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Abstract: Candida albicans is the most predominant fungal
species isolated from medical devices, including catheters,
heart valves, and dental prostheses. In recent years, it has
been demonstrated to be resistant to many antifungals;
therefore, silver nanoparticles (AgNPs) have been proposed
as an alternative. But only a handful of research is contrib-
uted to omic-based studies to study the various impacts of
AgNPs on Candida species and othermicroorganisms. Thus,
the study aims to biosynthesize AgNPs using Pelargonium-
hortorum leaf and test its antifungal, cytotoxicity, and
global gene expression on Candida through transcriptomic
profiling. The leaf-assisted AgNPs resulted in spherical

shapes with a particle size of 38 nm. The anticandidal effect
demonstrated that the Minimum inhibitory concentration
was 25 μg·mL−1. Later, the cytotoxicity assay reported a
moderate impact on the human gingival fibroblast cells.
Finally, the transcriptomic analysis demonstrated the differ-
ential gene expression of 3,871 upregulated and 3,902
downregulated genes. Thus, proving the anticandidal effect
of AgNPs on Candida through RNA-seq experiments and the
regulated genes is highly important to cell wall integrity,
adherence, and virulence.

Keywords: green synthesis, silver nanoparticles, anti-
fungal activity, transcriptomics, RNA-sequencing

1 Introduction

Candida albicans (C. albicans) is a unique and opportu-
nistic pathogen that frequently dwells in equilibrium
with other microorganisms of the commensal mucosal
microbiota. However, it is considered a critical resour-
ceful, highly organized yeast causing various forms of
candidiasis in immunocompromised patients [1]. In the
case of a healthy individual, the balance between the
host, C. albicans, and the commensal microbiota is main-
tained. It is due to the complex and dynamic interplay
between various immune and environmental factors, such
as pH and nutrient availability [2]. But the presence of
removable dental prostheses, medications like antimicro-
bials, and behavioral factors such as smoking can cause a
variation, affecting the regulatory elements. This may lead
to an altered microbial community, which could cause the
rapid proliferation of C. albicans, resulting in local and
systemic infections [3].

In general, healthy individuals have 20–40% of
C. albicans colonization prevalence in the oral cavity,
whereas over 60% in immunocompromised subjects, which
can pose a severe risk of infection. C. albicans is the most
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prevalent fungal species isolated from different medical
devices, including catheters, pacemakers, heart valves,
joint prostheses, contact lenses, and dental prostheses.
The continuous mistreatment of C. albicans infection
causes antifungal resistance, an emergent problem despite
a diverse range of antifungals exploiting different mechan-
isms of action against fungi. The most frequently used
antifungal agents are azoles, polyenes, echinocandins,
and nucleoside analogues. Nonetheless, C. albicans bio-
films are resistant to most antifungals compared to their
planktonic counterparts [4,5].

Azoles, for example, are ineffective against the bio-
films of C. albicans [6]. To overcome the limitations and
drawbacks of traditional antifungal agents, novel antifun-
gals must be developed to combat biofilm-based infec-
tions. With the booming development of nanotechnology,
versatile nanoscale materials with antimicrobial effects
have been designed and exploited against several infec-
tions, i.e., nano-antimicrobials (n-AMBs). Nanoparticles
(NPs) present a diverse biocidal activity mechanism that
is very different from traditional antibiotics. Nanostruc-
tured materials have unique physicochemical properties
such as their controllable size, large surface area, high
reactivity, individual biological interactions, and functional
structures [7]. Thus, n-AMBs are considered a promising
and outstanding alternative in deciphering the problem of
microbial resistance [8]. In most cases, n-AMBs are in
metallic form with a nanometric size that facilitates the
internalization of the microorganisms, thereby controlling
the proliferation by intervening in the biological mechan-
isms [9].

The outcome of the n-AMBs area has resulted in an
enormous number of metallic NPs effective against sev-
eral microorganisms [10]. One such spectacular NP that is
investigated widely is AgNP synthesized by different
sources and tested its potential against bacteria, fungi,
and viruses [11]. These led to the emergence of numerous
products in the market for human use. Even though
extensive research has been reported, the antimicrobial
mechanism of AgNPs is not fully understood. Overall, it is
known that Ag+ ions bind to proteins and nucleic acids
that are negatively charged, causing structural changes
and deformations [12]. These ions are responsible for
forming reactive oxygen species (ROS), primarily affecting
the cell membrane through the peroxidation of polyunsa-
turated phospholipids in a contact-dependent manner in
regard to tackling C. albicans and other microorganisms
from different origins, various reports have been docu-
mented [13,14]. However, the essence of AgNPs toxicity
still lacks in-depth studies, i.e., on a molecular level. For
example, our search found that very few articles repre-
sented in Table 1 [15–21] have made an omic-based analysis

in specific transcriptomics. The genetic information encrypted
in the cell nucleus is expressed through transcription and
translation mechanisms [22]. The transcription process
depends on the intra/extracellular stimulus that leads
to both the expression and repression of genes. Some
sophisticated tools have made it possible to study the
transcriptomic profile of C. albicans using next-generation
sequencing (NGS) technologies, such as RNA-seq [23]. The
impact of the stimulus’smechanismof action can be studied
by analyzing the differentially expressed genes.

Thus, the current research project aims to obtain
AgNPs using green technology and evaluate their biolo-
gical response. Even though every year several studies
are conducted based on AgNPs for various biomedical
applications, especially antifungal agent against various
strains. But many studies have created a void on a effect
on cellular/molecular level. Thus, in this research, we
have made a comprehensive analysis to fulfill various
aspects. Thus, apart from routine testing like cytotoxicity,
and antifungal studies, most importantly, gene expres-
sion profiling through transcriptomic mediated technique
against C. albicans by RNA-sequencing method has been
carried out to determine both the up- and downregula-
tion of genes which are affected during the exposure of
AgNPs represented in Scheme 1.

2 Materials and methods

All the chemical reagents were purchased from Sigma-
AldrichTM, Mexico, until otherwise mentioned and used
without any further modifications.

2.1 AgNPs synthesis

Through chemical synthesis, AgNPs were synthesized
using silver nitrate (AgNO3, purity ≥99.0%) as a precursor
and a filtered Pelargonium-hortorum infusion as a redu-
cing and stabilizing agent. The AgNO3 precursor solution
was prepared at a molar concentration of 25 mM and dis-
solved in 20mL of deionized water (DIw). For the pre-
paration of leaf extract, 12 g of Pelargonium tender leaves
were weighed, rinsed, and boiled in 100mL of DIw
for 5 min at a temperature of 95°C. Before the synthesis,
leaf extract was primarily filtered through 0.2 μm thick
Whatman® filter paper. Initially, 20 mL of ethylene glycol
was added to a three-neck flask and heated at 185°C;
10 mL of Pelargonium extract was mixed for 5 min.
Subsequently, the AgNO3 solution was added dropwise
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every 2 min until a color change was noticed to amber
yellow and continued for 90 min to ensure complete
reduction of the precursor. Finally, the reaction is
allowed to cool down to room temperature and washed
twice through centrifugation for 10 min at 4,600 rpm.
The pellet is dispersed in a sterile DIw and stored at 4°C
until further use for characterization and application
studies.

2.1.1 Characterization

The leaf-assisted AgNPs synthesis was confirmed using
UV-visible (UV-Vis) spectroscopy (Multiskan GO, Thermo
Scientific,Massachusetts, USA), measured in the 200–1,000nm
range. The morphology and size were determined using
transmission electron microscopy (TEM, JEOL-1010, JEOL,
Massachusetts, USA), where the NP sample was loaded
onto a 200 mesh carbon-coated copper grid (Ted Pella, Inc,
California, USA). The functional groups of both leaf infusion
and synthesized AgNPs were analyzed using Fourier-

transform infrared spectroscopy (FTIR, Bruker Tensor-27,
California, USA), from 4,000 to 400 cm−1 in a transmission
mode with a resolution of 4 cm−1. The particle size and
surface charge were characterized using Zetasizer Nano
ZS90 Size Analyzer (Malvern Panalytical, Malvern, UK)
using folded capillary cell cuvettes.

2.2 Antifungal activity

2.2.1 Candida growth

The antifungal effect of AgNPs was tested using two sepa-
rate experiments, such as microdilution and colony-
forming unit methods. C. albicans ATCC 90028 (Virginia,
USA) was cultured aerobically at 37°C on Sabouroad
Dextrose Agar (SDA, NutriSelect® Plus) for 24 h. A single
colony was cultured overnight in a Roswell Park Memorial
Institute (RPMI) 1640 medium (without glutamine, with red
phenol, buffered to pH 7.0 usingMOPS). A standard inoculum

Table 1: Investigations that studied the impact of AgNPs against different microorganisms through transcriptomic profiling

Reference NPs size (nm) Microorganisms

Liu et al., 2017 [15] 6–20 Candida albicans
Zheng et al., 2018 [16] 20–30 Paracoccus denitrificans
Piersanti et al., 2021 [17] 14.6 Tetrahymena thermophila
Sun et al., 2017 [18] 5–10 Escherichia coli and Staphylococcus aureus
Singh et al., 2014 [19] 7–20 Pseudomonas aeruginosa
Horstmann et al., 2019 [20] 20 Saccharomyces cerevisiae
Masri et al., 2021 [21] 100–125 Escherichia coli K1

Scheme 1: Green synthesis of silver nanoparticles using Pelargonium leaf extract and tested its various biological effects, such as
cytotoxicity on fibroblasts cells, anticandidal effect, and finally assessed the global gene expression through transcriptomic profiling on
C. albicans.
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was prepared using a densitometer (Grant Instruments™,
DEN-1, Cambridgeshire, UK) at optical density (OD) 600nm,
equivalent to 1 × 107 CFU·mL−1. This inoculum was then
diluted at 1:1,000 to have the final working concentration of
1 × 104 CFU·mL−1 for further experiments.

2.2.2 Microdilution experiment

In a 96-well plate, two-fold serial dilutions of test AgNPs
were prepared from 6, 12, 25, 50, 100, and 200 μg·mL−1.
100 µL was added to triplicate wells, followed by an equal
volume of test Candida suspension. The RPMI medium
(without AgNPs plus Candida) and culture media were
used as positive and negative controls, respectively. All
the suspensions were then incubated for 24 h at 37°C.
Then, the absorbance was measured by OD using a spectro-
photometric plate-reader (FLUOstar® Omega, BMG Labtech,
Inc., Bucks, UK). An absorbance reduction of at least 80%
compared to positive control was considered to be indica-
tive of Candida growth inhibition.

2.2.3 Colony counting method

After 24 h, 100 µL of the different concentrations tested was
added into a sterile tube with 1mL of PBS. The tubes were
vortex for 1min. Serial dilutions of 9:1 were made and cul-
tured on an SDA-coated petri dish for 24 h, and the colonies
were checked to determine the colony growth visually.

2.2.4 Candida morphological analysis

After 24 h, AgNPs untreated and treated samples were
obtained and observed under a scanning electron micro-
scope (SEM, Tescan Vega 3, Tescan Ltd, California, USA).
They were fixed in 3% glutaraldehyde for 2 h and rinsed
thrice. The dehydration process was made using 50%,
70%, 90%, and 100% ethanol concentration series. Then,
hexamethyldisilazane treatment was added to the samples
and kept on a fume hood overnight. Finally, the sam-
ples were sputter coated (K650x sputter coater, Quorum
Technologies, Lewes, UK) with gold and analyzed in the
microscope.

2.3 MTT assay on HGF cells

The reduction of the bromide salt of 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazole (MTT) test was used to determine

the cytotoxic activity of AgNPs on human gingival fibro-
blasts-1 (HGF-1) cell line ATCC CRL2014 and primary culture
(HGF). All cell culture reagents mentioned below were
bought from Gibco™, Thermo Fisher Scientific, USA. The
cell density equivalent to 1 × 105 cells·mL−1 was placed in a
96-well plate (100 µL) in Dulbecco’s modified eagle medium
(DMEM), which was previously supplemented with 10% fetal
bovine serum, 1% glutamine (Glutamax), and 2% of antibio-
tics. The cells were incubated for 48 h at 5% CO2 at 37°C.
Then, serial dilutions of AgNPs (0–1.62 μg·mL−1) were inocu-
lated and incubated for 24 h under the same conditions. After
24 h, the medium was removed, and the freshly prepared
MTT bromide salt at a concentration of 0.2mg·mL−1 in sup-
plemented DMEM was added to each well. The 96-well plate
was incubated for 4 h, then, the formazan crystals were
dissolved using dimethyl sulfoxide (DMSO, Karal, León,
Mexico), and readings were analyzed using a Multiskan
GO spectrophotometer at 570 nm. The experiment was per-
formed in triplicates from three samples.

2.4 Transcriptomic expression profile

Total RNA extraction was performed in C. albicans with
and without AgNPs (20 µg·mL−1) treatment incubated for
24 h at 37°C using the RiboPure Yeast Kit (Invitrogen™,
Massachusetts, USA) by following the manufacturer’s
protocol. From a 24h grown culture in SDA, three colonies
were placed in three flasks with 5mL of SDA. Subsequently,
they were incubated at 37°C under stirring at 170 rpm for
24 h. Two groups were prepared: (1) C. albicans control group
and (2) C. albicans experimental group (AgNPs treated). Both
the quality and quantity of RNAwere estimated bymeasuring
the absorbance at 260 and 280nm by UV spectroscopy and
using NanoDrop2000™ (Thermo Fisher Scientific Inc, USA)
by placing 1 µL of each sample.

2.4.1 RNA-seq analysis

To explore the impact of the AgNPs exposure on C. albi-
cans, we performed RNA-seq using NextSeq 500 system
(Illumina, Inc, California, USA), where 2 × 75 cycles pair-
end readings were conducted, and 60 million reads were
obtained. The process is as follows: 2 µg of extracted RNA
was dispersed in 50 μL of RNase-free water (Invitrogen™,
Massachusetts, USA), and the analysis was carried out on
the system. The samples were sequenced in triplicates;
the generated reads were mapped to the Candida 5,314
genome. The statistical analysis of differentially expressed
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genes was performed using edgeR software with a two-fold
change and a P-value of <0.01.

3 Results

3.1 Synthesis and characterization

To confirm the synthesis of AgNPs, UV-Vis spectroscopy
measurements (Figure 1) were carried out that indicate
the presence of two distinct peaks. The peak is at 275 nm,
and another maximum absorbance is at 420 nm – also the
color changes of the precursor solution change to amber
yellow. Then the morphology was studied using TEM
(Figure 2a), representing a nearly spherical structure.
The histogram in Figure 2b depicts the average particle
size distribution calculated using ImageJ software and
results in a size range of 30–50 nm. We also determined
the hydrodynamic diameter and zeta potential of AgNPs
shown in Figure 2c and d. The data indicate that the
diameter was seen in a bimodal distribution of 48.77 and
176.4 nm. The surface charge was found to be −12.3 mV.
The functional groups of both the leaf extract and the
as-synthesized AgNPs were obtained by FTIR spectrum,
which is shown in Figure 3, which depicts the bands
located at 1,387, 1,630, 2,184, and 3,418 cm−1 in both the
cases with aminor shift in point of AgNPs while comparing
with the extract spectra.

3.2 Antifungal activity against C. albicans

The antifungal activity for AgNPs with different concentra-
tions against C. albicans is represented in Figures 4 and 5.
From the microdilution experiment, we found that the
minimum inhibitory concentration (MIC) was 25 μg·mL−1,
and the subsequent concentration inhibited the fungal
growth to its maximum. While in colony counting, the
concentrations range from 6–25 μg·mL−1, where C. albicans
growth is seen. And interestingly, no colonies were iden-
tified for concentrations such as 50–200 μg·mL−1. The con-
trol positive was saturated with fungal growth, which
becomes uncountable compared to treated samples.

Based on the effect, SEM observations are shown in
Figure 6 to determine the morphology of the C. albicans
treated with AgNPs (25 μg·mL−1). Indeed, there are mor-
phological changes, resulting in deformations and irregu-
larity of membrane (indicated with red arrows) compared
to the control group, which looks smooth and with a
stable cell wall surface.

3.3 Cytotoxicity on fibroblasts

Figure 7 corresponds to the MTT assay, and the graph
compares the cytotoxicity effect of AgNPs on the two
HGF cells. Both cases show a cytotoxic effect in a dose-
dependent manner. But from the graph, we found that
HGF no CC50 and HGF-ATCC was 1.05 μg·mL−1, and a
hormesis effect was observed with almost all the concen-
trations of more than 50% cell viability.

3.4 Transcriptomic expression profile of
C. albicans

Raw sequencing reads were filtered to remove low-quality
reads using trimmomatic before subsequent analysis. Three
biologically independent samples were analyzed for each
condition by RNA-seq. The control group (without AgNPs
treatment) obtained 28,503,316 reads for the experiment
(92.88% of total reads). For the experimental group (AgNPs
treatment), 30,430,674 reads were obtained (91.57% of total
reads). The data were mapped to C. albicans SC5314. The
biological replicates were very close, as shown in Figure 8a.

The volcano plot indicates upregulated and downre-
gulated genes under the two conditions; each dot represents
an individual gene’s statistical significance (P-value) versus
the magnitude of change (fold-change). Most upregulated
genes are toward the right all of which are involved in

Figure 1: Represents the optical study of Pelargonium extract and
synthesized AgNPs using UV-Vis spectroscopy (inset: shows the
color of AgNPs after being reduced by Pelargonium extract).

Biological impact of green nano-silver on C. albicans gene expression  5



ergosterol and diacylglycerol biosynthesis. The most down-
regulated genes are on the left, with regard to C. albicans
adherence and virulence genes (Figure 8c).

Heatmap from Figure 8c shows the hierarchical clus-
tering of the 500 most differentially expressed genes
reported by edgeR analysis according to fold-change. Red
indicates higher gene expression levels, while beige indi-
cates lower expression by reads per kilobase of transcript

per million reads mapped (RPKM) in both conditions.
Heatmap (Figure 8c) shows hierarchical clustering and
the 500 most variable expressed genes between both con-
ditions. RNA-seq results revealed that many genes in
C. albicanswere differentially expressed after AgNPs treat-
ment. Gene expression values were quantified as RPKM,
where a total of 3,902 genes were downregulated, and
3,891 genes were upregulated. Based on the search for

Figure 2: (a) AgNPs morphological study using TEM, which is spherical. (b) Histogram of particle size distribution calculated using ImageJ.
(c) Hydrodynamic diameter of AgNPs shown in a bimodal distribution. (d) Zeta potential of as-synthesized NPs.
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differential expressions on genes widely reported in the
literature, we found that these genes are essential for
developing C. albicans biofilm formation, adhesion, patho-
genicity, and virulence represented in Table 2.

4 Discussion

AgNPs and their function as an antimicrobial application
have become indispensable in n-AMBs resulting in various

forms to tackle different kinds of Candida species [24,25].
More research is carried out every day to treat C. albicans
infections, as it is one of the life-threatening microorgan-
isms. Multiple studies have been published in the past
5 years regarding treating C. albicans with AgNPs, as
shown in Table 3 (some examples are listed). A common
practice of AgNPs synthesis is exploiting different natural
constituents to decrease the toxic effect and have syner-
gistic mechanisms. Even though the results are promising
broadly but lack the concept of explaining on a cellular
level; thus, this study is purposely dedicated to identifying
the effect of AgNPs on the global gene expression of
C. albicans through transcriptomic analyses.

Figure 3: FTIR characterization of the Pelargonium extract and
synthesized AgNPs indicating the various functional groups.

Figure 4: Antifungal studies using the microdilution method, and
the graph shows the dose-dependent effect (n = 36).

Figure 5: Shows the photos of Petri plates used for colony counting studies.
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UV-Vis spectroscopy shows the absorbance of a pure
extract with an absorbance of 277 nm, which corresponds
to polyphenols [26]. These components are secondary
metabolites of diverse plants resulting from a reaction
to stress stimulus. Various plant extracts can reduce
Ag+ ion to Ag0 due to poly hydroxyl and carboxyl groups
present in these metabolites [27], Whereas the spectra for
synthesized AgNPs resulted in absorbance of 410 nm,
confirming the formation of NPs whose characteristic
color is amber yellow [28,29]. The spectral range from
400 to 420 nm corresponds to spherical AgNPs [30], infer-
ring a particle size between 35 and 50 nm, as reported in the
literature. Also, from the spectra, the extract’s intensity has
been diminished to maximum, demonstrating that this
group of molecules is responsible for the process of redu-
cing AgNPs [31,32].

From the morphological analysis using TEM, nearly
spherical-shaped and uniformly distributed AgNPs were
found with minor organic content of the extract, which
helps stabilize the NPs and avoid aggregation or clus-
tering. The size was measured using the histogram and
was found to be 30–44 nm with an average particle size
of 38 nm [33,34] using ImageJ software by considering
302 particles. The analysis of hydrodynamic diameters
(HDD) and zeta potential (ZP) plays a vital role in deter-
mining the interaction of NPs in biological entities. Thus,
we analyzed HDD for synthesized AgNPs, resulting in
dual modal particle size distribution. It is due to the
medium in which the NPs are dispersed. Thus, the size
is more significant when compared to TEM analysis as it
is visualized in a dry state. Also, the Brownian movement
significantly impacts determining NPs size when dis-
persed in the liquid medium. Apart from this, various
biological compounds in the extract, such as proteins
attachment through amino groups or cysteine residues,
participated in the activity of both reducing and stabi-
lizing agents [29,35]. The TEM analysis corroborates the
obtained results [36]. The negative ZP value was determined
in the case of obtainedAgNPs, and thenegative surfacemight
be due to biomolecules present in the leaf extract [37]. Also,
theZPexplains that theAgNPsareaggregatedminorly, similar
to the other reported literature using plant extracts [38].

The plant extracts are usually made of various organic
reducing agents such as phenolic compounds, terpenes,
polysaccharides, etc. [31,32]. So, FTIR characterization is
one of the primary methods to analyze different functional
groups. Thus, we employed this method to study the
groups of leaf extract and AgNPs. The results show that
both samples showed similar bands of flavonoids and
terpenoids present in the leaves that highlight the pre-
sence of residues from the Pelargonium infusion – these

Figure 6:Morphological assessment of C. albicans: (a) control and (b) AgNPs treated and their effect on the fungal structure (marked in red
arrows).

Figure 7: Cytotoxicity evaluation of HGF primary cells and HGF ATCC
cell line using MTT after incubating AgNPs for 24 h (n = 36).
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compounds aid in stabilizing the AgNPs by attaching to
the NPs on the surface [39]. This confirms that the extract’s
organic components are involved in reducing Ag metal.
From both spectra, we found various groups with the cor-
responding bands ate 3,310, 2,122, 1,634, 1,385, 1,334, and
1,040 cm−1 [40]. The strong and sharp band at 3,310 and
1,634 cm−1 corresponds to alcoholic O–HandN–H stretching,
respectively. The weak band at 2,122, 1,385, 1,334, and
1,040 cm−1 are assigned to the C]N, C–O–H bending

vibration (phenolic group), –C–O stretching, and C–O
stretching vibration of the OH group, which reveals the
presence of phenolic compounds in the extract. In the
case of AgNPs, almost similar bands are visualized but
with minor shifts like 2–4 cm−1, confirming that the var-
ious functional groups have extensively interacted with
Ag+ ions [32,39].

AgNPs antifungal efficiency depends on parameters
like shape, size, and surface charge [41]. The smaller-sized

Figure 8: Transcriptome analysis of C. albicans by RNA-seq. (a) Multidimensional scaling plot, which determines the most significant data
variation sources. (b) Volcano plots that correspond to the differentially expressed genes. Upregulated genes (red dots-right), down-
regulated genes (red dots-left), no significant differential expressed genes (black dots). (c) Heat map of 500 differential gene expressions
between the control group (C. albicans without AgNPs treatment) and experimental group (C. albicans treated at 25 µg·mL−1).

Biological impact of green nano-silver on C. albicans gene expression  9



AgNPs with spherical forms can have the maximum capa-
city to release Ag+ ions due to the larger surface area. The
MIC obtained in the present study was 25 μg·mL−1, similar
to the reported in the literature [42] and less than the
reports published with the ATCC90028 strain [43]. AgNPs’
serial dilutions were tested on C. albicans in SDA agar
plates, and after 24 h of incubation, it showed no growth.
The concentrations of >25 μg·mL−1 of AgNPs tested were
effective as there is no fungal growth, and they did not
recover after treatment. Thus, in our study, the particle
size plays a vital role in determining its antifungal effect
by binding ions to –OH groups and internalizing through
the cellular membranes leading to exposed atoms and
available for redox reactions and high accumulation of
ROS causing damage to nucleic acid leading to apoptosis
[25,44,45].

SEM imaging shows a deformed and irregular cell
wall when treated with AgNPs. It has been reported
that AgNPs can effectively disrupt cell walls creating
pits [46,47]. This damage plays an essential role in inter-
action and adhesion to the host tissue, which is crucial
for the first stages of C. albicans invasion [48].

HGF and HGF-ATCC were tested for the cytotoxic
effect of AgNPs, demonstrating that HGF ATCC was more
susceptible to AgNPs than HGF, as reported [49]. It is well
known that AgNPs have a cytotoxic effect on several
5human cells [50,51] in a dose-dependent manner, as
reported in the present study. Concentrations ranging
from 0.0015 to 0.006 μg·mL−1 exhibited an hormesis effect.
In contrast, very low concentrations stimulate cell prolif-
eration interestingly. Some research works have reported
that it is due to the activation of the nuclear factor ery-
throid-derived two related factor 2 (Nrf2) [52]. Pathways
of MAPK are involved in the regulation of cell prolifera-
tion and the regulation of catabolic pathways during
cell stress that translates cell growth, differentiation, and
apoptosis [53].

The most expressed gene in C. albicans without NPs
treatment is the WH11 gene. It is well known that C. albi-
cans can switch from white to opaque states. This occurs
spontaneously and implicates phenotypic changes in cell
wall morphology, size, adhesion to host, and drug sus-
ceptibility/resistance [54]. The white states confer the
ability to be more virulent than opaque states, which
are preferable for rapid multiplication to form biofilm
structures [55].

The most expressed genes in C. albicans with NPs
treatment were more concerning the synthesis of cell
wall components such as diacylglycerol (PLD1) that encodes
phospholipase, a protein implicated in the change from
yeast to hyphae [56]. PHR1 has transferase activity of beta-
(1,3)-glucanosyltransferases that is fundamental for cell wall
structure. Studies have reported when deletion of this gene
in C. albicans confers less capacity to adherence to surfaces
and epithelial cells [57]. ERG3 chains that it is a protein that
catalyzes the induction of C-5 double bond that contributes
to the biosynthesis of ergosterol, an essential component of
the cell wall [58]. It should be noted that the sequencing

Table 2: Genes of interest, differential expression gene is repre-
sented in fragments per kilo base of transcript per million mapped
fragments (FPKM) comparing control group vs experimental group

Genes Control C. albicans + AgNPs Regulation

ALS1 1,688.46 274.55 Down
ALS3 38.6322 24.6475
SAP4 12.0663 1.40867
SAP6 5.35431 1.20598
PLD1 6.20781 11.0454 Up
PHR1 138.25 461.793
WH11 24,221.1 36,038
CDR2 5.81796 16.1013
ERG3 50.0829 494.461

Table 3: Green synthesized AgNPs against different C. albicans strains

Reducing agent AgNPs size (nm) Strains References

Rubus fruticosus L. and Rubus idaeus L. 25 ± 6 C. albicans ATCC 90028 [63]
Argemone mexicana L. 12 ± 8 C. albicans ATCC 90028 [64]
Mentha piperita 20 C. albicans ATCC 18804 [65]
Furcraea foetida 15 C. albicans (183) MTCC [66]
Anagallis monellin 20 ± 3 C. albicans ATCC 90028 [67]
Artemisia annua 10 C. albicans ATCC 90028, [46]

C.tropicalis ATCC 750,
C. glabrata ATCC 90030

Limonia acidissima 10–40 C. albicans ATCC 90028 [68]
Smilax aspera 12.36 C. albicans ATCC 10231 [69]
Ferula pseudalliacea 25 ± 6 C. albicans ATTC 90028 [70]
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data confirm what was observed in SEM microscopy, where
changes in the cell wall were observed in response to oxida-
tive stress; we can confirm that the AgNPs have an oxidation
mechanism in Candida, as they have also been previously
reported. CDR2 encodes a multidrug output transporter that,
compared to the genes that were expressed in Candidawhen
they were not in contact with the NPs, it is observed that in
this condition, it was not expressed, so we conclude that
AgNPs caused a toxicity effect that Candida recognized as
a threat so that it activates the mechanisms similar to those
that it activates when in contact with antifungals [59].

In contrast, genes that were less expressed or down-
regulated are ALS1 and ALS3, a protein necessary for sur-
face adhesion and host invasion [60,61]. Finally, another
important family of proteins was notably downregulated:
SAP family proteins, such as SAP 4 and 6, are essential as
they involve virulence and tissue penetration; it degrades
the keratin found in the soft tissues leading to invasion
[62]. Several levels of expression of C. albicans genes
treated with AgNPs are responsible for reducing its effect
on the host interaction as a consequence of suppression.
Previous studies have reported a change in expression
levels of genes associated with cell virulence, adherence,
and biofilm formation [63].

5 Conclusions

In the current scenario, many investigations have explored
the various biomedical applications of AgNPs and their
development as effective antifungal agents. Most studies
lack in-depth knowledge on the omic level to elucidate the
antimicrobial function. The synthesis of AgNPs assisted
with Pelargonium leaf extract showed that formed NPs
are spherical morphology with an approximate size of
38 nm and high stability. AgNPs showed antifungal effec-
tiveness as a possible solution to the problem of resistance
to various therapeutic agents. The overall results from
omic profiling show that the expression of genes is upre-
gulated and downregulated, which is of great importance
to the virulence, adhesion, and biological activity of
C. albicans by treating with AgNPs. All of those, as men-
tioned earlier, suggest a vital role in these genes’ cel-
lular response to AgNPs. However, more studies need to
be carried out to make the AgNPs with the possible
application in biomedicine, especially n-AMBs.
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