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Abstract
We study proximity bounds within a natural model of random integer programs of the
type max c�x : Ax = b, x ∈ Z≥0, where A ∈ Z

m×n is of rank m, b ∈ Z
m and

c ∈ Z
n . In particular, we seek bounds for proximity in terms of the parameter �(A),

which is the square root of the determinant of the Gram matrix AA� of A. We prove
that, up to constants depending on n and m, the proximity is “generally” bounded by
�(A)1/(n−m), which is significantly better than the best deterministic bounds which
are, again up to dimension constants, linear in �(A).

Mathematics Subject Classification 11H06 · 52C07 · 52C17 · 90C10

1 Introduction

Given a linear program of the form

max c�x : Ax = b

x ≥ 0, (1)

where A is a full-row-rank m × n integral matrix, b ∈ Z
m , and c ∈ Z

n , we seek
to understand how far away an optimal vertex x∗ of the feasible region can be to a
nearby feasible integer solution z∗, assuming the feasible regionhas at least one integral
point. Typically it is further required that z∗ is itself optimal; we do not impose this
requirement in this manuscript. We refer to the smallest possible distance between x∗
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1202 M. Celaya, M. Henk

and a feasible integral solution z∗ as the proximity of (1). This distance is measured
in terms of some given norm, for example the ‖·‖1 or ‖·‖∞ norms; in this paper we
state our results in terms of the Euclidean norm ‖·‖2.

Bounds for proximity are typically given in terms of the largest possible absolute
value �m(A) of any m ×m subdeterminant of A. Note that this parameter is within a
factor of

(n
m

)
of�(A) :=

√
det(AA�). Finding such bounds is a well-studied problem

which goes back to the classic Cook et al. result [7] bounding the proximity of the
dual of (1). See, for instance, the recent works of Eisenbrand and Weismantel [8] and
of Aliev et al. [2] and the references therein.

In thismanuscript, wewould like to understand theworst-possible proximity, which
we denote by dist(A), over all choices of b and c, when the matrix A is chosen
randomly. The model of randomness we consider is the following: we choose the
matrix A up to left-multiplication by unimodularmatrices, andwe choose A uniformly
at random subject to the condition that the greatest common divisor of the maximal
minors of A is 1, and that �(A) is at most some sufficiently large (with respect to
m and n) integer T . This is a natural model to study from a geometric point of view,
since �(A) is the determinant of the lattice of integer points in the kernel of A. This
is also the model considered by Aliev and Henk [1], in their investigation of diagonal
Frobenius numbers.

Ourmain result concerns not dist(A) but rather a related random variable we denote
by dist∗(A). This is an asymptotic version of dist(A) that further imposes some mild
restrictions on b. Our main result is that it satisfies the followingMarkov-type inequal-
ity:

P
(
dist∗(A) > t�(A)1/(n−m)

)
� t−2/3. (2)

Here � means less than, up to constants which only depend on n andm. In particular,
this shows that proximity generally depends only on �1/(n−m) in our random setting,
for “almost all” choices of b in a certain precise sense. This is significantly better than
the linear dependency on �m in the deterministic case, that is known to be tight [2,
Theorem 1].

1.1 Related work

A similar result, with a slightly different random model, was obtained in [2] the so-
called knapsack scenario, where m = 1. In this work, a fixed integer T is given, and
the matrix A is a row vector chosen uniformly at random from {1, 2, . . . , T }n such
that the greatest common divisor of the entries equals 1. A special case of [2, Theorem
2] states

P
(
dist(A) > t ‖A‖2/n∞

)
� t−1,

where dist (A) measures distance using the ‖·‖∞ norm.
The recent work of Oertel et al. [14] considers a randommodel that allows b to vary

but keeps A fixed. More precisely, for a given positive integer t , the vector b is chosen

123



Proximity bounds for random integer programs 1203

uniformly at random from {−T , . . . , T }m such that Ax = b, x ≥ 0 is integer-feasible.
The result in [14, Corollary 1.3] states that

dist(A) ≤ (m + 1)
(√

m ‖A‖∞
)m

with probability approaching 1 as T → ∞. Here again dist (A) measures distance
using the ‖·‖∞ norm. Note that this bound does not depend on n.

Finally, we mention the very recent work of Borst et al. [5] which investigates the
integrality gap of integer programs of the form

max c�x : Ax ≤ b (3)

0 ≤ x ≤ 1

x ∈ Z
n,

with A and c having independent, Gaussian N (0, 1) entries. This quantity measures
the difference between the optimal value of (3) and that of its linear relaxation. Their
result is that the integrality gap is bounded from above by poly (m) (log n)2 /n with
probability at least 1−n−7 −2−poly(m), subject to certain conditions on b. See [5] and
the references therein for a history of this problem.

1.2 Outline of proof

The proof of our result combines ideas of [1,2] using facts from the geometry of
numbers, some results of Schmidt from [15] on random sublattices of Zn of fixed
dimension, and computations of the measure of certain distinguished regions of the
real Grassmannian Gr(d, n) of d-dimensional subspaces ofRn , where d = n−m. For
us the crucial parameters from the geometry of numbers that we need are the covering
radius μ, as well as the successive minima λ1, . . . , λd of ker A ∩ Bn

2 with respect to
the lattice ker A∩Z

n , where Bn
2 denotes the unit-radius Euclidean ball in Rn . Further

details on these parameters can be found in Sect. 3.
The restrictions imposed by the definition of dist∗ (A) on the right hand side b

ensure that, given a vertex x∗ of the feasible region of (1), one can always find a
feasible integral solution z∗ such that

∥
∥x∗ − z∗

∥
∥
2 ≤ μ

(∥∥
∥A−1

σ A
∥∥
∥
1
+ 1

)
,

where x∗ has support contained in σ ⊆ [n] and Aσ denotes the square submatrix
of A whose columns are indexed by σ . This restriction on b amounts to picking b
sufficiently deep inside the cone spanned by the columns of Aσ , or choosing b from a
reduced cone in the sense of Gomory [11, p. 261]. A uniform upper bound on all ratios
λi+1/λi , i = 1, 2, . . . , d−1 implies an upper bound onμ, see Lemma 2.Meanwhile,
Sect. 4 shows that the measure in Gr(d, n) of those subspaces ker A ∈ Gr(d, n) such
that any given entry of A−1

σ A exceeds in absolute value some fixed parameter s > 0
is a function of the order s−1. Theorem 2, itself a straightforward corollary of results
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1204 M. Celaya, M. Henk

of [15], combines these two pieces together: a random lattice of the form ker A ∩ Z
n

is unlikely to have any ratio λi+1/λi , nor any entry of A−1
σ A, exceedingly large. The

details of this are carried out in Sect. 5.
We remark that the exponent of −2/3 is mainly an artifact of the proof, and we

expect that it can be further improved. The problem of finding an inequality analogous
to (2) for dist(A) is more challenging and remains open. When we allow b to lie close
the the boundary of the cone spanned by the columns of Aσ , our arguments no longer
apply.

Remark 1 (Changes from proceedings version) The following changes have been
made since the proceedings version of this manuscript [6]. In Sect. 3 we clarified
and expanded upon the geometry of numbers theory that is used in this paper. In
Sect. 4 we gave a proof of the claim that a particular subset of Gr(d, n) is Jordan
measurable. Some minor typos have also been corrected, and some minor changes
have been made to the introduction.

2 Main result and notation

2.1 Notation

Throughout this manuscript we assume fixed positive integers d,m, n such that n =
m + d. For a subset σ ⊆ [n] and x ∈ R

n , we let xσ denote the vector obtained
by orthogonally projecting x onto the coordinates indexed by σ . Similarly, if A is a
matrix, then we denote by Aσ the submatrix of A whose columns are those indexed
by σ . In particular, if k ∈ [n] then Ak denotes the corresponding column of A. If Aσ

is an invertible square matrix we say σ is a basis of A. We denote the complement
of σ by σ̄ := [n]\σ . Given a d-dimensional subspace L ⊆ R

n , the m-dimensional
orthogonal complement of L is denoted by L⊥. If � ⊂ R

n , let �R denote the linear
subspace of Rn spanned by �. We say σ ⊆ [n] is a coordinate basis of � or �R if
the coordinate projection map

�R → R
σ

x �→ xσ

is an isomorphism. This is equivalent to saying that σ is a basis of A for any full-
row-rank matrix A such that ker(A) = �R. Finally, we denote the group of n × n
orthogonal real matrices by O(n). This notation presents a conflict with “big-O”
asymptotic notation, so we write O(n) for the latter.

2.2 Definition of dist(A)

Let A ∈ Z
m×n be a full-row-rank matrix. For a basis σ of A, we define the semigroup

Sσ (A) :=
{
x ≥ 0 : xσ̄ = 0, xσ = A−1

σ Ag for some g ∈ Z
n≥0

}
. (4)
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Proximity bounds for random integer programs 1205

For a vector b ∈ Z
m , we define the polyhedron

P(A, b) := {
x ∈ R

n : Ax = b, x ≥ 0
}
.

The idea behind these definitions is that if x∗ ∈ Sσ (A), then b := Ax∗ is an integral
vector, P(A, b) is a polyhedron containing at least one integral point, and x∗ is the
vertex ofP(A, b) associated to the basis σ . Nowgiven a basis σ of A and x∗ ∈ Sσ (A),
we define the distance

dist
(
A, σ, x∗) := min

z∗∈Zn∩P(A,b)

∥∥x∗ − z∗
∥∥
2 .

where b := Ax∗. We then define the worst-case distance over all choices of bases σ

of A and elements x∗ ∈ Sσ (A) as

dist (A) := max
σ

max
x∗ dist

(
A, σ, x∗) . (5)

This definition has the disadvantage that it is stated in terms of the matrix A. Since
we may replace Ax = b with UAx = Ub for any m × m integral matrix U , it is
not so clear from this formulation how to define our random model. This motivates an
alternative, more geometric definition of dist(A) which we now state.

2.3 Definition of dist(3)

Suppose instead we start with a d-dimensional sublattice � of Zn . Suppose σ is a
coordinate basis of �. Then we may define the semigroup

Sσ (�) := {
x ≥ 0 : xσ̄ = 0, x ∈ �R + g for some g ∈ Z

n≥0

}
. (6)

For x∗ ∈ Sσ (�), define the distance

dist
(
�, σ, x∗) := max

g∈(�R+x∗)∩Zn
min

z∗∈(�+g)∩Rn≥0

∥∥x∗ − z∗
∥∥
2 . (7)

The extra maximum accounts for the fact that, if � is not primitive, then there are
multiple ways to embed � into �R + x∗ as an integral translate of �. Finally, define
the worst case distance

dist (�) := max
σ

max
x∗ dist

(
�, σ, x∗) , (8)

where themaximum is taken over all coordinate bases of� and elements x∗ ∈ Sσ (�).
We now explain the relationship between definitions (5) and (8). First note that

if A is any integral matrix such that �R = ker(A), then the two definitions (4) and
(6) of Sσ (A) and Sσ (�) coincide. Moreover, if � is a primitive lattice, that is, if
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1206 M. Celaya, M. Henk

� = �R ∩ Z
n , then we have

dist
(
�, σ, x∗) = dist

(
A, σ, x∗)

and therefore

dist (�) = dist (A) .

Definition (8) also makes sense when� is non-primitive, however, and it is immediate
from the definitions that in general,

dist (�) ≥ dist
(
�R ∩ Z

n) .

Thekey advantage of definition (8) is that there are onlyfinitelymanyd-dimensional
sublattices of Zn whose determinant is at most some fixed positive integer T . Thus,
we may consider the uniform distribution over these bounded-determinant lattices.

2.4 An asymptotic version of dist(3)

We next consider a modification of dist (�). Choose any full-row-rank matrix A such
that ker(A) = �R, the particular choice of A is not important. Let Bn

2 ⊂ R
n denote

the n-dimensional Euclidean ball of radius 1.
Define the vector w = w (�R) ∈ R

n so that, for each i ∈ [n],

wi := max
x∈Bn

2∩�R

xi .

Denote by μ = μ (�) the covering radius of Bn
2 with respect to �. That is,

μ := inf
{
t > 0 : � + t Bn

2 contains �R

}
. (9)

For more information on the covering radius we refer to Sect. 3. If σ is a basis of A
then define the following subsemigroup of Sσ (�):

S∗
σ (�) :=

{
x ∈ Sσ (�) : xσ ≥ μwσ + A−1

σ Aσ̄ wσ̄

}
.

The next proposition shows that if we further restrict x∗ so that it can only lie inS∗
σ (�),

then we can guarantee that P(A, b) contains an integral point reasonably close to x∗.
We prove it in Sect. 5.

Proposition 1 For a basis σ of A and x∗ ∈ S∗
σ (�), let b = Ax∗. Then P(A, b)

contains a translate of the scaled ball μ · (
Bn
2 ∩ �R

)
, which in turn contains an

integral vector.

Now set

dist∗ (�) := max
σ

max
x∗ dist

(
�, σ, x∗) , (10)
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Proximity bounds for random integer programs 1207

where the maximum is taken over all bases σ of A and elements x∗ of the semigroup
S∗

σ (�).

2.5 Main result

We are now ready to state the main theorem.

Theorem 1 For T � 1, let � be a sublattice of Zn of dimension d and determinant
at most T , chosen uniformly at random. Then for all t > 1,

P
(
dist∗ (�) > t (� (�))1/d

)
� t−2/3.

What we would like to do is translate this statement into a statement about integer
programs, and in particular derive inequality (2). For this we use a known result on the
ratio between primitive sublattices and all sublattices with a fixed determinant upper
bound, a consequence of Theorems 1 and 2 in [15]:

Lemma 1 Suppose there are exactly N (d, n, T ) d-dimensional sublattices of Zn with
determinant at most T , of which exactly P(d, n, T ) are primitive. Then

lim
T→∞

P(d, n, T )

N (d, n, T )
= 1

ζ(d + 1) · · · ζ(n)
,

where ζ(·) denotes the Riemann zeta function.

Recall from the introduction our probability model. We start with a sufficiently large
integer T relative to m and n, and consider the set of all m × n integral matrices A
such that the greatest common divisor of all maximal minors of A equals 1, and that
�(A) ≤ T . The group of m × m unimodular matrices acts on this set of matrices by
multiplication on the left, and there are finitely many orbits of this action. We consider
the uniform distribution on these orbits. We define

dist∗ (A) := dist∗
(
ker (A) ∩ Z

n) .

Note that this definition depends not on A but only on the orbit of A. The greatest
common divisor condition ensures that �(A) equals the determinant of the lattice
ker (A) ∩ Z

n . Recall we set d := n − m. We derive the next corollary by combining
Theorem 1, Lemma 1, and the simple conditional probability inequality P(E | F) ≤
P(E)/P(F), where E is the event that dist∗ (�) > t (� (�))1/d and F is the event
that � is primitive.

Corollary 1 For T � 1, choose A randomly as above, with determinant at most T .
Then for all t > 1,

P
(
dist∗ (A) > t (� (A))1/d

)
� t−2/3.

Weremark that the question of deriving the constants in this bound remains unexplored.
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3 Geometry of Numbers and a theorem of Schmidt

Next we state some basic functionals and tools from Geometry of Numbers as well as
a theorem of Schmidt which are fundamental for the proof of our results. An excellent
reference for the Geometry of Numbers tools is Gruber’s book [12, Chapters 21–23].
We start withMinkowski’s successiveminima. Given a d-dimensional lattice� ⊂ R

d ,
the i th successive minimum λi (�), i ∈ {1, . . . , d}, is defined as

λi (�) := min{λ > 0 : dim(λ Bd
2 ∩ �) ≥ i}.

In other words, λi (�) is the smallest dilation factor λ such that the Euclidean ball of
radius λ contains at least i linearly independent lattice points of �. Observe that

λ1(�) ≤ λ2(�) ≤ · · · ≤ λd(�).

Minkowski introduced these successive minima not only for a ball but for any convex
body symmetric to the origin, but here we just need them for the ball. In this particular
setting, Minkowski’s so called second theorem on successive minima reads as follows

λ1(�) · · · λd(�)ωd ≤ 2d det�, (11)

where ωd is the d-dimensional volume of the ball Bd
2 . Inequality (11) is for d > 1

actually a strict inequality and one can improve on the factor 2d on the right hand
side, but for our purposes it is enough to use (11). The other functional we need from
Geometry of Numbers is the already introduced covering radius μ(�) (see (9)) which
may also be defined as

μ(�) = min{μ > 0 : ( y + μ Bd
2 ) ∩ � �= ∅ for all y ∈ R

d}.

The so called Jarnik’s inequalities show that the covering radius is essentially of the
size of the last succesive minimum

1

2
λd(�) ≤ μ(�) ≤ 1

2
(λ1(�) + · · · + λd(�)) . (12)

Now, in general the successive minima can take any arbitrary values, even for sublat-
tices of Zd . A fundamental result of Schmidt [15] states, however, that for a “typical”
primitive sublattice of Zd the ratios λi+1(�)/λi (�) are not “too” large. So one may
expect that all the successive minima are more or less of the same size, which then
allows us to give a “good” bound on μ(�) via (11) and (12). But first we need a few
more definitions in order to state Schmidt’s result.

We continue with our assumption that d = n − m. Let Gr (d, n) denote the set of
d-dimensional subspaces of Rn . Let ν denote the unique O(n)-invariant probability
measure on the real Grassmannian Gr (d, n) (see, e.g., [3, Section 3.3]).
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Proximity bounds for random integer programs 1209

Definition 1 ([15, p. 40]) A subset ξ ⊂ Gr (d, n) is Jordan measurable if for all ε > 0
there exists continuous functions f1 ≤ 1ξ ≤ f2 such that

∫
( f2 − f1) dν < ε.

Here 1ξ denotes the indicator function of ξ .

In the next definiton we define the set G (a, ξ, T ) of lattices we are interested in:
they are sublattices of Zd of determinant at most T , their span �R is contained in a
given subset ξ ⊆ Gr (d, n) and the ratios λi+1(�)/λi (�) are at least as large as the
i th entry of the given vector a. More formally,

Definition 2 Let a = (a1, . . . , ad) ∈ R
d , with each ai ≥ 1. Let T be a positive integer,

and let ξ ⊂ Gr (d, n). Then we define G (a, ξ, T ) to be the set of sublattices � of Zn

of dimension d with determinant at most T , such that

λi+1 (�)

λi (�)
≥ ai for all i = 1, 2, . . . , d − 1,

and �R ∈ ξ .

The result of Schmidt that we intend to use is a combination of Theorems 3 and 5 in
[15]:

Theorem 2 Assuming ξ ⊂ Gr (d, n) is Jordan measurable, we have

|G (a, ξ, T )| �
(
d−1∏

i=1

a−i(d−i)
i

)

ν (ξ) T n,

where f � g means f � g and g � f .

Roughly speaking, the amount of lattices having large successive minima ratios
is small. In order to formalize this, let G(d, n, T ) denote the set of all sublattices of
Z
n of dimension d with determinant at most T . Let P = Pd,n,T denote the uniform

probability distribution over G(d, n, T ).

Corollary 2 For t > 1, we have

P
(

max
i∈[d−1]

{
λi+1 (�)

λi (�)

}
≥ t

)
� (d − 1) t−(d−1).

Proof Following Aliev and Henk [1], let

δi (t) :=
(
1, . . . , 1, t

i
, 1, . . . , 1

)�
∈ R

d .
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1210 M. Celaya, M. Henk

Applying the union bound to Theorem 2, this probability is at most

d−1∑

i=1

|G (δi (t),Gr (d, n) , T )|
|G (δi (1),Gr (d, n) , T )| �

d−1∑

i=1

t−i(d−i) ≤ (d − 1) t−(d−1).

��
Finally we present the already mentioned upper bound on μ(λ) provided we know

that λi+1(�)/λi (�) is bounded. The argument is implicitly contained in the proof of
Lemma 5.1 in [1].

Lemma 2 Let � ⊂ R
d be a lattice, and let u > 0 such that for 1 ≤ i ≤ d − 1

λi+1(�)

λi (�)
<

(

u
ω
1/d
d

d

) 2
d−1

.

Then

μ(�) ≤ u (det�)
1
d .

Proof For abbreviation we set r :=
(
uω

1/d
d /d

) 2
d−1

. Due to our assumption we get a

lower bound on all successive minima λi (�), i = 1, . . . , d − 1, in terms of the last
successive minimum

λd(λ) ≤ rd−iλi (�).

Combined with Minkowski’s inequality (11) we obtain

λd(�)dr−d(d−1)/2 ≤ λ1(�) · · · λd(�) ≤ 2d

ωd
det�.

Hence,

λd(�) ≤
(

u
ω
1/d
d

d

)
2

ω
1/d
d

det�
1
d = 2

d
u(det�)

1
d ,

and Jarnik’s inequality (12) yields the assertion. ��

4 Typical Cramer’s rule ratios

We see in the next section that the proximity can be bounded from above by an
expression involving the largest absolute value of the entries of A−1

σ Aσ̄ , as σ ranges
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Proximity bounds for random integer programs 1211

over all bases of A, and A is chosen randomly. Hence, we would like to show that that
the largest absolute value of any entry of the matrix A−1

σ Aσ̄ is typically not too large,
where for our purposes the subspace L := ker A is chosen uniformly at random from
Gr (d, n). Note that the matrix A−1

σ Aσ̄ depends only on L and σ . We remark that the
entries of the matrix A−1

σ Aσ̄ are explicitly computed using Cramer’s rule: for i ∈ σ

and j /∈ σ , we have

(
A−1

σ A j

)

i
= det

(
Aσ−i+ j

)

det (Aσ )
. (13)

As before, we let ν : G → [0, 1] denote the O(n)-invariant probability measure
on Gr (d, n). The precise statement we show is the following: Fix σ ⊆ [n], i ∈ σ ,
j ∈ [n] \σ . Then, as a function of a parameter s > 1, we have

ν
(
ker (A) : Aσ is nonsingular,

∣
∣∣
(
A−1

σ A j

)

i

∣
∣∣ > s

)
= 2

πs
+ O

(
s−3

)
. (14)

The proof proceeds in the three subsections below. First, we get a handle on ν by
relating it to another probability distribution, namely the Gaussian distribution γ on
the matrix space Rm×n , where the entries are i.i.d. normally distributed with mean 0
and variance 1. This is done via the kernel map, which is introduced in Sect. 4.1 and
related to γ in Sect. 4.2. Equation (14) is then derived in Sect. 4.3.

4.1 The real Grassmannian

For a general introduction to matrix groups and Grassmannians, we refer the reader
to [4]. There is a right action of the orthogonal group O(n) on Gr (d, n) defined as
follows: if ker (A) ∈ Gr (d, n), where A ∈ R

m×n , then

(ker (A)) · U = ker (AU) . (15)

This is well-defined, since if ker (A) = ker
(
A′) for some A′ ∈ R

m×n , then A = DA′
for some invertible m × m matrix D, and hence

ker (AU) = ker
(
DA′U

) = ker
(
A′U

)
.

Let Stm×n := {
A ∈ R

m×n : rank(A) = m
}
. Call this the Stiefel manifold. Again,

there is a right action of O(n) on Stm×n which in this case is simply right multiplica-
tion:

A · U = AU .

The only thing to check here is that AU indeed lies in Stm×n , but this is indeed the
case since

AU (AU)� = AUU�A� = AA�,
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1212 M. Celaya, M. Henk

thus A and AU have the same Gram matrix AA�, and an m × n matrix has full-row-
rank if and only if its Gram matrix does.

The kernel map gives rise to a surjective map

ker : Stm×n → Gr (d, n)

A �→ ker (A)

Thus, we see from (15) that the following statement holds:

Proposition 2 The map ker : Stm×n → Gr (d, n) is equivariant with respect to the
right actions of O(n) on Stm×n and Gr (d, n); that is, (ker (A)) · U = ker (A · U).

4.2 Probability spaces

Consider the probability space
(
R
m×n,B(Rm×n), γ

)
where B(Rm×n) is the Borel

σ -algebra, and themeasure γ is defined so that each A ∈ R
m×n has iid N (0, 1) entries.

In other words, γ is the standard Gaussian probability measure on themn-dimensional
real vector space Rm×n with mean zero and identity covariance matrix. By restricting
to Stm×n , we get the probability space

(
Stm×n,B(Stm×n), γ

)
. We can do this because

R
m×n\Stm×n is an algebraic hypersurface in R

m×n , and therefore has measure zero
with respect to γ . Let B := B(Stm×n).

The Grassmannian Gr (d, n) is endowed with the topology where E ⊆ Gr (d, n)

is open if and only if ker−1(E) is open in Stm×n . Let G denote the associated Borel
σ -algebra. The measure ν on Gr (d, n) is characterized as follows:

Proposition 3 ([13,Corollary 3.1.3])Themeasure ν is the uniquemeasure onGr (d, n)

satisfying

ν (E · U) = ν (E) for all E ∈ G and U ∈ O(n) (16)

ν (Gr (d, n)) = 1.

The map ker : Stm×n → Gr (d, n) thus defines a map of probability spaces:

ker : (
Stm×n,B, γ

) → (Gr (d, n) ,G , ν) .

Proposition 4 The measure ν is the pushforward measure of γ under this map. That
is, ν(E) = γ (ker−1(E)) for each E ∈ G .

Proof We establish the conditions of (16). By surjectivity, and the fact that γ is a
probability measure, we have

γ (ker−1(Gr (d, n))) = γ
(
Stm×n) = 1.

It therefore remains to show γ (ker−1(E · U)) = γ (ker−1(E)) for each E ∈ G and
U ∈ O(n). By Proposition 2, we have

ker−1(E · U) = ker−1(E) · U . (17)
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Now, Rm×n has the inner product 〈A, B〉 = trace
(
AB�)

. With respect to this inner
product we may consider the subgroup O (m × n) of GL

(
R
m×n

)
which is given by

O (m × n) := {
ϕ ∈ GL

(
R
m×n) : 〈ϕ (A) , ϕ (B)〉 = 〈A, B〉} .

Observe that, for a fixed U ∈ O (n), the linear map ϕU ∈ GL
(
R
m×n

)
given by

ϕU (A) = AU (18)

lies in O (m × n), since

〈ϕ (A) , ϕ (B)〉 = trace
(
AU (BU)�

)
= trace

(
AB�)

= 〈A, B〉 .

Now the probability measure γ on R
m×n is defined so that the coordinates Ai, j of a

randomly chosen A ∈ R
m×n are iid N (0, 1) normally distributed. In particular this

measure is invariant under isometry, in that for allK ∈ B
(
R
m×n

)
and ϕ ∈ O (m × n),

we have

γ (ϕ (K)) = γ (K) . (19)

The same is therefore true for the restricted probability measure γ on Stm×n . It follows
that if U ∈ O(n) and E ∈ G , then, using (17), (18), and (19), we have

γ
(
ker−1(E · U)

)
= γ

(
ker−1(E) · U

)
= γ

(
ϕU

(
ker−1(E)

))
= γ

(
ker−1(E)

)
.

��

4.3 Cramer’s rule ratios

Let σ ⊂ [n] of size m, and define

Stm×n
σ := {

A ∈ Stm×n : Aσ is nonsingular
}
.

Gr (d, n)σ := {ker (A) ∈ Gr (d, n) : Aσ is nonsingular } .

Note that γ
(
Stm×n

σ

) = ν (Gr (d, n)σ ) = 1. Also define, for s > 1, i ∈ σ , and j /∈ σ ,

ξσ,i, j (s) :=
{
ker (A) ∈ Gr (d, n)σ :

∣∣∣
(
A−1

σ A j

)

i

∣∣∣ > s
}

.

Proposition 5 The set ξσ,i, j (s) is Jordan measurable.

Proof Let ξ = ξσ,i, j (s). We first argue that it suffices to show ν (∂ξ) = 0, where
∂ξ denotes the boundary of ξ . There is a metric on Gr (d, n), which we denote by
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1214 M. Celaya, M. Henk

δ, whose open balls form a basis for our topology of Gr (d, n). These open balls are
defined, for each ε > 0 and d-dimensional subspace V of Rn , as

B (V , ε) := {W ∈ Gr (d, n) : δ (V ,W ) < ε} .

Let

(∂ξ)ε :=
⋃

V∈∂ξ

B (V , ε) .

Note that ∂ξ = ∩k≥1 (∂ξ)1/k . We have, by the monotone convergence theorem,

lim
N→∞ ν

(
N⋂

k=1

(∂ξ)1/k

)

= ν

⎛

⎝
⋂

k≥1

(∂ξ)1/k

⎞

⎠ = ν (∂ξ) = 0.

In particular, if we now fix some ε > 0, there is some k ≥ 1 such that ν
(
(∂ξ)1/k

)
< ε.

Observe ξ ∩ (∂ξ)c1/k and ξ c are two disjoint closed sets, where X , Xc denotes the
closure and complement of X in Gr (d, n), respectively. As Gr (d, n) is a metric space
it is therefore a normal space, and we may therefore apply Urysohn’s lemma [10,
Lemma 4.15] to get a continuous function f1 : Gr (d, n) → [0, 1] such that

f1|ξ∩(∂ξ)c1/k
= 1 and f1|ξ c = 0.

Again applying Urysohn’s lemma, we also get a function f2 : Gr (d, n) → [0, 1] such
that

f2|ξ c∩(∂ξ)c1/k
= 0 and f2|ξ = 1.

Note that by construction, f1 ≤ 1ξ ≤ f2. Furthermore,

∫
( f2 − f1) dν ≤ ν

(
(∂ξ)1/k

)
< ε,

which establishes the condition of Definition 1.
To conclude the proof, it remains to show ν (∂ξ) = 0. One way to see this is that

ker−1
(
∂ξ

)
is the solution set in Stm×n to

(
det Xσ−i+ j

)2 − (s · det Xσ )2 = 0,

where X denotes an m × n matrix of variables. This is an algebraic hypersurface,
hence by Proposition 4 we conclude

ν
(
∂ξ

) = γ
(
ker−1 (

∂ξ
)) = 0.

��
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Proposition 6 For s > 1 and σ, i, j as above, we have

ν
(
ξσ,i, j (s)

) = 2

πs
+ O

(
s−3

)
.

Proof Let A be a random element of Stm×n
σ , and let H denote the (random) hyperplane

spanned by the columns of Aσ\{i}, and let � denote the line perpendicular to H . Let u�

denote the unit normal vector to H whose first nonzero coordinate is positive. Thus,

� = Ru� = {λu� : λ ∈ R} .

Let α ∈ {−1,+1} denote the sign of the first nonzero entry of e�
i A−1

σ . Then we can
write

u�
� = αe�

i A−1
σ∥∥e�

i A−1
σ

∥∥
2

,

since for all k ∈ σ\ {i} we have

αe�
i A−1

σ Ak = αe�
i A−1

σ Aσ ek = 0,

and αe�
i A−1

σ has first nonzero component positive by definition of α.
Now let k be any element of [n] outside of σ\ {i}. Since u� depends only on Aσ\{i},

and the entries of A are mutually independent, we have that u� and Ak are independent
random vectors. Now, for any fixed unit vector v ∈ S

n−1, as Ak has N (0, 1) iid entries,
then the dot product v�Ak also has distribution N (0, 1). Thus, for any fixed t ∈ R,
the random variable

γ
(
u�

� Ak ≤ t | �
)

(i.e. the conditional probability in terms of the σ -algebra generated by �) is in fact
constant. Evaluating at the line � = Re1, for example, this constant is given by

γ
(
A1,k ≤ t

)
.

This shows that the random quantity u�
� Ak has distribution N (0, 1). We have

(
A−1

σ A j

)

i
= e�

i A−1
σ A j

e�
i A−1

σ Ai
= u�

� A j

u�
� Ai

.

The independence of u�
� Ai and u�

� A j imply that
(
A−1

σ A j
)
i has the Cauchy distri-

bution, that is, the ratio of two iid N (0, 1) random variables. In particular, the cdf of(
A−1

σ A j
)
i is given by

γ
((

A−1
σ A j

)

i
≤ t

)
= 1

π
arctan(t) + 1

2
.
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1216 M. Celaya, M. Henk

See [9, p. 50] for more on the Cauchy distribution. Using the series expansion

arctan (t) = π

2
− 1

t
+ 1

3t3
− 1

5t5
+ · · · ,

we get

γ
((

A−1
σ A j

)

i
≤ t

)
= 1 −

(
1

π t
− 1

3π t3
+ 1

5π t5
− · · ·

)
.

Hence, using Proposition 4 and the fact s > 1, we conclude

ν
(
ξσ,i, j (s)

) = γ
(∣∣∣

(
A−1

σ A j

)

i

∣∣∣ > s
)

= 2 · γ
((

A−1
σ A j

)

i
> s

)

= 2
(
1 − γ

((
A−1

σ A j

)

i
≤ s

))

= 2

(
1

πs
− 1

3πs3
+ 1

5πs5
− · · ·

)

= 2

πs
+ O

(
s−3

)
.

��

5 Proof of themain result

In this final section we prove the main result of this paper, Theorem 1.

Definition 3 Define the constant

ω̃d := ω
1/d
d

d
,

where ωd denotes the volume of the d-dimensional Euclidean ball of radius 1. This
constant ω̃d is of the order d−3/2.

Definition 4 Assume �R = ker (A). Given positive real numbers s and u, we say �

is (σ, s, u)-controlled if σ is a basis of A and:

1. The largest entry of A−1
σ Aσ̄ is at most s, and

2. The successive minima ratios of � are not too large: we have

λi+1 (�)

λi (�)
< (ω̃du)2/(d−1)

for all i = 1, 2, . . . , d − 1.
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Lemma 3 If σ is a basis of A and � is (σ, s, u)-controlled, then for all x∗ ∈ Sσ (�)

we have

dist
(
�, σ, x∗) ≤ 2n3/2su (� (�))1/d .

Proof Let b = Ax∗, let B = Bn
2 ∩�R, and let μ denote the covering radius of B with

respect to �. Define the vector v ∈ R
n so that:

v j = μw j for all j ∈ σ̄

Av = b.

Weshow that the scaled, translated ballμB+v is contained inP(A, b). Since B ⊆ �R,
we have that each x ∈ μB + v satisfies Ax = b. For each j ∈ [n], let x( j) be the
unique point in μB + v such that x( j)

j is minimized. If j ∈ σ̄ , then

x( j)
j = μ(−w j ) + v j = μ(−w j ) + μw j = 0.

If j ∈ σ , then since x∗ ∈ Sσ (�) we have

x( j)
j = μ(−w j ) + v j

= μ(−w j ) +
(
A−1

σ b − A−1
σ Aσ̄ wσ̄

)

j

≥ μ(−w j ) + μw j

= 0.

This concludes the proof that μB + v ⊆ P(A, b).
Let g ∈ (�R + x∗) ∩ Z

n . Since μ is the covering radius of B with respect to �,
there exists z∗ ∈ (� + g) ∩ (μB + v) such that

∥∥x∗ − z∗
∥∥
2 ≤ ∥∥x∗ − v

∥∥
2 + ∥∥v − z∗

∥∥
2 ≤ μ ‖w̃‖2 + μ. (20)

where we define w̃ := (v − x∗)/μ. That is, w̃ satisfies

Aw̃ = 0

w̃ j = w j for all j ∈ σ̄ .

Observe that

w̃σ = −A−1
σ Aσ̄ w̃σ̄ .

123



1218 M. Celaya, M. Henk

Using the fact w ∈ [0, 1]n , we therefore have
‖w̃‖22 = ‖w̃σ ‖22 + ‖w̃σ̄ ‖22

=
∥∥
∥A−1

σ Aσ̄ w̃σ̄

∥∥
∥
2

2
+ ‖w̃σ̄ ‖22

≤ m
∥∥∥A−1

σ Aσ̄

∥∥∥
2

∞ ‖w̃σ̄ ‖21 + ‖w̃σ̄ ‖22
≤

(
ms2 + 1

)
d2.

Thus we conclude ∥∥x∗ − z∗
∥∥
2 ≤ μ (‖w̃‖2 + 1)

≤ u�1/d
(√(

ms2 + 1
)
d2 + 1

)

≤ 2n3/2su�1/d .

��
Proof Let � be a uniformly chosen lattice from G (d, n, T ). Let t > 1, and let s :=
t2/3/(2n3/2) and u := t1/3, so that t = 2n3/2su as in Lemma 3. We have

P
(
dist (�) > t (� (�))1/d

)

≤
∑

σ

P
(
σ basis of A,dist

(
�, σ, x∗) > t (� (�))1/d for some x∗ ∈ Sσ (�)

)

≤
∑

σ

P (σbasis of A,�is not (σ, s, u) -controlled )

where the sums are over all subsets σ ⊆ [n] of size m. It therefore suffices to show,
for each such σ ,

P (σbasis of A,�is not (σ, s, u) -controlled) � t−2/3.

By definition, this probability is at most

P
(

max
i∈[d−1]

{
λi+1 (�)

λi (�)

}
≥(ω̃du)2/(d−1)

)
+

∑

i∈σ
j /∈σ

P
(
σ basis of A,

(
A−1

σ A j

)

i
≥ s

)
.

(21)

By Theorem 2, we have

P
(
σbasis of A,

(
A−1

σ A j

)

i
≥ s

)
=

∣∣G
(
1, ξσ,i, j (s) , T

)∣∣

|G (1,Gr (d, n) , T )| � ν
(
ξσ,i, j (s)

)
.

Hence, applying Corollary 2 and Proposition 6, for T sufficiently large, we may
estimate up to constants the quantity (21) by

u−2 + s−1 � t−2/3.

��
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