the methods that handle

sparsity in classification. In Section 6.3, we introduce our classifier and demonstrate the

classification algorithm. Section 6.4 we conduct different simulation settings to evaluate

our classifier’s performance.

6.2 Sparsity in classification

Sparsity implies that a small portion of the input predictor variables is related to the

classification process. Researchers have proposed various algorithms to address this prob-

lem and improve classification accuracy. Among others, Tibshirani et al. (2002) proposed

a computational technique for classification and variables selection based on modifying

the nearest centroid classifier. They proposed a threshold by which each class centroid

is shrunken. Hence, a new sample is trained following the classic nearest centroid algo-

rithm using the shrunken class centroids. This algorithm works as a classifier and variable

selection. That is, if a new sample hits zero for all classes, then it is eliminated. Fan

and Fan (2008) proposed a new classifier, namely Features Annealed Independence Rules

(FAIR). The algorithm employs a component-wise t-test between two classes to select the

significant features. That is, for each feature j, the following t-test is calculated:

Tj = x̄1j − x̄2j√
S2

1j/n1 + S2
2j/n2

, (6.1)
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where xkj is the jth feature from class k, nk is the number of observations in class k,

and x̄kj , Skj are the sample mean and variance of the jth feature in class k , k = 1, 2,

respectively. The absolute values of the calculated t-statistics of the features are sorted

in decreasing order based on the importance of the features. The new observation x is

classified into class 1 if the decision function δ(x) > 0, where δ(x) is defined as follows:

δFAIR(x) =


∑p
j=1 α̂j(xj − µ̂j)I{|α̂|j>b} if Σ1 = Σ2 = I,∑p
j=1 α̂j(xj − µ̂j)/σ̂2I{

√
n/(n1n2)|Tj |>b}

otherwise, (6.2)

where αj = µ̂1j − µ̂2j , b is a threshold and Tj is the two sample t-statistics. However,

the drawback of the above explained algorithms is that these methods do not count for

correlation among features.

Clemmensen et al. (2011) developed a sparse discriminant analysis (SDA), a method

for performing linear discriminant analysis with sparseness criterion that handles classifi-

cation and feature selection simultaneously. The proposed method is a sparse version of

linear discriminant analysis (LDA) based on LASSO penalty (Tibshirani, 1996). LDA can

be seen as originating from Fisher’s discriminant analysis, which involves finding discrim-

inative p dimensional vectors β1, ...,βK−1. The discriminative vectors can be successively

maximized over the following objective function:

maximizeβk{β
T
k Σbβk}

subject to βTk Σwβk = 1, βTk Σwβl = 0 ∀l < k,

where Σb =
∑K
k=1 πkµkµ

T
k is the between class covariance matrix, where πk is the prior

probability for class k and Σw is the within class covariance matrix. The SDA makes

use of optimal scoring technique (Hastie et al., 1995), and developed a sequential sparse

criterion to solve for the kth pair of the parameters (βk,θk). The optimal scoring method

reshapes the classification problem in a regression setting by transferring the categorical

variable y into a quantitative variable via sequence of scoring. That is, the optimal scoring

optimisation is formulated as follows:

minimizeβk,θk{||Y θk −Xβk||
2

subject to 1
n
θTk Y

TY θk = 1, θTk Y
TY θl = 0, ∀l < k,
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where Y is a n×K matrix of dummy variables for the K classes such that yik indicates

whether the ith observation belongs to class k, θ is a K dimentional vector of scores. Hence,

the kth sparse discriminate solution pair (βk,θk) is found via solving the optimisation:

minimizeβk,θk{||Y θk −Xβk||
2 + γβTk Ωβk + λ||βk||1}

subject to 1
n
θTk Y

TY θk = 1,θTk Y TY θl = 0,∀l < k,

where λ and γ are tuning parameters.

Mai et al. (2012) have proposed another approach of sparse discriminant analysis for

feature selection and classification. The method differs from the former in that it was

motivated by the relation between least squares formulation and linear discriminant anal-

ysis and used for binary classes problems. The LASSO penalty was added to induce the

sparsity. Hence the penalized least squares solutions found as:

(β̂lasso, β̂0) = arg min
β,β0

{
n−1

n∑
i=1

(yi − β0 − βTxi)2 + λ
p∑
j=1
|βj |

}
. (6.3)

The new sample x is placed in class 2 if:

β̂Tlassox+ β̂0 > 0. (6.4)

On the other hand, sparse support vector machines has been proposed as good can-

didate to classify high dimensional data. For instance Guyon et al. (2002) proposed a

SVM-based technique to feature selection and classification simultaneously. Namely, Re-

cursive Feature Elimination (RFE) support vector machines. The RFE is an instance

of backward elimination. This classifier is defined as follows: train the data based on

SVM then rank the features based on a chosen ranking criterion. Select a predetermined

small number of the features that gave the best ranking. The features were ranked based

on sensitivity analysis or correlation to the outcome. The drawback of this classifier is

that the recursive feature elimination method is inconsistent with the maximal margin

solution(Aksu et al., 2010). SVM is not meant to do variable selection, however, adding

appropriate penalty to the objective function makes it possible for SVM to do variable

selection indirectly.

Bradley and Mangasarian (1998) have modified classical SVM by adding `1 penalty

which obtained sparse coefficient in the solution. This algorithm handles binary classes

data. Let X ∈ Rn×p be the data matrix, further assume m observations allocate in the
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first class and represented by A while f observations allocate in the second class and

represented by B, where m + f = n. An observation x belongs to A if wTx > b and

belongs to B if wTx < b, where w is the vector of weights while b is the offset. The

coefficients are estimated by minimizing the following objective:

min
w,b

g(w, b) = min
w,b

1
m
||(−Aw + eb+ e)+||1 + 1

f
||(Bw − eb+ e)+||1,

where e is a vector of ones (with arbitrary dimension), (x)+ = max{0, x}, and ||.||1 is the

`1 norm. The sparseness is obtained by introducing a tuning parameter λ ∈ [0, 1) such

that the objective function becomes:

minimizew,b,y,z(1− λ)
(
eTy

m
+ eTz

f

)
+ λeT |w|∗

subject to −Aw + eb+ e < y,

Bw − eb+ e < z,

y ≥ 0, z ≥ 0,

where |w|∗ ∈ Rp has entries equal 1 if the corresponding entries in w is nonzero and zero

if the corresponding entries. Generally speaking, the term (eT |w|∗) counts the number of

nonzero features, where the feature is excluded if the entry of w is zero. The fundamental

drawback of this method is that it discards the correlation among features (Zhu and Zou,

2007).

Gómez-Verdejo et al. (2011) proposed a modified SVM to perform variable selection

and classification simultaneously. Their adjustment based on adding a new slack variable

that can be used to variable selection. That is, consider the classical SVM minimisation

in (4.14), they assumed the weight is written as w = u+v. Further, they introduce a new

slack variable ξ∗ associate with the features such that the features whose slack variables

equal to zero can be illuminated. The determination of the value of ξ∗ is based on a small

number ε such that if the absolute value of the weight associated with a feature j is greater

than ε then the corresponding ξ∗j is not zero and zero otherwise. The new minimisation
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becomes:

arg min
p∑
j=1

(u2
j + v2

j ) + γ
n∑
i=1

ξi + γ∗
p∑
j=1

ξ∗j

subject to yi(
p∑
j=1

(u2
j + v2

j )x
(i)
j + b) ≥ 1− ξi

ξi ≥ 0; ∀i

uj + vj ≤ ε+ ξ∗j ; ∀j

uj + vj ≥ 0; ∀j

ξ∗j ≥ 0; ∀j.

(6.5)

In the next section we introduce the sparse ESVM.

6.3 Sparse Envelope Support Vector Machine (SESVM) clas-
sifier

Several implementations in sparse support vector machine have been developed. In

this section, we formulate the Sparse Envelope-based Support Vector Machine (SESVM)

classifier. The developed classifier is an extension to the ESVM classifier, which was

introduced in Chapter 5; however, the main difference is the modification in the basis

extraction algorithm to produce a sparse projection matrix. The modification is justified

via adding adaptive group LASSO penalty to the objective function to induce the sparsity

in the projection matrix. The classification mechanism of SESVM is in a similar fashion

to ESVM. That is, once the projection basis is obtained, the first step we project the data

onto it. Then after projecting the data onto the lower-dimensional subspace, we perform

the classic SVM classifier. Generally speaking, our algorithm performs variable selection

and feature extraction simultaneously as an initial step. The next step is to classify the

reduced data based on SVM.

To formulate the model, suppose the predictors X ∈ Rp×n, encompasses of two distin-

guishable groups of predictor variables: active and inactive predictor variables. A predictor

variable is characterised as an active variable if it has non zero coefficient and characterised

as inactive otherwise. Further, let XA ∈ RpA×n represents the active predictor variables

and XI ∈ RpI×n represents the inactive predictor variables such that X = (XT
A,X

T
I )T ,

where pA is the number of active predictor variables, pI is the number of inactive predic-
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tor variables such that p = pA + pI . Now, suppose (Γ,Γ0) ∈ Rp×p is an orthogonal basis

where Γ ∈ Rp×u and Γ0 ∈ Rp×(p−u) such that:

Γ =
[
ΓA
0

]
, Γ0 =

[
ΓA0 0
0 IpI

]
, (6.6)

where ΓA ∈ RpA×u constitutes the relevant active predictors, the zeros correspond to the

inactive variables, ΓA0 ∈ R(pA−u)×(pA−u). Further, the coordinate Ω0 has the following

structure:

Ω0 =
[

ΩA0 ΩAI0
ΩIA0 ΩI0

]
, (6.7)

where ΩA0 ∈ R(pA−u)×(pA−u). The correlation between the two sources of the immaterial

part is preserved in ΩAI0 if ΩAI0 6= 0 (Zhu and Su, 2020).

It is worth noting that the active predictor variables are categorized into material

and immaterial based on their contribution to the outcome. The material part is the

components of the active variables that are relevant to the outcome. While the immaterial

part QE = PΓ0X decomposes into: (XT
AQΓA ,X

T
I )T . That is, the immaterial part comes

from two sources: the immaterial part in the active variables (XAQΓA) while the second

source is the inactive predictors (XI) (Zhu and Su (2020) and Chun and Keleş (2010)).

Hence, we assume a grouping structure; that is, the predictor variables could be divided

into disjoint groups, and the same group can predict the class of an individual. The

proposed algorithm aims to estimate the SESVM basis Γ such that the basis has to reflect

the sparseness in the data. That is, the predictor variable is considered inactive if the

corresponding row in the basis is represented by zeros (Chun and Keleş (2010) and Zhu

and Su (2020)). This sparsity representation is well known in the literature, and it means

that these variables represented by zeros are not informative to the outcome.

In Chapter 5, we have shown the likelihood-based objective function to construct the

ESVM basis Γ. The SESVM is an extension of ESVM that handles sparse data. Hence, to

induce the the sparsity in SESVM basis, we added adaptive group LASSO penalty (Yuan

and Lin, 2006) to the objective function in (5.6). That is,

L(Γ) = arg min
Γ∈G(u,p)

{
log |ΓTS−1

X Γ|+ log |ΓT0 SΓ0|+ λ
p∑
i=1

wi||γi||2

}
, (6.8)
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where λ is tuning parameter, γi is the ith row of Γ, and wi is the weight associated to the

iith predictor. The weight is given by: wi = 1/||γ̂i||τ2 , where γ̂i is an estimate of γi which

can be found by ESVM and τ is a tuning parameter can be chosen from {0.5, 1, 2, 4, 8}

(Zou, 2006). The weight plays a role in the regularization process, that is, inactive variables

has smaller weight that taking its reciprocal maximizes the penalty and drags it to zero.

The adaptive group LASSO penalty differs from LASSO in that it sets group of variables

to zero instead of single predictor; hence instead of penalizing one coefficient it penalizes

group of them. Furthermore, by adding the weight it solves the estimates inefficiency as

well as variable selection inconsistency (Wang and Leng, 2008). This penalty has been

used by several researches (Meier et al., 2008).

In a situation when the number of predictor variables exceeds the number of observa-

tions, SX becomes singular. However, S−1
X appears in (6.8) and required in the algorithm

to estimate SESVM basis, hence, we substitute this by Sparse Permutation Covariance

Estimator (SPICE), (Rothman et al., 2008). The SPICE is used for its simplicity as it

does not require sparsity in SX . Thus, (6.8) becomes:

L(Γ) = arg min
Γ∈G(u,p)

{
log |ΓS−1

XSPICE
ΓT |+ log |Γ0SΓT0 |+ λ

p∑
i=1

wi||γi||2

}
. (6.9)

The objective function in (6.9) is optimized over Grassmann Manifold to estimate Γ.

Once the basis Γ is found, the data is reduced by projecting it onto Γ. Similar to what

has been explained in Chapter 5, the SVM classifier is performed to the reduced data in

the same manner.

6.4 Numerical studies

We are interested in the effect of dimension reduction and variable selection in classifi-

cation accuracy. That is, we would like to investigate the difference that excluding inactive

variables and reducing the dimension of the data make in the classification performance.

In this section we illustrate the performance of our proposed classifier. Various settings of

simulation studies have been conducted. The method have been tested on public real data

as well and was compared against other classifiers: sparse LDA (SpLDA), sparse logistic

regression (spLR), and SVM.
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6.4.1 Simulation design

Seven different datasets were generated. For each setting, the observations are assumed

to be generated from Z classes, each class has nz observations such that
∑Z
z=1 nz = n.

The class observations are generated from normal distribution with class mean µz and

shared covariance matrix Σ1 = Σ2 = ... = ΣZ = Σ, xiz ∼ N(µz,Σ), i = 1, ..., n; z =

1, ..., Z. The class mean µz = Γηz and the covariance matrix Σ = ΓΩΓT + Γ0Ω0Γ
T
0 .

The semi-orthogonal matrix Γ ∈ Rp×u was generated with same structure as in (6.6).

That is, the entries of Γ can be classified into two groups: active variables ΓA, whose

elements represent the active variables and inactive variables ΓI which represents the

inactive variables and all zeros. The elements for ΓA ∈ RpA×u is generated randomly from

standard normal distribution. Following orthogonalizing Γ, Γ0 ∈ Rp×(p−u) was generated.

We assume homogenous classes, the shared covariance matrix for each class Σ is generated

as Σ = ΓΩΓT +Γ0Ω0Γ
T
0 . The positive definite matrices Ω ∈ Ru×u and Ω0 ∈ R(p−u)×(p−u)

were generated as diagonal matrices, where Ω0 follows same structures in (6.7). That is,

Ω = τ1Iu and Ω0 = (τ2IpA , IpI ). The mean of each class is calculated as µz = Γηz,

where ηz is a u dimensional vector generated from standard normal distribution. The

data generation and the simulation process can be summurized as follows:

1. Fix the values: sample size (n), number of predictors (p), envelope subspace dimen-

sion (u), number of active variables (pA), and the number of classes (Z).

2. Initiate the parameters (Γ,Γ0,Ω,Ω0,η) such that Γ has the following sparse struc-

ture:

Γ =
[
ΓA
0

]

3. Generate the label Y and the data X ∼ N(µz,Σ).

4. Divide the date into 80% training and 20% testing data.

5. Estimate the sparse ESVM basis Γ̂ from the training data over Grassmann manifold

via optimizing equation (6.8) over a range of hyper parameter λ. The Gamma

associated with the optimal λ was chosen based on cross validation.

6. Reduce the full data by projecting it onto Γ, that is X∗ = ΓTX.
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7. Apply SVM algorithm to full and reduced data, as well as spLDA and spLR then

report the accuracy of classification.

Table 6.1 shows the different simulation settings.

n p pA u z τ1 τ2
40 10 6 3 2 2 0.2

2 20 0.5
40 45 10 4 2 2 0.2

10 0.5
120 12 6 4 3 10 0.5

5 0.4
300 30 8 3 4 4 0.3

Table 6.1: The different choices of the model parameters for the simulation.

6.4.2 The classification performance

In this section, we illustrated the outcome of the simulations. As shown in Table 6.1,

we considered different scenarios when p < n and one scenario for p > n because the

later is computationally expensive. For each setting, 10 samples were generated. For each

replicate, our method, was compared against existing classifiers: SVM, SpLDA, and spLR.

The classification performance was measured via classification accuracy. For SESVM, the

classification accuracy was calculated at various number of components, while for other

classifiers, the evaluation is based on full dimensioned data. The average classification

accuracy for each classifier is reported.

In the first setting, we generated n = 40 observations allocated randomly into two

equal classes. The number of predictor variables is assumed to be (p = 10), out of which

only 6 variables are active. The number of components is u = 3 components. This

setting was generated with two choices of (τ1, τ2), that is, the choice of (τ1, τ2) manifested

the collinearity among the predictor variables (Cook et al., 2013). Figure 6.1 shows the

average classification accuracy for the above-mentioned classifiers. The figure shows that

the methods perform similarly. However, in 6.1a, where the collinearity is moderate, while

figure 6.1b, where the collinearity is high. In both scenarios, we see that SESVM is slightly

better compared to other classifiers.
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(a) (b)

Figure 6.1: Classification accuracy for simulated datasets n = 40, Z = 2, u = 3, p =
10, pA = 6, a (τ1, τ2) = 2, 0.2, b (τ1, τ2) = 20, 0.5. The dashed vertical line is the true
number of components..

The second setting of the simulation study explores the case p > n, we generated n = 40

observations allocated randomly into two equal classes. In this setting, the number of the

predictor variables was chosen to be greater than the class size as well as the sample size,

p = 45. The number of the active variables is 10 variables. Figure 6.2 shows the average

classification accuracy. In the first scenario, it can be seen that SESVM achieved less

miss-classification than other classifiers. However, for the other scenario, it performed

competitively with sparse LDA.
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(a) (b)

Figure 6.2: Classification accuracy for simulated datasets n = 40, Z = 2, u = 4, p =
45, pA = 10, a (τ1, τ2) = 2, 0.2, b (τ1, τ2) = 10, 0.5. The dashed vertical line is the true
number of components.

Figures 6.3 and 6.4 show the average classification accuracy for the last two settings

in Table 6.1. Figure 6.3 summarizes the performance when n = 120. In this setting, we

have two scenarios of collinearity among predictor variables. While Figure 6.4 shows the

last model in our simulation when n = 300. In both figures, the performance of SESVM

is better than other classifiers. The performance of SESVM fluctuated as the number of

components changed; however, it achieved its best performance at or near the true number

of components.
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(a) (b)

Figure 6.3: Classification accuracy for simulated datasets n = 120, Z = 3, u = 4, p =
12, pA = 6, a (τ1, τ2) = 10, 0.5, b (τ1, τ2) = 5, 0.4. The dashed vertical line is the true
number of components.
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Figure 6.4: Classification accuracy for simulated datasets n = 300, Z = 4, u = 3, p =
30, pA = 8 (τ1, τ2) = 4, 0.3. The dashed vertical line is the true number of components.

6.4.3 Real data

In this section we applied the our proposed classifier to public real data. Similar to the

simulation studies, the focus was on the performance of the SESVM. We set a comparison

against SVM, spLDA, and spLR and calculate the classification accuracy as performance

measure.

Parkinson data:

The Parkinson data (Naranjo et al., 2016) contains the voice recording for 80 individ-

uals (48 male and 32 female) 40 of them classified as healthy and 40 were classified as

Parkinson diseased (PD), as shown in Table 6.2. The data has p = 45 predictor variables

used to predict the class of each participate (healthy, PD). The data was divided into 80%
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training data and 20% testing data then classified based on SESVM and calculate the

classification accuracy for the values of u = (1, ..., 8). The data were classified based on

SpLDA and sparse logistic regression as well. Figure 6.5 shows the classification accuracy

for each classifier. It is can be seen that SESVM slightly better than other classifiers with

u = 6 components.

status Male Female
Healthy 22 18

PD 26 14

Table 6.2: Summary of Parkinson dataset.

Figure 6.5: The classification accuracy for Parkinson data. The dashed vertical line is the
estimated number of components.
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6.5 ESVM and SESVM

In this section we compare the performance of our proposed classifiers, namely envelope-

based support vector machines and sparse envelope-based support vector machines .That

is, we aim to evaluate the classification efficiency of the proposed classifiers in present and

absent of sparsity. We selected two scenarios for each setting as shown in Tables 6.3 and

6.4. The data for the former setting was generated as explained in Section 5.8. Similarly,

the data for the later setting was generated as explained in 6.4. For each setting, 50

samples were generated then we compared the performance of the classifiers based on the

classification accuracy.

Figures 6.6 and 6.7 summarized the performance of the classifiers in the absent of

sparsity, while Figures 6.8 and 6.9 summarized the performance in present of sparsity.

Both classifiers perform similarly. However, the sparse envelope-based support vector

machines classifier can handle the case were p > n while envelope-based support vector

machines breaks down.

n p u z τ1 τ2
30 10 3 2 2 0.2

2 20 0.4
120 15 3 2 0.2

6 3 4 0.25

Table 6.3: The simulation design for non sparse data.

n p pA u z τ1 τ2
40 10 6 3 2 2 0.2

2 20 0.5
120 12 6 4 3 10 0.5

5 0.4

Table 6.4: The simulation design for sparse data.
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(a) (b)

Figure 6.6: The average classification accuracy percentage based on ESVM and SESVM.
a: sample size n = 30, p = 10, Z = 2, (τ1, τ2) = (2, 0.2). b sample size n = 30, p = 10, Z =
2, (τ1, τ2) = (20, 0.4).

(a) (b)

Figure 6.7: The average classification accuracy percentage based on ESVM and SESVM.
a: sample size n = 120, p = 15, Z = 3, (τ1, τ2) = (2, 0.2). b sample size n = 120, p =
15, Z = 3, (τ1, τ2) = (4, 0.25). The dashed vertical line is the true number of components.
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(a) (b)

Figure 6.8: The average classification accuracy percentage based on ESVM and SESVM.
a: sample size n = 40, p = 10, Z = 2, (τ1, τ2) = (2, 0.2). b sample size n = 40, p = 10, Z =
2, (τ1, τ2) = (10, 0.5).

(a) (b)

Figure 6.9: The average classification accuracy percentage based on ESVM and SESVM.
a: sample size n = 120, p = 15, pa = 6, Z = 3, (τ1, τ2) = (10, 0.5). b sample size n =
120, p = 15, pa = 6, Z = 3, (τ1, τ2) = (5, 0.4). The dashed vertical line is the true number
of components.
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6.6 Conclusion

In this chapter, we consider the classification of data with sparsity structure. We pro-

posed a sparse envelope support vector machine classifier as an extension to the ESVM

classifier that was introduced in Chapter 5. The newly developed classifier is assumed

to perform variable selection and dimension reduction simultaneously prior to the data

classification. Our method takes that only a few components of the active variables are suf-

ficient to process the classification. We have compared it against other existing classifiers:

SVM, sparse LDA, and sparse logistic regression. Furthermore, it has shown competitive

performance based on real and simulated data.



Chapter 7

Conclusion

In this chapter, we summarize the main conclusions of our work and discuss possible

extension. Our work contributes to reduce-and-classify approach in supervised learning

and highlights the efficiency gain that dimension reduction adds to classification perfor-

mance. We consider extending the envelope method for dimension reduction to supervised

learning.

In Chapter 5, we developed an Envelope-based Support Vector Machines (ESVM) clas-

sifier as an extension to the well-known Support Vector Machines classifier. The condition

that this classifier developed based on is that a few components of the original predictor

variables are sufficient to perform the classification with acceptable accuracy. Motivated

by the envelope method, we developed an algorithm to construct a lower-dimensional

subspace. The algorithm to construct the projection matrix is based on optimizing a

likelihood-based objective function over the grassmann manifold. Hence, the constructed

subspace is used as a projection matrix to reduce the dimension of the data. Our approach

is useful in the presence of multicollinearity in that it concentrates the classification-related

information in a few components. We generated synthetic data with different scenarios.

We calculate the classification accuracy as a performance measure based on out-of-sample

data. The proposed technique was tested on real data as well. The synthetic and real

data show promising classification performance of the proposed classifier.

In Chapter 6, we extended the ESVM classifier to consider the sparse data. That is,

we developed Sparse Envelope-based Support Vector Machines (SESVM) classifier that

addresses the variable selection as well as dimension reduction. The variable selection

procedure assumes that only a small set out of the predictor variables is related to the
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analysis (denoted by active variables) while the remaining predictor variables are irrelevant

(denoted by inactive variables). Thus, the restrictions, in this case, are (i) a few linear

combinations of the predictor variables are sufficient for the classification procedure, and

(ii) among the predictor variables, only a few are significant (has non-zero coefficient). The

modification includes adjusting the algorithm to construct the projection matrix. That is,

we imposed an adaptive group lasso penalty to induce sparsity structure in the estimated

subspace. The penalty works to force the non-significant predictor variables to have zero

weight. Hence, the projection matrix is a linear combination of the classification-related

features (active features) and inactive variables. We conducted several simulation scenarios

to investigate the proposed method’s performance. The method was tested on real data

as well. The outcome of the numerical studies shows the improvement in classification

accuracy based on SESVM over other classifiers. The computational aspect of this work

was performed using R software.

The future work, one aspect is to improve the computation performance. We noticed

that the computational performance related to Chapter 6 is slow, especially when p > n.

Furthermore, the concept of envelope basis was introduced in the regression framework and

has shown its efficiency; therefore, this method may extend to support vector regression.

The presented work is developed for linear data; hence, another possibility is to extend

this work to nonlinear classification. That requires developing an algorithm to construct

the projection matrix for nonlinear data. The early work in this context is proposed in

a multivariate regression framework by Zhang et al. (2020). We want to mention that

we have studied constructing an envelope basis for the nonlinear data; however, due to

incompletion, we omit it.

The other development is to extend the work from the support vector machines to

the support tensor machine. Early envelope-based work in tensor data was developed

in a regression framework. (Zhang and Li, 2017) extended the work developed by Cook

et al. (2013) from vector to tensor data and proposed envelope model for tensor predictor.

On the other hand, Li and Zhang (2017) extended the work by Cook et al. (2010) to

develop tensor response. As shown in Chapter 5 Zhang and Mai (2018) has proposed the

construction of envelope basis in discriminant analysis. In a similar manner, the envelope

model may extend from vector data to tensor data in the classification framework.



Appendix A

A.1 Karush-Kuhn-Tucker conditions

Given the following optimization problem:

minimize f(x) = 1
2x

TAx+wTx, (A.1)

subject to gi(x) = rTi x+ bi ≥ 0, (A.2)

hi(x) = zTi x+ ei = 0, (A.3)

Proposition A.1.1. The optimal solution (x∗,α∗,β∗), exists if and only if the following

conditions re satisfied:

∂L(x∗,α∗,β∗)
∂x

= 0, (A.4)

α∗i gi(x∗) = 0 (A.5)

α∗i ≥ 0, (A.6)

hi(x∗) = 0. (A.7)

The conditions given in (A.4) to (A.7) referred to as Karush-Kuhn-Tucker conditions

(KKT). However, the condition given by (A.5) known as Karush Kuhn Tucker comple-

mentarity conditions, which means if α∗i > 0, gi(x∗) = 0; and α∗i = 0, gi(x∗) ≥ 0.

A.2 Proofs

A.2.1 Proof of proposition 5.7.1

This proof is given in Li et al. (2011), and it is to show the gradient of the SVM objective

function. Let ∆2
θ be the operator ∆θ∆T

θ . Hence, ∆2
θJ (θ,m) is a (p+ 1)× (p+ 1) matrix
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whose (i, j) element is ∂2J (θ,m)/∂θi∂θj . Moreover, for each θ ∈ Θ, let Nθ(J ) be the

set of m for which a function J (m, .) is not differentiable at θ. That is,

Nθ(J ) = {m : J (m, .)is not differentiable atθ}.

The following lemma is used for proving proposition 5.7.1

Lemma A.2.1. Suppose that J : Θ× Ωm → R satisfies the following conditions:

1. (almost surely differentiable) Pr[m ∈ Nθ(J )],∀θ ∈ Θ.

2. (Lipschitz condition) there is an integrable function a(m), independent of θ, such

that for any θ1,θ2,

|J (θ2,m)− J (θ1,m)| ≤ a(m)||θ2 − θ1||.

Then ∆θ[J (θ.m)] is integrable, E[J (θ,m)] is differentiable, and

∆θE[J (θ,m)] = E[∆θJ (θ,m)]. (A.8)

Proof of proposition 5.7.1: Suppose H(w, b) represents the hyperplane {x : wTx =

b}. We first satisfy the conditions indicated in Lemma A.2.1.

Pr[(x, y) ∈ Nθ(J )] =
∑

y∈{−1,1}
Pr(Y = y)Pr[x ∈ H(w, b+ y)|Y = y].

Since for y ∈ {−1, 1} the Lebesgue measure of H(w, b + y) is 0, the above probabil-

ity is 0 by condition 1. That is, condition 1 of Lemma A.2.1 is satisfied. Now, let

J1(θ,m) = wTw and J2(θ,m) = [1 − y(wTx − b)]+. Hence J (θ,m) can be writ-

ten as J1(θ,m) + λJ2(θ,m). Since J1 is nonrandom and differentiable, it satisfies

∆θE[J1(θ,m)] = E[∆θJ1(θ,m)]. To verify the second condition of Lemma A.2.1, that is

J2 is Lipschitz, assume (w1, b1), (w2, b2) ∈ Rp+1. Then

J2(θ2,x, y)− J2(θ1,x, y) = [1− y(wT
2 x− b2)]+ − [1− y(wT

1 x− b1)]+. (A.9)

Given that for any two real numbers a and b,

|b+ − a+| ≤ |b− a|
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Then

J2(θ2,x, y)− J2(θ1,x, y) ≤ |wT
1 x−wT

2 x+ b2 − b1|

≤ (1 + ||x||2)1/2||θ2 − θ1||.

Since E(||x||2) <∞,

E(1 + ||x||2)1/2 ≤ [1 + E(||x||2)]1/2 <∞.

Thus, condition 2 of lemma A.2.1 is verified.

Lastly, for m /∈ Nθ(J ),

∆w[J (θ,m)] = 2w − λxyI[1− y(wTx− b) > 0],

∆t[J (θ,m)] = λyI[1− y(wTx− t > 0].

Then

∆θ[J (θ,m)] = 2wT − λx∗yI(1− θTx∗y > 0).

A.2.2 Proof of proposition 5.7.2

This proof is given in Li et al. (2011), for simplicity we give it here. We want to

show that (5.17) is jointly differentiable with respect to (θ∗, b). We will provide the

lemmas introduced in Li et al. (2011) that aid facilitating the proof. They They define the

derivative of an expectation of a non-Lipschitz function. Suppose Dκ=0 is the operation

of taking the derivative with respect to κ then evaluating the derivative at κ = 0.

Lemma A.2.2. Let U and V be a random variables and g(u, v) ∈ Rq be a measurable

function. Further, suppose

1. the joint distribution of (U, V ) is dominated by the Lebesgue measure;

2. the function u → g(u, v)fU |V (u|v) is continuous for each v, where fU |V denotes the

conditional probability density function of U |V ;

3. there is a function ci(v) ≥ 0 for each component gi(u, v) of g(u, v), such that

|gi(u, v)|fU |V (u|v) ≤ ci(v), E[ci(V )] <∞. (A.10)
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Then, for any constant t, the function κ→ E[g(U, V )I(U +κV < t+κτ)] is differentiable

at κ = 0 with derivative

Dκ=0E[g(U, V )|(U + κV < t+ κτ)] = fU (t)E[(τ − V )g(U, V )|U = t]. (A.11)

Lemma A.2.3. Let U and V be linearly dependent random variables and g(u, v) ∈ Rq be

a measurable function. Further, suppose

1. the distribution of U is dominated by the Lebesgue measure;

2. g(u)fU (u) is continuous.

Hence, for any constant t, the function κ → E[g(U)|(U + κV < t + κτ)] is differentiable

at κ = 0 with derivative given by (A.11).

Proof of proposition 5.7.2: We want to show that (5.17), that is given by:

G(θ) = ∆θE[J (θ)] = 2θ∗T − λE[x̃yI(1− θT x̃y > 0)].

is jointly differentiable with respect to (θ∗, b), where θ = (wΓ, b), θ∗ = wΓ,. The first

term is straightforward with derivative (2). Thus, we need to show the differentiability of

the second term E[x̃yI(1− θT x̃y > 0)], that is given by:

∑
y=−1,1

P (Y = y)fθ∗Tx|Y (b+ y|y)E(x̃x̃T |θ∗Tx = b+ y).

We need to verfy the directional differentiability of the function (θ∗, b) → E[x̃I(θ∗Tx <

b+ 1)|y] at y = 1 any y = −1.

First, consider the case y = 1. Suppose θ∗, δ ∈ Rq are linearly independent vectors.

The directional derivative along (δT , τ)T , where τ ∈ R, is given by the derivative of the

following function with respect to κ at κ = 0:

E[x̃I(θ∗Tx+κδTx < b+1+κτ)|y = 1] = E[E(x̃|θ∗Tx, δTx, y = 1)I(θ∗Tx+δTx < b+1+κτ)|y = 1].

Now, let U = θ∗Tx, V = δTx, g(U, V ) = E(x̃|U, V ). Thus, by Lemma A.2.2, the above

derivative is:

fθ∗Tx|y(b+1|y = 1)E[(τ−V )E(x̃|U, V )|U = b+1] = fθ∗Tx|y(b+1|y = 1)E[((τ−V )x̃|U, V )|U = b+1].
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Since this is hold for all (δT , τ)T , then the function

(θ∗, b)→ E[x̃I(θ∗Tx < b+ 1)|y = 1]

is directionally differentiable with the following derivative matrix:

− fθ∗Tx|y(b+ 1|y = 1)E(x̃x̃T |θ∗Tx = t+ 1, y − 1). (A.12)

If θ∗, δ ∈ Rq are independent vectors, then θ∗TX and δTX are linearly independent

random vectors. lemma A.2.3 is applied in similar manner to arrive at the same directional

derivative (A.12).

On the other hand, the case where y = −1 can be proved in a similar manner. Thus, the

directional derivative of ∆θE[J (θ)] is given in proposition 5.7.2. Moreover, if fθ∗Tx|y(b+

y|y)E(x̃x̃T |θ∗Tx = t + 1) is continuous, then the directional derivative is continuous.

Accordingly, ∆θE[J (θ] is jointly differentiable.
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Meier, L., Van De Geer, S. and Bühlmann, P. (2008), ‘The group lasso for logistic re-

gression’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

70(1), 53–71. 81

Merchante, L. F. S., Grandvalet, Y. and Govaert, G. (2012), ‘An efficient approach to

sparse linear discriminant analysis’, arXiv preprint arXiv:1206.6472 . 74

Moradibaad, A. and Mashhoud, R. J. (2018), ‘Use dimensionality reduction and svm

methods to increase the penetration rate of computer networks’, arXiv preprint

arXiv:1812.03173 . 50

Naranjo, L., Perez, C. J., Campos-Roca, Y. and Martin, J. (2016), ‘Addressing voice

recording replications for parkinson?s disease detection’, Expert Systems with Applica-

tions 46, 286–292. 87

Paul, S., Boutsidis, C., Magdon-Ismail, M. and Drineas, P. (2013), Random projections for

support vector machines, in ‘Artificial intelligence and statistics’, PMLR, pp. 498–506.

50, 51

Pircalabelu, E. and Artemiou, A. (2021), ‘Graph informed sliced inverse regression’, Com-

putational Statistics & Data Analysis 164, 107302. 3

Pircalabelu, E. and Artemiou, A. (2022), ‘High-dimensional sufficient dimension reduction

through principal projections’, Electronic Journal of Statistics 16(1), 1804–1830. 3

Randall, H., Artemiou, A. and Qiao, X. (2021), ‘Sufficient dimension reduction based on

distance-weighted discrimination’, Scandinavian Journal of Statistics 48(4), 1186–1211.

3

RD, T. (1954), ‘Physical growth of california boys and girls from birth to eighteen years.’,

Publications in Child development. University of California, Berkeley 1(2), 183–364. 68

Rokach, L. (2010), Pattern classification using ensemble methods, Vol. 75, World Scientific.

47



REFERENCES 106

Rothman, A. J., Bickel, P. J., Levina, E. and Zhu, J. (2008), ‘Sparse permutation invariant

covariance estimation’, Electronic Journal of Statistics 2, 494–515. 81

Shao, R., Hu, W., Wang, Y. and Qi, X. (2014), ‘The fault feature extraction and clas-

sification of gear using principal component analysis and kernel principal component

analysis based on the wavelet packet transform’, Measurement 54, 118–132. 50

Shi, Q., Shen, C., Hill, R. and Hengel, A. v. d. (2012), ‘Is margin preserved after random

projection?’, arXiv preprint arXiv:1206.4651 . 51

Steinwart, I. and Christmann, A. (2008), Support vector machines, Springer Science &

Business Media. 44, 45

Suykens, J. A. and Vandewalle, J. (1999), ‘Least squares support vector machine classi-

fiers’, Neural processing letters 9(3), 293–300. 36

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the

Royal Statistical Society: Series B (Methodological) 58(1), 267–288. 3, 11, 76

Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002), ‘Diagnosis of multiple

cancer types by shrunken centroids of gene expression’, Proceedings of the National

Academy of Sciences 99(10), 6567–6572. 74, 75

Tuddenham, R. D. (1954), ‘Physical growth of california boys and girls from birth to

eighteen years’, University of California publications in child development 1, 183–364.

22

Verleysen, M. et al. (2003), ‘Learning high-dimensional data’, Nato Science Series Sub

Series III Computer And Systems Sciences 186, 141–162. 1

Wang, H. and Leng, C. (2008), ‘A note on adaptive group lasso’, Computational statistics

& data analysis 52(12), 5277–5286. 12, 81

Wang, W., Zhang, X., Mai, Q. et al. (2020), ‘Model-based clustering with envelopes’,

Electronic Journal of Statistics 14(1), 82–109. 52

Weng, J. and Young, D. S. (2017), ‘Some dimension reduction strategies for the analysis

of survey data’, Journal of Big Data 4(1), 1–19. 2



REFERENCES 107

Yin, X., Li, B. and Cook, R. D. (2008), ‘Successive direction extraction for estimating

the central subspace in a multiple-index regression’, Journal of Multivariate Analysis

99(8), 1733–1757. 10

Yuan, M. and Lin, Y. (2006), ‘Model selection and estimation in regression with grouped

variables’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

68(1), 49–67. 12, 80

Zhang, J., Zhu, G., Heath Jr, R. W. and Huang, K. (2018), ‘Grassmannian learn-

ing: Embedding geometry awareness in shallow and deep learning’, arXiv preprint

arXiv:1808.02229 . 55

Zhang, X., Lee, C. and Shao, X. (2020), ‘Envelopes in multivariate regression models with

nonlinearity and heteroscedasticity’, Biometrika 107(4), 965–981. 34, 94

Zhang, X. and Li, L. (2017), ‘Tensor envelope partial least-squares regression’, Techno-

metrics 59(4), 426–436. 94

Zhang, X. and Mai, Q. (2018), ‘Efficient integration of sufficient dimension reduction and

prediction in discriminant analysis’, Technometrics . 52, 57, 58, 94

Zhu, G. and Su, Z. (2019), ‘Envelope-based sparse partial least squares’, Annals of Statis-

tics. To appear . 32

Zhu, G. and Su, Z. (2020), ‘Envelope-based sparse partial least squares’, The Annals of

Statistics 48(1), 161–182. 80

Zhu, J. and Zou, H. (2007), ‘Variable selection for the linear support vector machine’,

Trends in Neural Computation pp. 35–59. 78

Zou, H. (2006), ‘The adaptive lasso and its oracle properties’, Journal of the American

statistical association 101(476), 1418–1429. 11, 81

Zou, H. and Hastie, T. (2005), ‘Regularization and variable selection via the elastic net’,

Journal of the royal statistical society: series B (statistical methodology) 67(2), 301–320.

3, 12

Zou, H., Hastie, T. and Tibshirani, R. (2006), ‘Sparse principal component analysis’,

Journal of computational and graphical statistics 15(2), 265–286. 75


	Acknowledgements
	Abstract
	Talks
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Notation
	1.3 Thesis structure

	2 Preliminaries
	2.1 Linear regression model
	2.1.1 Model formulation
	2.1.2 Estimation

	2.2 Multivariate linear regression
	2.2.1 Model formulation
	2.2.2 Estimation

	2.3 Dimension reduction
	2.3.1 Problem statement
	2.3.2 Sufficient dimension reduction

	2.4 Penalized likelihood methods 
	2.4.1 Ridge regression
	2.4.2 LASSO
	2.4.3 Elastic net
	2.4.4 Smoothly clipped absolute deviation penalty

	2.5 Classification
	2.5.1 Problem statement
	2.5.2 Linear discriminate analysis
	2.5.3 Logistic regression
	2.5.4 Classification evaluation


	3 Review of Envelope Method for Linear Dimension Reduction 
	3.1 Introduction
	3.2 Response envelope
	3.2.1 Illustrative example
	3.2.2 Estimation

	3.3 Predictor envelope
	3.3.1 Estimation

	3.4 Envelope subspace estimation
	3.5 Review of envelope-based methods
	3.5.1 Envelope-based sparse partial least squares
	3.5.2 Envelope quantile regression
	3.5.3 Non-linear envelope


	4 Support Vector Machine
	4.1 Introduction
	4.2 Hyperplane
	4.3 Linear support vector machines
	4.3.1 Hard margin SVM
	4.3.2 Soft margin SVM

	4.4 Non linear support vector machine
	4.4.1 Kernels and Reproducing Kernel Hilbert Space

	4.5 Multi-classes support vector machine

	5 Envelope-based support vector machine classifier
	5.1 Introduction
	5.2 Projection and margin preservation in support vector machine
	5.3 Envelope for labeled data
	5.4 Definition and notation 
	5.4.1 The estimation of envelope basis
	5.4.2 Algorithm for ESVM
	5.4.3 Classification mechanism of Envelope Support Vector Machine classifier

	5.5 Relation to envelope discriminant analysis
	5.6 Selecting the dimension of ESVM
	5.7 Asymptotic properties
	5.8 Numerical study
	5.8.1 Simulation
	5.8.2 Real data

	5.9 Conclusion

	6 Sparse Envelope Based Support Vector Machine
	6.1 Introduction
	6.2 Sparsity in classification
	6.3 Sparse Envelope Support Vector Machine (SESVM) classifier
	6.4 Numerical studies
	6.4.1 Simulation design
	6.4.2 The classification performance
	6.4.3 Real data

	6.5 ESVM and SESVM
	6.6 Conclusion

	7 Conclusion
	A 
	A.1 Karush-Kuhn-Tucker conditions
	A.2 Proofs
	A.2.1 Proof of proposition 5.7.1
	A.2.2 Proof of proposition 5.7.2


	References

