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Abstract: The reaction of 1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one (1) with
excess hydroxylamine hydrochloride (2 mole equivalents) in dry ethanol afforded (E)-1-(5-methyl-1-
(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one oxime (2) in 86% yield. The structure of the new
heterocycle 2 was confirmed using nuclear magnetic resonance spectroscopy, single crystal X-ray and
elemental analysis.
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1. Introduction

Oximes are a class of imines with the general formula R1R2C=N–OH. They are pri-
marily obtained from condensing hydroxylamine and carbonyl compounds (aldehydes or
ketones). Aldoximes are produced from aldehyde, whereas ketoximes are synthesized from
ketones [1–3]. Oximes have unique properties and act as nucleophiles due to the presence
of nitrogen and oxygen atoms. In addition, oximes contain an ambiphilic carbon and are
considered strong candidates for divergent reactivity [4].

For many years, oximes have been investigated due to their significant potential as
acetylcholinesterase reactivators and in the cure for several diseases [5–8]. Oximes with dif-
ferent scaffolds have shown activity against bacterial infections, including tuberculosis [9].
In addition, oximes act as anti-inflammatory reagents [10–12], and their activity is compara-
ble to standard drugs such as indomethacin, dexamethasone, and diclofenac [13]. Moreover,
oximes are an active component of various kinase inhibitors such as phosphatidyl inositol
3-kinase [14], phosphorylase kinase [15], and c-Jun N-terminal kinase [16].

Heterocycles containing 1,2,3-triazole moiety have various biological activities [17–22].
For example, several novel 1,2,3-triazoles have been synthesized and their anticancer activ-
ity was investigated. Some of the synthesized 1,2,3-triazoles showed potential as anticancer
(e.g., lung cancer) drugs [23,24]. The most common synthetic method used to produce
1,2,3-triazole ring systems involves click chemistry [25]. The synthetic processes that em-
ploy click chemistry are simple, efficient, and produce a range of substituted 1,2,3-triazoles
in good yields [26]. In addition, 1,2,3-triazoles can be synthesized efficiently from the
1,3-cycloaddition of active methylene compounds containing nitriles and aryl azides [27].
1,2,3-Triazolyl-based ketoximes can be synthesized from the reaction of calcium carbide
(an acetylene source) and (Z)-2-azido-1-arylethan-1-one oximes [28]. 1,2,3-Triazole oximes
can be also synthesized from the reaction of 4-acetyl-1,2,3-triazoles and hydroxylamine
hydrochloride in an acidic medium [29]. The synthesis of heterocycles containing both
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oxime and 1,2,3-triazole moieties is an interesting proposition. Recently, we have synthe-
sized a range of heterocycles containing 1,2,3-triazole ring systems [30–35]. The aim of the
current work was to synthesize a novel heterocycle containing both oxime and 1,2,3-triazole
moieties using a facile and routine method. The synthesis of such a compound opens gates
for the production of a series of derivatives containing various substituents to test their
effect on the biological activities of 1,2,3-triazoles containing oxime.

2. Results and Discussion
2.1. Synthesis

The condensation of 1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one
(1) with excess hydroxylamine hydrochloride (H2NOH.HCl) in dry EtOH afforded (E)-1-
(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one oxime (2) (Scheme 1). The
progress of the reaction was tested using thin layer chromatography. A reflux for 5 hours
was need for the reaction to be completed. Crystallization of the crude product using
dimethylformamide (DMF) led to crystals of 2 in 86% yield.
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2.2. NMR Spectroscopy

The 1H NMR spectrum of 2 showed the presence of an exchangeable singlet that
appeared at 11.28 ppm due to the hydroxyl proton. In addition, it showed the presence
of two methyl groups that appeared at 2.23 and 2.48 ppm. The protons of the aryl ring
appeared as two doublets (J = 9.1 Hz) at 7.92 and 8.4q ppm. The 13C NMR spectrum of 2
showed the C=N–OH carbon appeared at a high downfield at 154.2 ppm. The two methyl
carbons appeared at 15.8 and 17.3 ppm, and C1 and C4 of the aryl ring appeared at 145.8
and 152.9 ppm, respectively. See Supplementary materials for details.

2.3. X-ray Crystal Structure

The crystal structure contained two independent molecules of 2, M1 and M2 (Figure 1).
Each molecule comprised nitrobenzene (M1A: C1–C4, N1, O1, O2 and M2A: C12–C17,
N6, O4, O5), triazole (M1B: C7–C9, N2–N4 and M2B: C18–C20, N7–N9), and (ethyli-
dene)hydroxylamine (M1C: C10, C11, N5, O3 and M2C: C23, C24, N10, O6) moieties.

The nitro group of molecule M2 was coplanar with the benzene ring it was attached
to (the twist angle was 5.9(3)◦), whereas the group was disordered in M1, with twists of
approximately 15◦ from the plane of the corresponding benzene ring. The triazole and
(ethylidene)hydroxylamine groups were coplanar in both molecules, with twist angles
M1B/M1C and M2B/M2C of 4.38(15)◦ and 7.77(12)◦, respectively. In both molecules, the
benzene rings were twisted from the planes of the triazole ring with twist angles of 35.7(1)◦

and 47.7(1)◦.
In the crystal, the molecules were stacked to form columns parallel to the a-axis (Figure 2a).

Intermolecular O–H . . . N hydrogen bonding occured in the structure (Figure 2b). The triazole
group of molecule M2 accepted contacts from two neighbors with geometry O3–H3A . . .
N9 = 164.5◦, O3 . . . N9 = 2.878(3)Å and O6–H6A . . . N8 = 165.2◦, O6 . . . N8 = 2.967(3) Å.
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3. Materials and Methods
3.1. General

The 1H (500 MHz) and 13C NMR (125 MHz) spectra were assessed using a JEOLNMR
spectrometer. The chemical shift (δ) was measured in ppm and, the coupling constant (J)
was calculated in Hz. Compound 1 was produced based on a literature procedure [36].

3.2. Synthesis of 2

A mixture of methyl ketone 1 (0.63 g, 2.5 mmol) and H2NOH.HCl (0.35 g, 5.0 mmol)
in dry EtOH (15 mL) was refluxed for 5 h. The mixture was left to cool to 20 ◦C and the
solid produced was collected via filtration. The product was washed with EtOH, dried,
and recrystallized from DMF to yield 2 in crystalline form in 86% yield. MP 212–213 ◦C.
1H NMR (ppm; Hz): 2.23 (s, 3H, Me), 2.48 (s, 3H, Me), 7.92 (d, 9.1 Hz, 2H, H3/H5 of Ar),
8.41 (d, 9.1 Hz, 2H, H2/H6 of Ar), 11.28 (s, exch., 1H, OH). 13C NMR (ppm): 15.8 (Me),
17.2 (Me), 130.3 (C3/C5 of Ar), 131.2 (C2/C6 of Ar), 137.2 (C4 of triazolyl), 143.4 (C5 of
triazolyl), 145.8 (C1 of Ar), 152.9 (C4 of Ar), 154.2 (C=N–OH). Anal. Calcd. for C11H11N5O3
(261.24): C, 50.57; H, 4.24; N, 26.81. Found: C, 50.66, H, 4.54, N, 26.93%.

3.3. Crystal Structure Determination

Single-crystal XRD data were collected on an Agilent SuperNova Dual Atlas diffrac-
tometer with a mirror monochromator using Mo radiation. The crystal structure of 2 was
solved and refined using SHELXT [37] and SHELXL [38]. The nitro group of one molecule
was disordered with two components related by a 34.1(11)◦ twist about the C–N bond with
occupancies of 0.52(3) and 0.48(3). Non-hydrogen atoms were refined with anisotropic
displacement parameters and hydrogen atoms were inserted in idealized positions; a riding
model was used with Uiso set at 1.2 or 1.5 times the value of Ueq for the atom to which
they were bonded.

Molecular formula = C22H22N10O6, formula weight = 522.49, temperature = 293(2) K,
wavelength = 0.71073 Å, monoclinic, P21/c, a = 7.5755(6) Å, b = 39.3294(18) Å, c = 8.3050(4)
Å, α = 90◦, β = 104.999(6)◦, γ = 90◦, volume = 2390.1(3) Å3, Z = 4, density (calculated) =
1.452 Mg/m3, absorption coefficient = 0.110 mm–1, F(000) = 1088, crystal size = 0.530× 0.330
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× 0.050 mm3, reflections collected = 24965, independent reflections = 6011, R(int) = 0.0299,
parameters = 368, goodness-of-fit on F2 = 1.083, final R1 [I>2sigma(I)] = 0.0653, wR2
[I>2sigma(I)] = 0.1940, R1 (all data) = 0.0943, wR2 (all data) = 0.2147, largest diff. peak
and hole = 0.201 and -0.250 e.Å–3, respectively. The data have been deposited in the CSD
using reference CCDC 2235605.

4. Conclusions

(E)-1-(5-Methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethan-1-one oxime was synthe-
sized in excellent yield using a simple procedure. The structure of the title heterocycle was
confirmed using nuclear magnetic spectroscopy and single crystal X-ray diffraction.

Supplementary Materials: The following are available online. 1H and 13C NMR spectra, CIFs, and
checkcif report for heterocycle 2.
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