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B R I E F  R E P O R T

The effects of Xenon gas inhalation on neuropathology in a 
placental-induced brain injury model in neonates: A pilot study

Improved obstetric and neonatal care have reduced the preva-
lence of severe hypoxic-ischaemic-encephalopathy (HIE). However, 
1-3/1000 newborns in the developed world1 suffer death or neuro-
developmental disability from HIE. The normal development of the 
brain during gestation can also be altered by placental reprogram-
ming under oxidative stress. Under these conditions, the placenta 
releases DNA-damaging molecules, bone morphogenic proteins, 
microRNAs and glutamate.2 At present, one is unable to diagnose or 
treat these factors.

We have previously applied Xenon, a rare noble gas used in an-
aesthesia, at 50% using a closed-circuit system with and without hy-
pothermia in the newborn piglet and rodent models of HIE.3,4 Unlike 
other inhalational anaesthetics, Xenon did not induce neuroapopto-
sis in the immature brain5 and improved cardiovascular control after 
hypoxia-ischaemia (HI). A clinical feasibility and ongoing randomised 
phase-two study are testing the effects of breathing Xenon50% in 
term infants undergoing therapeutic hypothermia (TH) against those 
undergoing TH alone. Experimentally, inhaling Xenon50% improves 
motor function and cognition after long-term survival in rats post-in-
jury.4 In rat models of HI brain injury, Xenon is neuroprotective by 
upregulating neurotrophic factors and anti-apoptotic proteins,6 by 
inducing hypoxia-inducible factor (HIF-1α) pathways allowing for 
pre-conditioning,7 by suppressing the astroglial response to injury 
and limiting glutamate release to counter excitotoxicity thereby im-
proving neuronal survival.4

Xenon's neuroprotective properties may be extended to treat 
brain injury arising from placental reprogramming under oxida-
tive stress. To test this hypothesis, we used a rat injection model 
whereby media obtained directly from human placentae under oxi-
dative stress were injected into postnatal day 4(P4) rat brain (human 
gestational age 29-31 weeks equivalent). In brief, media were col-
lected from human first trimester placentae cultured under 21% O2 
(CM + 21%) and 2%-8% O2 (CM + 2%-8%). An additional group was 
injected with saline (Sal) and constituted the sham condition. The 
pups were then allowed to survive into the juvenile age, brains were 
culled, and neuropathology was examined (see Supplementary files 
for more information).

We have tested (a) the effects of hypoxic injury modelled by the 
injection of hypoxia-derived conditioned media from the placenta 
into P4 rat pup brains and (b) whether breathing 50% Xenon for 

4 hours after this injury could reduce neuropathology in those pups 
surviving into juvenile age.

We report here that the injection of hypoxia-derived conditioned 
media to healthy pups causes a modest loss of parvalbumin neurons 
in the thalamic reticular nucleus (TRN), the hippocampus and the 
cortex at P30 of survival (Figure 1). The glial response to neuronal 
loss was assessed by GFAP immunofluorescence and showed a 
marked increase in astrocytes in addition to an activated morphol-
ogy. The injury also affected dendrite lengths, a proxy measure for 
degree of arborisation/connectivity, and this was consistent with 
previous in vitro findings.8 There were no changes in overall neu-
ronal counts, but dopaminergic neurons process lengths decreased 
in some areas. Importantly, Xenon treatment conferred some resis-
tance to the increase in glial numbers (P < 0.05) in the cortex and 
hippocampus (Figure 1). Most strikingly, we observed Xenon treat-
ment to be protective against the loss of parvalbumin cells in the 
TRN caused by the injury (P < 0.05). Interestingly, Xenon treatment 
did not protect dendritic arborisations/complexity but did greatly in-
crease the lengths of dopaminergic (tyrosine hydroxylase) processes 
and overall neuronal numbers post-injury.

These promising results albeit limited in scope support that Xenon 
treatment after mild injury due to maternal hypoxia does offer some 
protection. Our findings are consistent with previously reported effects 
of Xenon in toning down gliosis in neonatal rat cortex, hippocampus 
and thalamus in a classical HI rodent model.9,10 Most neurons including 
parvalbumin neurons are sensitive to hypoxia and are lost in the 2%-8% 
condition in most areas. Xenon acts as an anti-apoptotic agent, and as 
neurogenesis is still very active in the early developing postnatal rodent 
brain, Xenon may be promoting a compensatory neuroblast differen-
tiation response in vulnerable areas explaining the higher number of 
densities we observed compared with 21%. This is speculative, and we 
do not know the underlying mechanisms. We also cannot speculate on 
the behavioural significance of an overall increased number of neurons 
without further study. Xenon is thought to provide partial protection 
of dopaminergic cells by acting as a trophic factor in conditions of ex-
citotoxicity and by suppressing the astroglial response.11 This improves 
cell survival but may also result in outgrowth around the area of dam-
age. Fibre outgrowth is linked with altered connectivity in the brain and, 
therefore, may not necessarily beneficial. Behavioural work is needed 
to test how motor skills have been affected with/ without Xenon after 
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injury. Although we did not perform cognitive tests on the rodents, 
no significant neuropathology in the tissues was detected. Previously, 
when Xenon was administered shortly after a carotid ligation + hypoxic 
insult on P7 rat pups (near-term equivalent), which survived into adult-
hood, both neuropathology and behaviural testing were improved by 
Xenon50%.4 In this 10-week survival to adulthood model, we defined 
that the time-window for neuroprotection with Xenon was 5 hours, 
which is the basis for our clinical trial of administering Xenon within 
5 hours after birth since delayed Xenon significantly improved outcome. 
Another clinical trial delivered Xenon30% starting at 10 hours of age and 
short-term outcome (using Magnetic Resonance Spectroscopy) after 
10 days did not show any difference between TH and TH + Xenon.12 
It is likely that any effect of Xenon on cognition needs long-term fol-
low-up. We are currently undertaking full IQ testing at 3-5 years in the 
CoolXenon trial (ending 010321).

Several clinical conditions present with hypoxic insults to the 
placenta including pre-eclampsia, maternal gestational diabetes13 
and stress.14 Placental reprogramming can alter fetal neurodevelop-
ment due to maternal hypoxia and Xenon inhalation may yet offer a 
promising therapeutic strategy.
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F I G U R E  1   Methodology and effect of placental hypoxic secretions with/without Xenon treatment on neuropathology. (A) Diagram 
of experimental set-up (see Supplementary files). Placental explants were incubated for 24 hours at either 21% or 2% oxygen conditions 
in trophoblast media and maintained in neurotrophic medium at 21% or at 2%-8%. Media were collected according to two conditions: 
CM + 21% (control) and CM + 2%-8% (hypoxia/reoxygenation). Media were injected into the brain of P4 rats (n=3/condition) and an 
n=3 was injected with saline as the sham condition).  3 pups from the CM + 2%-8% condition were subsequently placed in a closed-
loop system at Xenon50% for 4 hours. Pups were kept in normal conditions until P30. The P30 brains were collected, fixed and assessed 
for neuropathology. All identifiers were hidden for assessment and de-blinded for statistical analyses. (B-G) Results from cell density 
quantifications in specific anatomical areas such as the thalamic reticular nucleus, cortex and hippocampus at P30: (B) Parvalbumin neuron 
densities; (C) MAP2 neuron densities; (D) GFAP astrocyte densities. We also report process lengths for dopaminergic cells (E), MAP2 
neurons (F) and astrocytes (G) process lengths in the thalamic reticular nucleus, hippocampus and cortex. Testing was done using a two-
way ANOVA with Tukey's post hoc test (*P < 0.05, **P < 0.01, ***P < 0.001; n=3/group; data shown as means ± SD). (H-J) Representative 
photomicrographs of MAP2 (H) and GFAP (I) cells in the cortex, parvalbumin cells (J) in the reticular nucleus of pups injected with 
conditioned media from placental explants cultured at 21% and 2%-8% oxygen with/without Xenon treatment. Images were converted to 
grey scale and inverted for clarity using ImagePro Premier. Scale bar = 40 µm. CM = conditioned media
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Additional supporting information may be found online in the 
Supporting Information section.
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