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Abstract 

This thesis examines the effects of increasing the uptake level of electric vehicles 

(EVs) in a generic medium-voltage distribution network. On a real low-voltage distribution 

network, the impact of integrating a dynamic battery charging model is also investigated. 

When and where EV charging loads are connected in distribution networks has a 

substantial effect on the severity of grid issues. It is necessary to ensure that the grids 

have sufficient hosting capacity and are accompanied by robust measures. Simulation 

results have demonstrated that increasing the number and rating of chargers increases 

power losses, voltage deviations, and distribution network equipment (cables and 

transformers) loading. At the transmission level, it has been shown that utilisation of 

transformer on-load tap changers, optimum placement of distributed generation units, 

and adequate sizing of static VAr compensator devices eliminate voltage violations. On 

the distribution level, coordinated smart charging systems, vehicle-to-grid chargers, and 

battery energy storage systems have proven effectiveness in reducing the peak loads. 

A stochastic model is developed for estimating the energy consumption of EVs and 

quantifying the peak demand in a distribution network. Twenty stochastic scenarios are 

produces, and the worst-case scenario is selected for a detailed network analysis. 

According to the results of the worst-case scenario, simultaneously charging one Audi 

and two Tesla EVs between 17:00 and 18:00 would result in a fivefold increase in peak 

demand, causing the substation transformer to operate 30% above its maximum rated 

capacity. The results have shown that the substation transformer can accommodate a 

maximum demand of 432 kW without becoming overloaded in the worst-case scenario's 

peak period. By supplying the additional demand caused by EV charging, battery energy 

storage units are used to reduce transformer loading by up to 40%. In conclusion, 

increasing the rating of the substation transformer from 500 kVA to 660 kVA enabled the 

secure integration of EVs and high-power charging devices in the worst-case scenario. 

Using lithium-ion batteries, discharge profiles for battery energy storage units are 

developed based on the stochastic charging profiles and the magnitude of the network's 

peak demand. These discharge profiles are then implemented into a battery charger and 

analyser unit to determine the relationship between the cell voltage and discharged 

capacity of the batteries. This relationship is used to estimate the usable capacity, state 

of charge, and depth of charge of lithium-ion batteries under different tests. The end-of-

discharge voltage of the batteries (i.e., the voltage at which a battery's discharge stops) 

has never been reached during the tests. Due to their high energy density capability, 

lithium-ion batteries maintained over 85% of their capacities when they are used to 

accommodate the simultaneous charging demand of EVs during the peak periods.
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CHAPTER 1 

1.   Introduction 

1.1   Background 

The largest source of human-caused Greenhouse Gas (GHG) emissions is the 

combustion of fossil fuels for electricity, heat, and transportation. The combustion of 

carbon dioxide (CO2), methane, nitrous oxide, water vapour (which are all naturally 

occurring) and fluorinated gases are the primary gases responsible for the greenhouse 

effect [1]. In 2022, global carbon emissions from energy combustion and industrial 

processes increased by 0.9% to a new all-time high of 36.8 gigatonnes (measured in Gt 

CO2 equivalents) [2, 3]. Figure 1.1 shows the global CO2 emissions from energy 

combustion and industrial processes, and their annual change from 1990 to 2021. 

 

Figure 1.1: Global CO2 emissions between 1990 and 2021 [4]. 

Almost three-quarters of emissions are attributed to energy use for transportation, 

industrial, and residential sectors, while the remainder is attributable to agricultural and 

other land use purposes. The Paris Agreement, which is a legally binding international 

agreement that unites all nations in the fight against climate change, was signed in 2016. 

The goal of this agreement has been to reduce global warming to far below 2°C, ideally 

1.5°C, compared to pre-industrial levels. To achieve this long-term temperature target, 

countries and governments strive to reach global peaking of GHG emissions to create a 

climate-neutral future [5].  
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The act of reducing or eliminating a country's CO2 emissions is critical for limiting 

global warming. However, there is no "one-size-fits-all" solution for completely 

decarbonising the electric supply. Numerous areas and sectors demand innovation, 

most notably the electrification of transportation and the decarbonisation of heat [2, 6]. 

For example, emissions from residential and industrial building activities are mainly 

attributable to space heating, industrial processing, water heating, lighting, and cooking. 

The utilisation of heat pumps is a very successful solution for providing energy-efficient 

heating and cooling solutions while reducing the emissions from buildings [7, 8].  

Transportation emissions, on the other hand, account for nearly 25% of global GHG 

emissions and are mainly attributable to an increasing dependence on traditional internal 

combustion engine passenger vehicles on roads [9, 6]. Figure 1.2 shows that other 

modes of transportation also contribute to the increase in global CO2 emissions. 

 

Figure 1.2: Global CO2 emissions in transport by mode [10]. 

The transportation is the only energy-related sector where the emissions are still 

increasing relative to 2000 levels [9]. The sector has emitted around 100 million tonnes 

of carbon equivalent in 2020 [11, 12]. These are related to petroleum-fuelled passenger 

cars, buses, heavy goods vehicles, freight transport, lorries, off-road vehicles (such as 

lift trucks), and rail, air, and marine. 

Ultra-low emission Electric Vehicles (EVs) have been highlighted as a technology on 

the route to a sustainable society, with the goal of replacing internal combustion engine 

vehicles (ICEV) on roads. The European Commission's 2030 targets include the 

reduction of carbon emissions from new vehicles, vans, and lorries by up to 37.5%, 31%, 

and 30%, respectively [11, 13, 14]. Furthermore, the 2050 regulations in the United 

Kingdom (UK) specify that GHG emissions should be cut by 100% compared to 1990 

levels and that the sales of new petrol and diesel vehicles should cease by 2030 as part 

of the Road to Zero strategy outlined in the government's Ten Point Plan [15, 16]. 
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Robust policy frameworks are also in place to support government plans to ban the 

sales of new petrol and diesel cars in 2030 and new hybrid cars in 2035. By 2035, the 

government of the UK wants for all new cars and vans to have zero tailpipe emissions. 

Several municipal governments, notably in the Greater London region, are developing 

clean air zones and ultra-low emission zones to improve air quality and to accelerate the 

adoption of EVs. The society is also encouraged to use public transport more often and, 

where possible, to prefer cycling and walking for shorter trips [14]. 

1.2   An Overview of Electric Vehicle Technology  

Reduced reliance on ICEV and the transition to electric mobility will help to achieve 

net-zero targets on a global scale. Although some countries with smaller economies will 

take longer to achieve these targets, the transition to electric cars is expected to enable 

synergies with smart grids, increase the energy efficiency and security of nations, 

improve air quality, cut CO2 emissions by up to 1.5 gigatons per year, and result in 1.5 

million barrels of oil being saved per day [5, 17]. However, achieving zero emissions and 

transforming nations into net-zero emitters require extensive renewable energy 

deployment and innovative solutions across all sectors. 

1.2.1 Electric Vehicle vs Internal Combustion Engine Vehicle 

Over the course of its life, an EV emits 35% to 43% less emissions than an average 

ICEV [5, 18]. The International Council on Clean Transportation examined the lifetime 

GHG emissions of an average medium-sized gasoline ICEV and a battery electric vehicle 

(BEV) in Europe, the United States, China, and India in 2021 and forecasted the 

emissions for the year 2030. The comparisons are seen in Figure 1.3.  

 

Figure 1.3: Lifecycle GHG emissions of average gasoline ICEV and BEV in Europe, the United States, 

China, and India [18]. 
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Even among currently registered automobiles, BEVs have the lowest life cycle GHG 

emissions. As shown in Figure 1.3, the lifetime emissions of average medium sized BEVs 

registered today are already 66% to 69% lower than comparable ICEVs in Europe, 60% 

to 68% lower in the United States, 37% to 45% lower in China, and 19% to 34% lower in 

India. Moreover, as the electricity mix continues to decarbonise, the life-cycle emissions 

gap between BEVs and gasoline vehicles for the medium-sized cars expected to be 

registered in 2030 grows substantially [18]. 

Increasing the share of renewable in the energy mix and relying on lower-carbon 

alternatives will enable other nations to fulfil their carbon reduction targets [18–20]. While 

EVs emit no tailpipe emissions, however, they are powered by energy that is still mostly 

generated from fossil fuels in many parts of the globe. Energy is also used in the vehicle 

and battery production processes. 

1.2.2 Advantages of Electric Vehicles 

The significant sustainability advantages of EVs are obvious, including their capacity 

to help cut emissions and improve air quality. There are also financial advantages to 

electrification, including decreased fuel costs and incentive programmes that encourage 

clean energy use. EVs are envisioned as a critical component of our future smart, 

efficient, and flexible energy systems. EVs are quieter and cleaner than ICEVs, maximise 

industrial opportunities, promote the global shift towards clean growth, provide 

necessary grid services, and encourage the use of home storage [20].  

In today's market, the typical upfront cost of an average ICEV is less than that of an 

EV, since the EV's cost structure is strongly determined by its on-board battery 

specifications [21]. However, EVs have lower running costs due to savings on fuelling 

costs [22, 23]. It is reported that the reduction in the price gap between an electric and 

an ICEV will accelerate the adoption rates of EVs in the future [14, 16, 24].  

1.2.3 Types of Electric Vehicles 

EVs are categorised in three different types, classed by the degree that electricity is 

used as their energy source. These types are classified as BEVs, Plug-in Electric 

Vehicles (PEVs), and Hybrid Electric Vehicles (HEVs) [24]. 

BEVs, often known as purely electric cars, emit no tailpipe emissions. They operate 

entirely on the power supplied by the on-board rechargeable battery packs. Tesla cars 

(e.g., Models 3, S, and X), BMW i3 series, Nissan LEAF, Volkswagen e-Golf, Kia Soul, 

Toyota Rav4, and Chevrolet Bolt series are some popular examples of BEV models on 

the market today [25, 26].  
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A PEV is a hybrid electric car with a big electric motor that can be powered by its on-

board battery pack, or internally by the vehicle's internal combustion engine generator. 

The batteries of PEVs may be charged similarly to a BEV through a plug; however, the 

electric range is around 70 km in those vehicles. In addition, PEVs operate on battery 

power until the battery is fully depleted, at which point they switch to the combustion 

engine. BMW cars (e.g., Models 330e and i8), Kia Optima, Audi e-Tron (A3), Toyota 

Prius, Mercedes (e.g., Models C350e and S550e), and Porsche (e.g., Models Cayenne 

and Panamera S E-hybrid) are all popular PEV models on the market [25].  

HEVs are a rare group of vehicles that combine an internal combustion engine 

system with an electric motor. The electric motor assists gasoline-powered engines, 

where the energy is generated completely by gasoline. Modern HEVs include 

regenerative braking systems (sometimes referred to as self-charging hybrids) and 

convert kinetic energy to electric energy to maximise vehicle efficiency. The hybrid 

electric car is the most prevalent type of HEV, but there are other forms of hybrid modes, 

including electric trucks (pickups and tractors), buses, aircrafts, and boats. Honda Civic 

and Toyota (e.g., Models Prius, Camry, and Corolla) are the most popular HEV brands 

on the market [25].  

Other forms of vehicles that are less prevalent include Fuel-cell (FC) and Fuel-cell 

Hybrid (FCH). The former relies entirely on an electric motor for propulsion; however, the 

energy source is either hydrogen; which is extracted from gasoline, or hydrogen which 

is stored in the vehicle's on-board tank. The latter contains a battery or an ultracapacitor 

as an additional energy source to supplement the hydrogen that is produced by the fuel 

cell [27]. These vehicles are still in their infancy, and the exorbitant costs associated with 

fuel cells and the manufacture, transportation, and storage of hydrogen are the main 

barriers. 

1.2.4 Battery Technology 

The majority of EVs currently employ a similar battery technology. In a typical EV, 

hundreds of individual cells are packed and built into modules arranged in a 

series/parallel configuration to achieve the desired battery voltage and capacity. Lithium-

ion batteries are the primary type of a rechargeable battery packs used in most EVs. 

Their qualities surpass those of other rechargeable batteries. Other types of batteries, 

such as lead-acid and nickel-cadmium (NiCd) batteries, contain higher concentrations of 

toxic heavy metals than lithium-ion batteries do. Lithium and carbon, the most common 

electrodes found in lithium-ion batteries, are lightweight on their own, resulting in much 

smaller and lighter batteries than lead-acid batteries.  
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Lithium-ion batteries have a higher energy density compared to their weight and last 

longer between charges than other rechargeable batteries, while retaining their high level 

of performance. The energy density of these batteries ranges between 260–270 Wh/kg, 

whereas lead-acid batteries range between 50–100 Wh/kg [28, 29]. Additionally, lithium-

ion batteries have a low rate of self-discharge and do not require routine maintenance.  

The advances in electronics, as well as in the manufacturing of lithium-ion batteries 

continue to lower the upfront cost of EVs. In 2010, the price of a lithium-ion battery pack 

was over $1,200 per kWh, whereas by 2021, that price has decreased by 89% to $132 

per kWh. This is a 6% decrease from the 2020 price of $140/kWh [28, 30].  Falling battery 

costs have also prompted automakers to enhance the EV's battery capacity and range 

to alleviate range anxiety [30, 31], which is defined as the "fear that a vehicle would not 

have enough range to reach its destination, leaving the driver stranded." Increasing the 

battery capacity is one technique to alleviate range anxiety; however, this results in an 

increase in the vehicle's price and weight. Therefore, the suggested course of action is 

to generally enhance the charging infrastructure and increase the number of public 

chargers so that drivers can stop more often during longer journeys [31]. 

1.2.5 Battery Specifications of Electric Vehicles 

In the coming years, EV purchasers will have a multitude of options and models to 

choose from. Each model is classed by its battery capacity and electric range. Table 1.1 

shows the specifications of some popular BEV models on the market today. 

Table 1.1: Specifications of some popular EV models from the 2017–2020 market 

Vehicle Brand/Model Battery Capacity (kWh) Electric Range (km) 

Audi e-Tron 55 quattro 95 436 (WLTP) 

BMW i3 42 310 (WLTP) 

Chevrolet Bolt 66 416.8 (EPA) 

Hyundai Ioniq 28 200 (EPA) 

Jaguar I-Pace 90 470 (WLTP) 

Kia Soul 31.8 178.6 (EPA) 

Nissan Leaf 40 243 (EPA) 

Peugeot e-208 50 340 (WLTP) 

Porsche Taycan 4S 79.2 466.7 (WLTP) 

Renault Zoe R110 54.66 395 (WLTP) 

Tesla Model 3 Long Range 79.5 518.2 (EPA) 

Tesla Model S/X Long Range 100 600.3/527.9 (EPA) 

Tesla Model Y Long Range 74 507 (EPA) 

Volkswagen ID.3 Pro Perf 58 416 (WLTP) 
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Battery capacity and electric range are terms that are used interchangeably but have 

slightly distinct meanings. EVs with a larger battery capacity have the capability of 

travelling longer distances on a single charge, but often have greater upfront costs [7, 

33, 34]. A manufacturer's stated electric range may often not be the same as the vehicle's 

real-world range on a fully charged battery. The actual electric range of each EV model 

is dependent on several variables, including average vehicle speed, consumer driving 

style and location (city or highway journey), traffic regulations, and weather conditions.  

Automobile manufacturers use one of three testing standards to determine and 

quantify the range of EVs: The Environmental Protection Agency (EPA), the New 

European Driving Cycle (NEDC), and the Worldwide Harmonised Light Vehicle Test 

Procedure (WLTP). The EPA is typically the most realistic measure in simulating real-

world driving conditions for American motorists and focuses on long-distance driving 

(e.g., highway), while NEDC is considered the least accurate. The NEDC and WLTP 

standards place a greater emphasis on urban and suburban travel, respectively [35, 36].  

1.2.6 Charging Terminology for Electric Vehicles 

Charging speed is one of the important considerations when it comes to EV models. 

Each model has a distinct charging speed, based on its type, model, and battery 

specifications. External variables, such as the ambient temperature, and the type and 

rating of a charging device also affect the charging speed. Unlike refuelling an ICEV, 

which takes just a few minutes, recharging an EV can take from 20 minutes to 15 hours, 

depending on the charging technique used [24, 25]. 

In the early 2010s, most cars could only be charged using slow-speed chargers rated 

at 3 kW. The terms "normal" and "fast" charging were used to refer to chargers that are 

rated at 7 kW and 10 kW, respectively. As the EV industry and battery technology have 

evolved and advanced over the years, the nomenclature for chargers has been updated. 

For example, slow chargers saw an increase of up to 7 kW, while fast chargers saw an 

increase of up to 22 kW. On the other hand, the term "normal" is nearly obsolete in the 

context of charging speed. The phrases rapid, ultra-rapid, and even extremely fast 

charging have been bandied around a lot in recent years [37].  

A significant improvement in battery performance has been a key criterion in 

improving the range and the charging rates of EVs. While the range that EVs can travel 

on a fully charged battery is continuously improving, the recharging duration is long 

compared to the refuelling speeds of ICEVs. Rapid chargers are gaining popularity to 

obtain shorter recharging durations. However, these will provide technical hurdles for the 

grid, the battery system design, and the electrical architecture of the vehicle [7, 38]. 
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In this thesis, the term "slow-speed" applies to single-phase Alternating Current (AC) 

chargers (rated at 3–7 kW), whereas "fast-speed" refers to chargers running in single-

phase (rated at 7 kW) or three-phase (rated at 22 kW). Additionally, the phrases "rapid-

speed" and "ultra-rapid-speed" refer to three-phase Direct Current (DC) chargers rated 

at 50 kW and 100–350 kW, respectively [36, 39]. The key characteristics of different 

charging methods and speeds are presented in Table 1.2. 

Table 1.2: Characteristics of charging methods 

Charger Speed Charger Rating Charge Duration 

Slow — single-phase AC 3–7 kW 8–12 hours 

Fast — single- or three-phase AC 7 kW or 22 kW 3.5–7 hours 

Rapid — three-phase AC 43 kW 1 hour 

Rapid — three-phase DC 50 kW Less than 1 hour 

Ultra-rapid — three-phase DC Up to 350 kW Less than 30 minutes 

Today, most charging stations are AC-powered. The typical rating for AC chargers is 

available from 3–7 kW on a single-phase socket and 7–22 kW on a three-phase socket. 

Consumers generally use slow and fast chargers overnight or during the day, especially 

in areas like their homes or workplace parking lots.  

While slow and fast charging are the foreseen primary options, rapid and ultra-rapid 

chargers are also gaining an increasing attention as the major secondary charging 

option. Rapid chargers have been mainly made available on highways with the benefits 

of reducing driver range anxiety, reducing service time at charging stations, and allowing 

drivers to charge their vehicles at conveniently accessible public outlets. 

Rapid and ultra-rapid chargers mimic the operation of traditional gas refuellers in 

terms of recharging speed. These consume a greater quantity of energy from the grid 

over a shorter period. Rapid chargers are often more convenient for drivers who 

anticipate spending less time in certain areas (such as supermarkets and near highways 

and major A roads), or when the driver wants to charge immediately and is ready to pay 

a premium price for convenience (e.g., on a road trip or when you have a low battery 

level but are pushed for time) [34, 40, 41].  

Overall, DC chargers are more costly to install and run than AC chargers since the 

power rating and the size of DC chargers are larger. Given the additional expense and 

strain on the grid, DC charging is generally not feasible daily. There is also another 

reason to avoid overloading on a rapid or ultra-rapid charger: it generates a lot of power, 

and handling it puts additional stress on the battery. Continuously using a DC charger is 

likely to reduce the lifespan of batteries [42].  
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1.3   Problem Statement  

While electromobility has a promising future, its success and growth are inextricably 

linked to the hosting capacity of existing grids and the technology that enables 

widespread adoption of electric cars. Over time, the transition to electric mobility will alter 

the design and management of the entire power system to accommodate a significant 

increase in demand [10, 34, 37]. If many EVs are simultaneously connected to public 

charging stations during the network's peak load, the distribution network will experience 

increased congestion and loading issues. Increased EV charging will cause voltage 

fluctuations and voltage drops, increase power losses, and overburden distribution 

network equipment (such as cables and transformers) [43]. The severity of grid issues is 

significantly influenced by the time and location at which EV charging loads are charged 

and connected to distribution networks, respectively [34, 37]. 

The additional loads from widespread EVs may necessitate costly distribution system 

upgrades to maintain reliability; however, careful planning and innovative operations 

strategies can reduce or eliminate the need for such upgrades. In addition, EV charging 

infrastructure can support grid stability and improve distribution systems, particularly 

when coupled with distributed solar, storage, or equipped with smart charge 

management and grid-interactive support. This research proposes a variety of robust 

network reinforcement techniques, such as on-load tap changers (OLTCs), distributed 

generation (DG) units, static VAr compensator (SVC) devices, coordinated charging 

systems, vehicle-to-grid (V2G) chargers, and battery energy storage units, for mitigating 

the impact of increasing the number and rating of EV chargers on distribution networks 

and for expanding their hosting capacity. 

1.3.1 Research Questions 

The following research questions are answered in this thesis: 

1. To what extent does the integration of EVs influence the operational 

characteristics of power networks at the transmission and distribution level? ii) 

What is the effect of increasing the uptake level of uncontrolled EV chargers? 

2. (i) What technologies are feasible for connecting EVs without jeopardising the 

operational characteristics of distribution networks? (ii) How can the installation 

of transformer tap changers, DG units, SVC devices, coordinated charging 

systems, V2G chargers, and battery energy storage units enable the secure and 

reliable connection of EV charging loads in medium-voltage and low-voltage 

distribution networks? 
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3. (i) How can the hourly peak demand and energy consumption of rapid and ultra-

rapid devices be estimated for different EV models? (ii) How often is the rated 

capacity of the substation transformer exceeded? (iii) In the worst-case scenario, 

what is the minimum size of a battery energy storage unit required for the network 

to operate safely? (iv) What is the minimum substation transformer size required 

to accommodate EV demand without becoming overloaded? 

4. (i) How do the operating characteristics of lithium-ion batteries change under 

various discharge profiles? (ii) How can the battery State of Charge (SoC) and 

Depth of Discharge (DoD) be estimated experimentally under different discharge 

tests? iii) How much battery energy storage capacity remains when it is used to 

charge a group of EVs with different charging needs? 

1.4   Thesis Objectives  

Chapter 2 — Objectives: The current state-of-the-art in EV charging technology is 

reviewed to highlight the advantages and challenges introduced by the integration of EVs 

into grids. The main research gaps are also identified and discussed. 

 

Chapter 3 — Objectives: The effects of increasing the number of uncontrolled rapid 

chargers are investigated on the steady-state operating characteristics of a generic High 

Voltage/Medium Voltage (HV/MV) distribution network. The IPSA+ Power simulation 

software and MATLAB are used to conduct load flow analysis under different scenarios. 

1. A load flow analysis is performed (i) to calculate total active power losses and (ii) 

to examine steady-state voltage profiles with different EV uptake scenarios. 

2. Tap settings have been calculated and installed on grid transformers.  

3. Optimum locations of DG units and required sizing of SVC devices near critical 

network feeders are determined to eliminate voltage violations. 

 

Chapter 4 — Objectives: Battery charger dynamics are developed and integrated 

into an AC grid to conduct dynamic load flow analysis in PSCAD/EMTDC (Power System 

Computer Aided Design/Electromagnetic Transients including DC) simulation software. 

The MC3000 battery charger unit is used to conduct tests with lithium-ion batteries.  

1. The behaviour of a generic Shepherd battery model is demonstrated. 

2. The charging and discharging characteristics of lithium-ion batteries are 

demonstrated under different settings. 
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Chapter 5 — Objectives: The interaction between slow, fast, rapid, and ultra-rapid 

charging technologies is investigated on the dynamic operating characteristics of a real 

low-voltage distribution network feeder. 

1. Battery charger dynamics are integrated into a low-voltage distribution network 

feeder (i) to examine voltage fluctuations, (ii) to quantify cable overloading, (iii) to 

calculate power losses, and (iv) to calculate the cost associated with power 

losses. 

2. The effects of i) upgrading the cable sizes, ii) using V2G chargers, and (iii) 

applying coordinated charging techniques are examined on the cable loading.  

 

Chapter 6 — Objectives: A stochastic model is developed to estimate the charging 

demand and the energy consumption of different EV models with varying battery 

specifications. The maximum peak demand that is exerted on the substation transformer 

is also determined and the required sizing of the transformer is calculated to design a 

network for the worst-case scenario. 

1. Different stochastic scenarios are produced, and the worst-case scenario is 

identified. 

2. Stochastic charging profiles from the worst-case scenario are integrated into a 

real low-voltage distribution network feeder i) to quantify the hourly peak demand 

on the substation transformer. 

3. The effects of V2G chargers and battery energy storage units are investigated on 

peak shaving. 

4. The network is designed to operate safely under the worst-case scenario by 

installing a larger transformer based on the peak current and peak demand, and 

by accommodating the charging demand from battery energy storage units. 

 

Chapter 7 — Objectives: Battery discharge profiles are developed and integrated 

into a physical battery charger and an analyser unit to investigate the capacity of 

stationary battery energy storage units that are used to meet the charging demand of 

different EV models with different charging requirements. 

1. The relationship between the battery voltage and charging/discharging current, 

and battery voltage and discharge capacity are determined under different 

discharge profiles. 

2. The SoC and DoD of the batteries are estimated under different scenarios. 
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1.5   Data Collection 

Appropriate data collection methods (such as obtaining the modified network 

parameters and the responses from a vehicle charging survey) are significant for 

maintaining the integrity of research and reducing the likelihood of errors occurring. This 

section discusses in brief the process of collecting data on variables of interest. 

The generic HV/MV British distribution network is modelled, simulated, and analysed 

in Chapter 3. This generic distribution network is modelled using the static PQ demand 

data of load busbars derived from [44].  

EV batteries are emulated through computational methods to represent battery 

charging and discharging dynamics in Chapter 4. These are represented by the 

equivalent Shepherd models. The procedure for designing the Shepherd model and the 

parameter selection is available in the Manitoba Hydro International Limited's Power 

Systems Technology Centre [45, 46].  

A real UK-based low-voltage distribution network feeder is modelled and simulated 

in Chapter 5 utilising the line and demand profiles of British residential and commercial 

customers obtained from, Western Power Distribution (WPD), now National Grid 

Distribution [47]. Additionally, the updated line characteristics and cable installation 

parameters are obtained from WPD's Standard Technique: Relating to Low Voltage 

Underground Cable Ratings document [48] to analyse the effect of battery chargers on 

cables, and to calculate power losses and the cost associated with power losses.  

The relevant data from [49] and [50] is obtained to calculate the percentile and daily 

distribution of fast- and rapid-speed charging events in the UK. The time distribution of 

charging events allows the method described in Chapter 6 to generate stochastic 

charging profiles depending on the time of the day. Additionally, Chapter 6 of this thesis 

integrates the survey results of 2,000 respondents from [51] to address and calculate the 

battery constraints and vehicle data, respectively. 

Different lithium-ion battery packs are used for the experimental work. The MC3000 

battery charger and analyser unit built by the SkyRC Technology [52] is used to analyse 

the charging and discharging characteristics of batteries under different settings.  
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1.6   Thesis Structure 

The relationship between the main thesis chapters is demonstrated in Figure 1.4. 

 

Figure 1.4: Relationship and flow between the main chapters. 

Chapter 2: A comprehensive overview is given about (a) the global EV market growth 

and the current state of EV recharging technology, (b) the advantages associated with 

the grid-integration of EVs, and (c) the relevant field studies with respect to the modelling 

of EV charging loads, electrotechnical effects of EVs on distribution networks, and 

network reinforcement strategies, for addressing the main research gaps. 

Chapter 3: A generic HV/MV distribution network is modelled to analyse the effects 

of increasing the uptake level of uncontrolled rapid chargers. It is demonstrated that the 

installation of tap changers on grid transformers and the optimal placement of DG units 

and SVC devices near critical points significantly reduces voltage deviations and active 

power losses. 

Chapter 4: Battery charger dynamics are developed using generic Shepherd battery 

models. A physical battery charger is also used to conduct experimental work. This is a 

methodology chapter in which the battery dynamics are integrated into a low-voltage 

distribution network (for Chapter 5 and Chapter 6), whereas in Chapter 7 the physical 

charger equipment is utilised to conduct various tests with lithium-ion batteries. 
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Chapter 5: A real low-voltage distribution network feeder is modelled, and battery 

charger dynamics are integrated near different customers. A comprehensive network 

analysis is conducted to examine the effects of combining the operation of slow, fast, 

and rapid EV chargers. 

Chapter 6: A algorithm is developed, and stochastic charging profiles are obtained 

for various EV models. The effect of stochastic scenarios is analysed on the low-voltage 

distribution network feeder. The effect of battery energy storage units is demonstrated 

on peak load reduction. The minimum required rating of the battery energy storage units 

and substation transformer is calculated to design a network to operate safely under the 

worst-case scenario. 

Chapter 7: Stochastic charging profiles from Chapter 6 are used to develop battery 

discharge profiles. These discharge profiles are then implemented into a physical battery 

charger and an analyser unit to investigate the operation characteristics of lithium-ion 

batteries. 

Chapter 8: The work's main conclusions and results are summarised and presented. 

Suggestions for further study are made considering the main limitations and strengths in 

this research work.  
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CHAPTER 2 

2.   Literature Review 

2.1   Introduction 

Effective decarbonisation of the transport is entirely dependent on the development 

of a prominent global EV market, the establishment of a robust recharging infrastructure, 

and the deployment of regulatory frameworks [7]. Technical, sociological, economic, and 

political constraints must be overcome to achieve widespread adoption of EVs [20, 22]. 

Lack of charging stations and options (particularly in urban/metropolitan areas) [53], high 

charging infrastructure expenditures, high upfront vehicle prices, and long vehicle charge 

durations [21] are the main obstacles to EV adoption.  

EV adoption in cities is influenced by situational and contextual factors. Situational 

factors, such as the city's location, cannot be changed. Vehicle ownership, on the other 

hand, varies based on the city's population, its socioeconomic context, the city's structure 

(politically and geographically) and the quality, accessibility, and frequency of other 

modes of transport [7, 21]. In 2020, ten million electric cars were on the roads of the 

globe. Sales of electric cars accounted for nearly 4.6% of total sales worldwide. The 

availability of electric car models expanded and new projects for vital battery 

technologies were initiated. The policies, which mostly consisted of purchase subsidies 

and/or car purchase and registration tax refunds, were intended to narrow the price gap 

between electric and internal combustion vehicles. However, to reach a trajectory 

compatible with the Sustainable Development Scenario and achieve full compliance with 

the Paris Agreement by 2030, 230 million EVs would need to be on the road [7, 21, 22].  

2.1.1 Chapter Structure   

• Section 2.2 reviews the key enablers and barriers for electric mobility. 

Additionally, it reviews the relevant governance, global EV market growth, and 

the current state of EV recharging technology.   

• Section 2.3 reviews the advantages associated with the grid-integration of EVs. 

Recent projects and developments within Great Britain are also reviewed. 

• Section 2.4 reviews the relevant field studies and discusses the main challenges 

with the modelling and integration of EV charging loads in distribution networks. 

Research gaps are also identified and then related to the contribution of thesis. 

• Section 2.5 summarises and discusses the key findings of the chapter. 
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2.2   State-of-the-art of Electric Vehicle Technology 

The electrification of the transport sector requires multiple enablers to make the 

transition a success [54]. The interaction between enablers is shown in Figure 2.1.  

 

Figure 2.1: Key enablers for future of mobility. 

The first enabling factor is an adequate vehicle supply. A competitive EV market 

with a diverse range of vehicle models is critical for expediting the transition. The EV 

supply chain is slightly distinct from the supply chain for conventional ICEVs. What 

distinguishes EVs is that they are mechanically simpler with fewer components, but their 

technology makes mass production more difficult. 

Public charging infrastructure is an important area that requires further attention. 

Assuring an extensive recharging infrastructure is encouraging drivers to switch to 

electric. Additionally, expanded public recharging infrastructure alleviates drivers' 

concerns about range anxiety. A lack of charging infrastructure and lengthy charging 

durations contribute to range anxiety. Range anxiety can be alleviated in part by 

increasing the battery capacity. However, since this results in an increase in the vehicle's 

price and weight, the recommended course of action is to improve the charging 

infrastructure and reduce charging times. 

The third enabler is novel business models and finance mechanisms. Costs 

associated with public charging infrastructure are prohibitively high, while charge station 

utilisation rates remain low. Therefore, novel business strategies and financial support 

are necessary to demonstrate the technology's potential [54]. 
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The fourth enabler is cooperation across sectors with an effective government 

policy. The EV transition brings together a diverse range of industries, from automotive 

to energy, transportation, and public sector. Thus, cooperation across diverse sectors, 

as well as the appropriate amount of 'carrot and stick' from the government, are required 

to encourage ICEV drivers to purchase and switch to electric cars [54]. 

Finally, customers, who are at the centre of this transition, are a significant enabler. 

It is vital to raise consumer knowledge and demonstrate why switching to electric will 

benefit the environment and the individuals in society. 

The high initial cost of EVs was a significant barrier in the beginning of 2010s. 

However, expenses are rapidly declining over the past few years, and the total cost of 

EV ownership (which includes operating costs) is already considerably near to, if not 

cheaper, than that of ICEV. As the market develops and volumes rise, economies of 

scale in all segments of the automotive industry and supply chain will result in further 

cost reductions over the next decade. However, the reduced battery prices will have the 

greatest influence on EV affordability.  

Battery costs account for up to 40% of the initial cost of an average BEV. However, 

battery prices have decreased by 85% on average since 2010 and are likely to continue 

to decline in the upcoming years. Further cost reductions on this magnitude will alter the 

economics of EV ownership, resulting in an exponential EV sales growth within the next 

decade [55]. The technology is advancing, and the chemistry of batteries is developing 

on the market. Automakers and major fleet operators are taking long-term 

decarbonisation objectives seriously and speeding their electrification investments, while 

policymakers continue to drive the market towards lower emissions. 

2.2.1 Government Perspective   

Packages of policy incentives are provided in many countries to increase the 

attractiveness of EVs. As policy measures intervene with the generalised cost of EV-use, 

they can be considered as attributes of EVs that can be influenced by governments. 

Policy measures can be purchase-based and use-based incentives. An example of a 

purchase-based policy incentive is a subsidy for purchasing an EV or a tax refund for 

registering an EV.  Examples of usage-based policies include the use of bus lanes and 

exemptions from congestion charging [20, 22].  

Incentives are crucial for closing the significant cost gap between electric and 

gasoline vehicles [13, 21]. Purchase-based policy incentives decrease the fixed cost of 

EV-use, while usage-based incentives decrease the marginal cost of EV-use [20, 22]. 
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In the UK, government interventions include funding industrial development to deliver 

the real reductions in emissions needed by establishing exemplar cities or regions that 

are pioneers in promoting EVs (e.g., Go Ultra Low Cities: Dundee, London, Milton 

Keynes, Nottingham, Oxford, York, the West of England, and the Northeast), 

encouraging market growth through incentives, establishing legal and regulatory 

frameworks for charging infrastructures, and deploying policies at the local level [20, 22, 

56].  

In October 2019, the UK government unveiled its decarbonisation strategy, while the 

Department for Transport defined six strategic goals and issued Decarbonising 

Transport: Setting the Challenge in March 2020 to provide the groundwork for the 

strategy's implementation [56]. These strategic goals are the (i) the decarbonisation of 

road vehicles, (ii) decarbonisation of how people get their goods and services, (iii) 

acceleration of model shift to public transport, (iv) tackling air quality and reducing carbon 

in a global economy, (v) introduction of place-based solutions (particularly at the 

community level), and (vi) consideration of the UK as a hub for green transport 

technology and innovation. 

2.2.2 Global Electric Car Market Growth  

In 2020, after a decade of strong expansion, the worldwide electric car stock hit the 

10 million units, a 43% increase over 2019. Electric car registrations increased by 41% 

in 2020, despite the pandemic-related worldwide downturn in car sales in which global 

car sales dropped by 16% [57]. Sales of EVs doubled in 2021 from the previous year to 

a new record of 6.6 million. Back in 2012, just 120,000 electric cars were sold worldwide. 

In 2021, more than that figure have been sold each week. 

In 2021, about 10% of global car sales were electric, four times the market share in 

2019. This boosted the total number of electric cars on the world's roads to around 16.5 

million, or three times the amount in 2018. In the first quarter of 2022, two million electric 

cars were sold worldwide, a 75% increase from the same period in comparison to 2021 

[58–60]. Canada, China, Japan, the United States, and some major European nations 

have dominated the overall market over the past decade. The growth of global electric 

car stock in the last decade is shown in Figure 2.2. 
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Figure 2.2: Global electric car stock: 2010–2021 [60].  

The global electric car stock chart refers to passenger light-duty BEVs and PEVs 

only. The 'other ' legend includes Australia, Brazil, Canada, Chile, India, Japan, Korea, 

Malaysia, Mexico, New Zealand, South Africa, and Thailand, whereas Europe includes 

the EU27, Norway, Iceland, Switzerland, and the UK. Sales were highest in the People's 

Republic of China ("China" hereafter), where they tripled compared to 2020 to 3.3 million 

after several years of relative inactivity. China became the first country to phase in new 

energy vehicle regulations, exempt customers from taxes, acquire emission credits 

produced by EV sales, and considerably reduce imports from other countries [59, 60]. 

China and Europe accounted for more than 85% of worldwide sales of electric cars 

in 2021, followed by the United States (10%) where the sales have doubled from 2020 

to reach 630,000 units. Sales in Europe increased by two-thirds year-on-year to 2.3 

million. The Netherlands (82% of all electric car registrations), Norway (73%), the UK 

(62%), and France (60%) had the highest share of BEVs in Europe [58–60]. 

It is expected that there will be 11 million EVs by 2030 and 36 million EVs 2040 on 

the road in the UK, according to National Grid's Future Energy Scenarios [61, 62]. On 

the other hand, Japan's Green Growth Strategy established a rule that all new 

automobiles sold after 2030 must be electric to fulfil the country's 2050 net-zero targets. 

This approach needs the government to boost its investments by 30–50% beyond the 

2020 level.  

One factor for limited adoption in certain areas is the disparity in price between 

electric and gasoline vehicles. Additionally, in particular regions and countries, a 

shortage of home and workplace chargers is a contributing reason for a lower EV 

adoption [16, 58, 60]. Nevertheless, further improvements and lower battery costs 

suggest that BEV sales will expand at a higher pace in the next few years [16, 59].  
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2.2.3 Recharging Technology  

Recharging is a significant component of a healthy EV ecosystem and requires 

significant developments and robust charging infrastructure to help achieve widespread 

market growth. Charging infrastructure is commonly referred to as a 'chicken and egg' 

problem, since both EVs and their charging technologies need the presence of the other. 

The creation of a charging infrastructure requires sustained EV adoption to reassure 

customers that there will be sufficient demand for the investment and expenditure [63]. 

A robust charging network and a variety of charging options, on the other hand, will not 

only be a technical need but also a crucial facilitator for customer acceptance [64].  

With respect to facilitating customer acceptance, NewMotion conducted a survey to 

gain insight into improving the charging experiences for EV drivers. The most significant 

changes for a better charging experience included faster charging options (48%), 

improved availability of charge points (46%), and a single payment card to be used for 

all public charging stations (41%), as seen in Figure 2.3. 

 

Figure 2.3: EV driver survey on improving charging experience [64]. 

Faster charging options are a significant improvement in the Netherlands, whereas 

in Germany, the UK, and France, the availability of charging stations is more important 

among drivers. The transition to a single card payment for a smoother charging 

experience at public outlets is also a key enabler among many drivers [64].  

2.2.4 Charging Standards  

Battery chargers come in different forms of connectors. These include Combined 

Charging System (CCS), the Japanese CHAdeMO (CHArge de Move — move by 

charge), the Chinese version operating under the GB/T, the Tesla Supercharger, and 

the ChaoJi standard (based on the combination of GB/T and CHAdeMO) [34, 65]. Over 

the past decade, the CHAdeMO and Tesla have gained widespread popularity [66].  
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Each connector is specifically engineered to operate at different ratings and levels. 

The specifications and the characteristics of each connector and charging standard are 

presented in Table 2.1. 

Table 2.1: Characteristics of charging standards [65] 

Standard CHAdeMO CCS Type 1 CCS Type 2 GB/T Tesla ChaoJi 

Compliant 

Standards 

IEEE/2030.1.1 

IEC/62916-3 

SAE J1772 

IEC/62916-3 
IEC/62916-3 IEC/62916-3 

No related 

items 

CHAdeMO  

and  

GB/T 

Connector Inlet 

    
 

 

Max. Voltage (V) 1000 600 900 750 500* 1500 

Max. Current (A) 400 400 400 250 631* 600 

Power (kW) 400 200 350 185 250* 900 

V2G Function Yes No No No Unknown Yes 

Start Year 2009 2014 2013 2013 2012 2020 

*: The specifications of Tesla Supercharger are estimated based on its market labels. 

CCS has Type 1 (single-phase plug offers up to 7.4 kW) for the North American 

market and Type 2 (three-phase plug offers up to 43 kW) for the European and Australian 

markets. CCS is compatible with Audi, BMW, Opel, Phoenix, Porsche, and Volkswagen 

models, whereas CHAdeMO is compatible with Japanese models (such as the Nissan 

Leaf and Mitsubishi). The GB/T standard is exclusively available in China and India, 

whereas Tesla has its own charging standard, notably, the Supercharger.  

2.2.5 Private vs Public Chargers  

The primary choices are private or home charging, public charging infrastructure in 

dense regions, and long-distance public charging infrastructure on motorways [13, 20, 

56]. There were around 7.3 million chargers worldwide in 2019, with 88.3% of them 

representing slow-speed private chargers, while 8.1% representing slow-speed public 

chargers and 3.6% representing fast-speed public chargers [67], as seen in Figure 2.4. 

 

Figure 2.4: Private and public charger distribution by country: 2019 [67].  
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China accounted for 37% and 60% of privately and publicly accessible chargers, 

respectively. China's high percentage of ownership is a result of the country's quick 

deployment and rollout of chargers in dense metropolitan cities. China's achievement in 

promoting charger usage has also resulted in a sharp increase in the global number of 

publicly accessible chargers from 862,000 in 2019 to 1,300,000 in 2020 [54, 58–60]. 

As for the UK, the European Alternative Fuels Observatory (which is the European 

Commission's key reference portal for alternative fuels, infrastructure, and vehicles in 

Europe has shown that the number of charging points per 100 kilometres of road has 

increased from 42 in 2011 to 570 in 2019. Furthermore, Highways England (formerly the 

Highways Agency) has committed £15 million to ensuring that charge points are 

available on 95% of the Strategic Road Network (which includes motorways and some 

major A-roads) [54]. In November 2019, the Department for Transport produced a 

'league table' of EV charging availability in local authorities around the UK, emphasising 

[68, 69]: 

• At the end of 2019, there were more EV charging stations (around 9,000) than 

gas stations (around 8,400). 

• There are over 100 local authorities with less than ten public charging devices per 

100,000 of population. 

• Installation of rapid charging stations is accelerating in cities and on highways. 

Over 95% of all highway service locations have at least one rapid charger. 

• By 2030, the number of public rapid chargers required is estimated to grow from 

4,000 in the last quarter of 2020 to 30,000. 

2.2.6 Charger Archetypes 

In the context of EV charging, 'where-to-charge' and 'how-to-charge' are significant. 

Each charging location is optimal for individuals with varying charging requirements. For 

example, publicly available AC chargers in urban areas are beneficial for those who are 

unable to charge at work or at home, while public DC chargers on highways are beneficial 

for those making long journey trips on or near motorway junctions.  

The UK government has allocated £500 million to a public-private charging 

infrastructure investment fund to improve the charging infrastructure for new households 

and adopt a more centralised strategy to expand charger locations [68]. The proportion 

of EV public charger types in the Southern and Scottish Electricity Network (SSEN) 

connection zones of the UK is shown in Figure 2.5. 
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Figure 2.5: Proportion of charger locations in the Southern (top) and Scottish (below) zones [68]. 

The area size reflects the percentage of EV chargers in each category within SSEN 

connection zones. Scotland has a larger share of charges in public car parks, public 

workplaces, and other public venues. Different government initiatives in each licence 

region could partially explain these disparities. ChargePlace Scotland, a nationwide 

network of EV chargers built by the Scottish government with grant money from local 

authorities and other organisations, operates around 73% of EV chargers in Scotland. 

This more centralised approach to charging infrastructure has increased the amount of 

EV chargers in centralised public parking areas such as car parks, park and rides, public 

estates, and educational facilities [68]. 

In the Southern licence region, the bulk of charging infrastructure is privately 

operated. Approximately 50% of the chargers in this region are managed by Pod Point, 

POLAR, and Ubitricity. This has resulted in a more dispersed EV charging infrastructure, 

including on-street, shop parking lots, hotels, and other tourist destinations [68].  

2.2.6.1 Home Charging 

Private home chargers account for over 90% of all chargers installed globally. Drivers 

find charging at home quite handy since it needs no new infrastructure and EVs can be 

charged using the existing standard electrical outlets. Home charging is much cheaper 

than using public infrastructure, particularly during periods when the night-time energy 

costs are lower. Under the Electric Vehicle Homecharge Scheme, the Office for Zero 

Emission Vehicles (OZEV) is granting homeowners incentives with funding for 75% of 

the costs of installing charge point in a UK domestic property [70]. 
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Consumers who own EVs can either have a wall box put on the outside wall of their 

houses or utilise the vehicle's included portable slow-speed charging cable. The latter 

variant utilises a conventional three-pin connector and is powered by a household 

source. The cost of installing a home charger is determined by the charger's smart 

features. For example, a 7-kW wall box unit costs around £300 to install, whilst a simple 

3-kW charger costs approximately £100 to install. Certain automobile manufacturers 

even provide a complimentary wall box fitting with the purchase of their vehicles [70, 71].  

2.2.6.2 On-street Charging 

Around 24% of people in England have no access to off-street parking [72], and 

hence on-street chargers are beneficial for these who have no access to off-street 

parking. The Energy Savings Trust administers the On-street Residential Chargepoint 

Scheme, funded by OZEV. This funding is available to local authorities to encourage 

individuals by increasing the availability of on-street charge points in residential streets. 

On-street charging is emerging in the form of using the existing street infrastructure 

and converting lamp posts into charge points. This contributes to the reduction of power 

consumption of lamp posts. Ubitricity is one of the first service to emerge, who is 

responsible for integrating this type of charging equipment into the existing street 

furniture and providing its customers the option of purchasing a smart cable for charging 

through lamp posts around London. Spring of 2020 saw the installation of approximately 

200 lamp post chargers operated by EB Charging in Brighton, thanks to OZEV funding. 

Some places have dedicated parking, while others are shared. These chargers are 

accessed through a smartphone app that manages accounts and payments [73]. 

Connected Kerb, a British company, is creating new kerbside chargers with the 

intention of assisting individuals lacking off-street parking by providing new charging 

infrastructure alternatives. The charging post utilises the home's electrical source. There 

is a parking space designated as "EV permit holder" to guarantee that parking is 

accessible for the owner, along with appropriate notice on the owner's garden wall [73]. 

2.2.6.3 Workplace, Fleet Charging and Destination Charging 

Chargers are often provided at workplaces for the usage of workers who travel to 

work. Workplace chargers are similar to home chargers in terms of recharging speeds 

but often use a Type 2 connector with a three-phase connectivity [74]. The OZEV 

originally provided a voucher-based Workplace Charging Scheme to assist qualified 

enterprises and organisations with up to 75% of the upfront expenditures (up to £350 per 

socket) and installation costs of a workplace charger [75]. 
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Commercial fleets may charge their vehicles wherever there are public charging 

stations or at charging depots. Electrification and charging of fleets seem to be a 

significant business opportunity. Employees, workplace, car-sharing, logistics and 

service (delivery trucks), municipalities (large commercial vehicles), and public transit 

(buses and taxis) are all examples of fleet vehicles [76]. This charging method is 

classified as charge at work, charge at depots, and charge on-route. Car-sharing fleets 

now need an average of one rapid charger for every ten electric cars, while urban electric 

buses require one ultra-rapid charger for the start and finish of their routes [76]. 

Destination charging is provided using closed networks of chargers. Tesla's charging 

network exemplifies a closed network of chargers with a broad network of destination 

chargers [77]. This method of charging is often designed in locations where the vehicle 

intends to stop for a limited period (e.g., at a shopping mall or at a restaurant). Although 

many destination chargers are free to use, it may sometimes be necessary to reserve 

and book a charging space in advance.  

2.2.6.4 On-route and Hub-based Charging 

On-route charging is associated with public places where the motorist spends even 

less time charging the vehicle (e.g., while buying a coffee at a service station). This type 

of charging can provide higher energy to the vehicle per charging session. Recently, 

there has also been a considerable interest in charging through hubs. This kind of 

charging infrastructure comprises the establishment of a single location with a range of 

charging services to accommodate motorists' varying needs. The list of hub-based 

charging projects in the UK is shown in Table 2.2. 

Table 2.2: Developments for hub-based forecourt charging projects in the UK 

Company Location Number of Charging Devices  

GRIDSERVE Essex 
6 AC chargers (22 kW) 

24 DC chargers (90–350 kW) 

Go Ultra Low West (GULW) 
Bristol & Bath 

Science Park 

1 AC charger (7–22 kW) 

5 DC chargers (50-kW) 

Energy Superhub – Led by Pivot 

Power and Oxford City Council 
Oxford 16 AC chargers (7–22 kW)  

InstaVolt Banbury 8 DC chargers (125 kW) 

BP Pulse Around the UK 24 DC chargers (300 kW) 

HyperHub (EvoEnergy) York 
4 DC chargers (50 kW) 

4 DC chargers (150 kW) 

Shell Fulham 9 DC chargers (175 kW) 

Osprey Around the UK 12 DC chargers (150–175 kW) 
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Ecotricity and GRIDSERVE Sustainable Energy Limited are pioneering this industry 

to generate demand for significant expansion of EV charging infrastructure in the UK [78, 

79]. In December 2020, the UK's first and most advanced charging station forecourt, 

which provides simultaneous charging for 36 cars (6 AC chargers, 24 DC chargers, and 

6 Tesla chargers) and has a food court and shop space on-site, has opened to the public.  

While many EV drivers charge at home or at work, public rapid charger networks in 

the form of hub offer vital charging assistance and the ability to expand travel distances. 

Most hub-based charging networks provide a range of charging choices, including slow, 

fast, and rapid chargers. These hub-based facilities reassure the public that the UK will 

have the charging infrastructure necessary for widespread EV adoption.  

2.3   Grid Benefits Provided by Electric Vehicles 

National Grid estimates that without smart charging and V2G technology, EVs may 

increase today's demand by 30% and add up to 24 GW to peak demand by 2050 [80]. 

The EV batteries are crucial in the transition to decentralised systems, alleviating certain 

grid constraints and improving network capacity. EVs can also participate in grid-to-

vehicle (G2V) and V2G services based on the direction of power transmission between 

the grid and the vehicle. G2V effectively charges EVs by directing electricity from the grid 

to the vehicle (unidirectional power flow), whereas V2G enables stored energy to be 

released to the grid through an EV battery (bidirectional power flow). Additionally, 

electricity may flow between a building and an EV, in which case the EV can power the 

building if it is not in use [43, 81].  

2.3.1 Vehicle-to-Grid 

V2G has garnered considerable interest and is seen as an intriguing 'win-win' solution 

for both the environment and the user. The technology enables EV owners to generate 

new revenue streams and results in energy bill savings by storing and discharging 

energy back to the grid or their own properties when it is most needed (particularly during 

peak demand and when the energy prices are high) [82]. The potential net returns from 

a V2G charger vary between $90 and $4,000 each year, depending on the power 

capacity and electrical connections of grids [83]. 

While V2G has several advantages, there are also certain obstacles. With more 

frequent charging and discharging, V2G can shorten the lifespan of a battery, even if 

only a small fraction of its capacity is utilised daily. Energy is also lost during the V2G, 

as current efficiencies range between 50% to 70%. The specialised hardware for V2G 

makes V2G expensive [81, 83, 84].  
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Through their own experimental V2G programmes, Octopus Energy, EDF Energy, 

OVO Energy, and Electric Nation are contributing to the development of a better grid in 

the Great Britain [82]. Electric Nation has installed the first of 100 V2G chargers in 

January 2020 as part of a trial with multiple energy suppliers to investigate the effects of 

V2G charging on low-voltage electricity networks, assist Distribution Network Operators 

(DNOs) in gaining a better understanding on the technical and economic aspects of V2G 

chargers, and in providing recommendations for a commercial and policy framework to 

foster collaboration in the energy market [85]. Table 2.3 contains a detailed list of V2G 

trials conducted by different lead partners over the past few years in the Great Britain. 

Table 2.3: A list of projects and lead organisations for V2G trials in the Great Britain 

Project Title Lead Partner Description Services Offered 

PowerLoop 
Octopus 

Energy 

It is a domestic V2G demonstration 

project that contains 135 chargers 

and is used for home energy 

management. 

Arbitrage 

Distribution services 

Time shifting 

Emergency backup 

V2GO EDF Energy  

Through real-world V2G field 

experiments from 100 EV charging 

sites, the project focused on V2G for 

EV fleets. 

Arbitrage 

Frequency response 

Time shifting 

Sciurus OVO Energy 

One of the biggest residential V2G 

initiatives, which installed over 300 

bidirectional V2G household 

chargers at no cost. 

Arbitrage 

e4Future Nissan Motor 

A large-scale V2G demonstration 

also focuses on fleet vehicles, using 

up to 1,000 BEVs. 

Arbitrage 

Distribution services 

Frequency response 

Time shifting 

Bus2Grid SSE Services 

A multi-megawatt large-scale 

demonstration of the V2G 

technology with the goal of charging 

28 electric buses at London depots. 

Arbitrage 

Frequency response 

Time shifting 

EV-elocity Cenex 

A techno-economic business model 

for the V2G will be assessed in 

business parks and airports. 

Arbitrage 

Time shifting 

E-Flex 
Cisco 

International 

Using active EV fleets to 

demonstrate the V2G technology's 

value chain and economic 

advantages to commercial fleet 

owners and regulators.  

Distribution services 

Frequency response 

Time shifting 
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The Department of Business, Energy, and Industrial Strategy and the OZEV funded 

the V2G programmes, which was implemented by Innovate UK (non-departmental public 

entity operating at arm's length from the Government) as part of UK Research and 

Innovation. These initiatives were also partially sponsored by the Network Innovation 

Allowance, which is part of OFGEM's (Office of Gas and Electricity Markets) regulatory 

strategy to ensuring that adequate income is generated through incentives, innovation, 

and outputs to operate the networks effectively [82, 85, 86]. 

In addition, the Vehicle-to-Grid Britain Project offers a better understanding of the 

fundamental factors influencing the V2G's roll-out. This project aims to determine the 

long-term viability of V2G opportunities in British power markets, to quantify the size of 

potential opportunities under various scenarios, to highlight key market drivers, and to 

provide insight to stakeholders [86].  

2.3.2 Storage Entities with Vehicle-to-Grid Capability 

The capacity of EVs to store energy generates new value propositions for V2G 

services. The V2G is an effective solution for ensuring grid stability when a renewable 

energy, such as a battery energy storage, is included. The V2G also improves the grid's 

self-balancing capability, which is critical when renewables are integrated into the grid 

[37]. For example, by using a V2X technology (vehicle to anything) or vehicle-to-building, 

renewable energy sources are utilised to lower the system's peak demand. Mobile 

energy storage and supply flexibility enabled by V2G reduce the requirement for 

generation and transmission expenditures while increasing energy security and network 

efficiency. 

 Electric fleets can also participate in V2G services to achieve economies of scale, 

provide active power support and frequency control to power grids, store excess 

renewable energy generation, participate in demand side response, and implement load 

levelling and peak load shaving [20, 81, 87]. The concept of load levelling and peak 

shaving through V2G is shown in Figure 2.6. 

 

Figure 2.6: Load levelling and peak load shaving with EVs [88]. 
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Utilities need to balance their generation capacity with the consumption of customers. 

Customer demand and consumption patterns are not constant as they vary from peak 

load to minimum baseload throughout the day, as shown in Figure 2.6. Load levelling 

decreases large fluctuations in customer demand that occurs because of the variations 

in the electrical demand. This approach stores additional power during periods of light 

loading (off-peak hours), particularly after midnight. It also involves delivering the stored 

power during periods of high loading. On the other hand, peak shaving minimises spikes 

in demand and smoothens peak loads out during periods of high demand. With an on-

site battery energy storage unit, one can charge his batteries when electricity rates are 

cheap (i.e., during off-peak hours or with your free solar energy), and then discharge 

those batteries to avoid paying peak prices during the most expensive times [83, 89]. 

2.3.3 Solar Power 

Innovative battery solutions are solar energy's strongest allies. Solar energy has 

paved the road for a future of affordable clean energy during the last decade. Now, with 

a little more innovation and widespread deployment, batteries, whether in EVs or as 

stationary storage systems, will enable the growth of solar photovoltaic (PV) to enter a 

new, even faster phase. Solar combined with a battery energy storage system is one of 

the most effective methods to reduce and shave peak loads during periods when 

electricity costs are high. Solar combined with storage also has the capability to optimise 

the building's energy consumption, and to charge and discharge EVs at ideal times to 

minimise and smooth out peak loads, and lower the cost of demand charges [89, 90]. 

The GRIDSERVE's hub-based forecourt adheres to a 'sun-to-wheel' principle, with a part 

of the energy used produced locally through solar canopies built above charger cabinets. 

Additionally, there is a 6-MWh battery storage system on-site that assists in balancing 

the local energy grid and shifting energy usage to useful and cheaper periods [79, 91]. 

Several research studies have already shown that customers strongly favour solar 

energy [92]. For example, it is demonstrated that those interested in purchasing an EV 

are also interested in solar energy (and vice versa), and are therefore likely to acquire 

both, but not necessarily at the same time [93]. Recently, companies such as Tesla and 

Sonnen noticed the growing consumer desire for integrated EV and renewable energy 

offerings and began providing packages that include an EV and solar PV charging 

applications [94–96]. Another research discovered that offering an EV with solar-

powered charging to homeowners increases their desire to purchase an EV [97]. This is 

a particularly important conclusion, since it implies that these types of packages can 

simultaneously accelerate the adoption of EVs and solar energy, both of which are 

mentioned by the United Nations' Emissions Gap Report [92]. 
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However, individuals who are renters, or who are unable to install their own solar 

panels (such as due to the high upfront cost or a lack of sunlight on their property), 

currently have no option for charging their EVs at home using personal solar PV units. 

Therefore, a sizable portion of the market is generally excluded from the advantages of 

a product package consisting of a solar system and an EV [92]. 

2.3.4 Smart Charging 

Smart charging refers to a system in which the car and charging unit communicate 

through a two-way communication protocol while exchanging information and data. This 

two-way communication enables the adaptation of a smart charging cycle according to 

the driver's and the grid's needs. Through two-way communication, drivers can monitor 

and regulate their charging and discharging cycles, while also optimising the energy use 

of their households, without overloading the grid [12, 37].  

The Automated and Electric Vehicles Act 2018 empowers the government to 

require that all charge stations supplied or built in the UK have smart functionality through 

primary and secondary legislation [98]. Smart meters will also help EVs move into the 

mainstream. Around 35% of homes in the EU have smart meters installed as of 2018. 

Smart meter penetration is expected to reach 77% and 92% in 2024 and 2030, 

respectively. Other nations, like Denmark, Estonia, Italy, Malta, Spain, and Sweden, 

currently have smart meter adoption rates of more than 80% [99]. 

Different forms of smart charging methods have been and continue to be tested with 

customers, with the aim of determining their possible system impacts. For example, tariff 

schemes with defined peak and off-peak periods can effectively shift vehicle charging 

away from times when the demand is at its highest [12]. The concept of smart charging 

of EVs is demonstrated in Figure 2.7 and Figure 2.8. 

 

Figure 2.7: Impact of dumb charging on daily energy consumption [12]. 
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Figure 2.8: Energy consumption with smart tariff and charging [12]. 

It is seen that charging EVs without using smart methods (i.e., dumb charging) 

increases evening peak demand. With smart charging and intelligent pricing signals, EV 

charging may help eliminate excessive demand variations while saving EV owners 

money by moving charging load to off-peak hours [100]. If the charging infrastructure is 

not designed and operated as an integrated part of the evolving smart grid, significant 

costs will be incurred, which will eventually be met by consumers. These costs can be 

considerably lowered if EV charging is seen as a flexible resource that adapts to the 

requirements of the electrical grid. Smart charging has the potential to result in cost 

savings for DNOs, and even offers valuable flexibility resources for households [100]. 

2.3.5 Ancillary Services 

Grid reliability, supply and demand balance, and power transmission to buyers can 

be maintained by ancillary services that are necessary in a power system. When a V2G 

system is bidirectional, it can provide higher-quality ancillary services, improved voltage 

regulation and frequency control, load management, and efficient spinning reserves. The 

National Grid Electricity System Operator (ESO) has increased the range of technologies 

able to participate in its ancillary services market. The new platform for ancillary services 

optimises power access by enabling demand side management [101, 102]. EVs, for 

example, have the potential to significantly increase localised demand flexibility by 

enabling consumers to reduce or shift their electricity consumption during peak periods 

(for example, demand side response services incentivise businesses to shift their 

electricity consumption in response to a signal ensuring the safe operation of the 

electricity systems) to help the ESO and local DNOs [101, 103, 104].  
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At larger penetration levels and for the supply of near-real-time balancing and 

ancillary services, more complex smart charging techniques, such as direct control 

mechanisms (active power control and reactive power control, will be required. For 

example, the Vehicle-to-Grid Britain Project evaluated the long-term feasibility of V2G 

potential in British power markets, specifically their capacity to contribute to a flexible 

energy system. It was discovered that import savings and arbitrage possibilities would 

increase, but their sustainability will rely on the effect of battery degradation [83]. In 

conclusion, there is a continuous change in the requirements and commercial 

arrangements for ancillary services at the ESO and DNO levels, and competing 

technologies are becoming more diverse, so the business models of EVs must be flexible 

and adaptable to navigate this complex market [86, 101–104]. 

2.4   Related Work 

While the expansion of EVs and accompanying charging stations benefit the 

environment and concomitant economic growth, EVs also introduce negative effects 

based on how they are connected to the power grid and how they are charged [37]. EV 

integration is generally classified by two charging schemes: uncontrolled and controlled 

charging. Before considering alternative methods or techniques to reduce the negative 

impacts in the grid, it is necessary to understand them.  

Uncontrolled (also termed as uncoordinated) charging (i.e., no restraints on the 

charging of the vehicle, with all residents allowed to charge any time throughout the day) 

causes increased peak demand, since charging often happens when residents get home 

from work, resulting in most of the energy demand from charging occurring during the 

peak period. An increased number of EV charging activities during the network's peak 

load, for example, will alter the planning and management of all grid-connected 

operations, introduce voltage fluctuations, increase power losses, overload distribution 

network equipment (such as cables and transformers), and introduce power quality 

issues (such as current and voltage harmonics) [43]. According to a study, uncontrolled 

EV charging has the potential of increasing the daily peak demand from 3% (3.2 GW) up 

to 60% (37 GW) in the Great Britain [105]. 

Controllable charging, also known as managed charging (restraints are applied while 

charging the vehicle by offsetting the charging time of any resident to off-peak hours), is 

thus seen to be the preferable method, in which EVs are charged at the time specified 

by DNOs [43, 81]. Through managed charging options, utilities have the capability to 

remotely regulate vehicle charging to better match the needs of the grid.  
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When it comes to the effects of EVs on the grid, the current literature focuses primarily 

on decentralised or high-voltage transmission grids' electrotechnical effects [106]. Only 

a few studies have attempted to incorporate both, but these have not established a 

convincing link between different voltage levels. On the other hand, many studies have 

been conducted in recent years to investigate charging strategies that may mitigate the 

negative effects of EV charging on the distribution grid and the capacity of available 

electricity generation to meet the increased load. In addition, the uncertainty factors of 

charging behaviour of EVs are regarded as a crucial input for modelling EV loads; 

however, these are often overlooked in the literature [107]. The plug-in time (charging-

start time), charging duration, and location of EV charging have a significant impact on 

the severity of grid issues [34, 37]. To analyse the effects of EVs, a dependable model 

capable of simulating the travel patterns of a large fleet of EVs and their charging demand 

at various locations are required [108].  

This section is subdivided into four parts comparing, contrasting, and synthesising 

the available literature relevant to the (i) modelling of EV charging loads (Section 2.4.1), 

ii) electrotechnical effects of EV charging loads incorporating different network voltage 

levels (Section 2.4.2), iii) network reinforcement strategies to mitigate impacts on the 

grid (Section 2.4.3), and iv) main research gaps that are addressed (Section 2.4.4).  

2.4.1 Modelling of Electric Vehicle Charging Loads 

System operators must ensure supply stability and security by tailoring the grid 

structure and operation to the network's individual features and components. System 

operators are also interested in accurately estimating the charging demand to anticipate 

the consequences and requirements of infrastructure upgrades with large uptake levels 

of EVs [109]. However, the charging demand of uncontrolled EVs is difficult to estimate 

due to small number of registered actual cases and uncertainties associated with 

individual driving behaviour and non-linear charging profiles of various EV models [110].  

In the literature, most authors have modelled EV charging loads based on travel data 

and consideration of generic vehicle specifications [111], while ignoring a few crucial 

factors [112]. Some studies assumed that EVs have a constant adoption rate [113], travel 

a constant daily distance [114], are charged at the same time [115] and same rate [116], 

and have the same energy consumption [117, 118]. However, since the nature of EV 

charging is more stochastic, other dynamic factors should also be considered by 

exploring the non-linearity of charging parameters for developing more accurate 

estimation models [119]. 
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Deterministic and stochastic models are generally developed to represent the 

charging pattern of EVs and their corresponding load patterns in distribution networks 

[112]. In deterministic models, distribution network constraints are used to estimate the 

threshold level of EV penetrations at which thermal ratings would be exceeded. For 

quantitative analysis in probabilistic studies, stochastic models are utilised to simulate 

the randomness and heterogeneity of EVs [120].  Deterministic models are mainly used 

for evaluating the long-term effects of EV charging [121] and are not applicable for 

evaluating the short-term effects [119]. 

2.4.1.1 Deterministic Approach 

Early studies that modelled the charging requirements of EVs mainly relied on the 

utilisation of a deterministic approach. In this approach, it is assumed that charging 

begins at a fixed time after the completion of the final trip of the day or whenever the 

vehicle is parked at home [122]. Variation in estimated charging demand is then solely 

attributable to varying vehicle use, which is generally taken by sampling raw vehicle data 

[113] or providing a relative likelihood that the value of the random variable (i.e., energy 

use and arrival times of the vehicles) would be close to that sample [123]. 

Deterministic models generally involve simplistic scenarios and assumptions. For 

example, it is assumed that EVs would make three 40 km trips per day and only be 

charged after these trips [124]. However, the total distance covered by each EV is in fact 

different. In another study, it is assumed that EVs are always charged at 18:30 at home 

[125]. The selection of this time is to represent the daily charging activity of residences 

at home. However, this assumption is mainly attributable to private chargers that are 

installed at home and ignores the utilisation and distribution rates for public charging 

stations. The impact of V2G charger on lowering the peak demand is analysed, with all 

EVs available for V2G charging at 18:00 [126]. Similarly, this is a very simplistic 

assumption because EVs typically participate in V2G schemes when their batteries are 

fully charged, which is unlikely in this instance given that this time of day is generally 

considered as the plug-in time for majority of EVs with depleted batteries. 

For the estimation of potential structural and economic effects of EVs, such as on 

charging infrastructure, power supply, and power prices, diverse EV charging models 

are required, which indicate at what point in time how many EVs are being charged at 

what locations and how much energy is required to charge them. Due to the 

computational effort required to model detailed driving and charging patterns, energy-

system models commonly aggregate EV-specific loads [127]. The aggregated EV load 

profiles under uncontrolled and controlled charging scenarios are estimated through 

deterministic modelling to study the impact on the energy system [128].  
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Some research has also been carried out with uncertain factors associated with solar 

PV output and charging power of EVs by relying on load flow analysis. Load flow can 

analyse the operating characteristics of a power system under various uncertainties. The 

randomness of power generated by PV and the randomness of charging profiles of EVs 

are modelled by deterministic load flow models [129]. It is demonstrated that the annual 

yield of the PV panels (kWh per capita) is higher than the charging load of the EVs [130]. 

Another study found that the PV production in the day can accommodate the EV charging 

load in the evening [120]. The load flow analysis is carried out to provide cumulative 

density functions of branch power flows, nodal voltages, and line losses for many EVs 

[131]. However, assumptions show that the plug-in time for EVs is always predefined in 

these studies.  

2.4.1.2 Stochastic Approach 

Stochastic models have steadily attracted more interest as they tend to yield higher 

accuracy than deterministic models [108, 132]. Stochastic models are better suited for 

estimating the load profiles that utilities and system operators may use to modify their 

infrastructure to support a high penetration of EVs and their charging methods [111, 112]. 

These models need to be developed by considering variables associated with individual 

EVs, including their plug-in time, charging locations, SoC levels prior to charging, and 

battery capacity [133]. In addition, the computation of other more complex variables, 

including non-linear charging profiles [134, 135], charging duration [136], cumulative 

power demand, energy consumption of vehicles during charging [135], travel patterns 

[137], and the number of EVs being charged concurrently, must be considered in these 

models. Due to uncertainties and/or a lack of data, it is difficult to consider all these 

variables at once, so the majority of the existing literature makes assumptions about 

certain charging parameters. 

Estimating the energy consumption of EVs is a complex task due to the inherent 

difficulty in predicting when an EV will start charging and how long it will stay connected 

to the grid [113]. It is suggested that the energy consumption of vehicles conforms to a 

predefined probabilistic distribution, rather than the characteristics or behaviours of the 

drivers [138]. However, this variable is also affected by the initial battery SoC of the 

vehicles [139]. The authors of [140, 141] estimated the energy consumption of vehicles 

by assuming a constant charge power over a defined time. Similarly, the daily charging 

power of vehicles is calculated based on the ratio of their energy consumption to 

charging over time [142]. These authors did not consider the non-linear characteristics 

of battery charging and assumed that charge power and energy consumption stay 

constant until the vehicles reach their final/target SoC levels. However, this is a very 
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simplistic assumption because the relationship between charge power and battery SoC 

is not linear. In Chapter 6 of this thesis, the non-linearity in the charge power with respect 

to an increasing battery SoC is implemented to accurately determine the energy 

consumption of different EV models with varying battery specifications. 

In the literature, many stochastic models are developed to investigate the effect of 

EV charging on residential areas. These models typically use home-related parameters, 

such as time of departure of EVs from home, arrival time of EVs at home, and daily travel 

distance of EVs, while ignoring variations at different locations and making simplistic 

assumptions [108]. A preliminary analysis of the effect of EVs on residential power grid 

is analysed [143], whereas a technique for determining the charging time of EVs in 

residential regions is proposed in another study [144]. The estimation of charging 

demand of private urban EVs in the residential area is also studied, based on the factors 

including parking and charging characteristics of EVs [145]. The charging load model for 

EVs in residential areas is developed [146], and the issue of peak-load superposition is 

investigated by analysing the simultaneous charging rate [147]. The authors extracted 

the hourly aggregated load demand of a fleet of PEVs [148] and quantified the power 

delivered to them through a domestic transformer [149]. In most of these studies, 

however, the vehicles are of the same generic type with same battery specifications. It 

is also assumed that the arrival time of EVs to start charging at home is uniformly 

distributed and hence the overall load always peaks between 17:00 and 18:00 for 

distribution networks [139]. Using different probability density functions, the impact of 

domestic uncontrolled EV charging on the voltage and line thermal [150], and 

transformer overloading is investigated [151].  

In [152], stochastic EV parameters are used to model the travel pattern of EVs under 

the assumption that EVs are only charged at home. The modelling method of EV 

charging load in residential areas is simulated using the distribution characteristics of 

SoC levels and the arrival times to the charger [153]. The distribution of SoC levels may 

have a significant role in determining the power requirement, since EVs with higher 

average initial SoC levels prior to charging may need less charging power [154]. Using 

the Gaussian distribution to simulate arrival times, charging times, and departure times 

for an EV fleet, an illustration of the stochastic charging scenario is also presented [155]. 

However, the Gaussian distribution does not reflect the actual law with the stochasticity 

nature of EV charging [145]. Modelling the total charging demand for an EV charging 

station and a nearby residential neighbourhood is also suggested [156]. However, the 

future of EVs is unknown, particularly in terms of battery capacity and deployment of 

more rapid chargers, which might cause grid issues necessitating careful coordination of 

charging plans for many cars [157].  
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It is summarised that the variation in charging location enables a bigger picture for 

analysing the hosting capacity of distribution networks [158, 159]. In relation to this, 

several research works are carried out to estimate the charging demand of EVs at other, 

non-residential places (i.e., public charging points). The arrival time of EVs is one of the 

most important variables in predicting the charging demand at public charging stations, 

and it does not typically occur after 17:00 like in the case of residential charging. It is 

estimated that rapid charger utilisation rates will fluctuate throughout the day, with 45% 

of events taking place between 15:00 and 19:00, when most of the vehicles' batteries 

are depleted [53]. To simulate the arrival rate of the vehicles in charging stations, the 

current literature employs a variety of methods [160]. Monte Carlo Simulation technique 

is used to generate stochastic EV charging load profiles at various places during the day, 

often at work and at home [150, 151]. An EV use model is proposed to mimic the time-

spatial distribution of vehicles and their SoC levels for impact study on the grid [161]. 

Similarly, a time-spatial EV charging-power demand estimation model used a Poisson 

distribution while considering the vehicle arrival rate and time at fast-charging stations 

near highways [162]. The authors of [163] and [164] employed a predefined arrival rate 

established by the arrival time distribution of ICEVs at gas stations to predict the arrival 

time of EVs at public charging stations. In another study, the traffic flow from the highway 

where the charging hubs are installed is utilised to determine the arrival time of EVs by 

varying their SoC levels and battery capacities [165]. It is also suggested that the arrival 

time distribution of the charging events should be estimated based on the geographical 

characteristics of the area [166, 167].  

A methodology combining random simulation cases and statistical analysis is 

developed through probabilistic load flow analysis to improve the accuracy due to lack 

of real data [156, 168]. It is demonstrated that probabilistic load flow analysis based on 

point estimate technique is a very effective and accurate method when it comes to 

dealing with the effect of uncertainty in load demand due to EVs in the distribution 

network [169]. In addition, field measurements from a charging station are used to model 

the SoC distribution and the number of EVs in each time interval [170]. The authors of 

[171] expanded upon this to model the EV charging loads in different charging scenarios, 

which are formed considering the stochastic distribution of SoC levels. However, the 

distribution of SoC levels prior to charging is significantly influenced by the EV's battery 

type and capacity. Another study found that older EV models with smaller battery 

capacities are typically charged when the SoC is between 25% and 75% of the battery 

capacity [172]. In their stochastic models, several studies analysed the utilisation of 

commercial and private EVs with different battery specifications [172–175]. Their findings 

indicate that SoC levels will vary, thereby influencing the outcomes of stochastic models. 
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Overall, the majority of these studies have low accuracy due to the use of simplistic 

assumptions, the absence of real data from newer EV models and the charging time 

distribution, and the consideration of generic EV models [160, 165]. In addition, most of 

these studies base their EV charging models on residential activities and the 

dependence of slow speed chargers. Residential profiles are ideal for predicting the 

charging demand of EVs parked at a private charging location (e.g., home or workplace) 

during a specified time [53], but they cannot be used to characterise the demand of EVs 

that are charged at public rapid and ultra-rapid charging stations. In many instances, the 

unpredictable nature, high power consumption, and short duration of EV rapid charging 

make it a grid capacity problem rather than an energy problem [160]. Therefore, 

understanding the load profile of recent EV models on rapid chargers is also essential. 

Lastly, the effects of EV deployment are generally estimated based on assumptions 

regarding the randomness characteristics of the older EV models, while ignoring the 

heterogeneity characteristics of the newer EVs on the market [120]. 

2.4.2 Electrotechnical Effects on Different Network Levels 

The three stages of the electricity supply are generation, transmission, and 

distribution. The power generation includes the production of electricity and the 

distribution of it to customers. Using high voltage transmission lines, the transmission 

system transmits electricity to grid supply points. Through the national grid's lines, 

electricity is transmitted from 400-kV, 275-kV, and 132-kV power plants to customers 

[176]. Figure 2.9 shows the schematic diagram of the UK electricity distribution. 

 

Figure 2.9: Schematic diagram of the UK electricity distribution system [177]. 
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Most field studies examine the impact of EVs on the low-voltage level of distribution 

grids, particularly through electrotechnical analyses. While some use more artificial grid 

and mobility data, others already rely on empirical evidence and real data, assuming 

different EV charging patterns [106]. 

2.4.2.1 Impact on Transmission Networks 

It may be necessary to install additional generation capacity, such as fossil fuel power 

plants since the transmission system's maximum power output may be insufficient to 

satisfy the increased peak demand. In addition, the charging demand for EVs may alter 

the demand profile, which may lead to even bigger changes when a renewable energy 

system is installed. The impact of the additional load on the transmission and distribution 

systems depends on its location and time. If the load is concentrated in a specific place, 

some transmission lines may be required to carry currents more than their rated 

capacities, hence increasing the resistive losses in the high-voltage network [176]. 

Therefore, the charging requirements and the impacts of EVs must be quantified not only 

in the distribution systems, but also in the transmission systems [107, 178]. 

Generally, the impact of EVs on the transmission side is less severe [106]. A 

preliminary investigation of the German transmission grid is studied [179]. However, only 

the potential increase in the load is considered. In another study, it is demonstrated that 

there are only minimal effects on the German transmission grid up to 2030 and 22 million 

PEV (50% of market share) due to the introduction of nodal pricing method (in which the 

national network is divided into different nodes) [180]. The transmission grid's highest 

voltage level appears to be effectively sized for market shares of up to 50% [106]. This 

is particularly accurate when controlled charging is considered [176, 181]. Changes in 

peak demand [182] and energy consumption [183] have been estimated at the 

transmission level. However, transmission line loading was not investigated (since this 

would require estimating the position and size of the load). The simulation of PEV 

charging in the Korean power grid is undertaken by using a stochastic technique for 

transmission system design. Statistical information on ICEV travels is utilised to develop 

an individual PEV charging profile. It is determined that EV charging may contribute 

significantly to the transmission system's peak demand [178].  

Current research in charging station planning mainly focuses on urban networks 

[184]. Since rapid and ultra-rapid chargers will be near highways and rural areas, rural 

networks must also be addressed, which would automatically increase and alter the 

network topology from < 69 kV distribution systems to sub-transmission (69–138 kV) and 

transmission (> 138 kV) systems [40].  
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2.4.2.2 Impact on Distribution Networks 

The impact on the distribution network is often seen as more severe. Each distribution 

network is connected to the higher-voltage system via a transformer rated for a maximum 

demand; if this demand is exceeded, the transformer must be upgraded [176]. 

Additionally, resistive losses will grow, resulting in a higher network voltage drop. For 

appliance safety, busbar voltages must be within 10% of the unitary voltage [185], 

therefore if the voltage drop increases too much, network operator action is required. 

Numerous case studies at the low-voltage side of the distribution networks have 

mainly quantified the effect of EV charging on voltage fluctuations [186], voltage 

imbalance [187], power losses [188], cable loading, and transformer loading [189], using 

a single network case study. Voltage study entails quantifying voltage dips and 

fluctuations before and after EV chargers are integrated into distribution feeders, 

whereas power loss analysis includes the determination of active power losses in cables 

and networks because of the increasing demand for EV charging. Cable loading 

evaluation entails doing current analysis on the cables to ascertain the degree of 

overloading. Transformer loading assessment, on the other hand, focuses on analysing 

the peak loading on the transformer and analysing the ageing and degradation effect. 

The variance in network topology, vehicle use, and demand must be accounted for 

before generalising these results to the entire distribution system [176]. The effect of EV 

charging on network voltages is investigated using a 22-kV network under four different 

scenarios: Scenario I with peak substation load and weekday charging, Scenario II with 

peak substation load and weekend charging, Scenario III with low substation load and 

weekday charging, and Scenario IV with low substation load and week-end charging. It 

is demonstrated that the voltage fluctuations are worsened in Situation I in the network 

due to higher peak demand in weekdays [190]. An installation of a capacitor bank is 

proposed near the charging station to improve the voltages in a medium-voltage 

distribution network [191]. It is shown that chargers rated at 60 kW does not violate the 

flicker limits. However, the utilisation of 150-kW, 240-kW, and 350-kW chargers causes 

flicker limits to be surpassed in a medium-voltage network [192]. 

Many studies have examined the effects of domestic charging on the low-voltage 

networks. The impact of EV charging on a European low-voltage distribution network is 

studied [193]. It is concluded that the network is robust enough to support a 1–2% EV 

penetration rate. It is found that increasing the penetration rate of EVs worsens the 

voltage profiles in a 13-node [194] and 14-node distribution networks [195]. A benchmark 

low voltage microgrid network that consists of residential, industrial, and commercial 

feeders is used to examine the impact of varying the uptake level of EVs [196]. It is found 
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that only the commercial feeder experiences voltage violations with an EV uptake level 

of 30% and 50% between 18:00 and 19:30. Another work showed that voltage violations 

occur due to uncontrolled charging between 17:00 and 22:00 [197]. Similarly, the 

maximum voltage deviation with uncontrolled and controlled charging regimes is 13.50% 

and 0.98%, respectively [198]. Total active power and reactive power losses are 40% 

and 37.5% less, respectively, when controlled charging schemes are used instead of 

uncontrolled charging schemes [199]. It is shown that the total peak demand increases 

by 44.1% and power losses increase by 42% when 80 units of 30-kW chargers are 

connected to a distribution network feeder between 18:00 and 19:00 [200].  

Power cables represent a large proportion of installed assets for network operators 

[201]. The impact of uncontrolled chargers (rated at 3.7 kW, 6.9 kW, 11.1 kW) and 

controlled chargers on the cable loading of a Swedish residential network is investigated 

[202]. The loading on two residential cables is investigated: L27 and L23 that serve up 

to 166 and 218 customers, respectively. With 3.7-kW chargers, 99.52% and 99.23% of 

L27 and L23 handle the load at the highest uptake level, whereas with 11.1-kW chargers, 

this reduces to 57.89% and 73.85%, respectively. It is also shown that cables exceed 

their maximum design limits (i.e., cable ampacity is surpassed) when more than 35% of 

the 155 households are equipped with a domestic charger between 17:00 and 22:00 

[197]. The loading on the network cables increases by 31% when 80 units of inductive 

chargers (rated at 30 kW) are connected to a distribution network feeder between 18:00 

and 19:00 [200].  

Since transformers in their current form will remain in use in power systems for many 

decades to come due to their widespread application, the effects of typical smart grid 

operations, such as EV charging, must be accurately evaluated in terms of transformer 

health and performance [203]. Different charging scenarios are conducted to assess the 

impact of PEV charging on transformer insulation life [204]. It is shown that the 

transformer's baseload increases by 70% 200 customers use rapid chargers between 

21:00 and 22:00 [205]. In another study, it is demonstrated that the transformer loading 

surpasses 73% of its maximum capacity when domestic chargers are used from 18:00 

to 19:30 [196]. The effect of using V2G chargers and combining them with smart and 

coordinated charging solutions prevents transformer loading [206] and reduces the 

stress on transformers [203]. Incorporating a solar PV and a battery energy storage 

system is also effective to reduce the stress [207]. Despite the advantages of providing 

coordinated and smart solutions, however, one must also consider the reliance on a 

potentially failing communication infrastructure [208] and the computational difficulty 

associated with a large EV deployment [209]. 
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2.4.3 Network Reinforcement Strategies 

The grid is unlikely to accommodate EV charging loads without experiencing any 

changes in its operating characteristics. This phenomenon is generally attributed to two 

main causes. Primarily, the grid's hosting capacity may be insufficient, resulting in grid-

side issues when the system reaches its hosting capacity limits [158, 159]. Secondly, 

demand fluctuates throughout the day, and issues emerge when charging loads coincide 

with the network's peak loading hour [34, 37]. As a result, DNOs must avoid both 

undersupply and oversupply to maintain a balance of supply and demand.  

Numerous technologies and strategies have been developed and suggested to 

relieve and smooth peak demand, as well as to lower demand costs associated with EV 

charging during peak loading hours. The main strategies include conventional and 

classical network reinforcement methods and demand reduction techniques. In case of 

network reinforcement, however, expenditures on both the grid owner's and customer's 

sides are necessary. From the customer's position, the use of smart chargers and smart 

meters has become common. From the grid owners' standpoint, cable and transformer 

resizing may be necessary when extra loads are added to the network [210].  

2.4.3.1 Distributed Generation Placement 

The voltage deviations and power losses in the distribution level of the network 

should be effectively mitigated because of their dominance when compared to the 

transmission systems [211]. Continuation power flow and optimisation methods 

concerning the placement of DGs in power systems are the most common techniques 

used to improve voltage stability, reduce power losses, improve system efficiency and 

reliability, and reduce expenses related to transmission in distribution networks [212, 

213]. Extensive research on DG allocation problem is conducted in literature. 

Continuation power flow method is used by combining continuous and static power flow 

to analyse voltage stability and identify weakest busbars in the network [212, 214, 215].  

The placement of DGs at congested busbars and the placement of EVs at robust busbars 

are determined using a voltage stability index technique in an IEEE 33-busbar test 

network [216]. It is demonstrated that DGs improve the minimum steady-state voltage 

by 12.2% and reduce the active power losses by 56.25%. Satish and Vinod [217], Sanjay 

et. al. [218], Truong et. al. [219], Saha and Mukherjee [220], Selim et. al. [221], and 

Quadri et al. [222] have presented various DG allocation techniques that are useful for 

determining the candidate location for DG placement to improve voltage profiles and 

reduce system losses to a reasonable degree.  
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2.4.3.2 Installation of Transformer Tap Changers 

In the classical network reinforcement method, EV chargers are considered as 

conventional uncontrollable loads. Therefore, investments are made on classical 

network assets, including cables (e.g., increase in size) and transformers (e.g., 

installation of larger transformers or equipping them with tap changers), to manage peak 

loads. However, network reinforcement in densely populated areas is quite challenging 

since the costs associated with transformer and cable oversizing are significantly high 

[223]. DNOs, are therefore, using the traditional tap installation methods at the HV/MV 

and MV/LV substation transformers [224]. A network optimisation model for the 

placement of MV/LV transformers equipped with OLTCs is proposed in [225]. Another 

study subsequently presented a coordinated planning technique for demonstrating the 

benefits of OLTC transformer investments at microgrid/utility border sites [226]. The 

common issues with OLTC placement are also addressed in [227]. Cheng et. al. [228] 

attempted to improve the voltage profile in distribution system by controlling the on-load 

tap-changing transformer in coordination with the charging station in the presence of 

solar PVs. However, only one of these studies considered the integration of charging 

stations near these transformers.  

2.4.3.3 Peak Demand Reduction 

The peak demand reduction strategy minimises the charging demand. Using a smart 

charging control system or incentive-based energy tariffs to shift demand peaks to off-

peak hours is a viable option for avoiding costly reinforcement work. However, there is 

still a considerable distance to travel before smart charging solutions are widely adopted 

[201]. The use of battery energy storage units is widely adopted for reducing the demand. 

An overview on the different types of battery energy storage technologies with the 

integration of EV charging stations in smart grids is given in [229]. Another study used a 

test feeder and designed a charging station equipped with diesel generator, solar energy, 

and storage system, to provide peak-load shaving, to optimise the capacity and to 

minimise the cost of charging station in [230]. The optimal sizing of stationary battery 

energy storage systems to reduce the peak load of charging stations equipped with rapid 

chargers is proposed in [231–233]. The modelling of a hybrid energy storage system (a 

combination of superconducting magnetic energy storage and battery energy storage 

units) to reduce the peak demand and to support the charging demand from rapid 

chargers is also proposed in [234]. The peak load reduction in distribution network is 

proposed by controlled charger algorithm of EVs, solar PV units, and battery energy 

storage systems [235, 236]. Since battery degradation is still an issue with storage units, 

the use flywheel hybridisation to improve battery life is also suggested [237, 238].  
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2.4.4 Research Gaps 

Firstly, although low-voltage distribution networks are extensively analysed in the 

literature, the impact of EVs on HV/MV distribution networks is frequently overlooked 

[106]. The modification of transformer taps settings and the evaluation of the required 

reactive power compensation services near EV chargers to improve steady-state voltage 

profiles and to minimise power losses at the medium-voltage distribution side are also 

not the subject of a comprehensive research. Chapter 3 addresses this gap as follows: 

• A generic HV/MV distribution network in the UK is modelled and then analysed 

using load flow studies at varying uptake levels of rapid EV charger adoption. The 

effect of using transformer taps, and the optimal placement and sizing of DG units 

and SVC devices are also investigated in depth.  

Secondly, many studies only model EVs as uncontrollable static charging loads in 

distribution networks. This type of modelling imposes no restrictions on EV charging and 

assumes that all residents charge at any time during the day, especially when they return 

home from work. For a more comprehensive network analysis, it is necessary to develop 

and implement a dynamic model for battery chargers with smart charging capability in 

distribution networks. Chapter 4 and Chapter 5 address these gaps as follows: 

• A dynamic battery charging model is developed in Chapter 4 and integrated in a 

low-voltage distribution network in Chapter 5. The effect of combining slow-

speed, fast-speed, and rapid-speed battery charging dynamics is analysed. 

• The combined effects of controllable and uncontrollable charging methods on the 

operational characteristics of a low-voltage distribution network are investigated. 

This strategy also allows for the investigation of the effect of V2G and coordinated 

smart charging techniques under different scenarios to mitigate the impact of 

peak demand on the distribution network equipment. 

Thirdly, the stochasticity of charging occurrences is often overlooked in the literature 

[239, 240]. When selecting where to locate the chargers that need much lower power 

levels, stochasticity is sometimes disregarded, since these charging events have little 

influence on the grid. Many studies, therefore, opt to create candidate sites for high-

power chargers by means of using service stations [240], estimated traffic demand and 

patterns [208], or static data [209]. Charging stations equipped with multiple rapid and 

ultra-rapid devices may require up to tens of MW from simultaneous charging events. 

Thus, in the case of installing these stations, which might result in multi-MW spikes in 

grid demand, the stochastic behaviour of charging events must be fully examined to 

assess the grid's hosting capacity [40, 208].  
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The research gap among stochasticity of charging events is the absence of 

heterogeneity in the modelling of EV charging demand [120]. Chapter 6 of this thesis 

addresses the following to bridge the research gap: 

• Sale statistics for different EV models are considered to derive information about 

the EV market share in the stochastic model.   

• Different EV models with real data are considered and their timely distribution to 

a multi-charger hub is simulated based on a real data obtained from Zap Map and 

local authorities in the UK.  

• Non-linear SoC dependent charging curves for different EV models are used to i) 

estimate the charging duration of vehicles (i.e., how long do they stay connected 

to the grid), and ii) calculate the energy consumption of vehicles (i.e., how much 

energy does each vehicle request from the grid to achieve an 80% battery SoC). 

• Stochastic charging profiles are integrated into a real distribution network feeder 

to quantify the hourly peak demand and to estimate the transformer's peak load. 

• The impact of battery energy storage units is analysed on the network's and 

transformer's peak loads. The frequency with which the charging demand will 

exceed the system's capacity is also determined. 

Lastly, current research focuses mostly on the computational modelling and 

integration of EV chargers and their batteries. However, the combination of 

computational modelling with the experimental work is usually overlooked in the 

literature. Chapter 7 of this thesis addresses this gap as follows: 

• Different battery energy storage discharge profiles are developed based on the 

stochastic charging profiles derived from Chapter 6. These discharge profiles are 

then integrated into a physical battery charger and an analyser unit through the 

utilisation of lithium-ion battery packs to obtain the relationship between i) battery 

voltage and discharge current, and ii) battery voltage and remaining battery 

capacity. These relationships are used to estimate the SoC and DoD of lithium-

ion batteries to experimentally assess their viability for supporting vehicle 

charging and reducing energy consumption that must be met by the local 

distribution grid. 

• The estimation of SoC and DoD of batteries under various discharge profiles is 

used to quantify the amount of usable energy after storage units have been used 

to provide demand response services for the grid.  
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2.5   Summary 

As EVs continue to gain popularity, it is critical to build a robust public charging 

infrastructure. Public chargers are less often used than private chargers installed at the 

driver's home, or workplace. Within the next decade, rapid and ultra-rapid chargers will 

obtain a greater market share. However, these chargers account for a significant portion 

of overall energy usage, since quick charging entails transferring enormous quantities of 

electricity from the grid to the battery in a matter of minutes. For example, charging 100 

EVs simultaneously on 100-kW chargers adds 10 MW of load to the grid's base demand.  

The grid may not be capable of accommodating high charging demand without 

experiencing changes in its operational characteristics. Many studies in the field have 

highlighted numerous grid-side issues associated with the integration of battery chargers 

and concluded that the severity of grid issues is largely affected by the time and place at 

which EV charging loads are charged and connected into distribution networks, 

respectively [241]. However, most of the existing research focuses on the integration of 

residential (3–7 kW) and workplace (7–22 kW) chargers. The number of studies 

considering rapid and ultra-rapid chargers is limited. This is mainly due to small number 

of commercial vehicles capable of exploiting the rates of rapid and ultra-rapid chargers. 

In addition, limited amount of research addresses the problem of estimating EV demand 

at multi-charger hubs with EV heterogeneity considered [120]. Many studies assume that 

EVs are a generic type with fixed battery capacity and the EV demand is proportional to 

residential demand because many drivers plug in their vehicles upon arrival at home 

(and this demand usually coincides with basic residential activities between 17:00 and 

20:00). These assumptions produce a single-peak EV demand profile in the evening, 

and this strategy has the flow of omitting stochasticity with the variation in EV models 

and utilisation of public charging stations. To bridge this gap, this thesis develops a 

stochastic model for estimating the demand of a public charging station by using non-

linear SoC dependent charging curves for different EV models. 

It should be made clear that estimating EV demand for rapid chargers is more 

challenging than estimating EV demand for residential households. This is primarily due 

to data confidentiality for public charging stations. Due to similar plug-in periods and 

durations, residential charging profiles are often identical. As for the rapid charging, 

however, every motorist has a daily pattern or route that he or she follows. Consequently, 

rapid charger utilisation rates fluctuate throughout the day due to stochasticity [35]. How 

often one charges his/her car on a rapid charger also depends on factors such as the 

type of car and distance travelled [242]. Chapter 6 of this thesis is devoted to solving 

and addressing this gap in the research. 
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CHAPTER 3 

3.   Effect of Increasing the Uptake Level of Electric 

Vehicles on HV/MV Distribution Network 

3.1   Introduction 

While EVs provide several benefits for the grids, they also provide several challenges 

for DNOs. As a result of the increased energy demand, DNOs will need to upgrade and/or 

reinforce the distribution infrastructure, such as by installing larger transformers and 

upgrading cables. 

The research indicates that traditional network reinforcement strategies are often 

used to assist the connection and operation of EV charging loads. An extensive literature 

review has shown that there is no published research about (i) adjusting the OLTC 

settings of transformers and (ii) determining the required sizing of SVC devices, near the 

rapid chargers and charging stations in HV/MV distribution networks. This chapter's main 

objective is to analyse how increasing the number (uptake) of uncontrolled rapid 

chargers affects the steady-state voltages and active power losses under different 

voltage control measures in a medium-voltage distribution network. Through a load flow 

study, IPSA+ Power simulation software and MATLAB are used to assess the impact of 

rapid charging stations on a generic HV/MV distribution network. 

3.1.1 Chapter Structure 

Section 3.2 presents the model and data of the generic HV/MV distribution network 

under examination. The methodology for calculating and installing tap changers for 

transformers is presented. Ten different scenarios concerning the increased number of 

rapid chargers and charging stations are also presented.  

Section 3.3 conducts a load flow analysis (i) to identify critical and weak busbars that 

are susceptible to voltage violations and, as a result, require network reinforcement, (ii) 

to calculate active power losses and (iii) to examine steady-state voltages, under 

different EV uptake scenarios in the network.  

Section 3.4 discusses the optimum placement DG units and the optimum sizing of 

SVCs devices. 

Section 3.5 discusses the main findings and concludes the chapter. 
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3.2   Distribution Network Model  

The distribution network is a collection of power system network models that are 

representative of British distribution networks. The distribution model in this chapter 

represents a mixed-use suburban area. The generation point is fed by two 500-MVA grid 

transformers connected at the 275/132-kV substation. The network is mostly radial and 

has connections to 33 kV, 11 kV, and 6.6 kV substations. The network's data is acquired 

from [41] and its schematic diagram is represented in Figure 3.1. 

 

Figure 3.1: Simplified schematic diagram of the generic HV/MV distribution network. 

The network is made up of 102 busbars, 25 of which represent aggregated load 

busbars modelled as static loads. The schematic diagram depicts substation busbars as 

red (275 kV generating point), black (132 kV), blue (33 kV), and green (11 kV and 6.6 

kV) circles. The supply point is designated by busbar '99' (slack busbar) at the top of the 

schematic diagram, while customers are represented by green triangles at the far end of 

each load busbar. Three generators power the network (two of which serve as 

interconnectors that supply and/or absorb energy from other neighbouring networks). 

Network assumptions and detailed data selection are given in the following subsections. 
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3.2.1 Baseload Demand  

The network is comprised of 25 load busbars, connected at the 11-kV and 6.6-kV 

load busbars. Each busbar is modelled as a constant and lumped PQ load that 

represents an aggregated demand and consumption of an area. Table 3.1 presents the 

data for active power demand and reactive power consumption of 25 load busbars. 

Table 3.1: Baseload demand of the load busbars in the network  

Load Busbar 
P  

(MW) 

Q 

(MVAr) 

Voltage  

(kV) 
Busbar Type 

1101 15.55 10.10 11 Commercial or Industrial 

1102 15.65 3.98 11 Commercial or Industrial 

1104 7.84 9.30 11 Residential 

1105 15.02 3.28 11 Commercial or Industrial 

1106 10.37 2.07 11 Commercial or Industrial 

1107 12.67 3.25 11 Commercial or Industrial 

1108 5.24 0.96 11 Residential 

1109 17.82 9.77 11 Commercial or Industrial 

6601 15.41 4.98 6.6 Commercial or Industrial 

6602 17.4 6.72 6.6 Commercial or Industrial 

6603 17.94 4.77 6.6 Commercial or Industrial 

6604 17.71 5.89 6.6 Commercial or Industrial 

6605 15.45 4.32 6.6 Commercial or Industrial 

6606 21.46 5.39 6.6 Commercial or Industrial 

6607 23.52 7.23 6.6 Commercial or Industrial 

6608 15.55 8.64 6.6 Commercial or Industrial 

6609 2.51 0.54 6.6 Residential 

6610 17.5 7.19 6.6 Commercial or Industrial 

6611 7.63 2.89 6.6 Residential 

6612 23.02 8.55 6.6 Commercial or Industrial 

6613 15.08 4.82 6.6 Commercial or Industrial 

6614 15.85 5.74 6.6 Commercial or Industrial 

6615 6.69 4.32 6.6 Residential 

6616 15.23 6.33 6.6 Commercial or Industrial 

6617 16.42 0.34 6.6 Commercial or Industrial 

Due to lack of data, the type of load busbars is not known but represents the 

aggregated demand profile for a typical British distribution network model. In the GB, 

however, a single 132-kV substation transformer typically serves 9,216 customers, while 

two of the same transformers serve 18,432 customers [243, 244]. In addition, a typical 

residential feeder generally has a total demand of between 5–10 MW [245].  
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The network, based on these arguments, comprises of five load busbars (e.g., 1104, 

1108, 6609, 6611, and 6615) that are considered as residential feeders since the total 

active power demand connected to these points is less than 10 MW. The remainder of 

load busbars is considered as commercial and/or industrial feeders in the network. In 

this thesis, rapid chargers and charging stations are connected near the commercial and 

industrial feeders. Detailed data regarding the network lines, branches and transformers 

is presented in the appendices (see Appendix A.1). It should be clarified that 

transformer tap settings and tap positions are not available in the dataset and hence next 

subsection is concerned with the calculation and determination of the ideal tap settings 

for grid transformers in the distribution network. 

3.2.2 Transformer Tap Settings  

Since transformers are not equipped with individual taps, the network comes with 

voltage violations out of the box, even before the installation of EV charging devices in 

the network. In practice, transformers are generally equipped with taps that allow the 

turns ratio to be adjusted to compensate for supply variance. These taps allow the output 

voltage to approach the rated output voltage when the input voltage is outside the rated 

input voltage range.  

Changing the input voltage or the number of turns on the transformer windings is the 

simplest way to modify the output voltage of a transformer. Taps are typically provided 

on the high voltage winding because this winding has a greater number of turns, allowing 

for more precise voltage regulation. Transformer taps operate on the principle of 

changing the number of turns in one winding and hence changing the turns ratio of the 

transformer [246]. Tap changers exist in two primary types for transformers: no-load tap 

changers and on-load tap changers. The latter, which typically have 33 taps (one at the 

centre "rated" tap and sixteen positive and sixteen negative taps to increase and 

decrease the turn ratio, respectively) allow for a 10% voltage variation (each step 

providing 0.625% variation) from the nominal transformer rating. Equation (3.1) is used 

to determine the positions of the transformer taps.  

 𝑇𝑎𝑝 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (%) = [1 −
𝐵𝐴

𝐵𝑇
] × 100% (3.1) 

Where: 

𝐵𝐴 is the actual busbar voltage (kV), 

𝐵𝑇 is the target busbar voltage (kV). 
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The difference between the actual and the target busbar voltage is defined as 𝑉𝑑. 

This parameter is used to determine the optimum tap position for transformers. Using 

(3.1), the calculated tap positions and selected tap settings for grid transformers in the 

network are shown in Table 3.3. 

Table 3.2: Calculated tap positions and selected tap settings for grid transformers 

Transformer Controlled Busbar 𝑽𝒅 
Tap Position 

(%) 

Tap Setting 

(%) 

99/101 All 0.947 5.3 −7.5 

99/101 All 0.947 5.3 −7.5 

104/316 6605, 6606, 6607, 6613, 6615 0.982 1.8 −2.5 

116/357 6601, 6604, 6609, 6614, 6616 0.975 2.5 −2.5 

117/357 6601, 6604, 6609, 6614, 6616 0.975 2.5 −2.5 

114/313 1109, 6603 0.968 3.2 −5 

115/313 1109, 6603 0.968 3.2 −5 

112/348 1101 0.955 4.5 −5 

113/348 1101, 1102 0.955 4.5 −5 

108/338 1104, 1107, 6602, 6610, 6611, 6617 0.975 2.5 −2.5 

109/338 1104, 1107, 6602, 6610, 6611, 6617 0.975 2.5 −2.5 

109/338 1104, 1107, 6602, 6610, 6611, 6617 0.975 2.5 −2.5 

110/342 1102, 1105, 1106 0.982 1 −2.5 

111/342 1108, 6608, 6612  0.982 1 −2.5 

The calculations show that all transformers have negative tap settings. This is 

because the voltage on the target busbar is lower than the threshold limit and hence the 

turns ratio on the primary winding of the transformer are regulated to adjust and bring 

the voltage on the secondary winding side to operate within an acceptable level. The 

main grid transformers (99/101) have bigger tap settings than other transformers since 

these transformers provide the highest voltage support to the network and have the 

largest percentage difference between the actual and the target busbar voltages.  

Generally, common tap configurations include +2.5%, +5%, and −2.5%, −5% of the 

rated tap; however, some transformers also have additional taps. For example, a tap 

setting of −2.5% is chosen for 110/342 and 111/342 transformers for a calculated tap 

position of 1% since this is the nearest possible selection according to the variation in 

the step increment in the simulation software. Again, a tap setting of 2.5% is selected for 

a calculated tap position of 2.5% for 116/357, 117/357, 108/338, and 109/338 

transformers, since this is the closest and most ideal available setting from the general 

tap configurations in the simulation software. The effect of equipping grid transformers 

with ideal tap settings on the steady-state nodal voltages during the baseload in the 

network is shown in Figure 3.2.  
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Figure 3.2: Steady-state busbar voltages with and without transformer taps. 

DNOs in the UK are required to serve customers at 11-kV and 6.6-kV within ±6% of 

the nominal voltage (1.0 p.u.) to ensure network security and stability [247, 248]. The 

maximum and minimum values should be maintained within the ranges of 1.06 p.u. and 

0.94 p.u., respectively. The results by the blue coloured bars indicate that 23 of 25 load 

busbars are exceeding their permissible lower voltage limits, when the network is 

modelled using the provided data and transformers are assumed to have no taps. Only 

two load busbars, namely, 1106 and 1108, operate within permissible voltage limits 

without taps in place. The orange-coloured bars indicate that the majority of load busbars 

operate within permissible voltage limits as a result of fitting transformers with optimal 

tap settings. However, it is observed that three load busbars, namely, 1101, 1104, and 

6607 continue to exhibit voltage violations and operate beyond the minimum voltage limit 

of −6%. The voltage at these busbars is 0.84 p.u., 0.93 p.u., and 0.93 p.u., respectively.   

The main reason why load busbars 1104 and 6607 exhibit voltage violations is 

primarily due to low power factor, caused by a higher load current and hence higher line 

losses near the feeders. On the other hand, load busbar 1101 is identified as the most 

critical and weakest feeder in the network, which is mainly due to the utilisation of a single 

substation transformer serving the commercial zone (see Figure 3.1) and high reactive 

power consumption (see Table 3.1).  

3.2.3 Scenarios for Electric Vehicle Charging Stations 

This chapter studies the effect of increasing the number of EV charging stations in 

the network. Different uptake scenarios are considered and charging stations are only 

connected near the non-residential feeders in the network. Table 3.3 presents different 

uptake scenarios for the connection of chargers. 
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Table 3.3: Description for EV uptake scenarios  

Scenario Number of Stations Total Charging Demand (MW) Load Busbars  

S1 2 2.7 1101, 1102 

S2 4 5.4 S1, 1105, 1106 

S3 6 8.1 S2, 1107, 1109 

S4 8 10.8 S3, 6601, 6602 

S5 10 13.5 S4, 6603, 6604 

S6 12 16.2 S5, 6605, 6606 

S7 14 18.9 S6, 6607, 6608 

S8 16 21.6 S7, 6610, 6612 

S9 18 24.3 S8, 6613, 6614 

S10 20 27 S9, 6616, 6617 

There are 20 non-residential load busbars in the network and ten scenarios are 

considered for the connection of EVs. It is assumed that each non-residential load busbar 

has one charging station and each scenario introduces two additional charging stations 

in the network. This is to keep the rate of increase in the EV penetration equal for each 

scenario. Charging stations are modelled and connected near the existing load busbars 

as a constant lumped PQ load to represent simultaneous charging of vehicles in the 

network. The increase in the scenario number increases the total number of EVs 

connected in the network. Scenario S1 has only two charging stations connected to load 

busbars 1101 and 1102, whereas Scenario S2 has four charging stations connected to 

load busbars 1101, 1102, 1105, and 1106. The connection points for charging stations 

are determined based on the order of load busbars in the network. 

It is assumed that Tesla superchargers are connected in each charging station due 

to their popularity and data availability. As of December 2022, Tesla operates 40,432 

Superchargers in 4,470 stations globally, averaging more than nine chargers per station 

[249]. Therefore, this chapter assumes that each charging station has nine Supercharger 

(rated at 150 kW) operating simultaneously. This charging rate and charging type are 

selected since it is the dominant charging technology in many Tesla's charging locations 

[250]. Multiplying the number of charging stations (2) by the number of Superchargers 

(9) and the rating of each Supercharger (150 kW) yields the 'Total Charging Demand' for 

each scenario in the third column of Table 3.3.  

3.3   Load Flow Analysis  

Load flow analysis is conducted to investigate the effect of each scenario on the 

network. Section 3.3.1 analyses active power losses, whereas Section 3.3.2 examines 

the steady-state voltage profiles. 
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3.3.1 Power Losses 

In electric networks, transmission across large distances results in power losses. The 

number, type, and size of consumers, as well as the network topology, all influence the 

severity and amount of power losses. Losses are an inherent element of power 

distribution, and a greater knowledge of network losses enables operators to make 

informed choices about how to run, maintain, renew, and upgrade the network most 

efficiently [251]. The loss of power consumption is calculated by (3.2) [252]:  

 𝐿𝑝 =
𝑃𝐿

2 + 𝑄𝐿
2

𝑉𝑎𝑣
2 ×

𝐼𝑅𝑀𝑆

𝐼𝑎𝑣
× 𝑅 (3.2) 

Where: 

𝐿𝑝 is the loss of active power consumption (kW), 

𝑉𝑎𝑣 is the average voltage in loss determination (V), 

𝐼𝑅𝑀𝑆 is the RMS current in loss determination (A), 

𝐼𝑎𝑣 is the average current in loss determination (A). 

Along with calculating the amount and severity of losses, it is also critical to determine 

their location in the network. Power losses are determined by calculating the difference 

between power arriving from the transmitting end busbar and power departing from the 

receiving end busbar. Figure 3.3 is presented to demonstrate how branch losses add up 

to make the total active power losses in different areas of the network. 

 

Figure 3.3: Section of the distribution network. 

Transformers fitted with tap changers are also highlighted in the schematic diagram. 

These transformers link the busbars 104/316 on the left, 109/338 and 108/338 on the 

right, and 117/357 and 116/357 in the schematic diagram's centre. Active power losses 

in the areas marked by the red boxes are calculated and shown in Table 3.4. 
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Table 3.4: Active power losses in the marked areas of the network  

Sending 

Busbar 

Receiving 

Busbar 

Sending Busbar 

Power 

(MW) 

Receiving Busbar 

Power 

(MW) 

Losses (MW) 

104 316 45.95 45.83 0.12 

108 338 30.69 30.59 0.10 

109 338 30.48 30.38 0.10 

109 338 29.94 29.84 0.10 

116 357 33.09 32.96 0.13 

117 357 30.16 30.05 0.11 

With reference to the network schematic diagram in Figure 3.3, the largest active 

power losses (0.13 MW) occur between substation busbars 116 and 357. Losses 

between busbars 108/338 and 109/338, on the other hand, are equal since they are 

supplied and feed the same substation point in the network. Power losses are slightly 

less between busbars 108/338 and 109/338 on the right-hand side of the diagram than 

between busbars 104/316, 117/357, and 116/357, since this region is served by three 

transformers equipped with tap changers.  

A load flow analysis is performed in IPSA+ Power simulation software to compute 

and calculate the network's total active power losses under different scenarios. The 

results of the load flow analysis are shown in Table 3.5. 

Table 3.5: Total active power losses under different scenarios  

Scenario Active Power Losses (MW) 

Baseline 6.82 

S1 7.22 

S2 7.38 

S3 7.51 

S4 7.66 

S5 7.84 

S6 8.01 

S7 8.19 

S8 8.33 

S9 8.52 

S10 8.67 

The baseline demand and power losses in the network are 364.5 MW and 6.82 MW, 

respectively. It is evident from Table 3.5 that increasing the number of charging stations 

increases the overall losses in the network. For example, the addition of two charging 

stations in Scenario S1 increases these losses from 6.82 MW to 7.22 MW. When the 

maximum number of charging stations is reached, the power losses reach 8.67 MW. 
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Active power losses account for a small portion of the network's total power demand. 

These losses in Scenario S10 account for 2.4% of the total network demand. This value 

is less than the average amount of losses specified by the DNOs [253]. 

3.3.2 Voltage Profiles 

Steady-state voltages drop because of the increased current flow via cables, which 

occurs as a result of increasing active power demand and reactive power consumer 

consumption. A load flow analysis is performed in IPSA+ Power simulation software to 

compute and calculate the load busbar's steady-state nodal voltages under different 

scenarios. The results of the load flow analysis are seen in Figure 3.4 and Figure 3.5. 

 

Figure 3.4: Voltage profiles at the 11-kV busbars under different scenarios. 

 

Figure 3.5: Voltage profiles at the 6.6-kV busbars under different scenarios. 
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It is observed that the steady-state voltage difference between each scenario is very 

small for each individual load busbar. This is because the aggregated charging demand 

is relatively lower than the overall base network demand. Comparing Scenario S1 to 

Scenario S10, for example, the nominal voltage of load busbars decreases nearly around 

1% on average. Some load busbars are impacted less, indicated by the fact that the rate 

of voltage drop is negligible as the number of charging stations increases in the network. 

Other load busbars, on the contrary, experience greater voltage drops due to high 

reactive power consumption (particularly 1101, 1109, 6604, and 6607). Nonetheless, it 

is evident from the results that increasing the number of charging stations at the load 

busbars increases the network's voltage drop and introduces voltage violations.  

In addition, 12 of these load busbars (such as 1105, 1106, 1107, 1108, 6602, 6603, 

6605, 6609, 6611, 6613, 6615, and 6617) do not experience voltage violations under any 

scenario. According to Table 3.1, four of these load busbars (e.g., 1108, 6609, 6611, 

and 6615) are regarded as residential areas devoid of a charging station and with a 

significantly lower PQ demand compared to other load busbars. On the other hand, 

certain load busbars (such as 1109, 6612, and 6616) only begin to exhibit voltage 

deviations at the higher uptake levels, particularly after the installation of eight charging 

stations at Scenario S4. 

To ensure network security and stability, DNOs in the UK are required to serve 

customers at these load busbars within ±6% of the nominal voltage during disturbances. 

Load flow analysis demonstrates conclusively that tap changers are insufficient to 

maintain steady-state voltages between 1.06 and 0.94 p.u. as many load busbars 

operate at less than 0.94 p.u., especially as the number of charging stations increases 

in the network. Therefore, this thesis proposes optimal placement of DG units and 

optimal sizing of SVC devices near the network's critical and weak feeders in the next 

section. 

3.4   Impact of Voltage Control Measures on the Network  

As demonstrated with load flow analysis, the utilisation of tap changers is not 

sufficient to bring voltages to operate within acceptable limits with the increasing number 

of EVs and their charging stations. The optimum placement of DG units and minimum 

sizing of SVC devices near the rapid charging stations are proposed to improve voltages 

and reduce power losses in the distribution network. The optimal location and sizing of 

DG and SVC units are the key variables for voltage stability and power loss minimisation. 

In this section, the optimal location of DGs is determined based on the continuation 

power flow method to improve the voltage stability. 
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3.4.1 Optimum Placement of Distributed Generation Units 

Continuation power flow method is selected due to its high precision, simple 

implementation with static load profiles (which is the case in this modelling study), and 

requirement of few iterations. This method is based on a predictor-corrector scheme. 

This scheme finds an estimate for the next load flow solution from a specified pattern of 

increase in the load. In the estimation of the load flow solution stage, the tangent vector, 

which is a vector that is tangent to a curve at a given point, is calculated [212, 213]. A 

typical sequence for calculation of the tangent vector is shown in Figure 3.6. 

 

Figure 3.6: Predictor-corrector scheme. 

The black line indicates the voltage on the given busbar for an increase in the load. 

This tangent vector provides information regarding the critical or weak busbar in the 

system, which is the busbar with a high ratio of differential voltage change to differential 

load change [214]. The method applies a set of continuing power flow solutions (through 

Newton-Raphson) based on the change in the specific load to identify the weakest 

busbar in the system [215]. The change in load can be considered as an increase in the 

network's active and reactive power demand (i.e., due to EV chargers) [212].  

The difference in mathematical formulation compared to the typical non-linear power 

flow equations in this method is the addition of a variable to identify the change in the 

load. The mathematical formulation of this method is given with reference to Figure 3.7.  

 

Figure 3.7: Power flow to and from the 𝑖𝑡ℎ busbar. 
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The injected current (𝐼𝑖) for the 𝑖𝑡ℎ busbar in Figure 3.7 is determined as follows:  

 𝐼𝑖 =
(𝑃𝐺𝑖 − 𝑗𝑄𝐺𝑖) − (𝑃𝐿𝑖 − 𝑗𝑄𝐿𝑖)

𝑉𝑖 ∗
 (3.3) 

Where: 

𝑃𝐺𝑖 is the active power generated at the 𝑖𝑡ℎ busbar (MW), 

𝑄𝐺𝑖 is the reactive power generated at the 𝑖𝑡ℎ busbar (MVAr), 

𝑃𝐿𝑖 is the active power demand at the 𝑖𝑡ℎ busbar (MW), 

𝑄𝐺𝑖 is the reactive power demand at the 𝑖𝑡ℎ busbar (MVAr), 

𝑉𝑖 is the voltage magnitude at the 𝑖𝑡ℎ busbar (kV).  

The injected current can also be expressed in the form of admittance [214]:  

 𝐼𝑖 = 𝑉𝑖𝑌𝑖0 + 𝑌𝑖1(𝑉𝑖 − 𝑉1) + 𝑌𝑖2(𝑉𝑖 − 𝑉2) + 𝑌𝑖𝑛(𝑉𝑖 − 𝑉𝑛) (3.4) 

Where: 

𝑌𝑖 is the admittance at the 𝑖𝑡ℎ busbar (the reciprocal of the impedance). 

Since the active power and voltage magnitude of each voltage-controlled generator 

busbar are known, (3.4) can be rewritten in compact form as [214]:  

 𝐼𝑖 = ∑𝑌𝑖𝑗

𝑛

𝑗=1

𝑉𝑗 (3.5) 

Where:  

𝑌𝑖𝑗 is the element of the admittance matrix (S), 

𝑉𝑗 is the voltage magnitude at the jth busbar (kV). 

To find successive load flow solution using continuation power flow based on 

Newton-Raphson, the general form of power flow equation is formulated by calculating 

the real and imaginary parts of the complex power at the 𝑖𝑡ℎ busbar [212, 215]: 

 𝑃𝑖 = ∑|𝑉𝑖|

𝑛

𝑗=1

|𝑉𝑗||𝑌𝑖𝑗| 𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑗−𝑦𝑖𝑗) (3.6) 

 𝑄𝑖 = ∑|𝑉𝑖|

𝑛

𝑗=1

|𝑉𝑗||𝑌𝑖𝑗| 𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑗 − 𝑦𝑖𝑗) (3.7) 
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Where:  

𝑃𝑖 is the active power injection at the ith busbar (MW), 

𝑄𝑖 are the reactive power injection at the ith busbar (MVAr),  

𝜃𝑖 is the voltage phase angle at the ith busbar (MW), 

𝜃𝑗 is the voltage angle at the jth busbar (MVAr), 

𝛾𝑖𝑗 is the line admittance angle between the ith busbar and jth busbar (°). 

With the continuation power flow method, the reformulated power flow equations are 

determined to represent the change in active power demand and reactive power demand 

with respect to the change in the voltage magnitude and with respect to the change in 

the voltage angle [212, 213, 215].  

Using MATLAB and IPSA+ Power simulation software, this method is applied by 

formulating the non-linear power flow equations. DG units are connected near the most 

congested substation feeders where voltage drops are greatest. This method not only 

improves the voltage at the critical load busbar, but it also provides local voltage control 

for the load busbars closest to the critical load busbar. The type of DG units is not 

specified in the IPSA+ Power library each generic DG unit can be considered as a PV 

and/or battery storage as they are two of the most common and fastest growing 

distributed energy resources in the market. These energy sources can typically be sized 

and installed on-site to meet specific demand requirements. In this chapter, each DG 

unit is installed with a capacity of 5 MW, since this represents the lower limit of the most 

cumulative installed PV capacity range in the UK [254]. With DG units installed near the 

optimally chosen substations, the network's total active power losses are calculated 

under different scenarios and presented in Table 3.6.   

Table 3.6: Total active power losses under different scenarios with DG units 

Scenario Active Power Losses (MW) Losses Reduction due to DGs (%) 

Baseline 6.24 8.5 

S1 6.53 9.6 

S2 6.66 9.8 

S3 6.71 10.7 

S4 6.78 11.5 

S5 6.87 12.4 

S6 6.98 12.9 

S7 7.09 13.4 

S8 7.17 13.9 

S9 7.26 14.8 

S10 7.32 15.6 
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Simulation results indicate that the utilisation of DG units significantly reduces active 

power losses compared to a scenario when the network is modelled without any DG 

units in place (as seen in Table 3.5). In the baseline scenario, power losses decrease 

from 6.82 MW (when DGs are not present) to 6.24 MW (when DGs are present). Even 

though network losses increase as the number of charging stations increases, they only 

account for 1.8% and 2% of the total network demand in the first and last scenarios, 

respectively. 

The steady-state nodal voltages with the optimum placement of DG units under 

different scenarios are also investigated in the network. Simulation results are presented 

in Figure 3.8 and Figure 3.9 for 11-kV and 6.6-kV load busbars, respectively. 

 

Figure 3.8: Voltage profiles at the 11-kV busbars under different scenarios with DG units. 

 

Figure 3.9: Voltage profiles at the 6.6-kV busbars under different scenarios with DG units. 
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Due to the greater ratio of network demand to charging demand, the steady-state 

voltage difference between each scenario is negligible for every individual load busbar. 

Previously, 12 busbars were operating within acceptable limits, while 13 busbars had 

voltage violations in the absence of DGs during the worst-case scenario (see Figure 3.4 

and Figure 3.5). With the optimum placement of DG units, however, four load busbars 

(1101, 1109, 6607, and 6612) are still exhibiting voltage violations. 

In all scenarios, load busbar 1101 has the lowest operating steady-state voltage in 

the network, with a voltage magnitude of 0.86 p.u. on average. Load busbar 1109, on 

the other hand, does not exhibit violations until six charging stations are connected to 

the network (Scenario S3 onwards). This point has a 0.93 p.u. steady-state voltage 

magnitude. Furthermore, load busbars 6607 and 6612 experience violations when 

Scenarios S7 and S8, respectively, are implemented in the network. It is seen that the 

optimum placement of DG is not completely sufficient, and this is mainly due to 

inadequate sizing of DG units and high consumption of reactive power in the network. 

For this reason, this thesis also addresses the optimum sizing of SVC devices to provide 

the required reactive power compensation services to improve the steady-state voltages 

of those four load busbars.  

3.4.2 Optimum Sizing of Static VAr Compensator Devices 

SVC devices are used for regulating power factor and providing reactive power 

compensation services near the violated load busbars in the network [255]. The SVC 

device used in this thesis represents a generic thyristor-controlled capacitor 

configuration based on the maximum and minimum voltage threshold levels. The 

operating principle of this device is given in Figure 3.10. 

 

Figure 3.10: Operating principle of the SVC device. 

When the upper limit of SVC inductance is reached, the upper voltage limit (𝑄𝑚𝑎𝑥) is 

reached. Similarly, the lower voltage limit (𝑄𝑚𝑖𝑛) is reached when the maximum SVC 

capacitance limit is attained. The inductive and the capacitive current are calculated by: 
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 𝐼𝑚𝑎𝑥 = 𝑗𝐵𝑚𝑎𝑥𝑉𝑚𝑖𝑛 (3.8) 

 𝐼𝑚𝑖𝑛 = 𝑗𝐵𝑚𝑖𝑛𝑉𝑚𝑎𝑥 (3.9) 

Where: 

𝐵𝑚𝑎𝑥 is the maximum susceptance (the inverse of the reactance), 

𝐵𝑚𝑖𝑛 is the minimum susceptance (the inverse of the reactance). 

At minimum voltage, which occurs when the number of charging stations on a 

network increases, the SVC must inject reactive power, which is equivalent to a 

capacitive load, into the network. In load flow analysis, SVC characteristics are defined 

by two pairs of points, (Qmin, 𝑉𝑚𝑎𝑥) and (Qmax, 𝑉𝑚𝑖𝑛), as represented in the diagram in 

Figure 3.10. IPSA models the SVC by injecting reactive power into the busbar, the size 

of which is proportional to the busbar voltage and change in the load.  

The variable reactive power output of the SVC compensates for the voltage and load 

variations caused by the cycling active power for optimal voltage stabilisation [256]. 

Therefore, the size of the SVC device is determined for each scenario due to variations 

in the PQ demand because of increase in the number of charging stations. The minimum 

required rating of the SVC devices to keep the voltages at the point of connection within 

the design limits is determined by (3.10) [255]:  

 𝑆𝑉𝐶𝑚 = 𝑄𝐿 +
𝑃𝐿

2

2𝑆𝑐
+

𝑅

𝑋
𝑃𝐿 (3.10) 

Where: 

𝑆𝑉𝐶𝑚 is the minimum required rating of the SVC device (MVAr), 

𝑄𝐿 is the reactive power consumption at the load busbar (MVAr), 

𝑃𝐿 is active power demand at the load busbar (MW), 

𝑆𝑐 is the short circuit level (250 MVA), 

𝑅/𝑋 is the resistance to reactance ratio of the system. 

The SVC device's minimum required rating is determined by the PQ data at the 

connection point. The short circuit level of 250 MVA has been selected for the modelling 

of 11 kV substations [257]. For distribution branches operating at 11 kV, the 'R/X' ratio 

of 0.67 is chosen based on the reference provided in [255]. Using (3.10), the minimum 

required sizing of the SVC devices is calculated for the worst-case scenario, as depicted 

in Table 3.7. 
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Table 3.7: Sizing of SVC devices under different scenarios 

Connection Load 

Busbar 

Demand 

(MW) 

Consumption 

(MVAr) 

Sizing of SVC Device 

(MVAr) 

1101 16.9 11 22.9 

1109 19.2 10.5 24.1 

6607 24.9 7.6 25.5 

6612 24.4 9.1 26.6 

Since there are only four load busbars experiencing voltage violations in the network, 

four SVC devices are installed. The calculations indicate that the SVC device's rating 

increases in proportion to the PQ demand. To prepare the network for the worst-case 

scenario, the size of each SVC is determined based on the peak demand at each 

individual load busbar (i.e., at the highest EV uptake level).  

With DG units and SVC devices are present in the network, a load flow analysis is 

initially performed to calculate the network's total active power losses under different 

scenarios. The results of the load flow analysis are shown in Table 3.8.  

Table 3.8: Total active and reactive power losses under different scenarios with SVC devices  

Scenario Active Power Losses (MW) 

Baseline 5.53 

S1 5.67 

S2 5.78 

S3 5.83 

S4 5.9 

S5 5.98 

S6 6.09 

S7 6.17 

S8 6.24 

S9 6.31 

S10 6.37 

It is seen that the introduction of reactive power compensation services by four SVC 

devices increases the maximum network throughput and the potential of active power 

flow. This, as a result, reduces power losses significantly. As compared to previous 

cases with DG units in place, power losses even account for a smaller portion of the 

network's total power demand. For example, active power losses in Scenario S10 only 

account for 1.7% of the total network demand. 

Furthermore, the steady-state nodal voltages with SVC devices in place under 

different scenarios are also investigated and their results are shown in Figure 3.11 and 

Figure 3.12. 
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Figure 3.11: Voltage profiles at the 11-kV busbars under different scenarios with SVC devices. 

 

Figure 3.12: Voltage profiles at the 6.6-kV busbars under different scenarios with SVC devices. 

The inclusion of SVC devices reduces the voltage drops and maintains acceptable 

voltage limits at each load busbar in the network. Overall, the largest voltage 

improvement with the SVC devices is seen at the points where SVCs are connected to. 

SVC devices have little to no effect on the steady-state voltages of busbars positioned 

further away from the point where reactive power compensation services are provided. 

For example, the use of SVC devices during the worst-case scenario increases the 

steady-state voltages at the violated load busbars (1101, 1109, 6607, and 6612) from 

0.86 p.u., 0.93 p.u., 0.93 p.u., and 0.93 p.u. to 0.99 p.u., 1.0 p.u., 1.01 p.u., and 1.0 p.u., 

respectively. It is also clear that the utilisation of SVC devices stabilises the operating 

voltages at each load busbar. 
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3.4   Summary  

The steady-state operating characteristics of a generic HV/MV British distribution 

network are examined using different EV uptake scenarios in IPSA+ Power simulation 

software. Active power losses and voltage profiles are calculated under different EV 

charging scenarios and voltage control measures. The importance of installing tap 

chargers on transformers and placing DG units and SVC devices near optimum network 

points is evaluated in this chapter. 

Simulation results have shown that adjusting the tap settings and installing tap 

changers on 14 transformers at and near the main generation point improves the voltage 

profiles of 22/25 busbars during the baseload scenario. However, it is important to 

analyse the network after the implementation of sensitivity analysis and consideration of 

different scenarios by increasing the number of charging stations and EV units 

incrementally. This would give more confidence of that a wide range of possible realistic 

scenarios are considered.  

It is demonstrated that commercial and industrial feeders with higher demand and 

consumption are more susceptible to voltage violations as the number of charging 

stations increases in the network. Alternatively, load busbars located closer to the point 

of generation and transformer with taps in place, as well as to the substation feeders 

equipped with DG units and SVC devices, are less affected. Simulation results 

demonstrated unequivocally that DG units should be placed at optimal locations to 

reduce power losses and eliminate voltage violations in the network. The optimal sizing 

of voltage control measures is also crucial, especially if the number of charging stations 

grows as anticipated. In the worst-case scenario, the utilisation of four DG units near 

critical substations and four SVC devices near critical load busbars reduced power 

losses by up to 15.6% and 26.5%, respectively. 

It has been shown that steady-state busbar voltages are managed to operate within 

permissible DNO limits with the inclusion of SVC devices. However, increasing the rating 

of the SVC devices also results in an increase in the system's cost. Although the cost of 

SVCs varies based on the device rating and specifications, the cost of an 0.2-MVAr SVC 

device suitable for an 11-kV substation connection typically varies between $1,000–

20,000 in the Chinese market [258].  
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CHAPTER 4 

4.   Computational Modelling and Simulation, and 

Experimental Testing of Batteries and Chargers  

4.1   Introduction 

The dynamic behaviour of power systems has changed dramatically in recent years 

because of growing use of power electronic interfaced technologies. These technologies 

alter the system's behaviour and provide new issues for DNOs. The impact of connecting 

EV chargers as constant lumped PQ loads to test networks has been widely examined 

in the literature and reviewed in Chapter 2. However, this approach to EV charging 

modelling generally restricts the network analysis to steady-state examination. This 

chapter therefore presents the modelling of battery dynamics in more detail.  

This is merely an introductory/methodology chapter demonstrating how the charging 

of batteries is accomplished. In the first section, the key parameters of the generic 

Shepherd battery model are simulated. Random parameters are used to demonstrate 

that charging occurs as intended. In Chapter 5 and Chapter 6, the developed charger 

circuitry and Shepherd model are integrated into a real low-voltage distribution feeder for 

detailed network analysis.  

In the second section of this chapter, physical slow-speed battery charger is used to 

show how charging and discharging occurs for lithium-ion batteries. In Chapter 7, the 

physical charger equipment is used to conduct different battery discharge tests. 

4.1.1 Chapter Structure 

Section 4.2 reviews the mathematical modelling and operational principles of the 

battery dynamics.  

Section 4.3 demonstrates the characteristics of the battery dynamics through 

different simulation cases. The difference between G2V and V2G is also shown. 

Section 4.4 introduces the physical lithium-ion batteries and the slow-speed battery 

charger unit used to conduct different tests. Preliminary tests are conducted to 

demonstrate how charging and discharging occur. 

Section 4.5 summarises the main findings of the chapter. 
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4.2   Alternating Current vs Direct Current Charging  

EV charging is classified into two broad types, depending on the electricity and 

chargers used: AC and DC chargers. The batteries of EVs are often charged by the grid 

(in the form of AC power). However, since the EV's batteries are only capable of storing 

DC power, power electronic devices are required to convert energy throughout the 

charging process. Figure 4.1 shows the main difference between AC and DC chargers. 

 

Figure 4.1: AC vs DC charging for electric cars. 

AC charging requires an AC-to-DC converter since the outlet, for example, AC mains 

(AC-type plug), gives AC power, and the car battery requires DC electricity. The car is 

equipped with its own on-board converter, which performs the conversion within the 

vehicle itself. DC charging, on the other hand, utilises an off-board converter, also known 

as public EV supply equipment, to generate DC power for the vehicle. This DC power 

and electricity are then sent to the battery, where an additional DC-to-DC conversion is 

performed to acquire the appropriate voltage and current rating for charging to take place 

[34, 259].  

DC chargers are quicker than AC charges since the DC power is provided directly to 

the vehicle’s battery. To supply more power to charge the battery, a larger converter is 

generally required. A DC charge point installation requires significant grid power. 

Consequently, its production, installation, and operation costs are quite high, resulting in 

higher charging rates. However, the absence of AC-to-DC conversion in DC charging 

reduces the complexity and increases the efficiency of DC chargers [34, 259]. 

4.2.1 Connection Topology of Battery Chargers  

Electricity supply is commonly broken down into three stages: generation, 

transmission, and distribution. Battery chargers for EVs are generally connected to the 

distribution side through power converters. The simplified connection architecture of a 

typical battery charger in a residential distribution feeder is shown in Figure 4.2. 



Chapter 4 — Computational Modelling and Simulation, and Experimental Testing of Batteries and 
Chargers 

69 | P a g e  
 

 

Figure 4.2: Connection topology of a battery charger in a typical distribution network. 

The simplified network schematic is comprised of a 33-kV supply point. Transformers 

reduce the voltage to 11 kV for the nearest substation denoted by Bus1 in the schematic 

diagram. Several outgoing feeders are supplied by the 11/0.4 kV transformers near the 

11-kV substation point. The blue zone depicts the low-voltage side of a segmented 

distribution network that is made up of several residential load busbars.  

A battery charger is attached to Bus7 in the schematic design. This point is selected 

for demonstration reasons. An AC-to-DC converter, also termed as rectifier, is the first 

power electronic interfaced technology used in the battery charger topology. At the 

connection busbar, the rectifier converts from the AC to a sufficient DC voltage and 

current [217, 260]. The next step involves the connection of a DC-to-DC charger, which 

is made up of a DC-to-DC converter and a battery circuit.  

4.2.2 Rectifier Topology 

The rectifier is the charger system's initial power electronic unit at the AC side. A 

simplified two-level voltage source converter topology to rectify AC into DC is used. The 

schematic diagram of a two-level voltage source converter is shown in Figure 4.3. 

 

Figure 4.3: A schematic diagram of a two-level rectifier topology.  
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Two-level voltage source converter topologies are commonly used in grid-connected 

battery charging applications. The topology is divided into three phases, each of which 

contains an upper and a lower arm. Each arm is constructed using an Insulated Gate 

Bipolar Transistor (IGBT) switch and an anti-parallel diode, as shown by the 'S' and 'D' 

symbols, respectively. Each IGBT switch can be modelled to provide a sufficient rated 

voltage and current for achieving the charging process of the battery. Switching on IGBTs 

from the same arm and phase simultaneously would result in a short circuit in the 

rectifier's DC link. Thus, switches from different phases and arms should be regulated 

simultaneously (e.g., S1 and S6) [261].  

4.2.3 Rectifier Synchronisation 

Without effective synchronisation, the rectifier cannot achieve the required DC 

voltage and current. Synchronisation enables the transfer of energy from the grid to the 

rectifier end [262, 263]. The synchronisation process occurs at the point where the 

charger is connected to. This point is termed as the Point of Common Coupling (PCC), 

at which point power is transferred between the grid and the battery. The sequence of 

the synchronisation process between the grid and the battery is shown in Figure 4.4.  

 

Figure 4.4: Synchronisation sequence of the grid and the rectifier. 

1) The measurements of the three-phase grid current (𝐼𝑎𝑏𝑐), three-phase grid 

voltage (𝑉𝑎𝑏𝑐), AC voltage (𝑉𝐴𝐶), active power (𝑃) and reactive power (𝑄) are 

extracted from the PCC from the AC side. 
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2) Using a Phase-Locked Loop (PLL) mechanism, three-phase grid current and 

three-phase grid voltage variables are fed into the abc to dq (direct quadrature) 

transformation block and synchronised with the grid frequency. The PLL operates 

on the fundamental principle of a feedback system with a proportional-integral 

(PI) regulator monitoring the phase angle (ϕ) from the PCC [264, 265]. Zero 

crossing, stationary reference frame, and synchronous reference frame (SRF) are 

the three primary PLL methods used for phase-angle tracking. SRF-PLL is used 

in this study due to its popularity and simpler implementation [265]. The detailed 

modelling of the PLL mechanism is given in the appendices (see Appendix B.2). 

3) The outer controller block receives four input signals: 𝑉𝐴𝐶, 𝑃, 𝑄 and DC link voltage 

(𝑉𝐷𝐶). This block then generates reference current variables in 'dq' frame: 𝐼 ∗𝑑 for 

'd' frame and 𝐼 ∗𝑞 for 'q' frame [260]. It uses a feedback system with a PI regulator 

to calculate the error signal between one of the four input signals and its 

measured value from the PCC. The calculated error signal is then input into the 

inner controller block. The detailed loop designs for the outer and inner controllers 

are given in the appendices (see Appendix B.3 and Appendix B.4).  

4) The inner controller block receives the output signals of the outer controller block 

and then produces reference voltage variables in 'dq' frame: 𝑉 ∗𝑑 for 'd' frame and 

𝑉 ∗𝑞 for 'q' frame. These variables are then input into the dq to abc transformation 

block and synchronised to the grid frequency through the PLL [265].  

5) The dq to abc transformation block generates three-phase reference voltage 

variables in 'abc' frame: 𝑉 ∗𝑎 for phase 'a', 𝑉 ∗𝑏 for phase 'b', and 𝑉 ∗𝑐 for phase 

'c' [261, 262, 266].  

6) The Pulse-width Modulation (PWM) approach is then initialised using the three-

phase reference voltage variables to trigger IGBT switches and force operate the 

rectifier. The rectifier then allows current to pass to the DC side. 

7) PWM is a standard approach that provides a constant input AC voltage to the 

rectifier and generates a regulated output DC voltage. Switching signals are 

generated by comparing the instantaneous magnitude of a high-frequency carrier 

waveform to sinusoidal input reference voltage signals [267, 268]. The 

fundamental principle of PWM is shown in Figure 4.5. 
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Figure 4.5: Phase-shifted multicarrier PWM technique. 

The graph uses a generic PWM technique to display the phase shift of the carrier 

waveforms with respect to the generic reference sine wave plotted against time in the 

horizontal axis. Each carrier signal runs at the same frequency and has a peak-to-peak 

value of identical magnitude. These carrier signals are separated by a phase shift. The 

reference sine wave is generated and compared to each of these high-frequency carrier 

signals for each time step represented by the horizontal axis. Based on the comparison, 

the switching pattern for the IGBTs is determined, as shown by the bottom graph in 

Figure 4.5. The switching pattern indicates that the IGBT is active when a binary value 

of 1 is present but is inactive when a binary value of 0 is present [268, 269]. 

4.2.4 DC-to-DC Charger Topology 

On the DC side, the charger circuit is composed of a DC-to-DC converter and a 

battery equivalent model. Both components are connected in series to efficiently 

generate and manage the power delivered to the battery pack [270].  

4.2.4.1 DC-to-DC Converter  

Different DC-to-DC converter topologies, including the buck and boost converters, 

are commonly used in battery applications. The former is used to charge the battery, 

whilst the latter is used to discharge it. To accomplish both charging and discharging of 

the battery, a combination of the two, namely, buck–boost topologies are generally used. 

This research addresses both the charging and discharging characteristics of the 

batteries, using the buck–boost topology. The schematic diagram of the buck–boost 

topology is shown in Figure 4.6. 
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Figure 4.6: Simplified schematic diagram for buck–boost converter. 

These converter topologies are constructed using two IGBT switches: 𝑆𝑏𝑘 and 𝑆𝑏𝑠𝑡, 

two anti-parallel diodes: 𝐷𝑏𝑘 and 𝐷𝑏𝑠𝑡, an inductor (𝐿), a resistor (𝑅), and a capacitor (𝐶) 

to charge and discharge the battery. The direction in which the current flows dictates 

whether the capacitor or the battery attached to the output terminal is charged or 

discharged.  

For example, the current flows from the grid to the battery in charging mode by 

activating the buck switch (𝑆𝑏𝑘) and deactivating the boost switch (𝑆𝑏𝑠𝑡). Additionally, by 

activating the boost switch while discharging the battery, the current direction is reversed 

as it flows from the battery to the grid end [270–272].  

The simplified controller loops for buck and boost switching are shown in the 

appendices (see Appendix B.5). The detailed modelling and selection of data for power 

electronics and switching are also shown in the appendices (see Appendix B.7). 

4.2.4.2 Shepherd Battery Equivalent Model  

In this study, a rechargeable ideal open-circuit voltage-controlled source representing 

a generic Shepherd battery model available in PSCAD/EMTDC simulation software's 

library, is used. The specifications of the generic Shepherd battery model are acquired 

from [46]. Figure 4.7 shows the simplified battery equivalent circuit of the model. 

 

Figure 4.7: Ideal equivalent battery circuit for Shepherd model. 

The simplified battery model is comprised of an ideal regulated voltage source 

connected in series with a battery resistor (𝑅𝑏𝑎𝑡). The determination of the regulated 

voltage source at each time step is given by [46]: 

 𝐸 = 𝐸0 − 𝐾
𝑄𝑏

𝑄𝑏 − 𝑖𝑡
+ 𝐴(−𝐵𝑖𝑡) (4.1) 
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Where: 

𝐸 is the no-load voltage for Shepherd model (V), 

𝐸0 is the constant voltage for Shepherd model (V), 

𝐾 is the polarisation voltage for Shepherd model (V), 

𝑄𝑏 is the rated capacity for Shepherd model (kWh or Ah), 

𝑖𝑡 is the actual battery charge at each time step (%), 

𝐴 is the exponential zone amplitude for Shepherd model (V), 

𝐵 is the exponential zone time constant for Shepherd model (1/Ah). 

This expression demonstrates the battery's non-linear nature. It is assumed that the 

battery voltage stays proportional to the current flowing through it while charging and 

discharging, whilst the battery resistance remains constant [46]. The battery voltage 

under no-load circumstances can be changed by substituting the 'it' terms in (4.1) with 

the actual battery SoC, as expressed by (4.2): 

 𝐸 = 𝐸0 − 𝐾
1

𝑆𝑜𝐶
+ 𝐴𝑒−𝐵𝑄𝑏(1−𝑆𝑜𝐶) (4.2) 

The expression does not take temperature into account and assumes that the battery 

behaviour is identical in each simulated instance. The appendices include other 

modelling aspects and parameters for the Shepherd battery model (see Appendix B.1) 

4.3   Simulation of Shepherd Battery Model 

This section uses the PSCAD/EMTDC simulation software to show how the generic 

Shepherd battery model charges and discharges under different settings. It should be 

noted that the simulation results are only intended to illustrate how the Shepherd battery 

model's parameters change under different conditions. 

4.3.1 Slow vs Fast Charging  

Two EV battery charging speeds are emulated to compare slow and fast charging. It 

is assumed that the first battery has a rated capacity of 40 kWh, and it is charged on a 

single-phase charger (rated at 7 kW), while the second battery has a rated capacity of 

42.2 kWh, and it is charged using a three-phase charged (rated at 22 kW). Figure 4.8 

shows the charging of both batteries under different charging power, whereas Figure 4.9 

shows the discharging of both batteries under different charging power. 
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Figure 4.8: Charging profiles of batteries under different charging power.  

The graph depicts the battery SoC (in %) in the vertical axis, as a function of 

simulation time (in minutes) in the horizontal axis. It is assumed that both batteries begin 

charging at 10% SoC and receive a constant charge power for 20 minutes. The SoC of 

the first battery increases from 10% to 15.4%, while the second battery reaches 25% 

after 20 minutes. A 22-kW device's increased charging power charges the second 

battery nearly three times faster than the first battery due to nearly tripled current value.  

 

Figure 4.9: Discharging profiles of batteries under different charging power.  

The graph depicts the battery SoC (in %) in the vertical axis, as a function of 

simulation time (in minutes) in the horizontal axis. It is assumed that both batteries begin 

discharging at 90% SoC. After 20 minutes, the SoC of the first battery reduces to 84.6%, 

whereas it decreases to 70% for the second one. The rate of charging and discharging 

is faster on the second battery since it draws three times more power and hence current 

than the first battery.  
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4.3.2 Rapid Charging  

A typical battery of a popular Tesla Model S is emulated and simulated with its 

specifications to demonstrate how rapid charging works. A Model S has a rated battery 

capacity of 90 to 100 kWh and a nominal voltage of around 400 V [27, 33]. Two rapid 

charging devices are used to compare the charging speeds of the emulated batteries: 

the 75-kW and the 150-kW. The charging profile of the batteries under both charging 

devices is shown in Figure 4.10. 

 

Figure 4.10: Charging profiles of batteries using 75-kW and 150-kW devices.  

It is assumed that both batteries start charging from a SoC of 20%. The 150-kW 

device charges the second battery (represented by the blue line) at double the current 

of that of 75-kW device, resulting in a faster charging speed overall. After 20 minutes on 

the 75-kW charging device, the first battery (represented by the green line) achieves 

41.2% SoC, while on the 150-kW device, it achieves 58% SoC. 

4.3.3 Variable Charging Power 

In a typical charging station, the driver picks the physical charging unit, but the 

amount of power provided is entirely dependent on what the car asks for up to the 

charger's maximum rate [242]. In this part, the effect of varying the charge power on a 

generic battery model is shown in Figure 4.11 and Figure 4.12.  
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Figure 4.11: Controlled charging profile of a generic EV battery.  

The graph demonstrates the charging speed in the vertical axis (in kW), as a function 

of the battery SoC (%) in the secondary vertical axis.  

 

Figure 4.12: Generic EV battery parameters during controlled charging.  

The graph in Figure 4.12 depicts the charge power (in kW) and charge current (in A) 

in the vertical axis, as a function of the battery voltage (in V) in the secondary vertical 

axis. 

In the presented scenarios, the charging power supplied to the generic battery is 

randomly regulated at different time steps. At the start of charging, the battery has a SoC 

of 15% and is charged at a fixed rate of 20 kW. After ten minutes, the charging power is 

increased to 45 kW. Following the change in charge power, the charging current (current 

delivered to the battery) increases from nearly 50 A to 105 A (as seen in Figure 4.12), 

while the charging voltage (battery terminal voltage) rises from nearly 400 V to 428.6 V.  
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It is indicated that the current and voltage are directly proportional to each other 

during charging and raising the charging power increases the vehicle's charging speed 

(i.e., steeper SoC curve).  

The charging power is reduced and maintained at 15 kW throughout the last part of 

the simulation (between 20–30 minutes), which also reduces the charging current, 

battery voltage, and the rate of charging. It should be emphasised that charging power 

is regulated arbitrarily for demonstration purposes to test the battery dynamics. 

4.3.4 Grid Power at the Point of Common Coupling  

The final part of this section demonstrates how battery chargers influences and alters 

power flows in the network. The AC grid is simulated as a simple distribution network 

with different loads, including residential and EV loads, connected to it. Simulation cases 

are performed and the effect of G2V and V2G charging is shown in Figure 4.13. 

 

Figure 4.13: Modified power flow with battery charging and discharging.  

The graph depicts the demand (in kW) (i) of the EV charger (blue line), (ii) grid (green 

line), and (iii) load (red line) in the vertical axis, as a function of simulation time (in 

minutes) in the horizontal axis. The direction of electricity flow is simply shown by the 

positive or negative magnitudes. For example, between 0–10 minutes, the battery 

charger is switched off, and the load absorbs a fixed demand of 150 kW — represented 

by the negative magnitude. Grid demand matches baseload demand throughout this 

time. However, when the 50-kW charger is switched on and the battery is being charged 

at a constant rate between 10–24 minutes, the grid starts supplying 200 kW — also 

represented by the negative magnitude.  
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At the last stage of the simulation, the battery charger's operation is reversed, and 

the energy stored in the battery is discharged and injected back into the grid through 

V2G technology. This is shown by the positive demand magnitude for the battery 

between 25–40 minutes. At this point, the grid is still supplying energy, but its demand is 

reduced from 200 kW to 100 kW due to the V2G charger injecting power to the grid.  

4.4   Experimental Testing of Batteries and Chargers  

This section is only intended to present the physical charger equipment and 

demonstrate how the charging is achieved. Experiments are conducted (i) to analyse the 

charging and discharging characteristics of physical lithium-ion batteries under different 

settings. The experimental kit is also used in Chapter 7. 

4.4.1 Battery Models and Battery Charger Units 

Lithium-ion PANASONIC NCR18650PF battery packs are used for the experiments. 

The model of the PANASONIC battery packs is shown in Figure 4.14. The MC3000 

Universal battery charger and an analyser unit (developed by SkyRC Technology), as 

shown in Figure 4.15, is used to charge and discharge the battery.  

 

Figure 4.14: PANASONIC NCR18650PF lithium-ion battery cells [273]. 

 

Figure 4.15: MC3000 Universal battery charger and an analyser unit [52]. 
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It should be noted that the small-scale and slow-speed SkyRC MC3000 battery 

charger has only four slots (meaning only four battery cells can be charged, discharged, 

and monitored simultaneously). Due to budgetary constraints, a larger (in size and rating) 

battery charger and analyser unit could not be purchased and utilised for more 

comprehensive testing. The maximum charge rate for the MC3000 is 2 A constant 

current for charging and 1 A for discharging [52]. Charging and discharging batteries at 

higher rates would need battery cooling to prevent battery explosion. This charger is also 

monitored and controlled through a computer software, namely, MC3000 Monitor client 

version 1.05, to analyse the charging and discharging characteristics of physical battery 

cells in real time.  

4.4.1.1 Relevancy of Experimental Work and Selection of Battery Cells 

The majority of EVs employ hundreds of individual cells that are packed and built into 

modules arranged in a series/parallel configuration to achieve the desired battery voltage 

and capacity. For example, the most common Tesla models (Model S and Model X) 

consist of around 7,104 units of 18650 cylindrical cells [274]. The Model S consists of 74 

cells, 6 groups in series for a module, and 16 modules in series (74 𝑐𝑒𝑙𝑙𝑠 × 6 𝑔𝑟𝑜𝑢𝑝𝑠 ×

16 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 = 7,104 𝑐𝑒𝑙𝑙𝑠). Recently, Tesla engineers have modified the battery pack so 

that each module can have up to 516 cells (86 𝑐𝑒𝑙𝑙𝑠 × 6 𝑔𝑟𝑜𝑢𝑝𝑠 × 16 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 = 8,256). 

This has also increased the rated capacity of Model S battery packs from 85 to 100 kWh 

[275]. 

In an EV, hundreds of cells are assembled to form a battery pack, and each cell must 

be individually monitored to ensure that the battery pack operates in a safe and efficient 

manner. This requires a dedicated control method known as the battery management 

system. The primary function of this system is to ensure that the battery pack operates 

safely. Since a battery pack in a typical EV is composed of cells with an individual voltage 

rating, the battery management system ensures that the cells within the pack are not 

discharged beyond the threshold limit [276]. This is why the experimental work is 

conducted to analyse the relationship between an individual cell's battery voltage and 

discharge capacity to ensure that discharge end voltage for cells is not reached under 

different scenarios and discharge profiles. It should be specified that the physical charger 

unit can charge/discharge up to four battery cells simultaneously. However, the 

discharge current decreases as the number of occupied slots increases (hence the 

increased charge/discharge time). During the experiments, a single slot (i.e., a single 

cell) is utilised to take advantage of the maximum discharging current capability of the 

charger unit and to simplify battery monitoring.  
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In addition, it is important to mention that the simulation cases for battery charging 

focus on the control of charging power through current limiters, so that the effect of 

increasing the rating of battery charger can be studied on the network. On the other 

hand, the experimental work for charging focuses on the control of charging and 

discharging current, so that the effect of increasing and decreasing the current can be 

seen on the cell voltage, which is then used to determine the discharged capacity and 

hence estimate the battery SoC and DoD under different scenarios in Chapter 7.  

4.4.2 Charging and Discharging at Constant Current  

The PANASONIC batteries used for this experiment are assumed to have a 

maximum charging current and a maximum charging voltage of 1 A and 4.2 V, 

respectively. For the first experiment, the PANASONIC cell is charged under different 

current settings: a constant current of 1 A and a constant current of 0.5 A. The starting 

battery voltage is assumed to be 4.1 V, which indicates that the battery pack is not fully 

charged. The charging speed of the cell is shown in Figure 4.16. 

 

Figure 4.16: Charging of the PANASONIC cell at 1 A and 0.5 A. 

The vertical axis of the graph indicates the battery cell voltage (in V), while the 

horizontal axis is based on a 24-hour time format (in hour, minutes, and seconds) since 

the battery charger and an analyser unit uses this format while producing battery 

charging/discharging profiles. It should be noted that the length of the experiment is 

limited to five minutes for demonstration reasons. At a larger charging current, the cell 

voltage rises more rapidly. 
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For the second experiment, the PANASONIC cell is discharged from a nominal cell 

voltage of 4.1 V with a constant current of 0.8 A and with a constant current of 0.5 A. It 

should be emphasised that these discharge current values are chosen randomly to 

demonstrate the diversity in the discharging profiles of lithium-ion batteries under 

different and various settings. Figure 4.17 compares the discharge profiles for the 

PANASONIC cell under two discharge current settings. 

 

Figure 4.17: Discharging of the PANASONIC cell at 0.8 A and 0.5 A. 

The vertical axis represents the voltage of the PANASONIC cell (in V), whereas the 

horizontal axis represents the time elapsed (in hour, minutes, and seconds). With a 

discharging current of 0.8 A and 0.5 A, the voltage of the PANASONIC cell reaches from 

4.1 V to 4.06 V and from 4.1 V to 4.065 V, respectively. The rate of discharge is just 

marginally quicker (as seen by the orange line) when the discharging current is larger. 

4.4.3 Charging and Discharging at Variable Current  

At random intervals, the charging and discharging currents supplied to the 

PANASONIC battery cell are varied for this chapter's concluding experimental tests. 

These tests are more practical for determining how the change in current affects the 

lithium-ion cells' charging rate. In the concluding chapter of this thesis, the impact of 

varying the rate of discharge of lithium-ion battery cells is examined in greater detail. 

The effect of varying the charging current and discharging current for the 

PANASONIC cell is presented in Figure 4.18 and Figure 4.19, respectively. 
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Figure 4.18: Charging the PANASONIC cell at a variable current profile. 

The graph shows the PANASONIC cell voltage (in V) in the primary vertical, as a 

function of the charging current (in A) in the secondary vertical axis. The horizontal axis 

represents the duration (in hour, minutes, and seconds) of the experiment (150 seconds). 

The battery is first charged at a rate of 0.3 A. After 30 seconds, the current at which the 

battery cell is charged is doubled. The maximum charging current of 0.9 A is applied 

between 60 and 90 seconds. The charging current is then initially reduced to 0.5 A and 

then to 0.3 A between 90 and 120 seconds, and 120 and 150 seconds, respectively. The 

battery's cell voltage reaches from 4.11 V to 4.13 V once the experiment is completed. 

 

Figure 4.19: Discharging the PANASONIC battery cell at a variable current profile. 
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Identical charging current values are applied to the PANASONIC battery cell while 

discharging. The battery is first discharged at a current of 0.3 A. After 30 seconds, the 

discharge current is raised to 0.6 A, and then increased to 0.9 A between 60 and 90 

seconds. The rate of change in cell voltage rises between 30 to 60 seconds due to the 

maximum discharge current of 0.9 A. In the last phase of the test, the current is initially 

lowered to 0.5 A and then to 0.3 A. The battery's cell voltage reaches 4.074 V after 150 

seconds. 

4.5   Summary 

The technology and components required to integrate battery chargers and Shepherd 

battery models into the distribution level of power networks are reviewed and presented 

in this chapter, respectively. Simulation studies demonstrated the impact of controlling 

the battery's charging power. As the charging power can range from 3 kW to 250 kW, 

simulation studies will provide greater flexibility for this research work in Chapter 5 and 

Chapter 6.  

On the other hand, a physical slow-speed battery charger and an analyser unit is 

used to present the charging and discharging characteristics of lithium-ion batteries 

through different tests. Experimentation revealed the impact of regulating the charging 

current injected into the battery. Although the physical charger used in this research has 

limitations regarding its rating and inability to charge/discharge an entire battery pack, it 

will aid in the integration of different discharge profiles based on the stochastic charging 

profiles that will be developed by the algorithm described in Chapter 6. The incorporation 

of discharge profiles will enable the estimation of the SoC, DoD, and discharged capacity 

of lithium-ion batteries. 

In conclusion, most of this chapter is considered as a methodological component of 

the thesis for the following three chapters to perform dynamic analysis using battery 

chargers and battery packs. The conducted battery tests also increase the validity of 

developed battery dynamics and allow the author and other researchers to attempt to 

discover something new about the battery packs, as well as to explain 'why' something 

occurs and 'how' something can be improved in the context of charging the EV batteries. 

Finally, it should be noted that the results presented in this chapter only serve to illustrate 

the practical application of both charging techniques through simulation and 

experimental methods. 
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CHAPTER 5 

5.   Impact of Integrating Different Battery Chargers 

on a Low-Voltage Distribution Network  

5.1   Introduction 

The effect of integrating uncontrolled EV chargers on distribution networks has been 

extensively analysed in the literature, and in Chapter 3 of this thesis using a medium-

voltage network. However, very little research investigates the implications of integrating 

different charging technologies and non-linear dynamic EV chargers into low-voltage 

distribution networks simultaneously. The PSCAD/EMTDC simulation software is used 

to effectively model and incorporate dynamic characteristics of battery chargers into a 

real low-voltage UK distribution network feeder in this chapter. The integration of different 

charging technologies adds diversity and accuracy to the dynamic analysis of the 

networks. For example, drivers who travel short distances may find that home charging 

is a convenient option, while those who travel longer distances may choose to utilise 

public chargers while at work or at destination. Therefore, this chapter is important as it 

compares the effects of different charging modes at different network locations. 

The main goals of this chapter are (i) to analyse the interaction between different 

charging scenarios on a real low-voltage distribution network feeder that serves both 

residential and commercial customers and (ii) to investigate the effect of increasing cable 

dimension, V2G chargers, and coordinated charging techniques. 

5.1.1 Chapter Structure 

Section 5.2 presents the low-voltage distribution network feeder, load profiles of the 

residential and commercial customers, and the charging scenarios. 

Section 5.3 conducts a dynamic analysis (i) to examine the daily voltage variations 

and voltage drops, (ii) to analyse cable current and cable overloading, and (iii) to 

calculate power losses and the cost of power losses in the feeder.  

Section 5.4 examines three cable overloading mitigation strategies, including (i) the 

oversizing of cables, (ii) the implementation of V2G chargers, and (iii) the utilisation of 

controlled charging techniques, during periods of increased network demand.  

Section 5.5 discusses and summarises the main findings of the chapter. 
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5.2   Low-Voltage Distribution Network Modelling 

The network under examination is a representation of a British urban residential 

distribution feeder covered by National Grid Distribution. This feeder is chosen due to i) 

the representation of a real distribution network, ii) the availability of variable load profiles 

over a 24-hour period, and iii) the diversity of customer types. The network enables a 

better understanding of the impacts of different battery chargers during various time 

intervals, and the variation in customer types enables the better analysis of different 

network points. The network comprises of a 500-MVA three-phase 33-kV voltage source 

at the generation point, connecting two 15-MVA transformers to the 11-kV substation, 

where eight outgoing feeders exist. The schematic diagram of the distribution network is 

shown in Figure 5.1. 

 

Figure 5.1: Simplified representation of the distribution network. 

Eight outgoing feeders are represented from Feeder #1 through Feeder #8 in the 

schematic diagram. Each feeder supplies a 500-kVA 11/0.433 kV transformer and 

includes the cumulative load of customers. Feeders #1 to #7 are modelled as aggregated 

PQ loads, while Feeder #8 is modelled in detail using real customer data over a period 

of 24-hours. The simplified nodal representation of Feeder #8 is represented in Figure 

5.2. Detailed network data is also presented in Table 5.1 and Table 5.2. 

 

Figure 5.2: Simplified nodal representation of Feeder #8. 
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Table 5.1: Number and type of customers at each connection node in the feeder 

Between Nodes Connection Node 
Number of  

Buildings  
Building Type 

N3–N6 N6 6 Residential 

N4–N7 N7 7 Residential 

N5–N8 N8 8 Residential 

N2–N10 N10 6 Residential 

N10–N11 N11 6 Residential 

N11–N12 N12 12 Residential 

N12–N13 N13 8 Residential 

N12–N14 N14 10 Residential 

N11–N15 N15 1 Commercial 

Table 5.2:  Specifications and operating resistances of cables in the feeder 

Cable 

Section  
Type 

Length  

(m) 

Ampacity  

(A) 

Operating 

Resistance  

per 1000 m (Ω) 

Operating 

Resistance per 

Length (Ω) 

C1-2 Copper 10 514 0.0928 0.000928 

C3-6 Copper 30 197 0.4637 0.013911 

C4-7 Copper 35 197 0.4637 0.0162295 

C5-8 Copper 50 197 0.4637 0.023185 

C2-10 Copper 65 514 0.0928 0.006032 

C10-11 Wavecon 40 251 0.32 0.0128 

C11-12 Wavecon 70 251 0.32 0.0224 

C12-13 Wavecon 30 251 0.32 0.0096 

C12-14 Wavecon 40 251 0.32 0.0128 

C11-15 Copper 20 156 0.7027 0.014054 

The low-voltage feeder serves 64 customers of which 63 are residential dwellings 

and one is a commercial building. In the feeder, the building connection points are 

denoted by the symbol 'N'. The feeder is composed of several connection nodes labelled 

from Node N1 to Node N15. The substation entry point is denoted by the 500-kVA 

transformer connected between Node N0 and Node N1. It should be noted that Node N9 

does not exist, and has been omitted from the schematic diagram. Residential dwellings 

and commercial building are connected at the far end of each line for simplicity. For 

example, between Nodes N3–N6, there are six residential dwellings, all of which are 

connected at Node N6. The only commercial building, on the other hand, is connected 

at Node N15. Although the feeder has a single commercial building, its peak 

consumption is equivalent to that of ten residential households. Node N12 has the largest 

number of dwellings (12), while Node N6, Node N10, and Node N11 have the fewest 

number of dwellings (6) in the feeder.  
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In the investigated part of the low-voltage distribution network feeder, only two cable 

types (depicted by the symbol 'C' in Figure 5.2) are used: copper subterranean 

conductors and Wavecon/Waveform cable with a solid aluminium conductor. The 

ampacity of the cables, which is defined as the maximum current each cable is allowed 

to carry, is used to determine the degree of overloading in Section 5.3. Due to the low 

operational reactance of cables, they are solely represented as simply resistive phase 

impedance in the modelling study. 

5.2.1 Customer Baseload Profiles 

The daily load profiles of 64 customers are obtained according to the number of 

households and buildings at each connection node. This is achieved by using and 

obtaining the typical load profiles and characteristics of an urban British residential and 

commercial building available as a dataset in [47, 277]. It should be noted that since 

there is insignificant diversity in the load profile of each building, the same load profiles 

are considered for each residential dwelling in the modelling study. The load profiles of 

a single residential and a commercial building in the feeder are illustrated in Figure 5.3. 

 

Figure 5.3: Daily load profiles for a typical British residential and a commercial building. 

The graph depicts typical daily load patterns in a 'top-of-the-hour' format. It is 

assumed that the demand remains constant for the entire hour for simplicity. According 

to the load profiles, the lowest demand interval for both residential and commercial 

buildings is between 03:00 and 05:00. The commercial building's total demand is 5 kW, 

while a residential household's total demand is around 0.25 kW during the off-peak 

hours. 
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On the other hand, peak demand of 12.8 kW often occurs between 11:00 and 14:00 

at the commercial building. Between 18:00 and 20:00, when homeowners return from 

work and depend on home activities such as cooking, bathing, heating, cooling, and 

lighting, the peak demand of 1.24 kW is exhibited at the residential dwelling. 

Daily load profiles for the investigated feeder are also obtained based on the number 

of buildings at each connection node. For example, the peak demand of a single 

residential dwelling between 17:00 and 18:00 is multiplied with ten to obtain the 

aggregated demand for customers between Nodes N12–N14 (see Table 5.1). The same 

method is used for the remaining connection nodes and the daily load profiles at each 

connection node in the feeder are obtained, as seen in Figure 5.4. 

 

Figure 5.4: Daily baseload profiles at each connection node. 

The graph depicts the variance in customers' daily load profiles using six distinct 

curves, classified according to the number of buildings at each node. The daily load 

profile for the commercial building — represented by the purple curve is identical to that 

of the one seen in Figure 5.3 since the network only has one commercial building. 

However, the demand of residential dwellings is scaled up due to the larger number of 

residential customers. Node N6, Node N10, and Node N11 each contains six households 

of the same type in the network, which are all represented by the pink load curve. 

Similarly, the yellow curve represents the daily demand profile for Node N8 and Node 

N13 with eight residential dwellings of the same type. The overall minimum base feeder 

demand is 20.8 kW between 03:00 and 04:00 (also denoted as off-peak), whereas the 

maximum base demand is 87.9 kW between 18:00 and 19:00 (also denoted as on-peak). 
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Demand change is minimal every three hours in the network, and therefore, daily 

load profiles are scaled down into eight intervals to reduce simulation time. For every 

three hours on the network, the average demand at each connection node is calculated. 

For example, the average demand between 00:00 and 03:00 is calculated as the first 

interval and is denoted by the period 0–3h. Table 5.3 shows the calculated average 

baseload demand for every three hours in the distribution network feeder. 

Table 5.3: Averaged demand for every three hours at each connection node 

Hour (h) 0–3h 3–6h 6–9h 9–12h 12–15h 15–18h 18–21h 21–00h 

Node 6 2.3 1.5 3.1 6.1 4.0 4.8 7.1 4.4 

Node 7 2.6 1.8 2.9 4.7 4.4 5.6 8.3 5.1 

Node 8 3.0 2 4.1 5.4 5.1 6.4 9.4 5.8 

Node 10 2.3 1.5 3.1 6.1 4.0 4.8 7.1 4.4 

Node 11 2.3 1.5 3.1 6.1 4.0 4.8 7.1 4.4 

Node 12 4.5 3 6.1 8.0 7.6 9.6 14.0 8.7 

Node 13 3.0 2 4.1 5.4 5.1 6.4 9.4 5.8 

Node 14 3.8 2.5 5.1 6.7 6.3 8.0 11.8 7.3 

Node 15 5.3 5.1 6.9 12.5 12.7 11.8 9.1 6.6 

Demand (kW) 29.1 20.9 38.5 61 53.2 62.2 83.3 52.5 

Between 3–6h, the minimum base demand is 20.9 kW, while the maximum base 

demand is 83.3 kW between 18–21h in the network. These figures are like the one shown 

on an hourly basis in Figure 5.4: 20.8 kW (minimum) and 87.9 kW (maximum). 

5.2.2 Integration of Electric Vehicle Charging Load Profiles 

Dynamic battery chargers from Chapter 4 are incorporated into the distribution 

feeder. Various charging scenarios are considered for customers (classified by their 

charging rates) and implemented in different areas of the feeder, as shown in Table 5.4.  

Table 5.4: Choice of charger modes during different hours of the day 

Time of Day Charger Mode  Charger Rating (kW) Connection Node  

00:00–03:00 One slow-speed 3–4.5  N6 

03:00–06:00 One slow-speed 3–4.5 N6 

06:00–09:00 One fast-speed 22 N8 

09:00–12:00 One fast-speed 22 N14 

12:00–15:00 
One fast-speed  

One rapid-speed  

22 

45 

N12 

N15 

15:00–18:00 One rapid-speed  45 N15 

18:00–21:00 One ultra-rapid speed  150 N15 

21:00–00:00 One slow-speed  3–4.5 N6 
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It should be mentioned that all chargers operate at their maximum theoretical power 

capacity for the duration of the 3-hour interval. This allows the network to be examined 

during the worst-case scenario. It is also assumed that each chosen connection node 

has only one charger due to node limitations with the PSCAD licence. The PSCAD 

version utilised in these studies is the educational one with limited number of nodes. 

The integration of different charger modes provides a better representation for 

examining how the dynamic operational characteristics of low-voltage distribution 

networks are affected with respect to the time and location of a charging activity. Slow-

speed chargers are often used by residential customers who charge their cars for 

extended periods of time overnight. To imply this, customers at Node N6 are provided 

with a slow-speed charger (rated at 3–4.5 kW) that operates between 21:00 and 06:00. 

Additionally, a fast-speed charger (rated at 22 kW) is installed and operated at Node N8 

between 06:00 and 09:00, at Node N14 between 09:00 and 12:00, and at Node N12 

between 12:00 and 15:00. Different hours and locations are selected to expand the 

availability of chargers and to add diversity in the charging profiles. Rapid chargers (rated 

at 45 kW) are connected near the commercial building through a 0.4/0.69 kV transformer. 

Between 12:00 and 15:00, the first rapid charger is connected, while the second is 

connected between 15:00 and 18:00. These hours are used to represent lunch and after-

work hours, allowing drivers to charge at their destination locations, just before returning 

home for the evening. Additionally, between 18:00 and 21:00, an ultra-rapid charger 

(rated at 150 kW) is installed and operated near the commercial building. This period is 

selected for the drivers to recharge their vehicles for the following day.  

The calculated average baseload demand for every three hours in the distribution 

network feeder (see Table 5.3) increases due to the addition of these charger modes. 

The increase in the baseload demand is shown in Table 5.5. 

Table 5.5: Averaged demand for every three hours with EV charging load profiles 

Hour (h) 0–3h 3–6h 6–9h 9–12h 12–15h 15–18h 18–21h 21–00h 

Node 6 6.8 6 3.1 6.1 4.0 4.8 7.1 8.9 

Node 7 2.6 1.8 2.9 4.7 4.4 5.6 8.3 5.1 

Node 8 3.0 2 26.1 5.4 5.1 6.4 9.4 5.8 

Node 10 2.3 1.5 3.1 6.1 4.0 4.8 7.1 4.4 

Node 11 2.3 1.5 3.1 6.1 4.0 4.8 7.1 4.4 

Node 12 4.5 3 6.1 8.0 29.6 9.6 14.0 8.7 

Node 13 3.0 2 4.1 5.4 5.1 6.4 9.4 5.8 

Node 14 3.8 2.5 5.1 28.7 6.3 8.0 11.8 7.3 

Node 15 5.3 5.1 6.9 12.5 57. 7 56.8 159.1 6.6 

Demand (kW) 33.6 25.4 60.5 83 62.5 107.2 233.3 57 
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The data in Table 5.5 is obtained by adding the maximum theoretical power output 

of each connection node's charging demand with the baseload demand from Table 5.3. 

It should be clarified that since not all connection nodes have an EV charger, some node 

demand at certain intervals stays the same in both Table 5.3 and Table 5.5. In Table 5.5, 

the instances in which the averaged demand due to EV charging profiles increases are 

denoted by the blue font. For example, between 15:00 and 18:00 (i.e., 15–18h), the 

demand at Node 15 increases from 11.8 kW in Table 5.3 to 56.8 kW in Table 5.5, as this 

node has one 45-kW charger operating at its maximum theoretical power output. The 

largest demand change occurs between 18–21h, when the total base demand rises from 

83.3 kW to 233.3 kW with the addition of 150-kW charger.  

5.3   Impact of Charging Activities on the Feeder 

Section 5.3.1 examines the daily voltage variations, Section 5.3.2 analyses cable 

loading. Section 5.3.3 calculates power losses and the cost associated with losses. 

5.3.1 Voltage Variations  

Daily voltage variations are analysed at each connection node during the baseload 

and after the addition of EV charging load profiles in the network. Simulation results 

concerning nodal voltages are presented in Figure 5.5 and Figure 5.6. 

 

Figure 5.5: Voltage profiles at Nodes N6 to N12 without (left) and with (right) EV chargers. 
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Nodal voltages at Node N6 to Node N12 without EV chargers fluctuate slightly during 

the day. Between 18–21h, residential dwellings at Node N12 have a minimum voltage of 

1.064 p.u. Following the charging activities, customers at Node N8, Node N10, Node 

N11, and Node 12 experience voltage drops, as seen on the right side of Figure 5.5. 

Customers at Node N7, on the other hand, do not experience any significant voltage 

changes since there is no EV charger connected at this point in the feeder.  

When the 150-kW charger is in operation between 18–21h, the minimum voltage at 

the nearest nodes, e.g., at Node N11 and Node N12, is around 1.05 p.u. However, nodes 

that are situated further away from rapid and ultra-rapid chargers (particularly Node N6, 

Node N7, and Node N8) experience smaller voltage drops throughout the day. 

Additionally, nodes with slow and fast chargers connected to them experience lower 

voltage fluctuations. 

 

Figure 5.6: Voltage profiles at Nodes N13 to N15 without (left) and with (right) EV chargers. 

Between 18–21h, Node N15 exhibits the largest voltage drop in the network, owing 

to the addition of the 150-kW charger. The nodal voltage during these peak hours drops 

by 2.8%; from 1.07 p.u. to 1.04 p.u. It should be clarified that the DNOs in the UK are 

required to serve customers at the low-voltage feeders within +10% and −6% of the 

nominal voltage to ensure secure and regulatory operating limits. Simulation results 

demonstrated in this section show that the investigated feeder does not experience any 

voltage violations, and all the nodal voltages at the customer points are maintained within 

the regulatory threshold limits while the EV chargers are present in the network. 

Voltage imbalance, which is defined as the difference in voltage between the phases 

of a three-phase system, is also investigated in this part. It is often produced by an 

unequal distribution of single-phase load over three phases. Voltage imbalance between 

the phases of a three-phase system is analysed during the baseload and with a single-

phase battery charger (rated at 3 kW) near one of the residential dwellings in the network. 

Simulation results concerning voltage imbalance are represented in Figure 5.7 and 

Figure 5.8. 
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Figure 5.7:Phase voltages during the baseload. 

Simulation results demonstrate the sinusoidal phase to ground voltage response of 

all three phases along a cable segment during the baseload. Each phase is balanced 

and the voltage across each phase is approximately 0.23 kV (given by dividing the line-

to-line voltage of 0.433 kV by the square root of three).  

 

Figure 5.8: Phase voltages with a single-phase battery charger. 

The single-phase battery charger is connected on Phase A for demonstration 

purposes, and the findings indicate a minor imbalance among three phases. Phase B 

and Phase C maintain the same voltage responses and have identical peak to peak 

values. Phase A, on the other hand, experiences a minor imbalance due to the residential 

charger. The integration of this charger on Phase A also causes minor voltage drops 

along the line, as shown in Figure 5.9.  

 

Figure 5.9: Voltage drop along the cable where a single-phase battery charger is connected to. 
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The voltage drop is determined by measuring the instantaneous voltage at the cable's 

sending and receiving ends. With reference to the simplified nodal representation of the 

low-voltage feeder (see Figure 5.2), the sending end is designated as Node N3, while 

the receiving end is designated as Node N6. Given that the charger is connected at the 

end of this line and given that there are three single-phases, Phase A to Phase C, the 

bulk portion of the current through cable C3-6 flows into Phase A due to charger, resulting 

in a small voltage drop down the cable — illustrated by the green line in Figure 5.9. The 

magnitude of this drop is related to the increase in electrical potential caused by the 

current flowing down the cable and is mostly determined by the charger's size. It is 

anticipated that a charger with a higher rating would result in a larger voltage drop.  

5.3.2 Cable Loading 

Current flow in the feeder is examined to determine the hosting capacity of supply 

cables when EV charging loads are present. The hosting capacity of cables is 

determined by quantifying the amount of instantaneous RMS current and then comparing 

this to the ampacity/rating of the cables (presented in Table 5.2). The magnitudes of 

cable currents are obtained during the baseload and after the addition of EV charging 

load profiles Simulation results concerning cable currents are shown in Figure 5.10, 

Figure 5.11, and Figure 5.12. 

 

Figure 5.10: Current in C3-6, C4-7, and C5-8 without (left) and with (right) EV chargers. 

Cables C3-6, C4-7, and C5-8 all carry a comparable amount of current when the 

network has no EV chargers. These cables are responsible for delivering power to the 

residential dwellings connected at Node N6, Node N7, and Node N8, respectively. When 

a slow-speed charger is connected at Node N6 between 21:00 and 06:00 and a fast-

speed charger is connected at Node N8 between 06:00 and 09:00, the current begins to 

increase slightly in these cables. However, the EV chargers do not cause any 

overloading in these cables. On the other hand, the current in cable C4-7 is almost 

identical during the baseload and after the addition of EV charging load profiles, since 

there is no EV charger connected near the customers at Node N7 (see Table 5.4). 
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Figure 5.11: Current in C2-10, C10-11, and C11-12 without (left) and with (right) EV chargers. 

Larger current flow is observed through cables C2-10, C10-11, and C11-12 in the 

feeder, due to increased demand of residential dwellings near Node N10, Node N11, 

and Node N12. Between 18:00 and 21:00, cables C2-10 and C10-11 carry a peak current 

of 91 A and 80 A, respectively, during the baseload. However, the peak current rises to 

303 A for cable C2-10 and to 293 A for cable C10-11 since the 150-kW charger operates 

at its maximum theoretical power output. The ampacity of cable C10-11 (which is 251 A 

as seen in Table 5.2), is exceeded by 16.7% between 18:00 and 21:00, whereas all other 

cables manage to operate within normal design limits. This cable is responsible for 

delivering power to residential dwellings at Node N11. 

 

Figure 5.12: Current in C12-13, C12-14, and C11-15 without (left) and with (right) EV chargers. 

The current magnitudes in cables C12-13, C12-14, and C11-15 are similar during the 

baseload. These cables provide power to the buildings at Node N13, Node N14, and 

Node N15, respectively. Between 09:00 and 12:00, when the 22-kW charger is in use, 

the current in C12-14 increases from 10.3 A during the baseload to 58.6 A. The largest 

current increase occurs at the point of commercial building, which causes cable C11-15 

to surpass its ampacity of 156 A by 47.4% between 18:00 and 21:00.  

Simulation results indicate that the cables providing power to customers near Node 

N11 and Node N15 are experiencing overloading when the 150-kW charger operates at 

its maximum power capacity between 18:00 and 21:00 in the distribution feeder. These 

cables are next to one another near the commercial building and are heavily congested.  
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Different techniques for reducing the cable overloading are proposed and examined 

in Section 5.4 of this chapter. 

5.3.3 Active Power Losses  

Increased current flow leads to an increased cable temperature, increased network 

demand, and therefore increased power losses. Using (5.1), active power losses are 

calculated during the baseload and after the addition of EV charging load profiles in the 

feeder.   

 𝐴𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠𝑒𝑠 (𝑘𝑊) =
3 × 𝐼𝑐

2  × 𝑅𝑙   

1000
 (5.1) 

Where: 

𝑅𝑙 is the operating resistance per required length of cable (Ω), 

𝐼𝑐 is the instantaneous RMS current in the cables (A). 

Table 5.6 shows the calculated active power losses based on the current magnitudes 

during the baseload. Table 5.7 shows the calculated active power losses after the 

addition of EV charging load profiles.  

Table 5.6: Active power losses in the cables during the baseload 

Cable 
0–3h 

(kW) 

3–6h 

(kW) 

6–9h 

(kW) 

9–12h 

(kW) 

12–15h 

(kW) 

15–18h 

(kW) 

18–21h 

(kW) 

21–00h 

(kW) 

Total 

Losses 

(kW) 

C1-2 0.01 0.003 0.01 0.02 0.02 0.03 0.05 0.02 0.163 

C3-6 0.001 0.0002 0.001 0.004 0.002 0.002 0.01 0.002 0.0222 

C4-7 0.001 0.0004 0.001 0.003 0.002 0.004 0.01 0.003 0.0244 

C5-8 0.002 0.001 0.003 0.005 0.004 0.01 0.02 0.01 0.055 

C2-10 0.013 0.011 0.04 0.09 0.07 0.09 0.15 0.06 0.524 

C10-11 0.032 0.02 0.06 0.14 0.12 0.15 0.24 0.1 0.862 

C11-12 0.021 0.01 0.04 0.07 0.06 0.09 0.2 0.08 0.571 

C12-13 0.001 0.0003 0.001 0.002 0.002 0.003 0.01 0.002 0.0213 

C12-14 0.001 0.001 0.002 0.004 0.004 0.006 0.01 0.005 0.033 

C11-15 0.003 0.003 0.005 0.02 0.02 0.014 0.01 0.004 0.079 

Losses 

(kW) 
0.085 0.05 0.163 0.358 0.304 0.4 0.71 0.286 2.35 

The cables experience the smallest power losses between 03:00 and 06:00, when 

the base network demand is at its lowest. Cables C2-10, C10-11, and C11-12, on the 

other hand, experience the largest losses, between 18:00 and 21:00 due to increased 

residential demand in the feeder. Total active power losses in the investigated feeder 

without any EV chargers add up to 2.35 kW during the baseload. 
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Table 5.7: Active power losses in the cables with EV chargers 

Cable 
0–3h 

(kW) 

3–6h 

(kW) 

6–9h 

(kW) 

9–12h 

(kW) 

12–15h 

(kW) 

15–18h 

(kW) 

18–21h 

(kW) 

21–00h 

(kW) 

Total 

Losses 

(kW) 

C1-2 0.01 0.009 0.03 0.05 0.11 0.08 0.32 0.03 0.639 

C3-6 0.05 0.05 0.001 0.003 0.002 0.002 0.01 0.06 0.178 

C4-7 0.001 0.0004 0.001 0.003 0.002 0.004 0.01 0.003 0.0244 

C5-8 0.002 0.001 0.21 0.005 0.004 0.01 0.01 0.006 0.248 

C2-10 0.02 0.01 0.04 0.23 0.57 0.37 1.66 0.06 2.96 

C10-11 0.033 0.02 0.06 0.41 1.13 0.71 3.30 0.1 5.763 

C11-12 0.021 0.01 0.04 0.4 0.35 0.09 0.19 0.08 1.181 

C12-13 0.001 0.0003 0.002 0.002 0.002 0.003 0.006 0.002 0.0183 

C12-14 0.001 0.001 0.003 0.13 0.004 0.01 0.012 0.005 0.166 

C11-15 0.003 0.003 0.005 0.016 0.37 0.37 2.23 0.004 3.001 

Losses 

(kW) 
0.142 0.105 0.391 1.249 2.544 1.649 7.748 0.35 14.18 

Active power losses in cables C4-7 and C12-13, which provide energy to dwellings 

at Node N7 and N13, are nearly identical for each interval without and with EV chargers 

in operation. Due to the absence of chargers at these nodes, their aggregated demand 

stays the same for both scenarios (with and without chargers). However, these losses 

slightly increase when their neighbouring nodes have charging activities in the network. 

Cables C2-10, C10-11, and C11-15 have the largest active power losses with EV 

chargers connected to the network, especially when the 150-kW charger is in operation. 

The losses in those cables during the peak interval are calculated as 1.66 kW, 3.30 kW, 

and 2.23 kW, respectively. Total daily power losses rise from 2.35 kW to 14.18 kW when 

the EV chargers are in operation. 

5.3.3.1 Cost Calculation of Active Power Losses 

Using the baseload demand and power losses in different cable sections, the energy 

cost and the cost of the losses are calculated by (5.2) and (5.3), respectively [278]:  

 𝐸𝑐 = 𝛥𝑃 × 𝑡ℎ × 𝐶𝐸  (5.2) 

Where: 

𝐸𝐶 is the daily energy cost based on the power consumption (£/day), 

𝛥𝑃 is the daily total active power consumption (kW), 

𝑡ℎ is the daily number of usage hours (hours), 

𝐶𝐸  is the hourly energy cost (28p/kWh [279]) (£/kWh). 
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 𝐶𝑝 = Δ𝐿𝛾 × 𝐶𝐸 × 𝐶𝛾 (5.3) 

Where: 

𝐶𝑝 is the estimated cost of total power losses in the feeder (£/kWh), 

Δ𝐿𝛾 is the calculated daily total active power losses in the feeder (kW/day),  

𝐶𝛾 is the total time of cable network operation (days). 

It is assumed that the feeder and the EV demand, as well as the hourly energy cost 

remain unchanged throughout the calculating period. It is also assumed that the amount 

of active power losses remains unchanged for every three-hour interval in the network. 

For example, the total feeder losses between 0–3h is 0.085 kW. However, during the 

calculation of the 𝐸𝐶, this is used as 0.255 kW (scaled-up by three) since the above 

expression takes into consideration the fixed price in each hour. 

Using the calculated power losses in Table 5.6 and Table 5.7, the cost of energy 

consumption and the cost of losses are calculated during the baseload and after the 

addition of EV charging load profiles, as shown in Table 5.8 and Table 5.9, respectively. 

Table 5.8: Calculated energy consumption in the feeder 

Baseload Daily 

Feeder Demand  

Daily Feeder 

Demand  

(with EVs) 

Baseload Daily 

Feeder 

Consumption  

Daily Feeder 

Consumption  

(with EVs) 

1202.1 kW 1987.5 kW 28,850 kWh/day 47,470 kWh/day 

The baseload daily energy consumption in the feeder is 28,850 kWh in the absence 

of EV chargers and 47,470 kWh in the presence of EV chargers.  

Table 5.9: Calculated daily cost of energy consumption and power losses in the feeder 

Baseload Daily 

Energy 

Consumption Cost 

Daily Energy 

Consumption Cost 

(with EVs) 

Baseload Cost 

Calculation for 

Power Losses 

Cost Calculation 

for Power Losses 

(with EVs) 

£8,070.7 £13,291.6 £47.4 £285.9 

The daily energy consumption cost increases from £8,071 to £13,292 when the 

charging scenarios are implemented into the network. Based on the calculated active 

power losses in Table 5.6 and Table 5.7, the daily cost associated with power losses is 

also calculated to be approximately £47.4 in the absence of EV chargers. This is well 

aligned with the value given in [251], where it is stated that with losses of around 5% or 

8% in distribution, the total cost of losses is projected to be roughly £50. Additionally, the 

daily cost of losses is determined to be approximately £285.9 with charging activities.  



Chapter 5 — Impact of Integrating Different Battery Chargers on a Low Voltage Distribution Network  

100 | P a g e  
 

5.4   Cable Overloading Mitigation Techniques 

The cable infrastructure near the commercial charging point is not intended to support 

an ultra-rapid charger, especially during the periods of high demand. The 150-kW 

charger exhibits overloading conditions for two cable sections (see Section 5.3.2). Three 

following cable loading mitigation techniques are proposed in this section: 

• Section 5.4.1 increases the size of two overloaded cable conductors and 

recalculates their operational resistances.  

• Section 5.4.2 proposes the introduction of two small-scale V2G chargers near 

the congested network cable sections. 

• Section 5.4.3 examines the effect of using a coordinated charging strategy during 

the periods of high demand. 

5.4.1   Increased Cable Size 

The conductor size of two overloaded cables: C10-11 and C11-15, is increased 

based on the load current. WPD's Standard Technique: Relating to Low Voltage 

Underground Cable Ratings datasheet [48] is utilised to determine the new cable size. 

The sizes of cables C10-11 and C11-15 are upgraded to the nearest available 

standard size as per the datasheet. Cable C10-11's size is increased from 95 mm2 to 

120 mm2, while the size of C11-15 is increased from 25.8064 mm2 to 95 mm2. The 

ampacity of these cables is also updated to 284 A and 263 A, respectively [48]. The new 

operating resistance (𝑅𝑙,𝑛𝑒𝑤) per required length of these cables is given by (5.4): 

 𝑅𝑙,𝑛𝑒𝑤 =
𝜌 × 𝐶𝑙   

𝐴𝑐

 (5.4) 

Where: 

𝜌 is the resistivity of the cable material at 20°C (Ωm), 

𝐴𝑐 is the cross-sectional area of the conductor size (m2). 

According to [280], the resistivity of the cable material is 2.8 x 10-8 for aluminium-

based conductors (C10-11) and 1.7 x 10-8 for copper-based conductors (C11-15). The 

revised operating resistance values for the cables are shown in Table 5.10. 
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Table 5.10: Operating resistances of cables with upgraded sizes 

Cable Type Length (m) 𝑹𝒍,𝒐𝒍𝒅  (Ω) 𝑹𝒍,𝒏𝒆𝒘 (Ω) 

Updated 

Ampacity 

(A) 

C10-11 Wavecon  40 0.0128 0.0093 284 

C11-15 Copper 20 0.014054 0.0036 263 

After increasing the conductor sizes of cables C10-11 and C11-15, the magnitudes 

of cable currents are analysed after the addition of EV charging load profiles. Simulation 

results are represented in Figure 5.13. It should be clarified that all other cables are 

simulated using their original sizes as they are not exposed to any overloading condition 

and operate within acceptable design limits. 

 

Figure 5.13: Current measurements in C1-2, C2-10, C10-11, and C11-15 with new cable sizes. 

Increasing the conductor size for C10-11 and C11-15 slightly reduces the magnitude 

of RMS current in the cables. The peak current in C10-11 reduces from 293 A to 286 A, 

whereas the peak current in C11-15 reduces from 230 A to 227 A. Cable C11-15 is no 

longer overloaded since it carries a current that is less than its new ampacity rating at a 

conductor size of 95 mm2. However, cable C10-11 still exceeds its ampacity by 0.7% 

during the peak network demand.  
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5.4.2   Integration of Vehicle-to-Grid Chargers 

The first V2G charger is connected near the residential dwellings at Node N10, 

whereas the second V2G charger is connected near the dwellings at Node N11. V2G 

chargers are rated at 7.5 kW, to represent a typical device rating for a residential 

bidirectional charger as reported in [281]. The connection points for the V2G chargers 

are chosen based on their proximity to the commercial building and commercial cable in 

the feeder. The location of V2G chargers is shown in Figure 5.14. 

 

Figure 5.14: V2G locations near the residential buildings at Node N10 and Node N11. 

The effect of V2G chargers on the cables' RMS current during the periods of 

overloading is presented as a tabulated data in Table 5.11. 

Table 5.11: Effect of V2G chargers on cable current between 18:00 and 21:00 

Cable  
RMS Current Before V2G 

(A) 

RMS Current After V2G 

(A) 

Ampacity  

(A) 

C1-2 341.2 326 514 

C2-10 303.3 289 514 

C10-11 293 276 251 

C11-15 230 237 156 

The results only indicate the cables' RMS currents near the overloaded sections 

between 18:00 and 21:00, when the 150-kW charger is in operation. The other cables 

do not experience any overloading conditions, and hence has not been analysed. With 

the two V2G chargers in place and operation, the current flowing through the substation 

cable C1-2 reduces from 341.2 A to 326 A. Similarly, the current in cable C2-10 

decreases from 303.5 A to 289 A, whereas it decreases from 293 A to 276 A in cable 

C10-11. The effect of V2G on reducing the RMS current in three cable sections is 

obvious. However, the utilisation of two V2G chargers increases the RMS current from 

230 A to 237 A in cable C11-15. 
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The results demonstrate that since the rating of V2G chargers is identical to the size 

of local loads at residential dwellings, V2G chargers result in a small reduction in current 

across the customers supplied by C2-10 (near Node N10) and C10-11 (near Node N11). 

However, since the V2G charger's rating is relatively small compared to the size of ultra-

rapid charger, reversed power flow results in an increase in current at Node N15. The 

V2G technology is not feasible to eliminate the overloading of the commercial cable. 

5.4.3   Coordinated Charging  

Two approaches are proposed to reduce loading on the network and cables. The first 

approach reduces the capacity of the ultra-rapid charger during the peak hours by 

extending its operation from a three-hour interval to a six-hour interval. This means that 

the maximum theoretical output of the charger is halved in each interval; however, the 

total charger capacity is still the same. This approach uses the original cable sizes, and 

its effect is shown in Figure 5.15. 

 

Figure 5.15: Cable currents during coordinated charging. 

The graph only depicts the RMS current in cables near the congested areas, notably, 

in C1-2, and C2-10, C10-11, and C11-15. In comparison to previous mitigation 

approaches in Section 5.4.1 and Section 5.4.2, this approach causes the current in the 

cables to increase between 21:00 and 00:00. The increase in current, however, is within 

the range of permitted cable ratings. The two overburdened cables, notably, C10-11 and 

C11-15, are no longer in critical condition with this charging approach. 

The second approach also uses the original cable dimensions but reduces the rating 

of the charger from 150 kW to 100 kW, whilst keeping the charger's operation hours to 

be between 18:00 and 21:00. The effect of this approach is shown in Figure 5.16. 
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Figure 5.16: Cable currents with reduced charger theoretical power. 

The graph in Figure 5.16 also indicates the cables' RMS current near the congested 

cable sections. In this approach, the peak current in C10-11 reduces to 223 A, which is 

approximately 11.2% below its ampacity rating. Cable C11-15, on the other hand, carries 

current that is equivalent to the ampacity of the conductor. This means that the cable has 

no more headroom but manages to operate within acceptable design limits. This is also 

shown by the dashed and normal red lines. The threshold limits for other cables are 

omitted in Figure 5.15 and Figure 5.16 since they are not overloaded in any way when 

the chargers are in operation. 

5.4.3.1   Coordinated vs. Uncoordinated Charging   

Overall, the two proposed methods demonstrate that cable loading and power losses, 

as well as network peak demand, can be substantially reduced. As demonstrated by the 

first method, the loading on the main cable (C11-15) close to the charging station can be 

reduced by as much as 45.7% during the peak period if the capacity of the 150-kW 

charger is halved and controlled to operate for six hours (i.e., shifted to operate during 

off-peak hours for three hours). This method would reduce peak demand and power 

losses at the charging station by up to 47% and 70%, respectively. In contrast, the 

second method has shown that the loading on Cable C11-15 can be reduced by up to 

32%, while the peak demand and power losses at the charging point can be reduced by 

up to 31% and 54%, respectively. Although it is difficult to make a direct comparison to 

the literature since each network topology is unique and each study employs different 

coordinated charging technologies based on the type and rating of the charging device, 

these figures regarding peak reduction, losses, and loading are consistent with studies 

that compared the two charging methods [105, 197, 199, 200]. 
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5.5   Summary  

A low-voltage British distribution network feeder is modelled and simulated using 

PSCAD/EMTDC simulation software with dynamic residential and commercial consumer 

profiles in this chapter. Mixed charging scenarios and activities are implemented near 

different customers to examine the feeder's dynamic operating characteristics during 

different time periods of the day, including off-peak and on-peak hours. 

According to the simulation findings concerning voltage analysis, distribution 

customers will always experience voltage fluctuations, regardless of the chargers' rating, 

type, and location in the network. However, it is reasonable to conclude that the larger 

the charger rating is, the higher the voltage drops are (particularly during periods of high 

demand), and the higher the cable loading and power losses are. The simulation findings 

also indicated that the voltage dips are largest at and near the commercial building due 

to the addition of the ultra-rapid charging device.  

Commercial high-powered chargers present a significant load compared to typical 

household and commercial appliances. Therefore, two neighbouring underground cables 

near the commercial point were overloaded and the network was unable to handle an 

ultra-rapid charger between 18:00 and 21:00. Three different proposed approaches for 

reducing cable loading in the network have been investigated: 

• The first approach examined the impact of increasing conductor size on the 

overloaded cables. Increasing the conductor size increases the maximum current 

capability of cables, but this comes at the expense of high costs for DNOs. This 

approach resulted in current reduction of 2.4% and 1.3% in cables C10-11 and 

C11-15, respectively. However, the ampacity of C10-11 was still exceeded by 

0.7%. 

• The second approach evaluated the integration of two small-scale V2G chargers 

near the residential customers during the peak hour. The V2G chargers resulted 

in current reduction in certain cables but increased the current at the commercial 

point. It can be summarised that V2G chargers alter power flows and increase 

current near the commercial point. This strategy also proved to be ineffective at 

minimising cable overloading since the ultra-rapid device's size was incomparable 

to the size of local loads and residential V2G chargers. 

• The final approach examined the regulation and coordination of the charger's 

operational hours and capacity. The optimum results have been achieved in this 

method, and the cables were operating within acceptable limits.
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CHAPTER 6 

6.   Estimation of Demand and Energy Consumption of 

Electric Vehicles at Rapid Chargers 

6.1 Introduction  

There is increasing interest in charging stations located in the form of hubs or 

forecourts. These hubs are generally built as standalone charging stations or directly 

connected on the existing premises of a gas station. The UK's first hub-based charging 

forecourt (which is opened by GRIDSERVE) offers a mixed of charging devices (rated 

from 22 kW to 350 kW) to meet the needs of a diverse range of motorists. While the 

number of hub-based projects is likely to expand rapidly to enable drivers to charge at 

conveniently accessible public sites, this growth is likely to introduce pulsating loads for 

the grid. To the best knowledge of the author, there is no work devoted to the demand 

estimation of hub-based charging stations with a variety of BEV models in the literature.  

Using the stochastic model, chapter goals are (i) to estimate the charging demand, 

charging duration, and energy consumption of different EV models, (ii) to estimate the 

network demand and peak transformer loading on the low-voltage distribution network 

from Chapter 5, (iii) to investigate the effect of V2G and battery energy storage units on 

peak load shaving, (iv) to determine the hosting capacity of the substation transformer, 

and (v) to calculate the minimum required sizing of the battery energy storage unit and 

substation transformer to design a network for the worst-case scenario.    

6.1.1 Chapter Structure 

Section 6.2 presents the distribution of charging events from UK's public chargers. 

Section 6.3 explains the stochastic model's development stage in detail. 

Section 6.4 presents different cases from the stochastic model. 

Section 6.5 develops a simulation model by incorporating stochastic charging 

profiles into a low-voltage distribution network i) to estimate the peak demand on the 

substation transformer, ii) to analyse the impact of V2G and battery energy storage units 

on peak load shaving, iii) to determine the hosting capacity of the substation transformer, 

and (v) to calculate the required sizing of the substation transformer and storage units. 

Section 6.6 presents the findings and conclusions of the chapter. 
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6.2 Public Charging Device Statistics in the UK  

Since 2015, the number of rapid chargers in the UK has been steadily increasing. 

The growth rate in the number of public rapid charging devices is shown in Figure 6.1. 

 

Figure 6.1: Growth in UK rapid charging devices since 2015 [205]. 

Rapid charging station installation is growing in the UK, particularly in cities and along 

key trunk roads and highways. In January 2021, there were over 20,000 public charging 

stations, of which 4,000 were representing rapid charging devices. The number of public 

stations is estimated to surpass 30,000 by 2030 [68, 69]. The geographical distribution 

of rapid charging devices in the UK is shown in Figure 6.2. 

 

Figure 6.2: Rapid charging devices per 100,000 of population by UK region [282]. 
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Scotland, as shown by the regional distribution chart in the North of the island, has 

the greatest density of rapid charging devices per 100,000 of population, while Northern 

Ireland and Wales have the lowest density. Regional disparities in distribution are mainly 

the result of bidding for government financing for charging devices. Certain local 

governments have applied for government funding for chargers, while others have not. 

Charge point operators and owners may opt to replace or decommission devices 

permanently or temporarily, or some devices may be inaccessible owing to chargers' 

maintenance and breakdowns in particular regions. For example, some devices have 

been turned off, and access to certain sites has been restricted during the COVID-19 

pandemic [282].  

6.2.1 Frequency of Charging Events 

The Department for Transport's report on Electrical Chargepoint Analysis of Local 

Authority Rapids in [49, 282] provides data on 27 local authorities in the UK that received 

funding for the installation of public chargers between 2017 and 2018. Between these 

dates, a total of 108,746 charging events have been recorded in the UK. The statistics 

from these events are shown in Table 6.1. 

Table 6.1: Charge point statistics by local authorities between 2017 and 2018 

Weekday 
Number of 

Events 

Average Charge 

Duration 

(mins) 

Average Energy 

Consumption 

 (kWh) 

Average 

Charge Power 

(kW) 

Monday 15,191 37 10.9 17.7 

Tuesday 15,502 39 10.8 17.1 

Wednesday 15,544 38 11.0 17.4 

Thursday 15,817 38 10.8 17.1 

Friday 16,922 42 11.0 15.7 

Saturday 15,716 36 11.2 18.7 

Sunday 14,054 37 11.6 18.8 

All events 108,746 38 11.0 17.5 

The data shows that the vehicles are plugged in and charged for an average of 38 

minutes, while consuming 11 kWh on average throughout the charging sessions. These 

variables, however, vary according to the specifications of the vehicle battery and the 

type of chargers, which were not available due to data confidentiality. The average 

charge power of 17.5 kW from the charging events shows that the vehicles are charged 

using fast-speed charging technologies. As discussed in Chapter 1 and Chapter 2 of 

this thesis, recent developments in the battery technology are pushing EVs to receive up 

to 350 kW on ultra-rapid devices.  
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However, the number of EV models capable of charging at rapid and ultra-rapid 

devices is small on the today's market due to limitations with the current battery 

technology. Therefore, the number of studies assessing the practicality of these high-

power chargers is limited in the literature. To bridge the main gaps in the literature, an 

algorithm based on vehicle-specific data and chargers operating between 40–350 kW is 

developed to produce stochastic charging profiles and to estimate EV charging demand 

based on the rising number of rapid charging devices for the upcoming years.  

6.3 Development of the Algorithm  

Specific vehicle information (such as its brand, model, and battery specifications) and 

external data concerning the charger's type and rating are confidential in Table 6.1. An 

algorithm is thus developed to create stochastic charging profiles from popular BEV 

models that are capable of charging on rapid and ultra-rapid devices. The algorithm 

consists of five main parts: 

1. The daily time frequency and distribution of charging events for the UK are 

obtained and presented in Section 6.3.1. Additionally, the percentile distribution 

of real-world charging events is calculated and input into the algorithm.  

2. Section 6.3.2 discusses the various types, specifications and charging 

characteristics of the EV models under consideration. Popular EV models capable 

of charging at rapid devices are used for realistic demand estimation scenario. 

3. The calculation of the vehicles' data prior to charging is given in Section 6.3.3. 

Additionally, vehicle and battery constraints are determined and calculated. 

4. Section 6.3.4 determines the estimation of vehicles' recharging duration and 

energy consumption throughout the charging sessions. 

5. The algorithm's flowchart and operation process are detailed in Section 6.3.5. 

Each part is ultimately combined to develop an algorithm for creating stochastic 

charging profiles. It should be noted that some assumptions — where relevant data 

cannot be obtained are considered to facilitate the algorithm's development.  

6.3.1 Frequency and Distribution of Charging Events 

The timely distribution of vehicles at public charging stations is a key data because 

the charging may influence the grid's operating characteristics if it occurs during the 

network's peak hours. The data from [49, 50, 282] is used to obtain the timely distribution 

of charging events in the UK. This is presented in Figure 6.3. 
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Figure 6.3: Frequency and timely distribution of public charging events in the UK.   

The graph displays frequencies in a 'top-of-the-hour' format. The frequency of 

charging occurrences — shown by the dark grey bars represents the frequency of 

charging events from fast-speed chargers between 2017 and 2018 [49]. From December 

2020 [50], the bright grey bars indicate the frequency of rapid chargers. While both 

sources are from separate time periods, the time distribution of charging events is 

identical. The percentile distribution of charging events in the UK is scaled down into 

eight intervals to simplify the algorithm development, as seen in Table 6.2. 

Table 6.2: Percentile distribution of charging events during different time intervals 

Hour (h) 
Distribution (%) 

[49] 

Distribution (%) 

[50] 

Mean 

Distribution 

(%) 

Number of 

Vehicles 

00:00–03:00 1.97 3.64 2.81 1 

03:00–06:00 1.33 2.71 2.02 1 

06:00–09:00 8.8 9.02 8.91 3 

09:00–12:00 20.64 19.39 20.02 7 

12:00–15:00 24.43 22.11 23.27 8 

15:00–18:00 21.6 20.46 21.03 7 

18:00–21:00 15.6 14.88 15.24 5 

21:00–00:00 5.66 7.79 6.73 2 

Table 6.2 shows the percentile distribution of fast and rapid chargers, as well as the 

mean distribution from both charger speeds. In the UK, the overall percentile distribution 

of charging events between 12:00–15:00 is nearly 23% and between 15:00–18:00 is 

nearly 21%. The third charging peak occurs between 09:00–12:00 (20% of the total 

events), whereas only a small number of individuals (7%) charge between 00:00–06:00. 
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Table 6.2 also shows the number of individual vehicles charging during different time 

intervals in the network, which is determined based on the total number of vehicles (34) 

in the network. The total number of vehicles is determined based on the national statistics 

and travel surveys. According to a 2021 data conducted by National Travel Survey, 

most of the population in Great Britain lives in households with one car (45%), two cars 

(33%) or none (22%) [283]. In this study, the greatest proportion of the general population 

is considered, and the maximum number of cars per household is limited to one. This is 

equivalent to 28 vehicles from 63 residential dwellings in the network feeder under 

consideration. In addition, the Office for National Statistics conducted a survey in late 

2021 and found that nearly half of the adult drivers are planning to switch to an electric 

car within the next decade [284]. This thesis used the National Travel Survey results to 

assume that the car ownership for households refers to electric only. 

The topology of the network used in this chapter is also considered to determine the 

total number of vehicles. The national data for the proportion of households with access 

to one, two, or no cars is available; however, the proportion of commercial buildings and 

consumers with access to a number of cars is not defined in the surveys. Therefore, the 

real data concerning the residential household to commercial building demand ratio is 

used (see Figure 5.3) to determine the average number of consumers and the proportion 

of EV ownership from the commercial building. It is found that the average demand from 

the commercial building is nearly equivalent to the demand of 14 residential households 

[47]. Using the greatest proportion of the general population, this is equivalent to six 

additional vehicles due to the commercial building, making the total number of vehicles 

34 in the network. It should also be mentioned that the allocation of EVs for the 

households is not relevant, since all EVs are charged at the same place, near the 

commercial building in the network. As discussed in Chapter 5, this point is selected as 

it is feasible to accommodate high-power charging devices (see Figure 5.2).  

On the other hand, the number of vehicles for each interval is determined based on 

the percentile distribution scaled down to the total number of vehicles considered in the 

modelling study. For example, the average charge time (termed as mean distribution) 

start is 8.91% between 06:00 and 09:00. Taking 8.91% of the total number of vehicles 

and rounding to the nearest integer results in three vehicles being charged at the hub. 

Among other calculations, the busiest hour is between 12:00 and 15:00 at the hub. The 

arrival times of the vehicles at the charging point are not determined at random, but 

rather based on the mean distribution of charging events derived from real data obtained 

from 108,746 charging events [49] and [50] as seen in Figure 6.3 and Table 6.2. 

However, the stochasticity is considered to produce different charging intervals during 

the specified time window for each vehicle in each run of the algorithm.  
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Each vehicle visits the station for charging just once in the day. Once a vehicle has 

been charged, it is removed from the cluster of vehicles represented by the 'splice()' 

function, which modifies the array's content while deleting the previously chosen vehicle 

in the algorithm [285]. The algorithm is used to compute the number of vehicles for each 

interval based on the mean distribution of charging occurrences. Intervals with a higher 

mean distribution (e.g., between 12:00–15:00) imply a greater possibility of vehicles 

charging concurrently at the station compared to an interval with a lower mean 

distribution (e.g., between 00:00–03:00). The algorithm's method for deciding the 

allocation of charge time for each vehicle is explained as follows: 

• Using the randomiser function, the algorithm selects a vehicle of any model, and 

then allocates a random charging time interval. 

• For simplicity, the vehicles could only be charged at the start of each hour. For 

example, if the algorithm allocates a vehicle to charge between 12:00 and 15:00, 

it only starts charging at 12:00, 13:00, or 14:00.  

• The selected vehicle is then removed from the cluster and the previous steps are 

repeated until all the remaining vehicles have been assigned a charging slot. 

6.3.2 Selection and Characteristics of Vehicles 

Five popular BEV models with large market shares capable of rapid and ultra-rapid 

charging are chosen. Different models are examined to provide diversity in the algorithm 

and to account for drivers' different charging needs and requirements. The types and 

specifications of the selected BEVs are found from [26, 286], and seen in Table 6.3. 

Table 6.3: Specifications of the chosen BEV models 

Brand/Model 
Battery Capacity 

(kWh) 

Range  

(km) 
Number of Units 

BMW i3 (2019) 42 310 4 

Audi e-Tron 55 quattro (2020) 95 436 5 

Kia e-Niro 4 (2020) 64 453.8 6 

Jaguar I-Pace (2019) 90 470 8 

Tesla Model 3 Performance (2021) 79.5 507 11 

BMW i3 (2019), Audi e-Tron (2020), Kia e-Niro 4 (2020), Jaguar I-Pace (2019), and 

Tesla Model 3 Performance (2021) are among the selected vehicles. Each model has a 

unique battery capacity and range, with the 42-kWh BMW model having the lowest 

range, while the 79.5-kWh Tesla Model having the greatest range. The range estimations 

from [36, 287] are utilised based on a mixed driving style (i.e., city and highway) during 

the mild weather conditions.  
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The total number of EV units in Table 6.3 is 34, which is the total number of assigned 

vehicles in the charging station on a given day. This number is determined based on the 

diversity of the BEV models and the likelihood of drivers switching to electric. Statistics 

from 2019 and 2020 show that BMW i3, Audi e-Tron, Kia Niro, Jaguar I-Pace, and Tesla 

Model 3 account for nearly 50% of the total registrations of fully electric cars in the UK 

[26, 286].  

The number of each specific model is also determined based on the vehicle shares 

scaled down to the network feeder considered in the modelling study. For example, Tesla 

Model 3 accounted for around 30% of total shares in 2020 [26], which is approximately 

equivalent to eleven units from a total of 34 assigned vehicles. The number of units for 

BMW, Audi, Kia, and Jaguar models, on the other hand, is determined as four, five, six, 

and eight, respectively. 

Each model has a different charge profile based on the type and rating of the charging 

device. While the driver often selects the physical device in a public charging station, the 

quantity of power supplied to the vehicle is completely dependent on the amount of 

power requested by the vehicle battery up to the charger's maximum rate [242]. For 

example, a Kia e-Niro 4 on a 175-kW CCS device cannot draw more than 50 kW [33, 

242]. This criterion, however, varies for each model on the market.  

The charging characteristics of each model on various rapid and ultra-rapid devices 

are presented in Table 6.4. 

Table 6.4: Charging characteristics of the selected EV models 

Brand/Model Device Rating Maximum Charge Power (kW) 

BMW i3 50-kW CCS 49 

Audi e-Tron 55 quattro 175-kW CCS 155 

Kia e-Niro 4 50-kW CCS 50 

Jaguar I-Pace  175-kW CCS 104 

Tesla Model 3 Performance  175-kW  148  

Tesla Model 3 Performance  350-kW CCS 194 

Three popular rapid charger connectors are used for the vehicles: the 50-kW CCS, 

the 175-kW CCS, and the 350-kW CCS. BMW and Kia models are solely charged on the 

50-kW CCS, while Audi and Jaguar are solely charged on the 175-kW CCS device. Tesla 

models are charged both on the 175-kW CCS and 350-kW CCS devices. It is seen from 

Table 6.4 that the rating (kW) of the device is not necessarily supplied to the battery due 

to limitations. The charging characteristic of each model on the market is different and 

limited by the on-board battery. Figure 6.4 compares and shows the charging 

characteristics (i.e., relationship between power and battery SoC) of each model. 
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 Figure 6.4: Relationship between charging power and battery SoC for each vehicle model [242]. 

The graph depicts the charge power in the vertical axis (in kW) as a function of the 

battery charge level, SoC (in %) in the horizontal axis. Each vehicle has its own 

characteristics, and the starting power of each model is completely dependent on the 

vehicle's remaining battery SoC. Audi and Jaguar vehicles, for example, are charged on 

175-kW devices, but may draw up to 155 kW and 104 kW as their theoretical maximum 

power, respectively. On the other hand, BMW and Kia models may draw up to 49 kW 

and 50 kW during a charging session on a 50-kW device, respectively. Lastly, Tesla 

models can draw up to 148 kW and 194 kW, respectively, from the 175-kW (V2) and 

350-kW (V3) CCS devices [36, 242, 287].  

As seen from the charging curves, the vehicles cannot be charged at a constant rate 

due to battery constraints. For example, BMW and Kia vehicles are charged at a steady 

pace until the battery reaches about 70% capacity. Beyond this point, the charging speed 

progressively decreases for Kia models, whereas BMW models achieve to manage the 

charging rate until the battery is about 80% full. A Jaguar car consumes about 100 kW 

until its battery is roughly 35% charged, at which point the speed progressively 

decreases. An Audi model charges at or around 150 kW until the battery reaches 70% 

capacity. Tesla models are somewhat different, and their charging speeds substantially 

decrease when the battery is about 50% and 40% full on a 175-kW and 350-kW device, 

respectively. 
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The main factors that influence charging speeds are [288]: 

• Battery capacity: the larger the vehicle's battery is, the longer is the charge time. 

• Battery SoC: charging a fully depleted battery takes longer than topping up the 

battery from 50% SoC. 

• Vehicle's maximum charging rate: a vehicle's battery can only charge at the 

maximum rate that the vehicle is capable of drawing.  

• Environmental variables: the ambient temperature may also influence battery 

operating temperatures. When the vehicle's battery gets cold, the charge pace 

decreases. The optimal temperature for batteries is typically between 20°C and 

30°C, but some batteries charge more quickly at or around 40°C [242]. 

In general, charging power and speed for most cars on the market drop considerably 

when the SoC reaches 80% at rapid devices. With respect to this, a customer study 

survey revealed that 94% of respondents at rapid charging devices power their vehicles 

until the battery SoC reaches 80% [51]. Typically, a motorist will charge up to 80% and 

then may decide to top up to 100% overnight using a residential charger [242, 288]. 

6.3.3 Vehicle Constraints Prior to Charging     

Prior to charging, an EV's remaining range and SoC are equal to a petrol vehicle's 

remaining mileage. The remaining range and SoC of an EV are determined by the 

distance travelled after a full charge. The developed algorithm's methods for calculating 

the vehicles' remaining range and SoC are described as follows: 

• For each model, a range limit is selected based on the vehicles' SoC restrictions. 

It is assumed that vehicles have a minimum of 10% and a maximum of 50% SoC 

prior to charging. 

• The lower SoC limit is set based on the vehicles' lowest battery SoC in Figure 6.4, 

whereas the upper limit is set based on the poll in [51], in which over 75% of the 

respondents said that their EV's average SoC level is ≤ 51% prior to charging.  

• Additionally, according to the charging data from 108,746 events, EVs consume 

between 9.2–20.5 kWh during charging sessions [49]. For city driving, a popular 

EV model (e.g., a 30-kWh Nissan Leaf SL) with a range of 172.2 km consumes 

17.2 kWh per 100 km [36]. This means that the average Nissan driver will charge 

when the vehicle's remaining range is between 54–119 km. If the driver maintains 

an average constant speed, the vehicle's SoC prior to charging will be between 

31–69%. This gives an average remaining SoC of 50% for the drivers. 
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Using the SoC constraints, the Maximum Distance (𝑀𝑥𝐷) and the Minimum Distance 

(𝑀𝑛𝐷) travelled by each model prior to charging are calculated with (6.1) and (6.2), 

respectively. 

 𝑀𝑥𝐷 (𝑘𝑚) = 𝑅𝑣 −
𝑅𝑣 × 𝑆𝑜𝐶10%

𝑆𝑜𝐶100%
 (6.1) 

 𝑀𝑛𝐷 (𝑘𝑚) = 𝑅𝑣 −
𝑅𝑣 × 𝑆𝑜𝐶50%

𝑆𝑜𝐶100%
 (6.2) 

Where: 

𝑅𝑣 is the actual electric range of each EV model (km), 

𝑆𝑜𝐶10% is the minimum SoC constraint of the vehicle prior to charging (%), 

𝑆𝑜𝐶100% is equivalent to maximum SoC/range on a fully charged battery (%), 

𝑆𝑜𝐶50% is the maximum SoC constraint of the vehicle prior to charging (%). 

The 𝑀𝑥𝐷 of each vehicle is equivalent to the maximum distance it can drive on a fully 

charged battery until the battery SoC shows 10%, whereas the 𝑀𝑛𝐷 refers to the 

minimum distance that each vehicle can drive after a full charge until the battery SoC is 

50%. These equations assume that each vehicle starts its journey with a maximum 

battery SoC. The calculated range limits for each model are demonstrated in Table 6.5. 

Table 6.5: Maximum and minimum range limits of the chosen EV models 

Brand/Model 

Actual 

Electric 

Range (km) 

Maximum and Minimum Range Limits  

within SoC Constraints (km) 

BMW i3 310 155 < Distance Travelled > 279  

Audi e-Tron 55 quattro 436 218 < Distance Travelled > 392.4  

Kia e-Niro 453.8 226.9 < Distance Travelled > 408.4  

Jaguar I-Pace  470 235 < Distance Travelled > 423  

Tesla Model 3 Performance 507 253.5 < Distance Travelled > 456.3  

Each model has its own set of maximum and minimum range limits, due to the 

vehicles' varying battery specifications. According to the calculations, a BMW vehicle 

with a 310-km range would have a remaining SoC of 50% and 10%, respectively, if it 

travels 279 km and 155 km on a full charge. Other estimates indicate that Audi models 

travel between 218–392.4 km, Kia models between 226.9–408.4 km, Jaguar models 

between 235–423 km, and Tesla between models 253.5–456.3 km prior to arriving and 

charging at the station.  
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The algorithm generates a random number — also termed as Distance Travelled (𝐷𝑡) 

between these limits, using the 'roll()', 'math.floor()', and 'math.random()' functions. 

These functions roll an integer between the maximum and minimum range limits and 

produce a floating number [289, 290]. The Remaining Range (𝑅𝑟) of vehicles are then 

calculated based on the randomly generated distance travelled values with (6.3). 

 𝑅𝑟  (𝑘𝑚) = 𝑅𝑣 − 𝐷𝑡 (6.3) 

The 𝑅𝑟 of a vehicle is calculated by subtracting the actual vehicle range from the total 

distance travelled on a fully charged battery. Following the remaining range calculation, 

the Remaining SoC (𝑅𝑆𝑜𝐶) of the vehicles is also calculated, according to (6.4). 

 𝑅𝑆𝑜𝐶  (%) =
𝑅𝑟  

𝑅𝑣
× 𝑆𝑜𝐶100% (6.4) 

As it can be seen, the vehicle's remaining battery capacity is entirely dependent on 

the predetermination and computation of SoC constraints, and randomisation of the 

Distance Travelled before reaching a charging hub.  

6.3.4 Charging Duration and Energy Consumption of Vehicles  

The length of recharging (i.e., time it takes for an EV to reach its target SoC) is the 

final step in determining the vehicle data to create stochastic charging profiles. This is a 

metric that is dependent on the battery size, the remaining battery capacity, the vehicle's 

and charging device's maximum charging rates, the target SoC and the average power 

used during a charging session. For example, some drivers charge their vehicles from 

near-empty to full battery state, whereas others charge from 10% to 80%, or simply top 

up to a desired SoC from 50–60%. It is difficult to provide an exact charging time for EVs 

since charging speeds vary due to a variety of factors. Even vehicles of the same model 

and SoC levels prior to charging can be recharged under different durations on the same 

charging device. Charge time estimates for various BEV models on different devices are 

available in [30, 36, 242, 287, 288]. This chapter makes use of the recharge estimates 

from [30, 242], because these provide the estimated durations for reaching up to 80% 

battery SoC from 10% battery SoC. These estimates, as also shown in Table 6.6, are 

chosen since the minimum and maximum SoC values at the start and finish of charging 

are set to 10% and 80%, respectively.  
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Table 6.6: Generic recharge time estimates of the chosen EV models 

Brand/Model 

Battery 

Capacity  

(kWh) 

Average Charge 

Power   

(kW) 

10% to 80% 

Charge Time 

(mins) 

BMW i3 42 47 (on a 50-kW CCS) 36 

Audi e-Tron 55 quattro 95 146 (on a 175-kW CCS) 26 

Kia e-Niro 64 45 (on a 50-kW CCS) 63 

Jaguar I-Pace  90 85 (on a 175-kW CCS) 44 

Tesla Model 3 Performance (V2) 79.5 124 (175-kW CCS) 27 

Tesla Model 3 Performance (V3) 79.5 148 (350-kW CCS) 23 

The average charge power represents the power drawn to charge the battery from 

10% to 80% of its capacity. BMW and Kia vehicles on a 50-kW CCS device draw an 

average of 47 kW and 45 kW, respectively, to reach to 80% SoC from 10% SoC. Jaguar 

and Audi vehicles take an average of 85 kW and 146 kW from a 175-kW device, 

respectively. Tesla vehicles receive 124 kW and 148 kW from 175-kW and 350-kW CCS 

devices, respectively [36, 242]. 

Overall, the time required to reach 80% of battery capacity increases as the ratio of 

battery capacity to average charge power increases. For example, the average power 

supplied to a BMW and a Kia vehicle on a 50-kW device is almost the same, yet the Kia 

charges at a much slower pace due to its 1.5 times larger on-board battery capacity. 

Audi and Tesla vehicles on a 175-kW CCS charging device draw an average of 146 kW 

and 124 kW, respectively; nevertheless, the Tesla model charges at a quicker pace 

owing to its smaller on-board battery size. According to real-world charging results, the 

Model 3 charges 42% faster than an Audi model on a 350-kW CCS device [291]. 

Equation (6.5) is introduced for estimating the vehicles' recharging durations based 

on their calculated 𝑅𝑆𝑜𝐶  levels. 

 𝐶𝑡𝑒  (𝑚𝑖𝑛𝑠)  =
𝐶𝑡 × 𝑆𝑜𝐶𝑑

𝑆𝑜𝐶70%
 (6.5) 

Where: 

𝐶𝑡𝑒 is the vehicles' estimated charging time to reach target SoC of 80% (mins), 

𝐶𝑡 is the vehicles' estimated charging time to reach from 10–80% SoC (mins), 

𝑆𝑜𝐶𝑑  is the difference between the remaining and target SoC of vehicles (%), 

𝑆𝑜𝐶70% is the max. SoC difference between the minimum and target SoC (%). 
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Since the vehicles generally charge up to 80% in a rapid charging device [242], it is 

assumed that the vehicles' target SoC is 80% in (6.5). If an Audi vehicle with a 30% 

remaining battery capacity arrives to charge at the hub, for example, its estimated 

recharge time on a 175-kW CCS device will be 19 minutes, according to (6.6). 

𝐶𝑡𝑒  (𝑚𝑖𝑛𝑠) =
26 𝑚𝑖𝑛𝑠 × (80% − 30%)

𝑆𝑜𝐶70%
≈ 19 mins (6.6) 

Lastly, the energy consumption of each vehicle may also be determined, using (6.7). 

𝐸𝑣  (𝑘𝑊ℎ) =
𝐴𝐶𝑃 × 𝐶𝑡𝑒

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 (6.7) 

Where: 

𝐸𝑣 is the energy consumption of each vehicle during charging sessions (kWh), 

𝐴𝐶𝑃 is the average charge power to reach from 𝑅𝑆𝑜𝐶  to 80% SoC (kW). 

6.3.5 Methodology and Flowchart of the Algorithm  

The algorithm developed in this chapter produces stochastic scenarios based on the 

constraints and limits of the vehicle models before returning the calculated parameters 

of them. In addition to estimating EV demand, the algorithm generates stochastic EV 

charging profiles based on the randomly distributed travel distances of various EV 

models. This ‘randomly’ generated travel distances are determined within the predefined 

battery SoC constraints from the survey results [51]. In addition, the considerations for 

generating charging time are not completely random; rather, they are stochastically 

generated within a specified time window using actual data from Zap Map and 108,746 

charging events from local authorities in the UK.  

The DENO, which is a simple, secure, and modern runtime that is based on the V8 

JavaScript engine, is chosen to develop the algorithm. DENO supports TypeScript out 

of the box, which is a popular superset of JavaScript created by Microsoft. TypeScript 

brings a huge advantage while developing the algorithm by providing type and error 

checking, which results in less error-prone code and better performance during 

execution. It is also used to add optional static typing to the language, and to correct any 

type-related errors quickly (avoiding compile-time errors caused by syntax violations). 

For example, if a number is substituted for a string that must include the object's name, 

the programme immediately indicates that it was expecting a string instead.  
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The algorithm begins by identifying 34 cars, five distinct vehicle models, and battery 

specifications of the vehicles as inputs. Initially, the structure of the inputs and objects is 

established in the algorithm. These include the number of cars, their brand and model, 

the frequency, and interval at which charge time begins, the battery parameters (capacity 

and range of vehicles), and the vehicles' calculated recharge durations. These are 

created as functions that accept objects containing the name (which must be a string — 

for example, the name for the EV brand) and data (which must be a number — for 

example, the number of each EV model or the data about a vehicle's battery capacity). 

The next phase includes randomly determining the remaining range of vehicles within 

the computed SoC constraints. Rolling a number within the minimum and maximum 

range limitations is accomplished using the 'roll()', 'math.floor()', and 'math.random()' 

functions. The vehicles' remaining range and remaining SoC are determined using the 

randomly generated distance travelled data. The remaining battery metrics are then used 

to estimate the recharging duration of the vehicles. The simplified flowchart of the 

algorithm is illustrated in Figure 6.5. 

 

Figure 6.5: Simplified flowchart of the algorithm.  
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The appendices provide the codes and the layout of the algorithm script in more detail 

(see Appendix D.2).  

6.4 Algorithm Results  

The frequency of daily charging events during various time intervals from Figure 6.3 

and Table 6.2 is used in conjunction with the predefined SoC limits to generate the 

distribution of charging events for 34 vehicles in each algorithm run. The algorithm is run 

20 times to let the stochasticity play out and draw a more general conclusion for the 

results. This section shows the detailed stochastic results obtained from the algorithm. 

6.4.1 Stochastic Distribution of Charging Events and Vehicles 

In order to simplify the presentation of the results, two distinct runs are obtained from 

the algorithm, with each run showing the distribution of 10 aggregated cases on a single 

graph. Figure 6.6 and Figure 6.7 show the timely distribution of charging events and 

stochastically determined battery SoC for each vehicle model.  

 

Figure 6.6: Stochastic distribution of charging time and battery SoC for vehicles (Case 1 to 10). 
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Figure 6.7: Stochastic distribution of charging time and battery SoC for vehicles (Case 11 to 20). 

The primary vertical axis of both graphs depicts the stochastic battery SoC (in %) as 

a function of the stochastic charging time in the horizontal axis (in hours). Most charging 

events are observed to occur between 09:00 and 18:00. Also observed is the stochastic 

spread of the battery SoC for each vehicle model. Each graph displays the stochastic 

data for 340 vehicles, and a total of 680 vehicles are utilised to estimate the energy 

demand and consumption from 20 cases. The subsequent subsections examine the 

calculated and estimated energy demand of the vehicles in greater detail. 

6.4.2 Stochastic Distribution of Energy Consumption  

Each case is individually analysed using the calculated energy consumption of 34 

vehicles. This also permits the comparison of each case's vehicle energy consumption 

distribution and the identification of the case with the highest demand and energy 

consumption from the stochastic charging activities (i.e., worst-case scenario for the 

grid). The appendices provide a tabular representation of the energy consumption for a 

total of 680 vehicles derived from the algorithm from all cases (see Appendix D.3). On 

the following page, the stochastic energy consumption from 20 cases is presented. 
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Figure 6.8: Stochastic distribution of total charge time and energy consumption (Case 1 to 10). 

 

Figure 6.9: Stochastic distribution of total charge time and energy consumption (Case 11 to 20). 

Figure 6.8 and Figure 6.9 depict, in the primary vertical axis, the total (combined) 

charging time for each corresponding case, i.e., the duration all 34 vehicles remained 

connected to achieve 80% battery SoC throughout the entire day (in minutes), as a 

function of the total energy consumption (in kWh) of 34 vehicles in the secondary vertical 

axis. Figure 6.8 shows the stochastic distribution of total charging time and energy 

consumption from Case 1 to Case 10, whereas Figure 6.9 shows the stochastic 

distribution of total charging time and energy consumption from Case 11 to Case 20. 
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The relationship between charging time and energy consumption appears to be 

directly proportional. However, it should be noted that, the battery SoC of the vehicles 

prior to charging significantly affect the duration of charging and the magnitude of energy 

consumption (see Section 6.3.4). This indicates that cases containing a larger number 

of vehicles with lower battery SoCs will necessitate longer charging times and require 

the grid to provide more energy than cases where the vehicles start charging at higher 

SoC levels. This is due to the limitations of the batteries in each model, as the charging 

power for most models decreases as the battery SoC increases (see Figure 6.4).   

Due to the stochastic nature of the vehicles and charging events, the results 

demonstrate that each case produces a unique scenario for the grid. The total vehicle 

charging time ranges from 881 minutes (calculated in Case 9) to 952.3 minutes 

(calculated in Case 3), whereas the total energy consumption ranges from 1183.7 kWh 

(calculated in Case 13) to 1411.3 kWh (calculated in Case 15). It should be clarified that 

although there is a direct relationship between the charging time and the energy 

consumption of vehicles, this does not imply that the vehicles requiring the longest time 

to reach 80% battery SoC consume the most amount of energy. This is a result of the 

varied characteristics and types of the vehicle models considered in this study. Case 11 

has the longest charging time for vehicles to complete charging (1,027.5 minutes); 

however, Case 15 uses the most electricity from the grid (1411.3 kWh). Case 13 vehicles 

use the least amount of energy to reach their target battery SoC levels (1183,7 kWh); 

however, Case 9 vehicles complete charging in the least amount of time (881.4 minutes). 

When analysing the severity of grid issues, the time of charging, the location of 

charging, and the amount of electricity consumed by the vehicles are the most important 

factors to consider [241]. For this reason, this study examines the impact of stochastic 

charging activities by analysing the two scenarios in which vehicles remain connected to 

the grid the longest (Case 11) and consume the most electricity from the grid (Case 15).  

6.4.3 Worst-Case Scenarios  

In this section, the detailed calculation of vehicle data for scenarios where the grid is 

subjected to worst conditions is presented. Table 6.7 initially shows the stochastic 

distribution of 68 vehicles from two worst cases. To facilitate the presentation of the 

results, each vehicle model is assigned a number. For example, four BMW vehicles are 

represented as B1 to B4, five Audi vehicles are designated as A1 to A5, six Kia models 

are designated as K1 through K6, and eight Jaguar models are designated as J1 to J8. 

For Tesla vehicles, it is assumed that seven of them are charged using 150-kW devices 

(i.e., T1 to T7), while the other four are charged on 350-kW devices (i.e., T8 to T11). 
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Table 6.7: Stochastic timely distribution of vehicles in Case 11 and Case 15   

Charge Time  

(hour)  

(Case 11) 

Vehicle Number  

(Case 11) 

Charge Time  

(hour)  

(Case 15) 

Vehicle Number  

(Case 15) 

00:00 No Vehicle 00:00 No Vehicle 

01:00 No Vehicle 01:00 No Vehicle 

02:00 A2 02:00 J7 

03:00 No Vehicle 03:00 T8 

04:00 No Vehicle 04:00 No Vehicle 

05:00 K5 05:00 No Vehicle 

06:00 J3, T1 06:00 No Vehicle 

07:00 No Vehicle 07:00 K4, T5 

08:00 A5 08:00 J5 

09:00 B4, J7, K4 09:00 T10 

10:00 T5 10:00 A5, J2 

11:00 B2, J8, K3 11:00 B1, J4, J6, T2 

12:00 A1, B3, K6 12:00 A1, B3, B4, K2, T7 

13:00 B1, J2, T2, T6 13:00 A4, K1 

14:00 A3 14:00 B2 

15:00 J1, T3, T7 15:00 K5 

16:00 J4 16:00 J3, T3, T6 

17:00 J5, T9, T10 17:00 A3, T4, T9 

18:00 K1, T11 18:00 K6, T1 

19:00 A4, J6, T4 19:00 T11, A2, J8 

20:00 No Vehicle 20:00 No Vehicle 

21:00 T8 21:00 J1, K3 

22:00 K4 22:00 No Vehicle 

23:00 No Vehicle 23:00 No Vehicle 

Charge start time entries are shown in a 'top-of-the-hour' style in Table 6.7. With 

reference to the mean percentile distribution of charging events in Table 6.2, intervals 

with a high probability of charging occurrence have four or five vehicles charging 

concurrently, whilst intervals with a low probability of charging occurrence either do not 

have any vehicles charging or have just one to two vehicles charging. It should be noted 

that although the algorithm schedules certain EVs to begin charging at the same time, 

this does not mean that they complete charging at the same time due to differences in 

their battery specifications and variations in their charging profiles. The duration of 

recharging also depends on the average power requested by each vehicle to reach 80% 

battery capacity. More relevant data throughout the charging of the vehicles in Case 11 

and Case 15 is also presented in Table 6.8 and Table 6.9, respectively. These are key 

data while quantifying the peak demand on the substation transformer in Section 6.5.  
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Table 6.8: Calculated charging data of the vehicles in Case 11 

Vehicle Model  

and 

 Number 

Remaining 

SoC  

(%) 

Estimated 

Recharge 

Time  

(mins) 

Average 

Charge Power  

(kW) 

Estimated 

Energy 

Consumption 

(kWh) 

B1 35.5 22.9 47.3 18.1 

B2 28.1 26.7 47 20.9 

B3 30 25.7 47.1 20.2 

B4 18.4 31.7 46.7 24.7 

A1 37.5 15.8 148.4 39.1 

A2 29.7 18.7 148.3 46.2 

A3 11.6 25.4 146.8 62.1 

A4 10.4 25.9 146.6 63.3 

A5 29 18.8 148.2 46.4 

K1 23.5 50.9 45.5 38.6 

K2 15.2 58.4 45.6 44.4 

K3 13.1 60.2 45.5 45.7 

K4 18.5 55.4 45.6 42.1 

K5 30.1 44.9 45.8 34.3 

K6 21.7 52.5 45.6 39.9 

J1 33.8 29 76.8 37.1 

J2 34.5 28.6 76.3 36.4 

J3 14.4 41.2 84.6 58.1 

J4 29.1 32 79.4 42.3 

J5 13.9 41.5 85 58.8 

J6 17.2 39.5 83.8 55.2 

J7 38.2 26.3 74.6 32.7 

J8 11.7 43 85.1 61 

T1 27.8 20.1 119.4 40 

T2 47.8 12.4 103.4 21.4 

T3 30.4 19.1 118.5 37.7 

T4 11.8 26.3 124.1 54.4 

T5 24 21.6 121 43.6 

T6 24.1 21.5 121 43.4 

T7 23.6 21.8 121 44 

T8 19.5 19.9 142.1 47.1 

T9 32.4 15.64 130.3 34 

T10 22.7 18.8 139.7 43.8 

T11 33.3 15.4 129 33.1 
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Table 6.9: Calculated charging data of the vehicles in Case 15 

Vehicle Model  

and 

 Number 

Remaining 

SoC  

(%) 

Estimated 

Recharge 

Time  

(mins) 

Average 

Charge Power  

(kW) 

Estimated 

Energy 

Consumption 

(kWh) 

B1 24.1 28.7 46.9 22.4 

B2 33.4 24 47.7 19.1 

B3 31 25.2 47.1 19.8 

B4 25.4 28.1 46.9 22 

A1 46.8 12.4 148.4 30.4 

A2 20.2 22.2 147.7 54.6 

A3 22.2 21.5 147.9 53 

A4 40 14.9 148.4 36.9 

A5 42.1 14.1 148.4 34.9 

K1 10.3 63.8 45.4 48.3 

K2 25 49.5 45.5 37.5 

K3 15.5 58.1 45.6 44.2 

K4 18.7 55.2 45.6 42 

K5 29 45.9 45.4 34.7 

K6 23.5 50.9 45.5 38.6 

J1 30.9 30.9 78.4 40.4 

J2 16.1 40.1 84.1 56.2 

J3 25.5 34.5 80.7 46.4 

J4 25.8 34.1 80.7 45.9 

J5 18.4 38.7 83.5 53.9 

J6 20 37.8 82.9 52.2 

J7 32.5 29.8 77.4 38.4 

J8 21.9 36.5 82.3 50.1 

T1 31.6 18.7 117.5 36.6 

T2 18.7 23.6 122.6 48.2 

T3 46.3 13 109.3 23.7 

T4 31.3 18.8 118 37 

T5 33.8 17.8 116.3 34.5 

T6 17.8 24 122.9 49.2 

T7 10.3 26.9 124.5 55.8 

T8 12.8 22.1 146.6 54 

T9 18.2 20.3 143.5 48.6 

T10 15.4 21.2 145.4 51.4 

T11 16.3 20.9 144.8 50.4 

It should be clarified that the average charge power in Table 6.8 and Table 6.9 is 

different from the base average charge power values in Table 6.6, since this is a 

parameter that is dependent on the remaining battery SoC of the vehicles prior to 

charging. A comparison is made across various models on the same CCS devices with 

similar remaining battery SoC levels prior to charging from Case 15: 
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• A2, with a remaining SoC level of 20.2% and an estimated recharging duration of 

22.2 minutes, draws around 148 kW on average to reach 80% battery capacity 

on a 175-kW CCS device, while it consumes 54.6 kWh from the grid to reach to 

its target SoC.  

• J6, on a 175-kW CCS device with a 20% remaining battery SoC capacity 

consumes around 52.2 kWh from the grid and charges in 38 minutes. The 

average drawn power for this vehicle to reach from 20% battery SoC to 80% 

battery SoC is around 83 kW.  

• T2, on a 175-kW CCS device with a 18.7% remaining battery SoC capacity 

consumes around 48 kWh from the grid and charges just in 24 minutes. The 

average drawn power for this vehicle to reach from 18.7% battery SoC to 80% 

battery SoC is around 123 kW.  

The comparison of three competing long-range models reveals that although all 

vehicles begin charging at the identical SoC levels, the Tesla model consumes less 

energy because its battery is more efficient for long range driving. 

6.4.4 Comparison of General Vehicle Data  

In the last subsection, a general comparison is made among 680 vehicles and 

between each model by calculating the average charging time and energy consumption 

for all cases combined. This comparison is shown in Table 6.10. 

Table 6.10: Combined and averaged recharging duration and energy consumption of 680 vehicles  

Vehicle Model  
Average Recharging Time  

(mins) 

Average Energy Consumption 

(kWh) 

BMW 25.2 19.8 

Audi 18.6 45.8 

Kia 45.8 34.6 

Jaguar 31.7 41.8 

Tesla (V2) 19.7 39 

Tesla (V3) 17.2 38.7 

Calculations based on 20 cases indicate that while Kia models consume less energy 

than Audi, Jaguar, and Tesla models, it takes them longer to reach 80% battery SoC. 

BMW models consume the least energy to reach 80% battery SoC, but their average 

charging times are longer than Audi and Tesla models. The increased range and 

relatively quick recharging times of Tesla vehicles distinguish them not only from other 

models in this study, but also from other vehicles on the market. This demonstrates why 

Tesla models currently dominate market share. 
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6.5 Impact of Stochastic Charging Profiles on a Distribution 

Network Feeder 

In this section, the stochastic charging profiles from the worst-case scenario are 

integrated near the distribution network feeder's only commercial building (Node N15) to 

quantify the daily peak demand and loading. The commercial building is chosen to make 

a realistic scenario, since these types of points generally have access to three-phase 

grid connection and have the capability of hosting rapid and ultra-rapid chargers. The 

topology and the characteristics of the feeder customers are demonstrated in Figure 

6.10. The same network was also used in Chapter 5. 

 

Figure 6.10: Distribution network feeder under examination.  

Section 6.5.1 examines the effect of stochastic charging profiles on the peak demand 

at the charging point (Node N15) and at the substation transformer (between Node N0 

and Node N1). Section 6.5.2 analyses how individual EV charging affects the demand 

profiles on a minute-by-minute basis. Section 6.5.3 examines the impact of installing 

V2G chargers and battery energy storage units near the charging point in the network. 

Section 6.5.4 investigates transformer loading without and with the inclusion of a battery 

energy storage unit near the charging hub. 

6.5.1 Hourly Peak Demand in the Network 

The peak demand before the integration of stochastic charging profiles (baseload) 

and the peak demand after the integration of stochastic charging profiles are compared 

at the network's charging station and at the substation transformer throughout the entire 

day with the stochastic charging of 68 vehicles from Case 11 and Case 15. Simulation 

results are demonstrated in Figure 6.11. 
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Figure 6.11: Hourly peak demand during baseload and with stochastic charging profiles. 

The graph shows the hourly peak demand (in kW) at the charging point and at the 

substation transformer during baseload and with the addition of stochastic charging 

profiles from Case 11 and Case 15. The baseload demand at the charging point is a 

typical load profile of a commercial building; however, it is not visible as it is a very small 

value compared to the demand with charging activities (see Figure 5.3). The baseload 

demand at the transformer is the aggregated demand of the feeder's 64 customers. 

According to [46, 47], the overall percentile distribution of charge time between 12:00 

and 21:00 in the UK is approximately 62%, and Figure 6.11 illustrates the significant rise 

in peak demand when the stochastic charging events take place between these hours. 

Both Case 11 and Case 15 scenarios generate similar network load profiles. Due to 

differences in vehicle models, midday and late afternoon witness the greatest variation. 

Observations indicate that the peak demand in the late afternoon (between 16:00 and 

17:00) is higher than the peak demand at other times of the day, mainly due to the 

increased residential and electricity demand as customers return home from work. Since 

afternoon peaks are more dominant due to the likelihood of charging events, this chapter 

focuses more on these peak periods to provide a more detailed investigation of how the 

system will operate at scale (i.e., nationwide). For Case 11, the afternoon peak demand 

starts at 17:00 when J5, T9, and T10 begin charging simultaneously. On the other hand, 

the afternoon peak starts at 17:00 when A3, T4, and T9 begin charging simultaneously 

for Case 15 (see Table 6.7). As shown in Figure 6.11, the peak demand at the charging 

point and substation transformer nearly approaches 500 kW and 570 kW, respectively. 

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D
e

m
a

n
d

 (
k
W

)

Time of Day (hour)

Charging Point (Baseload) Charging Point (Case 15)

Charging Point (Case 11) Transformer (Baseload)

Transformer (Case 15) Transformer (Case 11)



Chapter 6 — Estimation of Demand and Energy Consumption of Electric Vehicles at Rapid Chargers 

131 | P a g e  
 

It should be clarified that the differences in peak magnitudes are due to the different 

SoC levels of the vehicles. Nonetheless, it is evident from the results that Audi, Tesla, 

and Jaguar vehicles significantly contribute to the peak demand. On the other hand, the 

peak demand at the charging point does not remain constant for the entire hour since 

the aggregated charge power drawn by vehicles changes with an increase in the battery 

SoC (see Figure 6.4). In the following subsections, minute-by-minute fluctuations in peak 

demand are analysed in detail from the afternoon peak periods. Even though the peak 

demand profiles of Case 11 and Case 15 are identical at the start of 17:00, the remainder 

of this chapter focuses solely on the load profiles of Case 15, as this scenario requires 

the grid to provide more energy for the EVs to complete charging (see Figure 6.9). 

6.5.2 Effect of Battery SoC on the Peak Demand 

As discussed, the aggregated charge power drawn by each vehicle changes with 

respect to an increase in the battery SoC. The network demand is a dynamic variable 

that is substantially influenced by the behavioural changes of customers and drivers. 

Figure 6.12 and Figure 6.13 show how the afternoon peak demand varies on a minute-

by-minute basis with concurrent charging of various vehicles. 

 

Figure 6.12: Fluctuation in the network peak demand between 16:00 and 17:00. 

The graph illustrates the demand at the charging point and at the substation 

transformer (in kW) in the primary vertical axis, as a function of the battery SoC of the 

vehicles (in %) in the secondary vertical axis. It is plotted against real time (in hour and 

minutes) and shows how the peak demand varies between 16:00 and 17:00, when J3, 

T3, and T6 begin charging with 25.5%, 46.3%, and 17.8% SoC levels, respectively.  
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At the beginning of charging and hour, J3, T3, and T6 draw around 103 kW, 147 kW, 

and 139 kW, respectively, increasing the demand at the charging point and at the 

substation transformer to around 400 kW and 446 kW. J3's power consumption 

decreases gradually, whereas T3 and T6's power consumption increases until they reach 

50% battery SoC. The peak demand of 404 kW and 448.7 kW occurs at 16:02 at the 

charging point and at the substation transformer, respectively. This peak demand only 

lasts less than a minute, which is used to represent the maximum peak demand as seen 

in Figure 6.11. 

At 16:14, when the first vehicle (T3) reaches 80% battery SoC and stops charging, 

the overall network demand begins to decrease dramatically. The charging session for 

the second vehicle (T6) and the third vehicle (J3) concludes at approximately 16:26 and 

16:37, respectively. Once all vehicles are charged to their target SoC of 80%, the 

demand at the charging station and the substation transformer will equal the baseload 

peak demand of 12 kW and 56.7 kW, respectively. The demand then remains constant 

until the beginning of the next hour, when it is anticipated that more vehicles will arrive 

and charge at the station. The minute-by-minute demand analysis of the next hour is 

shown in Figure 6.13. 

 

Figure 6.13: Fluctuation in the network peak demand between 17:00 and 18:00. 

The graph illustrates the demand at the charging point and at the substation 

transformer (in kW) in the primary vertical axis, as a function of the battery SoC of the 

vehicles (in %) in the secondary vertical axis. It is plotted against real time (in hour and 

minutes) and shows how the peak demand varies between 17:00 and 18:00, when A3, 

T4, and T9 begin charging with 22.2%, 31.3%, and 18.2% SoC levels, respectively.  
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A3, T4, and T9 draw up to 147 kW, 150 kW, and 194 kW, respectively, between 17:04 

and 17:06, which corresponds to the peak demand of 501 kW at the charging point and 

570 kW at the substation transformer (also seen in Figure 6.11). After this point, network 

demand steadily decreases as the charging rates of Tesla vehicles gradually decrease 

when their batteries are between 40 to 45% full. At 17:20, T4 achieves its target SoC of 

80%, resulting in a reduction in the peak demand in the network. Additionally, T9 and A2 

reach their target SoCs at 17:22 and 17:24, respectively, and hence bringing down the 

demand at the charging point and at the substation transformer to 11.3 kW and 80 kW, 

respectively. 

Two afternoon peak intervals of the day are shown in Figure 6.12 and Figure 6.13 to 

represent the charging characteristics of different EV models and to show how the 

interaction between different models affect and contribute to the increase in the network's 

peak demand. It should be noted that other intervals' minute-by-minute load profiles are 

not analysed and demonstrated since the same rationale applies with individual effect of 

charging on load profiles. These minute-by-minute demand profiles are also used when 

developing different discharge profiles for physical lithium-ion battery packs resembling 

a stationary battery energy storage unit in Chapter 7. This is to determine how much 

capacity of a typical stationary on-site battery energy storage can be used to support 

vehicle charging demand under various charging profiles. This also enables analysis of 

whether the battery's discharge end voltage has been reached. 

6.5.3 Peak Load Reduction with V2G Chargers and Battery Energy 

Storage Units 

The simulation results indicate that rapid and ultra-rapid devices significantly increase 

the peak demand of the feeder, particularly between 16:00 and 19:00 due to the higher 

likelihood of charging events taking place and higher residential demand in the network. 

The addition of two V2G chargers near the residential households at Node N11, and the 

connection of an on-site stationary battery energy storage unit at the charging point are 

proposed to reduce the feeder's peak demand.  

For the V2G scenario, two 7.5-kW rated V2G chargers are connected near the 

network and the sizing is chosen to represent a typical device rating for a residential 

bidirectional charger from the UK trials [202]. The energy stored in the V2G charger is 

discharged back to the grid between 11:00–13:00 and 16:00–20:00 since these are the 

periods with the highest peak demand (see Figure 6.11). The impact of this small-scale 

V2G charger on the feeder's hourly peak demand is demonstrated in Figure 6.14.  
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Figure 6.14: Effect of small-scale V2G chargers on the hourly peak demand. 

The graph shows the hourly peak demand profile (in kW) at the charging point and 

at the substation transformer without and with the addition of two V2G chargers. V2G 

chargers are only providing energy between two intervals – represented by the small 

black areas at the bottom of the graph. Overall, the peak demand reduction achieved by 

the 7.5-kW V2G charger is not significant since the size of V2G chargers is small in 

comparison to rapid (50 kW) and ultra-rapid (100–350 kW) chargers.  

To reduce peak demand, this chapter proposes to connect stationary battery energy 

storage units with larger energy capacity. Two operational scenarios for battery energy 

storage units are considered. Initially, a stationary grid-charged battery is connected to 

the charging point to reduce the peak demand. This scenario assumes that the stationary 

battery energy storage unit has a rated power of 50 kW between 11:00 and 13:00, and 

between 16:00 and 20:00.  

In the second scenario, the effect of regulating the discharge rate of the battery 

energy storage unit is investigated. The second scenario assumes a larger storage unit 

is connected, and its capacity is governed based on the magnitude of the network's peak 

demand.  

Figure 6.15 and Figure 6.16 depict the simulation results for the effect of battery 

energy storage units in the first and second scenarios, respectively. 
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Figure 6.15: Effect of large-scale battery energy storage unit on the hourly peak demand. 

The graph shows the hourly peak demand (in kW) at the charging point and at the 

substation transformer without and with a battery energy storage unit. The storage unit 

only discharges its energy during the intervals represented by the black areas at the 

bottom of the graph. This storage unit reduces peak demand by up to 10%, nearly 7% 

more than the V2G chargers were able to accomplish. 

 

Figure 6.16: Effect of controlling the capacity of battery storage units on the hourly peak demand. 
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Figure 6.16 shows the effect of varying the output power of the battery energy storage 

unit on the peak demand. The discharge capability of the battery energy storage unit is 

varied from 0 to 200 kW for each interval. When the total charging demand is 

exceptionally high, the rated power output of the storage unit is increased to 200 kW. 

(e.g., at 12:00 and 17:00). In contrast, its capacity is reduced in response to a reduction 

in the aggregated charging demand to 150 kW (for example, at 11:00, 16:00, and 19:00) 

and to 50 kW (e.g., at 10:00, 13:00, and 18:00). Additionally, the storage unit is turned 

off when there is very little or no charging activity in the network. 

6.5.4 Substation Transformer Loading Analysis 

Each transformer (commonly referred to as a distribution transformer) that links a 

residential network to the higher-voltage grid is rated for a certain maximum demand. 

Once this value is exceeded, the transformer is said to be overloaded, which may result 

in deterioration of the insulating layers in the core, resulting in a shorter lifetime. 

In this part of this chapter, the loading on the 11/0.433 kV substation transformer is 

analysed by measuring the full-load current on its secondary winding and then comparing 

to the simulated values during the maximum peak afternoon hours with the stochastic 

charging profiles. The full-load operation of the transformer, namely, the point at which 

the transformer runs at the maximum permitted secondary current, is initially determined 

using (6.8). 

 
𝐼𝑠 =

𝑆𝑡𝑥

√3𝑉𝐿−𝐿𝑠

 (6.8) 

Where: 

𝐼𝑠 is the secondary winding full-load (threshold) current (A), 

𝑆𝑡𝑥 is the transformer rating (500 kVA), 

𝑉𝐿−𝐿𝑠 is the secondary winding line-to-line RMS voltage (V). 

The secondary winding full-load current is determined as 667 A using the 

transformer's rated secondary winding voltage of 433 V. The transformer's loading is 

analysed between the main afternoon peak periods (16:00–18:00) because this is the 

time when the worst-case scenario's maximum peak demand is observed from the 

simultaneous charging of Audi, Jaguar, and Tesla vehicles in the studied network (see 

Figure 6.11). The loading analysis on the substation transformer between 16:00–17:00 

and 17:00–18:00 is shown in Figure 6.17 and Figure 6.19, respectively.  
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Figure 6.17: Substation transformer loading between 16:00 and 17:00. 

On the vertical axis, the graph displays the measured full-load current (in A) at the 

secondary side of the transformer. The threshold current, which is the full-load current at 

which the transformer operates at full capacity, is also depicted as a dashed red line in 

the diagram. It is seen that the transformer's rated capacity is exceeded during the first 

four minutes. As the charging demand of the vehicles decreases, the substation 

transformer's load gradually decreases in the network. The effect of using a battery 

energy storage unit to reduce the transformer loading is seen in Figure 6.18. 

 

Figure 6.18: Substation transformer loading with a storage unit between 16:00 and 17:00. 
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The primary vertical axis in Figure 6.18 shows the measured full-load current (in A) 

at the secondary side of the transformer with a battery energy storage unit. The 

secondary vertical axis indicates the rated power of the controlled battery energy storage 

unit (in kW). The storage unit's rated power output is fixed between 16:00 and 16:14 at 

150 kW. At 16:15, when T3 completes its charging cycle, its capacity is reduced to 100 

kW, and then to 50 kW when T6 completes its charging session (see Figure 6.12). It 

should be clarified that the transformer loading increases very slightly at 16:37, when the 

battery energy storage unit is turned off after all vehicles have reached their target SoC 

levels. However, this increase is negligibly small and does not affect the operation of the 

transformer. Overall, the results demonstrate that utilising the battery energy storage unit 

to its maximum capacity reduces transformer loading by as much as 40%. 

 

Figure 6.19: Substation transformer loading between 17:00 and 18:00. 

Between 17:00 and 18:00, the substation transformer is approximately 21% more 

heavily loaded than between 16:00 and 17:00. This is due to the increased aggregated 

charging demand, which is primarily attributable to the Audi vehicle. Until 17:13, the 

transformer remains overloaded and operates beyond its maximum rated capacity. 

Results indicate that the substation transformer cannot simultaneously charge two Tesla 

vehicles and one Audi vehicle without being subjected to critical conditions. 

For the last analysis, the effect of using a battery energy storage unit between 17:00 

and 18:00 is shown on the substation transformer loading in Figure 6.20. 
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Figure 6.20: Substation transformer loading with a storage unit between 17:00 and 18:00. 

The storage unit's rated power output is fixed between 17:00 and 17:19 at 150 kW. 

At 17:20, when T4 completes its charging cycle, its capacity is reduced to 100 kW, and 

then to 50 kW when T9 completes its charging session at 17:23 (see Figure 6.13). In 

the first eight minutes, as shown in Figure 6.20, the storage unit prevents the transformer 

from exceeding its rated capacity by a narrow margin. 

6.5.5 Hosting Capacity of the Substation Transformer 

Using the stochastic charging profiles from the worst-case scenario, the final section 

of this chapter determines the hosting capacity of the substation transformer serving the 

low-voltage distribution network and analyses how often the substation transformer's 

maximum rated capacity is exceeded due to EV demand. Moreover, the minimum 

required power that must be injected by the battery energy storage unit and the minimum 

transformer size required to handle EV charging activities without exceeding its 

maximum rated capacity are determined. This analysis is very significant because it 

focuses on the successful design of a low-voltage distribution network to account for the 

worst-case scenario. 

The timely distribution of EVs (see Table 6.7), the stochastic charging requirements 

of EVs (see Table 6.9), and the total peak demand from EV charging (see Figure 6.11) 

are used to obtain the peak full-load current of the substation transformer for each hour 

based on the worst-case scenario. Simulation results are demonstrated in Figure 6.21. 
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Figure 6.21: Loading profile of the substation transformer in the worst-case scenario. 

The graph depicts the measured full-load current (in A) and the threshold current (in 

A), i.e., the point at which the transformer runs at the maximum rated capacity, under the 

worst-case scenario. The horizontal axis shows the time in the top-of-the-hour format.  

The 500-kVA substation transformer is observed to exceed its maximum rated 

capacity at 11:00, 12:00, 16:00, 17:00, and 19:00 during simultaneous charging of 

different group of vehicles. Additionally, the graph depicts the EVs that are connected to 

the network at these intervals. During these times, the transformer is loaded to a 

maximum of 3.5%, 20.9%, 3.5%, 27.5%, and 19.1%, respectively. In addition to the 

number of EVs simultaneously connected to the network, their model and charging 

characteristics also affect the load intensity. For example, four EVs are connected 

between 11:00 and 12:00 (e.g., B1, J4, J6, and T2), but since the aggregated charging 

demand of A3, T4, and T9 (between 17:00 and 18:00) and A2, T11, and J8 (between 

19:00 and 20:00), is greater, the substation transformer is more loaded. Furthermore, 

the SoC of the vehicles prior to charging and the baseload of the substation transformer 

at different time intervals also impact the severity of loading.   

This section proposes the installation of battery energy storage units to power the 

additional demand between the substation transformer's peak load capacity and the 

point at which the transformer's maximum rated capacity is exceeded. Alternatively, 

since the substation transformer is not sized to accommodate the charging demand of 

EVs on rapid and ultra-rapid devices, its optimal size (in kVA) can be determined based 

on the peak current and peak demand in order to design a network for the worst-case 

scenario. Section 6.5.5.1 and Section 6.5.5.2 address the minimum required power 

from the storage and minimum required sizing of substation transformer, respectively. 
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6.5.5.1 Determination of Minimum Power Required by the Storage Unit  

Since the purpose of this section is to design a network based on the stochastic 

charging profiles of the worst-case scenario, the maximum peak period between 17:00 

and 18:00 is analysed. The minute-by-minute total charging demand from Figure 6.13 

and the magnitude of full-load current from Figure 6.19 are used to determine the 

maximum power that substation transformer can deliver without operating beyond its 

maximum rated capacity.  

As depicted in Figure 6.19, the substation transformer is overloaded between 17:00 

and 17:12 because the full-load current exceeds the threshold current of 667 A. At 17:12, 

the substation transformer provides 452.4 kW of total demand, and the full-load current 

on its secondary winding is 697 A. As vehicles complete their charging sessions, the 

demand for charging and the transformer's load decrease. The transformer is no longer 

overloaded from 17:13 until the beginning of the next hour. At 17:13, the transformer at 

the substation supplies 432.2 kW and has a full-load current of 666 A. This indicates that 

the substation transformer can accommodate a peak demand of approximately 432 kW 

during the worst-case scenario's peak demand period without being overloaded. The 

peak demand that the substation transformer can accommodate without being subjected 

to overloaded conditions will vary for each interval based on the charging requirements 

and types of EVs. Table 6.11 depicts the additional power that must be injected from the 

battery energy storage unit between 17:00 and 17:12 to prevent substation from being 

operated above its maximum rated capacity. 

Table 6.11: Minimum power required by the storage unit between 17:00 and 17:12  

Time  

(hour)  

Transformer 

Demand  

(kW) 

Threshold Peak 

Demand  

(kW) 

Additional Power Needed 

by the Storage Unit  

(kW) 

17:00 554.2 433 121.2 

17:01 557.3 433 124.3 

17:02 559.7 433 126.7 

17:03 562 433 129 

17:04 564.7 433 131.7 

17:05 567.5 433 134.5 

17:06 569.7 433 136.7 

17:07 553.6 433 120.6 

17:08 520.9 433 87.9 

17:09 503.1 433 70.1 

17:10 481.7 433 48.7 

17:11 465.8 433 32.8 

17:12 452.4 433 19.4 
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The results indicate that as time passes, the additional power that must be injected 

from the battery energy storage unit decreases, as EVs approach the end of their 

charging sessions and the network demand decreases accordingly. After 17:12, the 

minimum power that must be injected by the storage unit is not determined and hence 

shown in the table because the substation transformer already operates below its rated 

maximum capacity. After 12 minutes, the total power that must be injected by the storage 

unit totals 1283.6 kW. This results in a minimum energy capacity requirement for the 

battery energy storage unit of 256.7 kWh (1283.6 𝑘𝑊 × 12 𝑚𝑖𝑛𝑢𝑡𝑒𝑠/60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠). 

6.5.5.2 Determination of Minimum Required Transformer Size  

Calculating the kVA is essential when selecting and sizing transformers. This 

represents the maximum apparent power a transformer can handle. This value is 

determined based on the maximum full-load current exhibited during the worst-case 

scenario. In the previous section, it is shown that the substation transformer experiences 

the largest loading condition at 17:06 (see Table 6.11). Using (6.8), the minimum 

required sizing of the substation transformer is determined as 660 kVA based on the 

maximum full-load current of 880 A. The timely distribution of EVs (see Table 6.7), the 

stochastic charging requirements of EVs (see Table 6.9), and the total peak demand 

from EV charging (see Figure 6.11) are used to obtain the peak full-load current of the 

substation transformer for each hour based on the worst-case scenario. Simulation 

results are demonstrated in Figure 6.22. 

 

Figure 6.22: Loading profile of the 660-kVA substation transformer in the worst-case scenario. 
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The substation transformer's loading profile has not changed, as all network charging 

profiles remain unchanged. In spite of this, the results indicate that increasing the 

substation transformer's size from 500 kVA to 660 kVA enables the safe integration of 

all EVs in the worst-case scenario, even without the installation of a battery energy 

storage unit. Increasing the size of the substation transformer increases the system's 

capacity, enabling simultaneous charging of high-power EVs at 11:00, 12:00, 16:00, 

17:00, and 19:00. 

6.6 Summary 

Considering various EV models and real-world data, a stochastic model is developed 

in this chapter. Simulation cases of the timely distribution of charging events to a multi-

charger station using real data obtained from Zap Map is produced. The algorithm is then 

used to generate stochastic and non-linear SoC-dependent charging profiles for various 

EV models. Utilising non-linear charging profiles enables the accurate calculation of EVs' 

charging duration and energy consumption from many stochastic scenarios. Based on 

the maximum charging demand and energy consumption of randomly generated vehicle 

patterns, twenty scenarios are considered, and the worst-case scenario is identified. The 

impact of installing small-scale V2G chargers and large-scale battery energy storage 

units is examined on peak load reduction.  

The hosting capacity of the substation transformer serving the low-voltage distribution 

network is initially determined to design a network for the worst-case scenario. It is also 

determined how often the maximum rated capacity of the substation transformer is 

exceeded due to EV demand. In addition, the minimum required power that must be 

injected by the battery energy storage unit and the minimum transformer size required 

to accommodate EV charging activities without exceeding the transformer's maximum 

rated capacity are calculated.  

The results indicated that the network is most in demand during the late afternoon 

peak periods, particularly between 16:00 and 20:00, due to residential activities and high 

likelihood of public charging events. Between 16:00 and 17:00, the simultaneous 

charging of one Jaguar and two Tesla vehicles increased the peak demand at the 

charging station from 12 kW to 404 kW, and the peak demand at the substation 

transformer from 56.7 kW to 447.7 kW. In addition, between 17:00 and 18:00, the 

simultaneous charging of one Audi and two Tesla vehicles increased the peak demand 

to 501 kW at the charging station and 570 kW at the substation transformer. 
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This chapter continued by proposing the connection of small-scale V2G chargers and 

the integration of battery energy storage units to support the charging demand of 

vehicles. The latter is demonstrated to be more effective than the former due to its higher 

power density capability. A battery energy storage unit rated at 150 kW lowered the peak 

demand of the feeder by up to 30% and the peak load of the substation transformer by 

up to 40%. Not only are battery energy storage devices capable of lowering peak 

demand, but they also provide additional benefits, such as relieving strain on distribution 

network equipment. It is essential, however, to size and position these units 

appropriately.  

During the worst-case scenario's peak demand period, simulation results 

demonstrated that the substation transformer can accommodate a peak demand of 

approximately 432 kW without becoming overloaded. Depending on the charging 

requirements and types of EVs, the maximum demand that a substation transformer can 

accommodate without being subject to overload conditions will vary for each interval. In 

addition, the optimal battery energy storage unit size for preventing substation 

transformer overload between 17:00 and 17:12 is calculated to be 256.7 kWh. In 

conclusion, it has been demonstrated that increasing the kVA rating of the substation 

transformer from 500 kVA to 660 kVA enables the safe integration of all EVs in the worst-

case scenario. 

The case studies and conclusions reported in this chapter instil confidence in the 

ability of multi-charger hubs to be enhanced and expanded globally to accommodate the 

rapid adoption of EVs. Although this comes at the expense of high costs for DNOs, the 

results indicate that the recommended course of action to safely integrate rapid and ultra-

rapid devices in medium-voltage distribution networks is to expand the hosting capacity 

of local distribution grids by installing larger transformers and implementing large-scale 

battery energy storage units during periods with a high probability of charging 

occurrences. All the simulated instances in this research are based on a real case, 

notably the deployment of a battery energy storage unit, which was inspired by the UK's 

first hub-based electric forecourt in [78], [79], and [91]. 
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CHAPTER 7 

7.   State of Charge Estimation of Lithium-Ion 

Batteries Under Discharge Tests 

7.1 Introduction  

The value of battery energy storage units has been described extensively in the 

literature review of this thesis. In addition, Chapter 6 has demonstrated that properly 

sized battery energy storage units can effectively reduce peak loads and prevent 

substation transformers from exceeding their rated capacities. Nevertheless, it is 

essential to analyse the operating characteristics of these storage units under various 

discharge profiles. This is because battery energy storage units simply release their 

stored energy to alleviate the network's peak demand, thereby reducing the strain on the 

grid. In some instances, the remaining usable energy in the storage unit can be used to 

support other network loads. 

The stochastic distribution of EV models influences the magnitude of peak demand 

at various times of the day, as demonstrated in Chapter 6. This chapter is relevant 

because it develops various discharge profiles for the storage units based on the 

stochastically developed EV charging profiles and the time and size of the network's 

peak demand. Then, these discharge profiles are incorporated into a physical battery 

charger and analyser unit employing lithium-ion batteries to determine the relationship 

between the cell voltage and discharged capacity under various scenarios brought about 

by the stochastic allocation of charging events. The relationship between cell voltage 

and discharged capacity is used to estimate the battery SoC and DoD. Estimating these 

parameters allows for the determination of the available and usable battery capacity if 

these storage units were used to meet the charging demand of various EV models. 

7.1.1 Chapter Structure  

Section 7.2 details lithium-ion battery specifications and test limitations.  

Section 7.3 develops different discharging profiles for these batteries in Microsoft 

Excel. These profiles are then implemented into the MC3000's battery charger and 

analyser unit to obtain the relationship between the cell voltage and discharged capacity 

of the batteries. This relationship is then used to estimate the SoC, DoD, and useable 

capacity of lithium-ion batteries under different discharge scenarios.  
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Section 7.4 presents the key findings and conclusions of the chapter. 

7.2 Characteristics of Battery Packs  

LG INR18650 HG2 rechargeable lithium-ion battery packs are used for the 

experimental tests. The physical design of these rechargeable LG batteries under 

investigation is shown in Figure 7.1. 

 

Figure 7.1: LG 18650 HG2 battery model [292].  

From 18650 to 2170, cylindrical lithium-ion batteries appear to be gaining increasing 

acceptance. Nissan and Chevrolet Volt, the two largest electric car manufacturers in the 

world, use a different type of battery than Tesla, which uses 18650 cylindrical batteries 

[293]. The LG 18650 HG2 model used in this thesis has several positive characteristics 

and is one of 2015's finest cells. The LG HG2 has a maximum discharge rating of 20 A, 

which is excellent and sufficient for most of the high-current applications. This, along with 

the cell's capacity (3000 mAh), makes it a feasible energy storage device for various 

applications. The main specifications of these LG battery packs are detailed in Table 7.1. 

Table 7.1: Specifications of the LG 18650 battery cells 

Manufacturer LG Chemical 

Model INR18650HG2 

Rechargeable Yes 

Nominal Energy Capacity 3000 mAh or 3 Ah 

Nominal Voltage 3.6 V 

Discharge End Voltage 2.5 V 

Charging Voltage 4.20 +/− 0.05 V 

Standard Charging Current 1.5 A 

Max. Continuous Discharge Current 20 A 

Maximum Weight 48 g 
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These LG batteries typically have a nominal capacity of up to 3000 mAh. Each cell 

has a nominal voltage of around 3.6 V and a maximum charging voltage of up to 4.20 V 

with a plus and minus 0.05 V. The discharge end voltage for these batteries is 2.5 V. The 

minimum discharge voltage varies between various datasheets, but 2.7 – 3 V is an 

empirical value. If discharged below this voltage, the battery could be irreparably harmed.  

The most common Tesla battery pack consists of 7,104 cells organised into 16 

modules containing 444 cells each (recent improvements brought the number of cells to 

8,256). These Tesla batteries have an inherent energy storage capacity of up to 85 kWh 

(recently improved up to 100 kWh). In 2015, Panasonic updated the anode design, which 

resulted in a 6% increase in cell capacity. This is a significant increase for a company 

that produces batteries for an EV manufacturer whose revenue optimisation depends on 

technological innovation [275].  

It should be clarified that the characteristics of a typical EV battery have been scaled 

down to match those of a single LG cell since it is impractical to employ many cells in 

the lab setting for this experiment. In addition, the physical battery charger unit can only 

charge and discharge up to four cells simultaneously. However, the discharge current is 

limited by the unit and decreases if more cells are being charged and/or discharged 

simultaneously. Single slot is thus utilised to take advantage of the maximum discharging 

current capability of the charger and to simplify battery monitoring. The results from the 

single slot are then scaled up to make a comparison to a typical EV battery. 

7.3 Development of Discharge Profiles  

Chapter 6 demonstrated via simulation that battery energy storage can compensate 

for the charging demand of EVs while smoothing out the peak demand, and that their 

capacity can also be regulated to meet the fluctuating demand for EVs. Batteries perform 

these functions by discharging their stored energy. Using the specifications of the LG 

battery, various discharge profiles are established, and the relationship between battery 

voltage and discharged capacity is determined. It should be clarified that manufacturer 

discharge curves are not used for these tests because discharge profiles are developed 

based on stochastic charging profiles from Chapter 6's worst-case scenario. Since each 

EV model has a unique charging curve, distinct discharge profiles are developed based 

on the type and charging profile of the randomly selected EV model. 

For example, J3, T3, and T6 all charge simultaneously during the worst-case 

scenario between 16:00 and 17:00 (see Table 6.7). Using the minute-by-minute charging 

profiles of these vehicles, a discharge profile is developed to reduce the network's peak 

demand and the amount of energy supplied to the vehicles from the grid.  
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Secondly, different discharge profiles are also developed when A3, T4, and T9 

charge simultaneously between 17:00 and 18:00 (see Table 6.7). Two distinct afternoon 

peak periods are chosen to broaden the scope of this work with the simultaneous 

charging of different EV models. 

7.3.1 Estimation of Battery SoC and Battery DoD 

Since estimating the SoC of a battery is a difficult process that depends on the battery 

type and the application for which the battery is intended, much development and 

research have been conducted in recent years to increase the accuracy of estimations. 

Accurate SoC estimation is one of the most important aspects of battery management 

systems, which will assist in enhancing the system's functionality and dependability, as 

well as extending the lifespan of the batteries and preventing them from being 

overcharged and deep discharged [294, 295].  

The most used methodology for estimating the SoC is the coulomb counting method 

[294, 295]. This method is also known as ampere hour counting and current integration. 

This approach calculates SoC values by mathematically integrating battery current (𝐼𝑏𝑎𝑡)  

data across the use time, given by (7.1): 

 
𝑆𝑜𝐶 = 𝑆𝑜𝐶(0) +

1

𝑆𝑟  
∫ 𝐼𝑏𝑎𝑡 𝑑𝑡 (7.1) 

Where: 

𝑆𝑜𝐶(0) is the initial SoC of the LG battery cell (%), 

𝑆𝑟 is the rated energy capacity of the LG cell (Ah). 

The coulomb counting technique measures the battery's remaining capacity by 

simply adding or subtracting the amount of charge moved into or out of the battery. With 

a known battery capacity, the SoC is determined by measuring the discharging current 

of a battery and integrating the discharging current over time. Losses always occur 

during the charging and discharging cycle because the available charge is always less 

than the stored charge [294].  

For more precise SoC estimation, the declination of the releasable battery capacity 

(𝐶𝑟) should be considered [294]. The SoC is defined as the proportion of the releasable 

battery capacity to the battery's rated energy capacity, given by (7.2): 

 
𝑆𝑜𝐶 = (𝑆𝑜𝐶

(0)
−

𝐶𝑟

𝑆𝑟

) × 100% (7.2) 
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Additionally, the DoD, which refers to how much energy is cycled into and out of the 

battery (discharge depth), can also be expressed as a percentage of the total capacity 

of the battery that has been discharged relative to its rated capacity [294, 296]: 

 
𝐷𝑜𝐷 =

𝐶𝑑𝑖

𝑆𝑟

× 100% (7.3) 

Where: 

𝐶𝑑𝑖  is the capacity discharged by any amount of current (mAh). 

To estimate the DoD and SoC of the LG battery, the relationship between the battery 

voltage and discharged capacity is determined using various discharge profiles. The 

development of discharge profiles is elaborated upon in the following section. 

7.3.2 Discharge Tests Between 16:00 and 17:00 

In the first scenario, a discharge profile is developed between 16:00 and 17:00 during 

the simultaneous charging of J3, T3, and T6. For the development of discharge profiles, 

the relationship between the charging demand and the SoC of the vehicle is essential. 

Figure 7.2 shows the individual charging profiles of these vehicles during this period. 

 

Figure 7.2: Individual charging profiles of J3, T3, and T6 between 16:00 and 17:00. 

The graph's primary vertical axis shows the total and individual charging demand of 

J3, T3, and T6 (in kW). The secondary vertical axis depicts the battery SoC (in %) of 

these vehicles (represented by the dashed lines).  
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A pre-charged LG battery cell is used, and a battery discharge profile is developed 

based on the individual charging demand of one of the three vehicles. The developed 

discharge profile is shown in Table 7.2. 

Table 7.2: Battery discharge profile between 16:00 and 17:00 

Time 𝑪𝒅 (kW) 𝑱𝟑𝒅 (kW) 𝑩𝒓 (kW) 𝑺𝒑 (kW) 𝑺𝒅 (%) 𝑺𝒔 (A) 𝑺𝒊 (A) 

16:00 389.3 103.1 150 102 0.68 2.04 0.68 

16:01 392 103.5 150 102 0.68 2.04 0.68 

16:02 390 104 150 102 0.68 2.04 0.68 

16:03 381.6 102.4 150 102 0.68 2.04 0.68 

16:04 372.7 101 150 102 0.68 2.04 0.68 

16:05 361 99.6 150 102 0.68 2.04 0.68 

16:06 348.8 98 150 93 0.62 1.86 0.62 

16:07 344 97 150 93 0.62 1.86 0.62 

16:08 337.6 95 150 93 0.62 1.86 0.62 

16:09 322.1 92 150 93 0.62 1.86 0.62 

16:10 321.7 89 150 93 0.62 1.86 0.62 

16:11 305.2 85 150 93 0.62 1.86 0.62 

16:12 288.5 82 150 78 0.52 1.56 0.52 

16:13 272.7 80.8 150 78 0.52 1.56 0.52 

16:14 258.3 79 150 78 0.52 1.56 0.52 

16:15 184.5 77.5 150 78 0.52 1.56 0.52 

16:16 180 76 150 78 0.52 1.56 0.52 

16:17 174 74.5 150 78 0.52 1.56 0.52 

16:18 166.5 73 150 69 0.46 1.38 0.46 

16:19 160 72 150 69 0.46 1.38 0.46 

16:20 154.6 70.5 150 69 0.46 1.38 0.46 

16:21 144.3 69 150 69 0.46 1.38 0.46 

16:22 138.6 68 150 69 0.46 1.38 0.46 

16:23 131.8 67 150 69 0.46 1.38 0.46 

16:24 126.3 66 150 64.5 0.43 1.29 0.43 

16:25 122 65.5 150 64.5 0.43 1.29 0.43 

16:26 117 65 150 64.5 0.43 1.29 0.43 

16:27 64.3 64.3 150 64.5 0.43 1.29 0.43 

16:28 63.5 63.5 150 64.5 0.43 1.29 0.43 

16:29 62.5 62.5 150 64.5 0.43 1.29 0.43 

16:30 61.3 61.3 150 60 0.40 1.2 0.40 

16:31 60.3 60.3 150 60 0.40 1.2 0.40 

16:32 59.3 59.3 150 60 0.40 1.2 0.40 

16:33 58.3 58.3 150 60 0.40 1.2 0.40 

16:34 57.5 57.5 150 60 0.40 1.2 0.40 

16:35 56.5 56.5 150 60 0.40 1.2 0.40 

16:36 55.5 55.5 150 55 0.37 1.11 0.37 

16:37 54.5 54.5 150 55 0.37 1.11 0.37 

16:38 0 0 0 0 0 0 0 
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Where: 

𝐶𝑑  is the total charging demand at each minute (kW), 

𝐽3𝑑 is the charging demand of J3 at each minute (kW), 

𝐵𝑟 is the rated power output of the battery energy storage unit (kW), 

𝑆𝑝 is the power injected by the battery energy storage unit (kW), 

𝑆𝑑  is the discharge rate of the battery energy storage unit (%), 

𝑆𝑠 is the scaled down discharge current of the LG battery for tests (A), 

𝑆𝑖 is the scaled down discharge current for the MC3000 device (A). 

The discharge rate of the battery energy storage unit (𝑆𝑑), the scaled down discharge 

current of the LG battery (𝑆𝑠), and the scaled down discharge current for the MC3000 

device (𝑆𝑖) are determined as follows, respectively: 

 
𝑆𝑑  (%) =

𝑆𝑝

𝐵𝑟
 (7.4) 

 𝑆𝑠 (𝐴) = 𝑆𝑑 × 𝑆𝑟 (7.5) 

 
𝑆𝑖  (𝐴) =

𝑆𝑠

𝑆𝑟
 (7.6) 

It should be clarified that (7.4) is used to determine the discharge rate of the battery 

energy storage unit based on the individual charging demand of the vehicle. In addition, 

(7.6) is used to convert the discharge current of the LG battery to fit the maximum 

discharge capability of the physical battery charger and analyser unit.  

As shown in Figure 7.2, T3 and T6 arrive at their respective SoCs before 16:15 and 

16:27, while J3 remains connected to the charger until 16:37. This scenario assumes the 

storage unit is connected to offset J3's charging requirements. In this discharge profile, 

the discharge rate of the LG cell decreases gradually as the SoC of J3 rises (since J3 

draws less power from the grid at higher SoCs). Table 7.2 demonstrates that the 

discharge rate is regulated and calculated every six minutes based on the average 

charging demand of J3. Each change in the discharge rate is represented in the table by 

a font colour. Note that since J3 finishes charging at 16:37, the storage unit has been 

turned off, and therefore all the values in the table are 0 at 16:38. 

The effect of this discharge profile is analysed to determine the relationship between 

the LG cell's voltage and its discharged capacity. Figure 7.3 illustrates this correlation. 
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Figure 7.3: Relationship between battery voltage and capacity discharged. 

The graph's vertical axis illustrates the upscaled voltage of the LG cell (in V), whereas 

the horizontal axis depicts time the total discharged capacity of the LG cell with respect 

to time.  

The 18650 lithium-ion batteries that have been used in this research are charged up 

to 4.20 V and then discharged based on the current calculations. Figure 7.3 shows that 

the decrease in battery voltage is proportional to the decrease in discharge current from 

Table 7.3. At higher discharge current settings, battery voltage reduces at a faster rate. 

At the conclusion of the discharge test, after 38 minutes, the battery's voltage falls 4% 

below the fully charged voltage and reaches 403.3 V. 

In addition, the capacity of the LG battery has been determined to be 320 mAh at the 

conclusion of the test. Given that the LG cell is rated at 3000 mAh, the LG battery has 

approximately 2680 mAh of energy remaining after 38 minutes of charging J3. 

Additionally, because LG batteries are charged to 4.20 V prior to the discharge tests, 

their initial SoC is assumed to be 100%. As a result of this discharge test, using (7.2) 

and (7.3), the LG cell has a DoD of 10.7% and a remaining SoC of 89.3%. 

7.3.3 Discharge Tests Between 17:00 and 18:00  

In the second scenario, three distinct discharge profiles are developed between 17:00 

and 18:00 during the simultaneous charging of A3, T4, and T9. The relationship between 

the charging demand and the SoC of the vehicle is initially presented in Figure 7.4. 
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Figure 7.4: Individual charging profiles of A3, T4, and T9 17:00 and 18:00. 

The primary vertical axis of the graph depicts the total and individual charging 

demand (in kW) for A3, T4, and T9 between 17:00 and 18:00. The secondary vertical 

axis illustrates the battery SoC (in %) for these vehicles (represented by the dashed 

lines). 

T4 and T9 arrive at their respective SoCs at around 17:19 and 17:22, respectively. In 

addition, A3 remains connected to the network for charging until 17:24. In this case study, 

the battery energy storage unit's rated power output is increased to 500 kW. This value 

is determined by the maximum total charging demand of three vehicles at around 17:06, 

but it is only used as a starting point to determine the storage unit's discharge rate. This 

period is used to conduct three case studies by developing three distinct discharge 

profiles. 

In the first case study (C1), the storage unit is connected to account for the A3's 

charging demand. The second case study (C2) uses the storage unit to facilitate the 

simultaneous charging of both Tesla vehicles. In the last case study (C3), the storage 

unit is designed to accommodate the demand for charging all three vehicles between 

17:00 and 18:00. This analysis broadens the scope of this study and permits a general 

comparison of the performance and efficacy of lithium-ion batteries under varying vehicle 

charging requirements.  

The developed discharge profiles for C1, C2, and C3 are presented in Table 7.3, 

Table 7.4, and Table 7.5, respectively. 
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Table 7.3: Battery discharge profile between 17:00 and 18:00 (C1) 

Time 
𝑪𝒅  

(kW) 
𝑨𝟑𝒅  
(kW) 

𝑩𝒓  
(kW) 

𝑺𝒑  

(kW) 

𝑺𝒅  
(%) 

𝑺𝒔  
(A) 

𝑺𝒊  
(A) 

17:00 474.2 144 500 145.5 0.29 0.87 0.29 

17:01 477.3 144.6 500 145.5 0.29 0.87 0.29 

17:02 479.7 145.5 500 145.5 0.29 0.87 0.29 

17:03 482 146.3 500 145.5 0.29 0.87 0.29 

17:04 484.7 147 500 145.5 0.29 0.87 0.29 

17:05 487.5 147.4 500 148 0.3 0.9 0.3 

17:06 489.7 147.7 500 148 0.3 0.9 0.3 

17:07 473.6 148 500 148 0.3 0.9 0.3 

17:08 440.9 148.4 500 148 0.3 0.9 0.3 

17:09 423.1 148.6 500 148 0.3 0.9 0.3 

17:10 401.7 148.7 500 149.5 0.3 0.9 0.3 

17:11 385.8 148.8 500 149.5 0.3 0.9 0.3 

17:12 372.4 148.9 500 149.5 0.3 0.9 0.3 

17:13 352.2 150.2 500 149.5 0.3 0.9 0.3 

17:14 341.2 150.7 500 149.5 0.3 0.9 0.3 

17:15 332.9 151.2 500 152 0.3 0.9 0.3 

17:16 317.4 151.6 500 152 0.3 0.9 0.3 

17:17 307.7 152.2 500 152 0.3 0.9 0.3 

17:18 293.2 152.7 500 152 0.3 0.9 0.3 

17:19 282.8 153.3 500 152 0.3 0.9 0.3 

17:20 220 154.5 500 143 0.29 0.9 0.29 

17:21 210 151.1 500 143 0.29 0.87 0.29 

17:22 197.3 142.9 500 143 0.29 0.87 0.29 

17:23 136.6 136.6 500 143 0.29 0.87 0.29 

17:24 129.4 129.4 500 143 0.29 0.87 0.29 

17:25 0 0 0 0 0 0 0 

In this case study, the discharge rate is calculated based on the A3's individual 

charging demand (𝐴3𝑑). It is seen in the table that the discharge rate is regulated every 

five minutes between 17:00 and 17:25. For example, the average charging demand for 

A3 over the first five minutes is 145.5 kW. This is used to determine the amount of power 

the battery energy storage unit must inject into the network (𝑆𝑝). It should be noted that 

once the Audi vehicle reaches 80% battery SoC after 17:24, the battery energy storage 

unit is turned off (and hence why all the values are 0 in the table).  

In addition, it is seen that the discharge rate is nearly constant and ranges between 

29% and 30%. This is because the charging profile of Audi vehicles is linear, and the 

charging power varies very little in relation to the battery SoC (this can also be seen in 

Figure 6.4).  
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Table 7.4: Battery discharge profile between 17:00 and 18:00 (C2) 

Time 
𝑪𝒅  

(kW) 
𝑻𝟒𝒅 
(kW) 

𝑻𝟗𝒅 
(kW 

𝑩𝒓  
(kW) 

𝑺𝒑  

(kW) 

𝑺𝒅  
(%) 

𝑺𝒔  
(A) 

𝑺𝒊  
(A) 

17:00 474.2 143.5 186.7 500 334 0.67 2.01 0.67 

17:01 477.3 144.4 188.3 500 334 0.67 2.01 0.67 

17:02 479.7 145.4 188.8 500 334 0.67 2.01 0.67 

17:03 482 146.2 189.5 500 334 0.67 2.01 0.67 

17:04 484.7 147 190.7 500 334 0.67 2.01 0.67 

17:05 487.5 147.4 192.7 500 315 0.63 1.89 0.63 

17:06 489.7 148 194 500 315 0.63 1.89 0.63 

17:07 473.6 138.5 187.1 500 315 0.63 1.89 0.63 

17:08 440.9 131.5 161 500 315 0.63 1.89 0.63 

17:09 423.1 119.9 154.6 500 315 0.63 1.89 0.63 

17:10 401.7 106.5 146.5 500 221 0.44 1.32 0.44 

17:11 385.8 101.8 135.2 500 221 0.44 1.32 0.44 

17:12 372.4 98.8 124.7 500 221 0.44 1.32 0.44 

17:13 352.2 93 109 500 221 0.44 1.32 0.44 

17:14 341.2 87 103.5 500 221 0.44 1.32 0.44 

17:15 332.9 82.3 99.4 500 155 0.31 0.93 0.31 

17:16 317.4 74.5 91.3 500 155 0.31 0.93 0.31 

17:17 307.7 69.3 86.2 500 155 0.31 0.93 0.31 

17:18 293.2 63.5 77 500 155 0.31 0.93 0.31 

17:19 282.8 58 71.5 500 155 0.31 0.93 0.31 

17:20 220 0 65.5 500 60 0.12 0.36 0.12 

17:21 210 0 58.9 500 60 0.12 0.36 0.12 

17:22 197.3 0 54.4 500 60 0.12 0.36 0.12 

17:23 136.6 0 0 500 0 0 0 0 

17:24 129.4 0 0 500 0 0 0 0 

17:25 0 0 0 0 0 0 0 0 

In the second case study, the discharge rate is now calculated based on the 

aggregated charging demand of T4 (𝑇4𝑑) and T9 (𝑇9𝑑). The power injected by the battery 

energy storage unit is determined by adding the average charging power of T4 and T9 

every five minutes. In the first five minutes, the average charging power for T4 and T9 

vehicles is respectively 145.3 kW and 188.8 kW. This totals 334.1 kW, and the injected 

power is determined accordingly in Table 7.4. It is seen that T4 is fully charged prior to 

17:20; consequently, the injected power by the storage unit is determined solely by the 

charging demand of T9 between 17:20 and 17:25.  

The discharge rate in this case study is more flexible and goes higher in this case 

study due to the charging nature of Tesla vehicles. This rate ranges between 67% and 

12%.  
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Table 7.5: Battery discharge profile between 17:00 and 18:00 (C3) 

Time 
𝑪𝒅  

(kW) 
𝑨𝟑𝒅  
(kW) 

𝑻𝟒𝒅 
(kW) 

𝑻𝟗𝒅 
(kW 

𝑩𝒓  
(kW) 

𝑺𝒑  

(kW) 

𝑺𝒅  
(%) 

𝑺𝒔  
(A) 

𝑺𝒊  
(A) 

17:00 474.2 144 143.5 186.7 500 480 0.96 2.88 0.96 

17:01 477.3 144.6 144.4 188.3 500 480 0.96 2.88 0.96 

17:02 479.7 145.5 145.4 188.8 500 480 0.96 2.88 0.96 

17:03 482 146.3 146.2 189.5 500 480 0.96 2.88 0.96 

17:04 484.7 147 147 190.7 500 480 0.96 2.88 0.96 

17:05 487.5 147.4 147.4 192.7 500 463 0.93 2.79 0.93 

17:06 489.7 147.7 148 194 500 463 0.93 2.79 0.93 

17:07 473.6 148 138.5 187.1 500 463 0.93 2.79 0.93 

17:08 440.9 148.4 131.5 161 500 463 0.93 2.79 0.93 

17:09 423.1 148.6 119.9 154.6 500 463 0.93 2.79 0.93 

17:10 401.7 148.7 106.5 146.5 500 371 0.74 2.22 0.74 

17:11 385.8 148.8 101.8 135.2 500 371 0.74 2.22 0.74 

17:12 372.4 148.9 98.8 124.7 500 371 0.74 2.22 0.74 

17:13 352.2 150.2 93 109 500 371 0.74 2.22 0.74 

17:14 341.2 150.7 87 103.5 500 371 0.74 2.22 0.74 

17:15 332.9 151.2 82.3 99.4 500 307 0.61 1.83 0.61 

17:16 317.4 151.6 74.5 91.3 500 307 0.61 1.83 0.61 

17:17 307.7 152.2 69.3 86.2 500 307 0.61 1.83 0.61 

17:18 293.2 152.7 63.5 77 500 307 0.61 1.83 0.61 

17:19 282.8 153.3 58 71.5 500 307 0.61 1.83 0.61 

17:20 220 154.5 0 65.5 500 203 0.41 1.23 0.41 

17:21 210 151.1 0 58.9 500 203 0.41 1.23 0.41 

17:22 197.3 142.9 0 54.4 500 203 0.41 1.23 0.41 

17:23 136.6 136.6 0 0 500 203 0.41 0 0.41 

17:24 129.4 129.4 0 0 500 203 0.41 0 0.41 

17:25 0 0 0 0 0 0 0 0 0 

In the last case study, the battery energy storage unit is now used to inject power 

based on the charging demand of all three vehicles: A3 (𝐴3𝑑), T4 (𝑇4𝑑) and T9 (𝑇9𝑑). 

The power injected by the storage unit is determined by adding the average charging 

power of these vehicles every five minutes. In the first five minutes, the average charging 

power for A3, T4 and T9 vehicles is respectively 145.5 kW, 145.3 kW and 188.8 kW. This 

totals 480 kW, and the injected power is determined accordingly in Table 7.5  This is 

performed every five minutes until all vehicles on the network have completed charging. 

The discharge rate in this case study ranges from 97% to 41%.  

The effect of all three discharge profiles from C1 to C3 is analysed to determine the 

relationship between the LG cell's voltage and its discharged capacity. Figure 7.5 

demonstrates the results. 
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Figure 7.5: Relationship between battery voltage and capacity discharged. 

The vertical axis of the graph depicts the increased cell voltage (in V) of the LG 

battery in three cases (represented by C1, C2, and C3). The horizontal axis represents 

the experimental time between 17:00 and 17:25 (in hours, minutes, and seconds). The 

remainder of the hour is not analysed because the storage unit operates only until 17:25 

and the vehicles have finished charging by that time in the network. 

The 18650 lithium-ion batteries that have been used in this research are charged up 

to a maximum charging voltage of 4.20 V. Due to a greater discharge rate throughout 

the experiment, the rate of decrease in battery voltage (represented by the steeper curve 

in Figure 7.5) for the third case study is faster than the first two case studies. At the 

conclusion of the discharge test, the battery voltage reaches 408.1 V for C1, 405 V for 

C2, and 399 V for C3 after 25 minutes. In three separate case studies, the battery voltage 

drops by 2.8%, 3.6%, and 5%, respectively, below the fully charged voltage. 

In addition, 121 mAh was determined to be the total discharged capacity of the LG 

battery at the conclusion of the test in the first case study. In the second and third case 

studies, respectively, the capacity of the LG battery has been determined to be 174 mAh 

and 300 mAh. The LG cells retain majority of their capacities after 25 minutes of 

supporting the charging demand of vehicles. As a result of three discharge tests for C1, 

C2, and C3, using (7.2) and (7.3), the LG cell has a DoD of 4%, 5.8%, and 10%, 

respectively. In addition, this yields the following SoC levels for the LG cells under the 

respective tests: 96%, 94.2%, and 90%. 
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7.4 Summary  

Different battery discharge profiles are developed based on the relationship between 

the Chapter 6's developed stochastic charging profiles and battery SoCs from the 

maximum peak periods. Chapter 6 dealt with the installation of stationary battery energy 

storage units to assist in reducing network and transformer peak loads. In this chapter, 

small-scale physical battery chargers are used, and the operating characteristics of 

lithium-ion batteries are examined under different discharge tests. Experiments were 

conducted to complement simulation results, specifically to demonstrate the efficacy of 

battery energy storage units and provide confidence in their viability for reducing peak 

demand and meeting the rising demand for high-energy consumer vehicles (such as 

Audi, Jaguar, and Tesla). 

To estimate their SoC and DoD under different conditions, the relationship between 

the cell voltage of LG batteries and the current used to discharge them, as well as the 

relationship between the cell voltage and their total discharged capacity, were 

determined. For 38 minutes and 25 minutes of compensating for the charging demand 

of Jaguar and Audi vehicles, the battery voltage drops to within 4% and 5% of its fully 

charged level, respectively, according to experimental findings. Despite taking 1.5 times 

less time to reach its SoC, the Audi vehicle draws more energy from the storage unit due 

to its greater power drawing capability. In addition, the results indicate that the end-of-

discharge voltage of 250 V for the batteries is never reached, and that they retain more 

than 85% of their capacities once the Jaguar and Audi vehicles have completed charging 

during peak periods.  

Due to the high energy density of lithium-ion batteries, their ability to support the 

simultaneous charging of three vehicles was also evaluated. The SoC and DoD 

estimations of the batteries under various loading scenarios and discharge ratings have 

shown that they will still contain a substantial amount of usable energy once the 

associated vehicles reach their target SoCs. This is advantageous, especially if the same 

storage unit must be used to support the charging demand of other vehicles at the 

charging station prior to being charged to its maximum voltage. To maximise the benefit 

at scale, it is essential, however, to properly size these units. 

Overall, the discharge tests demonstrate that lithium-ion batteries are highly practical 

as grid-level storage devices due to their high energy density. These devices can also 

be used to facilitate the simultaneous charging of multiple vehicles without their end-of-

discharge voltage exceeding or falling below the specified SoC limits.  
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CHAPTER 8 

8.   Conclusions and Recommendations for Future 

Work  

8.1 Discussion 

The growing EV penetration places a strain on the grid, particularly during peak 

periods of demand. The hosting capacity of substations may be surpassed, leading to 

increased power losses and voltage violations, and overloaded distribution network 

equipment. This thesis has focused on the development of novel schemes for facilitating 

the connection of EV charging loads (particularly rapid and ultra-rapid chargers) with 

robust network measures. The following research questions have been addressed: 

Q1. To what extent does the integration of EVs influence the operational 

characteristics of power networks at the transmission and distribution level? And 

What is the effect of increasing the uptake level of uncontrolled EV chargers?  

A1. Load flow analysis is performed using static EV load profiles in IPSA+ Power 

simulation software and the effects of increasing the uptake level of EV chargers 

on the voltage drops and power losses are studied in Chapter 3. In Chapter 4, 

dynamic battery models are developed to investigate the combined effect of slow-

speed, fast-speed, and rapid-speed EV chargers on voltage deviations, power 

losses, cable loading, and transformer loading in Chapter 5. 

 

Q2. What technologies are feasible for connecting EVs without jeopardising the 

operational characteristics of distribution networks? And how can the impact of 

EV charging loads on distribution networks be mitigated?  

A2. The installation of OLTCs in grid transformers, and the optimum placement of 

DG units and the optimum sizing of SVC devices near critical substations and 

busbars significantly reduce voltage deviations and active power losses in 

medium-voltage distribution networks. In addition, it is demonstrated that the 

utilisation of coordinated charging techniques, the integration of V2G chargers, 

and the optimum sizing and placement of battery energy storage units play a key 

role in relieving the stress on the grid and reducing the peak load on substation 

transformers in a low-voltage distribution network. 
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Q3. i) How can the hourly peak demand and energy consumption required by 

different EV models on rapid and ultra-rapid devices be estimated? ii) How often 

is the rated capacity of the substation transformer exceeded? iii) In the worst-case 

scenario, what is the minimum size of a battery energy storage unit required for 

the network to operate safely? iv) What is the minimum substation transformer 

size required to accommodate EV demand without becoming overloaded? 

A3. The energy consumption of an EV depends on the model, battery capacity, 

battery SoC prior to charging, target SoC, duration of charging, and rating of 

chargers. In Chapter 6, a stochastic model to generate charging profiles for 

various EV models is developed. These profiles are then incorporated into a low-

voltage distribution network to quantify the hourly peak demand and determine 

the substation transformer's peak demand. The frequency with which the 

maximum rated capacity of the substation transformer is exceeded due to EV 

demand is determined by calculating the full-load current on the secondary 

winding of the transformer and comparing it to the maximum threshold current at 

which the transformer is permitted to operate. In addition, the minimum required 

power that must be injected by the battery energy storage unit and the minimum 

transformer size required to accommodate EV charging activities without 

exceeding the system's hosting capacity are calculated to design a network to 

operate safely during the worst-case scenario. 

 

Q4. i) How do the operating characteristics of lithium-ion batteries change under 

various discharge profiles? ii) How can the battery SoC and DoD be estimated? 

iii) How much battery energy storage capacity remains when it is used to charge 

a group of EVs with different charging needs?   

A4. This question is addressed by combining the stochastic model for EVs, simulation 

of hourly peak demand for EVs, and discharge characteristics of lithium-ion 

batteries. Initially, various discharge profiles for the storage units based on 

stochastically developed EV charging profiles are developed based on the 

network's peak demand time and size. Then, these discharge profiles are 

incorporated into a physical battery charger and analyser unit employing lithium-

ion batteries to experimentally determine the relationship between their cell 

voltage and discharged capacity under a variety of circumstances. Finally, the 

relationship between cell voltage and discharged capacity is used to estimate the 

battery SoC and DoD, as well as the available and usable battery capacity under 

various discharge profiles. Notably, discharge profiles are developed based on 

the charging needs of one, two, and three EVs simultaneously. 
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8.2 Thesis Contributions 

This thesis made the following major contributions to the existing research to address 

the research questions: 

 

1. This thesis proposes to use a combination of voltage control measures, 

particularly the installation of OLTCs on grid transformers, the placement of DGs 

in optimal locations, and the placement of SVCs in optimal locations, to safely 

accommodate the increased uptake level of rapid EV chargers in a HV/MV 

distribution network.  

 

2. Numerous studies model EVs as static loads in distribution networks and view 

them as uncontrollable charging loads. Since network demand is constantly 

changing due to variations in customer load profiles, the battery dynamics should 

be developed in detail and integrated into different parts of the network based on 

customer type, as different customers have different charging needs. This thesis 

investigates the interaction of slow-speed, fast-speed, and rapid-speed charges 

on a real low-voltage distribution network. Also investigated are the effects of V2G 

and the combined effects of controllable and uncontrollable charging methods to 

mitigate and smooth out peak loads in the network. 

 

3. A stochastic model is developed with real vehicle and charging time data to 

produce stochastic charging profiles for i) estimating the individual charging 

demand, ii) calculating the charging duration, and iii) determining the energy 

consumption of different EV models from the UK market with varying battery 

specifications and non-uniform charging characteristics. Collaboration is also 

made with Zap Map to obtain relevant data to model the timely distribution of 

vehicles at public charging hubs. The influence of battery energy storage units on 

the peak demand of the network and substation transformer is analysed. In the 

worst-case scenario, the frequency with which the charging demand exceeds the 

system's capacity is also determined. This allowed for the calculation of the 

optimal sizing of battery energy storage units and the determination of the 

minimum required kVA rating of substation transformers to operate the 

distribution network within safe and secure limits. 
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4. The SoC of an EV battery is an important parameter that reflects the battery 

performance. An accurate estimation of SoC does not only protect the battery 

from overcharging or deep discharging, but also extends its life. In this thesis, 

different discharge profiles are developed based on the stochastic charging 

profiles. These discharge profiles are then used to estimate the SoC and DoD of 

physical lithium-ion battery cells, which are then upscaled to represent the typical 

operating characteristic of a grid-connected battery energy storage unit. The 

effective utilisation of stationary battery energy storage units to meet the demand 

of EVs at public charging stations is studied with different EV models.   

8.3 Overview of Study Chapters 

This thesis proposed feasible technologies and measures to facilitate the connection 

of EVs and their charging technologies near strategic locations in distribution networks. 

The main findings for each study chapter are summarised in this section. 

8.3.1 Chapter 3: Effect of Increasing the Uptake Level of Electric 

Vehicles on HV/MV Distribution Network  

This chapter examined the impact of increasing the penetration rate of rapid EV 

chargers and implementing various voltage control measures on the steady-state 

operating characteristics of a generic HV/MV distribution network. The main findings and 

conclusions are summarised as follows: 

1. Increasing the uptake level of EVs introduced voltage violations and increased 

active power losses in the network.  

2. Even though the installation of OLTCs on grid transformers improved voltage 

profiles, voltage violations in some busbars were not completely eliminated at 

higher uptake levels of EV integration. 

3. The optimal positioning of four DG units and four SVC devices eliminated all 

voltage violations and reduced network power losses by up to 15.6% and 26.0%, 

respectively. 
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8.3.2 Chapter 4: Computational Modelling and Simulation, and 

Experimental Testing of Batteries and Chargers 

This chapter is considered as a methodological part for the modelling of battery 

dynamics and the choice of relevant experimental equipment. The main conclusions are 

summarised as follows: 

1. Computational simulation of battery chargers was conducted by varying the 

power delivered to the Shepherd battery pack. It is shown that switching the 

charger's operation between charging (G2V) and discharging (V2G) modes 

affects the direction of power flow at the point of charging.  

2. Experimental charging of batteries was carried out by varying the current 

delivered to the lithium-ion cells. 

8.3.3 Chapter 5: Impact of Integrating Different Battery Chargers 

on a Low-Voltage Distribution Network Feeder 

This chapter modelled a low-voltage distribution network feeder comprised of various 

residential and commercial buildings, as well as various battery chargers, categorised 

by their speed and rating. The main findings and conclusions are summarised as follows: 

1. When and where EV charging loads are charged and connected to distribution 

networks, respectively, have a significant impact on the severity of grid issues. 

Additionally, the rating of the charger influences the severity of grid issues. 

2. The supply cables were not designed to withstand the connection of a 150-kW 

charger during the peak demand (between 18:00 and 21:00). Two cables were 

severely overloaded at and near the point of charging. 

3. The total daily costs associated with power losses increased from £47.4 in the 

absence of EV chargers to £285.9 with the presence of EV chargers.  

4. Cable loading was reduced by (i) increasing the size of supply cables, (ii) using 

small-scale domestic V2G chargers rated at 7.5 kW each, and (iii) applying 

coordinated charging strategies. Coordinated charging was the most effective 

method, decreasing cable loading and peak demand by 45.7% and 47%, 

respectively. Using the coordinated charging method, power losses were also 

reduced by up to 70% at the point of charging. 
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8.3.4 Chapter 6: Estimation of Demand and Energy Consumption of 

Electric Vehicles at Rapid Chargers 

This chapter developed a stochastic model to estimate the energy consumption of 

popular BEV models from the UK market (such as Audi e-Tron, BMW i3, Jaguar I-Pace, 

Kia e-Niro, and Tesla Model 3), and to estimate the hourly and minute-by-minute peak 

demand on the network and substation transformer, respectively. The main findings are 

summarised as follows: 

1. While Kia models consume less energy than Audi, Jaguar, and Tesla models, it 

takes them longer to reach 80% battery SoC. BMW models require the least 

amount of energy to achieve 80% battery SoC, but their average charging times 

are longer than Audi and Tesla models. The increased range and relatively rapid 

recharging times of Tesla vehicles set them apart not only from other models in 

this study, but also from other vehicles on the market. This demonstrates why 

Tesla vehicles are currently the market leaders. 

2. Due to the increased likelihood of rapid and ultra-rapid charger operations 

occurring between 12:00 and 21:00 in the UK, distribution grids and substation 

transformers are anticipated to experience more pulsating loads and be more 

heavily loaded. 

3. Under the worst-case scenario, the peak demand on the distribution network 

increased from 12 kW to 404 kW and on the substation transformer from 56.7 kW 

to 447.7 kW between 17:00 and 18:00. 

4. To reduce peak demand, the connection of two small-scale V2G chargers (rated 

at 7.5 kW) and one large-scale battery energy storage unit (rated at 150 kW) has 

been proposed. The storage unit reduced the distribution network feeder's and 

substation transformer's peak demand by up to 30% and 40%, respectively. 

5. Simulation results revealed that the substation transformer can accommodate a 

peak demand of approximately 432 kW during the worst-case scenario without 

becoming overloaded. However, the optimal sizing of the battery energy storage 

unit to prevent substation transformer overload between 17:00 and 17:12 must 

be 256.7 kWh to power the additional demand between the substation 

transformer's peak load capacity and the point at which the transformer reaches 

its maximum rated capacity. 
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6. The 500-kVA substation transformer was exceeding its maximum rated capacity 

at 11:00, 12:00, 16:00, 17:00, and 19:00 under the worst-case scenario. During 

these times, the transformer was loaded to a maximum of 3.5%, 20.9%, 3.5%, 

27.5%, and 19.1%, respectively. To accommodate the simultaneous connection 

of A3, T4, and T9 vehicles securely to the network between 17:00 and 18:00, the 

transformer was sized to a minimum of 660 kVA based on the maximum full-load 

current and maximum peak demand of 880 A and 570 kW, respectively. 

8.3.5 Chapter 7: State of Charge Estimation of Lithium-Ion Batteries 

Under Discharge Tests  

This chapter developed different battery discharge profiles to determine the 

relationship between i) cell voltage and charging current, and ii) cell voltage and total 

discharged capacity of lithium-ion batteries. The findings of the chapter are summarised 

as follows: 

1. The end-of-discharge voltages of 2.5 V for the lithium-ion battery cell and 250 V 

for the stationary battery energy storage unit were not reached under different 

discharge tests. The lithium-ion batteries retained more around 90% of their 

capacities once the Audi and Tesla vehicles have completed their charging 

sessions during the peak periods. 

2. Due to the high energy density of lithium-ion batteries, the SoC estimations from 

various discharge profiles and scenarios revealed that they contain a substantial 

amount of reusable energy even if they were used to support the simultaneous 

charging of three high-power EVs. 

3. It is essential to size the battery storage units adequately to maximise the grid-

scale benefits. 
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8.4 Suggestions for Future Work 

The work presented in this thesis can be extended in the following ways: 

• Dynamic demand profiles can be used to do a more detailed impact study at the 

transmission side of HV/MV distribution networks.  

• The optimum sizing of DG units can be included within the optimum placement of 

them. 

• The Shepherd battery model may be improved and the effect of charging on the 

internal battery temperatures could be analysed throughout a range of charging 

and discharging cycles to study the likelihood of battery performance deterioration 

and ageing. 

• Since the ability to use V2G on a commercial scale is yet to develop at the time 

of conducting this research, future work may explore the effects of larger scale 

V2G chargers on cable loading, transformer loading, and power losses.  

• The stochastic model may be updated with newer vehicle models from the 

market.  

• A solar PV system may be combined with an on-site battery energy storage unit 

to assist in reducing network's peak demand and lowering the costs of charging. 

• The other physical operating characteristics of the lithium-ion battery cells may 

be monitored. For example, different discharge tests can be run at different 

ambient temperatures to investigate how the battery performance and battery 

SoC/DoD are affected under different settings. In addition, the state of health of 

the batteries may be estimated. 

• Due to budgetary constraints, a larger (in size and rating) battery charger and 

analyser unit could not be purchased and utilised for more comprehensive testing 

in this thesis. However, a larger physical battery charger (in rating and size) with 

the capacity to analyse an entire battery pack could be utilised for further analysis. 
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8.5 Research Benefits 

Widespread use of EVs is achieved through the availability of rapid charging stations. 

Not only will these stations reduce range anxiety but also minimise service and waiting 

times, preserve smoother traffic operation, and enable drivers to charge their vehicles at 

conveniently accessible public outlets (such as motorway junctions and at car parks of 

shopping malls). At the time of conducting this research, the shift towards ultra-high 

speed DC chargers is still in relatively slow phase, owing to the limitations in the battery 

technology. For this reason, there is a limited amount of work quantifying the impacts of 

ultra-rapid chargers on distribution grids. This thesis puts a greater emphasis on the 

modelling, operation, and control principles of high-powered DC chargers. Several 

actors, based on the principles of this study, could benefit from this thesis: 

First and foremost, the energy suppliers and DNOs may benefit from this research in 

different ways. At the transmission and distribution levels, there will be an increase in 

peak demand with the rapid uptake of EVs. The minimum generation capacity required 

to ensure demand is met, has been continuously rising. The maximum currents carried 

by the transmission, as well as the distribution networks are also increasing. The 

proposed framework for analysing the impact of EVs includes a national and local 

approach by using a generic and an existing real distribution network, respectively. The 

findings (particularly subjected overloading conditions on cables and transformers) raise 

awareness for the potential risk in the operation of existing distribution networks in urban 

and populated areas. DNOs may show tendency towards the reinforcement of 

distribution networks by upgrading the sizes of cables and transformers. However, this 

comes at the expense of increased costs. 

Charge point operators, who build and maintain charging stations for electric car 

owners, may also benefit from this research. The results from the estimation of the EV 

demand on rapid and ultra-rapid chargers showed that on-site supplementary battery 

energy storage units will play a key role to help reduce network demand. These storage 

units even provide other ancillary services to reduce network costs and improve network 

reliability. 

The society and the environment may also benefit in a way to promote and accelerate 

the shift to the electric mobility. The increased awareness and knowledge among the 

society will be significant to help reduce transportation-related emissions as quick as 

possible and enable synergies with smart grid development across many other countries.  
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The Appendices 

A. HV/MV Generic British Distribution Network 

This section presents the parameters used in the modelling of the HV/MV British 

generic distribution network in Chapter 3 (see Figure 3.1). Additionally, it outlines the 

formulation problem for the optimum allocation of the DG units near critical feeders. 

This generic distribution network is modelled by using the constant and average PQ 

demand of load busbars derived from [44]. The data is provided by the Excel 

spreadsheet that specifies the United Kingdom Generic Distribution System (UKGDS) 

Phase One Extra High Voltage Number 3 generic model in the UKGDS Phase One 

standard format. The Extra High Voltage Number 3 generic model represents a suburban 

area with mixed construction. The topology is mostly radial but with some interconnection 

within the network and links to neighbouring 33-kV networks. 

Since the network's variable load profiles were not available in the dataset, one-time 

step demand data was used to evaluate the network's steady-state operational 

characteristics under various case studies. Simulation results are obtained by using the 

Newton-Raphson method.  

A.1 Cable and Line Data 

Table A.1 contains the line data (resistance, reactance, and susceptance) for the 

HV/MV distribution network. The abbreviations for the line data are defined below as 

well. 

Where: 

𝐶𝑅1 is the positive and negative sequence resistance of the branch (p.u.), 

𝐶𝑋1 is the positive and negative sequence reactance of the branch (p.u.), 

𝐶𝐵1 is the positive and negative sequence susceptance of the branch (p.u.), 

𝐶𝑅0 is the zero-sequence resistance of the branch (p.u.), 

𝐶𝑋1 is the zero-sequence reactance of the branch (p.u.), 

𝐶𝐵1 is the zero-sequence susceptance of the branch (p.u.). 

 

 



The Appendices 

169 | P a g e  
 

Table A.1: Line data for the HV/MV distribution network 

From To 𝑪𝑹𝟏 (p.u.) 𝑪𝑿𝟏 (p.u.) 𝑪𝑩𝟏 (p.u.) 𝑪𝑹𝟎 (p.u.) 𝑪𝑿𝟎 (p.u.) 𝑪𝑩𝟎 (p.u.) Length (km) 

101 102 0.0046 0.0228 0.0105 0.0121 0.0576 0.0105 5.865 

101 103 0.0041 0.0203 0.0094 0.0107 0.0513 0.0094 0.087 

101 106 0.0171 0.0374 0.0428 0.0352 0.0957 0.0428 11.754 

101 107 0.0149 0.0326 0.0387 0.0307 0.0834 0.0387 0.153 

101 108 0.0004 0.0008 0.0015 0.0008 0.0020 0.0015 0.02 

101 109 0.0004 0.0010 0.0022 0.0009 0.0023 0.0022 0.352 

101 110 0.0062 0.0133 0.0328 0.0171 0.0340 0.0328 4.293 

101 111 0.0065 0.0140 0.0353 0.0180 0.0358 0.0353 6.183 

101 116 0.0122 0.0275 0.0098 0.0255 0.0700 0.0098 7.066 

102 104 0.0009 0.0012 0.0397 0.0076 0.0025 0.0397 1.853 

103 105 0.0008 0.0011 0.0349 0.0067 0.0022 0.0349 0.466 

103 117 0.0021 0.0049 0.0011 0.0043 0.0124 0.0011 1.493 

106 112 0.0003 0.0008 0.0002 0.0007 0.0020 0.0002 0.234 

106 114 0.0065 0.0220 0.0082 0.0144 0.0626 0.0082 3.364 

107 113 0.0003 0.0007 0.0002 0.0007 0.0019 0.0002 0.208 

107 115 0.0069 0.0234 0.0088 0.0154 0.0665 0.0088 7.337 

307 341 0.0178 0.0220 0 0.0533 0.0659 0 0.124 

313 308 0.0571 0.0540 0 0.1712 0.1621 0 2.729 

313 309 0.0791 0.1078 0 0.2372 0.3233 0 2.347 

313 362 0.0010 0.0013 0 0.0031 0.0038 0 0.021 

313 363 0.0006 0.0012 0 0.0019 0.0035 0 0.019 

314 315 0.0187 0.0177 0 0.0561 0.0532 0 0.521 

315 345 0.0707 0.0624 0 0.2121 0.1872 0 1.105 

316 314 0.0340 0.0342 0 0.1021 0.1027 0 3.811 

316 315 0.0691 0.0490 0 0.2072 0.1469 0 2.911 

316 315 0.0520 0.0479 0 0.1561 0.1437 0 2.154 

316 315 0.0738 0.0523 0 0.2214 0.1568 0 3.801 

316 317 0.0055 0.0051 0 0.0166 0.0154 0 0.383 

316 318 0.0056 0.0049 0 0.0169 0.0147 0 0.077 

316 353 0.0322 0.0296 0 0.0965 0.0888 0 1.379 

316 354 0.0394 0.0200 0 0.1182 0.0601 0 0.085 

327 326 0.0839 0.0870 0 0.2518 0.2610 0 1.369 

332 325 0.0199 0.0181 0 0.0596 0.0542 0 1.24 

334 327 0.0420 0.0812 0 0.1261 0.2435 0 1.276 

334 332 0.0225 0.0198 0 0.0676 0.0593 0 1.944 

336 332 0.0334 0.0371 0 0.1001 0.1112 0 0.974 

337 333 0.0399 0.0317 0 0.1197 0.0952 0 1.787 

337 336 0.0000 0.0000 0 0 0 0 0 

338 305 0.0453 0.0774 0 0.1359 0.2322 0 1.605 

338 306 0.0571 0.0899 0 0.1712 0.2698 0 2.693 

338 330 0.1025 0.1275 0 0.3075 0.3824 0 1.173 

338 331 0.1111 0.1397 0 0.3332 0.4191 0 3.847 

338 334 0.0630 0.1033 0 0.1889 0.3100 0 1.566 

338 339 0.0008 0.0011 0 0.0025 0.0033 0 0.096 

338 340 0.0005 0.0007 0 0.0014 0.0020 0 0.048 

338 341 0.0434 0.0716 0 0.1301 0.2147 0 2.617 

338 346 0.0181 0.0162 0 0.0544 0.0485 0 1.396 

338 347 0.0168 0.0149 0 0.0505 0.0447 0 0.497 

338 360 0.0403 0.0370 0 0.1208 0.1110 0 3.612 
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338 361 0.0352 0.0323 0 0.1055 0.0969 0 1.081 

342 319 0.0169 0.0160 0 0.0508 0.0480 0 0.432 

342 320 0.0123 0.0125 0 0.0369 0.0375 0 0.694 

342 335 0.0432 0.0349 0 0.1295 0.1047 0 2.627 

342 336 0.0394 0.0472 0 0.1182 0.1417 0 3.61 

342 337 0.0658 0.0817 0 0.1973 0.2451 0 0.045 

342 343 0.0099 0.0092 0 0.0298 0.0277 0 0.667 

342 344 0.0077 0.0071 0 0.0231 0.0213 0 0.422 

342 350 0.0150 0.0108 0 0.0449 0.0323 0 0.984 

342 351 0.0131 0.0094 0 0.0392 0.0281 0 0.094 

348 324 0.1077 0.1074 0 0.3231 0.3222 0 4.722 

348 327 0.2730 0.3717 0 0.8190 1.1152 0 5.458 

348 328 0 0 0 0 0 0 0 

348 329 0 0 0 0 0 0 0 

353 352 0.0287 0.0244 0 0.0860 0.0731 0 0.299 

353 357 0.0149 0.0130 0 0.0447 0.0389 0 0.071 

357 301 0.0333 0.0313 0 0.0998 0.0938 0 0.992 

357 303 0.0351 0.0311 0 0.1052 0.0934 0 3.44 

357 311 0.0178 0.0157 0 0.0534 0.0472 0 0.307 

357 312 0.0195 0.0173 0 0.0584 0.0520 0 1.058 

357 321 0.0081 0.0097 0 0.0244 0.0292 0 0.236 

357 322 0.0091 0.0108 0 0.0272 0.0325 0 0.793 

357 355 0.0243 0.0230 0 0.0730 0.0691 0 0.479 

357 356 0.0369 0.0380 0 0.1106 0.1141 0 1.215 

357 358 0.0015 0.0014 0 0.0044 0.0042 0 0.004 

It should be clarified that all the line data for the HV/MV distribution network is 

expressed in per unit on system base.  

A.2 Transformer Data 

Table A.2 presents the transformer data concerning resistance, reactance, earthing 

resistance, and earthing reactance for the network. The abbreviations for the line data 

are defined below as well. 

Where: 

𝑇𝑅1 is the positive and negative sequence resistance of the transformer (p.u.), 

𝑇𝑋1 is the positive and negative sequence reactance of the transformer (p.u.), 

𝑇𝐵1 is the positive and negative sequence susceptance of transformer (p.u.), 

𝑇𝑅0 is the zero-sequence resistance of the transformer (p.u.), 

𝑇𝑋1 is the zero-sequence reactance of the transformer (p.u.), 

𝑇𝐵1 is the zero-sequence susceptance of the transformer (p.u.). 
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Table A.2: Transformer data for the HV/MV distribution network 

From To 𝑻𝑹𝟏 (p.u.) 𝑻𝑿𝟏 (p.u.) 𝑻𝑹𝟎 (p.u.) 𝑻𝑿𝟎 (p.u.) 𝑻𝑹𝑬 (p.u.) 𝑻𝑿𝑬 (p.u.) Winding 

99 101 0 0.1 0 0.1 0 0 YY 

99 101 0 0.1 0 0.1 0 0 YY 

104 316 0.0056 0.1720 0 0.1463 1.0006 0.3602 YD 

105 316 0.0054 0.1706 0 0.1451 1.0006 0.3602 YD 

108 338 0.0092 0.1946 0 0.1655 1.4470 0.5209 YD 

109 338 0.0090 0.1949 0 0.1658 1.4470 0.5209 YD 

109 338 0.0092 0.1984 0 0.1689 1.4470 0.5209 YD 

110 342 0.0107 0.2235 0 0.1902 1.6739 0.6026 YD 

111 342 0.0107 0.2246 0 0.1911 1.6739 0.6026 YD 

112 348 0.0132 0.3024 0 0.2573 2.2200 0.7991 YD 

113 348 0.0132 0.2946 0 0.2507 2.2200 0.7991 YD 

114 313 0.0069 0.2351 0 0.2000 0.9876 0.3555 YD 

115 313 0.0061 0.2371 0 0.2016 0.9876 0.3555 YD 

116 357 0.0108 0.2281 0 0.1941 1.6873 0.6074 YD 

117 357 0.0108 0.2253 0 0.1917 1.6873 0.6074 YD 

301 6601 0.0374 0.9718 0 0.8260 7.6696 2.7609 DY 

303 6601 0.0374 0.9718 0 0.8260 7.6696 2.7609 DY 

305 6602 0.0438 1.0962 0 0.9318 13.5442 4.8756 DY 

306 6602 0.0438 1.0962 0 0.9318 13.5442 4.8756 DY 

307 6602 0.0438 1.0962 0 0.9318 13.5442 4.8756 DY 

308 6603 0.0372 0.9288 0 0.7895 7.6240 2.7444 DY 

309 6603 0.0372 0.9288 0 0.7895 7.6240 2.7444 DY 

311 6604 0.0411 1.0279 0 0.8738 8.4374 3.0373 DY 

312 6604 0.0411 1.0279 0 0.8738 8.4374 3.0373 DY 

314 6605 0.0393 1.0221 0 0.8688 7.5150 2.7052 DY 

314 6605 0.0393 1.0221 0 0.8688 7.5150 2.7052 DY 

315 6606 0.0407 1.0163 0 0.8638 8.3416 3.0028 DY 

315 6606 0.0407 1.0163 0 0.8638 8.3416 3.0028 DY 

316 6615 0.0381 0.9918 0 0.8430 7.8480 2.8251 DY 

316 6615 0.0381 0.9918 0 0.8430 7.8480 2.8251 DY 

317 6607 0.0432 1.0804 0 0.9184 8.8682 3.1923 DY 

318 6607 0.0432 1.0804 0 0.9184 8.8682 3.1923 DY 

319 6608 0.0373 0.9320 0 0.7922 7.6699 2.7610 DY 

320 6608 0.0373 0.9320 0 0.7922 7.6699 2.7610 DY 

321 6609 0.0428 1.0701 0 0.9096 8.7835 3.1618 DY 

322 6609 0.0428 1.0701 0 0.9096 8.7835 3.1618 DY 

324 1101 0.0426 1.0639 0 0.9043 5.2532 1.8910 DY 

325 1102 0.0401 1.0420 0 0.8857 4.9473 1.7809 DY 

326 1102 0.0401 1.0420 0 0.8857 4.9473 1.7809 DY 

328 1103 0.0422 1.0557 0 0.8973 5.2126 1.8764 DY 

329 1103 0.0422 1.0557 0 0.8973 5.2126 1.8764 DY 

330 1104 0.0387 0.9683 0 0.8231 4.7814 1.7212 DY 

331 1104 0.0387 0.9683 0 0.8231 4.7814 1.7212 DY 

332 1105 0.0405 1.0125 0 0.8606 4.9995 1.7997 DY 

333 1105 0.0405 1.0125 0 0.8606 4.9995 1.7997 DY 

336 1106 0.0377 0.9809 0 0.8338 4.6573 1.6765 DY 

337 1106 0.0377 0.9809 0 0.8338 4.6573 1.6765 DY 

339 6610 0.0435 1.0882 0 0.9249 8.9551 3.2236 DY 

340 6610 0.0435 1.0882 0 0.9249 8.9551 3.2236 DY 
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341 6611 0.0383 0.9963 0 0.8469 7.8842 2.8381 DY 

341 6611 0.0383 0.9963 0 0.8469 7.8842 2.8381 DY 

343 6612 0.0386 0.9641 0 0.8195 7.9340 2.8560 DY 

344 6612 0.0386 0.9641 0 0.8195 7.9340 2.8560 DY 

346 1107 0.0393 0.9814 0 0.8342 4.8460 1.7444 DY 

347 1107 0.0393 0.9814 0 0.8342 4.8460 1.7444 DY 

350 1108 0.0415 1.0780 0 0.9163 5.1180 1.8424 DY 

351 1108 0.0415 1.0780 0 0.9163 5.1180 1.8424 DY 

352 6613 0.0375 0.9760 0 0.8296 7.7029 2.7728 DY 

354 6613 0.0375 0.9760 0 0.8296 7.7029 2.7728 DY 

355 6614 0.0364 0.9464 0 0.8044 7.4690 2.6886 DY 

356 6614 0.0364 0.9464 0 0.8044 7.4690 2.6886 DY 

358 6616 0.0406 1.0149 0 0.8626 8.3302 2.9987 DY 

359 6616 0.0406 1.0149 0 0.8626 8.3302 2.9987 DY 

360 6617 0.0419 1.0482 0 0.8909 8.6034 3.0970 DY 

361 6617 0.0419 1.0482 0 0.8909 8.6034 3.0970 DY 

362 1109 0.0416 1.0399 0 0.8839 5.1350 1.8485 DY 

It should be clarified that all the transformer data for the HV/MV distribution network 

is expressed in per unit on a system base.  

A.3 Busbar and Line Data for Optimisation Model 

With reference to the schematic diagram of the distribution network presented in 

Figure A.1, the busbar and line data used to determine the optimum placement of DG 

units are shown in Table A.3 and Table A.4, respectively. 

 

Figure A.1: Schematic diagram of the HV/MV generic distribution network. 
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Table A.3: Busbar data of the HV/MV distribution network for the MATLAB codes 

Busbar 

Name 

Busbar 

Label 

Busbar 

Type: 

1: Slack 

2: PV 

3: PQ 

Generation  

(MW) 

Generation  

(MVAr) 

Minimum 

Reactive Power 

(MVAr) 

Maximum 

Reactive Power 

(MVAr) 

99 1 1 0.0 206.8 1000.0 -1000.0 

101 2 3 0.0 0.0 0.0 0.0 

102 3 3 0.0 0.0 0.0 0.0 

103 4 3 0.0 0.0 0.0 0.0 

104 5 3 0.0 0.0 0.0 0.0 

105 6 3 0.0 0.0 0.0 0.0 

106 7 3 0.0 0.0 0.0 0.0 

107 8 3 0.0 0.0 0.0 0.0 

108 9 3 0.0 0.0 0.0 0.0 

109 10 3 0.0 0.0 0.0 0.0 

110 11 3 0.0 0.0 0.0 0.0 

111 12 3 0.0 0.0 0.0 0.0 

112 13 3 0.0 0.0 0.0 0.0 

113 14 3 0.0 0.0 0.0 0.0 

114 15 3 0.0 0.0 0.0 0.0 

115 16 3 0.0 0.0 0.0 0.0 

116 17 3 0.0 0.0 0.0 0.0 

117 18 3 0.0 0.0 0.0 0.0 

301 19 3 0.0 0.0 0.0 0.0 

303 20 3 0.0 0.0 0.0 0.0 

305 21 3 0.0 0.0 0.0 0.0 

306 22 3 0.0 0.0 0.0 0.0 

307 23 3 0.0 0.0 0.0 0.0 

308 24 3 0.0 0.0 0.0 0.0 

309 25 3 0.0 0.0 0.0 0.0 

311 26 3 0.0 0.0 0.0 0.0 

312 27 3 0.0 0.0 0.0 0.0 

313 28 3 0.0 0.0 0.0 0.0 

314 29 3 0.0 0.0 0.0 0.0 

315 30 3 0.0 0.0 0.0 0.0 

316 31 3 0.0 0.0 0.0 0.0 

317 32 3 0.0 0.0 0.0 0.0 

318 33 3 0.0 0.0 0.0 0.0 

319 34 3 0.0 0.0 0.0 0.0 

320 35 3 0.0 0.0 0.0 0.0 

321 36 3 0.0 0.0 0.0 0.0 

322 37 3 0.0 0.0 0.0 0.0 

324 38 3 0.0 0.0 0.0 0.0 

325 39 3 0.0 0.0 0.0 0.0 

326 40 3 0.0 0.0 0.0 0.0 

327 41 3 0.0 0.0 0.0 0.0 

330 42 3 0.0 0.0 0.0 0.0 
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331 43 3 0.0 0.0 0.0 0.0 

332 44 3 0.0 0.0 0.0 0.0 

333 45 3 0.0 0.0 0.0 0.0 

334 46 3 0.0 0.0 0.0 0.0 

335 47 2 0.0 23.4 30.0 -30.0 

336 48 3 0.0 0.0 0.0 0.0 

337 49 3 0.0 0.0 0.0 0.0 

338 50 3 0.0 0.0 0.0 0.0 

339 51 3 0.0 0.0 0.0 0.0 

340 52 3 0.0 0.0 0.0 0.0 

341 53 3 0.0 0.0 0.0 0.0 

342 54 3 0.0 0.0 0.0 0.0 

343 55 3 0.0 0.0 0.0 0.0 

344 56 3 0.0 0.0 0.0 0.0 

345 57 2 0.0 26.8 20.0 -20.0 

346 58 3 0.0 0.0 0.0 0.0 

347 59 3 0.0 0.0 0.0 0.0 

348 60 3 0.0 0.0 0.0 0.0 

350 61 3 0.0 0.0 0.0 0.0 

351 62 3 0.0 0.0 0.0 0.0 

352 63 3 0.0 0.0 0.0 0.0 

353 64 3 0.0 0.0 0.0 0.0 

354 65 3 0.0 0.0 0.0 0.0 

355 66 3 0.0 0.0 0.0 0.0 

356 67 3 0.0 0.0 0.0 0.0 

357 68 3 0.0 0.0 0.0 0.0 

358 69 3 0.0 0.0 0.0 0.0 

359 70 3 0.0 0.0 0.0 0.0 

360 71 3 0.0 0.0 0.0 0.0 

361 72 3 0.0 0.0 0.0 0.0 

362 73 3 0.0 0.0 0.0 0.0 

363 74 3 0.0 0.0 0.0 0.0 

1101 75 3 10.1 0.0 0.0 0.0 

1102 76 3 4.0 0.0 0.0 0.0 

1104 77 3 9.3 0.0 0.0 0.0 

1105 78 3 3.3 0.0 0.0 0.0 

1106 79 3 2.1 0.0 0.0 0.0 

1107 80 3 3.3 0.0 0.0 0.0 

1108 81 3 1.0 0.0 0.0 0.0 

1109 82 3 9.8 0.0 0.0 0.0 

6601 83 3 5.0 0.0 0.0 0.0 

6602 84 3 6.7 0.0 0.0 0.0 

6603 85 3 4.8 0.0 0.0 0.0 

6604 86 3 5.9 0.0 0.0 0.0 

6605 87 3 4.3 0.0 0.0 0.0 

6606 88 3 5.4 0.0 0.0 0.0 

6607 89 3 7.2 0.0 0.0 0.0 

6608 90 3 8.6 0.0 0.0 0.0 
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6609 91 3 0.5 0.0 0.0 0.0 

6610 92 3 7.2 0.0 0.0 0.0 

6611 93 3 2.9 0.0 0.0 0.0 

6612 94 3 8.6 0.0 0.0 0.0 

6613 95 3 4.8 0.0 0.0 0.0 

6614 96 3 5.7 0.0 0.0 0.0 

6615 97 3 4.3 0.0 0.0 0.0 

6616 98 3 6.3 0.0 0.0 0.0 

6617 99 3 0.3 0.0 0.0 0.0 
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Table A.4: Line data of the HV/MV distribution network for the MATLAB codes 

From Busbar To Busbar 𝐶𝑅1 (p.u.) 𝐶𝑋1 (p.u.) 𝐶𝐵1 (p.u.) Tap setting (a) 

1 2 0.0 0.1 0.0 1 

1 2 0.0 0.1 0.0 1 

2 3 0.00456 0.02278 0.00526 1 

3 5 0.00088 0.00123 0.01987 1 

2 4 0.00407 0.02030 0.00468 1 

2 10 0.0043 0.00097 0.00108 1 

2 9 0.00036 0.00082 0.00075 1 

2 7 0.01709 0.03743 0.02139 1 

2 8 0.01492 0.03264 0.01936 1 

2 17 0.01219 0.02745 0.00488 1 

4 6 0.00077 0.00108 0.01745 1 

4 18 0.00214 0.00487 0.00053 1 

17 68 0.01079 0.22809 0.01738 1 

18 68 0.01079 0.22528 0.00502 1 

6 31 0.00538 0.17062 0.01572 1 

5 31 0.00556 0.17199 0.04060 1 

31 97 0.03815 0.99178 0.00874 1 

31 97 0.03815 0.99178 0.00874 1 

31 30 0.06905 0.04896 0.0 1 

31 30 0.05204 0.04789 0.0 1 

31 30 0.07379 0.05227 0.0 1 

30 57 0.07071 0.06239 0.01816 1 

30 88 0.04065 1.01627 0.0 1 

30 88 0.04065 1.01627 0.0 1 

31 29 0.00553 0.00515 0.0 1 

29 30 0.01869 0.01772 0.05020 1 

29 87 0.03931 1.02212 0.0 1 

29 87 0.03931 1.022212 0.0 1 

31 32 0.00553 0.00515 0.0 1 

31 33 0.00562 0.00491 0.0 1 

31 65 0.03942 0.02002 0.0 1 

31 64 0.03216 0.02962 0.0 1 

64 68 0.01489 0.01296 0.0 1 

63 95 0.03754 0.97599 0.0 1 

65 95 0.03754 0.97599 0.0 1 

64 63 0.02866 0.02438 0.0 1 

32 89 0.03738 0.97178 0.0 1 

33 89 0.03738 0.97178 0.0 1 

10 50 0.00916 0.19837 0.0 1 

10 50 0.00898 0.19486 0.0 1 

9 50 0.00916 0.19458 0.0 1 

7 15 0.00646 0.02204 0.00412 1 

7 13 0.00033 0.00075 0.0008 1 

8 16 0.00687 0.02342 0.00438 1 

8 14 0.00033 0.00074 0.00008 1 
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15 28 0.00690 0.23512 0.0 1 

16 28 0.00614 0.23710 0.0 1 

28 24 0.05708 0.05404 0.0 1 

28 25 0.07907 0.10776 0.0 1 

24 85 0.03715 0.92884 0.0 1 

25 85 0.03715 0.92884 0.0 1 

28 73 0.00102 0.00128 0.0 1 

28 74 0.00064 0.00118 0.0 1 

73 82 0.04160 1.03994 0.0 1 

74 82 0.04160 1.03994 0.0 1 

68 19 0.03327 0.03128 0.0 1 

68 20 0.03506 0.03115 0.0 1 

19 83 0.03738 0.97178 0.0 1 

19 83 0.03738 0.97178 0.0 1 

68 26 0.01781 0.01573 0.0 1 

68 27 0.01946 0.01732 0.0 1 

26 86 0.04112 1.02795 0.0 1 

27 86 0.04112 1.02795 0.0 1 

68 36 0.00812 0.00973 0.0 1 

68 37 0.00905 0.01085 0.0 1 

36 91 0.04280 1.07011 0.0 1 

37 91 0.04280 1.07011 0.0 1 

68 66 0.02434 0.02303 0.0 1 

68 67 0.03688 0.03804 0.0 1 

66 96 0.03640 0.94636 0.0 1 

67 96 0.03640 0.94636 0.0 1 

68 69 0.00146 0.00139 0.0 1 

68 70 0.00148 0.00141 0.0 1 

69 98 0.04060 1.01488 0.0 1 

70 98 0.04060 1.01488 0.0 1 

50 72 0.03516 0.03231 0.0 1 

50 71 0.04027 0.03701 0.0 1 

72 99 0.04193 1.04817 0.0 1 

71 99 0.04193 1.04817 0.0 1 

50 59 0.01682 0.01489 0.0 1 

50 58 0.01813 0.01616 0.0 1 

59 80 0.03926 0.98142 0.0 1 

58 80 0.03926 0.98142 0.0 1 

50 52 0.00047 0.00065 0.0 1 

50 51 0.00093 0.00111 0.0 1 

52 92 0.04353 1.08815 0.0 1 

51 92 0.04353 1.08815 0.0 1 

50 43 0.11105 0.09660 0.0 1 

50 42 0.10250 0.12748 0.0 1 

43 77 0.03873 0.96832 0.0 1 

42 77 0.03873 0.96832 0.0 1 

50 53 0.04338 0.07157 0.0 1 

23 53 0.01777 0.02198 0.0 1 
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53 93 0.03832 0.99635 0.0 1 

53 93 0.03832 0.99635 0.0 1 

50 22 0.05707 0.08994 0.0 1 

50 21 0.04531 0.07740 0.0 1 

23 84 0.04385 1.09623 0.0 1 

22 84 0.04385 1.09623 0.0 1 

21 84 0.04385 1.09623 0.0 1 

2 11 0.00617 0.01328 0.01638 1 

2 12 0.00650 0.01399 0.01763 1 

11 54 0.01070 0.22350 0.0 1 

12 54 0.01070 0.22350 0.0 1 

54 62 0.01306 0.00936 0.0 1 

54 61 0.01498 0.01077 0.0 1 

62 81 0.04146 1.07797 0.0 1 

61 81 0.00771 1.07797 0.0 1 

54 55 0.00994 0.00922 0.0 1 

54 56 0.00771 0.00709 0.0 1 

56 94 0.03856 0.96407 0.0 1 

55 94 0.03856 0.96407 0.0 1 

54 35 0.01229 0.01250 0.0 1 

54 34 0.01693 0.01601 0.0 1 

35 90 0.03728 0.98198 0.0 1 

34 90 0.03728 0.93198 0.0 1 

54 47 0.04317 0.03490 0.0 1 

54 48 0.03939 0.04722 0.0 1 

13 60 0.01317 0.30238 0.0 1 

14 60 0.01317 0.30238 0.0 1 

50 46 0.06296 0.10334 0.0 1 

60 41 0.27301 0.37173 0.0 1 

60 38 0.10769 0.10741 0.0 1 

38 75 0.04256 1.06387 0.0 1 

46 41 0.04203 0.08116 0.0 1 

49 79 0.03773 0.98093 0.0 1 

48 79 0.03773 0.98093 0.0 1 

49 45 0.03991 0.03175 0.0 1 

45 78 0.04050 1.01250 0.0 1 

44 78 0.04050 1.01250 0.0 1 

46 44 0.02255 0.01976 0.0 1 

48 44 0.03335 0.03706 0.0 1 

54 49 0.06576 0.08171 0.0 1 

44 39 0.01986 0.01806 0.0 1 

41 40 0.08393 0.08699 0.0 1 

40 76 0.04008 1.04200 0.0 1 

39 76 0.04008 1.04200 0.0 1 
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A.4 MATLAB Codes 

The establishment of the structure of inputs and objects in the developed MATLAB 

code is presented in this part. The functions to input the busbar data in the matrix form 

is shown in the next page. 

function busdt = busdatas(num) 

 
%| Bus | Type |  Vsp  | theta | PGi |  QGi | PLi | QLi  | Qmin | Qmax | 
busdat99 = 

[1       1     1.000    0.0    371.4    206.8      0.0     0.0  -1000   1000 
2        3     1.000   -9.9       0.0      0.0      0.0     0.0      0.0       0.0 
3        3     0.995  -10.4      0.0      0.0      0.0     0.0      0.0       0.0 

4        3     0.994  -10.7      0.0      0.0      0.0     0.0      0.0       0.0 
5        3     0.995  -10.5      0.0      0.0      0.0     0.0      0.0       0.0 
6        3     0.994  -10.7      0.0      0.0      0.0     0.0      0.0       0.0 
7        3     0.989  -10.4      0.0      0.0      0.0     0.0      0.0       0.0 

8        3     0.990  -10.3      0.0      0.0      0.0     0.0      0.0       0.0 
9        3     1.000   -9.9       0.0      0.0      0.0     0.0      0.0       0.0 
10      3     1.000   -9.9       0.0      0.0      0.0     0.0      0.0       0.0 

11      3     0.997  -10.1      0.0      0.0      0.0     0.0      0.0       0.0 
12      3     0.997  -10.2      0.0      0.0      0.0     0.0      0.0       0.0 
13      3     0.989  -10.4      0.0      0.0      0.0     0.0      0.0       0.0 

14      3     0.990  -10.3      0.0      0.0      0.0     0.0      0.0       0.0 
15      3     0.985  -10.6      0.0      0.0      0.0     0.0      0.0       0.0 
16      3     0.986  -10.5      0.0      0.0      0.0     0.0      0.0       0.0 

17      3     0.992  -10.3      0.0      0.0      0.0     0.0      0.0       0.0 
18      3     0.992  -10.8      0.0      0.0      0.0     0.0      0.0       0.0 
19      3     0.977   15.2      0.0      0.0      0.0     0.0      0.0       0.0 

20      3     0.977   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
21      3     0.990   16.5      0.0      0.0      0.0     0.0      0.0       0.0 
22      3     0.989   16.2      0.0      0.0      0.0     0.0      0.0       0.0 

23      3     0.984   16.3      0.0      0.0      0.0     0.0      0.0       0.0 
24      3     0.986   16.9      0.0      0.0      0.0     0.0      0.0       0.0 
25      3     0.982   16.7      0.0      0.0      0.0     0.0      0.0       0.0 

26      3     0.979   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
27      3     0.978   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
28      3     0.993   17.1      0.0      0.0      0.0     0.0      0.0       0.0 

29      3     0.982   14.9      0.0      0.0      0.0     0.0      0.0       0.0 
30      3     0.983   14.9      0.0      0.0      0.0     0.0      0.0       0.0 
31      3     0.987   15.2      0.0      0.0      0.0     0.0      0.0       0.0 

32      3     0.986   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
33      3     0.986   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
34      3     0.990   15.8      0.0      0.0      0.0     0.0      0.0       0.0 

35      3     0.990   15.8      0.0      0.0      0.0     0.0      0.0       0.0 
36      3     0.981   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
37      3     0.981   15.2      0.0      0.0      0.0     0.0      0.0       0.0 

38      3     0.979   17.7      0.0      0.0      0.0     0.0      0.0       0.0 
39      3     0.976   15.8      0.0      0.0      0.0     0.0      0.0       0.0 
40      3     0.970   15.8      0.0      0.0      0.0     0.0      0.0       0.0 

41      3     0.985   16.1      0.0      0.0      0.0     0.0      0.0       0.0 
42      3     0.985   16.7      0.0      0.0      0.0     0.0      0.0       0.0 
43      3     0.984   16.7      0.0      0.0      0.0     0.0      0.0       0.0 

44      3     0.982   15.8      0.0      0.0      0.0     0.0      0.0       0.0 
45      3     0.978   15.3      0.0      0.0      0.0     0.0      0.0       0.0 
46      3     0.986   15.9      0.0      0.0      0.0     0.0      0.0       0.0 

47      2     1.000   15.2      0.0     23.4      0.0     0.0     30.0     -30.0 
48      3     0.985   15.8      0.0      0.0      0.0     0.0      0.0       0.0 
49      3     0.981   15.4      0.0      0.0      0.0     0.0      0.0       0.0 

50      3     0.995   16.7      0.0      0.0      0.0     0.0      0.0       0.0 
51      3     0.995   16.7      0.0      0.0      0.0     0.0      0.0       0.0 
52      3     0.995   16.7      0.0      0.0      0.0     0.0      0.0       0.0 

53      3     0.986   16.3      0.0      0.0      0.0     0.0      0.0       0.0 
54      3     0.992   15.8      0.0      0.0      0.0     0.0      0.0       0.0 
55      3     0.990   15.8      0.0      0.0      0.0     0.0      0.0       0.0 

56      3     0.991   15.8      0.0      0.0      0.0     0.0      0.0       0.0 
57      2     1.000   13.8      0.0     26.8      0.0     0.0     20.0     -20.0 
58      3     0.994   16.7      0.0      0.0      0.0     0.0      0.0       0.0 

59      3     0.994   16.7      0.0      0.0      0.0     0.0      0.0       0.0 
60      3     1.013   17.7      0.0      0.0      0.0     0.0      0.0       0.0 
61      3     0.991   15.8      0.0      0.0      0.0     0.0      0.0       0.0 

62      3     0.991   15.8      0.0      0.0      0.0     0.0      0.0       0.0 
63      3     0.979   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
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64      3     0.982   15.2      0.0      0.0      0.0     0.0      0.0       0.0 

65      3     0.983   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
66      3     0.978   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
67      3     0.977   15.2      0.0      0.0      0.0     0.0      0.0       0.0 

68      3     0.981   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
69      3     0.981   15.2      0.0      0.0      0.0     0.0      0.0       0.0 
70      3     0.981   15.2      0.0      0.0      0.0     0.0      0.0       0.0 

71      3     0.992   16.6      0.0      0.0      0.0     0.0      0.0       0.0 
72      3     0.992   16.6      0.0      0.0      0.0     0.0      0.0       0.0 
73      3     0.993   17.1      0.0      0.0      0.0     0.0      0.0       0.0 

74      3     0.993   17.1      0.0      0.0      0.0     0.0      0.0       0.0 
75      3     0.819  -23.9      0.0      0.0     15.6   10.1     0.0       0.0 
76      3     0.949  -19.2      0.0      0.0     15.6     4.0     0.0       0.0 

77      3     0.934  -15.5      0.0      0.0      7.8     3.3      0.0       0.0 
78      3     0.956  -19.1      0.0      0.0     15.0     3.3      0.0       0.0 
79      3     0.969  -17.5      0.0      0.0     10.4     2.1      0.0       0.0 

80      3     0.979  -17.0      0.0      0.0     12.7     3.3      0.0       0.0 
81      3     0.985  -15.9      0.0      0.0       5.2     1.0      0.0       0.0 
82      3     0.929  -18.6      0.0      0.0     17.8     9.8      0.0       0.0 

83      3     0.945  -19.4      0.0      0.0     15.4     5.0      0.0       0.0 
84      3     0.958  -17.4      0.0      0.0     17.4     6.7      0.0       0.0 
85      3     0.953  -18.3      0.0      0.0     17.9     4.8      0.0       0.0 

86      3     0.938  -20.4      0.0      0.0     17.7     5.9      0.0       0.0 
87      3     0.952  -19.9      0.0      0.0     15.5     4.3      0.0       0.0 
88      3     0.943  -21.8      0.0      0.0     21.5     5.4      0.0       0.0 

89      3     0.929  -22.7      0.0      0.0     23.5     7.2      0.0       0.0 
90      3     0.941  -18.6      0.0      0.0     15.5     8.6      0.0       0.0 
91      3     0.977  -15.6      0.0      0.0       2.5     0.5      0.0       0.0 
92      3     0.945  -18.9      0.0      0.0     17.5     7.2      0.0       0.0 

93      3     0.968  -15.9      0.0      0.0       7.6     2.9      0.0       0.0 
94      3     0.935  -21.0      0.0      0.0     23.0     8.6      0.0       0.0 
95      3     0.950  -19.3      0.0      0.0     15.1     4.8      0.0       0.0 

96      3     0.942  -19.4      0.0      0.0     15.9     5.7      0.0       0.0 
97      3     0.962  -16.7      0.0      0.0       6.7     4.3      0.0       0.0 
98      3     0.940  -18.5      0.0      0.0     15.2     6.3      0.0       0.0 

99      3     0.983  -18.5      0.0      0.0     16.4     0.3      0.0       0.0]; 
switch num 
case 99 

busdt = busdat99; 
end 
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The functions to input the line and transformer data in the matrix form is shown below. 

%             |From|  To |    R    |   X     |   B/2   |   X'mer  | 

%             |Bus | Bus |   pu    |  pu     |   pu    |  TAP (a) | 
linedat99 = 
               [ 1    2      0.0           0.1            0.0             1 

                 1    2      0.0           0.1            0.0             1 
                 2    3      0.00456   0.02278    0.00526     1 
                 3    5      0.00088   0.00123    0.01987     1 

                 2    4      0.00407   0.02030    0.00468     1 
                 2   10     0.00043   0.00097    0.00108     1 
                 2    9      0.00036   0.00082    0.00075     1 

                 2    7      0.01709   0.03743    0.02139     1 
                 2    8      0.01492   0.03264    0.01936     1 
                 2   17     0.01219   0.02745    0.00488     1 

                 4    6      0.00077   0.00108    0.01745     1 
                 4   18     0.00214   0.00487    0.00053     1 
                17   68    0.01079   0.22809    0.01738     1 

                18   68    0.01079   0.22528    0.00502     1 
                 6    31    0.00538   0.17062    0.01572     1 
                 5    31    0.00556   0.17199    0.04060     1 

                31   97    0.03815   0.99178    0.00874     1 
                31   97    0.03815   0.99178    0.00874     1 
                31   30    0.06905   0.04896    0.0             1 

                31   30    0.05204   0.04789    0.0             1 
                31   30    0.07379   0.05227    0.0             1 
                30   57    0.07071   0.06239    0.01816     1 

                30   88    0.04065   1.01627    0.0             1 
                30   88    0.04065   1.01627    0.0             1 
                31   29    0.00553   0.00515    0.0             1 

                29   30    0.01869   0.01772    0.05020     1 
                29   87    0.03931   1.02212    0.0             1 
                29   87    0.03931   1.02212    0.0             1 

                31   32    0.00553   0.00515    0.0             1 
                31   33    0.00562   0.00491    0.0             1 
                31   65    0.03942   0.02002    0.0             1 

                31   64    0.03216   0.02962    0.0             1 
                64   68    0.01489   0.01296    0.0             1 
                63   95    0.03754   0.97599    0.0             1 

                65   95    0.03754   0.97599    0.0             1 
                64   63    0.02866   0.02438    0.0             1                
                32   89    0.03738   0.97178    0.0             1 

                33   89    0.03738   0.97178    0.0             1 
                10   50    0.00916   0.19837    0.0             1 
                10   50    0.00898   0.19486    0.0             1 
                 9   50     0.00916   0.19458    0.0             1 

                 7   15     0.00646   0.02204    0.00412     1 
                 7   13     0.00033   0.00075    0.00008     1 
                 8   16     0.00687   0.02342    0.00438     1 

                 8   14     0.00033   0.00074    0.00008     1 
                15   28    0.00690   0.23512    0.0             1 
                16   28    0.00614   0.23710    0.0             1 

                28   24    0.05708   0.05404    0.0             1 
                28   25    0.07907   0.10776    0.0             1 
                24   85    0.03715   0.92884    0.0             1 

                25   85    0.03715   0.92884    0.0             1 
                28   73    0.00102   0.00128    0.0             1 
                28   74    0.00064   0.00118    0.0             1 

                73   82    0.04160   1.03994    0.0             1 
                74   82    0.04160   1.03994    0.0             1 
                68   19    0.03327   0.03128    0.0             1 

                68   20    0.03506   0.03115    0.0             1 
                19   83    0.03738   0.97178    0.0             1 
                19   83    0.03738   0.97178    0.0             1 

                68   26    0.01781   0.01573    0.0             1 
                68   27    0.01946   0.01732    0.0             1 
                26   86    0.04112   1.02795    0.0             1 

                27   86    0.04112   1.02795    0.0             1 
                68   36    0.00812   0.00973    0.0             1 
                68   37    0.00905   0.01085    0.0             1 

                36   91    0.04280   1.07011    0.0             1 
                37   91    0.04280   1.07011    0.0             1 
                68   66    0.02434   0.02303    0.0             1 

                68   67    0.03688   0.03804    0.0             1 
                66   96    0.03640   0.94636    0.0             1 
                67   96    0.03640   0.94636    0.0             1 

                68   69    0.00146   0.00139    0.0             1 
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                68   70    0.00148   0.00141    0.0             1 

                69   98    0.04060   1.01488    0.0             1 
                70   98    0.04060   1.01488    0.0             1 
                50   72    0.03516   0.03231    0.0             1 

                50   71    0.04027   0.03701    0.0             1 
                72   99    0.04193   1.04817    0.0             1 
                71   99    0.04193   1.04817    0.0             1 

                50   59    0.01682   0.01489    0.0             1 
                50   58    0.01813   0.01616    0.0             1 
                59   80    0.03926   0.98142    0.0             1 

                58   80    0.03926   0.98142    0.0             1 
                50   52    0.00047   0.00065    0.0             1 
                50   51    0.00083   0.00111    0.0             1 

                52   92    0.04353   1.08815    0.0             1 
                51   92    0.04353   1.08815    0.0             1 
                50   43    0.11105   0.09660    0.0             1 

                50   42    0.10250   0.12748    0.0             1 
                43   77    0.03873   0.96832    0.0             1 
                42   77    0.03873   0.96832    0.0             1 

                50   53    0.04338   0.07157    0.0             1 
                23   53    0.01777   0.02198    0.0             1 
                53   93    0.03832   0.99635    0.0             1 

                53   93    0.03832   0.99635    0.0             1 
                50   22    0.05707   0.08994    0.0             1 
                50   21    0.04531   0.07740    0.0             1 

                23   84    0.04385   1.09623    0.0             1 
                22   84    0.04385   1.09623    0.0             1 
                21   84    0.04385   1.09623    0.0             1 
                 2    11    0.00617   0.01328    0.01638     1 

                 2    12    0.00650   0.01399    0.01763     1 
                11   54    0.01070   0.22350    0.0             1 
                12   54    0.01070   0.22350    0.0             1 

                54   62    0.01306   0.00936    0.0             1 
                54   61    0.01498   0.01077    0.0             1 
                62   81    0.04146   1.07797    0.0             1 

                61   81    0.04146   1.07797    0.0             1 
                54   56    0.00771   0.00709    0.0             1 
                54   55    0.00994   0.00922    0.0             1 

                56   94    0.03856   0.96407    0.0             1 
                55   94    0.03856   0.96407    0.0             1 
                54   35    0.01229   0.01250    0.0             1 

                54   34    0.01693   0.01601    0.0             1 
                35   90    0.03728   0.93198    0.0             1 
                34   90    0.03728   0.93198    0.0             1 

                54   47    0.04317   0.03490    0.0             1 
                54   48    0.03939   0.04722    0.0             1 
                13   60    0.01317   0.30238    0.0             1 

                14   60    0.01317   0.30238    0.0             1 
                50   46    0.06296   0.10334    0.0             1 
                60   41    0.27301   0.37173    0.0             1 

                60   38    0.10769   0.10741    0.0             1 
                38   75    0.04256   1.06387    0.0             1 
                46   41    0.04203   0.08116    0.0             1 

                49   79    0.03773   0.98093    0.0             1 
                48   79    0.03773   0.98093    0.0             1 
                49   45    0.03991   0.03175    0.0             1 

                45   78    0.04050   1.01250    0.0             1 
                44   78    0.04050   1.01250    0.0             1 
                46   44    0.02255   0.01976    0.0             1 

                48   44    0.03335   0.03706    0.0             1 
                54   49    0.06576   0.08171    0.0             1 
                44   39    0.01986   0.01806    0.0             1 

                41   40    0.08393   0.08699    0.0             1 
                40   76    0.04008   1.04200    0.0             1 
                39   76    0.04008   1.04200    0.0             1]; 

 
switch num 
    case 99 
        linedt = linedat99; 
end 
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The following shows the lines concerning the initialisation of the power flow. 

%Line Power Flows. 

 for m = 1:nb (number of buses) 

     for n = 1:nb 

         if m ~= n 

             Sij(m,n) = Vm(m)*conj(Iij(m,n))*BMva; 

end 

 Pij = real(Sij); 

 Qij = imag(Sij); 

  

 %Line Losses. 

 Lij = zeros(nl,1); 

 for m = 1:nl 

     p = fb(m); q = tb(m); 

     Lij(m) = Sij(p,q) + Sij(q,p); 

 end 

 Lpij = real(Lij); 

 Lqij = imag(Lij); 

  

 %Bus Power Injections. 

 Si = zeros(nb,1); 

 for i = 1:nb 

     for k = 1:nb 

         Si(i) = Si(i) + conj(Vm(i))* Vm(k)*Y(i,k)*BMva; 

     end 

 end 

 Pi = real(Si); Qi = -imag(Si); Pg = Pi+Pl; Qg = Qi+Ql; 

 

The calculation of the power flows and the returned output functions are 

demonstrated below. 

%Calculate Active Power (P) and Reactive Power (Q) 

    for i = 1:nbus 

        for k = 1:nbus 

            P(i) = P(i) + V(i)* V(k)*(G(i,k)*cos(del(i)-del(k)) + B(i,k)*sin(del(i)-del(k))); 

            Q(i) = Q(i) + V(i)* V(k)*(G(i,k)*sin(del(i)-del(k)) - B(i,k)*cos(del(i)-del(k))); 

        end 

    end 

%Checking violations for reactive power 

    if Iter <= 7 && Iter > 2    % Only checked up to 7th iterations. 

        for n = 2:nbus 

            if type(n) == 2 

                QG = Q(n)+Ql(n); 

                if QG < Qmin(n) 

                    V(n) = V(n) + 0.01; 

                elseif QG > Qmax(n) 

                    V(n) = V(n) - 0.01; 

                end 



The Appendices 

184 | P a g e  
 

            end 

         end 

    end 

disp('                              Newton Raphson Load-flow Analysis '); 

disp('| Bus |    V   |  Angle  |     Injection      |     Generation     |          Load      |'); 

disp('| No  |   pu   |  Degree |    MW   |   MVar   |    MW   |  Mvar    |     MW     |  MVar | 

'); 

for m = 1:nb 

    fprintf('%3g', m); fprintf('  %8.4f', V(m)); fprintf('   %8.4f', Del(m)); 

    fprintf('  %8.2f', Pi(m)); fprintf('   %8.2f', Qi(m));  

    fprintf('  %8.2f', Pg(m)); fprintf('   %8.2f', Qg(m));  

    fprintf('  %8.2f', Pl(m)); fprintf('   %8.2f', Ql(m)); fprintf('\n'); 

end 

fprintf(' Total                  ');fprintf('  %8.3f', sum(Pi)); fprintf('   %8.3f', sum(Qi));  

fprintf('  %8.3f', sum(Pi+Pl)); fprintf('   %8.3f', sum(Qi+Ql)); 

fprintf('  %8.3f', sum(Pl)); fprintf('   %8.3f', sum(Ql)); fprintf('\n'); 

 

disp('                              Line Flow and Losses '); 

disp('|From|To |    P    |    Q     | From| To |    P     |   Q     |      Line Loss      |'); 

disp('|Bus |Bus|   MW    |   MVar   | Bus | Bus|    MW    |  MVar   |     MW   |    MVar  |'); 

for m = 1:nl 

    p = fb(m); q = tb(m); 

fprintf('%4g', p); fprintf('%4g', q); fprintf('  %8.2f', Pij(p,q)); fprintf('   %8.2f', Qij(p,q));  

fprintf('   %4g', q); fprintf('%4g', p); fprintf('   %8.2f', Pij(q,p)); fprintf('   %8.2f', 

Qij(q,p)); 

fprintf('  %8.2f', Lpij(m)); fprintf('   %8.2f', Lqij(m)); 

fprintf('\n'); 

end 

fprintf('   Total Loss                                                 '); 

fprintf('  %8.3f', sum(Lpij)); fprintf('   %8.3f', sum(Lqij));  fprintf('\n');  
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B. Mathematical Modelling of Battery Chargers 

This section presents the characteristics and data that were utilised in Chapter 4 to 

model grid-connected battery charger systems. Additionally, the derivation of the phase-

angle tracking PLL mechanism, the outer and inner current controller loops, as well as 

the design criteria of grid-connected filters are presented. It should be mentioned that 

the procedure for designing the equivalent Shepherd model is acquired from the 

Manitoba Hydro International Limited's Power Systems Technology Centre in [45, 46]. 

B.1 Shepherd Battery Model Specifications 

The ideal open-circuit voltage regulated battery employed in this research is a generic 

Shepherd battery model available in the PSCAD/EMTDC simulation software library. The 

generic model's details may be found in [46]. The following assumptions and limitations 

have been considered for the ideal equivalent Shepherd battery model circuit (as seen 

in Figure 4.7) throughout the computer-based simulation cases: 

Assumptions: 

• The internal resistance of the battery is constant during charging and 

discharging cycles. 

• The charging and discharging characteristics of the battery are assumed to be 

the same. 

• The battery model’s behaviour is not affected by the temperature. 

• The battery may be simulated many times without losing its capacity (no 

deterioration). 

• The battery cannot self-charge or discharge. 

• The nominal voltage, rated capacity, initial state of charge, and loss of capacity 

at nominal current in an hour can be adjusted prior to simulation. 

Limitations: 

• The battery voltage cannot be negative, and the maximum battery voltage is 

not limited. 

• The capacity of the battery cannot be negative, and hence the maximum 

capacity is not limited. 
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Default internal parameters of the Shepherd battery model used for charging and 

discharging are shown in Table B.1. 

Table B.1: Shepherd battery model internal parameters 

Nominal Capacity 

(p.u.) 

Resistive Drop 

(p.u.) 

Voltage at 

Exponential Point 

(p.u.) 

Capacity at 

Exponential Point 

(p.u.) 

Fully Charged 

Voltage 

(p.u.) 

0.95 0.005 1.03 0.4 1.15 

B.2 Phase-Locked Loop  

The PLL operates on the fundamental principle of a feedback system with a 

proportional-integral (PI) regulator monitoring the phase angle (ϕ) at the PCC [264]. 

Synchronous reference frame (SRF) based PLL is widely used approach in three-phase 

applications due to its popularity and simplicity of implementation [265]. The schematic 

diagram of a standard SRF-PLL system is shown in Figure B.1. 

 

Figure B.1: Basic structure for the SRF based PLL system. 

The SRF-PLL incorporates a phase detector, a loop filter made up of PI controller 

blocks with tuneable proportional (𝑘𝑝) and integral gain (𝑘𝑖) variables, and a voltage-

controlled oscillator. The phase detector is implemented by applying the Clarke's 

transformation to the input three-phase grid voltages, followed by Park's transformation. 

The PLL aligns the d-axis with the grid voltage, and the phase detector's output (𝑉𝑞) is 

sent into the PI controller. The PI controller generates an estimated frequency signal, 

which is then sent through the voltage-controlled oscillator to generate the estimated 

phase angle (ϕ′) from the PCC [265]. The three phases of the grid voltages are fed into 

the PLL, and the output is the phase angle of one of the three phases.  

The abc to dq transformation is deduced mathematically. Let the voltages on the 

three-phase grid side be represented by (B.1) to (B.3). 

 𝑉𝑎 (𝑡) = 𝑉𝑎𝑚𝑝  cos  (ϕ) (B.1) 
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𝑉𝑏 (𝑡) = 𝑉𝑎𝑚𝑝  (ϕ −

2𝜋

3
) (B.2) 

 
𝑉𝑐 (𝑡) = 𝑉𝑎𝑚𝑝  (ϕ +

2𝜋

3
) (B.3) 

Where: 

𝑉𝑎𝑚𝑝  is the amplitude of the three-phase voltage signals (V). 

Considering the Clarke's and Park's transformations as: 

 

𝑇𝑎𝑏𝑐→𝛼𝛽 =
2

3
[
 
 
 1 −

1

2
−

1

2

0 −
√3

2

√3

2 ]
 
 
 

 (B.4) 

 
𝑇𝛼𝛽→𝑑𝑞 = [

𝑐𝑜𝑠 (ϕ′) 𝑠𝑖𝑛 (ϕ′)

−𝑠𝑖𝑛(ϕ′) 𝑐𝑜𝑠 (ϕ′)
] (B.5) 

Where: 

ϕ’ is the estimated phase angle and output of the oscillator. 

Equations (B.4) and (B.5) may be inserted into (B.3) by carrying out the following 

multiplication: 

 𝑉𝛼𝛽 = 𝑇𝛼𝛽𝑉𝑎𝑏𝑐 (B.6) 

The dq frame voltage variables are obtained as: 

 𝑉𝑑 (𝑡) = 𝑉𝑎𝑚𝑝  cos (ϕ − ϕ′) (B.7) 

 𝑉𝑞 (𝑡) = 𝑉𝑎𝑚𝑝  sin (ϕ − ϕ′) (B.8) 

Where: 

 
ϕ = ∫ω𝑔𝑑𝑡 = ∫(ω𝑛 + Δω𝑔)𝑑𝑡 (B.9) 

 
ϕ′ = ∫ω′𝑔𝑑𝑡 = ∫(ω𝑛 + Δω′𝑔)𝑑𝑡 (B.10) 

Where: 

ω′𝑔 is the estimated frequency by the PLL (Hz), 

ω𝑛 is the nominal frequency (Hz), 
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Δω′𝑔 is the damped transient response in the estimated frequency (Hz). 

Substituting (B.10) into (B.9) yields the following expressions for d and q frame 

voltages. 

 𝑉𝑑 (𝑡) = 𝑉 cos (Δϕ − ϕ′) ≈ V (B.11) 

 𝑉𝑞 (𝑡) = 𝑉 sin (Δϕ − ϕ′) ≈ V (Δϕ − ϕ′) (B.12) 

The output of the phase detector, notable 𝑉𝑞, contains the phase error information 

that passes through the PI controllers, whereas signal 𝑉𝑑 is a measure of the amplitude 

of the three-phase signals. More explanation and performance of other PLL systems are 

given in [259, 260]. 

B.3 Outer Controllers 

Outer controllers have four input signals: AC voltage (𝑉𝐴𝐶), active power (𝑃𝐴𝐶), 

reactive power (𝑄𝐴𝐶) and DC voltage (𝑉𝐷𝐶). These controller loops generate two-phase 

dq frame reference current variables: 𝐼 ∗𝑑 and 𝐼 ∗𝑞, as represented in Figure B.2 and 

Figure B.3, respectively. 

 

Figure B.2: Outer controller loops that produce 𝐼 ∗𝑞 . 

 

Figure B.3: Outer controller loops that produce 𝐼 ∗𝑑. 

The first loop on the left computes the difference between reference AC voltage 

(𝑉𝐴𝐶 𝑟𝑒𝑓) and measured AC voltage (𝑉𝐴𝐶 𝑚), whereas the second loop computes the error 

signal between reference reactive power (𝑄 𝑟𝑒𝑓) and measured reactive power (𝑄 𝑚) from 

the PCC in Figure B.2. Because both loops produce the same output: 𝐼 ∗𝑞, only one of 

the AC voltage or reactive power loops is modelled at once [261, 262].   

The third and fourth loops compare reference DC voltage (𝑉𝐷𝐶 𝑟𝑒𝑓) with measured DC 

voltage (𝑉𝐷𝐶 𝑚), and reference active power (𝑃 𝑟𝑒𝑓) with measured active power (𝑃 𝑚), 

respectively. These loops are used to produce 𝐼 ∗𝑑.  
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B.4 Inner Current Controller Loops 

Inner controllers have six input signals: d and q frame current and voltage variables 

(𝐼𝑑 , 𝐼𝑞 , 𝑉𝑑, 𝑉𝑞), and the outputs of the outer controller loops (𝐼 ∗𝑑 and 𝐼 ∗𝑞). Inner loops 

produce two-phase reference voltage variables: 𝑉 ∗𝑑 and 𝑉 ∗𝑞, as seen in Figure B.4. 

 

Figure B.4: Schematic of inner current controller loops. 

The upper and lower loops compute the difference between 𝐼 ∗𝑑 and 𝐼𝑑 , and 𝐼 ∗𝑞 and 

𝐼𝑞 , respectively. They are then sent into the PI controllers to obtain error signals. These 

error signals are subtracted from the summation of 𝑉𝑑 + 𝐼𝑞𝜔𝐿 and 𝑉𝑞 − 𝐼𝑑𝜔𝐿 to produce 

𝑉 ∗𝑑  and 𝑉 ∗𝑞 for the upper and lower loops, respectively. Inner controller loops may be 

mathematically modelled by applying Kirchhoff's voltage law along the PCC line. As a 

result, the three-phase grid voltages are as follows: 

 
𝑉𝑎𝑏𝑐 = 𝑉𝑎𝑏𝑐_𝑐𝑜𝑛 + 𝑅𝑖𝑎𝑏𝑐 + 𝐿

𝑑

𝑑𝑡
𝑖𝑎𝑏𝑐 (B.13) 

Where: 

𝑉𝑎𝑏𝑐_𝑐𝑜𝑛 is the input terminal voltage of the rectifier, 

𝑅 and 𝐿 are the resistance and inductance along the PCC line, respectively. 

Three-phase grid voltages are transformed to two-phase αβ frame and then to two-

phase dq frame variables. Equation (B.13) may be rewritten as: 

 
𝑉𝛼𝛽 = 𝑉𝛼𝛽_𝑐𝑜𝑛 + 𝑅𝑖𝛼𝛽 + 𝐿

𝑑

𝑑𝑡
𝑖𝛼𝛽 (B.14) 

Given that the dq frame variables rotate with angular frequency (ω), the position of 

these with respect to 𝛼𝛽 determines the angular position with respect to time (ωt) [261, 

262]. As a result of Park's transformation, the following expression is obtained in (B.15): 

 
𝑉𝑑𝑞𝑒𝑗𝜔𝑡 = 𝑉𝑑𝑞_𝑐𝑜𝑛𝑒𝑗𝜔𝑡 + 𝑅𝑖𝑑𝑞𝑒𝑗𝜔𝑡 + 𝐿

𝑑

𝑑𝑡
𝑖𝑑𝑞𝑒𝑗𝜔𝑡 (B.15) 
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To simplify, the 𝑒𝑗𝜔𝑡 terms may be omitted: 

 
𝑉𝑑𝑞 = 𝑉𝑑𝑞_𝑐𝑜𝑛 + 𝑅𝑖𝑑𝑞 + 𝐿

𝑑

𝑑𝑡
𝑖𝑑𝑞 + 𝑗𝜔𝐿𝑖𝑑𝑞 (B.16) 

Further simplification is possible by decoupling the dq variables [262, 263]: 

 
[
𝑉 ∗𝑑

𝑉 ∗𝑞
] = [

𝑣𝑑

𝑣𝑞
] + 𝑅 [

𝑖𝑑
𝑖𝑞

] + 𝐿
𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞

] + 𝜔𝐿 [
0 1

−1 0
] [

𝑖𝑑
𝑖𝑞

] (B.17) 

By solving for the matrix, the following equations are obtained: 

 
𝑉 ∗𝑑= 𝑉𝑑 + 𝑅𝑖𝑑 + 𝐿

𝑑

𝑑𝑡
𝑖𝑑 + 𝜔𝐿𝑖𝑞  (B.18) 

 
𝑉 ∗𝑞= 𝑉𝑞 + 𝑅𝑖𝑞 + 𝐿

𝑑

𝑑𝑡
𝑖𝑞 − 𝜔𝐿𝑖𝑑 (B.19) 

As also illustrated in the modelling of inner current controller loops (see Figure B.4), 

(B.18) and (B.19) are related via the decoupling terms of 𝜔𝐿𝑖 and 𝑅𝑖.  

B.5 Buck–boost Converter Controller Loops  

The charging and discharging of buck–boost converters are shown in Figure B.5. 

 

Figure B.5: Controller loops for buck (top) and boost (below) switching.  

The control system can be manually controlled to charge and discharge the battery 

and regulate the amount of power during charging and discharging modes. When the 

converter is in charging mode, the buck converter is active, and the reference power 

(𝑃𝑟𝑒𝑓 = 𝐼𝑏𝑎𝑡_𝑟𝑒𝑓 × 𝑉𝑏𝑎𝑡_𝑟𝑒𝑓) is compared to the battery side power (𝑃𝑏𝑎𝑡 = 𝐼𝑏𝑎𝑡 × 𝑉𝑏𝑎𝑡). 

When the converter is in discharging mode, the boost converter is active, but in the 

reversed current direction, dictated by 𝑃𝑟𝑒𝑓 − 𝑃𝑏𝑎𝑡 in the loop arrangement schematic. 

Both loops generate error signals that are supplied to the PI controllers in order to define 

the mode of operation through the PWM scheme [270, 271].  
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B.6 Filtering of Battery Chargers  

Since battery charger systems are made up of a variety of different power electronic 

devices and components, they may affect the operating features of distribution grids and 

introduce various power quality issues. By including an active power factor correction 

converter, the line current is reshaped proportionate to the input voltage and the line 

current harmonics are reduced to acceptable levels. Another widely used harmonic 

mitigation approach in the literature is using a resonant filter. It is often employed in high-

power systems when the cost of an active power factor correction is excessively high 

and impairs system reliability. Active power factor correction strategy uses 

semiconductor switches and energy storage components (inductors and/or capacitors) 

to monitor the input voltage and provide a semi-regulated output voltage [297].  

This thesis adapts the latter method and designs a filter located within the charger 

circuitry. The design requirements for the filter are also available in [298]. The design of 

an appropriate LC filter circuit (consisting of inductors and capacitors) is an effective 

method for mitigating harmonic distortion, eliminating undesirable frequency 

components, and suppressing unwanted noise (high frequency signal) introduced into 

the grid. This method is widely used in grid-connected applications and this thesis 

presents a strategy for designing LCL filters for AC and DC battery chargers. 

The first '𝐿', notably, the rectifier side inductance (𝐿𝑟𝑒𝑐) in an LCL filter for a three-

phase grid-connected rectifier is determined initially using (B.20) [297–301]: 

 
𝐿𝑟𝑒𝑐 =

𝑉𝐷𝐶

8 × 𝑓𝑠𝑤 × 𝐼𝑝𝑝
 (B.20) 

Where: 

𝑓𝑠𝑤 is the rectifier's switching frequency (kHz), 

𝐼𝑝𝑝 is the peak-to-peak amplitude of the ripple current (kA). 

The carrier frequency (𝐶𝑓𝑟𝑒𝑞) as multiple of fundamental frequencies is related to the 

switching frequency and is calculated according to (B.21). 

 
𝐶𝑓𝑟𝑒𝑞 =

𝑓𝑠𝑤
𝑓

 (B.21) 

Where: 

𝑓 is the nominal system frequency (Hz). 
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The switching frequency, which usually varies between a few kHz and a few MHz, is 

the rate at which the IGBT switches are turned on and off [300]. Once the switching 

frequency of the rectifier is determined, the peak-to-peak current is also determined 

[298], as given by (B.22): 

 
𝐼𝑝𝑝 =

𝑆𝑏𝑎𝑠𝑒

√3 × 𝑉𝐿−𝐿,𝑟𝑚𝑠

× √2 × 20% (B.22) 

Where: 

𝑆𝑏𝑎𝑠𝑒 is the rectifier's rated power (MVA),  

𝑉𝐿−𝐿,𝑟𝑚𝑠 is the RMS line-to-line voltage at the connection point (kV). 

The multiplication of the peak-to-peak current with 20% is also performed, since the 

amplitude of the ripple current is assumed to be 20% of the rated current as per design 

criteria highlighted in [298, 299, 301]. The peak maximum current is also calculated by 

multiplying the amplitude of the ripple current by the square root of two. 

A cut-off frequency (𝑓𝑐𝑜) is chosen to provide adequate filtering up to the nth order and 

to filter any frequencies greater than the 'nth' order harmonic. Equation (B.23) is used to 

calculate the filter capacitance (𝐶𝑓𝑖𝑙𝑡𝑒𝑟) required to achieve a certain cut-off frequency: 

 
𝐶𝑓𝑖𝑙𝑡𝑒𝑟 =

1

(2 × π × 𝑓𝑐𝑜)2 × 𝐿𝑟𝑒𝑐
 (B.23) 

The frequency of 200 Hz is selected as the cut-off frequency in this thesis, which is also 

a frequent design requirement for battery charger-based applications [298]. Additional 

design criteria, including the employment of a damping circuit with damping capacitance 

(𝐶𝑑𝑎𝑚𝑝), damping inductance (𝐿𝑑𝑎𝑚𝑝), and damping resistance (𝑅𝑑𝑎𝑚𝑝), is also used to 

minimise oscillations in the output waveforms [298, 301]. These damping parameters are 

determined as follows: 

 
𝐶𝑑𝑎𝑚𝑝 =

𝐶𝑓𝑖𝑙𝑡𝑒𝑟

2
 (B.24) 

 𝐿𝑑𝑎𝑚𝑝 = 𝐿𝑟𝑒𝑐 × 5 (B.25) 

 

𝑅𝑑𝑎𝑚𝑝 = √
𝐿𝑑𝑎𝑚𝑝

𝐶𝑑𝑎𝑚𝑝
 (B.26) 
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The data for harmonic filtering that is included within the charging circuit is presented 

in Table B.4. The design requirements for the filter are available in [298].  

Table B2: Calculated filter parameters for chargers 

𝑳𝒓𝒆𝒄 

(mH) 

𝒇𝒔𝒘 

(kHz) 

𝑰𝒑𝒑  

(kA) 

𝒇𝒄𝒐  

(kHz) 

𝑪𝒇𝒊𝒍𝒕𝒆𝒓  

(µF) 

𝑪𝒅𝒂𝒎𝒑 

(µF) 

𝑳𝒅𝒂𝒎𝒑 

(mH) 

𝑹𝒅𝒂𝒎𝒑 

(Ω) 

0.46 3.35 0.083 0.2 1380 690 2.3 1.83 

B.7 Switching Parameters for Controller Loops  

The data for the semiconductor switches and other power electronic components for 

the modelling of single-phase and three-phase battery chargers are obtained from [45]. 

The high-frequency IGBT switches and diodes are sufficiently sized to achieve high-

power charging from the battery. Table B.3 and Table B.4 present the data for power 

electronics and switching for AC/DC converters and DC/DC converters, respectively.  

Table B.3: Switching data for AC/DC converters 

IGBT Label IGBT Rating Diode Label Diode Rating 

Thyristor ON 

Resistance 
0.0005 Ω 

Thyristor ON 

Resistance 
0.0005 Ω 

Thyristor OFF 

Resistance 
1.0E8 Ω 

Thyristor OFF 

Resistance 
1.0E8 Ω 

Forward Voltage 

Drop 
0 kV Forward Voltage Drop 0 kV 

Forward Breakover 

Voltage 
1.0E5 kV 

Forward Breakover 

Voltage 
1.0E5 kV 

Reverse Withstand 

Voltage 
1.0E5 kV 

Reverse Withstand 

Voltage 
1.0E5 kV 

Table B.4: Switching data for DC/DC converters 

IGBT Label IGBT Rating Diode Label Diode Rating 

Thyristor ON 

Resistance 
1.4e−4 Ω 

Thyristor ON 

Resistance 
1.4e−4 Ω 

Thyristor OFF 

Resistance 
1.0E6 Ω 

Thyristor OFF 

Resistance 
1.0E6 Ω 

Forward Voltage 

Drop 
1.9e−3 kV Forward Voltage Drop 1.2e−3 kV 

Forward Breakover 

Voltage 
17 kV 

Forward Breakover 

Voltage 
12 kV 

Reverse Withstand 

Voltage 
17 kV 

Reverse Withstand 

Voltage 
12 kV 
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C. Low-Voltage British Distribution Network  

This section presents the parameters and data that were used in Chapter 5 to model 

and analyse the MV/LV distribution network feeder utilising the line and demand profiles 

of residential and commercial customers acquired from [47]. 

C.1 Schematic Diagram 

The top and bottom structures of the low-voltage network diagram supplied by WPD, 

now National Grid Distribution are shown in Figure C.1 and Figure C.2, respectively. 

 

Figure C.1: Upper section of the low-voltage network showing the locations of Nodes N1 to N8. 

 

Figure C.2: Lower section of the low-voltage network showing the locations of Nodes N10 to N15. 
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C.2 Underground Cable Data 

Table C.1 contains the cable specification provided by the National Grid Distribution 

for the low-voltage network feeder under examination. 

Table C.1: Low-voltage distribution network cable specification 

Between Nodes Type Length (m) Size (in2) Size (mm2) 

Substation and 1 Copper 10 0.3 193.548 

1 and 2 Copper 10 0.3 193.548 

2 and 3 Copper 30 0.1 64.516 

3 and 4 Copper 30 0.1 64.516 

4 and 5 Copper 30 0.06 38.7096 

3 and 6 Copper 30 0.06 38.7096 

4 and 7 Copper 35 0.06 38.7096 

5 and 8 Copper 50 0.06 38.7096 

2 and 10 Copper 65 0.3 193.548 

10 and 11 Wavecon 40 0.14725 95 

11 and 12 Wavecon 70 0.14725 95 

12 and 13 Wavecon 30 0.04 25.8064 

12 and 14 Wavecon 40 0.14725 95 

11 and 15 Copper 20 0.04 25.8064 

C.3 Updated Cable Data for Loading Mitigation 

Following the overloading of two cables, namely C10-11 and C11-15, the initial 

loading mitigation solution used increased conductor sizes. Low-voltage service cables 

are often installed underground to link residential and business premises to the grid [302] 

in compliance with BS7870. Due to the lack of existing cable design and installation 

procedures, WPD's Standard Technique: Relating to Low Voltage Underground Cable 

Ratings [48] was utilised to establish the new cable size. The installation parameters for 

an urban British distribution network are shown in Table C.2. 

Table C.2: Considered cable installation conditions and parameters for the network 

Rating Depth (m) 
Ambient 

Temperature (°C) 

Ground 

Temperature (°C) 

Conductor 

Temperature (°C) 

Resistivity 

(°C m/W) 

Distribution 0.5 10 10 
90 XLPE 

70 PVC 
0.9 

Distribution ratings are considered for stated conditions that are often encountered in 

distribution networks. Other parameters were specified based on distribution ratings for 

the winter season, when demand is greater than in the summer [277]. Additionally, it was 

assumed that the cables were put in multicore arrangement in open air since the design 

criteria for the installation approach in [48] were quite identical and hence comparable to 

the original cable specifications provided by the WPD.  
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D. Charging Curves and Algorithm Development 

This part presents the charging profiles used to calculate the average charging power 

and energy consumption of vehicles. Additionally, the script for introduction of the 

structure, and randomisation and estimation of the vehicle parameters is presented.  

The relevant data from [49] and [50] was acquired for calculating the daily distribution 

of charging events in the UK. The time distribution of charging events was used to 

generate stochastic charging profiles depending on the time of the day. 

D.1 Real-World Charging Curves of the Electric Vehicle Models  

BMW i3 (2019), Audi e-Tron (2020), Kia e-Niro 4 (2020), Jaguar I-Pace (2019), and 

Tesla Model 3 Performance (2021) were among the selected vehicles for the algorithm. 

The original charging profiles with respect to the battery SoC for BMW i3, Kia e-Niro, 

Audi e-Tron 55 quattro, Jaguar I-Pace and Tesla Model 3 models on their associated 

charging devices are presented in Figure D.1 through Figure D.5, respectively.  

 

Figure D.1: Charging characteristics of BMW i3 models on different CCS devices [242]. 

All BMW i3 models, regardless of charger rating, have the identical charging 

behaviour on 50/175/350-kW CCS devices. Nevertheless, it should be emphasised that 

the charging characteristics of these BMW automobiles are prone to change as battery 

technology advances. This indicates that the maximum theoretical power the vehicle may 

get from each battery SoC interval can be improved. 
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Figure D.2: Charging characteristics of Kia e-Niro 4 models on different CCS devices [242]. 

The Kia e-Niro 4 model can be charged at a CCS device of 50/175/350 kW. However, 

the theoretical power provided to the vehicle is limited to 75 kW on a 175- and 350-kW 

device. This study used the assumption that Kia models charged only using the 50-kW. 

 

Figure D.3: Charging characteristics of Audi e-Tron 55 quattro on different CCS devices [242]. 
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Figure D.4: Charging characteristics of Jaguar I-Pace on different CCS devices [242]. 

This study assumed that both Audi and Jaguar models charged only on the 175-kW 

device to add the operation of ultra-rapid chargers into the algorithm. 

 

Figure D.5: Charging characteristics of Tesla Model 3 on different CCS devices [242]. 

Unlike the other four models, Tesla models have somewhat distinct charging profiles. 

Initially, the graph only shows charging power up to 90% of the battery's charge level. 

Additionally, it should be noted that each of these charging profiles represents a generic 

charging characteristic. As described in Section 6.3.2, various variables affect the speed 

of charging. It is anticipated that as battery and vehicle technology advances, charging 

profiles will be adjusted and cars will be able to take more power. 
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D.2 DENO Runtime Codes for the Algorithm 

The establishment of the structure of inputs and objects in the algorithm script is 

presented in this part. 

import { Vehicle } from './Vehicle.ts'; 

import { VehicleData } from './typings/data.ts'; 

 

class VehicleFactory { 

    make({ 

        amount, 

        battery, 

        make, 

        range, 

        tenToEightyChargingTime, 

        power 

    }: VehicleData): Array<Vehicle> { 

        return Array(amount) 

            .fill(null) 

            .map( 

                (_, idx) => 

                    new Vehicle( 

                        battery, 

                        idx + 1, 

                        make, 

                        range, 

                        tenToEightyChargingTime, 

                        power 

                    ) 

            ); 

    } 

} 

 

export const vehicleFactory = new VehicleFactory(); 

 

[ 

    { 

        "amount": 4, 

        "battery": { "average": 47, "capacity": 42 }, 

        "make": "BMW", 

        "power": { 

            "average": 44, 

            "max": 47, 

            "min": 40 

        }, 

        "range": 310000, 

        "tenToEightyChargingTime": 36 

    }, 
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    { 

        "amount": 6, 

        "battery": { "average": 45, "capacity": 64 }, 

        "make": "Kia", 

        "power": { 

            "average": 45, 

            "max": 45, 

            "min": 45 

        }, 

        "range": 453800, 

        "tenToEightyChargingTime": 63 

    }, 

    { 

        "amount": 8, 

        "battery": { "average": 85, "capacity": 90 }, 

        "make": "Jaguar", 

        "power": { 

            "average": 63, 

            "max": 85, 

            "min": 40 

        }, 

        "range": 470000, 

        "tenToEightyChargingTime": 44 

    }, 

    { 

        "amount": 5, 

        "battery": { "average": 146, "capacity": 95 }, 

        "make": "Audi", 

        "power": { 

            "average": 146, 

            "max": 146, 

            "min": 146 

        }, 

        "range": 436000, 

        "tenToEightyChargingTime": 26 

    }, 

    { 

        "amount": 7, 

        "battery": { "average": 121, "capacity": 79.5 }, 

        "make": "Tesla V2", 

        "power": { 

            "average": 100, 

            "max": 124, 

            "min": 75 

        }, 

        "range": 507000, 

        "tenToEightyChargingTime": 27 

    }, 

    { 

        "amount": 4, 
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        "battery": { "average": 145, "capacity": 79.5 }, 

        "make": "Tesla V3", 

        "power": { 

            "average": 112, 

            "max": 148, 

            "min": 75 

        }, 

        "range": 507000, 

        "tenToEightyChargingTime": 23 

    } 

] 

The randomisation functions to return vehicle data is shown below. 

import { Die } from './Die.ts'; 

import { Interval } from './Interval.ts'; 

import { Vehicle } from './Vehicle.ts'; 

import { Visit } from './Visit.ts'; 

import { Visits } from './typings/values.ts'; 

 

export class VisitRandomizer { 

    private _intervals: Array<Interval>; 

 

    private _vehicles: Array<Vehicle>; 

 

    constructor(intervals: Array<Interval>, vehicles: Array<Vehicle>) { 

        this._intervals = intervals; 

        this._vehicles = vehicles.slice(); 

    } 

 

    randomize(): Visits { 

        return this._intervals.reduce<Visits>((visits, interval) => { 

            visits[interval.toString()] = []; 

 

            while (interval.hasRemainingVisits()) { 

                const rng = new Die(0, this._vehicles.length).roll(); 

                const vehicle = this._vehicles.splice(rng, 1)[0]; // this line 

 

                vehicle.distance = new Die( 

                    vehicle.minDistance, 

                    vehicle.maxDistance 

                ).roll(); 

 

                const at = new Die(interval.start, interval.end).roll(); 

 

                visits[interval.toString()].push(new Visit(at, vehicle)); 

 

                interval.decrementVisits(); 

            } 

 

            visits[interval.toString()].sort((a, b) => a.at - b.at); 
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            return visits; 

        }, {}); 

    } 

} 

The equations, returned output functions, and the spread of results from twenty 

stochastic cases are obtained as follows: 

get chargeState() { 

        return this.remainingRange * 100 / this._range; 

    } 

 

    get distanceInKm() { 

        if (typeof this._distance !== 'number') { 

            throw new Error('The distance must be set first.'); 

        } 

 

        return Utils.round(Utils.km(this._distance), 1) + ' km'; 

    } 

 

    get emptyToFullChargingTime() { 

        return (this._battery.capacity / this._battery.average) * 60; 

    } 

 

    get energyConsumption() { 

        return new EnergyConsumptionCalculator(this._power, this.estimatedChargingTime); 

    } 

    get estimatedChargingTime() { 

        return (this._tenToEightyChargingTime * (80 - this.chargeState)) / 70; 

    } 

 

    get formattedChargeState() { 

        return Utils.round(this.chargeState, 1) + '%'; 

    } 

 

    get formattedEstimatedChargingTime() { 

        return Utils.round(this.estimatedChargingTime, 1) + ' mins'; 

    } 

 

    get maxDistance() { 

        return this._range - (this._range * 10) / 100; 

    } 

 

    get minDistance() { 

        return this._range - (this._range * 50) / 100; 

    } 

 

    get name() { 

        return this._make + ' ' + this._id; 

    } 
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export const options = { 

  scales: { 

    x: { 

      title: { 

        display: true, 

        text: "Time of Day (hour)", 

      }, 

      min: 0, 

      max: 24, 

      ticks: { 

        // forces step size to be 50 units 

        stepSize: 3, 

      }, 

    }, 

    y: { 

      title: { 

        display: true, 

        text: "Battery State of Charge (%)", 

      }, 

    }, 

  }, 

}; 

 

const generateDataSets = (ref, iterations) => { 

  temp = {}; 

  newTest = {}; 

  let datasets: any[] = []; 

  // console.log("latest graph dataset: ", vs); 

 

  for (let i = 0; i < iterations; i++) { 

    const visits: any[] = getVisits(); 

    const inerationOfData = []; 

    Object.entries(visits).forEach(([key, val]) => { 

      if (!(key in newTest)) newTest[key] = []; 

      newTest[key] = newTest[key].concat(val); 

      val.forEach((visit) => { 

        visit.ds = i + 1; 

        const vehicle: Vehicle = visit.vehicle; 

        inerationOfData.push({ 

          name: vehicle.name, 

          dayTime: visit.at, 

          chargeState: vehicle.chargeState.toFixed(2), 

          chargeTime: vehicle.estimatedChargingTime.toFixed(2), 

        }); 

      }); 

    }); 

    temp[`dataSet${i + 1}`] = inerationOfData; 

  } 
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D.3 Different Stochastic Scenarios 

The stochastic model is run 20 times to let the stochasticity play out and draw a more 

general conclusion for the results. This section shows the detailed stochastic results 

obtained from the model. The stochastic distribution of 34 vehicles from 20 cases and 

their calculated data are shown in Table D.1 through Table D.18. The distribution of Case 

11 and Case 15 is not presented since they have already been discussed in Chapter 6. 

Table D.1: Timely distribution and calculated charging data of vehicles in Case 1 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

00:00 T2 14.1 25.4 123.8 52.4 

04:00 A4 33.2 17.4 148.3 43.0 

06:00 K1 16.4 57.3 45.6 43.5 

07:00 K5 25.3 49.2 45.5 37.3 

07:00 J8 18.7 38.5 83.2 53.4 

09:00 T11 36.3 14.4 124.7 29.9 

09:00 B2 47.2 16.9 47.7 13.4 

09:00 T5 17.3 24.2 123.1 49.7 

10:00 K2 21.2 52.9 45.6 40.2 

10:00 T4 28.9 19.7 119 39.1 

10:00 T7 13.5 25.7 124 53.1 

11:00 K3 26.9 47.8 45.5 36.2 

12:00 J2 16.2 40.1 84.1 56.2 

12:00 T8 11.9 22.4 147.1 54.9 

12:00 K4 45.7 30.9 44.5 22.9 

13:00 T3 43.6 14 108.2 25.2 

13:00 T10 13.1 22 146.6 53.8 

13:00 T1 21.2 22.7 122 46.2 

13:00 B1 45.8 17.6 47.7 14.0 

14:00 B3 35.7 22.8 47.3 18.0 

15:00 A5 42.2 14.1 148.4 34.9 

16:00 K6 39 36.9 45 27.7 

16:00 J5 47.7 20.3 68.7 23.2 

16:00 B4 35.2 23.1 47.3 18.2 

16:00 T6 26.5 20.6 120.3 41.3 

17:00 J3 33.8 29 78.8 38.1 

17:00 J1 21.5 36.8 82.6 50.7 

19:00 J6 19.1 38.3 83.2 53.1 

19:00 A2 38.3 15.5 148.4 38.3 

19:00 A1 29.8 18.6 148.3 46.0 

19:00 A3 33 17.4 148.3 43.0 

20:00 T9 32.4 15.6 130.3 33.9 

22:00 J7 29.1 32 79.4 42.3 

23:00 J4 31.8 30.3 77.9 39.3 

 



The Appendices 

205 | P a g e  
 

Table D.2: Timely distribution and calculated charging data of vehicles in Case 2 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

00:00 J2 42.7 23.4 71.6 27.9 

05:00 B3 49 16 47.8 12.7 

06:00 K3 18.7 55.1 45.6 41.9 

08:00 K5 29.5 45.4 45.4 34.4 

08:00 J7 19.9 37.8 82.9 52.2 

09:00 A3 27.3 19.6 148.2 48.4 

09:00 T6 30 19.3 118.5 38.1 

09:00 T7 25.1 21.2 120.7 42.6 

10:00 A2 45.1 13 148.4 32.2 

11:00 T5 31.5 18.7 117.5 36.6 

11:00 B2 13.5 34.2 46.6 26.6 

11:00 J6 11.9 42.8 85.1 60.7 

12:00 J8 47.7 20.3 68.7 23.2 

12:00 T2 14 25.5 123.8 52.6 

12:00 T11 31.6 15.9 130.3 34.5 

13:00 J3 16.2 40.1 84.1 56.2 

13:00 T3 14.7 25.2 123.6 51.9 

13:00 K2 45.5 31.1 44.5 23.1 

14:00 J4 18.8 38.5 83.2 53.4 

14:00 T4 19.2 23.4 122.6 47.8 

15:00 J1 29.1 32 79.4 42.3 

16:00 B1 19.1 31.3 46.8 24.4 

16:00 T9 21.7 19.2 140.5 45.0 

16:00 T10 42.7 12.3 112.1 23.0 

16:00 K4 37 38.8 45.1 29.2 

16:00 K6 20 54.1 45.6 41.1 

17:00 K1 39.4 36.5 45 27.4 

18:00 A1 43.9 13.4 148.4 33.1 

19:00 A4 10.7 25.7 146.7 62.8 

19:00 A5 14.8 24.2 147.2 59.4 

20:00 J5 19.6 38 82.9 52.5 

20:00 B4 23.1 29.2 46.9 22.8 

21:00 T8 46.5 11 105.6 19.4 

23:00 T1 37.6 16.4 113.7 31.1 
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Table D.3: Timely distribution and calculated charging data of vehicles in Case 3 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

01:00 J7 35.6 27.9 75.7 35.2 

05:00 T2 15.6 24.9 123.3 51.2 

07:00 T10 10.7 22.8 147.6 56.1 

08:00 B2 21.7 30 46.9 23.5 

08:00 J5 37.5 26.7 74.6 33.2 

09:00 A5 41.4 14.4 148.4 35.6 

10:00 T4 13.6 25.6 123.8 52.8 

10:00 J2 16.1 40.2 84.1 56.3 

10:00 T1 17.4 24.1 123.1 49.4 

11:00 B3 16.9 32.5 46.7 25.3 

11:00 K3 36 39.6 45.2 29.8 

11:00 J8 43.2 21.3 71.6 25.4 

12:00 T6 17.9 24 122.9 49.2 

12:00 K2 37.2 38.5 45.1 28.9 

13:00 K1 14.4 59.1 45.5 44.8 

13:00 J6 31.8 30.3 77.9 39.3 

13:00 K6 31.1 44 45.4 33.3 

14:00 B4 37.2 22 47.3 17.3 

14:00 K5 43.5 32.9 44.6 24.5 

14:00 B1 19.2 31.3 46.8 24.4 

15:00 J1 11.1 43.3 85.3 61.6 

15:00 A2 26.4 19.9 148.1 49.1 

16:00 T8 21.8 19.1 140.5 44.7 

16:00 T7 36.9 16.6 114.4 31.7 

17:00 T11 17.9 20.4 143.5 48.8 

17:00 J4 11 43.4 85.3 61.7 

17:00 A4 32.6 17.6 148.3 43.5 

18:00 J3 45.6 21.7 69.8 25.2 

19:00 T9 41.9 12.5 114 23.8 

19:00 T3 33.4 18 116.9 35.1 

20:00 A3 46.5 12.5 148.4 30.9 

20:00 K4 22 52.2 45.6 39.7 

21:00 A1 32 17.8 148.3 44.0 

23:00 T5 14.8 25.2 123.6 51.9 
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Table D.4: Timely distribution and calculated charging data of vehicles in Case 4 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

02:00 T7 15.7 24.8 123.3 51.0 

03:00 J7 44.1 22.6 71 26.7 

07:00 K5 44 32.5 44.6 24.2 

08:00 T1 18.7 23.7 122.6 48.4 

08:00 J1 31.9 30.2 77.9 39.2 

09:00 J5 18.9 38.4 83.2 53.2 

09:00 T2 42.8 14.4 109.3 26.2 

09:00 B4 36.9 22.2 47.3 17.5 

10:00 T8 22.3 19 121.7 38.5 

11:00 J3 34.6 28.6 76.3 36.4 

11:00 K4 31.6 43.5 45.3 32.8 

11:00 A2 43.4 13.6 148.4 33.6 

12:00 B2 26.7 27.4 47 21.5 

12:00 T10 37.7 13.9 121.5 28.1 

12:00 J2 45.6 21.6 69.8 25.1 

13:00 T9 10.3 22.9 148 56.5 

13:00 T6 31.6 18.7 117.5 36.6 

14:00 A3 24 20.8 148 51.3 

14:00 J4 19.5 38.1 82.9 52.6 

14:00 K6 25.3 49.3 45.5 37.4 

15:00 K2 46.7 29.9 44.5 22.2 

16:00 J6 47.1 20.7 69.2 23.9 

16:00 A1 32.2 17.8 148.3 44.0 

16:00 B1 46.6 17.2 47.7 13.7 

16:00 K3 45.9 30.7 44.5 22.8 

17:00 J8 17 39.6 83.8 55.3 

17:00 T3 28.2 20 119.4 39.8 

18:00 A4 10.3 25.9 146.7 63.3 

19:00 A5 14.9 24.2 147.2 59.4 

20:00 T5 45.3 13.4 107.1 23.9 

20:00 T11 43.5 12 110.3 22.1 

20:00 T4 16 24.7 123.3 50.8 

21:00 B3 25 28.3 46.9 22.1 

21:00 K1 22.1 52.2 45.6 39.7 
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Table D.5: Timely distribution and calculated charging data of vehicles in Case 5 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

02:00 K3 36.9 38.8 45.1 29.2 

04:00 A5 48.5 11.7 148.3 28.9 

06:00 K6 32 43.2 45.3 32.6 

08:00 A4 22.1 21.5 147.9 53.0 

08:00 K4 31.3 43.8 45.4 33.1 

09:00 T8 23.5 18.6 138.8 43.0 

09:00 K2 10.4 62.7 45.4 47.4 

09:00 B4 31.8 24.8 47.2 19.5 

10:00 J5 18 39 83.5 54.3 

10:00 T2 28.5 19.9 119 39.5 

11:00 T1 31.2 18.8 118 37.0 

11:00 T3 48 12.4 103.4 21.4 

12:00 T4 13.4 25.7 124 53.1 

12:00 J6 26.5 33.6 80.3 45.0 

13:00 T7 20.6 22.9 122 46.6 

13:00 K5 28.2 46.7 45.4 35.3 

14:00 T9 43 12.1 112.1 22.6 

14:00 A3 11.9 25.3 146.8 61.9 

14:00 T11 21.1 19.4 141.3 45.7 

14:00 J8 24.4 35 81.5 47.5 

15:00 J1 24.3 35 81.5 47.5 

16:00 T6 17.9 24 122.9 49.2 

16:00 J4 20 37.7 82.9 52.1 

17:00 J3 43.4 23 71.6 27.4 

17:00 J7 35.7 27.8 75.7 35.1 

17:00 K1 32 43.2 45.3 32.6 

17:00 J2 33.4 29.3 77.4 37.8 

18:00 B2 48.8 16 47.8 12.7 

19:00 T10 40.5 13 115.9 25.1 

20:00 B1 24.4 28.6 46.9 22.4 

20:00 T5 16.2 24.6 123.3 50.6 

20:00 A1 16.4 23.6 147.3 57.9 

21:00 B3 31.4 25 47.1 19.6 

23:00 A2 43.8 13.4 148.4 33.1 
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Table D.6: Timely distribution and calculated charging data of vehicles in Case 6 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

01:00 A2 28.6 19.1 148.2 47.2 

04:00 J8 18.6 38.6 83.2 53.5 

06:00 J7 40.5 24.8 72.8 30.1 

07:00 T8 23 18.7 139.7 43.5 

07:00 J6 17.2 39.5 83.8 55.2 

09:00 T10 10 23 148 56.7 

09:00 A5 14.4 24.4 147.1 59.8 

10:00 J2 49.1 19.4 68.2 22.1 

11:00 J1 15.7 40.5 84.1 56.8 

11:00 K5 14.3 59.2 45.5 44.9 

11:00 A4 43.8 13.5 148.4 33.4 

11:00 T9 23.3 18.6 141.2 43.8 

12:00 K1 32 43.2 45.3 32.6 

12:00 B3 45.2 17.9 47.6 14.2 

12:00 T7 25 21.2 120.7 42.6 

13:00 T5 22.8 22.1 121.4 44.7 

13:00 T11 30.6 16.2 131.6 35.5 

13:00 T4 28.7 19.8 120.3 39.7 

13:00 B1 49 15.9 47.8 12.7 

14:00 B4 45.4 17.8 47.6 14.1 

15:00 T1 36.9 16.6 114.4 31.7 

16:00 K6 25.5 49 45.5 37.2 

16:00 T2 36.1 16.9 115.1 32.4 

16:00 K2 45.4 31.1 44.6 23.1 

16:00 A3 24.1 20.8 148 51.3 

17:00 T6 30.3 19.2 118.5 37.9 

17:00 J4 35.7 27.8 75.7 35.1 

18:00 T3 19.8 23.2 122.3 47.3 

18:00 J3 34.9 28.4 76.3 36.1 

18:00 K4 33.1 42.2 45.3 31.9 

19:00 A1 29.5 18.8 148.3 46.5 

19:00 J5 33.6 29.2 76.8 37.4 

22:00 K3 15.8 57.8 45.6 43.9 

22:00 B2 40.1 20.5 47.5 16.2 
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Table D.7: Timely distribution and calculated charging data of vehicles in Case 7 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption 

(kWh) 

02:00 B4 31.5 25 47.2 19.7 

03:00 T10 18.1 20.3 143.5 48.6 

06:00 J7 22.7 36 81.9 49.1 

06:00 T8 16.3 20.9 144.8 50.4 

06:00 T7 49 12 102 20.4 

09:00 K6 21.1 53 45.6 40.3 

09:00 J2 15.1 40.8 84.3 57.3 

09:00 A4 16.7 23.5 147.3 57.7 

09:00 T6 38.1 16.2 113.7 30.7 

10:00 A3 29.2 18.9 148.2 46.7 

10:00 T3 31.9 18.6 117.5 36.4 

10:00 A2 39.6 15 148.4 37.1 

12:00 K2 40.6 35.4 44.9 26.5 

12:00 T5 29.2 19.6 119 38.9 

12:00 A5 12.4 25.1 146.8 61.4 

13:00 T11 32.7 15.5 129 33.3 

13:00 B3 46.8 17.1 47.7 13.6 

14:00 T4 35.6 17.1 115.1 32.8 

14:00 J1 17.9 39 83.5 54.3 

14:00 B2 32.3 24.6 47.2 19.4 

15:00 A1 22.1 21.5 147.9 53.0 

15:00 T1 20.2 23.1 122.3 47.1 

15:00 K5 40.7 35.4 44.9 26.5 

16:00 J3 33.6 29.2 76.8 37.4 

16:00 T9 48.1 10.5 104 18.2 

17:00 J8 48.6 19.8 68.2 22.5 

17:00 K4 12 61.2 45.5 46.4 

18:00 B1 28 26.8 47 21.0 

18:00 J6 34.9 28.3 76.3 36.0 

18:00 K1 18.8 55.1 45.6 41.9 

19:00 K3 25 49.5 45.5 37.5 

19:00 T2 30.2 19.2 118.5 37.9 

21:00 J4 27.9 32.7 79.9 43.5 

23:00 J5 26 34 80.7 45.7 
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Table D.8: Timely distribution and calculated charging data of vehicles in Case 8 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

02:00 B3 12 35 46.6 27.2 

03:00 T8 15.9 21.1 144.8 50.9 

06:00 K6 43.5 32.8 44.6 24.4 

07:00 T9 33.5 15.3 127.7 32.6 

08:00 B1 43.5 18.8 47.6 14.9 

09:00 J7 43 23.3 71.6 27.8 

09:00 J4 14.2 41.4 84.6 58.4 

09:00 K5 38.5 37.3 45 28.0 

10:00 T3 34.5 17.5 115.7 33.7 

10:00 J3 27.2 33.2 80.3 44.4 

10:00 T10 15.7 21.1 144.8 50.9 

11:00 J6 29 32.1 79.4 42.5 

12:00 A1 32.1 17.8 148.3 44.0 

13:00 T4 11 26.6 124.3 55.1 

13:00 K1 19.8 54.2 45.6 41.2 

13:00 A3 15.1 24.1 147.2 59.1 

14:00 A4 26.8 19.8 148.2 48.9 

14:00 T11 28.4 17 136.5 38.7 

14:00 T6 22.5 22.2 121.4 44.9 

14:00 J5 30.2 31.3 78.9 41.2 

15:00 J8 48.8 19.6 68.2 22.3 

15:00 B4 27.6 26.9 47 21.1 

15:00 T5 42.2 14.6 110.3 26.8 

16:00 J1 43.9 22.7 71 26.9 

16:00 K2 24 50.4 45.9 38.6 

17:00 A2 41 12.2 148.4 30.2 

17:00 T7 37.6 16.4 113.7 31.1 

18:00 T1 18.9 23.6 122.6 48.2 

19:00 J2 29.7 31.7 78.9 41.7 

19:00 K4 32.3 42.9 45.3 32.4 

20:00 A5 23.2 21.1 147.9 52.0 

20:00 B2 39.2 21 47.4 16.6 

23:00 T2 42.4 14.5 110.3 26.7 

23:00 K3 13.9 59.5 45.5 45.1 
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Table D.9: Timely distribution and calculated charging data of vehicles in Case 9 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

02:00 K3 23.4 51 45.5 38.7 

05:00 J5 44.9 22.1 70.4 25.9 

06:00 K2 27.4 47.4 45.5 35.9 

07:00 J8 23.6 35.5 81.5 48.2 

08:00 T3 35.3 17.2 115.7 33.2 

09:00 T4 32.6 18.3 116.9 35.7 

09:00 T1 11.5 26.4 124.1 54.6 

10:00 T5 22.6 22.2 121.4 44.9 

10:00 K6 48.7 28.2 44.1 20.7 

10:00 A2 49.3 11.4 148.3 28.2 

11:00 T11 18.4 20.3 143.5 48.6 

11:00 T8 45 11.5 108.7 20.8 

12:00 T10 24.8 18.2 137.9 41.8 

13:00 B2 12.2 34.9 46.6 27.1 

13:00 T7 23.3 21.9 121.4 44.3 

13:00 B3 49.8 15.5 47.8 12.3 

14:00 A1 48.4 11.8 148.4 29.2 

14:00 J3 17 39.6 83.8 55.3 

14:00 A3 21.8 21.6 147.9 53.2 

14:00 K1 43.4 32.9 44.7 24.5 

15:00 J7 22.4 36.2 82.3 49.7 

15:00 T2 34.6 17.5 115.7 33.7 

15:00 K4 43.8 32.6 44.6 24.2 

16:00 B1 43 19 47.6 15.1 

16:00 J1 43 23.3 71.6 27.8 

17:00 B4 29.5 26 47.1 20.4 

17:00 T6 27.2 20.4 119.9 40.8 

18:00 J6 27.2 33.2 80.3 44.4 

18:00 J2 47.3 20.6 69.2 23.8 

18:00 K5 19.4 54.6 45.6 41.5 

20:00 A5 21.5 21.7 147.9 53.5 

20:00 J4 23.8 35.3 81.5 47.9 

22:00 T9 30.8 16.2 131.6 35.5 

23:00 A4 34.6 16.9 148.4 41.8 
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Table D.10: Timely distribution and calculated charging data of vehicles in Case 10 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

01:00 T6 36.1 17 115.1 32.6 

05:00 B1 10.6 35.7 46.5 27.7 

06:00 B2 32.4 24.5 47.2 19.3 

06:00 T3 36.9 16.6 114.4 31.7 

07:00 J5 14.1 41.4 84.6 58.4 

09:00 B3 17.5 32.1 46.7 25.0 

09:00 A2 45.5 12.8 148.4 31.7 

10:00 K1 46.6 30.1 44.4 22.3 

11:00 A3 44 13.4 148.4 33.1 

11:00 J8 44.8 22.2 70.4 26.0 

11:00 A5 21.6 21.7 147.9 53.5 

11:00 T10 49.4 10.1 102.4 17.2 

12:00 T11 40.1 13.1 117.8 25.7 

12:00 T9 34.2 15 127.7 31.9 

13:00 J4 37 27.1 75.2 34.0 

13:00 K6 23.5 50.9 45.5 38.6 

14:00 A1 19.2 22.6 147.6 55.6 

14:00 K3 26.7 47.8 45.5 36.2 

14:00 T4 49.7 11.7 100.4 19.6 

14:00 A4 26.2 20 148.1 49.4 

15:00 B4 45.8 17.6 47.7 14.0 

16:00 J1 33.6 29.2 76.8 37.4 

16:00 K4 17.1 56.6 45.6 43.0 

16:00 J3 20.9 37.1 82.6 51.1 

16:00 K2 35.8 39.8 46.6 30.9 

17:00 T1 49.3 11.8 102 20.1 

17:00 T5 18.5 23.7 122.6 48.4 

18:00 J6 37.3 26.9 75.2 33.7 

19:00 T2 33.2 18.1 116.9 35.3 

20:00 J2 30.7 31 78.4 40.5 

20:00 J7 10.2 43.9 85.4 62.5 

20:00 K5 19 54.9 45.6 41.7 

21:00 T7 40.1 15.4 112.1 28.8 

22:00 T8 13.9 21.7 146 52.8 
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Table D.11: Timely distribution and calculated charging data of vehicles in Case 12 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

02:00 A2 49 11.5 148.3 28.4 

05:00 T9 42 12.5 114 23.8 

06:00 T3 40.6 15.2 111.2 28.2 

07:00 T7 29.5 19.5 118.5 38.5 

07:00 T1 49.4 11.8 102 20.1 

09:00 K2 19.9 54.1 45.6 41.1 

09:00 B3 34.3 23.5 47.2 18.5 

10:00 T11 10.4 22.9 148 56.5 

11:00 K4 16.3 57.4 45.6 43.6 

11:00 B2 39.9 20.6 47.5 16.3 

11:00 K5 24 50.5 45.5 38.3 

11:00 T4 41.8 14.7 110.3 27.0 

12:00 K1 44.7 31.7 44.6 23.6 

12:00 J4 30.6 31 78.4 40.5 

12:00 K6 27.6 47.2 45.5 35.8 

12:00 B1 45.9 17.5 47.7 13.9 

13:00 T6 47.2 12.7 104.7 22.2 

13:00 A5 42.1 14.1 148.4 34.9 

14:00 T2 45.1 13.5 107.1 24.1 

14:00 J2 16.1 40.2 84.1 56.3 

15:00 J6 29.9 31.5 78.9 41.4 

15:00 T8 18.5 20.2 142.8 48.1 

16:00 A1 28.8 19 148.2 46.9 

16:00 K3 28.6 37.3 45.8 28.5 

16:00 J3 10.3 43.8 85.5 62.4 

17:00 J5 12.4 42.5 85.1 60.3 

17:00 B4 43.3 18.9 47.6 15.0 

18:00 A3 15.3 24 147.1 58.8 

18:00 J8 32.9 29.6 77.4 38.2 

19:00 T10 33.5 15.3 127.7 32.6 

20:00 J7 18.6 38.6 83.2 53.5 

20:00 A4 16.5 23.6 147.4 58.0 

21:00 J1 13.7 41.7 84.6 58.8 

21:00 T5 23.1 21.9 121.4 44.3 
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Table D.12: Timely distribution and calculated charging data of vehicles in Case 13 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

00:00 J7 40.6 24.7 72.8 30.0 

04:00 K4 21.5 52.7 45.6 40.1 

06:00 T9 21.4 19.3 141.3 45.5 

06:00 T10 20.6 19.5 141.3 45.9 

07:00 J4 30.6 31.1 78.4 40.6 

09:00 T4 32.3 18.4 117.5 36.0 

09:00 A2 24.3 20.7 148 51.1 

10:00 A5 21.5 21.7 147.9 53.5 

11:00 K6 37.9 37.9 45.1 28.5 

11:00 A4 44.5 13.2 148.4 32.6 

11:00 K3 25.3 49.2 45.5 37.3 

11:00 T8 30.2 16.4 132.7 36.3 

12:00 B4 21.7 30 46.9 23.5 

12:00 T3 42 14.7 110.3 27.0 

12:00 K1 36.3 39.4 45.2 29.7 

12:00 T2 20.2 23.1 122.3 47.1 

13:00 T11 45.8 11.2 107.2 20.0 

13:00 B3 13.9 34 46.6 26.4 

13:00 J2 16 40.2 84.1 56.3 

13:00 J8 49 19.5 68.2 22.2 

15:00 B1 21.8 30 46.9 23.5 

15:00 B2 12.4 34.8 46.6 27.0 

16:00 T1 21.2 22.7 122 46.2 

16:00 A3 45 13 148.4 32.2 

16:00 T5 44.6 13.7 107.1 24.5 

17:00 T6 42 14.6 110.3 26.8 

17:00 J1 36.2 27.5 75.7 34.7 

19:00 K2 15 58.5 45.6 44.5 

19:00 J3 38.9 25.9 74 31.9 

19:00 K5 36.1 39.5 45.2 29.8 

20:00 J6 44.6 22.3 44.6 16.6 

20:00 T7 24 21.6 121 43.6 

22:00 A1 34.2 17 148.4 42.0 

23:00 J5 39.5 25.4 73.5 31.1 
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Table D.13: Timely distribution and calculated charging data of vehicles in Case 14 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

02:00 B2 13.5 34.2 46.6 26.6 

03:00 J7 26.7 33.5 80.3 44.8 

06:00 T8 47.6 10.7 104 18.5 

07:00 T9 35.8 14.5 124.7 30.1 

07:00 K5 30.6 44.5 45.4 33.7 

09:00 J1 45.9 21.4 69.8 24.9 

09:00 T1 11 26.6 124.3 55.1 

09:00 T7 25.1 21.2 120.7 42.6 

10:00 B4 16.4 32.7 46.7 25.5 

11:00 A3 43.1 13.7 148.4 33.9 

11:00 T4 28.4 19.9 119.4 39.6 

11:00 J8 41.5 24.2 72.2 29.1 

12:00 B1 42 19.6 47.5 15.5 

12:00 A1 45.1 13 148.9 32.3 

12:00 K3 28.1 46.7 45.4 35.3 

13:00 J5 18.8 38.5 83.2 53.4 

13:00 J6 29.2 32 79.4 42.3 

14:00 B3 39.5 20.9 47.5 16.5 

14:00 T11 35.9 14.5 124.7 30.1 

14:00 K1 31.2 43.9 45.4 33.2 

15:00 A5 14.2 24.4 147.1 59.8 

16:00 T5 26.4 20.7 120.3 41.5 

16:00 J3 46.6 21 69.2 24.2 

16:00 J4 34.5 28.6 76.3 36.4 

17:00 T2 36.8 16.7 114.4 31.8 

17:00 T3 30.2 18.2 118.5 35.9 

17:00 A4 44.3 13.3 148.4 32.9 

18:00 T10 30.3 16.3 132.7 36.1 

18:00 K4 45.2 31.3 44.6 23.3 

19:00 A2 14.3 24.4 147.1 59.8 

19:00 T6 32.5 18.3 116.9 35.7 

20:00 K2 13.7 59.7 45.5 45.3 

21:00 K6 31.2 43.9 45.4 33.2 

22:00 J2 42.3 23.7 72.2 28.5 
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Table D.14: Timely distribution and calculated charging data of vehicles in Case 16 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

00:00 T6 38.4 16.1 113.7 30.5 

05:00 K6 22 52.2 45.6 39.7 

06:00 T8 37.8 13.9 121.5 28.1 

07:00 B3 19.5 31.3 46.8 24.4 

08:00 J7 49 19.5 68.2 22.2 

09:00 B4 12.8 34.6 46.6 26.9 

10:00 K4 29 45.9 45.8 35.0 

10:00 J1 38.2 26.3 74.6 32.7 

10:00 J4 39.7 25.4 73.5 31.1 

10:00 T10 10.9 22.7 147.6 55.8 

11:00 T5 23.8 21.7 121 43.8 

11:00 A1 14.3 24.4 147.1 59.8 

12:00 T7 23.1 22 121.4 44.5 

12:00 K1 15.4 58.1 45.6 44.2 

12:00 T1  33.6 17.9 116.3 34.7 

12:00 T11 22.7 18.8 139.7 43.8 

13:00 T2 22.1 22.3 121.7 45.2 

13:00 T9 24.4 18.3 138.8 42.3 

14:00 J5 26 33.9 80.7 45.6 

14:00 A2 14.5 24.3 147.2 59.6 

15:00 J6 27.6 33 79.9 43.9 

15:00 A3 12.7 25 146.8 61.2 

16:00 B1 30.4 25.5 47.1 20.0 

16:00 A5 11.5 25.5 146.8 62.4 

16:00 K3 39 36.9 45 27.7 

17:00 T4 41.9 14.7 110.3 27.0 

17:00 B2 15.2 33.4 46.6 25.9 

18:00 K5 26.6 48.1 45.5 36.5 

18:00 K2 17 56.7 45.6 43.1 

20:00 J3 47.1 20.7 69.2 23.9 

20:00 A4 29.1 18.9 148.2 46.7 

20:00 J2 29.5 31.8 78.9 41.8 

21:00 T3 27 20.5 119.9 41.0 

21:00 J8 28.3 32.5 79.9 43.3 
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Table D.15: Timely distribution and calculated charging data of vehicles in Case 17 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

01:00 A5 25.3 20.3 148.1 50.1 

05:00 B1 46.5 17.2 47.7 13.7 

06:00 T10 31.5 16 130.3 34.7 

06:00 A3 38 15.6 148.4 38.6 

07:00 K3 35.3 40.2 45.2 30.3 

10:00 T2 16.7 24.4 123.1 50.1 

10:00 J3 15.5 40.6 84.1 56.9 

10:00 J4 28.2 32.5 79.9 43.3 

10:00 T6 42.7 14.4 109.3 26.2 

11:00 T4 49 12 102 20.4 

11:00 J7 25.6 34.2 80.7 46.0 

11:00 J1 13.7 41.7 84.6 58.8 

12:00 T7 37.8 16.3 113.7 30.9 

13:00 K5 46.8 29.9 44.4 22.1 

13:00 B3 23.8 28.9 46.9 22.6 

13:00 T8 25.2 18 137.9 41.4 

14:00 A1 44.7 13.1 148.4 32.4 

14:00 J5 40.1 25.1 73.5 30.7 

14:00 K1 30 45 45.4 34.1 

14:00 A4 46.6 12.4 148.4 30.7 

15:00 B4 30.7 25.4 47.1 19.9 

15:00 B2 15.7 33.1 46.7 25.8 

16:00 J6 17 39.6 83.8 55.3 

16:00 T11 28.7 16.9 133.9 37.7 

16:00 K6 30.5 44.6 45.4 33.7 

17:00 J8 17.8 39.1 83.5 54.4 

17:00 T5 28.7 19.8 119 39.3 

18:00 J2 40.2 25 73.5 30.6 

18:00 A2 39.2 15.2 148.4 37.6 

19:00 K4 30.3 44.8 45.4 33.9 

19:00 T1 29.3 19.6 119 38.9 

20:00 T9 36.6 14.3 123.1 29.3 

23:00 T3 17 24.3 123.1 49.9 

23:00 K2 43 33.3 44.7 24.8 
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Table D.16: Timely distribution and calculated charging data of vehicles in Case 18 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

00:00 J7 46.9 20.8 69.2 24.0 

03:00 T9 35.9 14.5 124.7 30.1 

07:00 T1 40.3 15.3 112.1 28.6 

08:00 A1 24.9 20.5 148.1 50.6 

08:00 J2 46.6 21 69.2 24.2 

09:00 T5 18 23.9 122.9 49.0 

09:00 T3 25.6 21 120.3 42.1 

10:00 K6 32.3 42.9 45.3 32.4 

10:00 B3 14.8 33.5 46.6 26.0 

10:00 T7 11.5 26.4 124.1 54.6 

11:00 T10 25.2 18 137.9 41.4 

11:00 J6 33.1 29.5 77.4 38.1 

12:00 B4 19.4 31.2 46.8 24.3 

12:00 A5 43.5 13.6 148.4 33.6 

12:00 K2 47.3 29.4 44.4 21.8 

13:00 B2 43.5 18.8 47.6 14.9 

13:00 A4 44.8 13.1 148.4 32.4 

13:00 B1 24.9 28.3 46.9 22.1 

14:00 J1 17.4 39.4 83.8 55.0 

14:00 K1 31 44.1 45.4 33.4 

15:00 J5 27.8 32.8 79.9 43.7 

15:00 T11 23.5 18.6 138.8 43.0 

16:00 T8 19.9 19.8 142.1 46.9 

16:00 K4 40.9 35.2 44.9 26.3 

16:00 J4 42.5 23.6 71.6 28.2 

17:00 T2 20.5 22.9 122 46.6 

17:00 K3 17.9 55.9 45.6 42.5 

18:00 K5 11.1 62.1 45.5 47.1 

18:00 T4 14.9 25.1 123.6 51.7 

19:00 A3 30.8 18.3 148.3 45.2 

19:00 J8 34.6 28.5 76.3 36.2 

20:00 J3 45.3 21.8 70.4 25.6 

21:00 T6 14.2 25.4 123.8 52.4 

23:00 A2 33.7 17.2 148.4 42.5 
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Table D.17: Timely distribution and calculated charging data of vehicles in Case 19 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

02:00 A5 17.4 23.3 147.4 57.2 

05:00 K1 32.3 43 45.3 32.5 

06:00 T10 23.8 18.5 138.8 42.8 

07:00 J1 36.3 27.5 75.7 34.7 

08:00 K3 45.6 30.9 44.5 22.9 

09:00 A4 31.3 18.1 148.3 44.7 

10:00 T2 30.8 19 118 37.4 

10:00 J6 42.9 23.4 71.6 27.9 

10:00 K6 32 43.2 45.3 32.6 

10:00 T11 14.1 21.6 146 52.6 

11:00 T5 21.3 22.7 122 46.2 

11:00 J7 24.7 34.8 81.1 47.0 

12:00 K5 11.6 61.5 45.5 46.6 

12:00 T8 49.8 9.9 100.7 16.6 

13:00 T6 28.7 19.8 119 39.3 

13:00 A1 14.2 24.4 147.1 59.8 

13:00 K4 48.4 28.4 44.2 20.9 

13:00 T4 13.6 25.6 123.8 52.8 

14:00 J8 11.1 43.3 85.3 61.6 

14:00 B3 26.7 27.4 47 21.5 

15:00 T9 18.3 20.3 143.5 48.6 

16:00 B1 42.1 19.5 47.5 15.4 

16:00 A2 36.9 16 148.4 39.6 

17:00 J2 44.7 22.2 70.4 26.0 

17:00 T7 33.2 18.1 116.9 35.3 

17:00 K2 13.1 60.2 45.5 45.7 

17:00 A3 31.7 17.9 148.3 44.2 

18:00 T3 27 20.5 119.9 41.0 

19:00 T1 48.9 12 102 20.4 

19:00 J3 44 22.7 71 26.9 

19:00 B4 15.4 33.2 46.6 25.8 

20:00 B2 49.2 15.8 47.8 12.6 

22:00 J4 25.2 34.5 81.1 46.6 

22:00 J5 20.6 37.4 82.6 51.5 
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Table D.18: Timely distribution and calculated charging data of vehicles in Case 20 

Time (hour) Vehicle SoC (%) 

Estimated 

Recharge Time 

(mins) 

Average Charge 

Power 

 (kW) 

Estimated Energy 

Consumption  

(kWh) 

00:00 T6 36.5 16.8 114.4 32.0 

05:00 T5 35.6 17.1 115.1 32.8 

06:00 T7 40.7 15.2 111.2 28.2 

06:00 J8 49.1 19.4 68.2 22.1 

08:00 B1 29.3 26.1 47.1 20.5 

09:00 A1 23 21.2 147.9 52.3 

09:00 T1 35.9 17 115.1 32.6 

09:00 A4 24.3 20.7 148 51.1 

10:00 K3 39.7 36.3 44.9 27.2 

10:00 J3 13.1 42.1 84.8 59.5 

10:00 J1 29.5 31.8 78.9 41.8 

10:00 B3 33.6 23.9 47.2 18.8 

12:00 J4 34.6 28.5 76.3 36.2 

12:00 K4 13.9 59.5 45.5 45.1 

12:00 T4 17.9 24 122.9 49.2 

13:00 T11 35 14.8 126.2 31.1 

13:00 B2 49.3 15.8 47.8 12.6 

13:00 J6 42.6 23.5 72.2 28.3 

13:00 K1 39.9 36.1 44.9 27.0 

14:00 A5 43.7 13.5 148.4 33.4 

15:00 T3 29.7 19.4 118.5 38.3 

15:00 T8 12.7 22.1 146.6 54.0 

15:00 K2 32.3 43 45.3 32.5 

16:00 K5 27.1 47.6 45.5 36.1 

17:00 A2 16.8 23.5 147.4 57.7 

17:00 T2 44.9 13.5 107.1 24.1 

17:00 T9 47.3 10.7 105.6 18.8 

18:00 J7 13 42.1 84.8 59.5 

18:00 K6 36.9 38.8 45.1 29.2 

19:00 T10 23.6 18.5 138.8 42.8 

19:00 J5 15.8 40.4 84.1 56.6 

20:00 A3 28.5 19.1 148.2 47.2 

21:00 J2 30.4 31.2 78.9 41.0 

22:00 B4 48.7 16.1 47.8 12.8 
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