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The purpose of this work was to assess the capability of radiomic features in
distinguishing PET image regions with different uptake patterns. Furthermore, we
assessed the stability of PET radiomic features with varying image reconstruction
settings. An in-house phantom was designed and constructed, consisting of
homogenous and heterogenous artificial phantom inserts. Four artificially
constructed inserts were placed into a water filled phantom and filled with varying
levels of radioactivity to simulate homogeneous and heterogeneous uptake
patterns. The phantom was imaged for 80min. PET images were reconstructed
whilst varying reconstruction parameters. The parameters adjusted included,
number of ordered subsets, number of iterations, use of time-of-flight and filter cut
off. Regions of interest (ROI) were established by segmentation of the phantom
inserts from the reconstructed images. In total seventy eight 3D radiomic features
for each ROI with unique reconstructed parameters were extracted. The Friedman
test was used to determine the statistical power of each radiomic feature in
differentiating phantom inserts with different hetero/homogeneous configurations.
The Coefficient of Variation (COV) of each feature, with respect to the
reconstruction setting was used to determine feature stability. Forty three out of
seventy eight radiomic features were found to be stable (COV ≤5%) against all
reconstruction settings. To provide any utility, stable features are required to
differentiate between regions with different hetro/homogeneity. Of the forty three
stable features, fifteen (35%) features showed a statistically significant difference
between the artificially constructed inserts. Such features included GLCM
(Difference average, Difference entropy, Dissimilarity and Inverse difference), GLRL
(Long run emphasis, Grey level non uniformity and Run percentage) and NGTDM
(Complexity and Strength). The finding of this work suggests that radiomic features
are capable of distinguishing between radioactive distribution patterns that
demonstrate different levels of heterogeneity. Therefore, radiomic features could
serve as an adjuvant diagnostic tool along with traditional imaging. However, the
choice of the radiomic features needs to account for variability introduced when
different reconstruction settings are used. Standardization of PET image
reconstruction settings across sites performing radiomic analysis in multi-centre
trials should be considered.
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1. Introduction

Medical imaging modalities such as Positron Emission

Tomography (PET), Computed Tomography (CT) and Magnetic

Resonance (MR) contribute significantly in all phases of cancer

management (1). PET imaging plays a fundamental role in

qualitative assessment of several types of cancer (2). PET images

are more often assessed visually by radiologists and clinicians (3).

However, PET images traditionally provide a limited number of

quantitative parameters such as the maximum, minimum and peak

standardized uptake value (SUVmax, SUVmean, SUVpeak) (3, 4).

These parameters are commonly used for quantifying tumor

characteristics. SUVmax, for example, can be used to detect occult

metastatic nodes in oral cancers (5). Additional quantitative

parameters in the form of texture features have been proposed and

are a current research topic in quantitative PET imaging. These

have the potential to improve prognosis and diagnosis of patients

with cancer (6). The past few years have seen increasingly rapid

advances in the field of tumor textural analysis. Radiomics may be

defined as a method of the extraction of quantitative imaging

textures or features that cannot be seen by the human eye (7, 8). A

considerable amount of literature has been published on the use of

radiomic features. For example the utility of radiomic features as

predictors of patient outcome and treatment response (9, 10).

The use of radiomic features as metrics in prognosis and diagnosis

for several cancers is a promising development. However, with different

imaging equipment, acquisition protocols and image processing, the

variation and accuracy of radiomic features remains problematic and

serves as a challenge to implementing radiomic features as

biomarkers (11). There have been several investigations into the

effect of different variables on the stability of PET images radiomic

features. The impact of PET image reconstruction settings has been

investigated (12–15). Several attempts have been made to investigate

the impact of other conditions including factors such as respiratory

motion (16), segmentation (17) and interpolation (18)) all of which

may confound the utility of PET radiomic features. Pfaehler et al.

(19) investigated the impact of different variables such as image

reconstruction settings, noise, discretization method, and delineation

method on the repeatability of 18F-FDG PET radiomic features. In a

study which set out to determine the impact of reconstruction

settings on 61 texture and features, Yan et al. (20) found that

variation occurred when different reconstruction settings were

applied. In their study, cluster shade, and zone percentage exhibited

large variations. Features such as difference entropy, inverse

difference normalized, inverse difference moment normalized, low

gray level run emphasis, high gray level run emphasis, and low gray

level zone emphasis were found to have high stability.

Clinical studies are complex and influenced by several factors

including patient physiology and organ motion. For this reason,

phantom studies can be a reasonable substitute to control for bias

relative to biological variability of clinical studies. Previous research

involving phantom experiments have mostly dealt with homogenous

phantom images, and studies that analyse heterogeneous phantom

images are limited (21–23). This study therefore set out to assess not

only the effect of reconstruction settings on the stability of PET

radiomic features, but also the ability of the radiomic feature to

distinguish between homogeneous and heterogeneous uptake
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patterns. For this purpose, we designed a heterogeneous PET

phantom comprising of four artificially constructed tumor inserts.

The phantom was scanned and images were reconstructed with

different reconstruction settings including number of ordered subsets

expectation maximization (OSEM) subsets, number of iterations, use

of time-of-flight (TOF) and filter cut off.
2. Materials and methods

2.1. Preparation

We designed a mounting plate made of PETG (polyester) capable

of holding four artificially constructed inserts (38mm PCD each) at 90

degrees to each other. Each insert consists of 7 syringes filled with

different radioactivity concentrations to model lesions with varying

degrees of heterogeneity. Two configurations of homogeneous

tumour inserts were constructed by arranging 6 and 7 syringes,

which were filled with 40 kBq/ml F-18 activity concentration to

mimic tumors (�145 cm3) with and without necrotic regions,

respectively. The two remaining inserts were constructed in a similar

way by arranging syringes filled with 3 different F-18 activity

concentrations (20, 40 and 80 kBq/ml) to mimic heterogeneous

tumors with and without necrotic regions, respectively. The extremes

of concentrations chosen were based on the ratio of the highest and

lowest intensities observed in a subset (n ¼ 10) of randomly chosen

tumors from oesophageal cancer PET images. The average ratio

between the highest and lowest intensity in this subset was 4:1, hence

80 and 20 kBq/ml were chosen as the maximum and minimum

radioactivity concentrations in the phantom. The constructed inserts

were placed in a cylindrical uniform water (5 kBq/ml F-18) filled

phantom. Figure 1 shows an illustrative layout of the four

configurations of artificial constructed tumour inserts.
2.2. Acquisitions and Reconstructions

A GE Discovery 690 PET/CT scanner was used to acquire

phantom images. Figure 2 shows a picture of the designed

phantom placed on the scanner couch. The phantom was scanned

for 80 min and images were reconstructed using the default

settings that are used clinically (reference image): order subset

expectation maximization (OSEM), point spread function (PSF)

correction, Time-of-Flight (TOF) on, 24 subsets, 2 iterations,

6.4 mm filter cutoff and 256 matrix size. To evaluate the effect of

reconstruction settings on image radiomic features, images were

reconstructed with varying reconstruction settings including:

number of subsets, number of iterations, filter cut-off and

application of TOF. Table 1 shows the reconstruction parameters

used to generate new images.
2.3. Segmentation

Velocity 3.2.1 software (Varian Medical Systems, Atlanta, USA)

was used to obtain the ground truth contour from the first

configuration (homogeneous tumour). To remove variability in
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FIGURE 1

An illustrative layout of the syringe mounting plate (A) and four configurations of the artificial tumour inserts (B).

FIGURE 2

A picture of the designed phantom after placed on the scanner.

TABLE 1 List of reconstruction settings used to generate new images.

Reconstruction parameters Variations

Number of subsets 12, 16, 18, 24, 32

Number of iterations 1, 2, 3, 4, 5, 6

Filter cut-off 0, 1, 2, 3, 4, 5, 6, 7

TOF Yes, No

Default settings: TOF, 24 OSEM subsets, 2 iterations, 6.4mm filter cutoff.
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ROI delineation, this contour was overlaid onto all other

configurations and other subsequent images resulting from images

reconstructed with different reconstruction settings. Figure 3 shows

Axial, Coronal and Sagittal views for the phantom scan at 80 min.
2.4. Features extraction and data analysis

For each region of interest (ROI), SPAARC (Spaarc Pipeline for

Automated Analysis and Radiomic Computing), an in-house

developed tool built with Matlab, was used to extract 78 3D-

radiomic features (18, 24). Features including a 25 gray level co-

occurrence matrix (GLCM), 16 gray-level run-length matrix

(GLRLM), 16 gray-level size zone matrix (GLSZM), 16 Gray-level

distance zone matrix (GLDZM) and 5 neighborhood gray-tone
Frontiers in Nuclear Medicine 03
difference matrix (NGTDM) were extracted. SPAARC radiomic

analysis is standardized according to the Image Biomarker

Standardization Initiative (IBSI) (25). All extracted features are

listed in Table 2.

To evaluate each feature’s stability when extracted with different

reconstruction settings, the coefficient of variation (COV) was

calculated. COV serves as a simple measurement in evaluating the

variability of feature measurements and is one of the most widely

used methods in assessing the stability of radiomic features (14, 20,

22). COV is the ratio of the standard deviation to the mean and it

can be expressed as the following equation:

COV ¼ ðStandardDeviationÞ � 100
Mean

In this study, we categorized features based on their COV values and

established four groups; stable (COV � 5%), moderately stable

(5% , COV � 10%), poorly stable (10% , COV � 20%) and

unstable (COV . 20%). The categorization approach taken in this

study is based on Yan et al. (20) and Shiri et al. (14).

Features that demonstrated stability were analysed using the

Friedman test (26), to determine if they were capable of discerning,
frontiersin.org
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FIGURE 3

Axial (left), Coronal (right, top) and Sagittal (right, bottom) views for the phantom scan at 80 min and default reconstruction settings. Four different regions of
interest are shown in the axial view.
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with statistical significance, difference between phantom objects with

varying heterogeneity. The Friedman test is a non-parametric test that

determines the statistical significance of differences in dependent

variables (texture features) between groups (homogeneity). The

Friedman test involves ranking each row (features values in each

reconstruction parameter) separately and then sums the ranks in each

column (regions). In our study, rows contain feature values at

different reconstruction settings. The p value will be small if the sums

are very different. In contrast, high p values indicate that there is no

significant difference between tested groups.

The Friedman test was performed for each feature to determine

whether or not there is a statistically significant difference between

the regions used in each configuration, whilst varying

reconstruction parameter settings (shape1 vs shape2, shape1 vs

shape3, shape1 vs shape4, shape2 vs shape3, shape2 vs shape4 and

shape3 vs shape4). The steps of applying the Friedman test can be

summarized as follows:

1) Ranking for each feature the values obtained from the varying

reconstructions (row) in ascending order.

2) The sum of ranks for each region (column) was calculated.

3) The test statistic (Q) was calculated using the following equation:

Q ¼ 12
nk(kþ 1)

Xk

j¼1

R2
j � 3n(kþ 1)

where: n, number of reconstruction parameters = 21; k, number

of regions = 2 (each combination consists of 2 regions); Rj2, sum

of ranks for the jth region.

4) Determining corresponding p value.

The null hypothesis for the Friedman test is that there are no

differences between dependent variables (texture features obtained

with varying reconstruction parameters). If the calculated
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probability is low, (p less than the selected significance level) the

null-hypothesis is rejected and we can assert that the texture

feature allows separation between the paired regions. If the p value

is higher than significance the null hypothesis is accepted and the

texture parameter shows no difference between the paired regions.

A significance level of 0.05 was chosen. If any feature

demonstrated significance for all of the 6 paired combinations the

feature will be considered as distinguishable feature to capture

heterogeneity differences in the phantom. The workflow for this

analysis is shown in Figure 4. Figure 5 illustrates how the data is

sorted (in form of a table) to perform the Friedman test.

3. Results

Figure 6 indicates features as categorised based on the average

of the COV over all tested reconstruction settings. Forty three

features were found to be stable (COV � 5%) with the application

of different reconstruction settings. Such stable features included

GLCM (Difference entropy, Inverse difference normalised, Inverse

difference moment normalised, Second measure of information

correlation and 10 other features), GLRL (Short runs emphasis,

Run percentage, Run entropy and 5 other features), GLSZM

(Zone size entropy and 6 other features), GLDZM (Zone distance

entropy and 10 other features), NGTDM (strength, coarseness,

complexity).

Figure 6 also shows 20 and 13 features with moderate

(5% , COV � 10%) and poor (5% , COV � 10%) stability over

all reconstruction settings, respectively. Only two features show

high variation (COV . 20%). Unstable features included GLRLM

(Long run low grey level emphasis) and GLSZM (Large zone low

grey level emphasis).

When comparing feature groups, NGTDM features have the

lowest mean COV (Figure 7). GLSZM was the most sensitive

feature type to the reconstruction settings.
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TABLE 2 List of extracted radiomic features.

Features group Features Features group Features

GLCM Joint maximum GLSZM Small zone emphasis

Joint average Large zone emphasis

Joint variance Low grey level zone emphasis

Joint entropy High grey level zone emphasis

Difference average Small zone low grey level emphasis

Difference variance Small zone high grey level emphasis

Difference entropy Large zone low grey level emphasis

Sum average Large zone high grey level emphasis

Sum variance Grey level non-uniformity

Sum entropy Grey level non-uniformity normalised

Angular second moment Zone size nonuniformity

Contrast Zone size non-uniformity normalised

Dissimilarity Zone percentage

Inverse difference Grey level variance

Inverse difference normalised Zone size variance

Inverse difference moment Zone size entropy

Inverse difference moment normalised

Inverse variance

Correlation

Autocorrelation

Cluster tendency

Cluster shade

Cluster prominence

First measure of information correlation

Second measure of information correlation

GLRLM Short runs emphasis GLDZM Small distance emphasis

Long runs emphasis Large distance emphasis

Low grey level run emphasis Low grey level zone emphasis

High grey level run emphasis High grey level zone emphasis

Short run low grey level emphasis Small distance low grey level emphasis

Short run high grey level emphasis Small distance high grey level emphasis

Long run low grey level emphasis Large distance low grey level emphasis

Long run high grey level emphasis Large distance high grey level emphasis

Grey level nonuniformity Grey level non-uniformity

Grey level non-uniformity normalised Grey level non-uniformity normalised

Run length non-uniformity Zone distance non-uniformity

Run length non-uniformity normalised Zone distance non-uniformity normalised

Run percentage Zone percentage

Grey level variance Grey level variance

Run length variance Zone distance variance

Run entropy Zone distance entropy

NGTDM Coarseness

Contrast

Busyness

Complexity

Strength

Alsyed et al. 10.3389/fnume.2023.1078536
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FIGURE 4

Workflow of selecting distinguishable features that can detect the differences between the regions.

Alsyed et al. 10.3389/fnume.2023.1078536
3.1. Impact of TOF

As shown in Figure 8, Seventy four features were stable against

the use of TOF. Such stable features included GLCM (joint

entropy, difference average,sum entropy, correlation, joint

maximum), GLRLM (shortRunEmp, Long run high grey level

emphasis, Grey level non uniformity, run percentage), GLSZM

(Small zone emphasis, Zone percentage, Zone size entropy),

GLDZM (Small distance emphasis, Large distance emphasis, Low

grey level zone emphasis, Zone distance variance) and NGTDM

(Coarseness, Busyness, Complexity, Strength). Only four features

(GLCM-Contrast, GLSZM-Zone Size Variance, GLSZM-Large Zone
Frontiers in Nuclear Medicine 06
Emphasis and NGTDM-Contrast) demonstrated moderate stability

against TOF. No features were poorly stable or unstable.
3.2. Impact of number of subsets

Figure 8 also showed that fifty three features were classed as

having high stability (COV � 5%) with varying number of OSEM

subsets. Fifteen features (19%) were classed as having moderate

stability (5% , COV � 10%). Five features including GLRL (Run

length variance), GLSZM (Zone size non uniformity, Small zone

low grey level emphasis) and GLDZM (Large distance low grey
frontiersin.org
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FIGURE 5

An illustrative example showing how the data sorted to perform the Friedman test. The example includes 21 reconstruction settings and two different regions
(shape1 vs shape2). This was repeated for each of five other combinations (shape1 vs shape3, shape1 vs shape4, shape2 vs shape3, shape2 vs shape4 and
shape3 vs shape4). P values were then calculated for each pair of regions to determine whether or not there is a statistically significant difference
between the means of the regions.

Alsyed et al. 10.3389/fnume.2023.1078536
level emphasis, Small distance low grey level emphasis) were poorly

stable. The remaining features (5) such as GLRLM (Low grey level

run emphasis) and GLSZM (Large zone high grey level emphasis)

had high variability (unstable) at different number of subsets. All

features from NGTDM were stable (COV � 5%) with varying the

number of subsets during reconstruction.
3.3. Impact of the number of iterations

More than 60% (54) of features were found to be stable with

different number of iterations (Figure 8). Features with very low

variation included GLCM (sum average, sum variance, sum entropy,

contrast, dissimilarity, inverse difference, inverse difference

normalised), GLRLM (run percentage, grey level Variance, run

entropy), GLSZM (Small zone emphasis, High grey level zone

emphasis , Small zone low grey level emphasis), GLDZM (Small

distance high grey level emphasis, Large distance high grey level

emphasis, Grey level non-uniformity normalised) and NGTDM

(coarseness, busyness, complexity). Seventeen and five (GLRL-Low

grey level run emphasis, GLRL-Short run low grey level emphasis,

GLSZM-Small zone low grey level emphasis, GLSZM-Large zone high

grey level emphasis, GLDZM-Large distance low grey level emphasis)

features showed moderately stable and poorly stable against the

number of iterations, respectively. Only two features GLRLM (Long

run low grey level emphasis) and GLSZM (Large zone low grey level

emphasis) showed large variation (COV . 20%) with different

numbers of iterations.
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3.4. Impact of FWHM of the Gaussian filter

With changing FWHM of a Gaussian filter, twenty seven features

showed very small variation (COV � 5%). 18% (14) and 24% (19) of

features were found to be moderately stable and poorly stable,

respectively. Eighteen features such as GLCM (cluster Shade, joint

maximum, auto correlation), GLRLM (High grey level run emphasis

, short run high grey level emphasis), GLSZM (large zone emphasis),

GLDZM (Small distance low grey level emphasis) and NGTDM

(busyness) demonstrated high variation (COV . 20%) (Figure 8).
3.5. Analysis of Friedman test

Forty three features demonstrated high stability over all

reconstruction settings. The Friedman test was used to find out how

many of them differed statistically between regions. Fifteen out of 43

(35%) features showed statistically significant difference between

regions and hence classed as distinguishable. Table 3 presents all of

these distinguishable features. More than half (8) of the

distinguishable features were derived from the gray level co-

occurrence matrix. It was observed that some features such as

GLSZM (glVariance) were statistically different between region 1 vs

3, 2 vs 3 and 2 vs 4, but not between region 1 vs 2, 1 vs 4 and 3 vs 4.
4. Discussion

The main purpose of this study was to assess the stability of PET

radiomic features with varying reconstruction settings involving
frontiersin.org
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FIGURE 6

Features for each category of stability over all reconstruction settings.

FIGURE 7

Box plot for the mean values of COV for each feature family over all reconstruction settings.

Alsyed et al. 10.3389/fnume.2023.1078536

Frontiers in Nuclear Medicine 08 frontiersin.org

https://doi.org/10.3389/fnume.2023.1078536
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 8

Bar chart showing the number of features for each category.

TABLE 3 List of features demonstrated statistically significant differences
(p , 0:05) between all regions.

Features group Features

GLCM Difference average

Difference entropy

Dissimilarity

Inverse difference

Inverse difference normalised

Inverse difference moment

Correlation

Second measure of information correlation

GLRLM Long runs emphasis

Grey level nonuniformity

Grey-level-nonuniformity-normalised

Run percentage

Run entropy

NGTDM Complexity

Strength

Alsyed et al. 10.3389/fnume.2023.1078536
different configurations of synthetic lesions. From those features

identified as stable, we determined the subset of features that can

still demonstrate distinguishable and significant differences between

image regions with varying radioactive heterogeneity. A phantom

study was used to assess these properties and hence remove the

complexities of physiologically induced confounding variables

which may be introduced if the analysis is performed in vivo.

Four arrays of radioactivity filled syringes (7 in total to represent

a synthetic tumour) were placed in the phantom and imaged for

80 min. Images were reconstructed with different reconstruction

settings (TOF, Subsets, Iterations and FWHM Gusion filters). We

extracted 78 radiomic features (GLCM, GLRLM, GLSZM, GLDZM

and NGTDM), calculations were compliant with the Image

Biomarker Standardization Initiative (IBSI). We calculated the

COV for each feature with varying reconstruction parameters and

categorized their COV values into 4 groups (stable,moderately

stable, poorly stable, unstable). The results of this study indicated

that different reconstruction settings have different influences on

PET radiomic features. For instance, GLCM (Difference entropy,

Inverse difference normalised), GLRL (Short runs emphasis, Run

entropy), GLSZM (Zone size entropy), GLDZM (Zone distance

entropy) were stable against all reconstruction settings, while GLRL

(Long run low grey level emphasis) were unstable against most of

reconstruction settings. NGTDM (Busyness) was moderately stable

against subsets and unstable against filters.

The important role of TOF is measuring the variation in arrival

time of the two emitted photons leading to localizing the emission

point more precisely. TOF can improve the contrast and reduce

the noise, and therefore a better signal to noise ratio. Interestingly
Frontiers in Nuclear Medicine 09
in this study, the use of TOF had the lowest impact on radiomic

features. The OSEM algorithm is an acceleration of the expectation

maximization (EM) algorithm. However, a trade-off exists between

the number of subsets and increasing noise and image quality. In
frontiersin.org
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addition, increasing number of iterations leads to increased noise

(27). The number of iteration and subsets were found to have

similar effects on all measured radiomic features. This may be due

to the fact that OSEM reconstructions with n iterations and m

subsets are equivalent to m iterations and n subsets and increasing

either leads to an increased product of iterations (subset�
iteration) which eventually leads to elevate the noise level. The

largest variation of image features occurred with changing the

FWHM of the gaussian filter. The role of smoothing utilizing the

gaussian filter is to improve signal to noise. However, the spatial

resolution will be reduced with larger FWHM which causes a more

uniform intensity distribution and hence an impact on extracted

texture feature variability.

This study differs from prior works in several ways such as many

more features were extracted and hence reported than previous work.

We also have an increased number of lesion configurations,

heterogeneity activity levels and varied reconstruction parameters.

As an example, (21), (22) and (23) extracted 27, 58 and 39

radiomic features respectively, while in our study, we extracted 78

radiomic features. Furthermore, Forgacs et al. utilised only 3

different numbers of iterations, 2 number of subsets and 2 FWHM

Gaussian filters (21) whilst our study is based on 6 different levels

of iterations, 5 levels of subsets and 8 FWHM Gaussian filter

variations. Moreover, all radiomics features in this work were

compliant with the Image Biomarker Standardization Initiative

(IBSI). Hence, this study provides a more encompassing analysis of

our knowledge of the robustness of features against different

reconstruction settings whilst also exploring the utility of

those features in distinguishing between heterogeneity activity

distributions via Friedmans analysis.

The present findings seem to be consistent with other research

which found that varying reconstruction settings has variable

influence on the stability of different PET radiomic features. As

an example, Gallivanone et al. assessed the impact of different

reconstruction settings (i.e. filters, iterations and subsets) on

different radiomic features (22). Their results found that subsets

and matrix size had lowest and greatest impact on the stability

of features, respectively. In our study, in comparison to

Gallivanone et al., about 19, 22, 17 features (from 36 common

features) had the same COVs against subsets, iterations and filter

size, respectively. Our results confirm Gallivanone et al.’s finding

that dissimilarity (GLCM), Short run emphasis (GLRLM), Small

zone emphasis (GLSZM), strength (NGTDM) has high stability.

Low gray-level run emphasis and Long run low gray-level

emphasis (GLRLM), Large zone low gray-level emphasis

(GLSZM) are unstable.

Doumou et al. studied the impact of image smoothing,

segmentation and quantisation on the stability of 57 heterogeneity

features (28). For the 38 features in common with our study, 12

features had good agreement in the effect of FWHM Gaussian

filter. As an example, Inverse difference normalised (GLCM) and

strength (NGTDM) were stable and small zone low emphasis and

large zone low emphasis (GLSZM) were unstable against varying

Gaussian filter size in both studies.

In a study by Shiri et al., 100 radiomic features were extracted

from patient and phantom images with different reconstruction

settings (14). Our results are consistent with their findings, in
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that the Short run emphasis (GLRLM), zone percentage

(GLSZM), correlation and Inverse difference moment (GLCM)

have small variability against subsets and FWHM filters. In Shiri

at al., four different reconstruction algorithms (OSEM, OSEM

+PSF, OSEM+TOF and OSEM+PSF+TOF) were included, but in

our study we only included two reconstruction algorithms in

order to assess the impact of TOF, specifically OSEM with and

without TOF.

In another study, Forgacs et al. used inhomogeneous tumor

insert (7 syringes) placed in a cylindrical phantom and imaged

with different acquisition times and reconstruction settings

(21). According to their strategy, reliable heterogeneity

parameters must be volume independent, reproducible, and

appropriate for detecting heterogeneity levels. Entropy,

Correlation, Homogeneity and Contrast were found to have low

variation with varying acquisition times and reconstruction

settings (21). In our study, 3 out of these 4 features were found

to have very low COV when varying all of the tested

reconstruction settings.

Bailly et al. assessed the robustness of 15 features with matrix

size, number of iterations, Gaussian post-filtering, noise and the

reconstruction algorithm (29). For the 13 features in common with

our own study, 38% and 54% of them showed the same COVs in

number of iterations and FWHM Gaussian filter, respectively.

There are several causes for the differences between our results

and previous work in this area. Firstly, the statistical methods used

to analyze the results are unique. Second, the range of

categorizations differ from one study to another. For instance, we

categorized the features into 4 groups based on the COV values,

but in the Bailly study, they used only 3 categorizations.

Furthermore, other factors such as segmentation methods, bin size

and default reconstruction settings may have a considerable

difference between studies.

In this study, we performed further statistical analysis to determine

the ability of what we have defined as stable features in distinguishing

between phantom inserts with different heterogeneity. The Friedman

test (non-parametric) was used for these purposes on 43 (out of 78)

features. Thirty five features were excluded in this analysis due to

their instability against reconstruction settings. The Friedman test

was performed for each combination (shape1 vs shape2, shape1 vs

shape3, shape1 vs shape4, shape2 vs shape3, shape2 vs shape4 and

shape3 vs shape4) of heterogeneity configurations to determine

whether or not there was a statistically significant power in each

texture feature distinguishing between image regions of the varying

insert configurations when using different reconstruction parameters.

This study found that 15 features demonstrated statistically

significant differences (p , 0:05) between all regions. Therefore,

these 15 features may be reasonably considered as stable and capable

of discerning, with statistical significance, differences between

phantom objects with varying heterogeneity. This has, to the best of

the authors’ knowledge, not previously been presented before in the

PET radiomics literature.

The study has some limitations. First, the impact of interpolation,

segmentation and quantization have not taken into account. Whypra

et al. (18) , Leijenaar et al. (13) and Lu et al. (30) have investigated the

effect of these parameters. We used a fixed isotropic voxel dimension,

delineation and bin size with all of reconstructed images to minimize
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the impact of these parameters. This was also recommended by the

IBSI (31). Second, this study like others was carried out in static

conditions and did not include any radio kinetic component as we

aimed to report on the stability of PET radiomic features against

different PET reconstruction parameters. Third, this study is

concerned with the stability of radiomic features for different

image reconstruction parameters. An image phantom is used for

these purposes; test-retest repeatability would measure variations in

phantom filling rather than variability introduced by the

reconstruction alogrithm. Future work will explore if these findings

are consistent across different reconstruction algorithms provided

by different manufacturers. Fourth, this study did not involve

clinical data. However, the phantom study informs the variabilities

that may exist in a clinical context. A similar study using clinical

data may be conducted using the methods used in this study. This

may serve as a future work.
5. Conclusions

The purpose of this work was to determine stable PET

radiomic features that do not vary with changing PET

reconstruction parameters but maintain the ability to distinguish

between different synthetic tumor inserts with varying

heterogeneity. Our study showed that forty three (55%) features

were found to be stable against reconstruction settings. Fifteen

features were found to have an ability to capture heterogeneous

differences between lesions. These features are: (1) stable to

reconstruction parameters and (2) capable of providing statistically

significant differences in the presence of different levels of

phantom designed spatial heterogeneity. Further research involving

clinical data using a similar approach could contribute to a deeper

understanding of the clinical application and translation of

radiomic features.
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