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Investigating the Impact of Adaptive Façades on Energy 

Performance Using Simulation and Machine Learning 

Abstract 

Buildings consume approximately 40% of the world's primary energy, and half of this energy 

demand stems from space cooling and heating. To meet the targets of designing high 

performance buildings, intelligent solutions need to be integrated into the design process of 

buildings to achieve indoor environmental comfort and minimize energy consumption. In 

particular, the building façade plays a crucial role, as it acts as a separator element that can 

control the indoor environment and energy performance. This is even more important in 

buildings with extensive glazing systems particularly in harsh, hot climates. As stated in the 

literature, buildings are exposed to dynamic environmental factors that change continuously 

throughout the day and the year. Nonetheless, regardless of the climatic variations, building 

skins have been typically designed as static envelopes, which are limited in terms of their 

responsiveness to indoor or outdoor environmental conditions. In contrast, adaptive façades 

(AFs) are flexible regarding the adaptability of the system to climatic conditions enabling 

them to respond to short-term changes in the environment.  

From an environmental viewpoint, it is essential to reduce the energy consumption of 

buildings and mitigate their environmental impacts. Numerous innovative building envelope 

technologies have been developed to improve indoor comfort and reduce the 

environmental impact of buildings during their life cycle. As stated in the literature, AFs can 

make a major and practical contribution to achieving the worldwide zero-energy building 

targets and sustainability of our cities. In practice, assessing the performance of AFs during 

the early stages of the design is still a challenging task due to their time-varying dynamic 

behaviour. Most current building performance tools (BPS) were originally developed to 

assess fixed façades where changes to the geometry of the façade are not taken into 

consideration during simulation. To that end, adaptive systems require a more complex 

workflow that can correctly predict their performance. 

This research is intended to assist architects and façade specialists in two main aspects; 

firstly, an algorithmic framework was developed to predict the energy performance of AFs in 

the early design stages. The algorithmic workflow creates a link between plug-ins including 

the Ladybug and Honeybee tools, and Energy Plus for running the simulation with the built-

in tool energy management system (EMS) to program a code to actuate the AF system in an 
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hourly time step. The workflow considers the time-varying dynamic behaviour of AFs based 

on different environmental parameters. The aim is to accurately evaluate the potential of 

AFs in the energy performance of an office tower. Secondly, by exploring the complexity and 

limitation of current tools, a novel method is proposed to assess the energy performance of 

AFs using machine learning (ML) techniques. Two different ML models, namely, an artificial 

neural network (ANN) and a Random Forest (RF), were developed to predict the energy 

performance of AFs in the early design stages in a significantly faster time compared to 

simulation. The surrogate models were trained, tested, and validated using the generated 

synthetic database by simulation (hourly cooling loads of AF and hourly solar radiation). 

During the training phase, a hyperparameters tuning procedure was carried out to select the 

most suitable surrogate model. 

By comparing the static shading system with AFs in terms of energy consumption, the results 

confirmed that the AFs were more effective in terms of cooling load reduction compared to 

static façades where cooling loads were reduced by 34.6%. The findings also revealed that 

the control scenario that triggered both incident solar radiation and operative temperature 

in a closed loop mechanism performed better than other control scenarios. Regarding the 

surrogate models, this research found that ML techniques can predict the hourly cooling 

loads of AFs with a high level of accuracy in the range of 85% to 99%. In particular, the RF 

model showed a 17% improvement in R2 accuracy over the ANN model in predicting the 

hourly cooling loads of AFs. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

1.1. Introduction  

This chapter presents a background of the research, states the research problem, explains 

the significance of the study, identifies the aim and objectives of the study, outlines the 

research questions, indicates the scope, and focus of the research, presents an overview of 

the methodology and research design, and lastly, concludes by exhibiting an outline of the 

thesis structure and a summary of this chapter. 

1.2. Research Background and Context     

According to the International Energy Agency (IEA), energy consumption by buildings is 

increasing significantly, and buildings account for 40% of the global energy. Furthermore, IEA 

reported that energy demand is estimated to increase by 30% by 2035 (Building and Codes 

2013). Other studies have stated that the building sector consumes more energy compared 

to other sectors, such as the industry and transportation sectors (Shakouri and Banihashemi 

2012; Alyami and Omer 2021). Therefore, various countries have formed new regulations to 

achieve net zero buildings (NZB) and reduce greenhouse emissions. As an example of this, 

the Saudi government established the Saudi Green Initiative, which aims to achieve NZB by 

2040 in new constructed buildings. In addition, the Saudi policies emphasise the significance 

of energy efficient buildings and the issue of climate change. These above-mentioned goals 

can be achieved using effective measurements to reduce buildings’ energy consumption and 

maximize indoor environmental quality in buildings.   

To meet the current targets of designing high performance buildings with the future of 

nearly ZEB, there is a need to continue the advances made in the design, technology, and 

materials of buildings. Integrating intelligent solutions into the design process of buildings 

can achieve the indoor environmental comfort of the building occupants and minimize 

energy consumption (Ochoa and Capeluto 2008). The building envelope plays an important 

role in achieving this target; it acts as a separator element between the indoor and outdoor 

environments of a building and is a crucial factor that determines the quality of indoor 

conditions (Sadineni et al. 2011). Furthermore, the building envelope not only defines the 

aesthetic appearance of buildings but also performs several functions such as safety, privacy, 

and protection from outdoor conditions. Additionally, it connects the building’s occupants 

with the outdoor world allowing them access to daylight, air, and views while controlling the 

energy exchange (Loonen 2018). Since buildings with extensive glazing systems are the 

dominant type of envelopes found in most high-rise and mid-rise office buildings particularly 
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in harsh, hot climates, it is vital to install shading systems on such buildings to prevent the 

penetration of direct sunlight and solar radiation into the internal spaces. The intensive solar 

radiation has an impact on increasing the cooling energy loads required to achieve human 

comfort in these office spaces.  

As stated in the literature, a building’s skin or façade is a key factor in determining the 

comfort and energy consumption of the building. This is because buildings are exposed to 

dynamic environmental factors, such as solar radiation, temperature, and wind, and these 

outdoor conditions change continuously throughout the day and the year. Regardless of the 

outdoor climate, which changes constantly, a building’s skin has been typically designed as a 

static envelope. However, fixed or static shading devices are limited in terms of their 

responsiveness to indoor or outdoor environmental conditions. Thus, this leads to less 

performance once these systems have been installed especially if changes over time are 

required (Tabadkani et al. 2021a). In addition, studies have shown that static façades are no 

longer favourable and have limitations in terms of attaining the desired energy efficiency, 

adequate daylighting, and control flexibility (Al-Masrani and Al-Obaidi 2019). On the other 

hand, adaptive façades (AFs) are effective in responding to the variable climatic conditions. 

These AFs have unique features or behaviours that repeatedly and reversibly change over 

time and respond to changing performance requirements aiming to improve the building 

performance (Loonen et al. 2014b). To that end, numerous studies have been conducted 

regarding substituting the static envelope with an adaptive one to achieve greater efficiency 

and performance by exploiting the dynamic environment. 

To successfully develop AF systems, it is crucial to assess their benefits and performance 

during the early stages of the design. However, the lack of a suitable method and 

appropriate tools makes it challenging for architects and engineers to evaluate AFs’ 

performance (Favoino et al. 2016; Loonen et al. 2017). Most of BPS tools are often 

characterised as complex digital modelling and not user-friendly (Loonen et al. 2017). 

Therefore, numerous studies have primarily focused on the development of AF technologies 

that are only able to alter their physiological features. In contrast, view studies have 

examined the geometrical variations of AFs in response to environmental conditions (Kuru 

2020). 

1.2.1. Static Façade  

The application of external shading devices refers to the installation of shade elements on 

the exterior part of the window. The design of fixed external shading devices has to prevent 

solar radiation from penetrating through the shading. However, these fixed devices cannot 
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change to react to the direction of the sun. In addition, a static shade device's effectiveness 

is influenced by its orientation, the sun's position in the sky, and the device's features. The 

success of fixed shading devices requires that they be designed and positioned in such a way 

that, while preventing solar penetration, they do not adversely affect the internal luminance 

throughout the year.  

Based on the literature, fixed or static shade systems have a limited ability to respond to 

interior or exterior environmental variables over the course of a day or season, which may 

lead to poor performance if the operational requirements change over time. In addition, 

researchers have demonstrated that static façades are no longer advantageous and have 

constraints in achieving the appropriate energy efficiency, suitable daylighting, and control 

flexibility (Al-Masrani and Al-Obaidi 2019). Armstrong states that the traditional static 

approach to the design of façades is not the most effective approach for responding to the 

varying environmental conditions (Armstrong 2012). Hence, the new developed adaptive 

architectural envelope can replace the traditional approach since it can respond to different 

environmental conditions. 

External static shade systems are utilised for both solar radiation control and energy saving. 

However, these shading systems might prevent daylight, resulting in the need to use 

artificial light and prohibiting the healthy winter solar radiation. Therefore, it is crucial to 

utilise the appropriate type of shade device at the correct time and place. 

1.2.2. Adaptive Façade  

The methodologies for creating high-performance second skins and the measures required 

to ensure that environmental factors and energy-efficiency techniques are incorporated into 

the envelope design process are the most crucial elements. As a result, building façades 

serve as more than merely a physical barrier between interior and exterior environments; 

they are also building elements that can dynamically adapt to the internal and external 

environment of a building to create a comfortable environment while drastically reducing 

energy consumption. However, a high degree of integration is required to accomplish these 

design goals, which should be considered at the beginning of the design process. Due to 

technological improvements, designers can now utilise responsive and adaptable building 

envelopes as opposed to static and conventional ones. It has been demonstrated that these 

external adaptive envelopes can serve a unique purpose in the design of high-performance 

buildings and offer considerable potential for improving the energy efficiency of buildings. 
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The components of an adaptive shading system can be moved and can operate according to 

an algorithm. The term "adaptive shading system" can be used to describe applications for 

intelligent façades, which have been shown to improve occupant comfort by allowing them 

to interact based on both interior and exterior environments (Sheikh and Asghar 2019). 

1.2.3. Machine Learning  

To achieve a sustainable built environment, building performance must be addressed in the 

early phases of design. Hence, the design process becomes more complex than ever before. 

To manage this complexity, architects and designers have to have an overview of the whole 

building performance. Machine learning (ML) provides a solution to this challenge, with 

advantages such as fast prediction and simplified parameter structures that are well-suited 

for the early stages of design. In a Design Space Exploration process, this enables designers 

and engineers to rapidly tweak concepts and assess the performance of the building.  

The ML method has the potential to evaluate building performance more effectively than 

traditional simulation. Numerous studies have investigated ML-based prediction models to 

forecast the energy consumption of buildings. For example, the ML models utilised in 

building energy prediction employ artificial neural networks (ANNs) (Wu et al., 2007) and the 

decision tree (DT) (Yu et al. 2010; Killian and Kozek, 2016). Among ML methods, Random 

Forest (RF) is an ML technique that is easy to train and is effective at dealing with high-

dimensional data and solving difficult problems (Zhu et al., 2020). The performance of this 

technique is consistent and accurate due to the fact that it builds several DTs and combines 

them to produce output. 

1.2.4. Energy Consumption of Buildings in Riyadh, Saudi Arabia 

The rapid increase in energy consumption by the building sector, along with the issue of CO2 

emissions, has driven the Kingdom of Saudi Arabia’s (KSA) government to implement new, 

stricter construction regulations in its building codes and standards. Moreover, the Saudi 

Vision 2030, which was launched in 2016, with the primary objective of reducing the reliance 

on oil and so diversifying the economy, has also addressed the issue of energy consumption 

in buildings in order to meet the government's environmental and economic goals 

(Almushaikah and Almasri 2021). The Kingdom of Saudi Arabia (KSA) is the leading country 

among the Gulf Cooperation Council (GCC) region in terms of the quantity and scale of 

construction projects (Asif 2016). According to the Ministry of Municipal and Rural Affairs 



CHAPTER 1: INTRODUCTION AND OVERVIEW 

6 

(MOMRA), approximately 90% of all building permits issued in 2015 were for commercial 

and residential buildings (Alrashed and Asif 2012). 

According to Krarti et al. (2017), the building sector consumes a significant amount of energy 

in KSA with a growth of roughly 10% annually and accounting for 76% of overall electricity 

consumption in the country Figure (1.1). Additionally, the IEA reported in 2018 that KSA’s 

electrical energy consumption per capita had increased significantly. According to the IEA, 

energy consumption increased from 7.2 MWh in 2006 to 10.2 MWh in 2018, a 41.7 percent 

increase over this period (Almushaikah and Almasri 2021). Buildings in KSA are characterized 

by excessive electrical consumption, whether for HVAC systems, artificial lighting, 

equipment, or other devices, resulting in a high degree of consumption (Asif 2016). For 

example, in Riyadh, the major energy consumption is mainly consumed due to the use of air 

conditioning systems to cool interior spaces during the summer months (Alrashed and Asif 

2014). 

 

Figure 1.1: Building sector electricity consumption in KSA (SEC, 2013). 

Figures (1.2) and (1.3) show the typical daily electricity load curve in KSA during the summer 

and winter seasons, respectively. KSA’s peak demand for electricity typically occurs between 

12:00 and 17:00 in the summer (from May to October). Looking at the two figures, the 

summer and winter demand at 13:00 pm on weekdays is 52 GW and 26.5 GW, respectively, 

while weekend demand is 56 GW and 28 GW, respectively. During the hottest months of the 

year, HVAC systems require huge amounts of power to maintain the temperature at a 

comfortable level (Alshahrani and Boait 2019). It can also be seen from these two figures 

that air conditioning is used throughout the day and night during the warmer months 

(Alshahrani 2018).  Alshahrani stated that this increased demand for cooling loads in 

buildings is a result of the city's severe daytime temperatures and limited rainfall, which are 

also observed in other desert climates (Alshahrani 2018). 
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Figure 1.2: KSA typical daily electricity load curve during summer (Alshahrani and Boait 2019). 

  

Figure 1.3: KSA typical daily electricity load curve during winter (Alshahrani and Boait 2019). 

In addition, the Saudi Electric Company (SEC) reported in 2017 that electricity usage nearly 

doubles in Riyadh during the hot summer season is highly dependent on the daily 

temperature profile. Figure (1.4) is based on data collected in 2014, which shows how 

monthly total electricity usage in KSA closely follows average ambient temperatures. The 

significant association between electricity usage and ambient temperature indicates the 

serious importance of air conditioning during the summer months, when electrical demand 

is more than double that of the winter (Albogami and Boukhanouf 2019). Furthermore, in 

1993, KSA recorded an energy consumption of 4422 KWh per capita, and this amount 

increased by almost double within two decades, reaching to 8757 KWh per capita in 2013, 

and 9347 KWh per capita by 2016 (Al Harbi and Csala 2019). This increase in energy 

consumption per capita indicates the size of the current issue and emphasizes the critical 

importance of implementing a strategy to reduce the excessive energy consumption, 
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particularly by buildings. Ghabra 2019, stated that most high-rise buildings in the GCC region 

are constructed without any concern for the local climate. Instead, they rely on mechanical 

active systems to mitigate the effects of undesirable climatic conditions, making them 

significant contributors to high energy consumption. Moreover, the number of high-rise 

offices, which are among the buildings with the highest energy consumption, has been 

rapidly growing in popularity, particularly in dense urban areas (Sauerbruch et al. 2011). 

 

Figure 1.4: Monthly total KSA electricity consumption and average ambient temperature (Albogami 
and Boukhanouf 2019). 

As a response to the government’s goal of energy efficiency, several national sectors and 

innovative programs have been initiated in a plan to reduce the excessive use of energy in 

the Saudi building sector. For example, at King Abdulaziz City for Science and Technology 

(KACST), the National Energy Efficiency Program (NEEP) was formed to assist research 

activities, address environmental challenges, and make recommendations to help the 

government achieve its aim of rational energy consumption patterns. Moreover, KSA’s 

government established the Saudi Energy Efficiency Centre (SEEC) in 2010 to encourage 

energy efficiency across all sectors, with a major focus on the building sector. SEEC's primary 

objective is to decrease energy use through audits, load control, regulation, and education 

(Krarti et al. 2017). The lack of thermal insulation is one of the most serious deficiencies in 

the country's building stock, affecting over 70% of current buildings (SEEC 2015). Therefore, 

in 2014, SEEC collaborated with SBC to make thermal insulation an obligatory requirement 

for all new buildings in KSA. 

From the previous discussion, it is clear that buildings in Riyadh consumes an enormous 

amount of energy as a result of its extreme hot climate conditions and the excessive heat 

gain from solar radiation, which requires the use of cooling systems to meet human comfort 

requirements in interior spaces. In addition, the lack of consideration of the building 
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envelope in the design and of the importance of thermal insulation has contributed to 

increasing energy consumption by buildings. Thus, it is essential to minimize the energy 

consumption of buildings by implementing energy conservation measures and designing 

energy efficient buildings. Office building designs should be responsive and adaptable to 

changing climates, and architects should develop intelligent design solutions that reduce 

energy consumption for cooling, heating, and lighting in such buildings. 

1.2.5. High Rise Office Buildings in Riyadh 

High-rise buildings are one of the main elements of the urban fabric of most cities, and the 

number of these tall buildings is increasing globally to provide solutions for the growing 

demand for office space and accommodation and the rapid migration toward cities. (Hadi et 

al. 2014; van Soomeren et al. 2016). However, the energy consumption of such buildings is 

enormous. Riyadh, the case study city, has been transformed over the past five decades 

from a small-enclosed town into a modern urban advanced city (from 9 km2 in 1917 to 1,798 

km2). In recent years, the government has placed a greater emphasis on the construction of 

tall office buildings in Riyadh as a means of attracting business, investors, entrepreneurs, 

and small-to-medium-sized enterprises to relocate and launch branches in the city. These 

high-rise structures will contribute to the city's development, create a pleasant image, and 

promote a sense of power. Currently, Riyadh is considered the second city in the Middle East 

based on the number of developed high-rise buildings (Asif 2016). Figure (1.5) shows a 

timeline of the number of tall buildings constructed in Riyadh between 1980 and 2022 

(CTBUH 2017). 

 

 

Figure 1.5: High-rise buildings timeline in Riyadh (The Global Tall Building Database of the CTBUH). 
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An observational analysis of the timeline of Riyadh's tall buildings reveals three distinct 

historical phases, in which evident changes were seen to the design of the building façade. 

The earliest examples of tall structures date from the early 1980s through to the early 1990s, 

most notably during the second oil boom, which is associated with the 1980s price surge. In 

1984, Al Atta'Awuneya Tower was completed, and at 101 metres high is considered the first 

tall building in the region (CTBUH 2017). In the first phase, tall buildings are designed with 

mostly a solid form toward the west and south elevations, and small punched windows are 

used to control and block the harsh climate conditions. In addition, the design of tall 

buildings during this phase was more considerate of the region's climate and culture, but 

connectivity to the outdoors and views to the outside are lacking. However, throughout this 

period, only a few towers were constructed. Figure (1.6) shows some examples of the tall 

buildings constructed between the 1980s and 1999. 

 

Figure 1.6: First phase of constructed tall building’s structure in Riyadh. 

The second phase of Riyadh's tall building development saw the construction of tall buildings 

in the "international design style”, which is characterized by a fully glazed envelope and 

unornamented façade. This style depends heavily on extensive mechanical air conditioning 

and artificial lighting to meet the human need for indoor comfort (Heiselberg 2007). 

Elkhatieb (2016) argued that the international glazing envelope creates a unified style that 

can be seen similarly in different cities worldwide, neglecting the variations of the local 

climatic conditions and cultural requirements of each city independently. In addition, the 

author stated that this approach was criticized by many architects, as the building envelope 

loses its role as a climatic mediator that can promote human comfort and reduce energy 

demands. Figure (1.7) shows examples of some tall office buildings in Riyadh, which adopted 

the design principles of the fully glazed western style.  
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Figure 1.7: Examples of the second phase of Riyadh's tall building development, followed the 
international style. 

In the third phase of tall building development, architects and designers paid more attention 

to designing tall buildings that are sustainable and energy efficient and that provide comfort 

for the occupants. The façade design appears to be the primary environmental strategy in 

these buildings, whether through the use of shading systems, orientation consideration, and 

responsive transparency and opacity in glazed façades, or through double skin façade 

technologies (Ghabra 2019). During this phase, architects designed tall office buildings with 

an emphasis on the building skin, with the goal of creating an external shelter that protects 

the occupants from the outdoor climate. Thus, various shading strategies, such as louvres, 

overhangs, blinds, and solar screens, were developed as a building skin, and these shading 

systems achieved a reasonable level of performance given the technology and materials 

available at the time (Mohamed 2015). As an example, Alfaisaliah Tower, designed by 

Norman Foster architects, was one of the first office building in Riyadh that incorporated 

overhang shading systems on its building envelope to block the intense solar radiation from 

penetrating into the interior environment. From 2000 to the present, different fixed shading 

strategies have been applied on the building façade of high-rise office buildings by many 

architects as shown in Figure (1.8). However, these shading systems were installed as a static 

skin with fixed thermophysical and optical properties and without considering variations in 

the outdoor environment (Loonen et al. 2010; Konstantoglou and Tsangrassoulis 2016).  
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Figure 1.8: Examples of the third phase of tall buildings development implemented fixed shading 
systems. 

Internationally, the concept of a dynamic building envelope has emerged as an effective 

alternative to the static shading system. This adaptive skin is a more suitable shading system 

because it can adapt to the outdoor variations and so achieve high performance buildings. 

This concept is beneficial in hot climate areas where excessive solar heat gain results in high 

energy consumption during the summer. Although the adaptive system functions more 

effectively in a hot climate region, such a system has not yet been applied on the building 

skins of high-rise office buildings in Riyadh. Hence, this study focuses on AF shading systems 

for high-rise office buildings to explore the energy-saving potential of these shading systems. 

Recently, the King Abdullah Financial District (KAFD) was constructed in Riyadh as a way to 

promote sustainable, environmentally friendly buildings and to reflect the global awareness 

of energy efficiency within buildings. The KAFD district included a number of Grade A office 

towers with the objective of establishing the district as a regional and global financial hub 

Figure (1.9). Different tall buildings within this urban complex were designed according to 

the green building standards and regulations.  

 

Figure 1.9: Examples of tall buildings constructed in the King Abdullah Financial District (KAFD). 
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1.2.6. Riyadh Location and Climatic Condition - Hot-Arid Regions  

Geographically, KSA is situated in the southwest of Asia with a large area of desert, and lies 

between 24° N, and 45° E above the equator. It is the largest country in the Middle East, 

with a surface size of approximately 2.5 million square kilometres. According to the 

Koeppen-Geiger Climate Classification, KSA in general is classified as a single climate zone 

known as hot arid climate region (BWh) Figure (1.10). However, for more precision, the 

Saudi Building Council (SBC) separates KSA into three zones due to the country's varied 

climates Figure (1.11) (Alardhi et al. 2020). Climate zone 1 is the most prevalent hot, dry 

climate zone in Saudi Arabia. Riyadh is the capital, which located in the central part of the 

country (climate zone 1), at an elevation of 600 metres above sea level. Riyadh city 

experiences a hot desert environment for most of the time between May and October, with 

an average rainfall of 100 millimetres, whereas the remaining months create a milder 

season. Thus, Riyadh has two main climatic seasons that can be distinguished: summer and 

winter. 

 

Figure 1.10: World map of Koppen-Geiger Climate Classification (Peel et al., 2007). 
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Figure 1.11: Climate zones of KSA based on SRBEC classifications (SBCNC, 2018). 

In general, during the summer, the average temperature may exceed 45°C, while ambient 

temperatures may reach 50°C. In addition, the summer mean maximum and minimum 

temperatures range between 27.3 and 37.1°C and 16 and 26°C, respectively Figure (1.12) 

(Alyami and Omer 2021). The extreme high temperature during the summer season requires 

architects to find solutions for maintaining a suitable thermal comfort for a building’s 

occupants. In winter, the mean maximum and minimum temperatures are 21 – 29◦C and 8 – 

13◦C, respectively.  

 

Figure 1.12: Annual temperature profile for Riyadh city (Alyami and Omer 2021). 
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Riyadh is recognised as a leading city and financial hub in the Middle East due to its strategic 

location and stable economy. In recent years, the government has paid immense attention 

and provided significant incentives for the construction of high-rise buildings in Riyadh, as 

such buildings will contribute to the city's development and economy, as well as creating a 

pleasant image. In terms of already constructed high-rise buildings, Riyadh is currently the 

second-largest city in the Middle East following Dubai (Asif, 2016). 

The provision of offices is an increasing trend in the Riyadh construction market. The Riyadh 

Plan suggested that the city's central district would require additional office space between 

2015 and 2030. According to Frank (2018), the demand for office space in Riyadh has 

increased since SA implemented a policy demanding that the regional headquarters of 

foreign companies be located in the country's capital (Knight Frank, 2018). Frank states that 

office occupancy level in Riyadh had reached 98% due to an unprecedented demand for 

office space. By the end of 2023, the total stock of office space in Riyadh was anticipated to 

reach approximately 5.11 million sqm GLA. Therefore, to meet the demand for new office 

space, the construction of high-rise office buildings is encouraged and supported. Most high-

rise office buildings are currently air-conditioned. The objectives are to provide occupants 

with a higher degree of comfort, create more productive settings, and increase the rental 

value of floor spaces. 

Another crucial factor in the installation of such systems in buildings is concern about the 

influence of excessive solar heat gain on energy consumption. Moreover, it is anticipated 

that Riyadh's temperatures will rise as a result of climate change. This will result in warmer 

summers with an increase in the number of days that are extremely hot and a decrease in 

the number of days that are cold. The above conditions indicate that the use of mechanical 

ventilation will increase in Riyadh. However, although adaptive systems are more successful 

in regions with hot temperatures, high-rise office buildings in Riyadh have not yet been 

installed with such systems. Consequently, the adaptive shade system can be beneficial to 

Riyadh and other cities that in regions with hot temperatures and high energy usage during 

the summer due to excessive solar heat gain.  

1.3. Research Aim and Objectives  

The aim of this study is to investigate the potential of AF shading systems for reducing the 

energy consumption in high-rise office buildings in hot climates. Moreover, it seeks to 

examine the potential of using machine learning (ML) techniques as an alternative method 

to predict the energy performance of AFs in the early stages of the design. 

The research objectives are as follows:  
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Objective 1. Investigate the impact of adaptive façades on energy performance.  

- Survey the literature to explore adaptive façade shading systems.  

- Survey the literature to assess building performance simulation tools (BPS) for 

predicting the performance of AFs.  

Objective 2. Develop an algorithmic workflow to evaluate the energy performance of AF 

shading system. 

- Conduct simulation to investigate the influence of adaptive façades on energy 

performance (cooling loads).  

- Compare the performance of adaptive façade shading systems with external static 

shading in terms of reducing cooling loads. 

- Integrate an automatic control system to actuate the AFs based on environmental 

parameters.     

Objective 3. Generate a synthetic database of AF cooling energy loads of offices to train 

and test the surrogate models.   

- Use parametric tools and simulation to parametrically generate various design 

alternatives.   

Objective 4. Develop machine learning models to predict energy performance of AF in the 

early stage of the design.   

- Employ ANN and RF surrogate models to predict the energy performance (cooling 

loads) of adaptive façades.  

- Validate and compare both ANN and RF for energy predictions in the early stages of 

the design for adaptive façades.   

Objective 5. Establish a workflow that incorporates the surrogate model within a 

computational design tool to assist in early-stage design-decision making.  

1.4. Research Questions  

Research questions are used to frame the structure of the research to gain a deeper 

understanding of the research issues. Robson and McCartan (2011) stated that research 

questions are used to define the structure of research to uncover new knowledge. Thus, 

research questions were used to guide the discovery of new knowledge in the research area. 

This study seeks to answer the following main research questions in accordance with the 

stated aim and objectives: 
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1. Can adaptive façades improve the energy efficiency in high-rise office buildings in 

hot climate?  

2. Can current BPS tools meet the challenges of simulating adaptive façades? 

3. What are the needed workflows to model and simulate the energy performance of 

adaptive façades? 

4. What machine-learning models can be used to accurately predict the energy 

performance of adaptive façades?  

1.5. An Overview of the Research Design  

The development of applicable AFs for the goal of improving the energy consumption in 

high-rise office buildings needs smart and advanced approaches. The research method was 

divided into five phases to achieve the research objectives. These phases are literature 

review, data collection, data analysis, development of the surrogate models, validation of 

the results, and testing of the surrogate models. To accomplish the research objectives, 

various data collection and analysis methodologies and techniques were reviewed. This 

study adapted a quantitative approach to data collection to achieve the research objectives. 

Phase 1: Literature Review and Critical Analysis 

The literature review was the first phase of the research to explore the impact of AF shading 

systems on the energy performance in buildings and its applications. In addition, it aimed to 

review the current studies of AFs regarding AF system type, adaptability of the system, 

performance, and tools used to simulate the AFs. It also examined the challenges and 

difficulties of current BPS tools to assess AFs during early stage of the design. Moreover, it 

reviewed the literature in ML techniques and their potential use for building performance 

predictions. 

Phase 2: Data collection  

The data collection was the second phase of the research to achieve the research objectives. 

It included two main activities: data collection from case studies, and data collection using a 

modelling and simulation approach. This phase included the following steps: 

Case Studies  

Different high-rise office buildings were selected in the study area as case studies to inform 

the prototype physics (design factors) of the modelling and simulation stage. The 

architectural drawings were collected and analysed for all the selected cases numerically to 
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define the existing typical office building and the design characteristics of high-rise office 

buildings. Thus, the developed prototype could be representative of a real case study of an 

office building.   

Data Collection using Modelling and Simulation 

The data collection used a simulation approach, which involved two main activities: (1) 

development of a comprehensive framework for evaluating the performance of AFs during 

the early stages of the design, and (2) generation of a synthetic database of hourly cooling 

loads of AFs and hourly solar radiation to develop the ML surrogate models due to the 

absence of real data. To achieve this, the study conducted the simulations using an 

algorithmic workflow that links between different plug-in tools in the computational design 

tool (Grasshopper) to facilitate the parametric generation and simulation of adaptive 

systems. Ladybug and Honeybee plug-ins were used, which were linked to EnergyPlus and 

Radiance to calculate energy loads and solar radiation. In addition, these tools were linked to 

EnergyPlus with its built-in tool, Energy Management System (EMS) to program a code to 

actuate the AF system hourly based on indoor and outdoor environmental conditions.  

Phase 3: Data Analysis 

The data analysis was the third phase of the research to analyse the simulation results and 

compare the different external shading systems. This phase evaluated the engineering 

parameters, such as exterior wall and glazing types in terms of cooling loads and solar heat 

gain. Moreover, external shading system and adaptive systems were compared in terms of 

cooling load reduction and solar heat gain reduction. This phase also compared the different 

environmental control scenarios of AFs in terms of cooling and lighting loads in relation to 

different parameters, such as office orientation, building contexts, and shading state hourly 

variations. 

Phase 4: Development of Machine Learning (ML) Surrogate Models  

This phase aimed to develop an ML surrogate model that can predict the performance of AFs 

in the early stages of the design. This phase included the processing and translation of the 

collected database generated using simulation in phase (2) to develop the ML surrogate 

models. The collected hourly cooling loads (HCL) database and hourly solar radiation (HSR) 

database were used to construct, train, and validate different ML algorithms, artificial neural 

networks (ANN), and random forest (RF). To develop the surrogate models, three major 
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steps were carried out: data pre-processing, model training, testing, hyper-parameter 

optimization, and model validation. 

Phase 5: Incorporation of the Surrogate Models within a Computational Design Tool, and 

Validation of the Results.   

This phase sought to develop a framework of the trained surrogate models within the 

Grasshopper interface to predict the cooling loads of AFs and to assist with the decision 

making for design. This phase also evaluated the developed surrogate models in terms of 

prediction accuracy, time efficiency, and their generalisation prediction capability. The 

results of the models were compared with simulation results to validate the models. In 

addition, in this phase, the surrogate model was tested in terms of its applicability in 

predicting other similar hot-climate cities. 

1.6. Structure of the Following Chapters 

The research is arranged into eight chapters, starting with this introductory chapter (Chapter 

One) as shown in Figure (1.13) and (Figure 1.14). The content of each chapter is presented 

below: 

Chapter Two: Literature Review: This chapter is divided into three parts. Part (A) presents a 

general overview of the design of AFs, their history, similar terms used by scholars, and the 

performance classifications of AFs. It also presents the current studies of AFs, and their 

influences on buildings' energy consumption. Part (B) presents a discussion of current 

studies to provide an overview of what has been published in the field of AFs and their 

performance evaluation. It also explores the challenges and difficulties designers face in 

predicting the performance of an AF shading system using the existing BPS tools. Part (C) 

reviews the studies that employed ML techniques to predict the energy performance. It also 

presents the fundamentals and steps employed to develop surrogate models. 

Chapter Three: Research Design and Methodology: This chapter starts by presenting 

different theoretical paradigms and research approaches. It also provides a comprehensive 

description of the selected research methodology, and the different phases, methods, and 

techniques that are adopted to answer the research questions. 

Chapter Four: Synthetic Database Generation using Simulation Approach: This chapter is 

divided into two parts: Part (A) analyses the collected case studies for the extraction of the 

design characteristics of high-rise office buildings. Part (B) presents the modelling and 

simulation framework conducted to simulate the energy performance of AFs. The 

framework integrates the automatic control system to actuate the AFs based on different 



CHAPTER 1: INTRODUCTION AND OVERVIEW 

20 

environmental control scenarios. Moreover, it presents the collected synthetic database of 

the hourly solar radiation, the hourly shade factor, and the hourly cooling loads of AFs. 

Chapter Five: Simulation Results: This chapter analyses the results of the simulations 

presented in (Chapter Four). In addition, this chapter evaluates the engineering parameters 

of the building envelope, different external fixed and adaptive shading systems, and 

different automatic control scenarios of AFs. The results were evaluated in terms of cooling 

loads and solar heat gain. 

Chapter Six: Development of Surrogate Models for Adaptive Façades in the Early Stages of 

the Design: This chapter include two parts: Part (A) presents the development of ANN and 

RF surrogate models to predict the hourly solar radiation in the early design stages. Part (B) 

presents the development of ANN and RF surrogate models to predict the energy 

performance (hourly cooling loads) of AFs in early design stages. Moreover, this chapter 

presents the data pre-processing, model training, testing, hyper-parameter optimisation, 

and model validation for both ANN and RF models. It also makes a comparison between ANN 

and RF surrogate models in terms of prediction accuracy. Lastly, it examines the time series 

nature of the data using different time series modelling approaches. 

Chapter Seven: Deployment of the Developed Surrogates Models: This chapter presents 

the results obtained from the developed surrogate model and compares them with the 

simulation results. In addition, it evaluates the surrogate models in terms of prediction 

accuracy, time efficiency, and its generalisation prediction capability. It also presents the 

workflow to predict the hourly cooling loads of AFs within a computational design tool. 

Chapter Eight: Discussion and Conclusion: This chapter discusses the research findings from 

the previous chapters. In addition, it summarises the achieved research objectives, the 

contributions to the body of knowledge, the limitations, the recommendations, and the 

suggestions for future research. 
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Figure 1.13: Structure of the thesis.  
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Figure 1.14: Detailed structure of the thesis. 
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1.7. Chapter Summary  

This chapter has provided an overview introduction and a general background of the 

research. It described the problem of the study and the justifications for this investigation, 

the research aims and objectives, and the research questions, and gave an overview of the 

adopted methodology. It concluded by presenting a summary of the outline of the thesis. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

This chapter presents a detailed examination of adaptive façade (AF) shading systems 

through a comprehensive literature review. It also reviews the effect of AFs on energy 

savings and on the performance evaluation process. This chapter also presents the existing 

AF studies and looks at different factors including the AF system type, the adaptability of the 

system, the performance, and the influences of AFs on buildings' energy consumption. In 

addition, it presents the challenges and difficulties designers face in predicting the 

performance of an AF shading system using the current BPS tools. Lastly, the chapter 

reviews machine learning (ML) techniques and their potential use for building performance 

predictions. It also discusses the relevant studies that employed ANN and DT approaches. 

Part (A) Adaptive Building Envelope 

2.2. Static to Adaptive Façade – Overview  

The advances in architectural envelopes have changed the design approach from static and 

conventional envelopes to adaptive and responsive ones that aim to improve the 

performance of the building. Traditionally, conventional control systems are mainly installed 

on windows and doors, using inexpensive and easy-to-operate manual shading or shading 

devices, such as louvres, blinds, and sunshades. These shading devices are installed to 

control solar gain and prevent heat loss (Leatherbarrow and Mostafavi 2005). However, in 

this approach, the building envelope acts not as a barrier but as a medium (López et al. 

2017). Therefore, the static conventional approach in the design of façades is not the 

optimum solution to adapt to the changing climatic conditions (Armstrong 2012). Thus, the 

recent emerging adaptive architectural envelope can replace the conventional approach due 

to its capability of responding to different environmental conditions and of providing 

buildings that perform well. 

The development of more adaptive building envelopes has received growing attention from 

both researchers and practitioners in recent years (Ritter 2007; Schumacher et al. 2010; 

Johnsen and Winther 2015; Tabadkani et al. 2018; Tabadkani et al. 2019a). These external 

adaptive envelopes have shown immense potential in improving building energy 

performance and can play a new role in high performance building design in general. Loonen 

et al. (2013) defined an AF as a climate adaptive building shell (CABS), which has the ability 

to change its features or configuration over time in response to changing weather conditions 
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and comfort preferences (Loonen et al. 2013). The authors presented an overview and 

analysis of CABS in terms of their design, research, and development. The review looked at 

44 CABS case studies and highlighted the motivations of CABS applications, their 

technologies, and their characteristic features. The research suggested that the concept of 

CABS is not yet mature because of the lack of literature regarding post-occupancy 

evaluations and operational performance (Loonen et al. 2013). 

Similarly, Aelenei et al. (2016) aimed to categorise AFs according to three main groups: 

materials, components, and systems. The study conducted a simple data analysis of some 

existing adaptive building envelopes, assessing the external factors associated with the need 

for AFs. The analysis examined 130 case studies of existing adaptive building envelopes, 

which revealed interesting findings regarding the need to apply AFs in buildings. The study 

looked at all the external factors (solar radiation, outdoor temperature and humidity, wind 

and precipitation, and noise) that influence human comfort needs. The authors found that 

the most common external factors associated with AFs are solar radiation and temperature. 

These two factors are known to be most influential on thermal and visual comfort and on 

energy performance (Aelenei et al. 2016). In another study, Velasco et al. (2015) presented 

an overview of the current state of computationally controlled dynamic façades and an 

analysis of the most contemporary projects that have applied dynamic systems. The study 

considered two main factors, namely, movement and control for the classification of high-

performance kinetic façades. The authors classified the movement of the analysed case 

studies into two main groups: (1) mechanical based, which includes rotation, translation, 

and hybrid modes, and (2) material-deformation based, which includes the factors that may 

cause deformation (temperature, humidity, or electricity). The control factor divided the 

case studies into local and central (Velasco et al. 2015). 

Nguyen and Aiello (2013) promoted the application of adaptable buildings to optimise 

energy consumption, while Ghaffarianhoseini et al. (2016) concluded that intelligent façades 

can contribute to reducing energy and responding to indoor and outdoor environments. Pan 

and Jeng (2010) highlighted the importance of AFs and explained that buildings with 

interactive systems use less energy and offer better space flexibility.  

Recently, Loonen (2018) discerned that development of the new AF systems is taking two 

main directions: (1) kinetic components with actuation based on mechanical systems, and 

(2) responsive smart materials with the capability of changing their physical behaviour 

according to the climatic conditions (Loonen 2018). This also includes the biomimetic design 

approach, where design and elastic materials are integrated together for the development 
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of new AFs, such as the bio-inspired kinetic GFRP façade for the thematic pavilion of EXPO 

2012 in Yeosu. The advancement of materials in science laboratories has helped in the 

application of scalable solutions with this second direction (Bastiaansen et al. 2013; Loonen 

et al. 2014). 

Giovannini et al. (2015) developed the Shape Variable Mashrabiya (SVM) shading system for 

an office building in Abu Dhabi. The authors applied the shading in two different orientations 

- east and west façade - to analyse the effect of the SVM shading system on reducing the 

annual energy demand. Several scenarios were performed to determine the most effective 

configurations utilising DIVA-for-Rhino and EnergyPlus. Sun angles were used to control the 

movement of the perforated shields. The results revealed the immense potential of an AF 

shading system on both daylighting and energy saving. When compared to a reflective 

glazed non-shaded façade, the system reduced the total energy consumption by up to 27% 

while reducing the cooling demand by 17.2% when compared to a low-E double-glazed 

façade with adjustable Venetian blinds. 

A recent study by Bui et al. (2020) proposed a computational optimisation method to 

minimise the energy consumption of buildings based on the AF design that can adapt to the 

dynamic variation of outdoor climatic conditions. Two case studies were designed, namely, a 

typical single office room and a medium-sized office building, to validate their approach. 

Researchers utilised three different software programs for energy evaluation: EnergyPlus; 

Eppy as a Python toolkit; and a modified firefly algorithm as an optimisation tool. Their 

results concluded that an AF system can reduce energy consumption in the first and second 

cases by 14.9–29.0% and 14.2–22.3% respectively when compared to static façades. 

Another study by Shi et al. (2020) investigated the effect of different motions of AF on 

energy and daylight performance. A parametric simulation approach was implemented to 

optimise the AF in a closed office room located on the middle floor (50 m) of a high-rise 

tower. A total of 75 cases were evaluated and compared to determine the optimum cases 

for balance between energy and daylighting. Based on the results, it was found that the 

implementation of AF can reduce energy consumption by 14–24% compared to the base 

case model (Shi et al. 2020).  

From the literature, it is clear that AF systems have a significant impact on the total energy 

consumption of buildings. In addition, we noticed that predicting the energy performance of 

buildings with an AF system in the early stages of the design is highly complex, and 

challenging. 
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2.2.1. Adaptive Façade History   

A variety of AF systems have emerged gradually over the last 50 years. The history of kinetic 

or adaptive design can be classified into seven periods, beginning with early concepts and 

sketches, and concluding with today’s high-tech AF systems. The timeline depicted in Figure 

(2.1) corresponds to the chronological order of each period, which will be discussed in detail 

in this section. One of the earliest examples of kinetic architecture was designed as sketches 

by Thomas Gaynor in 1908 for an unbuilt Rotary villa (Nashaat and Waseef 2018). Then, in 

1916, Le Corbusier developed the 'le Mur neutralisant', using stone and glass in a circuit of 

two membranes to maintain the temperature in Moscow at 18 degrees (Nady 2017). 

The “active” or “adaptive” design approach started to emerge in 1930, when Le Corbusier 

introduced a concept design of the universal house for all climates: “Only one house for all 

countries, the house of exact breathing”. However, this design proposal was not built as a 

real project because at that time, the technology to do so was lacking, which restricted the 

implementation of such a futuristic idea (López et al. 2017). Following that, in 1935, Angelo 

Invernizzi constructed Villa Girasole, a dynamic villa that revolved along three circular rails 

and followed the sun's path allowing the house to be completely revolving (Nashaat and 

Waseef 2018). In 1960, Yona Friedman challenged architects' ability to control the life of 

their building's occupants and presented a town plan in which a town could be constructed 

with adaptable architecture, allowing residents to adapt their spaces according to their 

requirements. 

Later, in Expo Montreal 1967, Richard Fuller implemented a dynamic skin for the façade of 

the US Pavilion. The skin was made of translucent acrylic sheets and a steel structure and 

was controlled by computer, aiming to create a comfortable environment for visitors 

(Sharaidin et al. 2012). Then, in 1970, William and Clark described kinetic architecture as “a 

field of architecture in which building components or whole buildings have the capability of 

adapting to change through kinetics in reversible, deformable, incremental and mobile 

modes” (William and Clark 1970). In the book, “Kinetic architecture” a number of subjects 

were discussed including systemic knowledge and the fundamentals of kinetic architecture, 

as well as active control devices. Next, in 1975, Negroponte (1975) introduced the 

‘responsive environment’ as a concept that is capable of playing an active role. Next, Mike 

Davies proposed “the polyvalent wall”, an envelope system that consists of one layer that 

controls several functions (Davies 1981). Later, in 1987, a major revolution in kinetic 

architecture was introduced by Jean Nouvel “the Arab Institute in Paris” in 1987, which is 
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considered one of the first and best-known examples of a building to implement an active 

façade system using a mechanical control system.  

The twenty-first century marked a major turning point in the evolution of kinetic 

architecture. For example, in 2011, Brisbane Airport's parking garage installed a dynamic 

wall comprising 250,000 wind-sensitive metal panels. Additionally, the Mercedes-Benz 

stadium in Atlanta features a unique retractable roof that opens diagonally like a camera 

aperture (Park 2016). Another well-known example of an AF system is the Al Bahar tower in 

Abu Dhabi, where a reinterpretation of Arabic-Islamic patterns was performed using 

actuator-controlled triangular panels that open and close in reaction to the sun's movement. 

In addition, there are other well-known examples of AF systems, such as switchable glazing 

(Ruben et al. 2010), dynamic insulation (Kimber et al. 2014) or façade systems with phase-

change materials (Favoino et al. 2014a). Nevertheless, the number of AFs applied in 

buildings is still limited (Loonen et al. 2013).  

 

Figure 2.1: Timeline of kinetic architecture's history (Nashaat and Waseef 2018). 

2.2.2. Adaptive Façade Definition 

There are multiple definitions in the literature that describe the adaptive building envelope, 

such as climate adaptive building shell (CABS) by Loonen (2010) and de Boer et al. (2011), 

acclimated kinetic envelope (AKE) by Wang et al. (2012), adaptive skin by Hasselaar (2006), 

intelligent skin by Wigginton and Harris (2002), or adaptive building skins by Grosso and 

Basso (2013). All of these terms have been defined and compared in Fiorito et al. (2016) 

work “Shape morphing solar shadings: A review” (2015). AFs are “building envelopes that 

are able to adapt to changing boundary conditions in the form of short-term weather 

fluctuations, diurnal cycles, or seasonal patterns. Such façades have the ability to respond 

to, or benefit from, changes in outside climatic conditions and dynamic occupant 

requirements” (Attia et al. 2018). 
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Loonen et al. (2015) stated,  

“Adaptive façades consist of multifunctional highly adaptive systems, where the 

physical separator between the interior and exterior environment is able to change 

its functions, features or behaviour over time in response to transient performance 

requirements and boundary conditions, with the aim of improving the overall 

building performance. (Loonen et al. 2015)”. 

Moreover, these adaptive envelope systems have the advantage of saving energy by 

adapting to prevailing environmental conditions and assisting human level comfort internally 

by responding to people’s needs and preferences (Loonen et al. 2013). 

Tabadkani et al. (2021b) reviewed several terms of AFs found in the literature, indicating 

that scientific research on AFs is progressing toward creative design solutions through the 

integration of mechanical and automated actuators, materials, and information technology 

systems. As Tabadkani et al. (2021) stated, numerous scholars utilise similar terminology for 

AFs, such as "dynamic," "active," "kinetic," "intelligent," "switchable," "responsive," 

"interactive," "movable," "smart," "biomimetic," and "plant-inspired", which causes 

confusion in the field of building façades. As a result, it is difficult to categorise existing types 

of AFs because each kind may overlap with another group.  

2.2.3. Adaptive Façades Terminologies  

2.2.3.1. Active Façades 

Active façade technology incorporates active features rather than complex electronics, 

allowing envelopes to self-adjust in reaction to internal and exterior conditions, providing 

comfort while conserving energy without requiring human interaction. In this type of 

system, the goal does not involve controlling the interior environment. An example of an 

active façade system is the façade of the Children's Museum of Pittsburgh; it is a façade that 

responds to wind vibration, creating a dynamic visual effect that changes the feel of the 

indoor areas of the building Figure (2.2, left). Another example of an active façade is the ICT-

Media building, which features air cushions made of ethylene tetrafluoroethylene (ETFE) 

that respond by inflating or deflating to block up to 85% of UV rays and heat, hence 

contributing to the reduction of building energy use Figure (2.2, right) (Tabadkani et al. 

2021a).  
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Figure 2.2:  Examples of active façades the Children's Museum of Pittsburgh (left), and the ICT-Media 
building (right). 

2.2.3.2. Biomimetic or Bio-Inspired Façades 

The term “bio-inspired façade” implies a type of AF where biomimetic approaches are 

followed in the design generation process. Both building envelopes and organisms share the 

similar function of withstanding external environmental challenges. The terms “biomimicry” 

and “biomimetics” originally came from the Greek words “bios”, meaning “life”, and 

“mimesis”, meaning “to imitate” (López et al. 2017). Julian Vincent defined it as “the 

abstraction of good design from nature” (Vincent 2009). In biomimetics, solutions are 

derived through mimicking principles found in nature, their mechanisms, and their 

strategies. There are different approaches and classifications to implementing the strategies 

found in nature to the design of adaptive building envelopes. However, in general, 

researchers and practitioners have two main approaches to biomimetic design: a top-down 

approach (Speck et al. 2006), or a challenge to biology (Baumeister 2012), and a bottom-up 

approach (Speck et al. 2006), or biology to design (Baumeister 2012).  In their work, 

Badarnah and Kadri (2015) indicated that the first approach seeks a specific solution found 

in nature for a particular issue. On the other hand, Vattam et al. (2009) called it a problem-

based direct approach, where in the initial process, a design problem or human needs are 

identified in order to find an answer through looking at other organisms or ecosystems that 

have solved a similar problem (Vattam et al. 2009). This approach is more commonly used by 

designers because it is a more direct method (ElDin et al. 2016). El Ahmar (2011) stated that 

designers using this approach could obtain potential design solutions from nature without 

the need to understand the scientific side of it or even for collaboration with biologists or 

ecologists. Schleicher et al. (2011) and Badarnah (2017) implemented the problem-driven 
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approach in their work to seek a particular solution in nature for the design of an adaptive 

building envelope Figure (2.3, left).  

The second approach is the bottom-up or solution-based approach (Vattam et al. 2007). In 

this approach, the overall observation of behaviour, function, and other characteristics in 

nature is translated into the design and products (Aziz and El Sheriff 2016). Therefore, this 

direction relies on having previous scientific knowledge and understanding of biological 

research rather than of human design issues. An example that applied the solution-based 

approach is the BIQ House in Germany Figure (2.3, right). 

  

Figure 2.3: Examples of bio-mimetic façades, One Ocean Thematic Pavilion (left), and the BIQ House in 
Germany (right). 

2.2.3.3. Passive Façades  

Passive AFs are those equipped with technology systems that do not require power, 

controls, or maintenance, and can even be considered self-maintaining. These types of 

façades are formed from a range of passive architectural design solutions whose primary 

purpose is to respond to climatic variations acting as a weather-protective layer on the 

exterior of a structure, hence improving the building's overall comfort level. This means that 

instead of using intelligent components, passive façades are the result of several 'passive 

design methods,' with their thermophysical properties defined by operational procedures, 

such as window-opening schedules. The most common examples of passive façades are as 

follows: double-skin façades, wood-based responsive building skins, opaque ventilated 

façades, glass surfaces with silk, light-directing systems, and Trombe walls. Numerous 

examples of passive façades exist in practice, such as the passive façade design in the 

Energybase building, with its stepped façade that serves as both a solar generator and a 

sunshield Figure (2.4) (Tabadkani et al. 2021a). 
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Figure 2.4: Example of passive façade, the Energybase building. 

2.2.3.4. Kinetic Façades 

The field of kinetics focuses on the relationship between motion and its underlying causes, 

particularly the laws of motion controlling forces and masses (Lienhard 2015). When 

designing kinetic façade envelopes, complex mechanical systems are employed to operate 

the components in a variety of motions, such as sliding, expanding, folding, or reshaping, to 

ensure the system's changing geometry and mobility (Loonen et al. 2010). In general, these 

envelopes have to be adaptable to a wide variety of boundary conditions, such as 

temperature, location, and functional needs. To maintain the kinematic, an actuation force 

is required to generate the movement. Numerous examples have been developed using this 

approach, including the Helio Trace, a hypothetical prototype window by SOM in which the 

perforated aluminium surfaces operate in two distinct layers in response to the sun's 

movement throughout the day. Four vertical triangular folding shade surfaces cover each 

window. The Q1 Headquarters Building in Germany is another example of a kinetic 

envelope; the system functions as a sunshade device composed of 400,000 triangular, 

square, and trapezoid-shaped metal pieces. All these elements operate automatically with 

the assistance of 1,280 electric motors to open and close the sunscreen, effectively blocking 

off glare and heat gain (Böke et al. 2020) Figure (2.5, left). A further example is Al-Baher 

Towers, which applied 1,049 hexagonal panels creating a folding and unfolding movement in 

response to the outdoor conditions and regulating daylight and glare in the interior 

environment. The kinetic elements are programmed to change into three states: completely 
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closed, mid-open, and fully open (Ahmed et al. 2016a) Figure (2.5, right). All kinetic façades 

share a common feature, specifically, their ability to respond to external environmental 

stimuli, which is a driving force for their conversion to responsive façades (Tabadkani et al. 

2021a).  

 

Figure 2.5: Example of kinetic façades, Al-Baher Towers. 

2.2.3.5. Intelligent Façades 

Intelligent façades integrate two components into their system: human control and 

automation. This enables them to react dynamically to environmental conditions by 

optimising their usage patterns independently or cumulatively using predictive models with 

limited user interaction. The three fundamental functions of intelligent systems have been 

recognised as perception, reasoning, and action, which have the capability of learning and 

responding in time (Romano et al. 2018). According to Wigginton and Harris (2002), an 

intelligent façade should be able to self-adjust via a process called 'instinctive autonomic 

adjustment' (Wigginton and Harris 2002), thereby optimising the building's systems in terms 

of temperature, energy balance, and human comfort, and frequently through the use of 

predictive models. As an example, two intelligence parameters contribute to the 

improvement of comfort in the GSW Headquarters building in Germany: natural ventilation 

provided by a thermal flue within the Double Skin Facade (DSF) and automatic ventilation 

management with manual override via a wall-mounted zone controller. It features double-

skin-coloured panels on the west façade of the building that create a cavity assisting in the 

control of solar heat gain and natural lighting Figure (2.6). 
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Figure 2.6: Example of an intelligent façade, the GSW Headquarters building in Germany.  

2.2.3.6. Interactive Façades 

The term interactive is more frequently used regarding computer-enabled artworks, 

installations, and other situations that allow active public participation than it is in reference 

to building envelopes. Interactive façades can be constructed with sensors, microprocessors, 

or building management systems and require human engagement to initiate a response. 

However, despite the existence of adaptive elements within the building, these types of 

façades do not have the potential to influence internal comfort (Haeusler 2009). GreenPix 

has an interactive media wall which comprises 2,292 RGB LED light dots as a monitor screen 

and is used to display dynamic content. The building's skin communicates with the interior 

spaces and the external public space through custom software, turning the façade into an 

interactive entertainment and engagement experience Figure (2.7). 

 

Figure 2.7: Example of interactive façade, the GreenPix building. 
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2.2.3.7. Movable Façades 

Using movable systems, moveable façades incorporate technological systems that can 

respond rapidly to changing environmental circumstances and location via movable systems, 

such as detecting the position of the sun to provide renewable energy. Thus, this typology's 

objectives include the regulation of the indoor environment, the enhancement of user 

comfort, and the reduction of energy use in new or existing structures (Schumacher et al. 

2010). There are several examples of photovoltaics (PVs) being installed on building façades. 

An example of a massive-scale installation is the EWE Arena in Hamburg, Germany; the 

structure comprises 200m2 PV panels that can be rotated 200 degrees around the perimeter 

of the envelope, generating approximately 27MWh each year Figure (2.8). 

 

Figure 2.8:   Example of movable façade, the EWE Arena in Hamburg.  

2.2.3.8. Smart Façades 

The term smart has been most frequently used in relation to materials and surfaces in the 

design disciplines. For a system to be considered as "smart," it must incorporate 

technological capabilities, be responsive to specific environmental conditions, and operate 

through changes in internal physical properties or external exchanges. Additionally, smart 

systems can be used efficiently in conjunction with other types of façades, such as 

responsive or intelligent façades, due to their inherent settings (Tabadkani et al. 2021a). In 

addition to Aerogel, a synthetic low-density translucent material used in window glazing, 

phase-changing materials such as micro-encapsulated wax, salt hydrates, thermochromic 

polymer films, and building integrated PVs are all examples of smart materials utilised in 

high-performance building skins to achieve greater energy efficiency and comfort in 

buildings (Addington and Schodek 2005). In terms of application, the Bloom Project is an 

example of a smart responsive system. It utilises thermo-bimetal shape memory alloys that 
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expand and contract in response to both temperature variations and direct solar radiation to 

manage daylight, provide air ventilation and act as a sun shading system Figure (2.9). 

 

Figure 2.9: Example of smart façade, the Bloom Project.  

2.2.3.9. Responsive Façades 

The primary purpose of a responsive façade is to adapt to both human needs and 

environmental changes. As with kinetic or intelligent façades, responsive systems are 

characterised by sensors, actuators, and controlling devices that enable the façade's 

configuration to be changed based on a programmed performance, but the key difference 

between the two is the responsive system's ability to respond to user input (Tabadkani et al. 

2021a). As a result, responsive façades are restricted to those that require a user action to 

perform an activity in order to respond by modifying the material properties or mechanical 

behaviour of the building envelope (Tabadkani et al. 2021a). The Kiefer Technic Showroom is 

an example of a responsive façade that allows for user engagement. This responsive façade, 

which is composed of perforated aluminium panels that are controlled centrally by light 

sensors, enhances the indoor climate based on outside circumstances while also allowing 

users to override the automatic control as necessary Figure (2.10). 

 

Figure 2.10: Example of a responsive façade, the Kiefer Technic Showroom. 
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2.2.3.10. Switchable Façades 

A switchable façade is a transparent façade that is composed of 'smart adaptive materials' 

and can change the energy and light flow. Control can be either active or passive, depending 

on whether the control is responding to building automation and occupant inputs or to 

inputs from the local environment. Electrochromic or thermochromic glazing systems that 

can be switched between transparent and opaque states using smart materials such as 

Phase Change Memory (PCM) are a common example of such façades (Sadek and Mahrous 

2018) 

Based on the examined cases, the façade typologies may overlap, and a given example may 

relate to more than one type as shown in Figure (2.11). For instance, a switchable façade can 

be a part of a smart façade since it uses smart materials, and it can be a part of a moveable 

façade that uses kinetic properties to generate energy. In addition, interactive façades 

permit input from the user, but only as an encouragement for physical changes and not to 

control their comfort (Tabadkani et al. 2021a). Consequently, the classification of an AF into 

one of the abovementioned typologies is feasible only on a case-by-case basis, taking into 

account the AF adaptation mechanism, its environmental condition, and the user 

interaction. This classification enhanced clarity regarding AF terminologies, allowing 

researchers to categorise their proposed prototype according to a particular category of AFs. 

 



CHAPTER 2: LITERATURE REVIEW 

39 

 

Figure 2.11: Relations between the various types of AFs (adapted from Tabadkani et al. (2021).  
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2.3. Classification of Adaptive Façades 

Several researchers in the field of AFs have helped to classify AFs into sub-groups with 

shared characteristics. In addition, many review papers have been published on the different 

categories of AFs, such as adaptive glazing, phase-change materials, solar façades, and 

daylighting systems (Loonen et al. 2015). In the work carried out by the scientific plan of 

COST Action TU 1403, researchers looked at the complexity of AF systems and the multiple 

variables that affect the performance of building envelopes. Then, they categorised AFs in 

terms of technologies and purpose, as seen in Figure (2.12) (Aelenei et al. 2016). The first 

column represents the purpose of the AF, which is to achieve thermal comfort, energy 

performance, indoor air quality (IAQ), and visual and acoustic performance. The 

classifications approach to AFs helps in detecting patterns, defining unexplored ideas, and 

increasing the knowledge of this multidisciplinary field (Attia et al. 2015). In their work on AF 

networks (COST Action), they classified the case studies of AFs into three main groups: 

façade systems, materials, and components.   

 

Figure 2.12:  Adaptive façade in terms of technologies and purpose (adapted from Aelenei et al. 2016). 

According to the study "Design for façade adaptability: Towards a unified and systematic 

characterization," three stages were considered to form a coherent and systematic 

performance classification system for AFs: The first stage is related to the collection of 

ambient data such as interior and exterior climate conditions and occupancy patterns, while 

the second phase determines the controlling strategies using computational tools. Choosing 

an effective control system for the AF system is critical for the building's overall performance 

and operation. Control systems can be subdivided into two types in practice: extrinsic 

control systems and intrinsic control systems. The final stage is related to physical domains, 
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responsive time scales, adaptation scales, and spatial scales (Loonen et al. 2015). The 

following sections discuss both stage two and stage three in more detail. 

2.3.1. Physical Domains  

There are four primary physical interactions between the building envelope and the 

surrounding environment (thermal, optical, airflow, and electrical), which allow for a variety 

of reaction activities, such as preventing, rejecting, modulating, collecting, and admitting. In 

the domain of adaptable building skin systems, each system responds and interacts in a 

distinct way, depending on the adaptiveness objective of the system (Loonen et al. 2017). 

Figure (2.13) shows the various intersections among the four domains, representing all 

possible combinations of physical interactions between adaptive systems and the climate. 

With regard to the thermal domain, adaptation alters the energy balance of the building 

through conduction, convection, radiation, and thermal energy storage, while in the case of 

the optical domain, adaptive behaviour has an impact on the visual experience of the 

building's occupants by altering the transparency surfaces of the building skins. For the 

airflow domain, the adaptive behaviour of the façade is affected by the direction and speed 

of the wind. 

 

Figure 2.13: All possible physical overlappings related to building envelopes. 

2.3.2. Responsive Time Scale 

Throughout a building's life cycle, it is vulnerable to a wide range of environmental 

influences that frequently occur at a variety of time scales, ranging from seconds to the 

entire life of the building; however, the rate of adaptation is dependent on the technology 

utilised or the designer's preference. As a result, Loonen et al. (2013) divided the time scale 
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of an adaptable envelope into four distinct time scales: minutes, hours, diurnal, and seasonal 

time scales (Loonen et al. 2013). 

a. Seconds: The smallest fluctuations that occur frequently in nature, such as sudden 

shifts of wind direction and speed as well as an interactive façade that responds to 

the needs of its users in short time intervals. 

b. Minutes: Some of the factors that represent this time constraint are daylight 

availability and cloud cover; both variations are measured in minutes. Most thermo-

optical adaptive skins change their transparency on a minute-by-minute basis. 

c. Hours: The sun's angular motion in the sky is an ongoing process that occurs 

throughout the day. However, AFs that follow the path of the sun frequently adapt 

on an hourly basis. In addition, variances in air temperature, both interior and 

exterior, and solar radiation can suitably be discretised in hourly values, which are 

classified in this category. 

d. Diurnal: The building's occupants typically follow daily 'working hours’, so AFs can 

take advantage of this by exploiting this regular 24-hour pattern. 

e. Seasonal: The adaptive envelope adjusts in this case to the seasonal variations 

(winter, spring, summer, and autumn), which impose widely varying boundary 

conditions. 

2.3.3. Scales of Adaptation 

According to Loonen et al. (2013), the scale of adaptation can be modified at either the 

macro or micro scales, depending on whether the adaptation mechanism is based on the 

configuration of the adaptable skin or on changes in material properties, although a mix of 

the two classes is also possible. The following section discusses both scales in greater detail.  

a. Macro scale: In the case of the macro scale, the adaptation is achieved through 

changes in the configuration of the façade at the macro level, and the motion and 

transformation of its components can be easily observed, such as folding, 

expanding, sliding, rolling, rotating, stretching, and inflating. This category includes 

'kinetic', 'active',' movable', 'responsive', and 'biomimetic' façades, which are all 

examples of façades that modify their configuration on a macro level. Typically, 

these forms of adaptable envelopes are referred to as 'kinetic envelopes,' implying 

the presence of some form of observer motion. The macro-level concept can come 

with different forms and transformation patterns, such as the mechanically 

operated Venetian blinds or the folding and unfolding panels of Al Bahar Tower 

(Oborn 2013). 
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b. Micro scale: This form of adaptation occurs as a result of changes to the material's 

internal structure. When a material transitions between phases, such as from liquid 

to solid or from gas to liquid, the arrangement or structure of its molecules 

changes; as a result, the material's properties change, and the material behaves 

differently. Adaptability is demonstrated in this context by changes in the 

thermophysical properties or opaque optical features, as well as through the energy 

exchange across forms, all of which are commonly found in 'switchable', 'media', 

and 'smart' façades (Al-Masrani and Al-Obaidi 2019).  

2.3.4. External Factors  

Building envelopes are exposed to different external factors that are highly dynamic and 

change continuously throughout the day and season, which can influence humans’ comfort 

levels. Aelenei et al. (2016) examined six external factors that may have a significant 

influence on occupants. The study focused its analysis only on the need for adaptability 

driven by external factors because of the complexity of adaptability needs in buildings. The 

authors considered the following external factors for the analysis: solar radiation, outdoor 

temperature, wind, humidity, precipitation, and noise. The purpose of an AF is to respond to 

these external factors and provide occupants with an acceptable internal environment for 

achieving thermal comfort, energy performance, IAQ, acoustic performance, visual 

performance, and durability, as shown in Figure (2.14) (Aelenei et al. 2016). 

 

Figure 2.14: Schematic role of adaptive façade (adapted from Aelenei et al. 2016). 
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2.4. Automatic Control System 

Defining an effective control system is the key factor for achieving a high performance AF 

system (Tabadkani et al. 2021a). Based on the literature, there are two different types of 

control strategies for automated shading systems: (1) intrinsic and (2) extrinsic control 

strategies (Loonen et al. 2013). The adaptive mechanism for both control systems is 

triggered in an automatic way by environmental stimuli, such as solar radiation, relative 

humidity, surface temperature, etc. Intrinsic control is based on internal self-adjustment 

control systems like smart materials (e.g., thermochromic, photochromic, and PCMs), and it 

is actuated based on the variation of its internal energy. This type of control does not allow 

users to interact with the system or to integrate external inputs; therefore, the activation of 

actuators occurs directly without using a feedback loop. It is also known as a ‘direct’, 

‘passive’, or ‘open-loop’ (feedforward) control system, as environmental inputs are 

transformed automatically into actions regardless of whether an external decision-making 

component is used Figure (2.15) (Tabadkani et al. 2020a). An advantage of using intrinsic 

rather than extrinsic control is that the system has low maintenance costs, and it does not 

consume fuel or electricity to change the façade configuration for each state transition.   

 

Figure 2.15: Open-loop control system. 

On the other hand, extrinsic control or active control is based on actuators, sensors, and 

processors (controllers) to operate the AF shading system. This type of control can accept a 

feedback signal through using an external decision-making component, and users can 

interfere with its algorithm Figure (2.16). Therefore, the level of complexity and the 

operation costs are higher than for an intrinsic control system, but the degree of façade 

adaptation is more advanced. This kind of control is also called ‘active’ or ‘closed-loop’ 

control, as the system compares the actual output (action) with the desired state (set-point) 

and uses them as a feedback signal for reducing the variation error (Bishop 1998). The 

structure of a closed-loop system consists of three main elements: sensors, processors 
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(controllers), and actuators. In this research, the terms ‘open-loop’ and ‘closed-loop’ are 

used to avoid using different terms interchangeably. 

 

Figure 2.16: Closed-loop control system.  

Closed-loop is the most advanced system and most suitable control for dynamic operation 

because it has the ability to reject unavoidable external disturbances (Al-Masrani and Al-

Obaidi 2019). Bishop (1998) defined disturbances as any “unwanted input signal that affects 

the output signal”. In the operation stage, all control systems are prone to disturbances, 

which can enter the loop in two main forms: (1) actual data, such as noise and load 

measurement, and (2) virtual data from various resources, such as changing the desired set-

points (Al-Masrani and Al-Obaidi 2019). Consequently, to deal with these unwanted inputs 

that affect the desired output, the adaptation of a feedback control system is the optimum, 

where errors are fixed constantly by the controller. Table (2.1) presents some existing 

studies that implemented an automatic control examining the control system type, the 

control sensors, the activation thresholds, the method used, and the simulation tools. 

2.4.1. Open-Loop Control  

In this control system, the controller is actuated solely by the exterior conditions through 

the installed outdoor sensors with predefined setpoints; therefore, the indoor environment 

does not affect the system performance (Mukherjee et al. 2010). Moreover, Jain and Garg 

stated that this kind of control system does not have the sensitivity to change based on user 

preferences or indoor conditions since the feedback loop is absent, but it can utilise a 

network of internal sensors to share information (Jain and Garg 2018). The most common 
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example of an open-loop control system found in the literature is the cut-off angle for 

blinds, which considers the sun’s position to adjust the angle of the blind based on blocking 

direct sunlight (Tabadkani et al. 2020a). 

Several researchers have implemented an open-loop system to actuate shading systems 

automatically. A study by Bustamante et al. (2017) presented different open-loop control 

strategies for shading devices to simultaneously control solar heat gain to achieve low 

energy usage and visual comfort. In this article, two external shading devices were 

evaluated, namely, perforated louvres and Venetian blinds, in terms of energy consumption, 

spatial daylight autonomy (sDA), and annual sunlight exposure (ASE). The control logic of the 

slat angle is based on the maximum incident solar irradiance on the glazed surface of an 

office space. The authors found that perforated louvres are lower than Venetian blinds in 

terms of saving energy because of the high solar gain and daylighting transmittance that can 

penetrate through the perforations into the indoor space (Bustamante et al. 2017). Another 

study explored the use of roller shades with different solar radiation setpoints (high, 

medium, and low) as a control strategy for automatic shade (open-loop) control coupled 

with automatic dimming lighting control. A private office zone was simulated using different 

climate zones, that is, a cooling-dominated climate and heating-dominated climate, to 

address the energy saving in each zone. They concluded that a high solar control setpoint 

achieved the maximum energy saving in the Houston climate, which is a cooling-dominated 

zone. In addition, the integration of a roller shade control system with electric lighting 

control could save up to 36% in hot zones and up to 11% in cold zones (Wankanapon and 

Mistrick 2011). 

Another study by Touma and Ouahrani (2017) investigated three different scenarios in Qatar 

with Venetian blinds: no control, cut-off control, and both cut-off control and daylighting 

control on both south and north-oriented office rooms. According to the results, adopting 

open-loop control for the third option reduced the total energy by 37.8% and 26.1% 

respectively. Kim et al. (2015) implemented a complex kinetic façade, and the control logic is 

based on the incidence angle of the sun that defined the opening ratio of each panel 

individually with decentralised behaviour. The comparison between the fixed shading and 

the kinetic façade was done in terms of energy consumption. Researchers found that a 

smaller opening ratio consumes less energy; however, daylighting performance was not 

considered. The focus was limited to the difference between the energy consumption and 

the opening ratio without the consideration of daylighting, which will result in an increase in 

the usage of electric lighting. 
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2.4.2. Closed-Loop Control  

Olbina and Hu (2012) implemented feedback (closed-loop split-controlled blinds) to improve 

daylighting and thermal performance in a hot climate zone. In this study, three different 

automatic Venetian blind systems (conventional, split predicted, and split optimum) were 

analysed to identify which of these systems is more effective in accomplishing two 

objectives: energy saving and daylighting performance. The use of split-blinds control 

(predicated and optimum) achieved an energy saving of up to 37% and increased indoor 

illuminance when compared to conventional blinds (Olbina and Hu 2012). 

Evola et al. (2017) aimed to adapt a suitable automatic shading device that would improve 

human comfort and reduce energy needs for cooling while limiting indoor overheating. In 

this article, the researchers evaluated a series of shading-system solutions, such as internal 

venetian blind, external roller blind, and solar control film, for a highly glazed office building 

in Italy. An automatic control system was integrated with a predefined threshold, which 

closes when "solar irradiance on the window surface exceeds 200 W/m2 and the zone air 

temperature is equal to or higher than 26 °C" (Evola et al. 2017). Their results concluded that 

none of the studied shading systems show the same effectiveness. The external roller shade 

and solar film could reduce the indoor temperature significantly when internal temperature 

and solar radiation are combined as setpoint inputs for the control logic (Evola et al. 2017). 
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Table 2.1. Review of some existing studies in relation to automatic control systems 

 
ID 

Study 
Studied 
Location 

Climate 
Shading 

Type 
 

O
ff

ic
e

 T
yp

e
 

Automatic Control Strategy 

Design 
Criteria 

Simulation Tools Approach 

C
o

n
tr

o
l T

yp
e

 

Control 
Sensors 

Activation 
Threshold Action 

1 
(Evola et al. 

2017) 
Italy Hot 

Internal 
Venetian 

blind, external 
roller blind, 

solar control 
film 

S FF 

Global 
irradiance, 
and indoor 

temperature 

>200 [W/m2] 
=> 26 °C 

The shade closes when 
solar radiation is >200 

W/m², and the operative 
temperature is =>26 °C 

Energy, 
daylighting 

 

 
EnergyPlus 

 
Simulation 

2 
(Wankanapon 
and Mistrick 

2011) 

Houston, 
Minneapolis 

Multi 
climate 

Roller shades P FF 
Solar 

radiation 

Low - 95 
W/m2, 

Medium -189 
W/m2 High - 
400 W/m2 

Shades are lowered 
considering different 

incident solar radiation 
setpoints. 

 

Energy 
 

EnergyPlus Simulation 

3 
(Touma and 

Ouahrani 
2017) 

Qatar Hot 
Venetian 

blinds 
S FF 

Solar 
radiation 

>524W/m2 
When solar radiation on 
the surface was higher 

than 524W/m2 
Energy, DGI EnergyPlus 

Simulation, 
experimental 

4 
(Bustamante 
et al. 2017) 

USA, 
Canada, 

Chile 

Multi 
climate 

Exterior 
Venetian 

blinds, 
exterior 

perforated 
louvers 

S FF 
Global 

irradiance 

Between 530 
W/m2 and 
610 W/m2, 

and Between 
290 W/m2 

and 350 
W/m2 

“Threshold varied between 
530 W/m2 and 610 W/m2 
for Venetian blinds and 

varied between 290 W/m2 
and 350 W/m2 for the 

louvres” 

EUI, sDA, 
ASE 

EnergyPlus, Radiance, 
mkSchedule 

Simulation 

5 
(Eltaweel and 

Su 2017b) 
Egypt Hot 

Venetian 
blinds 

P FF  Sun position - - 
Energy, 

daylighting 
EnergyPlus, Honeybee, 

and Ladybug 
Simulation 

7 
(Nielsen et al. 

2011a) 
Denmark Temperate 

Venetian 
blinds 

P F 
Indoor air 

temperature 
>24° 

“Blinds turn to low if 
indoor air temperature is 

over 24° or the glare 
exceeds” 

Energy, 
daylight 

iDbuild Simulation 

8 
(Wienold et 

al. 2011) 
Rome, 

Frankfurt 
Multi 

climate 
Venetian 

blinds 
P F 

Global 
irradiance  

>100 [W/m2] 
>150 [W/m2] 
>200 [W/m2] 

Venetian blind is lowered 
and set to their cut-off 

angle 

Energy, 
daylight 

ESPr Simulation 

9 
(Skarning et 

al. 2017) 
Rome, 

Copenhagen 
Multi 

climate 
Roller shade P F 

Solar 
radiation, 

and outdoor 
temperature 

> 300 W/m2 
> 18 ◦C 

“The shade closes when a 
certain value of 18° C 

outdoor air temperature 
and 300 w/m² solar 
irradiation exceeds” 

Energy, 
daylight 

 
EnergyPlus 

 
Simulation 
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ID 

Study 
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Location 
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Shading 

Type 
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e
 

Automatic Control Strategy 

Design 
Criteria 

Simulation Tools Approach 

C
o

n
tr

o
l T

yp
e

 

Control 
Sensors 

Activation 
Threshold Action 

10 
(Ahmed et al. 

2016b) 
Egypt Hot Folded panels P F 

Indoor 
temperature  

- 
Indoor air temperature 28 

°C 

Thermal 
Energy 

(cooling) 
Grasshopper Experimental 

11 
(Atzeri et al. 

2014) 
Rome Hot Roller shade S FF 

Global 
irradiance 

>150 [W/m2] Roller shade is lowered. 
Energy, 
daylight 

EnergyPlus Simulation 

12 
(Atzeri et al. 

2013) 
Italy Hot 

Exterior 
Venetian 

blinds and 
roller shade 

Exterior 

S FF 
Glare index, 

global 
irradiance 

- - Energy, DGI EnergyPlus Simulation 

13 
(Shen et al. 

2014) 

Baltimore, 
London, 

Abu-Dhabi 

Multi 
climate 

Venetian 
blinds 

S F 

Sun 
position, 

and vertical 
illuminance 

- - 
Energy 

daylight 
EnergyPlus, BCVTB, 

Matlab 
Simulation 

14 
(Atzeri et al. 

2018) 
Italy Hot Roller shades S F 

Solar 
position, 

workplace 
illuminance 

2000 lx - 
Energy 

daylight 
EnergyPlus, 

Matlab 
Simulation 

15 
(Hoffmann et 

al. 2016) 
Burbank, 
Oakland 

Multi 
climate 

Roller shades S FF Glare index 
DGP ≥0.38 or 

DGI ≥24 
- 

Energy 
daylight 

Radiance, EnergyPlus, 
EMS 

Simulation 

16 
(Olbina and 

Hu 2012) 
Florida, USA Hot 

Automated 
blinds 

S F 
Task 

illuminance 
<2000 lx Close the blinds  

Energy 
daylight 

EnergyPlus Simulation 

17 
(Kim et al. 

2015) 
UAE/Abu 

Dhabi 
Hot-arid Origami S FF Sun position - 

“Incidence sun angle 0°– 
90° of a given surface 

drives three states: closed, 
partially and fully open” 

Energy 
(cooling 
loads) 

Dynamo/Revit/eQUEST Simulation 

18 
(Giovannini et 

al. 2015) 
UAE/ Abu 

Dhabi 
Hot-arid SVM P FF Sun position - 

The shading system is 
varied based on sun 

position  

Daylight 
energy 

(lighting 
/cooling) 
Hammad 

DIVA- Grasshopper 
/EnergyPlus 

Simulation 

P: Private office  

S: Shared office  

F: Feed forward control  

FF: Feedback control 
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Part (B) Building Performance Simulation for Adaptive Façades 

2.5. Building Performance Simulation for Adaptive Façades 

The development of AF systems requires evaluation of their benefits and performance 

during the early stages of the design. The AF concept has become the primary focus of many 

recent researchers (Elzeyadi 2017; Hosseini et al. 2019a; Tabadkani et al. 2019; Böke et al. 

2020; Bui et al. 2020; Panya et al. 2020; Shi et al. 2020). Therefore, it is critical to develop an 

effective approach to predicting their performance in the early in the design process and to 

evaluate their applicability, which can be accomplished through building performance 

simulation (BPS), especially when resources such as money and time are limited (Hensen and 

Lamberts 2011). Computer simulation based on mathematical models has demonstrated its 

effectiveness through its capacity to simulate and predict the real-world performance of 

buildings. BPS is a design assistance tool that is commonly used in the field of building 

engineering. It is used, for example, to evaluate a building's overall performance, such as its 

total primary energy consumption and indoor environmental quality, among other things. 

BPS has the potential to contribute to the decarbonisation of the built environment; 

however, simulating the performance of AFs with BPS is challenging.   

Integrating modelling and simulation into the design process enables designers to gain a 

better understanding of the critical relationship between the design and performance 

aspects of adaptive building envelopes, hence, contributing to the increased application of 

AF in the building construction industry (Loonen et al. 2017). BPS is also able to compare 

various materials, systems, and controls quantitatively, as well as performance metrics such 

as primary energy consumption, total cooling loads, comfort or discomfort indices, indoor air 

quality, and whole life value indicators. However, this study focuses on the total cooling 

loads of AF systems in office buildings. 

There is consensus in the literature that evaluating AF performance is often complex due to 

a lack of research and methods and the limited tools available to the designers and 

engineers (Favoino et al. 2016; Loonen et al. 2017). Numerous studies have been carried out 

focusing primarily on the development of AF technologies that are capable of changing only 

their physiological properties in order to quantify their energy and environmental 

performance, such as switchable, thermochromic (TC), and photovoltaic-chromic (PVC) 

glazing systems (Loonen et al. 2014c; Favoino et al. 2016; Sadek and Mahrous 2018; 

Giovannini et al. 2019). On the contrary, limited cases were found in the literature that 
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examine the geometry-changing behaviour of AF that adapts to outdoor climatic conditions 

using computational methods (Kuru 2020). 

2.5.1. Current Research for the BPS tools   

The lack of available tools is a significant factor in limiting the studies on AF performance 

prediction. Loonen et al. (2017) mentioned that a majority of software packages are often 

described as complicated digital modelling and not user-friendly (Loonen et al. 2017). In 

addition, most existing tools lack the capability to simulate AFs within their built-in objects, 

apart from a few software programs that target specific types of technologies, such as TC 

glazing technology. However, these systems experience only physiological changes, making 

it extremely difficult to integrate a variety of variables that change in response to time 

(Sheikh and Asghar 2019). 

When compared to conventional façades, AFs are unique in their ability to adapt to changing 

environmental conditions throughout time. The term "motion" in the context of AFs refers 

to a system that dynamically modifies its properties over time, which is crucial for evaluating 

the performance of AFs. In a static state, only a limited number of configurations can be 

investigated for pre-defined points in time, such as a "compact schedule", which can be used 

to determine the state of the system at various times of the day throughout the course of a 

year. In this case, the program is incapable of determining the optimal system configuration 

based on environmental variables.  

Certain software systems enable the parallel simulation of multiple dynamic states linked to 

environmental variables. For instance, EnergyPlus includes tools for modelling and 

simulating moveable insulation and TC glazing technologies; however, these tools are 

restricted to modelling movable insulation and TC glazing systems. Additionally, this 

software incorporates an Energy Management System (EMS) that enables the use of 'if 

statements' and programmable controls, referred to as customisable objects (Kuru et al. 

2021). With the integration of these features, it is feasible to simulate the dynamic states of 

AFs. However, EnergyPlus is a complicated software package, and modelling geometric 

changes of AFs is a challenging and time-consuming process (Kuru et al. 2021). To address 

the geometric modelling challenge, some researchers have integrated parametric modelling 

tools, such as Grasshopper and Dynamo with EMS add-ons to simulate the geometric 

changes associated with AFs. Nonetheless, there is no straightforward method for designers 

to assess the performance of AFs. 

The simplification approach is one of the methods followed by some researchers, where the 

AF is simulated by dividing the simulation run into different short periods according to time, 
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seasons, weeks, or months, with the application of varied building properties on each 

division (Loonen et al. 2011; Favoino et al. 2014b; Kasinalis et al. 2014). However, this 

approach is limited to façade systems with long adaptation cycles and not to systems where 

the façade varies based on each second, minute, or hour. Moreover, this method does not 

take into account that the end of each simulation should be different from the following 

simulation in terms of the outdoor conditions, such as surface temperature, indoor 

temperature etc. (Loonen et al. 2017). Therefore, physical changes of the system and the 

consideration of time in varying behaviour is necessary in delivering a performed AF system. 

As an example of the physiological changes of adaptive systems, Favoino et al. (2016) 

developed an adaptive `PVC switchable glazing` system, which can modify its material 

properties over time in response to changes in solar irradiance (SI) levels. In addition, the 

researchers conducted multi-objective optimisation, an algorithmic technique for 

determining the optimal option from a pool of variables. The study simulates the energy 

performance of a switchable glazing system in a variety of climates using EnergyPlus and its 

integrated EMS tool to model the changing physiological behaviour of the switchable 

glazing.  

2.5.2. Discussion of Existing Studies  

This section reviews some of the current BPS studies of AF systems to provide an overview 

of what has been published in the field of AFs; however, it is not a comprehensive review 

Table (2.2). The studies are analysed and categorised to gather information about the 

current state of use of BPS tools on AFs. The examined studies are divided into three major 

categories: (1) AF system type, including whether the system is conventional or non-

conventional, building type, and climate; (2) adaptability; and (3) performance. The 

adaptability and performance groups include the following parameters: adaptive typology, 

the state and type of change it generates, the behaviour changes generated by the system, 

whether geometrical or material-based, the timeframe of adaptability and its various 

configurations, the evaluation methods used, the control strategy, the control sensors, the 

physical domain of the performance evaluation, and the design objective of the system.  

Based on the reviewed studies, it was found out that most researchers used parametric tools 

in conjunction with EnergyPlus, Daysim and Radiance to model and simulate the geometrical 

changes. However, none of these studies have properly examined the automatic control 

system during the simulation Figure (2.17). Apart from modelling and simulating adaptive 

smart material systems, the researchers employed non-parametric tools to simulate the 

complex movements of AFs due to the difficulty of modelling adaptive geometrical changes 
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based on a sequence of time-varying steps that correspond to different climatic conditions. 

Although parametric tools, such as Grasshopper, Honeybee, and Ladybug, allow users to 

incorporate add-ons as EMS for controlling AFs with predefined control logic, no studies 

used EMS as a control strategy system to automate the non-conventional AF systems due to 

the complexity and the interface limitation of current PBS. On the other hand, most studies 

implemented the control strategy system using EMS for conventional dynamic façades such 

as Venetian blinds, roller shades, dynamic blinds, louvres, etc. that has a basic movements 

characteristic. In these systems, the adaptive behaviour is not complex, and modelling and 

simulating the systems is embedded in most BPS software packages. For instance, 

EnergyPlus can simulate conventional window shade controls, such as Venetian blinds, 

utilising either a fixed schedule for cut-off or slat angles approach. EnergyPlus is the most 

widely used tool for evaluating the thermal and daylighting performance of conventional 

façades as well as more unconventional shading systems, such as complex fenestration 

systems (CFS) (Kirimtat et al. 2016).  

 

Figure 2.17: Analysis of existing studies regarding simulation tools used to simulate AFs. 

As examples of dynamic conventional façades, Yun et al. (2014) developed a motorised 

Venetian blinds (conventional façade) in an office space in South Korean to investigate the 

impact of the system on energy and visual comfort. EnergyPlus and Diva-for-Rhino were 

used to evaluate various lighting and shade control strategies, each of which was actuated 

by an illuminance level threshold monitored by two indoor and outdoor sensors. Another 
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study conducted by Konstantoglou et al. (2013) studied seven different control strategies to 

automate a dynamic louvre (conventional façade) in an office room in Greece. EnergyPlus 

was used to evaluate the system's overall energy consumption for lighting, cooling, and 

heating with hourly and annual adjustments of the slat angles. A control logic and 

illuminance level threshold strategy were defined to maximise daylighting, block glare, and 

connect to the outdoor environment while reducing energy by 25% compared to static 

shading systems.  

Hammad and Abu-Hijleh (2010) examined the effect of dynamic louvers on the lighting and 

heating, ventilation, and air-conditioning (HVAC) energy consumption of an office space in 

Abu Dhabi with the goal of achieving the lowest possible energy consumption. The 

Integrated Environmental Solutions (IES) simulation tool was used to model and evaluate a 

variety of slat angles. Tzempelikos and Athienitis (2007) developed a dynamic conventional 

roller shade for an office space in Montreal, Canada with the aim of reducing lighting and 

cooling energy using simulation. The shading device is controlled by incident solar radiation 

on windows. 

In addition, Tabadkani et al. (2020) proposed an innovative control system for assessing the 

annual energy demands of AF which considers the dynamic behaviour of the shading system 

with a basic movements on an hourly basis. The authors employed the Honeybee tool, which 

was linked to the EnergyPlus engine as the most-used tool for AF modelling together with 

the EMS, which allows users to define a control logic based on one sensor or multiple 

sensors and to actuate the slat angle on hourly time steps based on the predefined control 

scheme (Crawley 2007). In this research, two different methods were conducted to translate 

the hourly slat angle into fractions: (1) SF calculations and (2) solar transmittance schedule. 

Another study by Kim et al. (2015) compared the cooling energy consumption of complex 

kinetic shading (origami) with basic fixed shading in office spaces in Abu Dhabi. Modelling 

was carried out using Revit and Dynamo, and energy simulation was calculated using the 

eQUEST software after simplifying the kinetic façade. The authors implemented an open 

control system that was activated by the incidence angle between the sun's direction vector 

and the normal vector of a surface, which defined the opening ratio of each panel 

individually. They discovered that the smaller openings consumed less energy but did not 

take daylighting performance into consideration. The methods that were followed is 

complex due to the use of different tools within different environment. 

Pesenti et al. (2015) developed a non-conventional shading system for office buildings to 

meet human comfort requirements while reducing energy consumption for cooling, heating, 
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and artificial lighting. The study assessed the following visual comfort parameters – Useful 

Daylight Illuminance (UDI), Daylight Autonomy (DA), and Daylight Glare Probability (DGP) – 

as well as the Total Energy Consumption (TE). To adapt to outdoor solar conditions, a design 

strategy was followed that combined origami pattern techniques with the usage of shape 

memory alloys (SMA) as micro-actuators. The Ron Resch Origami pattern was chosen for the 

study because of its flexibility when reacting in a variety of directions. Moreover, a 

comparison of several origami patterns was tested in terms of no shading against complete 

shading. The analysis was conducted using the parametric tools Grasshopper, Honeybee, 

and Ladybug in conjunction with EnergyPlus to examine various shading system 

modifications. However, a control system wasn’t considered properly for energy calculations 

during the simulation. They observed that increasing the amount of shaded space resulted in 

an improved energy performance.  

Kuru et al. (2021) proposed a simulation approach for modelling and simulating a complex 

origami-inspired biomimetic AF that changes its form and physiology simultaneously through 

photovoltaic (PVC) glazing and spring-activated openings. The framework of their 

methodology included generating configurations, calculating performance descriptors, 

linking performance descriptors to environmental variables, and evaluating the 

environmental performance of multifunctional Bio-ABS (Kuru et al. 2021). Additionally, they 

examined the difficulties related to predicting the performance of AF systems using the 

current available tools. Two control logics were implemented: the SMA springs generate 

movement in response to variations in the material's surface temperature, while the PVC 

glazing generates opacity changes in response to changes in the SI levels. The control system 

was programmed to adapt to the defined surrounding climatic conditions using EnergyPlus 

and its built-in feature EMS for the PVC glazing system. The authors concluded that when 

compared to conventional façades, Bio-ABS improve building performance, "reaching 37.1% 

for 90% acceptability limits and 18% for 80% acceptability limits for adaptive thermal 

comfort". 

In the case of adaptive smart materials such as PVC glazing, as mentioned earlier, several 

researchers have successfully developed this technology as an adaptive skin for buildings 

that changes its material properties, such as U-value and Tvis, in response to climatic data 

using current PBS tools. This review included a few studies on smart adaptive materials, as 

this thesis focuses on AFs that modify their geometry in response to changing environmental 

circumstances over time through the employment of an appropriate control strategy 

system. 
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Based on current studies, 48% of developed AF models did not implement an automatic 

control system. An automatic system was applied mostly with conventional façades; 39% of 

studies used a feedforward control system, while 13% used a feedback control system to 

automate the façade. The analysis also showed that most studies simulated the AFs based 

on hourly timeframe changes Figure (2.18).  

 

Figure 2.18: Analysis of current studies of AFs systems that used BPS tools. 
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Table 2.2. Current research of BPS of adaptive façades in literature. 
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1 
(Tzempelikos and 
Athienitis 2007) 

Roller shade 
Canada/ 
Montreal 

Humid 
continental 

O ✓  

 
BM ✓  ✓  D 6 TRNSYS FF Solar radiation  ✓ ✓   

2 
(Nielsen et al. 

2011b) 
Automated 

blinds 
Denmark Temperate O ✓ 

 

 
BM ✓  ✓  H 3 iDbuild F 

Indoor 
temperature 

 ✓ ✓ ✓  

3 
(Tabadkani et al. 

2018) 
Rossette pattern Tahran/Iran Hot-arid O 

 

 
✓ CM ✓  ✓  S 6480 DIVA /Grasshopper N Task illuminance  ✓  ✓  

4 
(`wdqTabadkani 

et al. 2020) 
Venetian blinds 

Melbourne, 
Australia 

Temperate O ✓  

 
BM ✓  ✓  H 4 

Honeybee 
(EnergyPlus, 

(EMS)/Daysim) 
F 

Daylight Glare 
Index (DGI) and 
task illuminance 

 ✓ ✓ ✓  

5 
(Giovannini et al. 

2019) 

Thermochromic 
glazing 

 

Abu Dhabi 
(UAE)/ 

Turin (ITA)/ 
Östersund 

(SWE) 

Different 
climates 

O  

 
✓ SM ✓   ✓ H 5 

Honeybee 
(EnergyPlus, Daysim) 

Python (EMS) 
N 

Surface 
temperature 

 ✓ ✓   

6 
(Giovannini et al. 

2015) 

Shape Variable 
Mashrabiya 

(SVM) 

UAE/ Abu 
Dhabi 

Hot-arid O  

 

 

✓ 

 

CM ✓  ✓  H 3 
DIVA- Grasshopper 

/EnergyPlus 
FF Sun position  ✓ ✓   

7 (Kim et al. 2015) Origami 
UAE/ Abu 

Dhabi 
Hot-arid O  

 
✓ CM ✓  ✓  H 10 

Dynamo/Revit/ GBS/ 
eQUEST 

FF Sun position   ✓   

8 (Bui et al. 2020) 

Electrochromic 
glazing 

 

Melbourne, 
Australia 

Temperate O 
 

 
✓ SM ✓   ✓ H 5 

Revit, GBS, Eppy 
(Python, EnergyPlus) 

FF 
Surface 

temperature 
 ✓ ✓ ✓  

9 
(Borkowski et al. 

2018) 
Adaptive blinds London, UK Temperate O ✓  BM ✓  ✓  H 6 

EnergyPlus EMS 
Dymola 

FF Solar radiation   ✓ ✓  

10 (Shi et al. 2020) 
Transformable 

modules 
Singapore Tropical O  ✓ CM ✓  ✓  H 75 

Grasshopper 
(Honeybee & Ladybug) 

N Sun position  ✓ ✓   

11 
(ElGhazi and 

Mahmoud 2016) 
Origami Egypt/Cairo Hot-arid O  ✓ CM ✓  ✓  H 3 DIVA-Grasshopper N -  ✓    

12 
(Hammad and 

Abu-Hijleh 2010) 
Dynamic Louvres 

UAE/ Abu 
Dhabi 

Hot-arid 0 ✓  BM ✓  ✓  H 18 IES-VR N -   ✓   

13 (Kuru et al. 2021) 

Photovoltachrom
ic (PVC) glazing)/ 

origami-like 
folding 

component/SMA 

Sydney, 
Australia 

Humid 
subtropical 

  ✓ 

B 
SM 
CM 

✓  ✓ ✓ H 600 

EnergyPlus /EMS 

 

FF 
Solar irradiance/ 

surface 
temperature 

✓     

14 
(Sheikh and 

Asghar 2019) 
Folding external 

shading 
Lahore, 
Pakistan 

Hot-humid O  ✓ B ✓  ✓  H 3 
Revit/Insight 360 

Ecotect 
N Solar radiation  ✓ ✓   
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Adaptive Façade Adaptability Performance 
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15 
(Hosseini et al. 

2019a) 

Two, and three-
dimensional 

shape- change 
façades 

Yazd, Iran Hot-arid O  ✓ CM ✓  ✓  H 36 
Honeybee 

(EnergyPlus) DIVA 
(Radiance) 

N Sun position ✓ ✓  ✓  

16 
(Masera et al. 

2018) 
Origami shading 

with SMAs 
Milan, Italy 

Humid 
subtropical 

O  ✓ CM ✓  ✓  H - 
Honeybee 

(EnergyPlus) DIVA 
(Radiance) 

N -  ✓ ✓ ✓  

17 
(Tabadkani et al. 

2019a) 

Hexagonal 
adaptive solar 

façade 
Tehran, Iran Hot-arid O  ✓ CM ✓  ✓  H 1800 

Grasshopper 
(Honeybee & Ladybug) 

N 
Daylight Glare 

Index (DGI) 
 ✓  ✓  

18 (Lee 2019) 
Vertical panels, 
wedge-shaped 

flat planes 

Abu Dhabi, 
Hanoi, and 

Seoul 

Different 
climates 

O  ✓ CM ✓  ✓  H 10 IES, VE/ SketchUp N Solar radiation   ✓   

19 
(Favoino et al. 

2015) 

Adaptive 
photochromic 

glazing 

Helsinki, 
London, and 

Rome 

Different 
climates 

O  ✓ SM ✓   ✓ H  EnergyPlus EMS FF 
Surface 

temperature 
✓  ✓   

20 
(Pesenti et al. 

2015) 

Ron Resch 
Origami shading 

with SMAs 
Milan, Italy 

Humid 
subtropical 

O  ✓ CM ✓  ✓  H 3 
Grasshopper 

(Honeybee & Ladybug) 
EnergyPlus 

N   ✓ ✓ ✓  

21 
(Grobman et al. 

2017) 
Dynamic louvres 

Mediterranean 
region 

Mediterranean O ✓  BM ✓  ✓  H - 
Grasshopper, 

DIVA, 
Radiance/DAYSIM 

N Sun position  ✓    

22 
(Konstantoglou et 

al. 2013) 
Dynamic louvres Greece Mediterranean O ✓  BM ✓  ✓  H 7 EnergyPlus F 

Illuminance levels, 
Daylight Glare 

Index (DGI) 
 ✓ ✓ ✓  

23 (Ricci et al. 2020) 
Self-adaptable 

panels 

Copenhagen, 
Munich, 

Bologna, and 
Athens 

Different 
climates 

O  ✓ BM ✓  ✓  H - 
Grasshopper 
(Honeybee & 

Ladybug)/ EnergyPlus 
N 

Illuminance, air, 
temperature, 

relative humidity, 
solar radiation,  
air temperature 

✓ ✓ ✓   

24 
(Eltaweel and Su 

2017b) 
Automated 

Venetian blinds 
Egypt/Cairo Hot-arid O ✓  BM ✓  ✓  S  

Grasshopper 
(Honeybee & 

Ladybug)/ 
Radiance/DAYSIM 

EnergyPlus 

FF 
Sun position, sun 

direction 
 ✓  ✓  

25 
(Kasinalis et al. 

2014) 
Venetian blinds Netherlands Temperate O ✓  BM ✓  ✓  S 7 TRNSYS/ DAYSIM FF 

Indoor 
temperature, solar 

radiation 
✓  ✓   

26 (Yun et al. 2014) Venetian blinds 
South Korea/ 

Seoul 
Humid 

subtropical 
O ✓  BM ✓  ✓  H 4 

EnergyPlus, 
Grasshopper, DIVA 

F Illuminance level  ✓ ✓ ✓  

27 
(Skarning et al. 

2017) 
Roller shade 

Italy /Rome- 
Copenhagen 

Multi climate R ✓  BM ✓  ✓  H 4 EnergyPlus FF 
Solar radiation, 

outdoor 
temperature 

 ✓ ✓   

28 (Touma and Venetian blinds Qatar Hot-arid O ✓  BM ✓  ✓  H 3 EnergyPlus FF Solar radiation,  ✓ ✓ ✓  
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Adaptive Façade Adaptability Performance 
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Ouahrani 2017) indoor 
temperature 

29 
(Cannavale et al. 

2018) 
Electrochromic 
smart window 

Rome, Italy Mediterranean O ✓  SM ✓   ✓ D 8 EnergyPlus - 
Surface 

temperature 
 ✓ ✓ ✓  

30 
(Sadek and 

Mahrous 2018) 
Thermochromic 
glazing material 

Cairo, Egypt Hot-Arid R ✓  SM ✓   ✓ H - EnergyPlus/ EMS FF 
Surface 

temperature 
  ✓   

31 (Elzeyadi 2017) 
Six typologies of 
kinetic shading 

ASHRAE 
Climate zone 

4C 

Moderate 
climate 

O  ✓ 

BM, 
CM, 
SM 

✓  ✓ ✓ - - IES-VR  Glare  ✓ ✓ ✓  

Type of the Building: O: office building, E: educational building, R: residential building 

Adaptive Typology: BM: basic movement, CM: complex movement, B: biomimetic, SM: smart material  

Timeframe: H: hourly, D: daily, M: monthly, S: Seasonal, A: annual  

Control Strategy: FF: feedforward, F: feedback, N: no control assigned   
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2.6. Challenges for Performance Prediction of Adaptive Façades 

Innovative materials and technologies have been developed in the AF field, and these can be 

enhanced with the use of building performance predictions. Additionally, in the design of 

AFs, it is crucial to predict the building performance accurately to achieve high performance 

buildings. Therefore, assessing the applicability of AFs during the early stages of the design is 

extremely significant, but it is mostly restricted to the existing simulation tools for faster 

quantification (Tabadkani et al. 2021a). Geyer and Singaravel (2018) indicated the 

importance of the early integration of performance in design processes, while Loonen et al. 

stated that predicting the performance of buildings with AFs is a challenging task that is 

mostly determined by the local boundary conditions, interactions with the building’s users, 

and other building systems. When modelling and simulating an AF system, the façade 

system must be represented as a sequence of time-varying states or properties rather than 

as a static representation. The authors also examined the methods of simulation in both 

conventional static building envelopes and adaptive envelopes. In traditional static 

envelopes, the simulation process is less complex and requires some factors, such as the U-

value and g-value for predictions to be made. On the other hand, an AF is more complex and 

has a variety of factors, which makes accurately predicting the building performance of an 

AF more challenging. Some of these factors are (1) the time variation behaviour, (2) 

modelling the dynamic operation of the façade adaptation, and (3) the multi physical 

domains. Therefore, some of the existing simulation tools were not developed for predicting 

performance with an AF specifically. Moreover, some of these tools are limited and provide 

misleading information for adaptive systems (Loonen et al. 2017). Two main factors that 

determine the applicability of AFs are as follows: 

- Modelling time-varying façade properties: Façade specifications (i.e., material 

properties or position of components) need to be changeable during simulation run-

time to properly account for transient heat transfer and energy storage effects in 

building constructions” (Loonen et al. 2017). Many state-of-the-art BPS tools have 

restricted functionalities for accomplishing this feature. 

- Modelling the dynamic operation of façade adaptation: During the operation of 

adaptive systems, the performance of the system is entirely dependent on the 

scheduling strategy (i.e., control logic) that is utilised to change the façade.  
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Favoino et al. (2018) highlighted the issues regarding the existing building performance 

simulations of AFs and concluded that the information in this subject is fragmented. Loonen 

et al. also stated that designers and researchers who aim to assess an AF system with the 

current BPS tools are faced with different challenges, and to overcome these obstacles, they 

need to find a workaround to develop their simulation strategy. In addition, according to the 

literature, most designers evaluate AF with their own simulation strategy because there is 

no straightforward approach to assess the performance of AFs for energy performance 

(Attia 2019). Therefore, inaccurate results might be obtained when assessing their 

performance and applicability in the long term (`wdqTabadkani et al. 2020). 

2.7. BPS Tools and their Ability to Simulate Time Changes 

There are several tools available for estimating a building's energy performance. Each 

software program is unique in terms of model resolution, solution algorithms, intended 

target audience, modelling possibilities, and simplicity of use vs. flexibility, among other 

characteristics (Loonen et al. 2017). Software with the most advanced modelling capabilities 

and the most extensive validation studies are all legacy software simulation packages (e.g., 

EnergyPlus, ICE, ESP-r, TRNSYS, and IES VE) (Loonen et al. 2017). Even though these tools 

have active development communities and receive regular updates and enhancements to 

their modelling capabilities, their fundamental concepts and software architecture remain 

constant. The majority of tools were developed at a time when the adaptability of building 

components was not a concern for architects and engineers (Oh and Haberl 2016). As a 

result, these tools often do not permit modifying the shape of the building or its material 

properties during the simulation run, which limits the possibilities for simulating adaptive 

building envelope systems (Loonen 2018; Favoino 2016). However, existing parametric tools 

allow the integration with EnergyPlus which makes it feasible to simulate and model the 

time-variation of AF systems. 

EnergyPlus has seen the largest increase in AF computational capabilities. EnergyPlus 

Runtime Language (ERL) is primarily responsible for these enhancements (Crawley 2007). By 

connecting sensors, control, and actuators, the ERL allows users to incorporate several EMS 

into their systems. Some examples of EMS actuators include the thermophysical 

characteristics of the building envelope materials. During simulation running, these 

actuators can be modified using user-defined IF-ELSE statements. 

Parametric tools have been used to simulate different AF systems with shifting 

morphologies. For example, Grasshopper and Dynamo are two parametric tools that work in 

conjunction with architectural 3D modelling software which allow for the parametric control 
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and modelling of adaptive system design. In addition, these plugins assist in decision-making 

via the addition of add-ons such as Ladybug/Honeybee, which integrate simulation engines 

such as EnergyPlus. Furthermore, by utilising parametric modelling tools, it is possible to 

incorporate add-ons that offer flexibility to the modelling process. As an example, 

Grasshopper can integrate Python into a workflow similar to that of an EMS, allowing for 

control customisation. To this end, parametric modelling tools indicate significant potential 

for modelling and simulating AFs that change their shape in response to time variations and 

incorporate control logic that takes into consideration surrounding environmental 

conditions. 

Adaptive building materials are the focus of most research on systems with physiology-

changing properties (Al-Masrani and Al-Obaidi 2019; Kuru et al. 2021). Several of the 

simulated smart materials incorporate various glazing methods. As previously stated, most 

of software programs are limited in their ability to simulate a variety of complex geometrical 

architectural components controlled by 'sensors.' While this is true for AFs with changing 

morphologies, modelling and evaluating their performance in Grasshopper using EnergyPlus 

EMS and Python is still achievable. Nonetheless, modelling and simulating AFs that change 

geometrically continue to be a challenge with current PBS tools, and they were investigated 

in a very limited number of studies (Sheikh and Asghar 2019). 

2.7.1. Parametric Tools  

The improvements in parametric design tools have had an impact on the architectural design 

process by allowing designers to express their creativity while still maintaining design 

dependencies and links between iterations. As a result, architects employ these tools to 

keep control over design parameters, enabling them to examine and optimise design 

solutions for a variety of architectural problems throughout the early stages of the design 

(Eltaweel and SU 2017). The term "parametric" refers to the method of digitally modelling a 

series of design iterations whose relationships to one another are determined by one or 

more mathematical relationships (parameters), which results in the creation of a parametric 

form capable of compressing a large number of related but distinct shapes (Eltaweel and SU 

2017). 

Parametric tools have been utilised to evaluate the performance of adaptive systems in 

recent years. A significant advantage of using parametric tools is that users can make 

changes to any parameter without having to repeat the procedure and generate new 

designs. Furthermore, it allows for the exploration of new forms in relation to a variety of 

parameters, assisting architects and designers in proposing ideal designs and behaviours 
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that adaptable to a range of different climates and environmental situations. Bacha and 

Bourbia (2016) stated that parametric tools can be utilised as a design tool since they permit 

users to develop complex models and use them during the early phases of design with 

numerous design values for certain context and scenarios. Hofer et al. (2016) demonstrated 

how parametric tools can be used to investigate the appearance of the building envelope 

and solar radiation from PV dynamic modules through the examination of module shading 

and SI, which can then be integrated with an electrical model to analyse electrical 

performance. The authors calculated the current voltage curves of PV modules to assess the 

electrical energy consumption associated with various parameters and module 

interconnections (Hofer et al. 2016). 

2.7.2. Grasshopper  

Grasshopper is a parametric design tool developed in 2007 as a Rhinoceros software plugin 

by David Rutten, Robert McNeel, and associates (ElGhazi et al. 2014). It is a graphical 

algorithm editor that enables users to write customised scripts in VB.NET "(a version of 

Microsoft's Visual Basic that makes Web services applications easier to develop) or C# (a 

general object-oriented programming language for networking and Web development)" via 

various components, and model simple and complicated geometries (Hofer et al. 2016). This 

enables architects to easily generate parametric settings or forms without the need for 

scripting knowledge or any formal programming language. The integration of the 

Grasshopper interface with the Rhino modelling tool enables direct observation of 

Grasshopper algorithm modifications in Rhino. Moreover, the Grasshopper tool has 

commonly been utilised as a modelling tool among designers due to its ability to generate a 

variety of forms, its intuitive interface, and the quantity of plugins that significantly enhance 

its capability. 

Hofer et al. (2016) designed a parametric shading system in the shape of a rectangular 

pattern using Rhinoceros 3D software and Grasshopper. Sharaidin et al. (2012) used 

Grasshopper in combination with Ecotect software to determine the ideal closing and 

opening percentages of a kinetic component based on daylight simulation. As a result, 

authors are able to achieve the most complex geometric configurations possible. 

2.7.3. Parametric Integrated Simulation Tools  

Numerous Grasshopper plug-ins have been developed to facilitate the integration of 

parametric geometry with simulation software, such as the following:  
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2.7.3.1 Honeybee  

Honeybee integrates parametric models with validated tools, such as EnergyPlus, 

Radiance, Daysim, and OpenStudio, for the purpose of simulating energy and 

daylighting in buildings (Roudsari et al. 2013). 

2.7.3.1. Ladybug 

Ladybug is an open-source environmental plugin for Grasshopper3D that assists in 

the development of an architecturally conscious approach to environmental design. 

The plug-in imports EnergyPlus Weather standard files (.EPW) into Grasshopper and 

generates a variety of interactive three-dimensional representations to assist in 

early design decision-making (Roudsari et al. 2013). 

Part (C) Machine Learning (ML)  

2.8. Machine Learning (ML) – Overview  

Machine learning (ML) is a branch of artificial intelligence (AI) that allows the software to 

learn without being explicitly programmed (Chakraborty and Elzarka 2019). Mitchell (1997a) 

defined it as a system that learns from past experience (i.e., data) to predict future 

performance (Mitchell 1997b). In other words, ML could use existing data to predict or to 

respond to future data. After training and learning, it is expected that the system should 

obtain a better predictive performance on the same trained task or related tasks. As well as 

the idea of self-improving automatically, ML also offers other advantages, such as collecting 

and clustering useful information from a complex large set of data (Chakraborty and Elzarka 

2019).   

Over the last years, ML algorithms have become widely popular in several fields, such as 

marketing, social media services, medicine, architecture, design etc. For example, existing 

medical records can be integrated with ML to form a knowledge source to diagnose new 

patients (Oh et al. 2011). Similarly, in the architecture field, ML has been proposed in several 

studies to estimate heating and cooling loads, building performance, annual energy 

consumption predications, and architectural image recognition (Seyedzadeh et al. 2018). 

Nevertheless, the architecture field is considered one of the slowest industries to integrate 

ML, and it has resisted adopting it compared to other fields (Khean et al. 2018). Carpo (2017) 

argued that architecture seems to be disregarding the potential of ML and its ability to 

predict performance, categorise large sets of data, and form optimisation and advanced 

form findings. 
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ML algorithms can be categorised into distinct learning types: supervised learning, 

unsupervised learning, and reinforcement learning. Figure (2.19) shows the main 

approaches of ML algorithms in a graphical way including some examples of the algorithms 

used in each approach and examples of applications (Rafique and Velasco 2018). This 

research focuses on the supervised ML in the regression approach. 

 

Figure 2.19: Types of machine learning (adapted from Ramasubramanian and Singh, 2019). 

2.8.1. Supervised Learning (SL) 

In supervised learning (SL), the learning system is trained with a set of inputs and the 

corresponding desired outputs, where the outputs are known and are labelled data. In this 

process, the learning system should learn the relationship between input-output data before 

training the system Figure (2.20). Once the system is trained, it can predict the desired 

output with the new presented data (Koola et al. 2016). Similarly, humans are likely to be 

able to predict new outcomes once they have learned from previous examples (Koola et al. 

2016). The training process in this approach is usually done by humans and has a significant 

impact on the quality of the outcomes data. Therefore, the pre-processing of trained data, 

inconsistencies, contradictions, and other errors are all important factors that need to be 

considered in SL. Additionally, the training data should be sufficient, and have a range of all 

the potential inputs and desired output  (Hopmann et al. 2017). SL algorithms can be 

classified also into different learning algorithms; however, the most popular SL algorithms 

are backpropagation neural networks, deep learning neural networks, support vector 

machines, linear regression, decision trees, and Bayesian networks (Koola et al. 2016). The 

neural network is chosen in this study because it has shown in several studies its sufficiency 

in the prediction of building performance (Zhao and Magoulès 2012a). 
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Figure 2.20: Supervised machine learning process (adapted from Alaaeddine and Wu 2020). 

2.8.2. Unsupervised Learning (USL) 

In unsupervised learning, the expected result is not known before initiating the analysis of 

the data (Mat Daut et al. 2017). Numerous studies on unsupervised learning have been 

conducted in the fields of data visualisation and classification as applications of unsupervised 

learning. The most used unsupervised learning technique is clustering (Raza and Khosravi 

2015). For instance, Papadopoulos et al. (2018) used unsupervised learning with k-means 

clustering to effectively cluster the energy consumption of a mixed group of commercial and 

residential buildings (Papadopoulos et al. 2018). 

2.9. Surrogate Model for Building Performance  

Surrogate models (SM), also known as meta-models, have the promise of providing a 

building's performance assessment that is significantly faster than simulation-based 

methods. Moreover, surrogate modelling is a statistical approach to emulate a high-fidelity, 

high-cost model, in this case, a building simulation model. The surrogate model is trained 

using a set of simulated input and output data. Once proven to accurately approximate the 

detailed simulation model, it can be used to almost instantaneously anticipate the outcomes 

of the high-fidelity simulation given an adequate collection of building design data. 

According to the literature, surrogate modelling is found to considerably assist four stages of 

the building design process: conceptual design stage, sensitivity analysis, uncertainty 

analysis, and optimisation (Westermann and Evins 2019b). Regarding the early design 

stages, building simulation is currently unable to keep up with the speed in this stage 

(Østergård et al. 2016). Because setting up a simulation to test a single concept requires the 

manual definition of a large number of parameters. Thus, the creativity process of the 

architect will be disrupted by the simulation's lengthy run time, which is better described as 

the program's feedback time (Miller 1968).  

Surrogate modelling enables two distinct modes of engagement between the architect and 

the process of building simulation. First, because surrogates are evaluated instantaneously 
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(<0.01 seconds ), they can provide instant point estimates or probability distribution 

estimates of the building's performance (Van Gelder et al. 2014; Westermann and Evins 

2019b). This enables designers to conduct a more rapid analysis and exploration of design 

concepts. Another advantage of surrogate models over simulation-based parametric analysis 

is that they establish a constant connection between design variables and building 

performance measures. The complexity of recent surrogate models enables them to capture 

variable interactions and extract non-linear, multi-modal behaviour (Østergård et al. 2017). 

Additionally, surrogate models have a simple computational layout and can be easily 

integrated into existing modelling tools (Ritter et al. 2015).  

To create a surrogate model, it is necessary to identify the design issue and the associated 

design parameters. The building designer then creates an initial model of the building and 

selects design samples for simulation using a sampling approach. For each sample, the 

underlying model is changed, and building simulations are run using the parameters defined 

for each sample. After that, the simulation results are stored in a database. Following that, 

the input-output data are fitted with a surrogate model. Finally, the model is validated by 

determining its accuracy and quantifying the difference in prediction accuracy between 

surrogate predictions and simulation outcomes for a given set of inputs (Westermann and 

Evins 2019b). The stages involved in developing a surrogate model are represented in Figure 

(2.21).  

 

Figure 2.21: Stages to develop ML surrogate models (Westermann and Evins 2019b). 

Performing a surrogate derivation in a sequential manner is the most common method. 

After samples have been generated, the surrogate model is fitted. Because the samples are 

defined in advance of the simulation and are not altered in response to the model results, 
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this strategy is referred to as static sampling. This offers a global surrogate model that is 

accurate for the entire design space. On the other hand, in adaptive sampling, the database 

is expanded iteratively based on surrogate predictions and simulation outcomes. Most of 

the researchers adopted adaptive sampling for optimisation purposes (Westermann and 

Evins 2019). Westermann and Evins (2019) stated that 81% of researchers used static 

sampling, while 19% used the adaptive sampling method depending on the objective of the 

model. The authors compared the two sampling methods and found that neither of the two 

sampling methods clearly outperforms the other. The results also showed that adaptive 

sampling may be considered if the sample size is very small (Westermann and Evins 2019a). 

2.9.1. Data Pre-Processing  

Pre-processing of data is critical for any data-driven method, as any wrong or inconsistent 

data might lead to inaccurate results. Numerous studies have demonstrated that pre-

processing data can help improve prediction accuracy when using ML algorithms (Kuster et 

al. 2017; Amasyali and El-Gohary 2018; Zhang et al. 2021). Frequently, collected data contain 

errors, such as missing values, duplicate data, inconsistent data, noise, and outliers. The 

term "data pre-processing" refers to the process of cleaning, integrating, transforming, 

and/or sampling data (Hellerstein and Berkeley 2008). Data cleaning is the process of 

identifying and fixing, modifying, removing, and replacing incorrect or noisy data. For 

instance, data collected from sensors is frequently imprecise and incomplete. Data 

integration relates to the process of gathering multiple pieces of data from several sources 

into a single collection of data. For instance, data on external weather conditions and hourly 

electricity use are obtained from separate sources but integrated into a single dataset for 

training and testing purposes (Amasyali and El-Gohary 2018). Data transformation is the 

process of converting data into a format that the ML algorithm can understand. As a result, 

the network is able to identify patterns more easily and produce more accurate outputs. 

Each input data is scaled between 0 and 1 during the standard normalisation technique. 

Normalisation can be performed on individual input variables or on a collection of input 

variables. The normalisation technique may enhance the network's capacity for learning, 

resulting in more accurate predictions (Raza and Khosravi 2015). Data transformation 

includes normalisation, smoothing, aggregation/disaggregation, and/or generalisation of the 

data (Amasyali and El-Gohary 2018).  

Surrogate modelling requires input and output data formats that are compatible with the 

chosen method. For instance, most approaches require numerical rather than category 

inputs. After that, categorical variables can be transformed into dummy variables. Once the 
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data is properly structured, it is divided into training and testing samples. A random 

separation sample of 20% of the data is suitable for training and testing (Westermann and 

Evins 2019b). 

2.9.2. Model Training and hyperparameter tuning 

Following data preparation, a specific training technique is utilised to determine the data's 

parameters and weights. To train ANNs, for example, the well-known backpropagation 

technique is used. Along with the model weights for training, hyper-parameters must be 

specified. Hyper-parameters make it possible to fine-tune the variance of the surrogate's 

predictions by adjusting their values. They should be tuned to achieve a good balance 

between variance and bias to avoid overfitting the model to the training data. A model that 

is overfitted performs poorly when applied to new data. In order to determine the 

hyperparameters, multiple different settings are evaluated in a grid search or K-fold cross 

validation technique (Claesen and De Moor 2015). In addition, the tuning of 

hyperparameters may be performed manually using rules-of-thumb. However, these 

approaches fall short of reproducibility requirements and are impracticable when the 

number of hyperparameters is large. As a result of these shortcomings, the idea of 

automating the hyperparameter search is gaining attention in ML. Automated techniques 

have already been demonstrated to outperform a manual search on several problems. 

According to Ayoub (2020), the  

“key hyperparameters to tune ANN before training include: the number of hidden 

layers; the number of hidden neurons; the learning rate that defines the update 

frequency to adjust the errors; the number of epochs that identifies the number of 

iterations such ANN undergoes for the whole training dataset; the batch size to 

control the number of propagated training samples through the network before 

updating the model; and the activation function that introduces non-linear 

properties to ANN and converts inputs of neurons to outputs”. 

2.9.3. Performance evaluation 

Model testing is the process of evaluating a prediction model using established evaluation 

criteria. Validation of the model is carried out utilising dedicated test data. There is a variety 

of performance indicators to quantify the model's accuracy and determine the model's 

precision. Based on the literature, most used metrics include the mean absolute error 

(MAE), root mean squared error (RMSE), and coefficient of determination (R2), which 



CHAPTER 2: LITERATURE REVIEW 

70 

measures how much of the variance in the data is explained by the model (Raza and 

Khosravi 2015). 

2.9.4. Data Types 

Three types of data are used to develop a surrogate model: (1) real data (e.g., smart meters, 

internet of things (IoT) sensors, and building management systems), (2) simulated data 

(results of building simulation tools), and (3) public stock data (e.g., annual energy demand 

and floor area for a large set of buildings) (Amasyali and El-Gohary 2018; Westermann and 

Evins 2019b). 

Real data can be obtained from a variety of sources, including utility bills, energy 

assessments, smart meters, sensors, building management systems (BMS), and weather 

stations (Westermann and Evins 2019b). For instance, sensor-based techniques have a 

number of benefits and drawbacks that must be evaluated.  A sensor-based technique offers 

real-time data on the indoor environment and energy usage levels. However, there is an 

added expense and effort that comes with installing sensors, not only in terms of installation 

but also in terms of testing and ensuring the quality of the data obtained (Edwards et al. 

2012). Furthermore, sensor data may contain noise, missing values, and/or outliers, 

reducing the performance of prediction models. 

Simulated data that can be collected using existing simulation tools, such as EnergyPlus, 

allow the designer to simulate a real or hypothetical building and collect the necessary data 

(Wong et al. 2010; Keshtkarbanaeemoghadam et al. 2018). According to Li et al. (2015), 

existing software tools for measuring the efficiency of energy-saving techniques in buildings 

are sometimes insufficient. While real data are preferred, simulations are a viable 

alternative when it is impossible or impractical to instrument a building for technical and/or 

financial reasons.  

Other studies have used publicly available benchmark datasets, such as the ASHRAE and the 

CIBSE dataset, which can be easily accessible. With this type of data collection, it is possible 

to compare the performance of different models (Edwards et al. 2012; Hong et al. 2014; 

Paterson et al. 2017; Chakraborty and Elzarka 2019). 

2.10. Artificial Neural Networks (ANN) - Overview 

The ANN model has been widely utilised as a predictive tool in many fields (Chew et al. 

2004). For example, ANNs have been implemented in a variety of fields and applications, 

such as mathematics, medicine, engineering, architecture, the environment, robotics, 

pattern recognition, forecasting, manufacturing, optimisation, etc. (Benedetti et al. 2016). 
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Moreover, regression analysis has long been the most widely used modelling method in the 

field of energy research. However, the application of ANNs in energy studies has increased 

recently. ANNs are becoming increasingly used today due to their flexibility and adaptability 

in modelling complex nonlinear systems (Sözen et al. 2004). A variety of energy-related 

studies have utilised ANNs for prediction, classification, and problem solving.  

Regarding the building energy consumption situations, researchers have used ANNs to 

investigate heating/cooling load, power consumption, and optimisation, etc. (Zhao and 

Magoulès 2012a) because ANN predictions do not require the development of a physical 

model compared to conventional computational methodologies (Id et al. 2020). The ANN 

method was introduced by MacCulloch-Hopfield in the early 1960s, but its development 

started in 1985 (Haykin 1992). At that time, McCulloch and Pitts carried out an experiment 

to represent bio-systems with nets of simple logical operations for a simple nonlinear model 

of a real neuron. This experiment expanded the boundaries of computational calculation. 

The ANN model has the capability to deal with complex systems and nonlinear problems, 

which resemble the structure and functionality of biological neural configurations that take 

place in the human brain (Haykin 1992). 

Neural networks are responsible for the information processing done by the brain. The brain 

can learn concepts over time by analysing and processing the primary information, which 

may be noise, complex, irrelevant, or absent. The brain's extraordinary capabilities come 

from its large, complex, and parallel neural networks. It is capable of processing, classifying, 

and even simulating the information, which it receives via senses to form an internal model 

(Samarasinghe 2007). The biological neuron processes occurring in the human brain are 

visualised in Figure (2.22). Each neuron's axon uses an electrochemical medium known as a 

neurotransmitter to transfer information to nearby neurons via synapses in the brain. The 

synapses of a neuron receive information from approximately 10,000 other neurons. The 

biological neuron is the inspiration for ANNs. The human brain contains approximately 100 

billion interconnected neurons. Thus, repeated activation of neurons in a network produces 

a brain response (Safa 2011). 
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Figure 2.22: Structural diagram of neuron (Raza and Khosravi 2015). 

According to Kuster et al. (2017), an ANN is a technique of intelligent ML that mimics the 

structure of the human brain. Similar to the human brain, an ANN is composed of neurons 

and connections arranged in multiple layers. Nonetheless, while existing ANNs do not even 

come close to mimicking the complexity of the human brain, they are effective pattern-

detection tools (Kuster et al. 2017).  

2.10.1. Fundamentals of Artificial Neural Networks 

The ANN model consists of interconnected units called neuros and is composed of three 

layers: the input layer, the output layer, and one or more hidden layers in between. Each 

layer is made up of some interconnected neurons which have an activation function. Figure 

(2.23) shows a schematic diagram of a two-layered architecture of a feedforward neural 

network. The number of hidden layers can vary depending on the nature and complexity of 

the problem. ANNs work as black-box models and learn the relationship between inputs and 

outputs without requiring any system-specific knowledge (Ahmad et al. 2017a). ANNs are 

typically defined by three types of parameters: the interconnection patterns between 

neurons in different layers, the learning process of updating the weights of the 

interconnection, and the activation function that transforms the weighted input of a neuron 

into its output activation (Wang and Srinivasan 2017).  
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Figure 2.23: Schematic diagram of two-layered architecture network (Ahmad et al. 2017b).  

A neuron can receive or transmit a normalised signal from or to other neurons within the 

network. Each wire entering a neuron from another neuron is referred to as a "weight" wkp. 

Additional inputs of +1 are added to each neuron, which is known as the bias value (b), and 

its associated weight is represented by the mathematical symbol (wk0). To generate the 

output, the total of the weighted inputs is processed and applied to the activation function. 

Adjustments are made to the network's weights and biases in order to reduce the gap 

between the generated output and the required output of the network (Raza and Khosravi 

2015). In another words, weights are modified over training in each iteration so that the 

error is minimised. Learning can also occur in batch mode, where weights are updated after 

the processing of a group of training vectors by the network. The transfer function can be 

nonlinear or linear transfer functions. Some common activation functions are available, and 

these will be discussed in section (2.10.3). The output is determined by the transfer function 

used. The primary steps to develop the ANN model are shown in Figure (2.24).  
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Figure 2.24: The primary steps to develop the ANN model. 

In the case of complex issues, it is necessary to use more than one layer; these neural 

networks are known as multilayer neural networks or multilayer perceptions (MLPs) Figure 

(2.25). The multilayer network is constructed using a backpropagation (BP) rule that 

minimises the output error by backpropagating the error from the output to the hidden 

layer, consequently altering the weights. One or two hidden neurons may be adequate for 

straightforward nonlinear issues. However, many neurons may be required to replicate 

accurately the proper input-output relationships when dealing with extremely nonlinear 

problems involving several input variables. Using current tools, it is possible to determine 

the number of neurons and layers through an iterative process using different approaches to 

tune these parameters during the training process to select the optimal network 

architecture. When there are fewer hidden neurons than necessary, network errors 

increase, and the correlation between inputs and outputs decreases. In contrast, when the 

number of hidden neurons exceeds what is necessary, overlearning increases prediction 

variance (Kermanshahi and Iwamiya 2002). 
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Figure 2.25: ANN architecture with multiple hidden layers (Ayoub 2020).  

2.10.2. Neural Network Architecture 

To meet the network's objective function, the error data is back propagated from the output 

of the network to the input. As the inputs change, the network seeks to reach a new 

equilibrium state from the prior state, as the change in inputs is applied (Raza and Khosravi 

2015). Neural networks can handle dynamic and complex processes as well as time-varying 

or time-lagged patterns (Hahn et al. 2009). Back propagation (BP) relies on gradient descent 

as its foundation. To achieve the lowest feasible level of error as quickly as possible, the 

weights should be adjusted according to the gradient of the error surface with respect to the 

weights. In addition, the weights are modified by an increment determined by the learning 

algorithm after each cycle (Safa 2011). 



CHAPTER 2: LITERATURE REVIEW 

76 

 

Figure 2.26: Gradient based to update the weights of the network (Raza and Khosravi 2015). 

The neural network's ability to learn is dependent on the errors it generates during training. 

The network error is defined as the squared difference between the desired and the actual 

values. For instance, the mean square error (MSE) of the network can be used during the 

training process to measure the differences. Other evaluation metrics or error functions are 

also possible, such as RMSE, R2, etc. The calculated outputs (error) are utilised to alter the 

network's weights so as to lower the error level. An epoch occurs each time the network 

processes the entire collection of data (both forward and backward runs). In this approach, 

the network is trained by decreasing the error with each epoch until an acceptable error 

level is reached (Haykin 1992; Du and Swamy 2006; Kaiadi 2006). Then, a separate validation 

dataset is utilised to test the model's predictions. 

The rate of learning controls the distance of descent. This rate is often positive and between 

zero and one. When training the network with a lower rate, the process will take longer, but 

the results will be more stable. While selecting larger learning rates may result in quicker 

training, the weights may oscillate near the minimum and never reach it, and the results will 

be less accurate (Kalogirou 2000; Samarasinghe 2007). Multiple learning rates should be 

applied during the process of adjusting the hyperparameters to get the best accuracy 

learning rate. The amount of time it takes to train a network could also be affected by other 

factors, such as the complexity of the network (number of hidden neurons and layer), and 

the amount of input. 

In addition, when using a gradient descent approach, the slope of the error is always from 

the highest to the lowest to find the global minimum. To avoid getting trapped in a shallow 

valley known as a local minimum, the network weight values are modified based on small 

intervals. Even if the weights are constantly updated, it is challenging to escape the valley at 
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the local minimum point. Thus, the problem of local minima is also a significant 

consideration when deciding on a neural network training algorithm (Gori and Tesi 2000). 

The objective of the training algorithm is to achieve the global minimum value on the error 

surface as shown in Figure (2.27). According to the literature, the issue of local minima can 

be avoided by using a more efficient network training method (Raza and Khosravi 2015).  

 

Figure 2.27: The global minimum value on the error surface (Raza and Khosravi 2015).  

A model's ability to predict the output with minimal error is supported by an adequate 

number of variables. The size of the data sample is crucial, as neural networks cannot 

determine the proper correlations without sufficient samples. The sample size can range 

from a few to thousands of cases. The quantity of the dataset is determined based on the 

problem's complexity and the data's quality. Using more neurons than required results in 

overfitting, which is the most common problem in neural network training. Overfitting can 

be avoided by employing a technique known as "early stopping", in which a calibration 

dataset, extracted from the training dataset, is used at regular intervals during training to 

assess the model's performance and stop training at the point where overfitting occurs and 

when the prediction error on the calibration dataset begins to increase. K-fold cross 

validation is among the ways offered to automate the selection of the optimal number of 

hidden neurons (Samarasinghe 2007). Generalisation refers to the ability of a neural 

network to adapt to a variety of inputs.  When a network's output is close enough to target 

values that were not included in its input, it is considered well-generalised. The number of 

parameters affecting generalisation include the quantity and quality of training data, the 

network's architecture, and its complexity. 

2.10.3. Activation Function 

The activation function works as a compression function to convert weighted inputs into 

network outputs. There are a variety of activation functions available, including linear 

function, sigmoid function, logistic function, Rectified Linear Unit (ReLU) function, and step 
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function, etc. Nevertheless, activation might vary based on the neural network's 

architecture, the number of inputs, and the kind of the problem. However, there is no clear 

rule of thumb for finding the optimal activation function to maximise network output. The 

literature review demonstrates that alterations to the activation function can affect the 

network's output (Zhang et al. 1998). The activation function is a two-step linear 

combination of input weights and transfer function. In addition, the transfer function 

translates the weighted total of all inputs into the target unit (Raza and Khosravi 2015). The 

most two commonly emplyed activation function are sigmoid function, and, ReLU function 

as shown in Figure (2.28) (Lee et al. 2019b).  

 

Figure 2.28: Two commonly employed activation functions (Lee et al. 2019b). 

2.11. Decision Tree (DT) 

Decision tree (DT) is a method that has been commonly used for classification and prediction 

in many fields (Tung et al. 2005). DT "uses a flowchart-like tree structure to segregate a set 

of data into various predefined classes, thereby providing the description, categorization, 

and generalization of given datasets" Figure (2.29) (Yu et al. 2010a). The DT model has 

advantages over other models because of its ease of use and the ability to predict accurately 

without requiring excessive computation time. While this method has the ability to process 

both numerical and categorical data, DT usually performs better with categorical than with 

numerical data (Yu et al. 2010a). DTs are very desirable as ML algorithms because of their 

speed of computation. In addition, the method’s training is straightforward, making it easy 

to generalise over a huge dataset. Due to their simplicity, usability, and interpretability, DTs 

have become a widely used ML technique in recent years (Thompson et al. 1974). Diverse 

studies have addressed the deficiencies of conventional DTs, such as their unsatisfactory 

performance and lack of robustness (Ahmad et al. 2017b). As a result of these efforts, an 

ensemble of trees was formed, and this was followed by a vote for the most popular class, 

which was labelled a forest (Breiman 2001).  
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Figure 2.29: Procedure for Decision tree development (Yu et al. 2010a). 

One of the most common ensembles learning techniques is random forest (RF). RF is a 

method for classifying and predicting future outcomes. Using data training, the algorithm 

generates several DTs (Svetnik et al. 2003). This implies that the outcome for a particular set 

of inputs is determined by the training. This algorithm is applied to both category and 

numerical output data. RFs for numerical data produce the mean of the values generated by 

several DTs (regression). Using categorical data, the median of several DTs’ generated values 

is the output (classification). For instance, if 7 out of the 10 DTs predict a Yes answer, and 

the other three predict a No answer, then the RF answer will be Yes (Madhusudanan 2019). 

According to (Ahmad et al. 2017b). "The primary characteristics of RF are as follows: (1) 

bootstrap resampling, (2) random feature selection, and (3) full depth decision tree 

growing". Figure (2.30) illustrates a DT derived from an RF for predicting the hotel's HVAC 

energy use. It is important to note that this DT serves merely as an example. Actual RF 

outcomes include DTs with more depth and complexity (Ahmad et al. 2017b).  
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Figure 2.30: A decision tree showing how the decsions are made (Ahmad et al. 2017b).  

2.12. Existing Studies 

This section examines existing studies that used ANN or DT methods for building 

performance prediction focusing mainly on energy studies and solar radiation studies; 

nevertheless, it is not a thorough review. Zhang et al. (2021) reviewed various works on ML 

for predicting building loads. The authors identified a problem with the reported 

information, namely, that ML model development is frequently sporadic, and critical 

information is absent. Many articles, for instance, merely indicate the data used for 

modelling without providing additional information such as data resolution, training/testing 

data split, etc. Therefore, a standardised information table was recommended for future 

publishing in order to provide a complete picture of the described ML and modelling 

methodologies and to make it easy for readers to acquire information from the research 

(Zhang et al. 2021). Thus, this study utilised the recommended information table by Zhang et 
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al. (2021, p. 18), which is divided into four primary sections: (1) general information, (2) data 

description, (3) algorithm, and (4) performance evaluation. The general information section 

includes the following parameters: building type, prediction type, forecasting, etc. The data 

description section consists of the following: source of data, sampling interval of data, 

training/validation/ testing data description, etc. The algorithm and performance section 

includes main algorithm structure used, tuning methodology, other support techniques, and 

error metrics used Table (2.3).  

2.12.1. Neural Networks Studies 

ML techniques can predict a building's energy consumption based on data such as climatic 

conditions, architectural characteristics, and occupancy status. ML techniques have been 

widely used in the field of building energy usage prediction because of their strong 

prediction capabilities. Predicting building energy usage has already been compared with 

various methods using ML. For instance, Neto and Fiorelli (2008) conducted a comparison 

study between ANN and EnergyPlus to predict energy building usage. Turhan et al. (2014) 

performed a similar study, in which the authors compared ANN with KEP-IYTE- ESS, an 

energy simulation software, for forecasting the heating load of residential buildings. The 

researchers found that, in comparison to traditional methods like engineering and hybrid 

models, ML-based approaches have a greater advantage in terms of model simplification, 

computation speed, and the ability to learn. Although energy simulation engines such as 

EnergyPlus are capable of simulating complex systems, their sequential software structure 

makes them significantly slower than ML techniques; for instance, the space temperature is 

updated hourly based on feedback from the HVAC module (Wang and Srinivasan 2017). 

In recent years, several studies have been conducted integrating the ML approach for the 

prediction of building performance, which includes building energy performance, estimating 

heating and cooling loads, daylighting, building energy consumption, and solar radiation. 

Zhao and Magoulès (2012) agreed that the ML approach has proven to be efficient in the 

prediction of building performance. Unlike conventional modelling methods, supervised ML 

has major benefits in terms of requiring less computation time and less effort and of being 

computationally unexpansive (Huang et al. 2015). Additionally, the accuracy and 

simplification of predictions has inspired researchers to investigate this possible alternative 

method for predicting building performance and occupant behaviour (Wang and Srinivasan 

2017), and to replace building performance simulations by using data analytics (Geyer and 

Singaravel 2018). 
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Regarding the prediction of energy demand, Paterson et al. (2017) developed a design tool 

where ANN is integrated to predict energy consumption in real-time in the early design 

stages. The study focuses on school building design in England as a case study, and ANN was 

trained for the assumption of the annual energy consumption of schools using the CIBSE 

existing heating and electrical energy database to train the model. A more recent study by 

Asl et al. (2017) proposed a model called the Energy Model Machine (EMM) using ML 

algorithms, (ANN and RF), to predict instant energy performance in the early stages of the 

design process. The authors tested the EMM model in a medium-sized office building as a 

case study to demonstrate the usefulness of this method. The model generated 7,000 

building design options with their energy performance, which can help designers make 

informed decisions during the conceptual design process. The researchers found that the 

use of ML to estimate energy performance during the process of design exploration and 

optimisation is a feasible approach for achieving high-performance buildings. The RF 

surrogate model of their study resulted an accuracy with an R2 score of 0.999715. 

Geyer and Singaravel (2018) presented a component-based method developed by ML for 

both parameterised whole building design and components of the design. The study 

examined construction-level components (wall, windows, floors, roof, etc.), and zone-level 

components. The results of the study show that “high prediction quality may be achieved 

with errors as low as 3.7% for cooling and 3.9% for heating” (Geyer and Singaravel 2018). 

Chakraborty and Elzarka (2019) compared multiple ML methods for the generation of a 

more accurate energy model. The study indicated that XGBoost and ANN produce accurate 

energy models compared to others. A few studies have implemented neural networks to 

predict daylighting and illuminance. A study by Lee et al. (2019) proposed a new method 

based on their exploration of the relationship between existing daylighting metrics and 

building design attributes. In addition, Kazanasmaz et al. (2009) effectively predicted the 

horizontal illuminance in office buildings using neural network-based modelling. The study 

resulted in a low average error of 3% once it was compared to measured illuminances. A 

more recent study by Clara Lorenz and Jabi (2017) analysed the efficiency of integrating 

supervised ML through using ANN to predict daylight autonomy levels for a typical office 

room. The study found that more accurate results can be achieved when a large set of data 

is sufficiently trained, which shows the potential of using this method to estimate the 

daylight autonomy of interior spaces. 

Regarding a simulation-based model approach, Keshtkarbanaeemoghadam et al. (2018) 

developed an ANN model, trained by a BP algorithm, to estimate the total heating energy 
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demand of a shelter located in Iran. The study obtained the data by conducting 328 

computer simulations using a Grasshopper plugin linked to the EnergyPlus engine. Nine 

inputs were selected to train and test the NN: "wall thickness, wall U-value, wall R-value, 

window U-value, window R-value, number of occupants, equipment load, and infiltration 

rate". In addition, different ANN models were examined with one or two hidden layers to 

select the most suitable architecture network. According to the results, the best ANN model 

had an MSE of 0.73, which indicates that the ANN model is a promising approach and can 

substitute other methods to predict the heating energy demand in buildings. 

In another similar approach, Wong et al. (2010) conducted a simulation using EnergyPlus to 

generate a database of daily energy consumption for office buildings with daylighting. Then, 

these generated data were used to train and test the developed ANN model to predict daily 

building energy usage in fully air-conditioned office buildings in the early design stages. Nine 

dynamic inputs were selected that related to external weather conditions, building envelope 

design, and time variables using the feedforward MLP model. Regarding the output of the 

model, four nodes at the output layers were defined to estimate daily energy consumption 

for cooling, heating, electric lighting, and total building energy. The accuracy prediction of 

the model was measured using the Nash–Sutcliffe efficiency coefficient (NSEC), and the 

results for “cooling, heating, electric lighting and total building electricity were 0.994, 0.940, 

0.993, and 0.996, respectively”, which represents a highly predictive model. 

Ascione et al. (2017) proposed an ANN model to assess energy consumption and thermal 

comfort to predict the energy performance for office buildings in Italy. The study developed 

two network models; the first model was for existing building stock, and the second one was 

for renovated buildings in the presence of energy retrofit measures. The outcome data of 

the performed simulation by EnergyPlus were used to train and test the ANN network. Then, 

a "Simulation-based Large-scale sensitivity/uncertainty Analysis of Building Energy 

performance" (SLABE) was implemented to improve and optimise the network. Three 

different outputs were addressed for the first network (existing building): “primary energy 

consumption of space heating and cooling; the ratio of yearly discomfort hours”; and 

geometry, envelope, operation, and HVAC were selected as inputs of the network. 

Khayatian et al. (2016) utilised the Italian CENED database to train the ANN model for the 

evaluation of energy performance certificates in the residential sector. The aim of the study 

was to replace the manual evaluation of assessing every building, which is time consuming, 

with the ANN approach for faster predictions. Several models with various combinations of 

direct and derived inputs were tested to develop the most reliable model. In addition, the 
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selected inputs were optimised to achieve a high prediction accuracy model. The 

researchers observed that the selection of 12 inputs from all the examined inputs was 

sufficient to predict the heat demand indicator, which indicates that inputs have a significant 

impact on the model’s accuracy performance.   

Zhang et al. (2015) compared different models to estimate the HVAC in an office building. 

Based on the results of the study, the ANN model did not perform well compared to other 

models because the model needs adequate data to "accurately capture the relationship 

between the input and output variables". 

Another study by Kialashaki and Reisel (2013) conducted a comparison between two ML 

techniques, namely, ANN and MLR, to forecast the future energy demand for the US 

domestic sector. The ANN model was trained using the BP technique with seven inputs: 

population, gross domestic product, median household income, house size, cost of 

residential electricity, natural gas, and oil. The architecture of the ANN consists of three 

layers, specifically, the input layer, hidden layer, and output layer. In the hidden layer, each 

neuron includes a nonlinear activation function by using the sigmoidal logistic function, 

which influences the performance accuracy of the model. Historical data from several 

sources were used from the period 1984-2010 to estimate the future energy demand for the 

period 2010-2030. 

Deb et al. (2016) used a data-driven technique of three institutional buildings in a university 

campus in Singapore to forecast future daily cooling demand. Their results show that the 

ANN model is able to predict cooling demand for the next 20 days using the 5 previous days 

as inputs with a good accuracy between the measured and predicted data (Deb et al. 2016).  

Platon et al. (2015) compared two ML models, namely, ANN and Case Based Reasoning CBR, 

to predict hourly building electricity use in an institutional facility. Data were collected over 

15 months to be used for training and testing the developed models. According to their 

comparison results, ANN model prediction is more accurate than CBR for predicting the 

energy consumption of the building on an hourly basis. However, it was found that CBR is 

more appropriate when dealing with a small amount of data, while a large amount of data is 

necessary for ANN modelling and training in order to achieve a high level of accuracy (Platon 

et al. 2015). 

Regarding the prediction of the hourly cooling demands of the building. Li et al. (2009) et al. 

presented four modelling methodologies: MLFFNN, RBFNN, GRNN, and SVM. The relative 

prediction errors of the training samples for the four models were found to be less than 

0.02%, which indicates that the models can accurately estimate building cooling demands. 
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Shakouri and Banihashemi (2019) conducted a different study in which they constructed a 

predictive model based on ANN to evaluate the performance of windows with regard to the 

heating and cooling loads. There was a total of ten influential factors that were fed into the 

network as input layers. These inputs include the following: the U-factor, emissivity, Solar 

Heat Gain Coefficient (SHGC), Dry Bulb Temperature (DBT), Wind Speed (WS), Solar 

Radiation (SR), diffuse SR, Humidity (H) Orientation (O), and month. Meanwhile, heating and 

cooling loads were the output of the network. 

To date, no studies have explored the integration of ANN into predicting the energy 

performance of AFs. In addition to the mentioned studies related to the existing 

performance-simulation tools, these tools are not developed specifically for AFs but provide 

limited and misleading information for adaptive systems (Loonen et al. 2017). Therefore, this 

lack emphasises the need to examine different approaches for the performance of AFs in the 

initial design stage for advances in and the improvement of overall building performance. 

Regarding solar radiation predictions, Mohandes et al. (1998) modelled global solar radiation 

using an ANN model as a function of latitude, longitude, altitude, and sunshine duration for 

ten different cities in Saudi Arabia. The MLFFNN with a BP algorithm were used to train the 

network. The optimal network consists of 4, 10, and 1 neuron in the input, hidden, and 

output layers respectively (Mohandes et al. 1998). Ouammi et al. (2012) built an ANN model 

to estimate the monthly solar radiation in different Moroccan cities. Inputs for the networks 

are normalised values of longitude, latitude, and elevation from 1998 to 2010, and predict 

that solar irradiation varies from 5030 to 6230 W/m2/day. In another study, Abdulazeez 

(2011) trained the ANN model with the following parameters: wind speed, relative humidity, 

air temperature, and soil temperature. The model has an accuracy of 94% in predicting the 

hourly global solar radiation. The author utilised a feedforward with a BP ANN model to 

forecast the monthly average global solar irradiation on a horizontal surface in Gusau, 

Nigeria. The desired output is SI, while the input parameters are sun duration, maximum 

temperature, and relative humidity. The results reveal that the estimated and measured 

values of global sun irradiation are in good agreement. 

Benghanem et al. (2009) constructed an ANN model to predict solar radiation in Al-Madinah 

(Saudi Arabia). A neural network was trained using the data from the previous 4 years, and 

then it was tested and validated using data from the most recent year. The model was 

trained with three inputs, namely, air temperature, relative humidity, sunshine duration, 

and the day of the year. Yadav and Chandel (2014) demonstrated that ANN approaches are 

more effective than traditional, linear, nonlinear, and fuzzy logic models for predicting solar 
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radiation. Marzouq et al. (2017) conducted a comprehensive evaluation of ANN-based 

radiation prediction studies on a monthly, daily, and hourly basis. It was found that only a 

few studies had utilised hourly forecasts for their results. In addition, the author noted the 

lack of literature on ANN-based direct and diffuse solar radiation prediction. 

Qazi et al. (2015) stated that ANN models can reliably estimate solar radiation in various 

climatic circumstances because ANNs accept more inputs than empirical models, hence 

enhancing their reliability. The study suggested employing ANN approaches for hourly solar 

prediction in future research for improved results. In addition to discussing potential inputs, 

the study emphasised that selecting the appropriate parameters is vital for doing the 

prediction with greater precision. Reddy and Ranjan (2004) created an ANN algorithm in 

India, where solar radiation data from thirteen stations were collected. Month, time, air 

temperature, relative humidity, latitude, longitude, altitude, wind speed, and precipitation 

were used as inputs. Comparing the findings of the ANN model to those of other empirical 

models revealed that the performance of the ANN model was superior. 

Hasni et al. (2012) used month, day, hour, temperature, and relative humidity values as 

inputs to estimate global solar radiation in the southwest region of Algeria. A BP ANN 

approach was used to train the network. The first set of data (from February 2, 2011, to May 

31, 2011) was used to train the network, while the second part was used to test the 

network. The results had an MAPE of 2.9971% and an R2 of 99.999%, indicating that the 

predicted solar global radiation values for the period between February 2 and May 31, 2011, 

were extremely close to the measured data. In another study, an ANN-based solar radiation 

estimation model developed by Koca et al. (2011) was used to predict solar radiation for 

seven cities in the Mediterranean region of Turkey's Anatolia. Six distinct combinations of 

inputs were utilised to determine the optimal ANN configuration for prediction: latitude, 

longitude, altitude, months, average temperature, average cloudiness, average wind 

velocity, and sunshine duration. The data of years 2005, 2007 and 2008 were utilised for 

training, while data from 2006 were utilised to test the network model. The results show 

that ANN-based solar radiation prediction models were highly accurate in the chosen region 

based on the prediction error values presented in this study (Koca et al. 2011). 

Notton et al. (2012) developed three ANN models with five inputs, namely, declination 

angle, hour, zenith angle, hourly horizontal irradiation, and hourly global irradiation, to 

predict hourly global radiation on inclined planes. R2 values for the first, second, and third 

ANN models were 99.79%, 99.82%, and 99.70%, respectively. Ozgoren et al. (2012) 

estimated daily total global solar radiation using three distinct ML algorithms: multi-linear 
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regression (MLR), multi-nonlinear regression (MNLR), and feedforward ANN approaches. The 

models made use of the recorded solar duration, air temperature, wind speed, and year 

(monthly and daily). The approaches that were created had been implemented and tested in 

the city of Adana in Turkey, with an MAPE of 9.23% and an R2 of 97.5%. 

Mellit and Pavan (2010) built an ANN-based solar irradiance forecast model for predicting 

the next 24 hours. The network consisted of three layers with three inputs: the mean daily 

SI, the mean daily air temperature, and the date, while the output layer offered 24 hours of 

SI for the following day. SI and air temperature were collected between July 1, 2008, and 

May 23, 2009, and November 23, 2009, and January 1, 2010, which served as the network's 

training and testing data. For the purpose of validating the model, K-fold cross-validation 

was utilised. On sunny days, the correlation coefficient between predicted and measured SI 

was greater than 98%, whereas on cloudy weather, it was less than 95%. 

2.12.2. Decision Tree Studies 

Limited applications have implemented DT techniques in relation to building studies 

compared to ANN or other ML models  (Ahmad et al. 2017a; Ahmad et al. 2017b). Tso and 

Yau (2006) presented a comparison study between three modelling techniques to estimate 

average weekly electricity energy consumption in Hong Kong (Tso and Yau 2007). They 

found that both DT and ANN are applicable models compared to a regression model because 

of their understanding of energy consumption patterns and the prediction of energy usage. 

In another study by Yu et al. (2010a), the researchers developed a predictive model to 

improve building energy performance based on the use of DT (Yu et al. 2010a). They applied 

the use of DT on a residential building to predict the energy use intensity (EUI) level. The 

authors concluded that the use of the DT method makes it possible to classify and predict 

the energy usage of the building accurately, which would lead to a high energy performance 

building.  

Regarding RF algorithms, Breiman (2001), stated that RF was initially designed to optimise 

the conventional DT approach. The author suggested employing an RF as a predictive 

regression technique for energy studies. Ahmad et al. (2017) predicted the hourly electricity 

consumption of HVAC systems at a Madrid hotel using an RF algorithm. Ma and Cheng 

(2016) used RFs to identify the relevant amounts of 171 parameters connected with the 

regional energy consumption intensity of residential buildings. 

DTs were used by Yu et al. to predict energy usage. The authors modelled building energy 

usage intensity levels to calculate residential building energy performance indices. According 

to the findings, DT-based algorithms can produce fairly accurate predictions and can be used 
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by users without any experience of computer programming (Yu et al. 2010b). In another 

study by Hong et al. the authors developed the DT method to reduce electricity 

consumption in school buildings. Moreover, DTs can be used to classify educational facilities 

according to their electric energy use. The results showed that using a DT method increased 

prediction accuracy by 1.83–3.88% (Hong et al. 2012a).  Similarly, Hong et al. [23] clustered 

multifamily dwelling complexes based on their gas consumption. Different ML algorithms 

were used, such as an ANN, a genetic algorithm, and a multiple regression analysis. 

According to the results, the predictive accuracy of the DT model increased by 0.06–01.45%. 

These results clearly highlight the significance and use of DTs for forecasting (Hong et al. 

2012b).  

Tsanas and Xifara (2012) compared a traditional linear method to an RF to determine which 

method was optimal for making predictions. The effect of eight input factors on residential 

building cooling and heating loads was evaluated. The eight input variables included relative 

compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and 

distribution of glazing area. For the simulations, a total of 768 distinct houses were used. 

Ecotect was used to evaluate which of the two models was better. The value for the heating 

load was 0.51 and the value for the cooling load was 1.42. The results demonstrated the 

potential of RF algorithms as an alternative to traditional regression techniques (Tsanas and 

Xifara 2012). 

2.12.3. Discussion of the Review  

Figure (2.31) shows the distribution of the studies based on different factors including 

building type, data collection, target of the developed model, data-splitting procedure, 

prediction term, and performance metrics used to validate the model. Based on the 

examined studies, most studies have focused on office buildings and residential buildings 

with 44% and 28% respectively. These studies focused on energy building studies instead of 

other factors due to the high energy consumption of these buildings. This analysis focused 

only on ANNs or DTs or on studies that compared these two algorithms with other ML 

models. The analysis showed that 47% of the studies utilised an ANN to train their models, 

while 28% of the studies utilised DTs method. On the other hand, 25% of the studies used 

multiple models as a comparison study. In terms of prediction capability, current studies 

focused more on yearly time prediction with 45% compared to other prediction terms, such 

as hour, day, week, and month; these represent 23%, 15%, 2%, and 12%, respectively. This 

indicates the need to examine other predictions terms for future research. 
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The analysis revealed that 59% of the current analysed studies used real data to train the 

model, while 41% utilised simulated data. Using real data is advantageous when they are 

easily accessible; however, simulation data are useful in some cases where real data are 

limited, for instance, when it is difficult to instrument a building due to technical or financial 

constraints. Regarding the performance evaluation metrics, the most commonly used 

evaluation metrics are the RMSE, R2, and MAE. Overall, 29%, 27%, and 10% of the reviewed 

studies evaluated their models using RMSE, R2 and MAE, respectively. According to the 

current study, most studies did not include information regarding the process of splitting the 

data. The reason is that data split is one of the hyperparameters that can be tuned during 

the training process, which may vary depending on the size of data used, and other 

parameters. Westermann and Evins (2019) reviewed the use of surrogate modelling for 

sustainable building design; in this study, the authors stated that a random separation of 

80% for training and 20% for testing is suitable once the data are properly structured.  

According to Amasyali and El-Gohary (2018), “A machine learning model predicts energy 

consumption based on a set of features. These features can be related to outdoor weather 

conditions, indoor environmental conditions, building characteristics, time, occupancy and 

occupant energy use behavior, and/or historical energy consumption”. Existing studies used 

different features or inputs based on the target of their model.  
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Figure 2.31: Analysis of the existing studies that used ANN or DT methods for building performance 
prediction.
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Table 2.3. ANN and DT application techniques to building-energy-related areas.  

ID 
Study 

(Reference) 
Building 

Type 
Target Inputs Outputs 

Data 

Data 
Collection 

ML Method 

Tools 
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Metric 
Volume Availability Data Split 
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1 

(Keshtkarban
aeemoghada

m et al. 
2018) 

Residential 
Heating 
demand 

“Nine input variables: 
(Wall thickness, wall u-

value, wall R-value, 
window u-value, 
window R-value, 

number of occupants, 
area, equipment load, 

infiltration rate)” 

Heating 
energy 

demand 

328 
computer 

simulations 
- 

70% training, 
30% testing, 

and 30% 
validating. 

Simulation 
ANN 

 

Logistic 
sigmoid 

and purlin 
(linear) 

Year 
 

Energy-plus, 
Grasshopper, 

MATLAB 

MSE, 
R2 

2 
(Wong et al. 

2010) 
Office 

building 

Energy 
perform

ance 

“Four inputs for external 
weather conditions, 
four inputs for the 

building envelope, and 
day type (i.e., weekdays, 

Saturdays and 
Sundays)” 

Daily 
electricity for 

cooling, 
heating, 
electric 

lighting and 
daily total 
electricity 

use. 

8760 hourly 
records of 

generic office 
building 

- 
70%, 30% for 

training, 
testing. 

Simulation ANN 
Logistic 
sigmoid 

Day 
Energy-Plus, 

MATLAB 
RMSE, 
MBE 

3 
(Kalogirou et 

al. 1997) 
Office 

building 
Heating 

load 

“Window area, external 
wall area, partition area, 
floor area, roof, window 

type, wall type, and 
room temperature”. 

 

Heating loads 250 cases - 
90%, 10% for 
training and 

testing. 
Real Data ANN 

Three 
hidden 
slabs of 

different 
activation 
functions 

Year - R2 

4 
(Paterson et 

al. 2017) 
Educational 

Energy 
perform

ance 

“Building 
characteristics: Floor 

area, surface exposure 
ratio, building depth 

ratio, orientation, 
construction year, 

glazing ratio, phase of 
education, ventilation 
strategy, adjacency, 

number of pupils, and 
occupancy hours”. 

Annual 
energy use 

(EUI), 
thermal 

energy use, 
electrical 

energy use 

502 school 
buildings 

 

(DEC), 
and 

(CIBSE) 

80%, 10%,10% 
for training, 
testing, and 
validating. 

Real Data ANN 
tangent 
sigmoid 

Year MATLAB RMSE 

5 
(Hong et al. 

2014) 
Educational 

Energy 
perform

ance 

“Construction year, 
phase of education, 
number of pupils, 

Fossil-
thermal 

energy use 

465 primary 
and 

secondary 

UK Display 
Energy 

Certificate 

80%, 10%,10% 
for training, 
testing, and 

Real Data ANN - Month MATLAB 
RMSE, CV, 

MAPE 
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ID 
Study 

(Reference) 
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Target Inputs Outputs 

Data 

Data 
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ML Method 
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internal environmental 
conditioning, site 

exposure, orientation, 
adjacency, floor area, 
building depth ratio, 
compactness ratio, 

surface exposure ratio, 
glazing ratio, glazing 

type, roof shape, 
Heating degree-days, 
and Cooling degree-

days”. 

(heating, and 
electricity 

use. 

school 
buildings 

(DEC) records validating. 

6 
(Ascione et 

al. 2017) 
Office 

building 

Energy 
perform

ance 

“Geometry, Envelope, 
Operation, and HVAC” 

 Energy 
consumption 
for heating 

and cooling, 

8800 building 
stock 

Italian office 
building stock 

90%, 10% for 
Training, 
Testing. 

Simulation ANN 
sigmoidal 
function 

Year 
Energy-Plus, 

MATLAB 
 

RMSE 

7 
(Khayatian et 

al. 2016) 
Residential 

Energy 
perform

ance 

“Several combinations 
of inputs were tested 

such as thermal 
conductivity i.e. walls, 

windows, roof and 
basement, volume, floor 

area, etc”. 

Energy 
performance 
certificates / 

predicting 
heat demand 

indicators 

187587 
Energy labels 

The online 
CENED 

database 
-  Real Data ANN - Year MATLAB 

R value, 
MAPE 

8 
(Zhang et al. 

2015) 
Office 

building 
HVAC 
loads 

“Weather data (ambient 
dry bulb temperature) 
as an input variable”. 

HVAC hot 
water energy 
consumption

s 

Three 
months data 

collected 
- - Real Data 

GPR, 
GMM, 
ANN 

Tangent 
sigmoid 

Day 
Monitored 

building 
energy usage 

R2, RMSE, CV 

9 
(Kialashaki 
and Reisel 

2013) 
Residential 

Energy 
demands 

“Population, gross 
domestic product, 
median household 

income, house size, cost 
of residential electricity, 

natural gas and oil”. 

Energy 
demand in 

the US 
residential 

sector 

Data from 
the period of 
1984–2010 

The data 
obtained from 

the Energy 
Information 

Administration 
(US) 

-  Real Data ANNMLR 
logistic 
sigmoid 

Year - 
R2, 

MSE, Cp 

10 
(Deb et al. 

2016) 
Institutional 

Cooling 
loads 

“Energy data for five 
consecutive days” 

Cooling 
demand 

The data of 
one to two 
years were 
gathered 

from three 
institutional 

- - Real Data ANN - Day MATLAB R2 
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ID 
Study 

(Reference) 
Building 

Type 
Target Inputs Outputs 

Data 

Data 
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buildings in 
the campus 

 

11 
(Naji et al. 

2016) 
Residential 

Energy 
perform

ance 

“Insulation K value, and 
insulation thickness”. 

Total heating 
and cooling 

energy 

180 data of 
different 
material 

thicknesses 
and 

insulation 
properties 

- 
70%, 30% for 

Training, 
Testing. 

Simulation 
ANNELM

GP 
sigmoid 
function 

Year 
EnergyPlus, 

MATLAB 
RMSE, R2 

12 
(Platon et al. 

2015) 
Institutional 

Electricit
y 

demand 

“Hourly measurements 
related to building 
operation, weather 

data, air temperature 
and relative humidity”. 

Hourly 
electricity 

consumption 

An 
institutional 
facility (data 

collected 
over 15 
month) 

- 

“Data from 
2013 was used 

for model 
training, and 

the 2014 
measurements 
were used as 

validation 
data”. 

Real Data ANNCBR - Hour - CV, RMSE 

13 
(Li et al. 
2009) 

Office 
building 

Cooling 
load 

“Outdoor weather 
parameters and indoor 
change of occupancy, 

starting and stopping of 
the equipment, OAT, H, 

and SR” 

Total cooling 
loads 

- - - Simulation 

ANNSVM
BPNN, 
RBFNN 

and 
GRNN 

 

Log Hour 
DeST, 

MATLAB 
RMSE, MRE 

14 
(Geyer and 
Singaravel 

2018) 

Office 
building 

Cooling 
and 

heating 
loads 

“Outdoor air-dry bulb 
temperature, Outdoor 
air relative humidity, 

wind speed, wind 
direction, sky 

temperature, diffuse 
and direct solar 

radiation, azimuth and 
latitude solar angle, 

solar hour angle, WWR, 
Orientation, Wall, 

window, Roof, Floor, 
Ground Floor, Zone”. 

Total yearly 
heating and 

cooling 
energy 

consumption 

800 design 
combinations 

- 

70% for 
training, 15% 
for validation, 
and 15% for 

testing 

Simulation ANN 
Sigmoid 
function 

Month
, Year 

Energy Plus, 
MATLAB, 

TensorFlow 
R2 
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ID 
Study 
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Target Inputs Outputs 

Data 

Data 
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15 
(Asl et al. 

2017) 
Office 

building 

Energy 
perform

ance 

“Geometry parameters, 
construction 

parameters, and load 
parameters” 

 
 

Annual 
energy use 

180,000 data 
points 

- 
67% training 
set and 33% 

test sets 
Simulation ANN, DT 

Rectified 
Linear Unit 

(RELU), 
softmax, 
sigmoid 

and linear 

Year 

Autodesk 
Insight 

energy, Keras 
library with 
Scikit Learn 
package in 

Python 

RMSE, R2 

16 
(Chakraborty 
and Elzarka 

2019) 

Office 
building 

Cooling 
and 

heating 
loads 

“Year, month, day of the 
week, hour, holiday, 

daylight saving, 
temperature, relative 

humidity etc” 

Cooling 
electricity, 

Heating gas 

Four years of 
energy data- 

of a large-
size office 
building 

(2012–2015) 

US Department 
of Energy 

Year 2012 used 
for training the 

energy, and 
years from 

2013 to 2015 
used for 
testing. 

Simulation 
ANNXG 
Boost 
OLS 

Logistic 
sigmoid 

Year 
EnergyPlus, 

Python 
RN_RMSE, R2 

17 
(Lee et al. 

2019b) 
Residential 

Energy 
perform

ance 

“Age, income, gender, 
education level, job, and 

indoor time”. 

User based 
Energy 

Consumption 

Surveys of 
5240 users 

“2014 Korean 
Time Using 

Survey” 

70%, 15%, 15% 
for Training, 
Testing, and 
Validating. 

Real Data ANN 
ReLU 

function, 
Year 

EnergyPlus, 
Survey, 

MATLAB 
MSE 

18 
(Chou and 
Bui 2014) 

Office 
building 

Cooling 
and 

heating 
loads 

“Relative compactness, 
surface area, wall area, 

roof area, overall 
height, orientation, 
glazing area, glazing 

area distribution” 

(Cooling load 
(CL) and 

heating load 
(HL)) 

768 cases of 
CL and HL 

- - Simulation 

ANN 
SVR, 

CART, 
CHAID, 

GLR 

Sigmoid Year Ecotect, 
RMSE, MAE, 

MAPE, R2 

19 
(Ahmad et al. 

2017a) 
Educational 

Energy 
perform

ance 

“Occupancy schedule, 
outdoor dry-bulb 

temperature, indoor air 
temperature, blind 

schedule, altitude angle, 
month of the year, 

diffuse solar radiation, 
hour of the day, azimuth 
angle, total transmitted 

so- lar radiation and 
direct solar radiation” 

Energy 
consumption

, Daylight 
Illuminance 

- - - Simulation ANN, DT   
EnergyPlus, 
neurolab, 

scikit-learn 
RMSE, CV, R2 

20 
(Hassanabadi 
and Namini)  

Residential 

Saved 
cooling 

and 
heating 

“U-factor, SHGC, 
emissivity, monthly 

average DBT, monthly 
average H, monthly 

Monthly 
total Saved 
Cooling and 

Heating 

400 
simulations 

- 

80% for 
training, and 

20% for 
validation 

Simulation 
ANN 

(MLFFN
N) 

Tanh, and 
Log 

Mon-
thly 

EnergyPlus 
MAPE, RMSE, 

R 2 
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ID 
Study 

(Reference) 
Building 

Type 
Target Inputs Outputs 

Data 

Data 
Collection 

ML Method 

Tools 
Performance 

Metric 
Volume Availability Data Split 
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u
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n
 

P
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d
ic
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o

n
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e
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average WS, monthly 
average direct SR, 

monthly average diffuse 
SR, O, month of the 

year” 

21 
(Ilbeigi et al. 

2020) 
Office 

building 
Energy 

demands 

“Wall U-value, 
equipment load rate, 

lighting density, 
infiltration rate, number 
of people, and roof U-

value. Apparently” 

Energy use 
intensity EUI 

1602 
simulated 

cases 
- 

70%, 15%, 15% 
for Training, 
Testing, and 
Validating 

Simulation ANN 
Logistic 
sigmoid 

Year 
Energy-Plus, 
Grasshopper, 

MATLAB 
MSE, R 

22 
(Kazanasmaz 
et al. 2009) 

Office 
building 

Electrical 
energy 

consump
tion 

“Date, hour, OAT, SR, H, 
UV index, UV dose, 

distance to window, O, 
floor ID, room ratio, 

point ID and 
illuminance” 

Illuminance 

The period 
between the 

months of 
November 
2007 and 

January 2008 

- - Real data 
ANN 

(MLFFN
N) 

Tanh Hourly 
Digital 

lightmeter 
PE 

23 
(Hasni et al. 

2012) 
- 

Solar 
radiation 

“Month, Day, Hour, 
TEMP, RH” 

Global solar 
radiation 

02 Febe31 
May 2011 

- 
80% for 

training, and 
20% for testing 

Real data ANN 

Hyperbolic 
tangent 
sigmoid, 
purelin 

Hourly MATLAB 
RMSE, MAE, 

R2 

24 
(Koca et al. 

2011) 
- 

Solar 
radiation 

“Lat, lon, alt, month, 
average cloudiness 
sunshine duration 

average wind velocity 
average humidity 
average TEMP” 

Global solar 
radiation 

Jan 2006 Dec 
2006 

- 

Data from 
2005, 2007 and 

2008 were 
used to for 

training, while 
data from 2006 
was utilised to 

test the 
network model 

Real data ANN 
Tangent 
sigmoid 

activation 

Mon-
thly 

MATLAB RMSE, R2 

25 
(Ozgoren et 

al. 2012) 
- 

Solar 
radiation 

“Lat, lon, alt, month, 
mean land surface 

temperature” 

Global solar 
radiation 

206 data 
records 

- 90% - 10% Real data ANN 
Sigmoid 
function 

Mon-
thly 

MATLAB RMSE, R2 

26 
(Notton et al. 

2012) 
- 

Solar 
radiation 

“Hour, declination, 
zenith angle, horizontal 
global solar irradiation, 

extra-terrestrial 
horizontal solar 

irradiation” 

Global solar 
radiation 

Jan 2006 - 
Dec 2010 1st 

- 60% - 40% Real data ANN 
Sigmoid 
transfer 
function 

Mon-
thly 

- RMSE, MAE 
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ID 
Study 

(Reference) 
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Data 

Data 
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ML Method 

Tools 
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Metric 
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27 
(Mellit and 

Pavan 2010) 
- 

Solar 
radiation 

“Daily solar irradiance, 
mean daily air TEMP, 

DOM” 

Global solar 
radiation 

- - - Real data ANN - Day MATLAB RMSE, MBE 

28 
(Benghanem 
et al. 2009) 

- 
Solar 

radiation 

“Air temperature, 
relative humidity, 

sunshine duration, and 
the day of year” 

The global 
horizontal 

solar 
radiation 

Data from 
1998 to 2002 

The National 
Renewable 

Energy 
Laboratory 

-  Real data ANN - Day MATLAB 
RMSE, MBE, 

MPE 

29 
(Tso and Yau 

2007) 
Residential 

Electricit
y 

demand 

“Flat size, number of 
members in the 
household, and 

ownership of air-
conditioner” 

Electricity 
energy 

consumption 

1201 records 
of 

household’s 
energy data 

- -  Real data DT - Week - RASE 

30 
(Yu et al. 
2010b) 

Residential 
Energy 

demand 

“Annual average air 
temperature, house 

type, construction type, 
floor area (m2), heat 

loss coefficient 
(W/m2K), equivalent 

leakage area (cm2/m2), 
number of occupants, 

space heating, hot 
water supply kitchen” 

Energy use 
intensity EUI 

80 residential 
buildings in 

Japan 
- -  Real data DT - Year - - 

31 
(Ahmad et al. 

2017b) 
Hotel 

HVAC 
loads 

“DBT: outdoor air 
temperature, DPT: dew-
point temperature, RH: 
relative humidity, HR: 
hour of the day, Mon: 

month of the year, Day: 
day of the week, WS: 

wind speed” 

Hourly HVAC 
energy 

consumption 

Data from 
Jan/2015 

until 
April/2016 

- -  Real data DT - Hour scikit-learn 
RMSE, CV, 

MAPE, MAD, 
R2 

32 
(Hong et al. 

2012a) 
Educational 

Electricit
y 

demand 

“Location (e.g., region), 
building (e.g., founder 
type, structure type, 

elapsed years, building 
area, No. of stories, and 

total floor area), and 
inhabitants (e.g., No. of 

students, No. of 
teachers, No. of classes, 

Energy 
consumption 

6282 
elementary 

schools’ 
buildings 

- -  Real data DT - Year - - 
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and No. of students per 
class)” 

33 
(Tsanas and 
Xifara 2012) 

Residential 
Energy 

perform
ance 

“Relative compactness 
surface area 

wall area 
roof area, overall height 

orientation 
glazing area 

glazing area distribution 
“ 

Total heating 
and cooling 

energy 

768 distinct 
houses 

- -  Simulation DT - Year Ecotect MAE, MSE 

34 
(Ahmad et al. 

2017c) 
Educational 

Energy 
perform

ance 

“Solar altitude angle, 
solar azimuth angle, 

direct normal radiation, 
diffuse horizontal 

radiation, day of the 
week, hour of the day, 

month of the year, 
outdoor dry-bulb air 
temperature, wind 
speed, outdoor air 
relative humidity, 

window blind position, 
occupancy “ 

Daylight 
illuminance 
and energy 

consumption 
 

Classroom 
model in a 

school 
building 

 

- -  Simulation DT - Year 
EnergyPlus 

 
RMSE, CV, R2 

35 
(Ma and 

Cheng 2016) 
Residential 

Energy 
demand 

“Building, economy, 
education, 

environment, 
households, 

surrounding, and 
transportation” 

Energy use 
intensity 

(EUI) 

3640 multi-
family 

Houses 

The 
Department of 
City Planning of 

NYC 

-  Real data DT - Year - MSE, RMSE 

36 
(Alammar et 

al. 2021) 
Office 

building 
Solar 

radiation 

“Hour, month, building 
contexts (b00, b01, b02, 
b03), façade floor level, 
orientation, and façade 

level height, features 
are x/y/z coordinates of 

the test points” 

Incident solar 
radiation 

50,545 total 
number of 
iterations 

- 

80% for 
training, 6.67% 
for validation, 

and 13.37% for 
testing 

Simulation 
(RF)/AN

N 
ReLU Hour 

Grasshopper, 
PyTorch 

RMSE, MAE, 
R2 

37 (Barus 2021) 
Office 

building 
Solar 

radiation 

“Location of the PV 
Module, size of the 

panel, orientation of the 

Annual solar 
radiation 

(ASR) 

2200 random 
layouts were 

generated 
- - Simulation (RF) - Year Revit MAPE, R2 
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PV module, and size and 
orientation of panels 

above the PV module” 

38 
(Moosa et al. 

2019) 
- 

Solar 
radiation 

“Temperature, relative, 
humidity, pressure, 
rainfall, wind speed, 

wind direction” 

Global 
horizontal 
irradiation 

Year (2017) 
for training. 

from January 
2018 to April 

2018 for 
testing 

Solar radiation 
data (SoDa) 

website 
- Real data (RF) - Hour - RMSE, MAE 

39 (Wei 2017) - 
Solar 

radiation 

“Ground weather, 
satellite remote-
sensing, and sun 

position” 

Hourly 
surface solar 

radiation 

hourly data 
for 7 years 

(2010–2016) 
- - Real data (RF) - Hour - 

MAE, RMSE, 
R2 
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2.13. Identified Gaps and Conclusions 

Section (2.5.2) reviewed the previous research on AFs in the area of BPS. Each of the studies 

is classified according to their AF system technology, which includes (whether the system is 

conventional or non-conventional, the AF system type, the building type, and the climate), 

their ability to simulate dynamic or static states, and whether the adaptation is based on 

geometric or material changes. In addition, the evaluation methods used in these studies 

according to its capabilities and challenges, their control strategy, control sensors, and the 

design objective of the system. 

Current studies showed that simulation software tools have difficulties when modelling 

complicated AF systems that modify their geometry components based on different time 

steps either per minute, hour, or season. Additionally, there is no straightforward method, 

and there is a lack of well-accepted methods to evaluate the adaptive behaviour of a façade. 

In recent studies, the automatic control system to automate non-conventional AF systems 

was not properly considered during the simulation due to the complexity and the interface 

limitations of current PBS systems. However, the automatic control system was employed in 

the case of dynamic façades with basic movement (conventional façade), such as Venetian 

blinds, roller shades, dynamic blinds, and louvres. In these shading systems, the adaptive 

behaviour is not complex, and modelling and simulating the model is integrated into most 

BPS software packages. Lastly, studies confirmed that setting up the model for simulating 

the AF system is time consuming and challenging with the current PBS tools.   

Since the development of AFs has increased significantly in recent years (Elzeyadi 2017; 

Hosseini et al. 2019b; Böke et al. 2020; Bui et al. 2020; Panya et al. 2020; Shi et al. 2020), it is 

essential to find an alternative approach that requires less computational knowledge and 

that is less time consuming for predicting their performance efficiently during the early 

design stages. To the best of the author’s knowledge, no studies have used ML algorithms to 

predict the energy performance of AFs. The lack of well-accepted strategies and the 

mentioned limitation to simulate the adaptive behaviour of a façade, therefore, points to 

the need to find an alternative method, such as ANN or DT as emulators surrogate models to 

predict the energy performance of AFs. Thus, ANN and RF will be developed and validated to 

predict the performance of AF systems in significantly less time compared to BPS tools. The 

specific research methods concerned with filling the identified gaps in literature are detailed 

in the next chapter. 
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CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

3.1. Introduction  

This research will frame a suitable research design, including the development of 

appropriate techniques and methods, to conduct this study rigorously. The chapter begins 

by describing the research design and methodology for this investigation, as well as 

reviewing the philosophical paradigms, approaches, strategies, and methodologies utilised in 

this study, and providing the rationale behind their selection. In addition, it presents the 

data collection and analysis methods utilised to ensure that the research questions, 

objectives, and aims have been addressed. 

 

Numerous disciplines have a common research process; however, what varies per domain is 

the nature of the research challenges and objectives. Research challenges and questions in 

architectural design relate to buildings, their occupants, the environment, and their design, 

as well as construction processes, building systems and materials, the design process, etc. It 

is possible to address a wide range of issues, including both basic and applied research, but 

they all centre on buildings, their occupants, their environments, and the nature of certain 

design stages (Aksamija 2021). Figure (3.1) shows typical architectural design phases, 

starting with pre-design, conceptual design, schematic design, design development, 

construction documentation, construction administration, building operation, and post-

construction activities. 

 

Figure 3.1: Typical architectural design phases. 
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3.2. Research Methodology and Methods  

A research methodology is a comprehensive framework that supports the fundamental 

concepts associated with a research paradigm (O’Leary 2017). Aksamija (2021) defined 

research methods as the mechanisms used to examine the established research questions. 

Researchers use research methods to test their theories and hypotheses. According to 

Kothari (2004), a research methodology is a systematic inquiry designed to answer research 

questions. The following section will discuss the three common research methodologies, 

namely, quantitative, qualitative, and mixed methods, in addition to their related techniques 

and methods. A unique set of strategies and procedures are used in each of these methods. 

Figure (3.3) shows the basic characteristics of the three research methodologies. 

 

Figure 3.2: The basic characteristics of the three research approaches.  

3.2.1. Quantitative Approach  

The objective of a quantitative approach is to collect factual data to explore the correlations 

between facts. It includes variables and data that have been measured and analysed 

statistically (Genot 2018). Research questions and hypotheses can be tested using numerical 

data obtained through this method. Quantitative methods generally use experimental and 

survey design strategies including questionnaires, structured interviews, and structured 

observations for collecting data (Aksamija 2021). The most common quantitative methods in 

architectural research include simulation and modelling, quantitative surveys, and 

correlational research. These research methods are objective by their nature. They can be 

used to predict the future performance of buildings, analyse human behaviour and opinion, 

test hypotheses, and investigate building performance and the built environment (Aksamija 

2021).  

Simulations use models to imitate real-world scenarios and to study their behaviour, 

interactions, performance, etc. It is possible to use simulations in architectural research to 

investigate the efficiency of building systems and materials, energy-consumption of 

buildings, structural studies, daylighting, and the flow of people through a space. Typically, 

simulations rely on computer-generated models of the system or process being studied to 

predict their behaviour. As a result, a model represents an object or process, and there are 

three different types: visual, mathematical, and computational. 
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3.2.2. Qualitative Approach  

The qualitative research method seeks to comprehend the participants' perspective. For 

example, it can be used to study participants' reactions to a phenomenon as well as their 

ideas, behaviours, and feelings prior to experiencing it (Groat and Wang 2013; Saunders et 

al. 2016). It collects qualitative data to study specific research issues, often concentrating on 

human, social, behavioural, cultural, historical, or theoretical aspects of architectural 

research (Creswell 2014). This method is primarily employed in the fields of the humanities, 

sociology, and anthropology (Braun and Clarke 2015). This method is usually associated with 

the inductive approach, where researchers collect evidence to develop concepts and form 

theories instead of testing hypotheses as in the deductive approach. Qualitative approaches 

collect data from a variety of sources, including interviews, observations, focus groups, 

archival research, and existing documents. Therefore, data analysis and interpretation by 

researchers are crucial elements of the qualitative research process. 

3.2.3. Mixed-Methods Approach 

Many researchers prefer quantitative research methods to qualitative methods, or vice 

versa. Each of these methods has its advantages and disadvantages. However, a mixed-

methods approach combines qualitative and quantitative methodologies by employing 

various strategies (Creswell and Clark 2011). For studies with numerous goals, a mixed-

methods approach is ideal since it promotes generalisations and shared findings (Kumar 

2014). Different phases of research, including data collection, data processing, 

interpretation, and dissemination, might employ a mixed methods approach. The findings 

from the various approaches can be used to compare, corroborate, or disprove the 

research's claims (Kumar 2014). According to Bryman (2016), conducting a mixed-methods 

research project requires additional time and money. Consequently, the researcher must 

arrange for sufficient resources, in terms of both cost and time. 

3.3. Choosing a Quantitative Approach  

The method selected for this research was determined by the research questions, aim, and 

objectives derived from the research problems and the study's rationale. The research 

methodology employs a quantitative approach to data collection with the objective of 

developing a surrogate model as alternative to the existing Building Performance Simulation 

tools (BPS) for predicting the performance of AFs in office buildings in the early stages of the 

design, using data that are expressed numerically, such as solar radiation, shade factor, 

operative temperature, cooling loads, hours, months, etc., Moreover, the methodology used 
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in this research is underpinned by simulation and modelling and by case studies of office 

buildings in a numerical manner. Thus, these methods of data collection are quantitative as 

opposed to qualitative methods. According to Punch (2005) and Saunders et al. (2016), 

quantitative research typically employs numerical data and has a predetermined or fixed 

structure, predetermined research questions, and predetermined objectives. In addition, 

Creswell (2014) described certain features of quantitative studies, such as the use of closed-

ended questions, a predetermined technique, and the numerical observation of data. 

The rationale behind adopting a quantitative research method as opposed to a qualitative 

one is that it makes possible the testing of hypotheses and the determination of whether a 

theory is supported. In addition, it allows for the generalisation or replication of research 

results due to its alignment with a deductive approach (Allwood 2012; Creswell 2014). Based 

on the defined hypothesis, data are obtained to either confirm or deny the hypothesis and 

provide additional insight into the topic. This study is not concerned with the social aspects 

of a phenomenon; rather, it focuses on the environmental impact of AFs on workplace 

cooling energy usage. As a result, the method for social studies was not implemented.  

3.4. Research Design  

A research design is defined as “the ways which the data will be collected, analysed in order 

to answer the research questions posed and to provide a framework for undertaking the 

research” (Knight and Ruddock 2009). Furthermore, it is up to “the plan, structure, and 

strategy of investigation to find answers to research questions as validly, objectively, 

accurately, and economically as possible” (Groat and Wang 2013). The quality of research is 

determined by the way the research activities are organised, by the appropriate methods 

used to gather and analyse data, and by the fulfilment of the study's objective. The following 

section outlines the framework for conducting this research. It will detail how the data were 

obtained, stored, trained, and validated to develop a predictive surrogate model using 

computational algorithmic workflow and machine learning techniques.   

3.5. Research Framework  

Undertaking a research study requires an early indication of the various stages of the 

research (Kumar 2014). Thus, the researcher must plan the data collection, analysis, and 

assessment phases of an investigation after the topic and research approach have been 

selected. The research plan for the overall procedure is represented in Figure (3.4). This 

research was carried out in five phases to achieve its objectives. These phases are identified 

in the section below:  
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Figure 3.3: The overall research framework.  

 

3.5.1. Literature Review 

During this phase, the researcher studied the relevant literature to identify the knowledge 

gaps and gain a comprehensive grasp of the issue. Conducting an ongoing literature review 

allows the researcher to keep abreast of new developments in the field and gain from 

knowledge shared by others in the area (Wisker 2007). Murray and Hughes (2008) stated 

that it is helpful to review previous studies and their findings, as the in-depth knowledge of 

other researchers helps to uncover knowledge gaps (Murray and Hughes 2008). In addition 

to helping in the development of a research technique, the literature review aids in 

understanding the existing systems, methodologies, and technical approaches for a study.  
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The data for this study were extracted from a variety of sources, such as highly ranked peer-

review journals and databases, Google Scholar, credible websites, books, e-books, and 

government websites. The literature review for this study is organised into three sections; 

part (1) presents an introduction to AFs, their history, similar terms used by scholars and 

their distinctions, and the influences of AFs on buildings' energy consumption. In addition, 

this section analyses the usage of automatic control systems to automate the AF, as well as 

their responsive time scales, and adaptation scales. 

Part (2) explored the challenges and difficulties designers face in predicting the performance 

of an AF shading system using the existing BPS tools. In addition, some of the current 

simulation tools are examined and their limitations regarding AF performance prediction are 

highlighted. This part also discusses the existing AF studies by looking at three main factors: 

(1) AF system type, including whether the system is conventional or non-conventional, 

building type, and climate; (2) adaptability; and (3) performance. The adaptability and 

performance group includes the following parameters: adaptive typology, the state and type 

of change it generates, the behaviour changes generated by the system (whether 

geometrical or material-based), the timeframe of adaptability and its various configurations, 

the evaluation methods used, the control strategy, the control sensors, the physical domain 

of the performance evaluation, and the design objective of the system. 

Part (3) reviewed machine learning techniques and their potential use for building 

performance predictions. In addition, two machine learning models, namely, Artificial Neural 

Network (ANN) and Decision Tree (DT), were reviewed as well as the process of 

development of a surrogate model.  This part also covers current research that employed 

ANN, DT or RF approaches for predicting building performance, with an emphasis on energy 

and solar radiation studies. The review is organised primarily according to the following 

factors: (1) general information, (2) data description, (3) algorithm, and (4) performance 

evaluation.  

3.5.2. Data Collection  

Data collection was the second phase of the research, which consisted of two main 

activities: case studies, and modelling and simulation. The section below provides a 

comprehensive explanation of the collected data.  

3.5.2.1. Case studies  

The chosen case studies were the base of the modelling and simulation phase. These case 

studies were used and analysed numerically to help in forming the prototype physics (design 
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factors) of the base case model of the study, such as the building plan, floor height, floor 

plate efficiency, leasing depth, number of floors, gross floor area (GFA), net leasable area 

(NLA), core dimensions, and glazing orientation, etc. This process was useful to accomplish 

the first stage for creating and setting up the digital model and its input parameters, the aim 

being to define the existing typical office building, and the design characteristics of high-rise 

office buildings in the studied region, Riyadh city. In addition, the base office model was 

developed with the consideration for building regulations, design guidelines, benchmarks, 

and the integration of knowledge from the literature. Therefore, the prototype could be 

representative of actual case study buildings. 

A total of twenty-four high rise office cases were selected, and these cases were located at 

the central area of downtown Riyadh and the downtown area of King Abdullah financial 

district. These case study data were collected from design documents, architecture firms’ 

webpages, books, magazines, and internet websites. The selection process was based on the 

following criteria: 

- The study focuses on office towers in high rise buildings located in hot-arid climates 

as the chosen case is Riyadh city; thus, the selection of cases covered only high-rise 

office buildings in Riyadh.  

- Availability of drawings and illustrations.  

- Cases with a minimum of thirteen storeys were selected, as this defines the 

minimum height of high-rise office buildings. 

3.5.2.2. Data Collection Using Modelling and Simulation  

Machine learning (ML) models demand employing a sufficient database to construct the 

surrogate model to achieve highly accurate prediction results. Hence, a synthetic database 

was generated in this phase using a simulation technique due to the absence of real data for 

developing a ML surrogate model, which will be discussed on phase (4). Therefore, this 

phase examined in detail the modelling and simulation of an office tower with AF, situated in 

a hypothetical urban context. Results of the analysis in phase (1) were used to inform the 

digital model before conducting the simulation aiming to create a prototype that would 

represent the real case of office buildings. 

This phase had two main objectives: (1) developing an algorithmic workflow to predict the 

energy consumption of AFs using a computational parametric tool to propose a workflow to 

overcome the existing challenges as discussed in section (2.5), and (2) building a database of 

hourly cooling loads, hourly solar radiation, and hourly shade factor to be used for training 



CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

108 

the machine learning model. Thus, the framework for developing this phase to generate the 

required database could be structured in four primary stages: 

(1) Development of the hypothetical base model and its surrounding context. 

(2) Validation of the model.  

(3) Implementation of AF system.  

(4) Automation of the system based on different external and internal dynamic 

conditions.  

Three evaluation approaches have been identified in the literature: field measurements and 

surveys, numerical calculations, and simulation tools. Experiments are the most precise but 

also the most costly and time-consuming way, whereas numerical calculations, such as 

mathematical formulas and simulations, require validation. Simulation was used in this study 

to collect data because it is the most cost-effective way when time and money are the main 

constraints, and it has advantage of being cheaper and, of being used in early predictions, 

and of being a widely used method especially given the unavailability of a physical building in 

which to conduct experiments. Furthermore, with simulations, it is possible to analyse a 

wide range of design scenarios and complex modelling that cannot be accomplished easily 

on a real-world scale. In addition, there was no available access to real data. This research 

develops a simulation-based framework to predict the performance of AF for reducing the 

annual cooling energy consumption in office towers as well as for building a database to 

support the research framework. To achieve this, a computational parametric tool 

‘Rhinoceros 3D’ and its plug-in ‘Grasshopper’ were used to facilitate the parametric 

generation and simulation of the AF system. Moreover, Ladybug and Honeybee plug-ins 

were used, that is linked to Energy Plus and Radiance, to calculate energy loads and solar 

radiation. The proposed algorithmic workflow created a link between plug-ins including 

Ladybug, Honeybee tools, and Energy plus for running the simulation with an energy 

management system (EMS) to program a code that would be able to automate the AF 

system before each time step of the simulation, and lastly, with a Colibri plug-in tool to step 

through all the design variations automatically to create the dataset. Then, TT toolbox stored 

the resulted data in an Excel spreadsheet. The use of the algorithmic approach offered a 

flexible multidisciplinary platform for simulating AFs that respond to dynamic boundary 

conditions, as well as they help in performing a large number of simulation iterations. 

The initial step was to develop a prototype with its multiple configurations. As the study aim 

is to investigate the effect of AF on energy consumption; thus, understanding the model 

inputs is critical to the study's investigation, as some will be static, and others will be 
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dynamic. if these parameters are correct and valid, and simulation tools are used accurately, 

then the evaluation process can begin, and the output data should be reliable. In this study, 

the prototype of a building without an AF (base model) must be developed and validated 

prior to the completion of simulations on prototypes with AF systems. The validation process 

ensures that the base case model accurately represents real office buildings by comparing its 

simulation outputs.  

McHaney (1991, p. 95) defined the validation technique as “The process of determining that 

the real-world system being studied is accurately represented by the simulation model. This 

process ensures that the conceptual model is correct. It establishes an acceptable level of 

confidence that the conclusions drawn from running the simulation will give insight to the 

true operating characteristics of the system being modelled. The validation process should 

begin during the initial stage of a simulation project and continue until the end... Model 

validation can be best determined through the analysis of the simulation output data. If the 

model output closely represents the expected values for the system’s real-world data, it is 

considered to be valid”. 

Chapter 4 will describe in detail the prototype's development phase, the simulation, and the 

validation of the base case prior to evaluation. The steps of the conducted simulations are 

outlined below:  

1- Modelling (Rhino, Grasshopper, and Colibri) 

2- Validation of the Base Model 

3- Solar Radiation Analysis (SR) (Ladybug tool) 

4- Shade Factor Analysis (SF) (Ladybug tool) 

5- Energy Simulations (Honeybee tool, which was linked to Energy Plus) 

6- Adaptive Façade Automatic Control System (Energy Management System EMS) 

7- Database Recording (Colibri and TT toolbox (Excel)) 

Because machine learning requires sufficient data for training the surrogate model, 

parametric design tools were used, as they help in performing a large number of simulation 

iterations. However, conducting simulations is time consuming and requires high 

computational power. Therefore, this research used a set of cloud-based machines to 

overcome the issue of time consumption, which will be discussed below.  

Regarding simulation time, running a simulation of this scale demands a high level of 

computational power that standard computers cannot provide. Consequently, in addition to 

a powerful PC, a series of cloud-based machines were customised via the Paperspace web-

based platform (https://www.paperspace.com). Each machine was composed of the 
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following hardware properties: Quadro P5000, 8 CPU, 30GBRAM, 50GB SSD (Internal 

Storage), 100GB SSD (External Storage), and dedicated GPU.  

3.5.3. Data Analysis  

The data analysis was the third phase of the research where the outcomes of the simulations 

were analysed and compared. This phase evaluated the following:  

- Engineering parameters, such as exterior wall and glazing types.  

- External shading system types including fixed vertical shading, fixed horizontal 

shading, AF with scaling movement, and AF with folding movement.  

- Different control scenarios including (C1: incident solar radiation on window 

(W/m2), C2: transmitted solar radiation (W/m2), C3: direct solar radiation (W/m2), 

and C4: both incident solar radiation and operative temperature).  

- Office orientation.  

- Building contexts.  

- Shading state variations.   

3.5.4. Development of Machine Learning Surrogate Models  

Based on the discussed studies, machine learning models can be used to predict the energy 

performance of buildings. This can be achieved by developing a model which requires 

sufficient data to train, test, and validate the model. Therefore, in this phase, the synthetic 

database that was generated using simulation in phase 2 was translated and pre-processed 

into two machine learning models: ANN, and RF. The collected cooling loads database and 

solar radiation database were used to construct, train, and validate these models. The 

constructed predictive tool aims to assist architects to predict the energy performance of 

AFs during the early phases of the design in significantly less time compared to PBS tools. 

Different steps were undertaken to develop the surrogate model as follows (Figure 3.5):  

- Data pre-processing.  

- Model training, testing, and hyper-parameter tuning. 

- Model validation. 

The research developed different surrogate machine learning models include (1) Artificial 

Neural Network (ANN) to predict hourly solar radiation, (2) Random Forest (RF) to predict 

hourly solar radiation, (3) Artificial Neural Network (ANN) to predict hourly cooling loads, (4) 

Random Forest (RF) to predict hourly cooling loads, and (5) Random Forest (RF) considering 

the time series data.  
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Figure 3.4: A diagram showing (Phase 4: Development of ML surrogate models), and (Phase 5: 
Incorporation of the surrogate model within a computational design tool). 

A comparison was conducted between ANN and RF in both cases of the design objectives: 

hourly solar radiation and hourly cooling loads regarding model predictions. In addition, a 

comparison was conducted to examine the time series inputs using RF modelling. To analyse 

the effect of time in the data, two sets of experiments were carried out including the time 

window approach and the time differencing approach. These models were developed using 

Python programming language (Pytorch framework) and (scikit-learn). The experiment used 

two PCs with the following specifications: Intel Xeon E5-2630 CPU, 80 GB RAM, and Nvidia 

GeForce GTX 1080-Ti GPU, and Intel Core i9-10920X - 12 Cores 3.5 GHz, NVIDIA GeForce RTX 

3080 10 GB GDDR6X, 16 GB DDR4.   

The Artificial Neural Network (ANN) was structured as follow:  

(1) Modelling and training settings:  

- The ANN type used was the Multilayer’s feedforward with the back propagation 

technique.  

- Input data were pre-processed prior to training (some were treated as categorical or 

discrete, while others were treated as continuous).   

- The performance of the network was evaluated with the root mean square error 

(RMSE), mean absolute error (MAE) and R2-score. 

(2) Optimization  

- The optimization is a critical process in the development of machine learning 

models; it ensures an appropriate network is chosen to avoid the under fitting or 

over fitting of the data and to achieve a better generalization of the network. The 

experiment of hyper-parameters tuning was carried out using two different 

procedures: (A) Optimization using grid-structure, and (B) K-fold cross validation. 

(3) Validation and Testing  
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- After selecting the optimal architecture network, a new model was constructed 

using the entire training data set. Then, the developed model was tested with the 

unseen testing data set. 

- Random cases were tested to compare the prediction accuracy between simulated 

data prediction with ANN model prediction.    

The Random Forest (RF) was structured as follows:  

(1) Modelling and training settings:  

- Input data were processed prior to training (some were treated as categorical or 

discrete, while others were treated as continuous).   

- The performance of the network was evaluated with the root mean square error 

(RMSE), mean absolute error (MAE), and R2-score.  

(2) Optimization  

- The experiment of hyper-parameters tuning was carried out using two different 

procedures: (A) Optimization using grid-structure, and (B) K-fold cross validation.  

(3) Validation and Testing  

- The developed model was tested with the unseen testing data set. 

- Random cases were tested to compare the prediction accuracy between simulated 

data prediction with ANN model prediction.   

3.5.5. Incorporation of the Surrogate Models within a Computational Design Tool, 

and Validation of the Results.  

The trained surrogate models were imported into a computational design tool (Grasshopper) 

to establish a workflow to predict the energy performance (cooling loads) of the design 

scenarios of an AF system in the early stages of the design for design decision-making. The 

surrogate models (ANN and RF) were saved as a pickle file (PyTorch file), which is a 

specialized format that helps to run ML models in an external environment. The surrogate 

models were evaluated in terms of prediction accuracy, time efficiency, and their 

generalisation prediction capability. To validate the result, the results obtained from the 

developed surrogate models (ANN and RF) were compared to the simulation results for both 

hourly cooling loads and hourly solar radiation. Moreover, the time required to make a 

prediction was compared between the simulated results and the predicted results using the 

surrogate models. 

Following that, a new design scenario was created to test new cases with the developed ML 

models in phase (4) and to predict the outcomes within the Grasshopper interface. The new 

design considers several office towers in different urban contexts compared to the original 
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model done during the simulation phase. The aim is to test large scale modelling and 

compare the time required to make predictions using ANN and RF models with the time 

required to make predictions using simulation tools. Furthermore, different cities that 

shared hot climate characteristics similar to those of the current study were tested regarding 

the prediction accuracy of the developed surrogate models.  

3.6. Chapter Summary  

This chapter presented the research design and approach adopted, as well as the data 

collection, data analysis, model development, and validation and testing processes. To meet 

the research objectives, a quantitative approach was employed. Table (3.1) presents the 

research objectives and methodologies employed. Figure (3.6) shows the research 

framework of all stages. 

Table 3.1: Research objectives and methods  

 Research Objectives  Research Methods  

1 
- Investigate the impact of adaptive façade on energy 

performance.  
Literature search  

2 
- Develop an algorithmic workflow to evaluate the 

energy performance of AF shading system. 

Computational approach 

Ladybug, Honeybee tools, 

EnergyPlus & EMS  

3 
- Generate a synthetic database of AF cooling energy 

loads of offices to train and test the surrogate models.   

Computational approach 

(Modelling and simulation) 

4 
- Develop machine learning models to predict energy 

performance of AF in the early stage of the design.   
Machine learning (ANN and RF) 

5 

- Establish a workflow that incorporates the surrogate 

model within a computational design tool to assist in 

early-stage design-decision making. 

Computational approach 

(Grasshopper- GH C Python) 
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Figure 3.5: The research framework.
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CHAPTER 4: SYNTHETIC DATABASE GENERATION USING SIMULATION 

APPROACH 

4.1. Introduction  

This chapter aims to consider the data generated using the simulation approach for 

developing the machine learning (ML) models. In the building domain, researchers can 

collect data to establish a surrogate model from three different resources: (1) data collected 

from sensors, such as smart meters, building management systems, and the internet of 

things (IoT), (2) data collected from building stock, such as annual energy demand, and (3) 

data collected from building simulations, such as the results from building simulation tools 

(Westermann and Evins 2019b). The study adapted the synthetic databases (simulation-

based approach) to develop the surrogate model because the data can be generated using 

simulation software within a reasonable time compared to actual data, the collection of 

which could take years. In addition, in most cases, real data is not as easily accessible as such 

data obtained from simulation. Furthermore, with simulations, it is possible to analyse a 

wide range of design scenarios and complex modelling that cannot be accomplished easily 

on a real-world scale.     

The first phase of this chapter examines different case studies of high-rise office buildings in 

the studied region to inform the modelling in phase (2) by looking at the architectural 

characteristics of high-rise office buildings and the building regulations and guidelines for 

constructing office buildings. By analysing these cases, the study aims to identify the main 

architectural characteristics for developing the base case model prior to conducting the 

energy simulation. In the second phase of this chapter (Part 2: Synthetic Database 

Generation, Modelling-Simulation Based), the modelling and simulation were carried out 

detailing how data were collected to then form the synthetic databases. A generative 

parametric office tower and its urban context were designed and simulated, and this model 

then served as the base case model for all the conducted simulations of the study. 

Moreover, this section presents in detail the workflow conducted to simulate the AF energy 

performance; this involves setting up the model; establishing the hypothetical building for 

the study; validating the model; exploring how the model was parametrically generated; 

setting up the parameters of the office tower; and determining the input variables. The 

workflow also involves the implementation of fixed and adaptive shading systems, the 

simulation settings, and the approach followed to overcome the challenges of the AF 

simulation as discussed in the literature. Furthermore, it presents the automatic control 
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system applied to actuate the AF on an hourly basis with consideration of different 

environmental parameters. Lastly, this section presents the generated databases: solar 

radiation (SR) (KWh/m2) database, shade factor (SF) database, and energy (cooling loads) 

(KW/m2) database for different shading systems. 

4.2. High-Rise Office Building Characteristics  

In this phase, the study investigated different existing case studies of office buildings that 

were located in the same area as this study. This process is useful to accomplish the first 

stage for setting up the model and its input parameters, and it aims to define the existing 

prototypes and design characteristics of high-rise office buildings in the studied region. This 

is in addition to considering the design guidelines suggested by the Saudi Building Code 

(SBC) and reliable benchmarks, as presented in Section (4.4.4) of the simulation settings. 

A total of twenty-four high-rise office cases were selected, and these cases were located at 

the central area of downtown Riyadh and the downtown King Abdullah financial district 

(Figure 4.1). The selection process was based on the pre-defined criteria to inform the 

modelling stage of the simulation. The analysis of cases is based on parameters concerning 

the design consideration of high-rise office buildings. These cases consider the following 

parameters: heights of high-rise office buildings, floor plate efficiency, leasing depth, 

number of floors, floor-to-ceiling height, gross floor area (GFA), net leasable area (NLA), core 

dimensions, and core configuration as shown in (Appendix B). Data from the buildings were 

obtained from design documents, architecture firms’ webpages, books, magazines, and 

websites. The case study analysis focused on two stages: the first stage looked at general 

information about the building, while the second stage provided more details about the 

considerations for office design. Figure (4.2) shows the twenty-four selected office buildings 

in the pictures numbered from 1 to 24. 
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Figure 4.1: Geographical map showing the locations of the selected high rise building cases. 
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Figure 4.2: High-rise office buildings: selected cases 

High-rise office buildings are defined as structures with thirteen or more storeys which are 

found in the high-density urban context of a city (Marfella 2015). Generally, sites in these 

urban locations are very small with an extremely expensive property value. Therefore, 

developers tend to derive maximum value from the site by constructing vertically to attain 

the maximum profit from the rentable office spaces. On the other hand, mid-rise office 
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buildings are defined as four to twelve storey buildings located in high density areas and 

suburban locations. Figure (4.3). 

 

Figure 4.3: Office building types. 

4.2.1. Floor Efficiency 

The feasibility of high-rise office buildings can be accomplished when the gross area and NLA 

are maximized for the selected site (Kim and Elnimeiri 2004). In this case, developers and 

owners can obtain the maximum returns from the high-cost values of the land. The floor 

efficiency is the ratio of NLA over the GFA Figure (4.4). Commonly, space efficiency is 

required to be no less than 80% in current real state standards (Marfella 2015). According to 

the analysed case studies, space efficiency ranges from 70% to 85% with an average of 80% 

Figure (4.5). In addition, the average of GFA is 1,225 sqm, so the typical floor office should 

produce between 980 sqm and 1,040 sqm NLA.  
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Figure 4.4:  (A) Gross Floor Area (GFA), and (B) Net Lettable Area (NLA). 

 

Figure 4.5: Graph showing the floor efficiency parameter of the analysed cases. 

4.2.2. Leasing Depth   

Another parameter that is closely related to space efficiency is the amount of usable space 

between the exterior wall (building envelope) and the core area (services). This area is 

known as the leasing depth or lease span; it is an important factor that influences other 

parameters, such as natural daylight, layout of interior offices, and subdivisions of rentable 

spaces. Smaller office spaces from the core to the exterior envelope allow workers to 

connect with the outside and benefit from natural daylight Figure (4.6). From the collected 

data as shown in (Appendix B), the leasing depths for the 24 different cases studied range 

from 9 m to 15 m with an average lease depth of 10 m Figure (4.7).     

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

P
u

b
lic

 In
ve

st
m

en
t 

Fu
n

d
…

A
l F

ai
sa

lia
h

 T
o

w
er

Sa
m

b
a 

B
an

k 
H

Q
 T

o
w

er

K
A

FD
 P

ar
ce

l 1
.1

8

P
P

A
 3

0
 P

ar
ce

l 5
.0

3

K
A

FD
 W

o
rl

d
 T

ra
d

e 
C

e
n

te
r

K
A

FD
 P

ar
ce

l 3
.0

5

K
A

FD
 P

ar
ce

l 5
.0

8

P
P

 1
0

 P
ar

ce
l 3

.0
4

K
in

gd
o

m
 T

o
w

e
r

K
A

FD
 P

ar
ce

l 4
.0

1

K
A

FD
 P

ar
ce

l 4
.0

4

K
A

FD
 M

u
q

ar
n

as
 T

o
w

e
r

K
A

FD
 P

ar
ce

l 2
.1

2

P
P

A
 3

0
 P

ar
ce

l 4
.0

9

K
A

FD
 P

ar
ce

l 3
.0

9

K
A

FD
 P

ar
ce

l 2
.1

3

K
A

FD
 P

P
A

 3
0

 P
ar

ce
l 2

.1
1

O
la

ya
 T

o
w

e
r 

1

C
ry

st
al

 T
o

w
e

r 
2

 (
P

P
A

 3
0

…

C
ry

st
al

 T
o

w
e

r 
1

 (
P

P
A

 3
0

…

G
C

C
 B

an
k 

H
e

ad
q

u
ar

te
rs

…

K
A

FD
 P

ar
ce

l 2
.1

1

K
A

FD
 P

ar
ce

l 4
.0

6

A
ve

ra
ge

Floor efficiency

A B 



CHAPTER 4: SYNTHETIC DATABASE GENERATION USING SIMULATION APPROACH 

122 

 

Figure 4.6: Lease span in the office tower zone 

 

Figure 4.7: Graph showing the average leasing depth. 

4.2.3. Number of Floors - Floor Height 

The floor-to-floor height of high-rise office buildings is mostly consistent for all occupied 

storeys except for spaces such as the lobby, restaurants, and spaces for special functions. 

Based on the collected cases, the floor-to-floor height ranges from 3.80 m and 4.20 m with 

an average height of 4.0 m. The number of floors ranges from 11 floors to 77 floors with an 

average of 30 floors Figure (4.8). Most of the cases located the core at the centre of the floor 

plan.    

0

2

4

6

8

10

12

14

16

P
u

b
lic

 In
ve

st
en

t 
Fu

n
d

  P
IF

…

A
l F

ai
sa

lia
h

 T
o

w
er

Sa
b

a 
B

an
k 

H
Q

 T
o

w
er

K
A

FD
 P

ar
ce

l 1
.1

8

P
P

A
 3

0
 P

ar
ce

l 5
.0

3

K
A

FD
 W

o
rl

d
 T

ra
d

e 
C

e
n

te
r

K
A

FD
 P

ar
ce

l 3
.0

5

K
A

FD
 P

ar
ce

l 5
.0

8

P
P

 1
0

 P
ar

ce
l 3

.0
4

K
in

gd
o

 T
o

w
er

K
A

FD
 P

ar
ce

l 4
.0

1

K
A

FD
 P

ar
ce

l 4
.0

4

K
A

FD
 u

q
ar

n
as

 T
o

w
e

r

K
A

FD
 P

ar
ce

l 2
.1

2

P
P

A
 3

0
 P

ar
ce

l 4
.0

9

K
A

FD
 P

ar
ce

l 3
.0

9

K
A

FD
 P

ar
ce

l 2
.1

3

K
A

FD
 P

P
A

 3
0

 P
ar

ce
l 2

.1
1

O
la

ya
 T

o
w

e
r 

1

C
ry

st
al

 T
o

w
e

r 
2

 (
P

P
A

 3
0

…

C
ry

st
al

 T
o

w
e

r 
1

 (
P

P
A

 3
0

…

G
C

C
 B

an
k 

H
e

ad
q

u
ar

te
rs

…

K
A

FD
 P

ar
ce

l 2
.1

1

K
A

FD
 P

ar
ce

l 4
.0

6

A
ve

ra
ge

Leasing Depth



CHAPTER 4: SYNTHETIC DATABASE GENERATION USING SIMULATION APPROACH 

123 

 

Figure 4.8: Number of floors of the analysed office cases. 

4.2.4. Buildings Heights  

To determine the average height of the buildings in the context being studied, the study 

looked at a sufficient number of high-rise office buildings that were located in the 

downtown area. The building features such as building name, building height, number of 

floors, tall building type, year of construction, glazing orientation, external shading 

existence, and building geometry are presented in (Appendix B). Regarding the building 

height parameter, the data looked at both building height and number of floors. As can be 

seen from Figure (4.9), building heights range from a minimum of 36 m to a maximum of 

385 m with an average height of 120 m. 
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Figure 4.9: Graph showing the heights of high-rise office buildings in the studied context. 
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4.2.5. Building Geometry and Shading System  

The architectural shapes of tall buildings are believed to have evolved from the traditional 

extrusion of basic forms to the dynamic evolution of variants of computer-produced 

complex forms (Wells 2005). The main shapes of high-rise buildings, for example, can be 

viewed in basic forms, such as squares, triangles, and circles (Ching 2007). Other basic forms 

and irregular forms can be produced, such as an elliptical floor plan generated from a circle, 

and a rectangle which is generated from a square (Onyenobi et al. 2006). This method of 

conceptualising and altering the width, length, and height of a fundamental shape is widely 

employed in high-rise buildings, particularly in contemporary design approaches. According 

to Onyenobi et al. (2006), a form can be altered by removing a portion of its volume or as 

indicated by Wells (2005), by conducting many transformations on selected fundamental 

forms. 

Most high-rise buildings around the world are constructed with square and rectangular floor 

plans (Alaghmandan et al. 2014). In the case of Riyadh city, different forms can be seen in 

high-rise buildings. This study examined the form parameter of different high-rise buildings 

and found that various shapes were used to design these buildings, such as square, 

rectangle, circle, triangle, ellipse, and irregular shapes as presented in (Appendix B). Based 

on the analysis of 137 case studies of tall buildings in Riyadh, the results revealed that 

square and irregular plan shapes are the most commonly applied forms in high-rise buildings 

in Riyadh city with 40% and 27% respectively as shown in Figure (4.10). Thus, this thesis 

examines the square plan form, as it is the most widely used layout for high-rise buildings in 

the area under study and is also popular worldwide. 

 

Figure 4.10: Most applied forms in high-rise buildings. 
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Furthermore, the analysis examined whether or not a shading system existed for the 

investigated high-rise buildings to emphasise the significance of incorporating shading 

during the design phase. The results of the investigation revealed the lack of consideration 

given to installing a shading system in high-rise buildings in the studied region. As 

demonstrated in Figure (4.11), only 33% of tall constructions used shading devices, while 

nearly 60% of tall buildings were constructed without considering the use of shading devices 

to the building envelope. As discussed in the literature, different researchers agreed that the 

use of shading systems assists in reducing the energy demands of buildings. Another finding 

of the analysis showed that in recent years, there has been an increase in the application of 

shading systems in high-rise buildings, as demonstrated in Figure (4.12), due to the demand 

for sustainable green buildings. These buildings were constructed recently and were mostly 

found to be located in KAFD, which is an urban project that aims to promote energy efficient 

buildings.    

Regarding the glazing orientation parameter, the study indicates that 82% of these buildings 

used a fully glazed façade in all orientations. A few tall buildings selected full glazing on the 

east and north façades and avoided the west and south façades, as they receive the longest 

period of solar radiation in hot arid climates. These buildings were the earliest examples of 

tall buildings in Riyadh city as discussed in (chapter one). This practice followed the 

traditional building design that uses small windows to control the harsh climatic conditions. 

From this analysis, support can be offered for the findings of Elkhatieb (2016) study, which 

revealed that these high-rise buildings followed the international design style using a fully 

glazed façade and thus neglecting the variations of the local climatic conditions, the use of 

shading systems, and the cultural requirements of each city, while a few buildings were 

found that had considered the use of shading systems.  

 

Figure 4.11: Existence of shading devices in current high-rise buildings in the studied region. 
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Figure 4.12: Correlation between time and the application of shading systems in high-rise buildings. 

4.2.6. Case Studies Summary   

This phase of data analysis examined different cases of high-rise buildings to inform the 

modelling phase, which will be discussed in detail in the second phase. The case studies 

examined the following parameters: general building information, building height, number 

of floors, floor height, year of building construction, floor plan efficiency, GFA, typical floor 

area, NLA, leasing depth, building geometry, existence of shading system, and glazing 

orientations. These architectural characteristics were considered and implemented for the 

parametric study's base case. The development of the base case will be explained in detail in 

Section (4.4). Table (4.1) shows the average of each parameter of the investigated cases. 

Table 4.1. Summary of the examined parameters. 

Examined Parameters Average of Case Studies 

Floor Efficiency 80% 

Gross Floor Area (GFA) 1,225 sqm 

Typical Floor NFA (m2) 980 sqm 

Floor Efficiency 80% 

Leasing Depth 10.00 m 

Floor Height 4.00 m 

Number of Floors 30 

Building Height 120 m 
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4.3. Generation of Synthetic Database Based on Modelling and 

Simulation 

The main aim of the second phase is to build a synthetic database for testing and training 

the ML models using a simulation-based framework and to predict the performance of AF 

for reducing annual cooling energy consumption in office towers. Thus, a computational 

parametric tool ‘Rhinoceros 3D’, with its plugin ‘Grasshopper’ were used to facilitate the 

parametric generation and simulation of an adaptive system. Moreover, Ladybug and 

Honeybee plugins were used, which were linked to EnergyPlus and Radiance to calculate 

energy loads and solar radiation. The proposed algorithmic workflow creates a link between 

plugins including Ladybug, Honeybee tools, and EnergyPlus for running the simulation with 

an energy management system (EMS) to program a code that can automate the AF system 

before each time step of the simulation and lastly with the Colibri plugin tool to work 

through all the design variations automatically to create the dataset. 

As reviewed in Chapter (2), section (2.5.1), the current simulation tools have not been 

developed for such complex cases, such as the AF system. The study integrated both solar 

radiation analysis and energy simulation for future prediction through the ML approach to 

minimize the time consumed by the simulation process in the early stages of the design. 

Unlike conventional simulation methods, supervised ML has major benefits in terms of 

requiring less computation time and less effort and of being computationally unexpansive 

(Huang et al. 2015). The workflow of the simulation process was developed to fulfil the aim 

of the study. The systematic framework of this phase is presented in Figure (4.13).  
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Figure 4.13: Schematic framework of the modeling and simulation phase, and the surrogate model 
development phase. 
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4.4. Base Case and Adaptive Façade Modelling  

4.4.1. Modelling Stage  

After the typical characteristics of office buildings found in the existing case studies had 

been analysed, the modelling stage took place to conduct the simulation. This section 

explains in detail the process of modelling the base case model, the urban context, how the 

model was generated pragmatically, the rules of the parametric generation, and the 

implemented prototypes of shading systems. Then, a validation of the base model was 

carried out to ensure the validity of the proposed model. Firstly, the study developed a high-

rise office building as a base case in a hypothetical urban context located in the centre of 

Riyadh, Saudi Arabia. The developed base case model was utilised as a unit of measurement 

to quantify the variations in cooling demands in relation to the applied shading type. To 

establish the base model, consideration was given to the main high-rise building design 

parameters, such as number of floors, building height, floor-to-floor height, core location, 

building plan geometry, NLA, leasing depth, floor efficiency, and floor area. The architectural 

design, building services, and interior spaces are represented with a degree of abstraction 

during the modelling process to limit the number of model blocks, which might otherwise 

interfere with the output and cause unneeded software instability (Hamza 2004). 

The developed office building has 30 floors with a height of 120 m, which is the average 

height situation found in the centre of the KAFD. This office building was located in a 

theoretical site and was assumed to be surrounded by several mid-rise office buildings, 

which created direct, diffuse, and reflected solar gains on the building surface Figure (4.14, 

left) (Trigaux and De Troyer 2015). These solar gains would affect the annual energy demand 

of each office room of the building. The model was tested to examine a hot, arid climate 

such as Riyadh city, where overheating is a crucial factor. 

The dimensions of the layout and core area are fixed in all floors of the building as follows: 

(35 m * 35 m), with a total area of 1,225 m2 Figure (4.14, right). In this study, only shared 

side-lit office zones with an adaptive shading system were examined on each floor of the 

proposed office building, which faces the main orientations (north, south, east, west) to 

quantify solar radiation and the impact of an AF on building energy performance. The layout 

of each floor consists of the core and the offices zone. The core is situated at the centre of 

the floor plan and includes all the operational components of the office building. The typical 

office rooms are distributed according to the density of occupation. The area of the core 

services is 225 m2 (15 m * 15 m), and the NLA of the offices zone is 980 m2. The model 
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incorporated most of the design conditions of a high-rise office building according to the 

analysed studied cases in phase one as well as the design regulations by the SBC.  

 

Figure 4.14:  (Left) 3D parametric urban context, which varies in each simulation, and (Right) a 
detailed typical floor plan. 

4.4.2. Typical Closed Office 

The study examined only a typical side-lit office room facing the main orientations (north, 

south, east, and west) with different floor levels that varied based on the surrounding 

contexts Figure (4.15). The spatial dimensions of the office room are 4 m wide by 6 m deep, 

making a rectangular zone with a floor-to-ceiling height of 4 m. These dimensions represent 

a space that can hold two workstations. This closed office room was designed with a fully 

glazed working environment, giving a window-wall ratio (WWR) of 80%. Figure (4.16) shows 

the office zone created using Honeybee tool.  

 

Figure 4.15: Single closed office space within the office tower facing main orientations. 
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Figure 4.16: Scripting to create the office zone using Honeybee tools. 

4.4.3. Setting Up the Model Parametrically - Generative Parametric Tower  

Computational tools can be applied effectively to gather quantitative information about 

both the building’s performance and its design in the schematic design stage. In this 

research, Honeybee and Ladybug Grasshopper plugins were used to generate and simulate 

the model in terms of energy consumption. Grasshopper is a parametric modelling plugin for 

the Rhinoceros 3D modelling software, which allows designers to create simple, complex, or 

free forms without scripting experiences (Banihashemi et al. 2017). Sadeghipour Roudsari et 

al. (2013) developed Ladybug and Honeybee, which are plugin simulation tools on the 

Grasshopper platform. These tools perform hourly calculations of different analyses, such as 

the total energy demand. In addition, Ladybug provides a solar radiation analysis for 

calculating the energy collected on the building surface (Kim et al. 2012). These plugins are 

linked to EnergyPlus, a robust building energy simulation engine. In recent years, several 

researchers, engineers, and architects have considered EnergyPlus software as the most 

suitable engine for modelling the energy performance of buildings (Evins et al. 2011). 

Therefore, the simulation was carried out using both Ladybug and Honeybee for energy 

analysis, solar radiation, and SF calculations Figure (4.17). 

 

Figure 4.17: Parametric modelling and simulation tools used in the study. 
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The building context varied in each simulation (low, medium, and high) to test solar 

radiation and energy loads on all the levels and in all the main orientations (north, south, 

east, and west). The variation of heights of the surrounding contexts acted as one of the 

main features of geometrical variation in the study. In addition, the average height of the 

surrounding buildings was used parametrically to control the vertical location of the office 

room in each orientation in accordance with a lower-than-average, average, and higher-

than-average height setting. This was intended to simulate the varying amounts of sunlight 

and daylight that the offices in a building receive. The generative parametric office tower 

rules and their urban context are illustrated in Figures (4.18) and (4.19). The vertical location 

of the office was calculated using the following formula. 

𝑎 =  ∑ B00 +B01+B02+B03/n 

𝑙 = (𝑎) ∗ 0.50 

ℎ = (𝑎) ∗ 1.50 

Where a= Average, l= Lower than average, h= Higher than average 

B= Building context, n= Number of variables 
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Figure 4.18: Parametric modelling generation rules. 
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Figure 4.19:  Scripting for setting up the geometry in a parametric way. 

4.4.4. Climatic Analysis  

The development of any type of shade system to increase the energy efficiency of a building 

is dependent on the geographic location, latitude, and climate. Therefore, the city of Riyadh 

in Saudi Arabia was selected for this study. Riyadh is located in central Saudi Arabia, which 

has a hot, dry climate with cold winters and extremely hot summers Figure (20). In the 

summer, the average temperature may exceed 45 degrees Celsius, but the ambient 

temperature may approach 50 degrees Celsius Figure (4.21). In addition, the global 

horizontal radiation varies from 300Wh/m2 to 1060W/m2 highlighting the intensity of 

radiation buildings could receive as shown in Figure (4.22). As described in Chapter (1), Saudi 

Arabia has three distinct climate zones, with Riyadh's climate being Zone 1 - hot and dry. 

Before initiating the simulation, the Riyadh weather data were downloaded from the 

EnergyPlus weather map and then imported into the Grasshopper interface using the 

Ladybug tool. 
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Figure 4.20: The location and borders of Saudi Arabia and the location of Riyadh (USNews, 2019). 

 

Figure 4.21: The average annual daily solar radiation in KSA. 
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Figure 4.22: Dry bulb temperature (top), global horizontal radiation (middle), and direct solar 
radiation (bottom).  

4.4.5. Simulation Settings  

The accuracy of the predicated results performed in the simulation process depends heavily 

on the accuracy of the model inputs (Alnusairat 2018). Therefore, the simulation input 

values were defined based on the review of key building standards, benchmarks, and other 

related studies to ensure the accuracy of the model’s inputs: occupancy density, 

construction of materials, U-values of materials, shading materials, occupancy schedule, 

lighting schedule, equipment load per area, building services and thermal setting, cooling 

system, program, and zones. In the simulation settings, fixed inputs were kept identical 

throughout all the design iterations except the inputs of variables that were considered to 

be the influential parameters in the study. 

The study reviewed the following different benchmarks and office building guidelines during 

the simulation process to comply with the studied region and to ensure that the simulation 
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was as close to the real situation as possible: ASHREA 90.1-2010 (ANSI/ASHRAE/IESNA 2010), 

ASHRAE (2013), ANSI/ASHRAE Standard 209-2018 Energy Simulation Aided Design for 

Buildings, CIBSE Guides A for Environmental Design (2015), CIBSE Guide F for Energy 

Efficiency in Buildings (2012), Saudi Building Code (SBC,2010), and Saudi Building Code 

(Energy Conservation). The SBC was developed based on ASHRAE /IESNA standard 90.1 and 

the International Energy Conservation Code (IECC).  

4.5. Validation of the Base Model  

Validation is an essential step in the simulation process to ensure that the hypothetical 

model is correct and represents the real environment. Several researchers have examined 

the validation process of simulation models and their guidelines to validate the model in 

their studies (Sargent 2010; Qudrat-Ullah 2012; Rehman and Pedersen 2012; Hora and 

Campos 2015; Murray-Smith 2016; Zeigler and Nutaro 2016). These guidelines were 

provided to ensure that the model set up was correctly formulated and close to reality. 

Furthermore, Law (2009) stated that simulation models need to be validated before they can 

be used to make judgements. In general, the most definitive validation method is to 

compare model results with existing cases. In this section of the thesis, examples of case 

studies are used to support the validity of the base model. 

Base case model validation is necessary to ensure that the simulation results are 

representative of typical Riyadh office buildings and that all simulations have been validated, 

as stated in Chapter 3. In fact, the porotypes with the AF system were developed from the 

base case model, which does not feature an AF system. The base case model must represent 

typical high rise office buildings. If the simulation generates energy loads of the base case 

that match the energy loads of office buildings in Riyadh, the base case accurately 

represents Riyadh office buildings.  In this situation, the outcomes of all prototypes 

developed from the base case can likewise be valid. 

The base model was established based on existing case studies and design guidelines for 

office buildings which exemplify the typical characteristics of office buildings in Riyadh. In 

addition, the simulation settings and parameters were determined using a reliable 

benchmark. The validation process in the current study was carried out in two parts. In the 

first part, the results of the base model's annual energy consumption and annual cooling 

energy were compared to case studies published in the same region as the current study 

(Fasiuddin and Budaiwi 2011). The second part of the validation process entailed comparing 

the base case model with a good practice case study. Both processes are discussed below.  
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Firstly, the annual energy consumption for the base model of the study, which does not 

integrate an AF system, shows coherence with the five case studies examined. Fasiuddin and 

Budaiwi (2011) conducted a study on five commercial buildings in Saudi Arabia and provided 

detailed statistics for various factors, among which was annual energy consumption data. 

The annual energy consumption data for these case studies were obtained from the utility 

bills provided by the management or by the Saudi Electric Company (SEC). The annual and 

monthly energy consumption of the examined buildings revealed minor variations in energy 

use, with the lowest value being 250kWh/m2/year and the maximum value being 

275kWh/m2/year Table (4.2) (Fasiuddin and Budaiwi 2011).  

Table 4.2. The annual energy consumption of the examined buildings. 

 

Cases from Fasiuddin and Budaiwi (2011) By Author 

Case (A) Case (B) Case (C) Case (D) Case (E) Base Case 

Annual 
Consumption 

(kWh/m2) 

273.5 267.8 275.5 249.9 263.5 232.7 

 

Based on the above cases, the average annual consumption per unit area (m2) for all five 

buildings is approximately 266 kWh/m2/year. The developed base model was validated by 

comparing the simulation energy results with the annual energy consumption of the above 

reviewed case studies. The EUI of 266 kWh/m2/year serves as a typical annual consumption 

for commercial buildings in the studied region and provides the basis for comparison. Thus, 

an average annual consumption per square metre less than or equal to the above value is 

considered to be performing within the normal range of energy consumption. However, this 

value could be optimised when implementing the AF system. Demirbas et al. (2017) stated 

that “70% of Saudi electricity is consumed for air conditioning and cooling and the summer 

demand is about twice the winter demand.” Moreover, the King Abdullah Petroleum Studies 

and Research Centre (KAPSARC) reported that “cooling accounts for around 70% of 

buildings’ electricity consumption” (Alshehri et al. 2020). Thus, if the average annual energy 

consumption of the five buildings is 266kWh/m2/year, which is then multiplied by 70%, then 

186.2kWh/m2/year is the average annual cooling energy in office buildings.  

For the studied base case, the annual energy consumption result generated from the 

simulation averages 232.7kWh/m2/year (base case-south orientation = 263.2kWh/m2/year, 

base case-west orientation = 270.9kWh/m2/year, base case-north orientation = 

184.6kWh/m2/year, and base case-east orientation = 212kWh/m2/year) Figure (4.23). In 

addition, the average energy cooling load is 176.5kWh/m2/year (base case-south orientation 
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= 211.1kWh/m2/year, base case-west orientation = 217.3kWh/m2/year, base case-north 

orientation = 122.6kWh/m2/year, and base case-east orientation = 155.2kWh/m2/year) 

Figure (4.24). 

 

Figure 4.23: Annual energy consumption results of the examined building compared to base model. 

 

Figure 4.24: Annual cooling energy consumption of the examined cases compared to base model. 

The values of 186.2KWh/m2 for the average cooling of five cases and 176.5KWh/m2 for 

cooling loads of base case model are not significantly different, and the difference between 

the energy consumption values in the case studies and the base model is due to the use of 

some different settings. For example, the lighting density was higher in the case studies 

compared to the base case model. The model of the study considers 5.00 W/m2 based on 

the considered benchmarks, whereas the case studies consider a value of 10.8 W/m2. In 
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addition, the case studies use a range of 8 to 11 W/m2 for equipment power density, 

whereas the base model considers 4W/m2 to be the average benchmark value (ASHRE, 

2010). This comparison verifies the capability of the study's base model and the validity of 

the simulation outcomes.  

Secondly, an office building located in the same region of the study was examined by looking 

at its electricity bills to compare the base case model with a good practice case study. The 

utility bills were collected from the management team for a one-year period (2019). 

Moreover, other factors were obtained, such as building information, the building’s main 

measurements, floor area, glazing type, glazing ratio, etc. The main differences between the 

case study (F) and the examined five cases is the glazing type composition used and the 

specifications for construction materials. When examining the electricity bills of case F, the 

annual energy consumption recorded is 175.1kWh/m2/year and the cooling energy 

consumption is 122.5kWh/m2/year. For the studied base case, the average annual energy 

consumption result generated from the simulation is 177.1kWh/m2/year (base case-south 

orientation = 184.6kWh/m2/year, base case-west orientation = 194.8kWh/m2/year, base 

case-north orientation = 159.4kWh/m2/year, and base case-east orientation = 

169.9kWh/m2/year). The differences in energy consumption between the base case model 

and the good practice case are considered to be marginal. In addition, Figure (4.25) shows 

that the maximum cooling demand occurred during the summer months, which is 

acceptable given that the case study was conducted in a hot, arid climate. Therefore, the 

energy consumption results for the base model are reasonable, and the model could be 

employed for the research investigation. 

  

Figure 4.25: Monthly energy consumption compression between case study (F), which obtained from 
electricity bills and the simulated base case model. 
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4.6. Implementation of Adaptive Façade Shading System    

The main benefit of AF external shading systems is their ability to manage and reduce solar 

gains, which can significantly decrease cooling loads and eliminate glare. When designing an 

AF shading system, it is essential to consider aspects such as location, time, daylighting, 

environmental conditions, and control system, as they can block useful daylight from 

entering the space, thereby creating a need for artificial lighting. Dekay (2001) stated that 

successful exterior shading depends on the designer's awareness of when to allow and block 

the sun, considering the outdoor climatic conditions in each month. Internal shading is 

beneficial, as it provides privacy as well as visual and thermal comfort; however, it has the 

potential to trap heat that is radiated from inside surfaces and raise cooling demands during 

periods of excessive heat (Kirimtat et al. 2016). This research investigated only the 

implementation of external shading devices, as internal shading is mostly determined by 

human behaviour and is therefore outside the scope of this study. After the base case model 

had been validated, different prototypes of fixed and adaptive shading systems were 

installed to evaluate their impacts on energy performance compared to the base case 

model:  

Prototype (1) represents the base case model with no shading system, Prototype (2) 

represents fixed vertical shading, Prototype (3) represents fixed horizontal shading, 

Prototype (4) represents a scaling and translating movement, and lastly, Prototype (5) 

represents a folding movement Figure (4.26). The aim of these two movement patterns is to 

provide hierarchical configurations and self-shading geometry for the envelope (Hosseini et 

al. 2019b). Figure (4.27) shows the panel is scaling and folding within a rectangular grid of 

(0.80 cm * 0.80 cm), which was fixed throughout the analysis process. Six different shading 

states were designed, ranging from 100% fully open to 0% fully closed with intermediate 

states Figure (4.27). Furthermore, vertical and horizontal fixed shading systems were 

modelled based on the recommendations of previous studies (Sabry et al. 2014; Ghabra 

2019). These external fixed shadings consist of simple sun breakers, evenly spaced with 

(0.3cm) wide spacing and depth. The aim of implementing fixed shading systems is to 

compare this type of system with the adaptive shading system in terms of energy 

consumption in a shared office space within a tower building. However, these fixed shading 

devices are not the focus of this research, as they are used only to provide a comparison 

analysis with AF shading systems, which will be presented in the results chapter (5).   
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Figure 4.26: Different prototypes of an adaptive façade with different movement motions. 
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(A) Scaling and translating movement  

 

 

(B) Folding movement  

 

 

Figure 4.27: Modelling process of the AF geometry. (A) Scaling movement, and (B) Folding movement, 
which shows the variation of adaptive façade shading states.  
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4.7. Adaptive Façade Energy Simulation 

The studies examined in the literature review in Chapter (2) section (2.5.2) revealed the 

significant impact of an AF shading system on reducing energy consumption in office 

buildings. Furthermore, it shows the lack of a well-accepted framework to simulate the AF 

system in the early stages of the design that architects can follow. Thus, this study proposed 

an algorithmic workflow to evaluate the energy performance of an AF system using 

computational parametric tools. The energy simulation process comprised several steps as 

follows: (1) calculating the hourly incident solar radiation on the façade; (2) calculating the 

hourly shade factor of the proposed shading states in both scaling and folding movements; 

(3) defining the simulation settings such as input parameters, construction materials, 

thermal settings, HVAC system, zone loads, occupancy schedule, etc.; (4) assigning an 

automatic control system; and (5) running the simulation to calculate the hourly cooling 

loads. Figure (4.28) shows the modelling and simulation and the database framework of 

phase two. The modelling stage was reviewed in the previous section. This section mainly 

explores how the simulations were conducted with detailed information about each step.    
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Figure 4.28: Framework of the three conducted stages: modelling, simulation, and database 
recording.  
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4.8. Solar Radiation Analysis  

In terms of energy efficiency, the primary function of an external adaptive shading system is 

to regulate solar radiation passing through windows, which influences solar heat gain and 

the indoor daylight level. The main goal of conducting the solar radiation analysis is to 

collect the hourly incident radiation on the façade surface to be used as a sensor point for 

actuating the AF system. As mentioned in the literature, AFs can vary based on different 

environmental factors either internally or externally. These environmental factors, such as 

temperature, humidity, solar radiation, airflow, etc., have a major impact on the energy 

requirements of a building. This research focuses on solar radiation and temperature factors 

because of the excessive heat gain from solar radiation and the problem of high 

temperatures in hot, arid climates as shown in Figure (4.29). Throughout most of the year, 

severe weather conditions are common in hot regions such as Riyadh city. High levels of 

solar radiation influence a variety of surfaces, particularly during the long summer months 

(Zell et al. 2015). Hence, glazed façades create a variety of issues that must be thoroughly 

examined, mitigated, and solved to justify their use in such a scenario. 

 

Figure 4.29: Annual solar radiation map of the world (Asif 2016). 

Solar radiation was selected since it is one of the most often cited control inputs in the 

research literature (Yun et al. 2017). The average hourly solar radiation for a surface in 

Riyadh is 262.19 Wh/m2. The solar radiation varies from 300 Wh/m2 to 1060 Wh/m2 during 

the daytime over a year. The incident solar radiation was evaluated on the west façade of a 

vertical wall in Riyadh city. It can be noticed from Figure (4.30) during specific hours in April 

and September, the solar radiation exceeds 825 W/m2. 
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Figure 4.30: Incident solar radiation on a west-facing wall, Riyadh. 

4.8.1. Validation of Tool Accuracy  

In the field of environmental studies, several studies have validated Grasshopper, Honeybee, 

and Ladybug plugins that are linked to EnergyPlus and Radiance. Therefore, these plugins 

were used in this study to conduct solar radiation and energy simulation (Aksamija 2011; 

Donato et al. 2017; Elwy et al. 2018). Researchers have widely proven that Ladybug and 

Honeybee tools can provide accurate results when comparing simulation results with 

measured results, as well as their ability to adapt to different environmental conditions. 

According to Ibrahim et al. (2020) study, the Ladybug tool proved to be reliable when 

comparing the simulated data with measured data as well as when comparing the outcome 

of the simulation with other simulation software such as Envi-met. In another study, Poon et 

al. (2020) examined the differences between the simulated and measured data of the solar 

radiation that was received by the building envelope in Singapore's weather conditions. It 

was found that the data from the Ladybug simulation had an error of less than 12%. 

In order to demonstrate the accuracy of the Ladybug tool and validate the solar radiation 

output, the study validated and compared its solar radiation results against experimental 

studies conducted by Touma and Ouahrani (2018) and Ghabra (2019). Both of these studies 

were conducted in a climate similar to that of the study, that is, in hot climate zones. Touma 

and Ouahrani (2018) performed their experiments on 20 June and 20 December of the year 

using different measurement sensors, such as the CMP 11 Pyranometer K-type for solar 

radiation, K-type thermocouples for surface temperature, and the Hygro-thermo 

Transmitter for room air temperature. Each day, the experiment was performed 

continuously for 24 hours. The temperature and solar radiation measurements for the 

experimental days in Doha, Qatar are presented in Figure (4.31). The study simulated the 

two examined days to validate the results. The results of Touma and Ouahrani’s (2018) 

experiment showed that on 20 June, the temperature ranged from 33.8°C at 4:00 am to 

43.3°C at 6:00 pm, while solar radiation striking the glazed façade reached a maximum of 
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327 W/m2 at 11:00 am as shown in Figure (4.31, top). On the other hand, the winter 

temperature on 20 December ranged from 16.1 to 27.2℃, while solar radiation reached 666 

W/m2 at 11 am, as shown in Figure (4.31, bottom). As a result of the country's latitude in the 

northern hemisphere, south-facing vertical surfaces receive greater solar radiation during 

the winter, such as in November than during the summer, such as in June. In contrast, west-

facing surfaces receive a greater amount of solar radiation during the summer months. The 

simulated results reveal a similar hourly pattern of solar radiation striking the surface to the 

experimental study, which peaked at 250 W/m2 at 11:00 am, while the temperature varied 

between 29.9°C and 41.0°C on 20 June during the hot summer Figure (4.32, top). In addition, 

the winter day (20 December) shows an hourly pattern comparable to that of the 

experimental investigation, with solar radiation reaching 843.4 W/m2 at 11:00 am Figure 

(4.32, bottom). 

 

Figure 4.31: Temperature and solar radiation striking south-facing surface during (top) 20 June and 
(bottom) 20 December (Source: Touma and Ouahrani 2018). 
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Figure 4.32: Solar radiation striking south-facing surface during (top) 20 June and (bottom) 20 
December for the conducted study. 

In the second study by Ghabra (2019), the average monthly incident solar radiation 

(kWh/m2) was evaluated for four main orientations in Jeddah city, Saudi Arabia. According to 

their findings, the east and west façades received the maximum solar radiation between 

April and September, highlighting the necessity to shade these surfaces during the summer. 

On the other hand, the south façade received the highest incidence solar radiation values 

during the winter months Figure (4.33). A similar pattern was observed for all orientations 

indicating the accuracy of the simulation outcomes Figure (4.34). 
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Figure 4.33: Average monthly total incident solar radiation on four main orientations in Jeddah. 
Source: Ghabra (2019) 

 

Figure 4.34: Average monthly total incident solar radiation on four main orientations for the 
conducted study. 

4.8.2. Solar Radiation Settings   

Solar radiation simulation was conducted using the data from the weather file of Riyadh city, 

which was imported via the Ladybug plugin tool (Roudsari et al. 2013). This EPW weather file 

contains essential meteorological information, including hourly global horizontal radiation, 

direct normal radiation, dry bulb temperature, etc. Ladybug utilised the Gen-cumulative Sky 

module to generate an annual cumulative sky illuminance model, which utilises Radiance to 

simulate global and diffuse irradiance (Hensen and Lamberts 2011). The Ladybug Radiation 

Analysis Tool utilises the position of the sun at each hour of the year to calculate the amount 

of radiation received by external surfaces. Due to the implementation of the Perez diffuse 
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radiation model and ray-tracing technique, Radiance has been thoroughly proven to be 

more accurate and efficient for solar irradiance simulation studies (Freitas et al. 2015). 

The generated model in section (4.4) and its urban contexts is used in this phase to conduct 

the solar radiation analysis.  The incident solar radiation that strikes the window surface on 

each office room was calculated considering the urban context variation. Since solar 

radiation differs based on different parameters, such as surrounding context, orientation, 

hour of the day, month, etc., a generative design process was conducted parametrically with 

varied parameters to simulate most of the design settings. To that end, solar radiation 

analysis was performed considering the following main parameters: (1) office operational 

time, which was considered to be from 8:00 am to 6:00 pm; (2) month, which was selected 

seasonally (March, June, September, and December) throughout all the simulations 

(Tabadkani et al. 2018); (3) surrounding context, which varies in each iteration from low, to 

medium, to high; and (4) main orientations, which are south, west, north, and east.   

The workflow of the solar radiation analysis consisted of the following: (1) assigning building 

geometry and the surrounding urban contexts, (2) importing an EPW weather file of Riyadh 

city from the EnergyPlus weather map, (3) selecting the Sky matrix and defining the analysis 

period (month, day, and hour), (4) specifying the grid cell size for solar radiation on the 

tested façade surface, (5) specifying the offset distance of the test point grid from the input 

tested façade surface, and (6) running the radiation analysis to calculate the results on the 

selected façade surface Figure (4.35). The process used to conduct the solar radiation 

analysis in Grasshopper using the Ladybug tool are shown in Figure (4.36).  
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Figure 4.35: Workflow used to conduct the solar radiation analysis. 

 

Figure 4.36: Scripting process used to conduct the solar radiation analysis in Grasshopper using the 
Ladybug tool. 
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4.8.3. Solar Analysis Input Parameters 

For the solar radiation experiments, different dynamic inputs were determined. The first 

parameter is the building context, which varies in each simulation iteration. The building 

contexts produced a total of 324 different urban configurations that varied in height 

(low=12 m, medium=28 m, high=44 m). The main office tower is located in the middle of the 

urban context, and four buildings surround the tower from four sides: (B00 building from the 

west side, B01 building from the south side, B02 building from the east side, and B03 

building from the north side). Then, these were also multiplied with four orientations (south, 

west, north, and east), 13-day time office hours from 6:00 am until 18:00 pm, and four 

months (March, June, September, and December). Regarding fixed input parameters, the 

following inputs were fixed throughout all iterations: (1) the geometry dimensions of both 

the office room within the tower and the urban context, (2) the curtain wall was fixed with 

an 80% glazing ratio, (3) the grid cell of the test points was fixed with an 0.80 * 0.80 grid size, 

(4) the number of test points was 25 points, and (5) the distance from the tested surface was 

set to 0.01.          

Figure (4.37) lists in detail these dynamic input parameters together with the fixed inputs 

used in this study to conduct the solar radiation analysis that strike the building façade 

surface. The Colibri plugin tool in Grasshopper was applied within the simulation workflow 

to step through all the design solutions automatically to create the dataset Figure (4.38). 

Then, Colibri stored the result of the solar radiation data and its coordinates in an Excel 

spreadsheet (Natanian et al. 2019). 

 

Figure 4.37: Fixed and dynamic model parameters. 
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Figure 4.38: Sample of the solar radiation data generated automatically in the simulation process, 
which produced different SR results in each design situation.  

The output of each iteration consists of several test points that fall on the tested surface 

with X, Y, and Z coordinates to perform the radiation analysis, and these values are 

measured in KWh/m2 Figure (4.39). The total number of test points is 1,263,600 (25 test 

points of each surface * 50,545 total number of iterations). The total radiation results in 

KWh/m2 are calculated through the mass addition of results at each of the test points 

multiplied by the area of the face that the test point is representing Figure (4.40). 
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Figure 4.39: (A) Test point coordinates, (B) Radiation results based on each test point. 

 

Figure 4.40: Pre-processing of solar radiation results. 

A

B
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4.8.4. Solar Radiation Database 

A total of 50,545 solar radiation iterations were generated in the simulation process 

examining different orientations. Figure (4.41) shows an example of some samples of the 

conducted simulation for solar radiation results in two different orientations and at different 

hours of the day. The whole database is stored on one Excel sheet that contains all the 

design iterations in the following order: hour; day; month; building context B00; building 

context B01; building context B03; building context B04; façade floor height; X, Y, and Z 

coordinates of (test point 0, test point 1, test point 2, test point 3, test point 4, test point 5, 

test point 6, test point 7, test point 8, test point 9, test point 10, ………, test point 24); 

(output of test point 0, output of test point 1, output of test point 2, output of test point 3, 

output of test point 4, output of test point 5, output of test point 6, output of test point 7, 

output of test point 8,…….., output of test point 24); and image of each iteration. The Excel 

sheet consists of 56 columns representing the input parameters and 50,545 rows 

representing the number of design iterations, which in total is 2,830,520 data points. A 

sample of the solar radiation recorded database is shown in (Appendix D). 

 

Figure 4.41: An example of two different cases of solar radiation results within different orientations 
and based on the variation of building contexts and time.
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4.9. Shade Factor Analysis  

As discussed in chapter (2), the current simulation tools are limited when it comes to 

mimicking the time-dependent nature of an AF that alters the dynamic heat transition when 

physical and material parameters are considered. This is primarily the result of the shading 

effect of the AF on the thermal energy stored in the building materials, which causes a 

thermal lag between each time interval. This concept can be done in the case of Venetian 

blinds because the BPS tool supports only this shading system. Therefore, to fill this gap, this 

section discusses an alternative method to model and simulate the energy performance of 

AF shading systems, which will be discussed in more detail in the coming sections.    

The thermal model in EnergyPlus considers the thermal interactions between the shade 

layer and the glass when a shading system is applied, and calculations are made based on 

the following factors (EnergyPlus 2020). 

- “Exterior shading device: Long-wave radiation (IR) from the surround absorbed 

by shading device or transmitted by the shading device and absorbed by the 

adjacent glass. For interior shading the surround consists of the other zone 

surfaces. For exterior shading the surround is the sky and ground plus exterior 

shadowing surfaces and exterior building surfaces “seen” by the window”. 

- “Inter-reflection of IR between the shading device and adjacent glass”.  

- “Direct and diffuse solar radiation absorbed by the shading device”.  

- “Inter-reflection of solar radiation between shading layer and glass layers”.  

- “Convection from shading layer and glass to the air in the gap (or, for between-

glass shading, gaps) between the shading layer and adjacent glass”.  

- “Natural convection airflow in the gap (or, for between-glass shading, gaps) 

between shading layer and adjacent glass”.  

The SF can be calculated by simplifying the irregular AF geometry into flat shaded areas on 

the glazed part of the façade. Depending on the amount of direct solar radiation received 

from the sun, any shading system installed on the window surface may provide either 

complete or partial shading protection. Hence, the glazed area is separated into two distinct 

regions: (1) shaded area and (2) un-shaded area. The SF is defined as a number between 0 

and 1 and refers to the percentage of the glazed surface that is not exposed to incident solar 

radiation as a result of the shading system (Choi et al. 2017a).  
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4.9.1. Shade Factor Methods 

The SF is calculated in response to the hourly changes of the opening ratio of each shading 

state. In the literature, the shaded area created by the external dynamic movements of a 

shading system can be calculated using any of the following three methods: (1) the grid 

method, (2) the bar method, and (3) the polygon method (Choi et al. 2017a; Choi et al. 

2017b) Figure (4.42). Both the grid and the cell methods involve dividing the window area 

into a grid of cells, and the SF is calculated by excluding the area of cells that receive direct 

SR from the total window area. However, the only difference between these two 

approaches is the shape of the division segments. These two methods have been widely 

used within different software, such as EnergyPlus, Ecotect, and Radiance (`wdqTabadkani et 

al. 2020). On the other hand, the polygon method projects the shading system coordinates 

into the target window area, and the SF is calculated by the projected geometrical figure 

defined by the shadow’s coordinates. The polygon method is more accurate and time 

consuming compared to the first two methods, which are less accurate but have the 

advantage of allowing fast calculation (Choi et al. 2017b). Since the grid method is similar to 

the ray-tracing method found within the Ladybug plugin, which is linked to the Radiance 

software, this method was adopted in this research to calculate the shaded area of all of the 

six proposed shading states for a total of 8,760 hours of the year. 

 

Figure 4.42: Shade factor (SF) calculations adapted from Choi et al. (2017b). 

4.9.2. Shade Factor Settings 

Shading control can be defined in the EnergyPlus under the Window Property: Shading 

Control section. Adjusting the slat angle in this section is possible depending on one of three 

controls: (a) the static slat angle, (b) the cut-off or blocked angle, and (c) the scheduled slat 

angle. Hence, the last approach was chosen for this investigation since it allows hourly slat 

angles to be overriding by an hourly transmittance fixed schedule. The SF ranges from 0 to 1 

based on the percentage openness of the shading system, sun angle, and sun position, 

where the SF is mostly equal to 1 (fully shaded). In addition, a grid cell size of 1 cm2 was 
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assigned on the window surface as inputs for the SF simulation. Figure (4.43) illustrates the 

framework for the SF calculation method where the AF system is simplified using the grid 

(ray-tracing approach) in the Ladybug tool.  

 

Figure 4.43: Workflow used to conduct the shade factor analysis. 

To conduct an SF analysis in response to the developed AF shading states, different steps 

were followed:  

(1) Firstly, an EPW local weather file was assigned to create hourly sun position and 

define the day-time hours and night-time hours during the year through the analysis 

period component. 

(2) In the second step, the sun azimuth and altitude were defined for a certain time of 

day. Then, the urban context and AF shading system that were modelled in section 

(4.6) which determined the type of shading movement (scaling or folding), geometry 

scale, and number of shading states (shading state A-100%, shading state B-80%, 

shading state C-60%, shading state D-40%, and shading state E-20%) was linked to a 

ray-tracing component within the shade factor workflow analysis Figure (4.44). 
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(3) In the next step, the SF was calculated for each simulation iteration by dividing the 

total number of grid cells on the window area that received solar radiation by the 

total number of grid cells on the window area. This process was repeated every hour 

for each shading state.  

(4) Finally, an iterative process was done using the Colibri tool to step through all the 

hours of the year for each shading state.  

 

Figure 4.44: Scripting process to conduct the shade factor analysis in Grasshopper using the Ladybug 
tool. 

4.9.3. Shade Factor Database  

The output of the hourly SF of each shading state was recorded on an Excel sheet of hourly 

SFs. The database was stored in the following order: hour, day, month, SF state A, SF state B, 

SF state C, SF state D, SF state E, and SF state F. The Excel sheet contains of 8 columns 

identifying SF states and 8,760 rows identifying the number of hours in a year. As an 

example of the output, Figure (4.45) shows different shading states when the shading 

system is 80% and 40% open with the grid method for SF calculations. To this end, the 

calculated shaded area of the distinct shading states was then translated into the 

transmittance schedule so it could be used within the EMS interface to select the state 
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based on the defined threshold, as will be explored in the following sections. The aim of this 

analysis along with the solar radiation analysis performed in previous section is to evaluate 

the energy performance of the AF shading system, specifically, the hourly cooling loads. A 

sample of the shade factor database is shown in (Appendix D). 
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Figure 4.45: Shade factor calculation for some selected cases for two AF movements (scaling and 
folding). 

4.10. Energy Simulation  

The generated models in section (4.4) were simulated with an AF system in terms of energy 

consumption using EnergyPlus, which served to generate the training data Figure (4.46). 

Simulation settings, input parameters, material properties, occupant loads, zone program, 

occupancy schedule, and thermal setting were determined and valued according to the 

benchmark standard and office building guidelines to conduct a detailed energy analysis 

(Hensen and Lamberts 2011). Then, an automatic shading control was employed to control 

the AF system on an hourly basis using various environmental sensors. The aim of these two 

stages was to assess the impact of AFs on the energy performance of a shared office room 

and to create a large synthetic database of an hourly cooling energy demand (Wh/m2) for 

training the surrogate model, which will be presented in Chapter (6). Figure (4.47) shows the 

algorithmic workflow of the parametric modelling and simulation in the Grasshopper 

environment. The next sections discuss in detail the energy simulation settings, the 

parameters used, and the assigned control system. The study evaluates the energy 

performance for the parametrically modelled office space considering the following 

scenarios:  
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- base case model (no shading assigned) 

- vertical fixed shading (no automatic control assigned) 

- horizontal fixed shading (no automatic control assigned) 

- AF scaling movement (automatic control is assigned) 

- AF folding movement (automatic control is assigned)     

 

Figure 4.46:  Closed office room with detailed constructions and location of sensor. 
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Figure 4.47: Algorithmic workflow of the parametric modelling and simulation in Grasshopper environment.
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4.10.1. Input Parameters   

The dynamic input parameters of this research were selected considering the building 

envelope properties and the dynamic behaviour changes of the AF shading system including 

hour, day, month, orientation, building context, external wall U-value, glazing type U-value, 

solar radiation setpoint, operative temperature setpoint, SF, and opening ratio, which will be 

discussed in detail below. According to the literature, different parameters should be tested 

to find the most effective parameters in terms of energy-use reduction. A study by Pacheco 

et al. (2012) revealed that building orientation, shape, envelope system, passive heating, 

cooling mechanisms, shading, and glazing were the most influential features in regard to 

energy consumption. In addition, as found in the literature review, AF systems have 

significantly reduced the total energy consumption of buildings, as a building envelope that 

includes a dynamic shading system may significantly affect the amount of energy 

consumption. Thus, in this study, the focus was only on specific parameters to evaluate the 

potential effect of an AF system, together with the envelope’s physical properties, on 

enhancing the energy performance of buildings. The selected dynamic inputs were as 

follows: 

- Responsive time scale:  

Hour  

The AF shading system modifies its configurations based on a variety of time 

scales ranging from seconds to seasons and is influenced by a wide range of 

environmental conditions. Thus, the time scale selected in this study was based 

on an hourly basis, as that was the time scale most frequently found in literature 

that is suitable for SR as discussed in Chapter 2 section (2.5.2), as well as 

considering the computational time that could increase the scale of simulations 

when conducting the investigation based on minutes or seconds. 

Month 

The simulation of each skin configuration was performed for all months of the 

year to provide a complete evaluation analysis; however, the study focused on 

the four extreme and mediate times of the year to minimize the computational 

time required to train the ML models in the next phase (Tabadkani et al. 2019b). 

The four different seasons of the year considered for energy simulation were 

March, June, September, and December, as these months represent maximum, 

equinox, and minimum availability of sunlight around the year (Eltaweel and Su 

2017a).  
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Day 

The simulation was run for all days of the months (Day 1 to Day 31), and the 

office operational time was considered to be from 8:00 am to 18:00 pm. 

- Orientation:  

Examining different orientation is an essential input parameter for energy 

simulation when designing AF shading systems, as each orientation varies in 

terms of solar radiation intensity values received on façades depending on 

climate and location. For instance, in the studied climate zone, the west and east 

orientation received the highest solar radiation during summer months (from 

April to September) compared to south orientation façades, which received the 

highest solar radiation during the cold months. Thus, this highlights the 

importance of considering orientation parameters as a dynamic input for 

investigating when to block or allow solar radiation to penetrate into the 

internal the space for AF shading systems. Therefore, this input variable was 

tested on the main orientations (south, west, north, and east).  

- Surrounding building context 

When estimating the energy consumption of a building, it is important to 

account for the effect of surrounding buildings for solar radiation reflections and 

convective heat transfer. The solar radiation reflected by surrounding buildings 

can have a significant impact on the amount of solar heat received on the façade 

of the buildings, and thereby, can affect the energy required for cooling and 

heating a space (Allegrini et al. 2016). Therefore, the amount of direct and 

reflected solar irradiation received by the building's façade determines when the 

AF shading system opens and closes. 

- Glazing type  

This variable was investigated using various glazing systems ranging from single 

to triple glazing with varying thermal transmittance (U-Value) of the opaque and 

transparent elements, the glazing composition, and the thermal and visual 

features of glazing, such as the visual transmittance (VLT), and solar heat gain 

coefficient (SHGC). This parameter along with the glazing ratio has been 

evaluated in several studies, which have demonstrated their significant impact 

on reducing the cooling requirements of office buildings (Hammad and Abu-

Hijleh 2010; Gadelhak and Lang 2016). However, the glazing ratio was not 
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investigated as one of the input variables because the most commonly used 

glazing ratio is 80%, according to the cases analysed in section (4.2). 

- External wall  

This variable was also tested using different construction materials and finishing 

layers and will be discussed in detail in the following section.  

- Environmental parameters  

As mentioned in the literature, buildings are exposed to different environmental 

factors that are highly dynamic and change continuously throughout the day and 

the season. Thus, the study investigated different environmental parameters, 

such as incident and transmitted solar radiation, and operative temperature, to 

automatically control the AF shading openness once it reaches a certain 

threshold. Solar radiation varies based on the amount of incident solar gain the 

façade receives hourly, which has been evaluated in section (4.8).  The selected 

control parameters will be discussed in detail in section (4.10.4).  

- Shade factor  

The complex form was simplified to a flat shaded area on the window that 

ranged from a value of 0 to 1, which has been evaluated in section (4.9).  

- Shades Transmittance 

This variable represents the un-shaded area that is exposed to incident solar 

radiation allowed by the shading system.  

Tables (4.3) and (4.4) list the fixed and dynamic input parameters used in this research to 

conduct the energy analysis using the EnergyPlus engine. Figure (4.48) shows the iteration 

process using Colibri tool to iterate through all design solutions.  

Table 4.3. Fixed simulation parameters 

Parameter Assigned Value(s) 

Location  Riyadh, Saudi Arabia  

Space type  Shared Office Room  

Zone program Closed Office Zone 

Glazing ratio 80 %  

Room width  4.00 m 

Room floor height  4.00 m 

Room length  6.00 m  

Shading reflectance  70 % 

Interior wall, ceiling, floor  Adiabatic  

Cooling set points 24 C 

Heating set points  22 C 

HVAC system  ideal air load system 

Number of people 2 people  

Zone loads     Lighting density 5.00 W/m2 

                         Number of occupants 2 Occupants (0.2 ppl/m2)  
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Parameter Assigned Value(s) 

                         Equipment load (W/m2) 4 W/m2 

                         Infiltration ratio 0.04 cfm/sf (~0.000203 m3/s m2 façade) 

                         Schedule  Sun.-Thur. 08:00 – 18:00  

Prototype unit 0.80 * 0.80 c  

Shadow calculation method  Time step frequency 

Solar radiation sensor point 1 (P1) 3.00 m height  

Operative temperature point 2 (P2)  1.5 m height  

Table 4.4. Dynamic simulation parameters 

Dynamic Input Parameter Assigned Value(s) No. of Iterations  

Orientation south, west, north, east  4 

Building context 00 low, medium, high 3 

Building context 01 low, medium, high 3 

Façade level height  lower than average, average, and higher than average 3 

Exterior wall – U-value 0, 1, 3 W/m2 K 3 

Glazing type – U-value 0, 1, 2, 3 W/m2 K 4 

Total no. of iterations   1,296  

Month  March, June, September, December - 

Day  01 – 31  - 

Hour  1:00 - 24:00 - 

Shading states A, B, C, D, E, F - 

Total no. of hourly cooling data   3,794,688 
 

 

Figure 4.48: Scripting process using Colibri tool to iterate through design solutions. 

4.10.2. Construction Materials and Thermal Settings 

The material parameters of the office were defined based on ASHRAE 90.1-2010 climate 

region number 1, a database provided by EnergyPlus (ASHRAE materials databases) as the 

recommended materials for the climate zone of the study, which were assigned for a hot-dry 

climate region. ASHRAE database construction materials were employed for the following 

building elements as illustrated in Figure (4.49): 

- external walls construction materials and finishing layers 

- interior partition materials and finishing layers 

- ceiling materials 
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- interior floor construction materials and finishing layers 

- glazing system properties 

 

Figure 4.49: Construction parameters considered for this study. 

Different types of external walls for the office room were considered with distinct U-values. 

Partitions/interior walls were assumed to be adiabatic and to be gypsum board with a U-

value of 2.58 (ASHRAE 90.1-2010), which means there was no heat transfer across the 

interior walls. In addition, glazing is one of the main variables in the energy simulation of the 

model. This is because the SHGC affects the total solar heat transmittance of the glass and 

its components (Baenas and Machado 2017). The glazing shading coefficient measures the 

glazing's capacity to block solar radiation. A low shading coefficient value reduces the 

amount of solar heat gain that penetrates through the glass. Changing the SHGC value has 

an impact on the cooling loads and daylighting performance of a building with an AF 

(Hammad and Abu-Hijleh 2010). Therefore, different types of glazing system (single, double, 

and triple glazing) were investigated for the studied model, which has different solar heat 

coefficient values and thermal transmittance U-values (Gadelhak and Lang 2016). Table (4.5) 

lists the specifications for the construction material parameters that were implemented in 

this study. 

A closed office program zone according to the EnergyPlus US Department of Energy’s (DOE) 

office building zones (DOE 2016) was selected in all offices. These closed offices were 

conditioned with the default set of an ideal air load system in EnergyPlus for HVAC, which 

was the most appropriate system in the early stages of the design when taking calculation 

time into consideration (Zhang et al., 2017). In addition, the model was set for an hourly 

time step to calculate the energy demand of the office room. The operating time for cooling 

and heating was assumed to be five days per week, Monday to Friday from 8:00 am to 18:00 

pm. The temperature setpoints of the HVAC system were considered to be 24oC for cooling 
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and 22oC for heating. The HVAC system was set to work automatically to maintain the 

desired internal temperature.  

Table 4.5. Characteristics of materials used in the simulation. 

Name of material 
Thickness 
(m) 

Layers 
U-value 
(W/m² K) 

R-value  
(K m²/W) 

ASHRAE 90.1-2010 
EXTWALLMASS 
CLIMATEZONE 1 

0.2412 
1IN Stucco  
8IN CONCRETE HW RefBldg 
1/2IN Gypsum 

3.690821 0.270942 

ASHRAE 90.1-2010 
EXTWALL MASS 
CLIMATEZONE ALT-
RES 1 

0.277737 

1IN Stucco 
8IN CONCRETE HW RefBldg 
Mass Wall Insulation R-4.23 IP 
1/2IN Gypsum 

0.983672 1.016599 

ASHRAE 90.1-2010 
EXTWALL METAL 
CLIMATEZONE 1-2 

0.154367 

Metal Siding 
Metal Building Wall Insulation 
R-9.45 IP 
1/2IN Gypsum 

0.573406 1.743964 

ASHRAE 90.1-2010 
INTERIOR WALL  

0.188 
G01a 19 mm gypsum board 
F04 Wall air space resistance 
G01a 19 mm gypsum board 

2.580645 0.3875 

ASHRAE 90.1-2010 
INTERIOR FLOOR  

0.7291 
 

F16 Acoustic tile 
F05 Ceiling air space 
resistance 
M11 100 mm lightweight 
concrete 

1.449209 0.690031 

ASHRAE 90.1-2010 
INTERIOR CEILING  

0.3007 

M11 100mm lightweight 
concrete 
F05 Ceiling air space 
resistance 
F16 Acoustic tile 

1.449209 0.690031 

 

Glazing Type (Glaz) U-value (W/m² K) 
Solar Heat Gain 
Coefficient (SHGC) 

Visual Transmittance 
(τvis)  

Single glazing (SG) 5.82 0.82 0.88 

Double glazing - clear (DG) 2.71 0.72 0.80 

Double glazing - low-e 
coating (DG) 

1.63 0.28 0.65 

Triple glazing - Krypton 
filled (TG) 

0.57 0.23 0.47 

4.10.3. Zone Loads  

Internal gains for the office room, such as the equipment load, infiltration ratio, and number 

of occupants, were selected based on ASHRAE (2016) standard recommendations. 

Equipment loads per area typically range from 2 W/m2 for just one laptop in the zone to 

15 W/m2 when the office is filled with computers and appliances. In addition, ASHRAE 

recommends different values of infiltration ratio based on the area of the façade exposed to 

outdoors, which ranges from 0.0001 (m3/s m2) to 0.0003 (m3/s m2) for an average building. 

The selected infiltration ratio is 0.04 cfm/sf (~0.000203 m
3
/s m

2 façade). Furthermore, the 

number of occupants per area typically ranges from 0.02 ppl/m2 for a lightly occupied space 
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to 0.5 ppl/m2 for a tightly packed space. The lighting peak internal load was determined at 

5.00 W/m2 in accordance with ASHRAE-90.1 (2016), specifying that LED bulbs were used for 

each square metre of lighting devices. When daylight exceeds 500 lux, lighting control is 

activated, and the lights are automatically turned off. The 500 lux is suggested as the 

optimal threshold for enhancing worker productivity (Tabadkani et al. 2020a). The electric 

lighting fixtures are controlled through a continuous dimming control, from 0 to 500 lux. 

When natural daylight decreases, a linear algorithm interpolates steadily to increase the 

lighting power (EnergyPlus 2013) Figure (4.50). 

 

Figure 4.50: Artificial lighting – continuous dimming control (EnergyPlus 2013). 

4.10.4. Automatic Control System 

AF systems rely heavily on control strategies as their base. They consist of a range of 

variables that interact with indoor and outdoor conditions, creating a high degree of 

complexity. As a result, their programming is highly dependent on simulation tools and 

demands high-level modelling techniques (Attia et al. 2022). Moreover, simulating the 

adaptive behaviour of a façade is not fully supported by the existing tools, and there is a lack 

of any well-accepted approach that designers can follow to set a control logic to evaluate 

the AF shading system in the early stages of the design. However, the automatic control of 

the shading can be applied only in the case of a conventional shading system, such as 

Venetian blinds, as it is supported by most BPS tools. Therefore, to overcome these 

limitations, the study implemented the following steps to control the changing behaviour of 

the AF: (1) controlling the opening size of the external AF shading system based on outdoor 

and indoor sensors, (2) translating the SF to transmittance schedule, (3) calculating the 

incident SR on the exterior surface on an hourly basis, and (4) establishing a control scheme 
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through an EMS, which is an embedded function in EnergyPlus to define sensors, control, 

and actuators on hourly time steps (Hong and Lin 2013) Figure (4.51). 

According to the literature, an AF shading system is triggered automatically by 

environmental stimuli, such as SR, relative humidity, surface temperature, etc. Thus, in this 

study, an automatic control based on different environmental parameters including (C1) 

incident solar radiation on window (W/ m2), (C2) transmitted solar radiation from window 

(W/m2), (C3) direct solar radiation (W/m2), and (C4) both incident solar radiation (W/ m2) 

and operative temperature (C) have been employed as sensors to adjust the opening ratio of 

the AF shading system in an automatic way with the integration of either closed (feedback) 

loop or open loop control mechanisms (Table 4.6). These control parameters were chosen to 

compare their effects on energy loads to select the most effective control strategy. Several 

studies (Sadeghi et al. 2016; Bustamante et al. 2017; Yun et al. 2017; Attia et al. 2022) have 

often used these control parameters; however, as stated by several researchers (Moeseke et 

al. 2007; Evola et al. 2017; Tabadkani et al. 2020a), the combination of two parameters that 

is based on outdoors and indoors, provided the best system in terms of energy performance 

and human comfort. 

Control scenario C1) employs solar radiation in the form of outdoor incident vertical solar 

radiation on the window, while (C2) activates the shading based on the internal window 

surface, and (C3) uses horizontal direct solar radiation using an open-loop control 

mechanism. On the other hand, (C4) activates the shading in response to both exterior 

incident solar radiation on the window and indoor operative temperature through a closed-

loop control mechanism. For scenario (C4), the first sensor point (P1) was placed at the 

corner of the exterior wall to collect the incident solar radiation on the surface, while the 

second sensor point (P2) was located at the middle of the room at a height of 1.5 m to 

record the room air temperature.  

 

Figure 4.51: Energy management system (EMS) principles. 
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Table 4.6. Control scenario parameters.   

S Parameter Location  Parameter in (EnergyPlus)  Domain  

C1 
Incident solar radiation 
(W/ m2) 

Outdoor 
Surface Outside Face Incident Solar 
Radiation per Area 

50 – 450 W 

C2 
Transmitted solar 
radiation (W/ m2)  

Indoor 
Surface Window Transmitted Solar 
Radiation Rate per Area 

50 – 450 W 

C3 
Direct solar radiation 
(W/ m2) 

Outdoor 
Site Direct Solar Radiation Rate per 
Area 

50 – 450 W 

C4 
Incident solar radiation 
(W/ m2) and operative 
temperature (C) 

Indoor and 
Outdoor 

Surface Outside Face Incident Solar 
Radiation per Area – Operative 
Temperature   

50 – 450 W 
21 – 25 C 

 

Both the hourly shade factor database and hourly solar radiation database that were 

generated in previous sections were loaded back within the energy simulation workflow 

using the Read Excel Sheet component in Grasshopper. This component makes it possible to 

read different columns and rows of the developed data. Then, a schedule of hourly shade 

factors was created for each of the developed shading states as well as a schedule of hourly 

solar radiation using the Honeybee Create_CSV Schedule, which allows users to write a 

custom .csv schedule in EnergyPlus. These created hourly schedules will be called out based 

on the defined thresholds in the EMS. Furthermore, the schedules will be formatted based 

on the EnergyPlus schedule format and connected as additional strings in the 

Honeybee_Run Energy Simulation, thus permitting users to write advanced codes, such as 

the EMS coding control. EnergyPlus processes the SF data under the Group Schedules as an 

external sub-hourly schedule file (Object – Schedule:File) to assess the energy performance 

of the building (DOE 2020). Figure (4.52) illustrates the scripting used in Grasshopper to 

develop the hourly schedule prior to running the energy simulation. 
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Figure 4.52: Scripting process to create hourly shading states schedules in grasshopper using 
Honeybee tool. 

After that, the six developed shading states in both movements that varied in terms of their 

opening ratio (State-A 100%, State-B 80%, State-C 60%, State-D 40%, State-E 20%, State-F 

0%) were selected based on the defined thresholds. The pre-calculated SF from the previous 

SF analysis were used to generate this algorithmic approach considering daytime hours. 

During night-time, the shade factor is equal to 1 (representing a 100% shaded area), 

whereas during working hours, the shading system will comply with the specified thresholds. 

To prevent overheating during the summer and maximise solar gain during the winter, a 
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control logic was programmed for the shading system to be closed or open when the 

defined thresholds exceeded a chosen set point. During winter, shading state A, which is a 

fully open shading state, was applied to maximise solar gain, while in other seasons, the 

control logic was applied to be open or closed by checking the environmental thresholds. 

The SR range varies between 0 W and 450 W with a 50 W step, while the OT ranges from 

21 C to 24 C. These thresholds were determined based on some of the previous studies 

discussed in Chapter 2 section (2.4),  which recommended an appropriate activation 

threshold for each climate zone (Al Touma and Ouahrani 2017; Yun et al. 2017; Tabadkani et 

al. 2020b). 

To apply the control logic, four different scripts with conditional statements were coded 

within the EMS interface and added to the simulation model to adjust the AF shading based 

on the defined program logic. Figure (4.53) shows one example of the EMS script that is 

added within the Ladybug and Honeybee tools. For instance, in the case of (C4), the shading 

(state A) is fully open when the SR is equal to or below 50 W and the OT is equal to or below 

21 C. On the other hand, shading (state F) is fully closed when the SR is equal to or above 

450 W, and the OT is higher than 24 C. Other intermediate shading states were considered in 

between these thresholds. Lastly, the derived transmittance schedule from this stage was 

used as the input to calculate energy demands.   
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Figure 4.53: EMS conditional (IF, ElSE-IF) statement to control the AF opening ratio based on a 
predefined threshold. 
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4.10.5. Simulation Challenges  

Different challenges were faced during the simulation process, such as the computational 

time consumed to perform all design iterations, preparation of the simulation and storage of 

the output data, and data visualization.  

- In terms of time consumption, the study evaluates two different movements of AF 

based on hourly measurements with the consideration of different variables. In 

addition, it evaluates the static shading system for comparison with AF performance, 

calculates the hourly shade factor for all shading states for two developed 

movements, and calculates hourly incident solar radiation. All of these tasks require 

the performance of large-scale simulations. It might take minutes to hours to 

complete only one of these design iterations using a typical PC computer or laptop. 

Thus, the completion of all simulations could take months, particularly if debugging 

is required during the modelling process.  

- Preparing a large number of simulations and storing their output data is a difficult 

task. Hence, early decisions about file arrangement and unique names had to be 

made to manage large numbers of files, which required a local hard drive. However, 

dealing with a large number of files and their size could present additional 

difficulties. 

- It is highly challenging to visualise the entire dataset in a feasible manner due to the 

massive volume of data, especially when modelling the shading system on an hourly 

basis. 

Two main solutions were considered to address the above constraints and make the 

simulation possible:  

- In terms of simulation time, simulations of this scale require a high degree of 

computational power that is beyond the capabilities of regular computers. 

Therefore, the Paperspace web-based platform (https://www.paperspace.com) was 

used to customise a number of cloud-based machines in addition to a powerful 

machine. The following hardware specifications applied to each machine: Quadro 

P5000, 8 CPU, 30GBRAM, 50GB SSD (Internal Storage), 100GB SSD (External 

Storage), and dedicated GPU.  

- Parametric design tools were utilised; these allow for a high number of simulation 

iterations to be performed, as well as the management of design variations. As an 

algorithmic platform, the combination of the Rhino and Grasshopper programmes 

enables designers to connect parametric modelling with design variables and 
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connect various plugins, such as the Honeybee and Ladybug environmental analysis 

tools that were linked to EnergyPlus and Radiance. This is in addition to the 

possibility of integrating the data organisation and storage in the desired manner.  

4.10.6. Simulation Matrices  

Based on the dynamic input parameters discussed in section (4.10.1), the simulation matrix 

for all studied prototypes, their inputs, and the number of iterations was defined as shown 

in Tables (4.7), (4.8), and (4,9). Each combination was named with unique abbreviations that 

represent each input.  

For example, combination case (P-AF-SCM-C4_Or_B00Low_B01Low_FLLow_ExtW2_Glaz3) 

refers to a particular case for an AF with control scenario C4. The first letter refers to the 

prototype (P), the second letter (C) represents the control scenario used, (Or) refers to the 

office room orientation, (B00) and (B01), refer to building context height, (FL) refers to the 

façade level height, (ExtW) refers to the exterior wall type U-value used, and lastly, (Glaz) 

refers to the glazing type U-value used. These unique abbreviations/names were made to 

manage large numbers of files and for results analysis.  

Table 4.7. Dynamic simulation matrix for base case model. 

Prototype 

(P) 

Orientation 

(Or.) 

Building Context 
Façade 

Level (FL) 

Exterior wall 

U-Value 

(ExtW) 

Glazing Type 

U-Value 

(Glaz) 

No. of 

Iterations B00 B01 

Base Case 

(Base-M) 

South (0) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG 3 (0.57) 

West (1) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG 3 (0.57) 

North (2) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

 

324 

Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG 3 (0.57) 

East (3) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG 3 (0.57) 

Total Number of Iterations 1296 
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Table 4.8. Dynamic simulation matrix for fixed shading system. 

Prototype 
(P) 

Orientation 
(Or.) 

Building Context 
Façade 

Level (FL) 

Exterior wall 
U-Value 
(ExtW) 

Glazing Type 
U-Value 

(Glaz) 

No. of 
Iterations B00 B01 

Fixed 
Shading 
Vertical 
(FS-V) 

South (0) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG 3 (0.57) 

West (1) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG  3 (0.57) 

North (2) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG  3 (0.57) 

East (3) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG  3 (0.57) 

Fixed 
Shading 

Horizontal 
(FS-H) 

 
 

South (0) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG  3 (0.57) 

West (1) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG  3 (0.57) 

North (2) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG  3 (0.57) 

East (3) 

Low Low Low Type 0 (3.69) SG 0 (5.82) 

324 
Medium Medium Medium Type 1 (0.98) DG 1 (2.71) 

High High High Type 2 (0.57) DG 2 (1.63) 

 TG  3 (0.57) 

Total Number of Iterations 2592 
 

Table 4.9. Dynamic simulation matrix for adaptive façade shading system. 

Prototype 
(P) 

Or. 

Building Context 

Façade 
Level (FL) 

Exterior 
wall 
U-

Value 
(ExtW) 

Glazing Type 
U-Value 

(Glaz) 

Automatic 
Control 

(C) 

No. of 
Iterations B00 B01 

AF Scaling 
Movement 
(AF-SCM) 

South 
(0) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 
Control 

(C1) 

1,296 

Medium Medium Medium 
Type 1 
(0.98) 

DG 1 (2.71) 
Control 

(C2) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 
Control 

(C3) 

 TG 3 (0.57) 
Control 

(C4) 

 
West 

(1) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 
Control 

(C1) 

1,296 

Medium Medium Medium 
Type 1 
(0.98) 

DG 1 (2.71) 
Control 

(C2) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 
Control 

(C3) 

 TG 3 (0.57) 
Control 

(C4) 
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Prototype 
(P) 

Or. 

Building Context 

Façade 
Level (FL) 

Exterior 
wall 
U-

Value 
(ExtW) 

Glazing Type 
U-Value 

(Glaz) 

Automatic 
Control 

(C) 

No. of 
Iterations B00 B01 

 
North 

(2) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 
Control 

(C1) 

 
1,296 

Medium Medium Medium 
Type 1 
(0.98) 

DG 1 (2.71) 
Control 

(C2) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 
Control 

(C3) 

 TG  3 (0.57) 
Control 

(C4) 

East 
(3) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 
Control 

(C1) 

 
1,296 

Medium Medium Medium 
Type 1 
(0.98) 

DG 1 (2.71) 
Control 

(C2) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 
Control 

(C3) 

 TG 3 (0.57) 
Control 

(C4) 

AF Folding 
Movement 
(AF-FOM) 

South 
(0) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 

Control 
(C4) 

 
324 

Medium Medium Medium 
Type 1 
(0.98) 

DG 1 (2.71) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 

 TG 3 (0.57) 

West 
(1) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 

Control 
(C4) 

 
324 

Medium Medium Medium 
Type 1 
(0.98) 

DG 1 (2.71) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 

 TG 3 (0.57) 

North 
(2) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 

Control 
(C4) 

324 
Medium Medium Medium 

Type 1 
(0.98) 

DG 1 (2.71) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 

 TG 3 (0.57) 

East 
(3) 

Low Low Low 
Type 0 
(3.69) 

SG 0 (5.82) 

Control 
(C4) 

 
324 

Medium Medium Medium 
Type 1 
(0.98) 

DG 1 (2.71) 

High High High 
Type 2 
(0.57) 

DG 2 (1.63) 

 TG 3 (0.57) 

Total Number of Iterations 6,480 
 

4.10.7. Energy Simulation Database  

Figure (4.54) shows a sample of the generated energy data, which vary based on each design 

solution. In addition, Figure (4.55) and (4.56) shows a sample of some cases for specific days 

of the year (21 March, 21 June, 21 September, and 21 December), with the selection of 

three different hours of the day (9.00 am, 12.00 pm, and 15.00 pm), according to the 
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defined automatic control system. Once all simulation settings were defined, and the fixed 

and dynamic inputs and the automatic control settings were selected, energy simulation 

could be run using the Honeybee_Run Energy Simulation component, which was linked to 

EnergyPlus to calculate the hourly cooling loads. This process was conducted iteratively 

using the Colibri iterator component in Grasshopper to generate all design iterations from 

the dynamic input’s sliders. For example, the database of the two movements of AF shading 

systems was stored in Excel as follows: date (hour, day, and month), orientation, building 

context 00, building context 01, building context 03, building context 04, façade level height, 

glazing type - U-value, exterior wall - U-value, AF shading states, AF transmittance values, AF 

shade factor, environmental parameters (C1, C2, C3 and C4), out: hourly cooling loads - 

KW/m2, out: hourly heating loads - KW/m2, out: hourly lighting loads - KW/m2, out: hourly 

equipment loads - KW/m2, out: total cooling loads - KW/m2, out: total heating loads - 

KW/m2, out: total lighting loads - KW/m2, out: total equipment loads - KW/m2, out: annual 

energy use intensity - KW/m2, and out: solar heat gain - KW/m2. On the other hand, the 

database of the base case and the fixed shading systems was stored in a similar order 

excluding the variable inputs associated with the AF shading system. A sample of the energy 

simulation database is shown in (Appendix D).  
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Figure 4.54: Sample of the generated energy data, which vary based on each design solution. 
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Figure 4.55: Sample of cases for hourly shading states in three selected hours (9:00 am, 12:00 pm, 
15:00 pm). 

 

Case Location

S
O

U
T

H

Shading State                                   B
Solar Radiation                                61. 79
Operative Temperature                  21. 03

2
1-

M
a

r
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h

9.00 AMDateO. 12.00 PM

Shading State                                   C
Solar Radiation                                116. 08
Operative Temperature                  23. 58

15.00 PM

Shading State                                   B
Solar Radiation                                82.07
Operative Temperature                  24. 4

Shading State                                   A
Solar Radiation                                31.67
Operative Temperature                  25. 3

2
1-

J
u

n
e

Shading State                                   A
Solar Radiation                                30.04
Operative Temperature                  26.14

Shading State                                   A
Solar Radiation                                25.57
Operative Temperature                  26.89

Shading State                                   C
Solar Radiation                               124.24

Operative Temperature                  25. 31

2
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S
e

p
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m
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e
r

Shading State                                   D
Solar Radiation                               263. 05

Operative Temperature                  27.17

Shading State                                   A
Solar Radiation                               142.98

Operative Temperature                  27.73

Shading State                                   A
Solar Radiation                                23.03
Operative Temperature                  19.24
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r

Shading State                                   C
Solar Radiation                                135.66
Operative Temperature                  20. 29

Shading State                                   A
Solar Radiation                                32.75
Operative Temperature                  19.61
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Figure 4.56: Sample of cases for hourly shading states in three selected hours (9:00 am, 12:00 pm, 
15:00 pm). 

 

 

 

 

 

 

 

 

 

 

 

 

Case Location 9.00 AMDateO. 12.00 PM 15.00 PM

S
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Shading State                                   B
Solar Radiation                                87. 34

Operative Temperature                  20. 56
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Shading State                                   C
Solar Radiation                               109. 49
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Shading State                                   E
Solar Radiation                               274. 78
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Shading State                                   D
Solar Radiation                               204.31
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Shading State                                  C
Solar Radiation                                145.91
Operative Temperature                  19.20
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Shading State                                   F
Solar Radiation                               386. 76
Operative Temperature                  23. 16

Shading State                                   A
Solar Radiation                                135.66
Operative Temperature                  23. 80
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4.11. Chapter Summary  

This chapter presents the analysis of the studied high rise office cases to inform the 

modelling stage. Then, a generative parametric office tower and its urban context were 

designed and simulated in a generative way to create the synthetic database. It also 

presents the algorithmic framework that linked between different plugins within 

grasshopper tool to simulate the energy performance of AF shading system in the office 

tower. Moreover, it details the automatic control system used to evaluate AF based on an 

hourly time basis. This chapter concludes by presenting the created databases for different 

shading systems, including the solar radiation (KWh/m2) database, the shade factor (SF) 

database, and the energy (cooling loads) (KW) database. 

 



 

CHAPTER FIVE 

SIMULATION RESULTS 
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CHAPTER 5: SIMULATION RESULTS 

5.1. Introduction  

This chapter presents the results of the simulation described in the previous chapter. The 

analysis of the simulation results initially evaluated the engineering parameters in terms of 

cooling loads and solar heat gain prior to conducting external shading simulations. Then, a 

comparison was made between different fixed and adaptive shading systems and the 

differences in cooling load reductions and solar heat gain reductions were analysed. 

Moreover, different control scenarios of AFs were analysed in terms of cooling and lighting 

loads in relation to different parameters. Lastly, the most effective control scenario was 

further evaluated in greater detail in terms of cooling loads, shading states, and hourly 

variations, in relation to different parameters, such as building orientation and urban 

context. Due to the massive volume of generated data, a web-based data visualization tool 

(Design Explorer) was used for visualisation and analysis.  

5.2. Evaluation based on Engineering Parameters 

The study examined different building envelope parameters, such as exterior wall and 

glazing types, with different values in a parametric evaluation, as these parameters have an 

impact on the cooling energy loads of the building. A total of 1,296 sets of simulations were 

conducted, which represents the building envelope combination of three wall types and four 

glazing types with other parameters, such as orientation, building context, and vertical 

location of the office. This analysis focuses on the building envelope prior to implementing 

the shading system to understand the most influential parameter affecting the cooling loads. 

The results were expressed using the annual cooling loads per square metre of floor area 

output metric (kWh/m2). 

The results of the simulation were presented in accordance with the orientation of the four 

examined offices in terms of annual cooling demands and in relation to solar gain. The entire 

set of simulation data is visualised in a web-based comparison website, as visualisation of 

the entire dataset cannot be presented in a feasible manner. The 48 cases presented in this 

section are based on only one fixed urban context setting (B00: Low, B01: Low, B02: 

Medium, B03: High), and for an office room that is located on the second floor of the office 

tower.  

Figure (5.1) compares the annual cooling loads per square meter for 48 combinations of 

building envelope parameters (exterior wall and glazing type) for the main orientations 
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(south, west, north, and east). Based on this analysis, the results revealed that the case of 

the combination (P-Base-M_ ExtW2_Glaz3) performed the best in terms of cooling loads and 

solar heat gain in all tested orientations. The cooling loads results achieved based on 

orientation are as follows: south: 92.52 kWh/m2/year, west: 97.23 kWh/m2/year, north: 

74.34 kWh/m2/year, and east: 80.70 kWh/m2/year. This is to be expected, given that the 

glazing type in this case has a lower solar heat gain coefficient value with low U-value and is 

combined with higher insulation exterior wall composition, thus contributing to a higher 

performance outcome. On the other hand, the poor exterior wall insulation, which has a 

higher U-value of 3.6 with a higher solar heat gain coefficient value of 0.82 in the single 

glazing type of 5.8 U-value and is highlighted in red (P-Base-M_ExtW0_Glaz0), performed 

the worst in all orientations and combinations of the examined 48 cases. This is because the 

U-value of the exterior wall is quite high, and a high value of shading coefficient was chosen 

for the glazing system. Moreover, the findings show that west orientations performed worst 

across all scenarios since they were subjected to the most solar radiation. 

Furthermore, the results were analysed with regard to solar heat gains, as the purpose of 

this section was to determine which engineering parameter had the most impact on the 

cooling loads of the tower building envelope. Comparing the results of the various 

orientations for each combination revealed similar patterns in each zone. The south and 

west rooms scored the worst in the evaluation. Figure (5.2) shows that in the case of (P-

Base-M ExtW0 Glaz0), solar gain is the highest due to the use of glazing with a shading 

coefficient value that permits a greater solar gain into the zone. This resulted in higher 

cooling loads together with the lack of any thermal insulation in the opaque wall. In contrast, 

solar gain is reduced in the cases (P-Base-M ExtW0 Glaz3, P-Base-M ExtW1 Glaz3, and P-

Base-M ExtW2 Glaz3), which have a lower shading coefficient value of 0.23. Therefore, 

altering the shading coefficient value of the glazing components can have a significant 

impact on solar gains. In the cases discussed above, the low SHGC value reduced solar heat 

gain by up to 72% compared to the worst-case scenario (P-Base-M ExtW0 Glaz0) as 

presented in Figure (5.2). 

In general, as can be seen in Table (5.1), there is a 56% difference between the optimal 

combination (P-Base-M_ ExtW2_Glaz3) and the worst combination (P-Base-

M_ExtW0_Glaz0). This highlights the significant influence that the parameters of the 

building envelope can have in terms of energy performance.  
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Figure 5.1: Simulation results of engineering parameters in terms of cooling loads within different 
orientations. 
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Figure 5.2: Solar heat gain results for 48 cases. 

Table 5.1. The simulation results for cooling loads, the orange row representing the optimal-case 
scenario and the yellow row representing the worst-case scenario. 

 South West North East 

P-Base-M_ExtW0_Glaz0 210.71 224.34 131.74 161.93 

P-Base-M_ExtW1_Glaz0 190.39 201.93 117.07 143.98 

P-Base-M_ExtW2_Glaz0 183.66 193.67 113.11 138.50 

P-Base-M_ExtW0_Glaz1 183.41 198.09 115.84 141.43 

P-Base-M_ExtW1_Glaz1 162.32 174.70 101.25 123.07 

P-Base-M_ExtW2_Glaz1 155.28 166.10 97.26 117.73 

P-Base-M_ExtW0_Glaz2 126.06 138.32 99.67 110.93 

P-Base-M_ExtW1_Glaz2 104.16 112.71 84.81 92.23 

P-Base-M_ExtW2_Glaz2 96.75 104.25 80.60 86.57 

P-Base-M_ExtW0_Glaz3 121.70 131.47 93.42 105.11 

P-Base-M_ExtW1_Glaz3 99.63 105.84 78.57 86.50 

P-Base-M_ExtW2_Glaz3 92.52 97.23 74.34 80.70 
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5.3. Evaluation based on Shading System Type  

In hot climate zones, where the air temperature is high and there is a great deal of solar 

radiation, the shading coefficient of the glazing system plays a crucial role in reducing 

cooling energy requirements in relation to solar gain, as shown on previous simulations that 

incorporated engineering parameters. This suggests that solar heat gain can be reduced by 

decreasing the shade coefficient. These findings indicate that developing shading elements 

may have a significant impact on cooling energy loads, and that relying on a prescriptive 

approach by modifying the engineering parameter values for the building envelope may not 

achieve the required reductions in solar gains, given that solar gains are the most important 

factor in cooling loads. 

In this analysis, a comparison of fixed and adaptive shading systems was carried out, and 

their performance was evaluated in terms of cooling loads in relation to solar heat gain. The 

purpose of this analysis and evaluation was to determine the extent to which external 

shading can contribute to energy efficiency in high-rise office buildings in regions with hot 

climates. The simulation of all previous cases presented in section (5.2), which is (1,296) 

design iterations with no shading system, was simulated again after implementing each 

shading system. Different fixed and adaptive external shading systems were simulated, such 

as fixed vertical shading, fixed horizontal shading, AF with scaling movement, and AF with 

folding movement, and the results were analysed according to the annual energy cooling 

requirements. The same 48 cases presented in section (5.2) were used for shading system 

analysis, and the entire dataset is presented in a web page analysis.  

In general, the integration of different shading devices, whether fixed or adaptive, further 

improved the performance of all glazing types by decreasing the incident solar radiation 

values on the window. However, the greater reduction of cooling was achieved by both 

scaling and folding AF systems compared to fixed shading as shown in Figure (5.3). The case 

presented in Figure (5.3) is the combination case (ExtW2_Glaz3), which is the best 

performing case in terms of values of engineering parameters. The results in Figure (5.3) 

revealed that both the scaling and the folding movements consume almost the same 

amount of cooling energy. Thus, the folding shading system will not be studied in any more 

depth in the next analysis.   

Figure (5.4) shows that AFs with scaling and folding movements for the combination case 

(ExtW2_Glaz3), produced the best performance in terms of cooling load reduction in all 

studied orientations (south, west, north, and east) with a reduction of 30.5%, 32.2%, 21,5%, 

and 22.3% respectively, compared with the base cases. Moreover, solar heat gain was also 
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reduced for all orientations compared to base model. On the other hand, in the case of the 

fixed vertical shading system, the cooling loads were reduced by varying amounts (south: 

12.6%, west: 9.7%, north: 9.5%, and east: 9.1%) compared to the base case. 

 

Figure 5.3: Comparison of external shading systems for (Ext2 Glaz3) in terms of cooling loads and solar 
heat gain. 
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Figure 5.4: Comparison of external shading systems for case (Ext2_Glaz3), in terms of cooling load 
reduction and solar heat gain reduction. 

A further reduction of cooling loads was observed in the cases with glazing types that have 

higher SHGC values, such as the case (Ext0 Glaz0), since these glazing types block solar 

radiation, which helps to compensate for the poor shading quality of the glazing Figure (5.5). 

In the case of the AF with a scaling movement, the cooling loads were reduced (south: 

36.7%, west: 34.6%, north: 33.6%, and east: 33.8%) compared to the base case as shown in 

Figure (5.6). On the other hand, when the AF with a scaling movement was compared to the 

fixed vertical shading system, the cooling loads were reduced by (south: 27.3%, west: 27.2%, 

north: 26.3%, and east: 26.9%). Thus, these results indicate that the application of an AF 

system is more effective in terms of cooling load reductions compared to fixed shading 

systems.  
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Figure 5.5: Comparison of external shading systems for case (Ext0-_Glaz0), in terms of cooling loads 

and solar heat gain. 

 

Figure 5.6: Comparison of external shading systems for case (Ext0-_Glaz0), in terms of cooling load 
reduction and solar heat gain reduction. 
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The next analysis examined the reduction in cooling loads for the four study zones for the 48 

combinations to determine which orientation benefited the most from using the adaptive 

shading system or the fixed shading system. Overall, the AF system performed better in all 

orientations compared to fixed shading; however, the amount of reduction of cooling varied 

depending on each orientation. The results demonstrate the effectiveness of the AF shading 

system on the south and west orientations with a reduction in annual cooling loads of up to 

36% and 34% respectively, while north and east orientations benefited most with cases that 

used glazing types with higher SHGC values. Figures (5.7-5.10) demonstrate the annual 

cooling loads for all the 48 combinations for different fixed and adaptive shading systems in 

relation to orientation and engineering parameters. The finding indicates that both solar 

gain and cooling loads were reduced when an external shading system was applied for all 48 

combinations. However, the best performing results achieved in all 48 combinations are for 

the AF prototype. Furthermore, in all external shading systems, the reduction of solar heat 

gain is more evident in the cases that combined glazing type (Glaz2, and Glaz3) and a well-

insulated exterior wall, which results in a better cooling energy performance.  

In conclusion, the findings proved that AF shading devices are the best at reducing cooling 

requirements in relation to solar gains. However, it is crucial to assess how they affect 

visibility and views. External shading devices can significantly improve the thermal 

performance of the building envelope and the energy efficiency of office buildings; however, 

their efficiency may be compromised if the thermal performance of the wall and glazing 

types is not well studied. As the adaptive system achieved a predominantly higher cooling 

energy performance compared to the other shading types. In the following section, the 

study further evaluates AFs using different automatic control scenarios for the studied cases 

in terms of cooling loads. The analysis examines only AFs with scaling movement excluding 

folding movement as both systems behave almost similarly in terms of energy loads.      
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Figure 5.7: Simulation results of fixed vertical shading in terms of cooling loads and solar heat gain 
within different orientations. 

 

Figure 5.8: Simulation results of fixed horizontal shading in terms of cooling loads and solar heat gain 
within different orientations. 
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Figure 5.9: Simulation results of adaptive faced (scaling movement) in terms of cooling loads and solar 
heat gain within different orientations. 

 

Figure 5.10: Simulation results of adaptive façade (folding movement) in terms of cooling loads and 
solar heat gain within different orientations. 
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5.4. Evaluation based on Control Scenarios 

This analysis evaluates the use of different automatic control strategies, as these are the 

basis of any AF system. The goal of this comparison is also to explore the impact of 

environmental parameters, either interior or exterior, on the performance of adaptive 

systems, which will result in the selection of the appropriate shading control scenario. The 

result of the simulation is presented in accordance with the orientation of the four examined 

offices in terms of annual cooling demands and lighting loads. The study tested four 

different control scenarios including (C1: incident solar radiation on window (W/m2), C2: 

transmitted solar radiation (W/m2), C3: direct solar radiation (W/m2), and C4: combinations 

of incident solar radiation and operative temperature), two exterior parameters, one 

interior parameter, and one that combined both interior and exterior parameters.  

The simulation was carried out for all 48 combinations for the adaptive façade with scaling 

movement prototype; however, the analysis looked closely at the best performing case 

(ExtW2_Glaz3) that was presented in section (5.2). Other cases were stored in a web-based 

comparison website. In general, all four control scenarios tested resulted in improving the 

cooling energy loads when compared to the fixed shading and base case; however, some 

scenarios performed the worst in terms of savings to lighting loads and providing adequate 

natural daylight. The results demonstrated that weather conditions considerably affect the 

shading control scenario. Figure (5.11) shows the results of the automatic shading control, 

which are grouped based on each orientation. The results also indicate that the performance 

of automatic shading control can be influenced by building orientation, which exploits the 

sun's position and its positive or negative effects on the interior environment. Thus, the 

energy cooling loads, solar gain, and lighting loads varied in each orientation. The findings 

show that south and west orientations consumed more cooling loads in hot climate regions; 

however, these orientations benefited the most in terms of cooling load reductions when 

compared to the case model with an average reduction of up to 30%, while lighting load 

variations were quite similar among each orientation except in the case of the control 

scenario (C3). Moreover, all control scenarios in the north orientations behaved similarly in 

terms of annual cooling loads due to the low values of solar radiation intensity that strike 

this façade. Thus, the AF is mostly open except for the time that received more radiation 

during the summer period from May to August in the morning and afternoon time to block 

the northwest and northeast solar radiation. 

Regarding control scenarios, the AF with control C3 and C4 achieved the best performance in 

terms of cooling load reduction with 33.8%, and 30.5% respectively compared to the base 
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model. However, in the case of C3, which used direct solar radiation as a trigger, it improved 

the cooling loads, while it increased lighting loads due to the high number of times that the 

shade system was completely closed as shown in Figure (5.12). Figure (5.12, top) shows the 

hourly direct solar radiation which reached up to 1031.42 W/m2, and Figure (5.12, bottom) 

shows the adaptive shading with control C3 where the shading states corresponded to the 

direct solar radiation sensor hourly, resulting in the system being closed, as it exceeded the 

threshold. On the other hand, control scenario C2, which applied a transmitted solar 

radiation sensor, achieved the lowest performance compared to other controls, as it 

maximised the cooling loads as shown in Figures (5.13 and 5.14). These observations show 

that outdoor-based control scenarios perform better than using solely indoor controls. 

Moreover, the results demonstrate the capability of such control scenarios to close the 

shades prior to allowing the penetration of undesired solar gains to indoor spaces. The 

results also reveal that when taking into consideration the need to reduce both cooling loads 

and lighting loads, the most efficient energy performance was achieved with control 

scenario C4, as it considered both outdoor and indoor parameters. The C4 control strategy 

minimised cooling loads and lighting loads while maintaining natural lighting at an 

acceptable level.  Overall, the performance across the control scenarios can be ranked from 

C2 as the worst performance to C3 as the best performance. However, as discussed 

previously, C3 scored the highest because the control system closed the shading position for 

most of the time; thus, the reliance on artificial lighting increased. Consequently, if outdoor 

views are a priority, this control strategy poses potential concerns in addition to lighting-

saving issues. In the next analysis, the study closely analysed control scenario C4, as it was 

the most efficient strategy.  

Regarding other combinations, all 48 combinations behaved the same as the presented case 

above (ExtW2_Glaz3); the variations of cooling loads occurred based on the engineering 

parameters used (exterior wall values and glazing type values). For instance, Figure (5.15) 

shows a different combination (ExtW1_Glaz2) of exterior wall and glazing types that varied 

in terms of its outputs, but the control scenarios behaved in a very similar way.   



CHAPTER 5: SIMULATION RESULTS 

201 

 

Figure 5.11: Comparison of control scenarios in terms of cooling and lighting loads within different 
orientations, case (ExtW2_Glaz3).  

 

Figure 5.12: Simulation outputs for (C3) (south orientation), hourly direct solar radiation (top), and the 
hourly corresponding shading states (bottom). 
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Figure 5.13: Simulation outputs for (C2) (west orientation), hourly transmitted solar radiation (top), 
and the hourly corresponding shading states (bottom). 

 

Figure 5.14: Simulation outputs for (C2) (south orientation), hourly transmitted solar radiation (top), 
and the hourly corresponding shading states (bottom). 
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Figure 5.15: Comparison of control scenarios in terms of cooling and lighting loads within different 
orientations, case (ExtW1_Glaz2).   

The entire data of this experiment were loaded into design explorer to visualize all control 

scenarios. All design solutions for each control scenarios are presented in (Appendix C), and 

the overall findings of this explement is outlined below. In addition, a scatter plot of all 

design cases in relation to cooling loads and annual energy consumption are shown in 

(Appendix C). 

- The annual cooling loads for (C1) range from 58.15 kWh/m2/year to 181.71 

kWh/m2/year.  

- The annual lighting loads for (C1) range from 7.60 kWh/m2/year to 15.07 
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- The optimum case in terms of cooling loads is case (P-AF-SCM-

C1_Or2_B00High_B01High_FLHigh_ExtW2_Glaz3), while the worst case is (P-AF-

SCM-C1_Or3_B00Low_B01Medium_FLMedium_ExtW0_Glaz0). 

- The annual cooling loads for (C2) range from 61.12 kWh/m2/year to 174.22 

kWh/m2/year.  

- The annual lighting loads for (C2) range from 9.57 kWh/m2/year to 16.17 

kWh/m2/year.  

- The optimum case in terms of cooling loads is case (P-AF-SCM-

C2_Or2_B00Low_B01Low_FLLow_ExtW2_Glaz3), while the worst case is (P-AF-

SCM-C2_Or1_B00Low_B01Low_FLMedium_ExtW0_Glaz0). 

- The annual cooling loads for (C3) range from 57.84 kWh/m2/year to 136.93 

kWh/m2/year.  

- The annual lighting loads for (C3) range from 11.98 kWh/m2/year to 21.68 

kWh/m2/year.  

- The optimum case in terms of cooling loads is case (P-AF-SCM-

C3_Or2_B00High_B01High_FLHigh_ExtW2_Glaz3), while the worst case is (P-AF-

SCM-C3_Or1_B00Medium_B01Low_FLHigh_ExtW0_Glaz0). 

- The annual cooling loads for (C4) range from 59.40 kWh/m2/year to 148.70 

kWh/m2/year.  

- The annual lighting loads for (C4) range from 7.53 kWh/m2/year to 15.92 

kWh/m2/year.  

- The optimum case in terms of cooling loads is case (P-AF-SCM-

C4_Or2_B00Low_B01 Medium_FLLow_ExtW2_Glaz3), while the worst case is (P-

AF-SCM-C4_Or1_B00Medium_B01Low _FLHigh_ExtW0_Glaz0).  
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5.5. Evaluation based on Control Scenario (C4)  

As a result of the large number of simulation iterations, a web-based data visualization tool 

(Design Explorer) was utilised to present design solutions depending on specific objectives. 

For the purpose of this study, control scenario (C4) was selected to investigate its different 

variants in more depth since it was the most effective control system based on the results 

presented in the previous section. Designers can use Design Explorer to generate parallel 

coordinate charts for evaluating several design scenarios and for determining the optimal 

solution. Thus, all the simulation results of control scenario (C4) were presented in the 

Design Explorer web page (https://tt-acm.github.io/DesignExplorer/?ID=BL_3eJReGq) as 

shown in Figure (5.16). As illustrated in Figure (5.16), the inputs are labelled in the black 

column, while the outputs are labelled in the blue column. In addition, the inputs, results, 

and graphs of each case are presented.  

 

https://tt-acm.github.io/DesignExplorer/?ID=BL_3eJReGq
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Figure 5.16: The interface webpage of Design Explorer allowing parallel coordinate chart. 
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Figure (5.17) shows some examples, and the following outcomes are outlined:  

- Annual cooling loads range from 59.40 kWh/m2/year to 148.70 kWh/m2/year.  

- Annual lighting loads range from 7.53 kWh/m2/year to 15.92 kWh/m2/year.  

- Solar gain ranges from 1.05 kWh/m2 to 56.5 kWh/m2.  

- Optimum cooling loads (south orientation): Figure (5.17) shows that case (P-AF-

SCM-C4_Or0_B00High_B01High_FLLow_ExtW2_Glaz3) performed the best for 

the south orientation with a cooling load of 60.62 kWh/m2/year, while the worst 

case is (P-AF-SCM-C4_Or0_B00Low_B01Low_FLLow_ExtW0_Glaz0) with a 

cooling load of 132.98 kWh/m2/year.  

- Optimum cooling loads (west orientation): records show that case (P-AF-SCM-

C4_Or1_B00High_B01Medium_FLLow_ExtW2_Glaz3) is the optimum case which 

achieved a cooling load of 59.40 kWh/m2/year. On the other hand, the worst 

performing case is (P-AF-SCM 

C4_Or1_B00Medium_B01Low_FLHigh_ExtW0_Glaz0) with a cooling load of 

148.70 kWh/m2/year.  

- Optimum cooling loads (north orientation): Figure (5.17) shows that case (P-AF-

SCM-C4_Or2_B00Low_B01Medium_FLLow_ExtW2_Glaz3) with cooling loads of 

58.51 kWh/m2/year, while the worst performing case is (P-AF-SCM-

C4_Or2_B00Medium_B01Low_FLHigh_ExtW0_Glaz0) with a cooling load of 

135.47 kWh/m2/year.   

- Optimum cooling loads (east orientation): The best performance case is (P-AF-

SCM-C4_Or3_B00Low_B01High_FLLow_ExtW2_Glaz3) with a cooling load of 

62.75 kWh/m2/year. On the other hand, the worst performing case is (P-AF-

SCM-C4_Or3_B00Low_B01Medium_FLMedium_ExtW0_Glaz0) with a cooling 

load of 132.41 kWh/m2/year.  
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Figure 5.17: Web-based comparison of energy performance for control scenario (C4) showing 

optimum and worst cases for all orientations.  

In this study, shading states were designed from fully open 100% (A) up to fully closed 0% 

(F), with four different shading states in between (80%: B, 60%: C, 40%: D, and 20%: E) as 

explained in chapter (4). Hence, in each orientation, the shading states performed 

differently, as orientations varied in terms of the solar radiation received on the building 

envelope and the level of operative temperature inside the room. According to the 

conditional statement that was coded within EMS on an hourly basis as explained in chapter 

(4), section (4.10.4), Figure (5.18) shows that AF in the west orientation was mostly closed 

(State, F) during the summertime from May to September in the afternoon between 2:00 
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pm to 4:00 pm, which refers to the hours that exceeded the SR and OT thresholds. 

Meanwhile, it was fully open (State, A) in the morning from 6:00 am until 12:00 pm, where 

SR and OT values were in the acceptable range. Then, the adaptive shading altered to 

different states after 12:00 pm, which were adjusted mostly between 20% (state E) up to 

80% (state B) for the hours from 12:00 pm to 2:00 pm and from 6:00 pm.       

Furthermore, a similar behaviour was also observed for the east façade during summer 

months; however, during the morning time, the west and the east façades received the 

highest solar radiation during summer as shown in Figure (5.19). On the other hand, the 

adaptive shading automated the shading states differently on the south façade. Although 

the south façade received the highest values of solar radiation, this was mostly during the 

winter months. Thus, the shading states were not fully closed during summer season, and 

the alteration of states occurred only in April, May, August, September, and October, while 

in June, and July the shading states remained mostly open. Figure (5.20) demonstrates the 

adaptive shading behaviour on the south façade, where the shading states most of the time 

were adjusted between 40% up to 80% during the summer season since SR did not exceed 

250 W/m2 and OTs were equal to or below 25. Regarding the north façade, the results in 

Figure (5.21) show that adaptive shading was mostly open throughout the year except for 

the summer period from May to August, and particularly in June for the morning and 

afternoon times.    

 

Figure 5.18: Simulation outputs for (C4), (west orientation): operative temperature (top), solar 
radiation (middle), and hourly variations of shading states based on SR and OT (bottom). 
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Figure 5.19: Simulation outputs for (C4), east orientation): operative temperature (top), solar radiation 
(middle), and hourly variations of shading states based on SR and OT (bottom). 

 

Figure 5.20: Simulation outputs for (C4), (south orientation): operative temperature (top), solar 
radiation (middle), and hourly variations of shading states based on SR and OT (bottom). 



CHAPTER 5: SIMULATION RESULTS 

211 

 

Figure 5.21: Simulation outputs for (C4), (north orientation): operative temperature (top), solar 
radiation (middle), and hourly variations of shading states based on SR and OT (bottom). 

Regarding solar radiation transmittance through the window, the results indicate a 

significant reduction in the solar radiation that was transmitted through the window after 

the implementation of an adaptive shading system for all orientations as illustrated in 

Figures (5.22-5.25). These figures highlight the differences in solar radiation transmittance 

through the window, which in the (top, A) shows the situation of transmitted solar radiation 

prior to applying the AF, and (bottom, B) shows the results after the implementation of the 

AF.    
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Figure 5.22:  Hourly transmitted solar radiation through window (south orientation), prior to 
implementing the AF shading (top), and after implementing the AF shading (bottom).  

 

 

Figure 5.23: Hourly transmitted solar radiation through window (west orientation), prior to 
implementing the AF shading (top), and after implementing the AF shading (bottom).  

 
Figure 5.24: Hourly transmitted solar radiation through window (north orientation), prior to 

implementing the AF shading (top), and after implementing the AF shading (bottom). 
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Figure 5.25: Hourly transmitted solar radiation through window (east orientation), prior to 
implementing the AF shading (top), and after implementing the AF shading (bottom).  

Regarding building context variations, beside the environmental parameters, the AF shading 

states transformed according to the urban context and the location of the office room. In 

some cases, the urban context had a greater effect on alterations to the shading states while 

in other cases, slight differences in the shading states were observed due to the similar 

settings of the urban context. This variation was expected, as the urban context created 

shadows and reflected solar radiation on the building envelope. In this analysis, 

configurations for a total of 324 different urban contexts are analysed in terms of their 

effect on the transformation of shading states and, thereby, on the cooling load results. 

Figures (5.26) and (5.27) show the analysis of three different combinations of urban contexts 

that surrounded the office tower on four sides as follows: 

1.  P-AF-SCM-C4_Or_B00Low_B01Low_FLLow_ExtW2_Glaz3 

2.  P-AF-SCM-C4_Or_B00High_B01Medium_FLLow_ExtW2_Glaz3 

3.  P-AF-SCM-C4_Or_B00High_B01High_FLLow_ExtW2_Glaz3 

Measuring their effect on shading states for the south and west façades revealed that their 

shading states were fully open (State A) most of time in the urban case (high, high, medium, 

high) with a cooling load of 60.62 kWh/m2/year. The openness for the same hours in the 

other two cases (low, low, medium, high), and (high, medium, medium, high) was varied and 

had a cooling load of 65.77 kWh/m2/year and 64.04 kWh/m2/year respectively. 

Furthermore, the total number of hours spent in each shading state for the C4 scenario 

throughout the year excluding night times are presented in Table (5.2). This evaluation 
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highlights the influence of both orientations and the urban context on the behaviour of the 

shading states and the results for the cooling loads. In addition, a detailed results of two 

specific days of the year (21 March and 21 September) for the south and west façades are 

shown in (Appendix C). To prevent overheating during the summer and to maximise solar 

gain during the winter, the conditional statement in EMS was modified to maintain a fully 

open shading system during the winter season. However, a slight difference was noticed in 

terms of cooling loads while a greater reduction was observed for heating loads.  

 

 

 

Figure 5.26: Relation between shading states variations, and urban contexts and its impact on cooling 
loads for South orientation. 
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Figure 5.27: Relation between variations in shading states, and urban contexts and their impact on 
cooling loads for west orientation. 

Table 5.2. Total number of hours spent in each shading state for some specific cases in different 
orientations and urban contexts. 

P-AF-SCM 
C4_Or_B00Low_B01Low_FLLow_ExtW2_Glaz3 

 

States A B C D E F 

South 2070 829 481 455 592 318 

West 2670 420 420 215 554 466 

North 4487 159 99 0 0 0 

East 3534 344 202 370 276 19 

P-AF-SCM-
C4_Or_B00High_B01Medium_FLLow_ExtW2_Glaz3 

 

States A B C D E F 

South 2774 664 301 387 475 144 

West 3982 330 244 59 130 0 

North 4442 215 88 0 0 0 

East 3229 374 186 367 418 171 

P-AF-SCM-
C4_Or_B00High_B01High_FLLow_ExtW2_Glaz3 

 

States A B C D E F 

South 3711 513 210 273 38 0 

West 3868 331 336 78 132 0 

North 4402 343 0 0 0 0 

East 2974 504 276 328 456 0 
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5.6. Chapter Summary  

This chapter presents the results and findings of the conducted simulations. The analysis 

discussed the engineering parameters used to perform the simulation prior to implementing 

the shading system to understand the most influential parameter affecting the cooling loads. 

Then, different external shading systems (fixed, and adaptive) were compared to find the 

most effective shading system that can reduce the energy cooling loads of the office tower. 

In addition, different control scenarios were evaluated to actuate the AF shading system 

based on indoor and outdoor environmental conditions.    

The results demonstrated that external shading devices can greatly enhance the thermal 

performance of the building envelope and the energy efficiency of office buildings; however, 

their effectiveness may be compromised if the thermal performance of the wall and glazing 

types is not thoroughly investigated. Moreover, the findings proved that AF shading devices 

have better performance than static façades at reducing cooling requirements in relation to 

solar gains. It was also found that, it is crucial to examine different control scenarios to 

select the appropriate shading control system. The next chapter will utilise the collected 

database based on the simulation to develop the ML surrogate models for predicting AF 

cooling loads. Different ML models will be developed and compared to achieve a highly 

accurate model. In addition, it will present in detail the workflow conducted to train, test, 

and validate the developed models.  

The database is loaded into the web-based data visualization tool (Design Explorer): 

Adaptive Façades Control Scenario (C1).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3SEYQbY 

Adaptive Façades Control Scenario (C2).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3BSZP1l 

Adaptive Façades Control Scenario (C3).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3ULMJeZ 

Adaptive Façades Control Scenario (C4).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3eJReGq 

Adaptive Façades All Control Scenarios.  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3E7vqPE 

 

https://tt-acm.github.io/DesignExplorer/?ID=BL_3SEYQbY
https://tt-acm.github.io/DesignExplorer/?ID=BL_3BSZP1l
https://tt-acm.github.io/DesignExplorer/?ID=BL_3ULMJeZ
https://tt-acm.github.io/DesignExplorer/?ID=BL_3eJReGq
https://tt-acm.github.io/DesignExplorer/?ID=BL_3E7vqPE
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CHAPTER 6: DEVELOPMENT OF A SURROGATE MODEL FOR ADAPTIVE 

FAÇADE PERFORMANCE IN THE EARLY DESIGN STAGES  

6.1. Introduction  

The aim of this chapter is to develop a surrogate model that can predict the performance of 

adaptive façades (AFs) in the early stages of the design. As mentioned in the literature, 

surrogate models offer a promising approach to assess the performance of buildings based 

on physical knowledge significantly faster than simulation-based methods. Additionally, 

existing simulation tools have a high computational cost, and setting up the model for 

simulation is time intensive (Attia et al. 2012). Building simulation tools are currently unable 

to keep up with the pace of early design phases (Østergård et al. 2017) because creating a 

simulation to test a single idea requires carefully defining a large number of parameters. As 

a result, the architect's creative process will be disrupted by the extended run time of the 

simulation as well as the complexity of the AF system (Miller 1968). Therefore, this research 

proposes a surrogate model to assess the performance of AFs. In this chapter, the process of 

constructing the surrogate model is examined in detail following three main steps: (1) data 

pre-processing, (2) model training and hyperparameter tuning, and (3) model validation. 

Part of the methodology followed in chapter 4 demands the analysis of solar radiation prior 

to analysing the energy performance of an AF, which increases the simulation time of the 

prediction. Thus, in this chapter, the study experimented initially with solar radiation data 

that were generated using simulation to avoid the need to conduct solar radiation 

simulation again when predicting the energy cooling demands of AF using ML. In addition, 

the study investigated the performance of ML models as potential emulators of simulation 

tools. For this investigation, two different ML algorithms were used to test and compare the 

prediction accuracy, starting with ANN algorithms, as this ML method is the most frequently 

applied in the literature to predict building performance and are best capable of dealing 

with complex nonlinear problems, as discussed in chapter 2 section (2.10). Following that, 

the RF algorithm was used as another method due to its ability to process both numerical 

and categorical data as well as its training simplicity and ability to generalize over a huge 

dataset. 

After the solar radiation surrogate model was developed, confirming the suitability of ML 

techniques to emulate building performance, the second phase involved constructing 

another surrogate model to predict the energy cooling loads of AF shading systems using the 

data generated through simulation. In this phase, approaches similar to those in phase one 
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were followed by developing two different ML learning algorithms, namely, ANN and RF, for 

testing and comparison of the cooling results accuracy. In both investigations, data were 

pre-processed prior to training the models. Then, the data were split into different sets, 

namely, a training set, a testing set, and a validation set, using two different methods of 

splitting the data: (1) hold out validation, and (2) K-fold cross validation, which will be 

detailed in this chapter. Following that, a hyperparameter tuning procedure was carried out 

to optimize the models and select the suitable parameters. The workflow used to develop 

the surrogate models is presented in Figure (6.1). 

Lastly, the time series nature of the data was considered using RF modelling to examine the 

effect of time series inputs on the performance of the surrogate models. To model the time 

series nature of the data, two different approaches were applied, namely, the time 

differencing approach and the time window approach. 

 

Figure 6.1: Workflow used to develop the surrogate models 
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6.2. Solar Radiation Prediction Using Machine Learning  

As mentioned earlier, the data extracted from the simulation were imported into two ML 

algorithms, ANN, and RF, to undergo training. From the simulation model, only data 

describing the design changes, referring to input features, were imported alongside the 

corresponding hourly solar radiation results. In this study, a total of eleven variables were 

used as input parameters to train the two models. This section describes in detail how the 

data were pre-processed prior to training, model development, data-splitting procedure, 

optimization, and validation.  

6.3. Data Pre-processing   

Pre-processing the data can help to improve prediction accuracy when using ML algorithms 

as stated in various studies (Chou and Bui 2014; Kuster et al. 2017; Zhang et al. 2021). Firstly, 

the data were checked to identify incorrect or noisy data and to make sure the input 

features were valid. Then, data transformation was done to convert the input data into a 

format that ML algorithms could understand. For this experiment, input features were 

defined as either categorical or continuous inputs. For example, hour, month, building 

contexts (B00, B01, B02, B03), orientation, and façade level height were considered 

categorical features, and they were one-hot encoded, which is a common way of converting 

categorical inputs into a suitable format for ML models (Seger 2018). The remaining input 

features were x/y/z coordinates of the test points. They were treated as continuous inputs, 

and pre-processing was not applied to these features. The output of the model is the solar 

radiation of the corresponding location. Each of these input features had different ranges 

that defined the number of design iterations of the model as illustrated in Table (6.1). The 

ranges of each feature were as follows: 

- Hour ranges from 6:00 am to 18:00 pm in step of 1 

- Month (0: March 1: June 2: September, and 3: December) 

- Orientation (0: South, 1: West, 2: North, 3: East) 

- Building context B00 height - west side of the building (0: Low, 1: Medium, 2: 

High) 

- Building context B01 height - north side of the building (0: Low, 1: Medium, 2: 

High) 

- Building context B03 height - east side of the building (0: Low, 1: Medium, 2: 

High) 
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- Building context B04 height - south side of the building (0: Low, 1: Medium, 2: 

High) 

- Façade height ranges from 6 to 66  

- X-coordinate (-11.08, 12.28) 

- Y-coordinate (-13.06, 10.26) 

- Z-coordinate (6.40, 69.60) 

Table 6.1. The input data used for the machine learning modelling. 

Input Input Neuron Type Data Range 

Hour  Discrete 6 to 18 in steps of 1  

Month Discrete 0,1,2,3  

B00 Discrete 0,1,2 

B01 Discrete 0,1,2 

B02 Discrete 0,1,2 

B03 Discrete 0,1,2 

Orientation Discrete 0,1,2,3 

Façade height Discrete 6 to 66  

X-coordinate Continuous [-11.08, 12.28]  

Y-coordinate Continuous [-13.06, 10.26] 

Z-coordinate Continuous [6.40, 69.60] 

6.4. ANN Model Development  

In this section, ANNs were used for the modelling in the form of regression learning and 

were trained by a backpropagation (BP) algorithm to predict solar radiation Figure (6.2). The 

BP technique minimises the output error by backpropagating the error from the output to 

the hidden layer, consequently altering the weights. This approach has been followed by 

many researchers as discussed in chapter (2), section (2.10).  

ANNs use a network of neurons with variable weighted connections to process and transfer 

data. An input layer receives training data, one or more hidden layers build a pattern of 

connections to replicate functions, and an output layer generates predictions. During 

training, the input features were sent to the input layer neurons, while the solar radiation 

results were transferred to the output layer neurons. In order to reduce the MSE (mean 

squared error) between the simulated and predicted outputs, the networks adjusted the 

weights of the connections between neurons during epoch-based training. The performance 

of the network was evaluated with the root mean square error (RMSE), mean absolute error 

(MAE) and coefficient of determination (R2) score, which were calculated using the following 

formulae. 
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RMSE = √
1

𝑛
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑓(𝑥𝑖))22
 

 

MAE =  
1

|𝑛| 
∑ |𝑦(𝑖) −  𝑓(𝑥𝑖)| |𝑛|

𝑖=1  
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𝑖=1

∑ (𝑦(𝑖)− �̅�)2|𝑛|
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In the above equations, it is assumed that there are n number of testing data points, 𝑦𝑖  is the 

output of the ith data point corresponding to the input 𝑥𝑖, f(𝑥𝑖) is the predicted value of the 

ith data point where f(x) is the function approximated by the neural network, and �̅� =

 
1

|𝑛| 
 ∑ 𝑓(𝑥𝑖)  

|𝑛|
𝑖=1 . In an ideal modelling case, the RMSE and MAE values are expected to be 

zero and the R2 score to be 1.  

 

Figure 6.2: Architecture of the ANN model. 

6.4.1. Training Process  

During the training process, a feedforward passing was performed with each feature of the 

data; then the prediction output was calculated. During training, the weights of the layers 

were updated by propagating the errors backwards from the output layer to the input layer. 

The input data were applied in stochastic mode, and the optimization algorithm used was 

the gradient descent. The weights of the layers were initialized using the Kaiming 

initialization method (Kaiming et al. 2015). The one-hot encoded categorical features were 

fed into an embedding layer. The purpose of this layer was to give a vector embedding to 
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the one-hot encoded input rather than using them as such. This approach has been found to 

give more representational power for the categorical inputs. Similarly, the continuous 

features were fed into the batch normalizing layer (Ioffe and Szegedy 2016). Its purpose was 

to make the continuous data follow the same probability distribution so that the learning of 

the network was optimized.  

For the non-linear activation of the inputs in the neurons, the Rectified Linear Unit (ReLU) 

function, defined as f(x) = max(0, x), was used (Nair and Hinton, 2017). The output of the 

ReLU was batch normalized, and then the dropout regularization was applied. Dropout is a 

mechanism to ensure the generalization capability of the network by avoiding overfitting 

(Srivastava et al. 2016). For each layer of the network, the data were processed as – linear 

layer à ReLu activation à batch normalization à dropout. The output neuron of the network 

is a trivial neuron where no activations are applied, and the output is taken from the 

previous layer Figure (6.3). In this study, implementation of the network was conducted 

using the PyTorch environment with Python tools as illustrated in Figure (6.4) (Paszke et al. 

2019). The experiment was performed with one-layer, two-layer, three-layer, and four-layer 

networks, and the dropout rate used for the experiment was 0.2. 

 

Figure 6.3: ANN components. 

 

Figure 6.4: Tools used in the study to train and test both models. 
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6.4.2. Data Splitting Procedure (Hold Out Validation) 

This section discusses investigation of the data split. It started with the hold out validation 

approach, which is a simpler data split procedure, and it was then investigated with the K-

fold cross validation, which will be discussed in a later section. Prior to computing the model, 

the data were separated into the training set and the testing set. The training dataset was 

used for developing the model, while the testing dataset was used to evaluate the model 

performance Figure (6.5). The training and testing set split was done in the ratio of 0.8, that 

is, 80% of the data were assigned to the training set and 20% to the testing set (Westermann 

and Evins 2019c). The 20% of the test data were not used for training purposes; these data 

were maintained at the end of the training process to evaluate the performance after tuning 

the hyperparameters.  

 

Figure 6.5: Hold out validation splitting procedure 

6.4.3. Optimization of Hyperparameters (Grid-Structure)   

Tuning the hyperparameters is an important step in the training process of the ANN model 

to achieve the best outcome, as discussed in chapter (2), section (2.9.2). Optimization of the 

hyperparameters was performed in a grid structure approach with respect to the following 

parameters: architecture of the network, learning rate, number of epochs, and batch size, as 

detailed below. The goal of this experiment was to act as a sanity check on these parameters 

for the next experiment.  

1) Architecture of the neural network: Choosing an appropriate network is important 

to avoid the under fitting and overfitting of the data and for better generalization of 

the network to be used with the unseen future data. The aim is to fix the number of 

layers and number of neurons in each layer. 

2) Learning rate: This is the parameter used to update the weights of the networks as 

part of the mathematical optimization of the network. This value controls how much 

a weight is updated during optimization. When considering a high learning rate, it 

may result in skipping the minima and oscillating around the minima region. In 
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contrast, when its value is too low, the search towards the local minima will be too 

slow; this results in a high number of epochs, which consumes more time (Kalogirou 

2000; Samarasinghe 2007).  

3) Number of epochs: An epoch represents the number of times the entire set of 

training data is fed into the neural network. The number of epochs must be 

considered to determine the optimum value. This is because when a low value is 

considered, the network model may not learn as intended. On the other hand, 

selecting a high value may result in extra unnecessary running time, and the learning 

gets saturated.  

4) Batch size: This is the number of training data points that are fed into the neural 

network at a time. This value is regulated by the hardware memory constraints and 

time of execution of the program. Some studies have found that varying the batch 

size can have an effect on the performance of the neural network modelling (Ayoub 

2020).  

6.4.3.1. Architecture of the Neural Network 

Since the performance of ANN models is highly dependent on the design of the network, this 

study evaluated several ANN architectures starting with one hidden layer and employing a 

variety of hidden neurons. The objective was to select the optimal network architecture for 

the ANN model. This experiment modelled ANNs with one hidden layer, two hidden layers, 

three hidden layers, and four hidden layers. The experiments were repeated for the cases 

with a different number of neurons in each layer (64, 80, 128, 256, 512 and 1,024). Table 

(6.2) details the models used in the experiment and their associated RMSE results. Figure 

(6.6) shows a comparison of all the examined combinations of the ANN models. 

Table 6.2. The different number of layers experimented in the study.  

Serial No. No. of layers No. of neurons in each layer RMSE 

1 1 64 0.022570 

2 1 80 0.021322 

3 1 128 0.020274 

4 1 256 0.018792 

5 1 512 0.017913 

6 1 1024 0.018077 

7 2 64 0.018284 

8 2 80 0.015763 

9 2 128 0.015238 

10 2 256 0.014368 

11 2 512 0.015892 

12 2 1024 0.014912 

13 3 64 0.016262 
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Serial No. No. of layers No. of neurons in each layer RMSE 

14 3 80 0.015605 

15 3 128 0.015195 

16 3 256 0.014479 

17 3 512 0.014109 

18 3 1024 0.014478 

19 4 64 0.016198 

20 4 80 0.016176 

21 4 128 0.015801 

22 4 256 0.015468 

23 4 512 0.015031 

24 4 1024 0.014350 
 

 

Figure 6.6: A comparison of all examined ANN models. 

Based on the evaluated architecture models, the following observations were made:  

- The results show that RMSE decreased as the number of layers increased. 

However, there was no significant decrease between the performance of three-

layer and four-layer networks.  

- Out of the networks that used 64 neurons in each layer, the RMSE decreased as 

the network depth increased, as shown in the above figure, and the best RMSE 

was 0.016198. 

- For networks that had 1,024 neurons in each layer, the RMSE also decreased. 

However, the best RMSE was lower than that of the 64-neuron networks, which 

was 0.014350. 
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- This decrease was expected since the representation capabilities of the neural 

networks also increased as the number of layers increased.  

- For the 80-neuron networks, the best RMSE was 0.015605 for three-layer 

networks. For 128-neuron networks, it was 0.015195 for three layers. For 256-

neuron networks, it was 0.014368 for two layers. For 512-neuron networks, it 

was 0.014109 for three layers. 

- Based on the previous observation, it can be seen that for most of the 

investigated cases, the RMSE value of a four-layer network was slightly higher 

than for its three-layer counterparts. 

- The results concluded that the three-layer network was the most suitable 

architecture, since selecting higher layers may result in overfitting.  

To that end, the architecture that was considered was the three hidden layer neural network 

with 512 neurons in each layer. For all experimented models, the learning rate was 0.01, the 

number of epochs was 60, and the batch size was 8,000. 

6.4.3.2. Learning Rate 

As the learning rate influences the outcome of the ANN model, thus, multiple values should 

be considered to get the best accuracy learning rate as shown in Table (6.3). The results of 

this analysis indicate that when specifying a lower learning rate, the RMSE resulted in a very 

high value, which was 0.091769. Hence, this implies that this value of the learning rate is 

unsuitable for neural network modelling. As a result, the updated weights did not occur in 

the desired amount, and learning was stagnant. As the learning rate value increased slightly 

at 0.0001, the RMSE significantly improved to 0.020789. The above two values show the 

significance of carefully choosing the value of the learning rate. It was again further reduced 

as the rate was decreased. The learning rate was fixed as 0.01, and the network used was a 

three-layer network with 512 neurons, the number of epochs was 60, and the batch size was 

8,000. 

Table 6.3. Different values of learning rate. 

Learning rate RMSE 

0.00001 0.091769 

0.0001 0.020789 

0.001 0.011144 

0.01 0.011000 

6.4.3.3. Number of Epochs 

Once it had been decided that the learning rate was to be fixed as 0.01, this analysis was 

done by varying the number of epochs as shown in Table (6.4). The network used for this 



CHAPTER 6: DEVELOPMENT OF A SURROGATE MODEL FOR ADAPTIVE FAÇADE PERFORMANCE IN 
THE EARLY DESIGN STAGES 

228 

analysis was a three-layer network with 512 neurons, the learning rate was 0.01, and the 

batch size was 8,000. The results obtained when varying the number of epochs reveal that 

after epoch 60, there was no significant improvement in the RMSE value. When selecting a 

value of 100 and 200 for the number of epochs, there was no change in the RMSE. In the 

case of 300 epochs, the RMSE difference was extremely negligible. Therefore, based on this 

experiment, the number of epochs was fixed as 100.  

Table 6.4. Variations of the number of epochs. 

Number of epochs RMSE 

60 0.011189 

100 0.011185 

200 0.011185 

300 0.011186 

6.4.3.4. Batch Size 

The analysis considered various batch sizes for training the data, as listed in Table (6.5). The 

network used for this analysis was a three-layer network with 512 neurons, the learning rate 

was 0.01, and the number of epochs was 100. The learning rate was high for the lowest 

batch size, and the time taken to run the program was also very high. As the batch size 

increased, there was no significant improvement in the RMSE, but there was a reduction in 

the runtime. The runtime after a limit of batch size was mostly the same, which can be 

attributed to the computing powers of the GPU and other related hardware used. Mostly, 

the values were in the range 0.010 to 0.012. Thus, considering this in addition to the running 

time, the batch size was fixed as 16,000. 

Table 6.5. Different batch sizes used in the analysis.  

Batch size RMSE Time taken 

100 0.013214 6h 40m 

500 0.011034 1h 37m 

1000 0.010987 1h 23m 

2000 0.011362 1h 08m 

4000 0.011864 1h 05m 

8000 0.011426 1h 04m 

16000 0.010929 1h 02m 

32000 0.011134 0h 59m 

6.4.3.5. Results of Hyperparameters  

In this experiment with neural networks modelling, the best result was obtained with a 

three-layer network with 512 neurons in each layer with an RMSE value of 0.010929. The 

learning rate was 0.01, the number of epochs 100, and the batch size 16,000. The training 

loss and validation loss of the developed network is plotted in Figure (6.7). The Figure 

illustrates that the training loss starting from 0.63 decreased steeply to less than 0.01 in the 

first few iterations. This indicates that the neural network had learned in the desired way. 
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From iteration 15 onwards, the rate of decrease in the loss was very low. Similarly, the 

validation loss started slowly decreased as the epochs proceeded. 

 

Figure 6.7: Training and validation loss against epochs.  

6.4.4. K-fold Cross Validation 

The purpose of the initial experiment was to determine the appropriate range of parameter 

values, such as learning rate, batch size, and number of epochs. This section investigates K-

fold cross validation as a novel method for improving the accuracy prediction of an ANN 

model. As mentioned in the literature, K-fold cross validation has the ability to train on 

multiple train-test splits and provide more accurate approximations of generalization. 

However, it requires more computational power and time for training. 

As the K-fold cross validation consumes time and requires computational power, the study 

considered only the architecture of the ANN for fine-tuning. As stated by 

Keshtkarbanaeemoghadam et al. (2018), ANN models are significantly dependent on the 

architectures of the network. Other parameters were obtained from first experiment in 

section (6.4.3), which include learning rate, batch-size, dropout rate, and number of epochs, 

as these parameters were already fixed in a previous experiment. For this experiment, the 

data were split into training, validation, and test sets. The models were tested using the 

training and validation data splits, and the selected model was tested with the test data. The 

test data were treated as unseen data and were not used for selecting the right architecture 

of ANN.  

Initially, the whole dataset was split into training, validation, and testing sets: 80% of the 

data were assigned to the training set, 6.67% to the validation set, and the remaining 

13.37% to the testing set. The k-fold cross validation was then conducted on the training 
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fold, and the chosen value of k was 5. The data split procedure is graphically represented in 

Figure (6.8). During k-fold cross validation, one among the fold becomes the testing set, and 

the remaining ones become the training set. In this case, one-third of the testing case was 

reserved as a validation set for that particular instance of the validation procedure. For the 

cross-validation experiments, the learning rate was fixed at 0.01, the dropout rate at 0.2, 

and the batch size at 16,000. The experiments were run for 100 epochs with an early 

stopping criterion of 10 epochs.  

 

Figure 6.8: The data split procedure. 

6.4.5. Optimization of Hyperparameters  

K-fold cross validation was utilized to select the optimal architecture for the ANN in terms of 

the required number of layers and the number of neurons per layer. The experiment 

employed one-, two-, three-, and four-hidden layer network architectures. Each network 

was tested with 64, 128, 256, 512, and 1,024 neurons in each layer. The details of the 

experiment are presented in Table (6.6), and the following conclusions were drawn. 

The results revealed that as the number of layers increased, the RMSE decreased. This was 

expected since the representation capabilities of the ANN also increased as the number of 

layers increased. However, there was a slight increase in the RMSE when it came to the 

three-layer network with 1,024 neurons and four-layer networks. A similar trend was also 

observed with the MAE and R2 scores. Hence, for the data modelling problem, the three-

layer network was suitable, as considering a higher number of layers could result in 

overfitting Figure (6.9). The architecture selected after the five-fold cross validation 

experiment was a three-layer network with 256 neurons in each layer Figure (6.10).  
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Table 6.6. Architecture optimization of ANN by k-fold cross validation. 

Serial No. 
No. of 
layers 

No. of neurons in 
each layer 

RMSE MAE R2 

1 1 64 0.02164 0.08616 0.6872 

2 1 128 0.01964 0.08144 0.716 

3 1 256 0.01898 0.0804 0.7254 

4 1 512 0.01842 0.07976 0.7334 

5 1 1024 0.01922 0.0835 0.7226 

6 2 64 0.01658 0.07134 0.7606 

7 2 128 0.01528 0.06708 0.7798 

8 2 256 0.01524 0.06716 0.7794 

9 2 512 0.01626 0.07186 0.7646 

10 2 1024 0.01784 0.0808 0.7426 

11 3 64 0.01705 0.07238 0.7549 

12 3 128 0.01520 0.067586 0.7816 

13 3 256 0.01509 0.06596 0.7832 

14 3 512 0.0161 0.07155 0.7686 

15 3 1024 0.02275 0.09761 0.6729 

16 4 64 0.01708 0.072567 0.7546 

17 4 128 0.01539 0.06675 0.7789 

18 4 256 0.01559 0.06779 0.7759 

19 4 512 0.01754 0.07589 0.7841 

20 4 1024 0.01807 0.07878 0.7403 
 

 

Figure 6.9: k-fold cross validation results for choosing the architecture 

 

Figure 6.10: The performance metric comparison of best performing model among one-, two-, three-, 
and four-layer networks 
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6.4.6. Testing the Architecture 

The three-layer network with 256 neurons in each layer, which was selected through k-fold 

cross validation, was applied with the validation set and test set. For this purpose, a new 

model was built using the entire training set. This model was tested with the test set. The 

results obtained are as follows: RMSE=0.011415, MAE=0.052188, and R2 score=0.831315. 

For the experiment, the learning rate used was 0.01, the dropout rate was 0.2, the number 

of epochs was 100, and the batch size was 16,000. Figure (6.11) shows a sample of the hourly 

solar radiation prediction using ANN for a set of 25 coordinates to test the model. 
 

 

Figure 6.11: The actual and predicted solar radiation values by ANN for a set of 25 coordinates.  

6.5. Random Forest Model Development  

Random forest (RF) is an advancement of DT and the model used in the form of regression 

learning. RF algorithms were employed as another ML algorithm to compare the prediction 

accuracy with that of the ANN model output. Figure (6.12, top) illustrates the modelling of 

RF and how the decision is made in RF algorithms Figure (6.12, down). In terms of input 

features, the same data as were discussed in section (6.3) which underwent pre-processing 

as a preparation for ANN modelling were employed in this section. The output was the solar 

radiation of the corresponding location. Similarly with ANN modelling and to allow 

comparison, the performance of the network was evaluated with the RMSE, MAE, and R2 

scores.  
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Figure 6.12: The modelling of RF (top), and how the decision is made in the decision tree algorithm 
(down).  

6.5.1. Optimization of Hyperparameters  

Optimization of the hyperparameters for RF was performed in a grid structure approach 

with respect to the following parameters: bootstrap, minimal cost-complexity pruning, and 

number of trees. These are discussed in more detail below.   

6.5.1.1. Bootstrap 

Bootstrap is a process of random sampling from the training data. In bootstrap, the training 

data are selected with a uniform probability of replacement. In each time, a data point is 
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selected; it is equally likely to be selected again and re-added to the training set. This 

procedure helps reduce the high variance of the RF models and prevents them from 

overfitting (Breiman 2001). If the bootstrap option is not enabled, the RF is learned using the 

whole dataset. The experiment was done with and without the bootstrap option enabled, 

and the results are recorded in Table (6.7). The number of trees used for the experiments 

was 30, and the minimal cost-complexity pruning parameter was 0.0. From the experiments, 

it can be observed that the bootstrap sampling option helped to reduce the RMSE to a 

significant level.  

Table 6.7. Experiments using bootstrap. 

Bootstrap  RMSE  

Enabled  0.000342  

Disabled  0.000447  

6.5.1.2. Minimal Cost-Complexity Pruning 

Tree pruning is a procedure to avoid overfitting in RF models. In the pruning technique, the 

trees are not allowed to grow beyond a predetermined depth. The minimal cost complexity 

pruning is a pruning technique proposed in a study by Dietterich (2000a). This experiment 

was done by varying the pruning hyperparameter α in the set [0, 0.001, 0.002, 0.003, 0.004, 

0.005] Table (6.8). The experiments were done with a split 80/20, the number of trees was 

30, and the bootstrap option was enabled. The experimental observation indicates that 

there is no significant difference in applying pruning to the default setting of no pruning (α = 

0). Therefore, it can be concluded that the data were not overfitting the RF model.  

Table 6.8. Experiments using various hyperparameters of α.  

Value of α  RMSE  

0.000  0.000342  

0.001  0.000351  

0.002  0.000344  

0.003  0.000366  

0.004  0.000360  

0.005  0.000349  

6.5.1.3. Number of Trees 

The number of trees indicates the number of individual decision tree estimators used in the 

random forest algorithm. The experiment was carried out considering different numbers of 

trees starting from a value of 10 trees, then adding more in sequence as follows (10, 20, 30, 

40, 50, 60, 70, 80, 90, 100) as shown in Table (6.9). The results show that the RMSE 

decreased until it reached the value of 30 for the number of trees. The lowest value 

achieved was for 30 trees, for which the RMSE result was 0.000306. Then, the results show 

that as the value for the number of trees increased, the corresponding RMSE values showed 
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a slightly increasing trend. Thus, based on these experiments, the number of trees was fixed 

as 30.  

Table 6.9. Experiments using different number of trees.  

Split RMSE 

10 0.000451 

20 0.000431 

30 0.000306 

40 0.000439 

50 0.000433 

60 0.000449 

70 0.000321 

80 0.000338 

90 0.000371 

100 0.000327 

6.5.2. K-fold Cross Validation 

To find the proper values for the hyperparameters, an experiment was conducted similar to 

the one described in Section (6.2.6). A five-fold cross validation was applied on the training 

set alone to fix the hyperparameters. To test the model in the testing set, a model was built 

using the entire training set whose hyperparameters were those fixed by the k-fold cross 

validation. 

6.5.3. Optimization of Hyper parameters  

For the K-fold cross validation, the selected hyperparameters include (1) number of trees, (2) 

bootstrap, and (3) minimal cost-complexity pruning parameters. The results of the k-fold 

cross validation are shown in Table (6.10). The results showed that there was no significant 

variation in the RMSE value as the number of trees increased as shown in Figure (6.13). The 

best performance was observed with a ccp-alpha value of 0.0 regardless of the number of 

trees and the bootstrap option. When a non-zero value was specified, there was a greater 

drop in the performance. The performance when the bootstrap option was enabled was 

better than with the models where it was disabled. The best result was observed when the 

number of trees was 80, the ccp-alpha value was 0, and the bootstrap option was enabled. 

In this setting, the RMSE value was 0.000354, the MAE was 0.00457, and the R2 score was 

0.993 Figure (6.14). To that end, the final model was built with the above specified 

hyperparameters. The final test results were as follows: the RMSE was 0.000514, the MAE 

was 0.00661, and the R2 score was 0.99228. Figure (6.15) illustrates a sample of the solar 

radiation prediction using RF for a set of 25 coordinates to test the model. 
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Table 6.10. The k-fold cross validation results for RF. 

Sl No. Trees RMSE MAE R2-score 

1 10 3.52E-04 4.42E-03 9.92E-01 

2 20  3.48E-04 4.41E-03 9.93E-01 

3 30 3.48E-04 4.40E-03 9.95E-01 

4 40 3.48E-04 4.39E-03 9.95E-01 

5 50 3.45E-04 4.40E-03 9.95E-01 

5 60 3.52E-04 4.48E-03 9.94E-01 

7 70 3.45E-04 4.39E-03 9.92E-01 

8 80 3.54E-04 4.57E-03 9.93E-01 

9 90 3.41E-04 4.38E-03 9.95E-01 

10 100 3.50E-04 4.40E-03 9.95E-01 
 

 

Figure 6.13: The performance metric visualization for the best model when the number of trees is 
considered. 

 

Figure 6.14: The result visualization of hyperparameter tuning in RF, CCP stands for the CCP alpha 
value chosen, and BS stands for bootstrap option. 
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Figure 6.15: The actual and predicted solar radiation values by RF for a set of 25 coordinates plotted 
as a heatmap. 

6.6. Comparison of ANN and RF 

After the experiment with these different parameters, the best result achieved for the 

neural network in terms of RMSE was 0.011415 and for the RF was 0.000514. While both 

methods provided an acceptable level of accuracy, the performance by RF was significantly 

higher than that of ANN as given in Table (6.11). This is due to the following reasons: 

- Most of the inputs were categorical; thus, this was a highly compatible learning 

scenario for the RF. Since the decision trees are highly suitable for categorical 

inputs in the learning setting, RF modelling has a significant advantage over 

neural network modelling. 

- An RF is an ensemble algorithm. Ensemble algorithms are a class of ML 

algorithms where a set of learning programs are combined together to give 

accurate predictions (Dietterich 2000b). Instead of relying on a single algorithm, 

the predictions from such multiple algorithms are considered, and the error is 

reduced significantly. Since this feature is implicitly embedded with RF 

modelling, its performance was significantly better than that of neural networks 

in this case. 

- The generalizability of either RF or ANN to a new modelling problem is 

dependent on the nature of the inputs and the modelling tasks. However, the 

study observed that if the input data were mostly categorical, the RF algorithm 

could perform better than an ANN. 

Table 6.11. Performance comparison of ANN and RF for solar radiation data. 

Performance metric Neural network Random Forest  

RMSE 0.011415 0.000514 

MAE 0.052188   0.00661 

R2-score 0.831315 0.99228 
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6.7. Cooling Loads Prediction Using Machine Learning  

After confirming the suitability of ML techniques to predict hourly solar radiation in stage 

one, this section develops another surrogate model to predict the energy cooling loads of AF 

shading systems using the data generated through simulation. This chapter discusses an 

approach similar to that followed in phase one by developing two different ML learning 

algorithms, ANN and RF, for testing and comparing the cooling result accuracy. As 

mentioned in chapter 2 section (2.9), employing sufficient data is essential to achieve a 

highly accurate predictive ANN model that can predict the hourly cooling energy demand. 

For this purpose, 1,296 simulation iterations of an office room with AF with control scenario 

(C4) were performed by the Honeybee plugin in chapter (4), with various inputs to train the 

model. A total of 3,794,688 (1296 * 4 months (122 days) *24 hours) items of hourly cooling 

energy data were recorded corresponding mainly to the variation of the AF system per hour 

together with other input parameters Figure (6.16). Cooling loads KW/m2 were generated as 

an output of the ANN model, and a total of thirteen variables were used as inputs as follows: 

hour, month, day, orientation, building 00, building 01, façade level height, glazing type U-

value W/m2K, exterior wall U-value W/m2K, AF opening ratio, AF-SF, SR W/m2, and OT. The 

input data feature and ranges of each input are illustrated in Table (6.12). 

 

Figure 6.16:  Sample of the data generated based on simulation. 
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Table 6.12. The input data used for the ANN modelling 

Input parameter Input neuron type Data range 
Hour Discrete (1, 2, …, 24) 
Month Discrete (0, 1, 2,3) (March, June, September, December) 
Day Discrete (1, 2, ….31) 
Orientation Discrete (0, 1, 2, 3) – (South, West, North, East) 
Building 00 Discrete (0, 1, 2) – (Low, Medium, High) 
Building 01 Discrete (0, 1, 2) – (Low, Medium, High) 
Facade Level Height Continuous 8 - 60 
Glazing Type - U-value 
W/m2K 

Discrete 
(0,1,2,3) – (SingleG0, DBL-Glz001-Clear, DBL-
Glz002-low-e coating, TripleGlz-Krypton Filled) 

Exterior Wall - U-value 
W/m2K 

Discrete (0,1,2) 

AF-Opening Ratio Continuous 0 - 1 
AF-Shade Factor Continuous 0 - 1 
Solar Radiation - W/m2 Continuous 0 – 550 
Operative Temperature - C Continuous 14.00 – 30.00 

The ANN was used for the ML modelling because of the universal approximation theorem. 

The theorem states that an ANN with one hidden layer can approximate any continuous 

function for inputs within a specific range. In other words, an ANN can find an 

approximation of a function to be learned from a set of inputs via a dataset. It is a network 

of different layers consisting of a set of basic computing units called neurons. Each neuron 

takes the input from the previous layer where the inputs are multiplied with weights Figure 

(6.17). The output of a neuron is a non-linear function of the linear combination of weighted 

inputs as shown in the figure (6.17) and described by the following equation. The data flow 

overview of the modelling process is described in Figure (6.18).  

𝑦 =  𝜎 (𝑥1𝑤1 +  𝑥2𝑤2 + 𝑥3𝑤3) 

 

Figure 6.17: An artificial Neuron.  

The non-linear function σ is called the activation function. In the experiments, the activation 

used was the ReLU, which is defined as follows: 

𝜎(𝑥) = max(0, 𝑥). 
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The network architectures used were one-, two-, three-, and four-layer networks with 64, 

128, 256, and 512 neurons. In the case of multilayer neural networks, the underlying 

equation can be written as follows: 

𝑦 = 𝜎 … 𝜎(𝜎 (𝑋1𝑊1))𝑊2 … )𝑊𝑁 

Here, 𝑋1 is the input matrix of dimensions n x d; n is the number of data points, and d is the 

dimension of the data. 𝑊1 is the weight matrix in the first layer of dimensions d x 𝑑1. 

Similarly, 𝜎 (𝑋1𝑊1) forms the input for the second layer, and 𝑊2 is the weight matrix for the 

second layer and has the dimensions 𝑑1 x 𝑑2. 

 

Figure 6.18: Data flow overview 

The performance of the network was evaluated with the RMSE value, MAE, and 𝑅2 score. 

The performance metrics were calculated using the following formulae. 

RMSE = √
1

|𝑦|
∑  𝑛

𝑖=1 (𝑦𝑖 − �̂�(𝑖))22
 

MAE(y, �̂�) =  
1

|𝑦|
∑ |𝑦(𝑖) −  �̂�(𝑖)| |𝑦|

𝑖=1  

𝑅2(y, �̂�) = 1 - 
∑ (𝑦(𝑖)− �̂�(𝑖))2|𝑦|

𝑖=1

∑ (𝑦(𝑖)− �̅�)2|𝑦|
𝑖=1

 

In the above equation, 𝑦𝑖  is the output of the ith data point, �̂�(𝑖) is the predicted value of the 

ith data point, and �̅� is the mean of y. Here, �̂�(.) is the function approximated by the NN, and 

it is assumed that there are |𝑦| number of prediction cases.  

The RMSE value describes the square of the difference between the actual cooling load 

values and the predicted ones. On the other hand, the MAE describes the absolute value of 

the difference between the two. The difference is also known as the residual. Both the 

values can take any value greater than zero, and a model is said to be performing well when 

both the values are as low as possible.  



CHAPTER 6: DEVELOPMENT OF A SURROGATE MODEL FOR ADAPTIVE FAÇADE PERFORMANCE IN 
THE EARLY DESIGN STAGES 

241 

The 𝑅2-value evaluates the scatter of the predicted values around the regression line. In 

statistics, it is also called the coefficient of determination. It is defined as the ratio of 

variance explained by the model to the total variance.  

6.8. Data Pre-processing  

The discrete inputs used for the modelling were hour, month, date, orientation, building 00, 

building 01, glazing type U-value, and exterior wall U-value. These inputs were first one-hot 

encoded. One-hot encoding is a mechanism to represent categorical variables as a 

mathematical vector that contains zeros and ones (Seger 2018). The vector will have a 

dimension equal to the number of possible values it can take. One is given for the coordinate 

corresponding to the value taken by the variable, and the remaining coordinates will be 

zero. 

For example, if a variable takes values of either high, medium, or low, high is represented as 

[1, 0, 0], medium is represented as [0, 1, 0], and low is represented as [0, 0, 1]. The one-hot 

encoded categorical features are fed into an embedding layer. In this layer, the one-hot 

encoded vector already created will again be changed to another meaning vector rather 

than using it in its original form of just ones and zeros. This approach has been found to give 

greater representational power for the categorical inputs.  

The continuous inputs used for the modelling were façade level height, AF (opening 

percentage), AF-SF, SR, and OT. These inputs were fed into the batch normalizing layer (Ioffe 

and Szegedy 2016). Then, the data were fed into the ANN in batches. Since the network was 

not fed with the entire dataset, the data distribution tended to vary, as each batch was 

processed. This caused some instability with the learning process. To rectify this effect, 

batch normalization was introduced. It standardized the input in the form of batches that 

had been fed to the ANN layers. It helped to stabilize the learning process and reduced the 

number of epochs required to train the networks. 

6.9. ANN Model Development  

This section describes the ANN model development process for predicting the cooling loads. 

Several ANN models were examined and trained based on the data obtained from 

simulation Figure (6.19). In addition to determining the optimum ANN model, a 

hyperparameter optimization method was performed considering the following parameters: 

the architecture of the model, the data split ratio, the learning rate, the batch size, and the 

number of epochs. Implementation of the network was done using the PyTorch framework 

(Paszke et al. 2019). The dropout rate used for the experiment was 0.5 (Srivastava et al. 
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2016). The hardware used was Intel Xeon E5-2630 CPU, 80 GB RAM, and Nvidia GeForce GTX 

1080-Ti GPU. In the algorithm, first, a feedforward passing was performed with each item of 

the data, the prediction was calculated, and then the weights of the layers were updated by 

propagating the errors backwards from the output layer to the input layer. The data may be 

applied in stochastic or batch mode, and the optimization algorithm used was the gradient 

descent. The weights of the layers were initialized using the Kaiming initialization method 

(Kaiming et al. 2015). The ANN components and operations used in the experiments are 

shown in Figure (6.20).  

The experiment of hyperparameter tuning was carried out using two different procedures to 

find the optimum hyperparameters of the ANN model. The first one was a systematic 

parameter tuning procedure to find the optimal architecture, learning rate, batch size, and 

number of epochs. The second one was a k-fold cross validation technique to tune the 

architecture. 

 

Figure 6.19:  Architecture of the ANN model. 
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Figure 6.20: ANN components. 

The operations inside the layers are as follow:  

a) Linear layer + ReLU: 

The input to the network was given to a dense or linear layer. For the non-linear 

activation of the inputs in the neurons in the linear layer, the ReLU function defined as 

f(x) = max(0, x) was used. 

b) Batch normalization: 

The output of ReLU was batch normalized. Batch normalization concepts were 

discussed in the previous section. 

c) Dropout regularization: 

Dropout is a mechanism to ensure the generalizability of the network by 

avoiding overfitting. It is the process of disabling certain neurons randomly so that the 

learning process becomes robust, and dependency on specific neurons will be 

decreased. The percentage of neurons to be disabled is treated as a hyperparameter; it 

was taken as 0.5 out of 1 in the experiments. 

d) Output of the network: 

              The output of the network was a neuron without any activation function, that is, 

the input of the neuron was multiplied by the weight, and no further processing was 

done. 
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6.9.1. Optimization of Hyperparameters (Grid-Structure)   

The training dataset was used for developing the model, while the testing dataset was used 

to evaluate the model performance.  The training and testing set split was done in the ratio 

of 0.8, that is, 80% of the data were assigned to the training set and 20% to the testing set. 

The optimization of the hyperparameters was carried out considering the architecture of the 

network, learning rate, batch size, and epochs. 

6.9.1.1. Architecture of the Neural Network 

ANN can have a different number of layers where each layer can have a different number of 

neurons. Choosing an appropriate network is important to avoid the under-fitting and 

overfitting of the data and for better generalization of the network to be used in the unseen 

future data. To achieve this, the experiment started with a one-layer network, and numbers 

of neurons were added to it in steps. Firstly, 32 neurons were given, then 64, and then 128. 

Next, the experiment was repeated for two-layer and three-layer networks. The models 

used in the experiment and the corresponding RMSE are given in Table (6.13). 

Table 6.13. Experiments using different ANN architecture. 

Serial 
No. 

No. of 
layers 

No. of neurons in 
each layer 

RMSE MAE R2 score 

1 1 64 0.000269399 0.011253547 0.758151442 

2 1 128 0.000253705 0.011068318 0.772240334 

3 1 256 0.000240284 0.010677113 0.784288583 

4 1 512 0.000283188 0.012195355 0.745772501 

5 2 64 0.000194905 0.009196877 0.825026787 

6 2 128 0.000166843 0.008723773 0.850219593 

7 2 256 0.000175501 0.008926978 0.842446943 

8 2 512 0.000958364 0.024877253 0.139643104 

9 3 64 0.000194224 0.009385868 0.825638646 

10 3 128 0.000143462 0.007910841 0.871209485 

11 3 256 0.000417632 0.01416273 0.625077461 

12 3 512 0.001052363 0.026886282 0.055257404 

13 4 64 0.000182201 0.008812156 0.836432209 

14 4 128 0.000152965 0.00791995 0.862677845 

15 4 256 0.000750953 0.021309711 0.325843067 

16 4 512 0.000470598 0.015197082 0.57752796 
 

The results are graphically represented as shown in Figure (6.21). From the figure, the 

following observation were drawn. 

- The performance score varied drastically for deeper networks with a large 

number of neurons (256 and 512), and the performance was low compared to 

other shallow networks. For example, for networks with three to four layers 
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with 256 neurons, the RMSE was 0.000417632 and 0.000750953 respectively 

while on the other hand, for one- to two-layer-networks, it was 0.000240284 

and 0.000175501 respectively. A similar trend could be observed with models 

containing 512 neurons.  

- On the other hand, the performance of deeper networks with a lower number of 

neurons (64 and 128) was comparatively better than the previous case. For 

example, for 64 neurons, the RMSEs were 0.000269399, 0.000194905, 

0.000194224, and 0.000182201 for networks one, two, three, and four layers 

respectively. 

The results show that the performance was increasing up to three-layer networks. Then, 

when four-layer networks were selected, the performance dropped. The best result 

achieved was for the three-layer network with 128 neurons on each layer as shown in Figure 

(6.22). Thus, based on the experiments, the architecture chosen was a three-layer neural 

network with 128 neurons. For all these experiments, the train/test ratio of the data used 

was 80/20%, the learning rate was 0.01, the number of epochs was 60, and the batch size 

was 25,000. 

 

Figure 6.21: Results of sensitivity analysis on ANN architecture. 
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Figure 6.22: RMSE, MAE and R2 score of the best performing models among the one-, two-, three- and 
four-layer networks. 

6.9.1.2. Learning Rate 

This parameter was used to adjust the network weights as part of the network's 

mathematical optimization. The details of the experiments are presented in Table (6.14) and 

visually represented in Figure (6.23). The experiments were done considering a value of 60 

as the number of epochs. It can be seen from Table (6.14) that when the learning rate was 

lowest, the RMSE had a very high value, which was 0.001057556. This revealed that this 

value of the learning rate was too low for the neural network modelling, and a large number 

of epochs would be required to obtain the desired results. On the other hand, when the 

value increased to 0.001, the RMSE result significantly improved to 0.000496417. In 

addition, further reduction could be observed as the rate decreased. Therefore, these 

results indicate that consideration should be given while determining the value of the 

learning rate. To that end, the learning rate was fixed as 0.01, as it was the lowest RMSE of 

0.000143462. For the experiments, the network used was a three-layer network with 128 

neurons, the train/test split was 80/20, the number of epochs was 60, and the batch size 

was 25,000. 

Table 6.14. Experiment using different values of learning rate.  

Sl No. Learning rate RMSE MAE R2 score 

1 0.1 0.000205214 0.009361184 0.81577201 

2 0.01 0.000143462 0.007910841 0.871209485 

3 0.001 0.000496417 0.015957664 0.554348964 

4 0.0001 0.001057556 0.026922022 0.050594843 
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Figure 6.23: RMSE, MAE and R2 score for the learning rate. 

6.9.1.3. Batch Size 

The experiment confirmed that batch size influences the performance of the ANN model. 

The finding shows that when batch size increases, performance increases up to a certain 

limit and then decreases. For example, the RMSE for a batch size of 2,500 was 00012724, for 

10,000 it was 0.00011567, and for 250,000 it was 0.00010494. However, the RMSE increased 

significantly for higher batch sizes of 100,000 and 250,000 to 0.0006451 and 0.00068948 

respectively. The results of the experiment with varied batch sizes are presented in Table 

(6.15) and Figure (6.24).  Based on the experiment, the batch size was fixed as 25,000, and 

the network used employed was a three-layer network with 128 neurons, the train/test split 

was 80/20, the number of epochs was 60, and the learning rate was 0.01. 

Table 6.15. Experiment using different batch size.  

Sl No Batch size RMSE MAE R2 - score 

1 2500 0.00012724 0.0072207 0.885772563 

2 10000 0.00011567 0.0076822 0.892154514 

3 25000 0.00010494 0.0062125 0.905787265 

4 100000 0.0006451 0.0197306 0.420871584 

5 250000 0.00068948 0.0198572 0.381028919 
 

 

Figure 6.24: RMSE, MAE and R2 score for the batch size. 
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6.9.1.4. Number of Epochs 

The epoch refers to the method by which data are entered into the network. The data 

should be fed multiple times to allow the network to learn effectively. The 'number of 

epochs' represents the number of times data have been fed into the network, which should 

be considered during the tuning of the hyperparameters to select the optimal number of 

epochs. This experiment was conducted by altering the number of epochs, with the learning 

rate maintained constant at 0.01. The details of the investigations are summarized in Table 

(6.16) and Figure (6.25). In the experiments, a three-layer network with 128 neurons was 

utilised, the train/test split was 80/20, the learning rate was 0.01, and the batch size was 

25,000. After 100 epochs, a significant improvement was noted in the RMSE value. However, 

for values of 200 and 300 epochs, the RMSE stayed consistent. Thus, considering these 

findings, the number of epochs was determined at 100. 

Table 6.16 Experiment using different number of epochs. 

Sl No Epochs RMSE MAE R2 - score 

3 60 0.00014346 0.0079108 0.871209485 

4 100 0.00008509 0.005525503 0.92360919 

3 200 0.00008554 0.0053893 0.917816795 

4 300 0.00008562 0.005276 0.924930709 

 

Figure 6.25: RMSE, MAE, and R2 score for the number of epochs 

6.9.1.5. Results for Hyperparameters  

The best result achieved for an ANN model was for a three-layer network with 128 neurons. 

The RMSE value was 0.00008509, the MAE was 0.005525503, and the R2 score was 

0.92360919. For this experiment, the learning rate was 0.01, the number of epochs was 100, 

and the batch size was 25,500. A validation dataset was preserved to test the performance 

of the model. The training loss and validation loss of this network is plotted in Figure (6.26). 

As can be seen from the plot training, the loss started with 0.019 and decreased steeply to 

less than 0.001 in the first few iterations. This indicates that the ANN model had learned in 
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the desired way. Similarly, the validation loss slowly decreased as the epochs proceeded. 

Table shows the training and validation accuracy against the epochs in ten steps.  

The results in Table (6.17) reveal that the training process of the ANN modelling proceeded 

in the desired way. In addition, Figure (6.27) shows a scatter plot of actual and predicted 

values for 100 randomly chosen testing cases. In addition, for more details, some tested 

cases in different orientation predicted using ANN compared to simulation are shown in 

(Appendix E). These results prove that the ANN model could predict the cooling load with 

good accuracy.  

 

Figure 6.26: Training and validation loss against epochs.  

Table 6.17. Training and validation loss against epochs.  

Epoch  Training loss  Validation loss 

1 0.019771 0.000877 

10 0.00013 0.000135 

20 0.000102 0.000108 

30 0.0000993  0.0000905 

40 0.0000970 0.0000872 

50 0.000096 0.0000899 

60 0.000094 0.0000905 

70 0.0000949 0.0000896 

80 0.0000941 0.0000966 

90 0.0000932 0.0000884 

100 0.0000923 0.0000831 
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Figure 6.27: Plot of actual and predicted values for 100 testing cases. 

K-Fold Cross Validation 

The optimal hyperparameter values were determined using an experiment similar to that 

which was explained in Section (6.4.4). The dataset was split into training, validation, and 

testing sets: 80% of the data were assigned to the training set, 6.67% to the validation set, 

and the remaining 13.37% to the testing set. The training set alone was then subjected to 

five-fold cross validation to tune the hyperparameters. After fine-tuning the network's 

parameters, a model was constructed using the entire training set and then tested using the 

testing unseen data. The details of the cross-validation are shown in Figure (6.28). 

 

Figure 6.28: The data split procedure. 

Number of Cases 
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6.9.2. Optimization of Hyperparameters  

This experiment started with a one-layer network, and numbers of neurons were added to it 

in steps. Firstly, 32 neurons were given, then 64, and then 128. Following that, the 

experiment was repeated for two-layer, three-layer, and four-layer networks, and the data 

were split into training, validation, and test sets (Table 6.18). The models were trialled using 

the training and validation data splits, and the model finally chosen was tested with the test 

data.  

Table 6.18. Results of hyperparameter tuning for ANN architecture 

Serial 
No. 

No. of 
layers 

No. of neurons in each 
layer 

RMSE MAE R2 score 

1 1 64 0.000485 0.03821 0.836432 

2 1 128 0.000478 0.0383 0.862678 

3 1 256 0.000482 0.03793 0.642886 

4 1 512 0.000857 0.04861 0.57725 

5 2 64 0.000551 0.04171 0.750268 

6 2 128 0.000547 0.04106 0.75022 

7 2 256 0.00057 0.04226 0.644694 

8 2 512 0.000799 0.0469 0.496431 

9 3 64 0.000651 0.04564 0.638646 

10 3 128 0.000703 0.04616 0.620949 

11 3 256 0.000583 0.04301 0.597746 

12 3 512 0.001891 0.06814 0.552574 

13 4 64 0.000635 0.0471 0.646 

14 4 128 0.00074 0.0492 0.690268 

15 4 256 0.000688 0.04673 0.584307 

16 4 512 0.002813 0.08081 0.577528 
 

The results are graphically represented as shown in Figure (6.29). From the figure, the 

following findings were outlined. 

- As the number of layers increased, the RMSE increased. The best results were 

achieved for networks with only one layer.  

- The performance score dropped for deeper networks compared to shallow 

networks.  

- This indicates that having deeper networks with a large number of neurons 

resulted in overfitting or poor generalization to the data. 

- On the other hand, the performance of deeper networks with a lower number of 

neurons (64 and 128) was comparatively better than those with a larger number 

of neurons.  

Based on the experiments, the architecture chosen was a one-layer neural network with 128 

neurons as shown in Figure (6.30). For all these experiments, the train/test ratio of the data 
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used was 80%/20%, the learning rate was 0.01, the number of epochs was 100, and the 

batch size was 25,000.  

 

Figure 6.29: K-fold cross validation results on choosing ANN architecture 

 

Figure 6.30: RMSE, MAE, and R2 score of the best performing models among the one-, two-, three-, 
and four-layer networks 

6.9.3. Testing the Architecture 

The one-layer network with 128 neurons was the one selected through the k-fold cross 

validation applied with the validation set and test set as explained in Figure 52. For this 

purpose, a new model was built using the entire training set. This model was tested with the 

test set. The results obtained are as follows: RMSE value was 0.00008809, MAE was 

0.00718157, and the R2 score was 0.8531965. For the experiment, the learning rate used 

was 0.01, the number of epochs was 100, and the batch size was 25,000. The training loss 

and validation loss of this network is plotted as shown in Figure (6.31). This figure shows that 

the training loss starting from 0.20 decreased steeply until it reached less than 0.00012 in 

the first few iterations. Thus, this indicated that the neural network had learned in the 

desired way. For more details, a plot of actual and predicted values for some randomly 
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selected testing cases on different days and building orientations are shown in (Appendix E). 

The results reveal that the ANN model could predict the cooling load with a good accuracy. 

 

Figure 6.31: Training and validation loss against epochs 

6.10. Random Forest Model Development  

After the experiment on ANN modelling and training in the previous section to predict 

cooling loads, this section investigates using a different algorithmic method, which followed 

a similar modelling process to that presented in section (6.5).  

6.10.1. K-Fold Cross Validation  

As mentioned earlier, the purpose of k-fold cross validation is to choose a suitable 

combination of hyperparameters such as the number of trees and bootstrap. To tune these 

hyperparameters, a systematic search with a k-fold cross-validation experiment was 

undertaken. In k-fold cross validation, the data were split into k folds. Among these k 

number of folds, (k-1) folds belonged to the training data and the remainder to the testing 

data. The experiments were performed k times, and each time, the testing fold varied 

without repetition. The benefit is that each fold in one or other experiment becomes part of 

the training as well as the testing. Hence, the bias that can result from the binary splits was 

avoided. Regarding the dataset splitting procedure, the experiment utilised a similar process 

to that presented in section (6.4.4) by using K-fold cross validation to split the data.  
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6.10.2. Optimization of Hyperparameters  

Numerous hyperparameters are required for RF modelling to achieve a model with greater 

accuracy. This experiment considered the following parameters: (1) number of trees, (2) 

bootstrap, and (3) minimal cost-complexity pruning parameter.  

6.10.3. Results of Cooling Prediction using RF  

This section discusses the prediction of the cooling load from the input data. The result of k-

fold cross validation is given in Figure (6.32). The figure contains the average RMSE, MAE and 

R2 score for each of the parameter combinations. On the x-axis, bootstrap combinations are 

given separately along with their performance with different options for the number of trees 

(visualised as bars). From the experiments, the following observations can be made. 

- The performance of the whole parameter combinations was excellent because 

the RMSE varied between the range of 2 x 10^-8 to 4 x 10^-8, MAE varied in the 

range 3.5x 10^-5 to 4 x 10^-5, and the R2 score was close to one.  

- There was no significant difference whether the bootstrap option was enabled 

or not. 

- Increasing the number of trees caused the performance to exhibit an oscillatory 

behaviour, although the difference in performance was negligible. 

- From the experiments, the optimal model had the following hyperparameter 

combination: Bootstrap option enabled and a total of 30 trees. 

 

Figure 6.32: The result of cooling load prediction. The figure corresponds to the visualization of the 
results of hyperparameter tuning in RF (BS stands for bootstrap option). 

Figure (6.33) illustrates the performance metrics corresponding to the best performing 

models with respect to the number of trees. The results are for the bootstrap option 

enabled. In the k-fold cross validation, the optimal result was observed when the number of 

trees was 30, the ccp-alpha value was 0, and the bootstrap option was enabled. The final 

test results were as follows: the RMSE was 1.986 x 10^-8, MAE was 3.168 x 10^-5, and the R2 
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score was 0.99985. These results correspond to the model performance selected after cross-

validation with the entire training data and tested with the 20% test data. A result 

visualisation of RF prediction for a randomly chosen 100 points is given in Figure (6.34). It 

can be seen that for most of the data points, the actual and predicted value was almost the 

same, or the prediction was very accurate. This is why, visually, one might not be able to 

read the actual values since they might be directly underneath the predicted values.  With 

regard to prediction accuracy, the results show that the RF model predicted the cooling 

loads with high accuracy compared to the ANN model, with RMSE that was very close to 

zero as shown in Table (6.19).  

 

Figure 6.33: Performance metrics corresponding to the best performing models. 

 

Figure 6.34: The plot of the actual and predicted values for a set of 100 randomly chosen test points in 
the case of cooling load prediction. 

Table 6.19. Performance comparison of ANN and RF for cooling loads data. 

Performance metric Neural Network Random Forest  

RMSE 0.00008809 0.00000001986  

MAE 0.00718157 0.00003168  

R2 score 0.8531965 0.99985 

Number of Cases 
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6.11. 6.11 Experiment to Analyse Time Series Nature of the Data 

This section examined the time series nature of the data since the cooling loads data was 

generated dependent on time. In the simulation, it was generated in an hourly basis for the 

whole year for different configurations. As discussed in section (6.7), inputs were pre-

processed, and most of the data were categorical (non-time series data) except solar 

radiation, and operative temperature. To analyse the effect of time in the data two sets of 

experiments were carried out. 

6.11.1. Modelling Particularly the Time Series Inputs 

The time-varying features in the input data were solar radiation and operative temperature. 

An experiment was conducted to predict hourly cooling loads using these specific inputs. 

The purpose of this experiment was to analyse whether the time varying inputs would be 

sufficient to perform the prediction task compared to including all the other categorical and 

continuous inputs. In addition, the aim was to examine the effect of time series inputs on 

the performance of the surrogate models. To model the time series nature of the data, two 

different approaches were experimented as explained below (Brillinger 2001).  

6.11.1.1. Approach 1 (Time Differencing)  

Time differencing is a conventional method in statistics to represent time series data. In the 

real world, time series data mostly are non-stationary (Salles et al. 2019). Thus, the 

differencing approach was used, which helped to make the data stationary (Fan and Yao 

2004). In the experiment, the one-step time difference was calculated for the inputs as per 

the equation given below.0 

𝑦𝑡 → 𝑦𝑡 - 𝑦𝑡−1 

That is, the solar radiation and operative temperature values at time step t are represented 

as the difference of the values at time steps t and t-1. Hence, the data at time step t denoted 

as (𝑋𝑡) is represented as follows: 

𝑋𝑡 = [𝑠𝑡 , 𝑜𝑡 , 𝑠𝑡- 𝑠𝑡−1, 𝑜𝑡- 𝑜𝑡−1, 𝑐𝑡  

where s, o, and c denote solar radiation, operative temperature, and cooling load 

respectively. 

6.11.1.2. Approach 2 (Time Window) 

Time window is a method that is commonly used in machine learning (ML) to represent time 

series data for predictive analytics. In this approach, the values of the time series for a past 

time window are also taken to the modelling (Felix et al. 2002). In the experiment, the 
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window was chosen as 10 hours; that is, values of solar radiation and operative temperature 

for the previous 10 hours were used to predict the current time step. Hence, the data at 

time step t for the modelling took the following form:  

𝑋𝑡 = [𝑠𝑡−10, 𝑠𝑡−9, . . . , 𝑠𝑡−1, 𝑠𝑡 , 𝑜𝑡−10, 𝑜𝑡−9, . . . , 𝑜𝑡−1, 𝑜𝑡 , 𝑐𝑡 ] 

Then, the data prepared in approach 1 and 2 were given to an RF regressor for the 

modelling. 

6.11.2. Modelling the Time Series and Non-Time Series Inputs. 

Along with the time varying inputs, categorical inputs including orientation, glazing type, and 

exterior wall were considered. In this modelling, the time series nature of the time varying 

inputs was modelled with the two approaches as explained above. 

In approach 1, the data at time step t denoted as (𝑋𝑡) are represented as follows:  

𝑋𝑡 = [𝑠𝑡 , 𝑜𝑡 , 𝑠𝑡- 𝑠𝑡−1, 𝑜𝑡- 𝑜𝑡−1, 𝑟, 𝑔, 𝑒, 𝑐𝑡 ] 

where s, o, and c denote solar radiation, operative temperature, and cooling load 

respectively, which are time varying data, and r, g, and e denote orientation, glazing type, 

and exterior wall, which are non-time varying inputs.  

In approach 2, the data are represented as follows: 

𝑋𝑡 = [𝑠𝑡−10, 𝑠𝑡−9, . . . , 𝑠𝑡−1, 𝑠𝑡 , 𝑜𝑡−10, 𝑜𝑡−9, . . . , 𝑜𝑡−1, 𝑜𝑡 , 𝑟, 𝑔, 𝑒, 𝑐𝑡 ]. 

The data prepared in approaches 1 and 2 were given to an RF regressor for the modelling. 

6.11.3. Random Forest Model Development 

This section investigates using different algorithmic methods; the modelling process 

followed was similar to that presented in sections (6.5, 6.10). 

6.11.4. K-Fold Cross Validation 

The data for training and testing were split by preserving the chronology. In other words, 

data from January to September were chosen for the training and the remaining data for 

testing. The training data were then used for k-fold cross validation as explained earlier in 

section (6.10.1). The purpose of k-fold cross validation is to choose a suitable combination of 

hyperparameters, such as the number of trees and bootstrap. To tune these 

hyperparameters, a k-fold cross-validation experiment was undertaken.  
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6.11.5. Optimization of Hyperparameters 

6.11.5.1. Experiment (1): Time Differencing Approach with only Time Series inputs. 

The results of k-fold cross validation are shown in Figure (6.35). This figure shows the 

average RMSE, MAE, and R2 score for each of the parameter combinations. On the x-axis, 

bootstrap combinations are given separately along with their performance with different 

options for the number of trees (visualised as bars). The results of this experiments revealed 

the following:   

- The performance of the whole parameter combinations is as follows - RMSE 

varied between the range of 1.2 x 10^-5 to 2 x 10^-5, the MAE varied in the 

range 0.0018 to 0.0022, and the R2 score in the range 0.85 to 0.91. 

- The difference in performance depending on whether the bootstrap option was 

enabled or not is not a significant one, but without the bootstrap option, 

performance is low. 

- Increasing the number of trees caused a general trend of improvement in the 

performance. 

- From the experiments, the optimal model had the following hyperparameter 

combination: bootstrap option enabled, and a total of 80 trees. 

 

Figure 6.35: The result of cooling load prediction in the time differencing approach with only time 
varying inputs. The figure corresponds to the visualisation of the results of hyperparameter tuning in 

RF (BS stands for bootstrap option). 

Figure (6.36) illustrates the performance metrics corresponding to the best performing 

models with respect to the number of trees. The results are for the bootstrap option 

enabled. The final test results were as follows: the RMSE was 4.582 x 10^-6, the MAE was 

0.000881, and the R2 score was 0.845101. A result visualisation of the RF prediction for a 

randomly chosen week is presented in Figures (6.37), and (6.38). It can be seen that for most 

of the data points, the actual and predicted values were almost the same, or following a 

similar pattern of the actual points. 
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Figure 6.36: Performance metrics corresponding to the best performing models. 

 

Figure 6.37: The plot of the actual and predicted values for third week of October in the case of hourly 
cooling load prediction (Experiment 1). 

 

Figure 6.38:  The plot of the actual and predicted values for fourth week of October in the case of 
hourly cooling load prediction (Experiment 1). 

6.11.5.2. Experiment (2): Time Window Approach with Only Time Series Inputs 

The results of k-fold cross validation are shown in Figure (6.39). From the experiments, the 

following observations were made. 

- The performance of the whole parameter combinations is as follows - RMSE 

varied between the range of 3.5 x 10^-6 to 6.0 x 10^-6, the MAE varied in the 

range 0.00105 to 0.00140, and the R2 score in the range 0.95 to 0.97. 

- The difference in performance depending on whether the bootstrap option was 

enabled or not is not a significant one, but without the bootstrap option, 

performance is low. 

- Increasing the number of trees caused a general trend of improvement in the 

performance, but for a larger number of trees, the performance starts dropping.  

- From the experiments, the optimal model had the following hyperparameter 

combination: bootstrap option enabled and a total of 80 trees. 
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Figure 6.39: The result of cooling load prediction in the time window approach with only time varying 
inputs. The figure corresponds to the visualisation of the results of hyperparameter tuning in RF (BS 

stands for bootstrap option). 

Figure (6.40) demonstrates the performance metrics corresponding to the best performing 

models with respect to the number of trees. The results are for the bootstrap option 

enabled. The final test results were as follows: the RMSE was 2.194 x 10^-6, the MAE was 

0.000697, and the R2 score was 0. 925818. A resulting visualisation of RF prediction for a 

randomly chosen week is shown in Figures (6.41), and (6.42).  

 

Figure 6.40: Performance metrics corresponding to the best performing models. 

 

Figure 6.41: The plot of the actual and predicted values for third week of October in the case of hourly 
cooling load prediction (Experiment 2). 

 

Figure 6.42: The plot of the actual and predicted values for fourth week of October in the case of 
hourly cooling load prediction (Experiment 2). 
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6.11.5.3. Experiment (3): Time Differencing Approach with Time Series and Time Non-

Series Inputs. 

The result of k-fold cross validation is given in Figure (6.43). The results of this experiments 

revealed the following:   

- The performance of the whole parameter combinations is as follows - RMSE 

varied between the range of 2.5 x 10^-6 to 5.5 x 10^-6, the MAE varied in the 

range 0.00085 to 0.00110, and the R2 score in the range 0.95 to 0.98. 

- The difference in performance depending on whether the bootstrap option was 

enabled or not is not a significant one, but without the bootstrap option, 

performance is low. 

- Increasing the number of trees caused an oscillatory behaviour in the 

performance; that is, the performance improved when the number of trees was 

increased to 60, but it increased for 70 and 80. However, the best result was 

found when the number of trees was increased to 90.  

- From the experiments, the optimal model had the following hyperparameter 

combination: bootstrap option enabled and a total of 90 trees. 

 

Figure 6.43: The result of cooling load prediction in the time window approach with only time varying 
inputs. The figure corresponds to the visualisation of the results of hyperparameter tuning in RF (BS 

stands for the bootstrap option). 

Figure (6.44) illustrates the performance metrics corresponding to the best performing 

models with respect to the number of trees. The final test results were as follows: the RMSE 

was 2.997 x 10^-6, the MAE was 0.000709, and the R2 score was 0.898690. A result 

visualisation of the RF prediction for a randomly chosen week is given in Figures (5.45), and 

(6.46).  
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Figure 6.44: Performance metrics corresponding to the best performing models. 

 

Figure 6.45: The plot of the actual and predicted values for third week of October in the case of cooling 
load prediction (Experiment 3). 

 

Figure 6.46: The plot of the actual and predicted values for fourth week of October in the case of 
cooling load prediction (Experiment 3). 

6.11.5.4. Experiment (4): Time Window Approach with Time Series and Time Non-Series 

Inputs 

The result of k-fold cross validation is given in Figure (6.47). From the experiments, the 

following observations were made. 

- The performance of the whole parameter combinations is as follows - RMSE 

varied between the range of 2.5 x 10^-6 to 5.5 x 10^-6, the MAE varied in the 

range 0.00085 to 0.00110, and the R2 score in the range 0.95 to 0.98. 

- The difference in performance depending on whether the bootstrap option was 

enabled or not is not a significant one, but without the bootstrap option, 

performance is low. 

- Increasing the number of trees caused an oscillatory behaviour in the 

performance; that is, the performance improved and degraded as the number of 

trees increased.  
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- From the experiments, the optimal model had the following hyperparameter 

combination: bootstrap option enabled and a total of 100 trees. 

 

Figure 6.47: The result of the cooling load prediction in the time window approach with only time 
varying inputs. The figure corresponds to the visualisation of the results of hyperparameter tuning in 

RF (BS stands for bootstrap option). 

Figure (6.48) shows the performance metrics corresponding to the best performing models 

with respect to the number of trees. The final test results were as follows: the RMSE was 

4.307 x 10^-6, the MAE was 0.000898, and the R2 score was 0.854395. A result visualisation 

of the RF prediction for a randomly chosen week is presented in Figures (6.49), and (6.50).   

 

Figure 6.48: Performance metrics corresponding to the best performing models. 

 

Figure 6.49: The plot of the actual and predicted values for third week of October in the case of cooling 
load prediction (Experiment 4). 

 

Figure 6.50: The plot of the actual and predicted values for fourth week of October in the case of 
cooling load prediction (Experiment 4). 
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6.11.6. Comparative Analysis 

The best results achieved were for the initial experiment (RF without a time dynamic), as its 

performance was better than the time series modelling. This initial experiment consists of 

time varying inputs - solar radiation and operative temperature and other categorical and 

continuous inputs. The result of the initial modelling is presented along with the four 

conducted experiments in this section as shown in Table (6.20).  

Table 6.20. Performance comparison of the four conducted experiments.  

Model RMSE MAE R2-score 

Initial Experiment (RF 
without Time dynamic)  

1.986 x 10^-8 0.000031 0.999850 

Experiment 1 4.582 x 10^-6 0.000881 0.845101 

Experiment 2 2.194 x 10^-6  0.000697 0.925818 

Experiment 3 2.997 x 10^-6  0.000709 0.898690 

Experiment 4 4.307 x 10^-6 0.000898 0.854395 
 

Based on these experiments, the following observations can be made: 

- When comparing experiments (1) and (2), which employed only time series 

inputs, the results showed that the time window approach achieved better 

performance compared to the time differencing approach. 

- When comparing experiments (3) and (4), which employed both time series and 

non-time series data, the results revealed that the time differencing approach 

achieved better performance.  

- In experiments (3) and (4), categorical inputs, including orientation, glazing type, 

and exterior wall, were added to the time varying inputs. However, the 

performance of the models is poorer than with the time window approach of 

experiment (2).  

- The best results achieved among the four conducted experiments were for the 

time window approach that considered only time series data.  

- It can be concluded that adding non-time series inputs to a time series modelling 

can possibly diminish the performance of the model that processes only time 

series input. Therefore, time series modelling should be conducted when all 

inputs are dependent on time.  

- It can also be concluded that depending on the modelling situation and the goal 

of the developed model, sometimes non-time series inputs are important and 

cannot be neglected. Thus, in this case, the conventional method of modelling 

can be more effective due to the influence of non-time series inputs in the 

prediction.  
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6.12. Chapter Summary  

This chapter developed an alternative approach to evaluating the performance of AF shading 

systems in the early stages of the design using ML algorithms. This approach aimed to 

resolve the obstacles faced when making prediction of AF shading system with current BPS 

tools. As mentioned earlier, this technique is beneficial, as it saves time that would 

otherwise be mostly consumed during the simulation process to inform the shading design 

decision instantly. In this chapter, the experiment was conducted in two different stages. 

In stage one, an experiment was undertaken for solar radiation analysis because predicting 

the energy performance of AF depends on first evaluating the solar radiation in the initial 

process of the design and confirming the suitability of using a surrogate model to evaluate 

the hourly cooling loads of AFs. Two different machine algorithms, ANN, and RF were 

investigated for incident solar radiation prediction on the building envelope to discover if 

using another ML model type could influence the accuracy prediction outcome.   

The second stage of the chapter presented the development of the surrogate model for 

predicting the hourly cooling load of AFs. The data were collected from the simulation that 

was performed in (chapter 4) and were then fed into two ML algorithms in an approach 

similar to that followed in stage one. Several fixed and dynamic inputs were chosen that 

would reflect the dynamic fluctuation of the AF system, design conditions, and building 

envelope parameters with cooling loads as the targeted outcome. Subsequently, the data 

obtained were used to train, validate, and test the proposed models. To optimize the 

models, a hyperparameter tuning process was carried out in both stage one and stage two 

with the consideration of various parameters. Lastly, different approaches of time series 

modelling were followed to examine the time series nature of the data using RF modelling.  

The results indicated that ML techniques can predict the hourly cooling loads of AFs with a 

high level of accuracy in the range of 85% to 99%. In particular, the RF model showed a 17% 

improvement in R2 accuracy over the ANN model in predicting the hourly cooling loads of 

AFs. Regarding time series data modelling, it was found that time window approach 

achieved better performance compared to time differencing approach.
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CHAPTER 7: DEPLOYMENT OF THE DEVELOPED SURROGATE MODELS  

7.1. Introduction  

The central goal of using ML surrogate models was to efficiently predict the energy 

performance (hourly cooling loads) of AF shading and (hourly solar radiation) in the early 

stages of the design. This chapter presents the results obtained from the developed 

surrogate model and compares them with the simulation results, with the aim of further 

validating the results. The results presented in this chapter are based on hourly cooling loads 

(KWh/m2) and hourly solar radiation (KWh/m2). The model was also evaluated in terms of 

prediction accuracy, time efficiency, and its generalisation prediction capability. In addition, 

the surrogate model was tested in terms of its applicability in predicting other similar hot-

climate cities. To achieve this, after training and validating the model in chapter (6), the 

trained surrogate models were imported into a workflow within a computational design tool 

(Grasshopper environment) using the GH-C Python tool. The workflow was then used to 

predict the energy performance (cooling loads) of the design scenarios of the AF system. 

7.2. Model Deployment  

After the training and validation had been conducted with ANN and RF, the best performing 

model (RF) was imported into the Grasshopper interface using GH-C Python to predict solar 

radiation and cooling loads for different design scenarios. GH-C Python was developed for 

the integration of the Grasshopper and GH-C Python languages (Abdelrahman 2017). This 

plug-in tool allows users to incorporate Python libraries such as NumPy, SciPy, Matplotlib, 

pandas, Scikit-learn, PyTorch, etc. into Grasshopper and link the pre-trained model to make 

predictions. The developed codes and models were saved as a pickle file (PyTorch file), 

which is a specialized format that helps to run ML models in an external environment. Then, 

in Grasshopper, the codes were loaded inside the GH-C Python component, and a Python 

script was coded as illustrated in Figure (7.1). After that, the input parameters of the model 

were added into the slider components in Grasshopper; each slider component represents 

an input with its variants. For example, in the case of solar radiation prediction within the 

orientation slider, four options can be selected: (0) represents South, (1) represents West, 

(2) represents North, and (3) represents East, and within the building context sliders, three 

options can be selected (low, medium, and high) as shown in Figure (7.2). All the defined 

inputs that were used to train the model need to be defined to make a prediction with the 

RF model. These inputs include hours, months, orientations, the four surrounding building 
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contexts, façade level and height, and the X, Y, and Z coordinates of façade. After prediction, 

the results were processed to visualise the solar radiation data as a heatmap on the building 

envelope of the studied office room. A similar approach was followed in the case of cooling 

load inputs as shown in Figure (7.3). The cooling load inputs include month, hour, day, 

orientation, building 00, building 01, façade level height, glazing type U-value W/m2K, 

exterior wall U-value W/m2K, AF opening ratio, AF-SF, SR W/m2, OT. 

 

Figure 7.1: The loaded codes inside GH CPython to make predictions within Grasshopper. 

 

Figure 7.2:  Inputs required to make predictions for solar radiation using the RF model. 
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Figure 7.3: Inputs required to make predictions for cooling loads using the RF model. 

With respect to workflow comparison, the workflow of the RF model within Grasshopper is 

much simpler than the workflow conducted for the simulation as shown in Figure (7.4). With 

the RF model prediction, the inputs are the only parameters required to make a prediction. 

On the other hand, simulation requires different settings to be defined, such as setting up 

the model, setting up the solar radiation settings, processing the results etc. to make 

predictions, which consumes more time. This was also found in the case of the energy 

performance simulation (cooling loads) workflow of AF as presented in chapter (4), where 

the complexity of simulating the AF shading system is even more time consuming and 

requires significant effort and resources. The workflow to conduct the energy performance 

of AF shading requires setting up the model, analysing the climate, defining the simulation 

settings, determining the input parameters, selecting the construction material properties, 

defining the zone loads, determining the thermal setting, and assigning the automatic 

control system. Figures (7.5) and (7.6) show the workflow used to perform the simulation 

compared to the RF workflow. This highlights the time efficiency spent using ML techniques 

to make predictions compared to simulation tools. In addition, time is spent during the 

running time of the simulation, which will be discussed in the following sections.           
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Figure 7.4: RF surrogate model workflow for predicting hourly solar radiation within Grasshopper.  

 

Figure 7.5: RF surrogate model workflow for predicting hourly cooling loads within Grasshopper. 
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Figure 7.6: Workflow to conduct energy performance of AF shading system 

The following sections explain how the study initially presented and compared the solar 

radiation results using RF with the simulation results for different design scenarios. Then, a 

new design scenario was generated to evaluate the generalisability of the model, and the 

consumption time spent in making the prediction was calculated. Following that, a similar 

approach was followed for the cooling loads results of the AF shading systems considering 

different design solutions.  

7.3. Solar Radiation (Predicated Design Scenarios vs. Simulated) 

As presented in chapter (6), the RF model performed better than the ANN model in terms of 

the prediction accuracy of the hourly solar radiation when tested with the 20% unseen data 

with an RMSE of 0.000514 compared to the ANN with an RMSE of 0.011415. Therefore, the 

study explored the integration of RF within the Grasshopper interface.  

The study examined the combination cases: 

- (Hours7_Day21_B00Medium_B01Medium_B02Medium_B03Medium_FacadeLe

velMedium_Orientation0).  

- (Hours7_Day21_B00Medium_B01Medium_B02Medium_B03Medium_FacadeLe

velMedium_Orientation1).  
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These cases vary in terms of orientations, months, and hours. Detailed comparison analysis 

between the RF model prediction and the simulation prediction for an hourly solar radiation 

are shown in (Appendix E). The results revealed highly accurate prediction results where 

predicted case results with RF matched the simulation results. The results showed that the 

South and West orientations received most of the solar radiation in the afternoon time 

between 12:00 pm and 15:00 pm for the 21 September. In the South orientation, the solar 

radiation ranged from 450 KWh/m2 to 900 KWh/m2, while in the West orientation, it ranged 

from 230 KWh/m2 to 1280 KWh/m2 on both 21 June and 21 September.  

7.4. Solar Radiation Prediction for New Design Scenario  

After confirming the prediction accuracy of the examined cases within the Grasshopper 

environment, a new design scenario was generated that was not part of the data used to 

build ML models aiming to test the model in predicting unseen cases. The new design 

considered several office towers with new urban contexts as shown in Figure (7.7). To make 

predictions, the input parameters need to be defined either from the slider’s components, 

from a text panel, or from a loaded CSV file Figure (7.8). The study experimented with 150 

design cases generated within the office towers with different urban contexts. Since the 

number of cases was high, the inputs were loaded into Grasshopper using a CSV file to make 

predictions. Based on this experiment, the prediction accuracies for the solar radiation 

results of the new cases are shown in Figures (7.9) and (7.10), which are very close to the 

simulation prediction results. 

With regard to time efficiency, using the RF model to predict hourly solar radiation for the 

150 cases reduced the time spent on simulation. The time required to make a prediction was 

seconds compared to simulation, which took hours. Thus, for solar radiation prediction, it 

will be a cost-effective solution for the cases that require the large-scale generation of 

simulation data.  
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Figure 7.7: New design scenario with several office towers. 

 

 

Figure 7.8: Workflow of the surrogate model in Grasshopper using GH-CPython to predict incident 
solar radiation on the building envelope for 150 design cases.  
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Figure 7.9: Sample of the hourly solar radiation output of the 150 cases as predicted by the RF 
surrogate model.  

 

Figure 7.10: Comparison between simulated solar radiation results using Ladybug and the predicted 
results using the RF surrogate model for two random cases 
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7.5. Cooling Loads (Predicted Design Scenarios vs. Simulated) 

For the cooling loads experiment conducted in chapter (6), even though both the RF and 

ANN achieved highly accurate prediction results, the results of the RF outperformed the 

ANN model in terms of prediction accuracy with an RMSE that was close to 0 

(0.00000001986) compared to the ANN with an RMSE of (0.00008809) Table (7.1). In this 

section, the study integrated the developed models within the computational design tool 

(Grasshopper) to validate the results and develop the workflow of the proposed surrogate 

model. 

Table 7.1. Performance comparison of ANN and RF for cooling load data. 

Performance metric Artificial Neural Network (ANN) Random Forest (RF) 

RMSE 0.00008809 0.00000001986  

MAE 0.00718157 0.00003168  

R2-score 0.8531965 0.99985 
 

The workflow of the surrogate model was developed with three different scripts to define 

the inputs of the model depending on the number of cases required to make a prediction of 

hourly cooling loads. Once the office room model was generated in Grasshopper, inputs 

could be entered into G-H CPython from the following selections:  

- Defining the inputs from slider components, which allows the prediction only of 

hourly cooling loads for individual cases as shown in Figure (7.11).  

- Defining the inputs through a panel text, which allows the prediction only of hourly 

cooling loads for multiple design scenarios as shown in Figure (7.12). 

- Defining the inputs from a CSV. File, which allows the prediction only of hourly 

cooling loads for an unlimited number of design scenarios as shown in Figure (7.13). 

 

Figure 7.11: Selection of inputs from the slider component 
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Figure 7.12: Selection of inputs from a panel component for three different design scenarios 

 

Figure 7.13: The developed workflow to predict hourly cooling loads within the Grasshopper interface  



CHAPTER 7: DEPLOYMENT OF THE DEVELOPED SURROGATE MODELS 

277 

Two different random cases were selected which varied in terms of input parameters to 

compare the hourly cooling load results of the RF and ANN model prediction to simulation. 

- (P-AF-SCM C4_Or0_B00Low_B01Low_FLLow_ExtW0_Glaz0).  

- (P-AF-SCM C4_Or1_B00High_B01Low_FLMedium_ExtW1_Glaz3).  

The first case is located in the South orientation of the office tower, with an office height of 

12m, and surrounded by low building contexts. Meanwhile, the second case is in located in 

the West orientation, with an office height of 24m, and surrounded by a mix of high and low 

building contexts Table (7.2). The experiment examined four months of the year (March, 

June, September, and December) in the daytime working hours of the day (6:00 am to 

18:00 pm) to test the model prediction accuracy. The office room dimensions were fixed for 

all predicted cases with an area of 24m2, the window wall ratio was fixed at 80%, and the 

floor height was fixed at 4m. Detailed comparison analysis between the RF model 

predictions, the ANN model predictions, and the simulation predictions for an hourly cooling 

load for the two examined cases are presented in (Appendix E). The results show highly 

accurate prediction results where the predicted case results matched or were close to the 

simulation results. However, the RF model prediction performed best compared to the ANN 

model in terms of the accuracy of the hourly cooling loads prediction, which matched or 

almost matched the simulation results with a significantly minimal squared error as shown in 

Figures (7.14). These graphs show that the RF model was able to accurately predict the 

hourly cooling loads of case (1) for different months of the year (March, June, September, 

and December) for the examined daytime hours. Similarly, the RF model was able to 

accurately predict the hourly cooling loads of case the second case as shown in Figures 

(7.15).  

Table 7.2. The specifications of the examined cases.  

Case (1) – (P-AF-SCM C4_Or0_B00Low_B01Low_FLLow_ExtW0_Glaz0) 

Orientation  South  

Building Contexts B00  Low  

Building Contexts B01 Low  

Building Contexts B02 Medium 

Building Contexts B03 High 

Façade Height  12 m  

Glazing Type – U-value  Single glazing (SG) - 5.82 

Exterior Wall – U-value 3.69 

Transmittance, Shade Factor, SR, and OT Varied Hourly   

Month March-June-September-December 

Hours 6:00 AM – 18:00 PM  
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Day 21 

Case (2)- (P-AF-SCM C4_Or1_B00High_B01Low_FLMedium_ExtW1_Glaz3) 

Orientation  West  

Building Contexts B00  High 

Building Contexts B01 Low  

Building Contexts B02 Medium 

Building Contexts B03 High 

Façade Height  24 m  

Glazing Type – U-value  Triple glazing (TG) – 0.57 

Exterior Wall – U-value 0.98 

Transmittance, Shade Factor, SR, and OT Varied Hourly   

Month March-June-September-December 

Hours 6:00 AM – 18:00 PM  

Day 21 

 

Regarding time efficiency, the energy simulation was performed for the AF shading system 

model with a total time of 86 hours to generate 1,296 AF design solutions excluding the 

debugging during the simulation and modelling process. In addition, the completion of the 

modelling, the simulation settings, and the development of the algorithmic workflow of the 

AF systems that involve incident solar radiation analysis, shade factor analysis, and energy 

simulation took months. Solar radiation simulation for 50,545 design iterations in an hourly 

simulation consumed a total of 140 hours, and hourly shade factor analysis for each shading 

state (A, B, C, D, E, and F), with 8,760 hours for each state, consumed 17 hours with a total 

of 102 hours. On the other hand, training and testing the RF model consumed a total of 14 

hours, and training and testing the ANN model consumed a total of 60 hours excluding the 

time spent generating the data for both models. Both ML models predicted the hourly 

cooling loads to within 2 to 3 seconds. This comparison highlights the significant time 

reduction when using ML models to predict cooling loads compared to existing BPS tools. 

This approach will be even more effective when simulating large scale projects.  

The study focused on hot climate regions; thus, predicting cases for different climates would 

require the generation of new data and the retraining of the surrogate model for the new 

climate. However, there is no need to train a new shading geometry because the trained 

model is derived from the numeric shaded area parameter. Therefore, regardless of the 

geometry, only the shaded area is required as input to make the prediction. To make a 

generalized model, future work can be carried out to generate a variety of building contexts 

to train the model. In addition, further work needs to be carried out to test if removing all 

building contexts from the surrogate model and training it only on solar radiation and 
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operative temperature is sufficient to achieve accurate results. With this approach, the 

indoor and outdoor sensor point is needed; this can be obtained by generating a range of 

solar radiation that covers a variety of cases. This can produce a generalized model 

regardless of the building contexts and geometry, as the building contexts were added to 

test the diffuse and reflected solar rays on the building.  
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Figure 7.14: Comparison between RF model predictions, ANN model predictions, and simulation 
predictions of hourly cooling loads for four months of the year (March, June, September, and 

December). 
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Figure 7.15: Comparison between RF model predictions, ANN model predictions, and simulation 
predictions of hourly cooling loads for four months of the year (March, June, September, and 

December). 

7.6. Cooling Loads Prediction for Different Cities  

The study examined different random cities that shared similar hot climate characteristics as 

the city in the current study. The aim of this experiment is to test the developed ML 

surrogate model’s applicability to predict the cooling loads of a new design of AF for other 

similar climates. The selected four cities are Jeddah SA, Kuwait KWT, Phoenix AZ, and Tucson 

AZ; they were chosen from climate zone 1B, which is characterised as a hot climate zone. 

Table (7.3) shows the input parameters used to test the accuracy of the developed surrogate 

models for the examined four cities. The study performed a simulation for the examined 

case in each city to compare the surrogate model’s accuracy prediction to the simulation 

prediction.   

Table 7.3. Input parameters of the examined four cities.  

P-AF-SCM C4_Or0_B00Medium_B01Low_FLLow_ExtW1_Glaz2 

 
Orientation  South 

Building Contexts B00  Medium 

Building Contexts B01 Low  

Building Contexts B02 Medium 

Building Contexts B03 High 

Façade Height  12 m  

Glazing Type – U-value  Double Glazing (DG) – 1.63 

Exterior Wall – U-value 0.98 

(K
W
h/
m
2) 
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Transmittance, Shade Factor, SR, and OT Varied Hourly   

Month September 

Hours 6:00 AM – 18:00 PM  

Day 21 

Location Jeddah, Kuwait, Phoenix, Tucson  

Based on the analyses, the results revealed that the RF model is more accurate than the 

ANN model to predict the hourly cooling loads of AF with a significant minimal error when 

compared to the simulated results. Moreover, the results demonstrate the prediction 

accuracy for all the examined hours, which proved that the ML surrogate models were able 

to make predictions that were very close to the simulation results when the input 

parameters are within the range of the trained inputs. For example, predicting hourly 

cooling loads for Jeddah and Kuwait was highly accurate, as these cities have a similar 

climatic pattern as the city in the current study as shown in Figures (7.16). On the other 

hand, predicting hourly cooling loads for Phoenix and Tucson was less accurate because 

solar radiation and operative temperature ranges varied compared to the current study as 

shown in Figures (7.17). Detailed results of the analysis are presented in (Appendix E).     

 

 

Figure 7.16: Comparison between surrogate models’ prediction and simulation prediction for Jeddah 
and Kuwait cities. 
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Figure 7.17: Comparison between surrogate models’ prediction and simulation prediction for Phoenix 
and Tucson cities. 
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7.7. Chapter Summary 

This chapter presented the results of the surrogate models and compared them with the 

simulation results. The evaluation of the RF and ANN surrogate models was carried out 

based on the model prediction accuracy of new cases, time consumed to train and test the 

developed models, and time consumed to make a prediction against the time spent to make 

a prediction during simulation. In addition, the chapter presented the surrogate model 

workflow within a computational design tool to allow for instant feedback between the new 

design model and the energy performance evaluation. Different new design scenarios were 

examined to test the generalisability of the surrogate model to other scenarios. The findings 

of this chapter concluded that ML surrogate models can predict with greater accuracy both 

hourly cooling loads and hourly solar radiation. It was found that the RF model performed 

best in terms of prediction accuracy compared to the ANN model. The results also 

demonstrated that predicting new design scenarios would be more accurate if the new 

design ranges are within the input parameters on which the ML models were trained. 

However, once the input parameters vary more than the range of inputs of the surrogate 

model, the prediction is less accurate. Lastly, the surrogate model offered a significant time 

reduction in making predictions compared to simulation. The implementation codes of this 

experiment and the files are available at the following links:  

https://github.com/archammar/Predicting-Hourly-Cooling-Loads-of-Adaptive-Facades Using-
Machine-Learning.git 
 
https://github.com/archammar/Solar-radiation-prediction-for-office-tower-using-machine-
learning.git 
 

 

    

https://github.com/archammar/Predicting-Hourly-Cooling-Loads-of-Adaptive-Facades%20Using-Machine-Learning.git
https://github.com/archammar/Predicting-Hourly-Cooling-Loads-of-Adaptive-Facades%20Using-Machine-Learning.git
https://github.com/archammar/Solar-radiation-prediction-for-office-tower-using-machine-learning.git
https://github.com/archammar/Solar-radiation-prediction-for-office-tower-using-machine-learning.git
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CHAPTER 8: DISCUSSION AND CONCLUSION  

8.1. Introduction 

This chapter presents a review and discussion of the results that emphasise the ability of AF 

shading systems to reduce the energy consumption in office buildings in regions with a hot 

climate. The chapter also discusses the findings of the machine learning (ML) surrogate 

models, which proved to be an effective method for predicting the performance of AFs 

during the early stages of design. It also revisits the research objectives of the study and 

explores how these objectives have been achieved. In addition, this chapter highlights the 

contributions to the current body of knowledge and states the limitations of the study. 

Finally, it concludes with recommendations for architects and façade engineers that are 

likely to promote the application of AFs in buildings, and it highlights suggestions for further 

work that have emerged as a result of the findings of this study. 

8.2. Discussion of Research Findings 

The study aimed to answer the four research questions established initially to achieve the 

study's aim and objectives. The main results are discussed in relation to the research 

questions, which are covered in the subsections below. 

8.2.1. An Algorithmic Framework to Evaluate the Energy Performance of Adaptive 

Façades 

Assessing the performance of AFs during the design stages remains difficult due to their 

time-varying dynamic behaviour. In the majority of cases, the process concludes with 

experimental validations over mock-up scales, which increase expenses for stakeholders and 

limit their application in practice. Most existing studies focus primarily on the development 

of AF technologies that are capable of changing only their physiological properties in order 

to quantify their energy and environmental performance, such as switchable, 

thermochromic (TC), and photovoltaic-chromic (PVC) glazing systems. In addition, based on 

the analysed literature, it was found that limited studies examine the geometry-changing 

behaviour of AFs that adapt to outdoor climatic conditions due to the limitations and 

complexity of the simulation tools as discussed in chapter (2). Furthermore, the literature 

review revealed that most studies implement the control strategy system for conventional 

dynamic façades, such as venetian blinds, roller shades, dynamic blinds, louvres, etc., that 

are characterised by having a basic movement. This is because the adaptive behaviour is not 
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complex, and modelling and simulating the systems is embedded in most BPS software 

packages. 

The analysed studies showed that 48% of developed AF systems did not implement an 

automatic control system, where an automatic system was applied mostly with conventional 

façades. Moreover, 39% of studies used a feed-forward control system, while 13% used a 

feedback control system to automate the shading system. It was also found that the limited 

studies that experimented with the time-varying behaviour used parametric tools in 

conjunction with EnergyPlus, Daysim and Radiance to model and simulate AF systems to 

analyse various environmental parameters. Therefore, in order to fill the gap in the body of 

knowledge, the study developed an algorithmic framework that considers the automatic 

control system of AF systems in relation to the environmental parameters. The study 

implemented the following steps to automate the changing behaviour of the AF: (1) 

controlling the opening size of the external AF shading system based on different outdoor 

and indoor sensors, (2) translating the calculated shade factor of each shading state into a 

transmittance schedule, (3) calculating the incident solar radiation on the exterior surface on 

an hourly basis, and (4) establishing a control scheme through an EMS, which is an 

embedded function in EnergyPlus to define sensors, control, and actuators in hourly time 

steps (Hong and Lin 2013). The developed algorithmic methodology permits the designer to 

evaluate various control scenarios during the design phase. 

The proposed workflow confirmed what has been addressed in the literature regarding the 

complexity and difficulty in simulating the time-varying behaviour of AFs. The steps that 

were followed show that the process to simulate AFs requires computational effort, time, 

and programming knowledge. 

8.2.2. The Impact of Adaptive Façades on Energy Performance in High Rise Office 

Buildings    

The results of this study confirm the saving potential of adaptive shading systems in hot 

climates for high rise office buildings. The following sections discuss the main findings of the 

simulation. 

Building Envelope Parameters 

Prior to implementing the AF, the study examined different building envelope parameters, 

such as exterior wall and glazing types, with different values in a parametric evaluation, as 

these parameters affect the cooling energy loads of the building. The analysis focused on the 

building envelope to understand the most influential parameter affecting the cooling loads. 

The simulation results concluded that all combination cases that were simulated with a low 
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SHGC value, with a low U-value of triple glazing and combined with higher thermal 

insulation, performed the best in terms of annual cooling loads. Meanwhile, the higher 

energy cooling consumption was observed with combination cases that had poor thermal 

insulation of exterior walls and used single-glazed windows. The results of the engineering 

parameters experiment revealed that in hot climate zones, where the air temperature is 

high and there is a great deal of solar radiation, the shading coefficient of the glazing system 

plays a crucial role in lowering the cooling energy demands in relation to solar gain. This 

indicates that the amount of solar heat gain can be lowered by decreasing the shading 

coefficient. Since solar gains are the most important factor in cooling loads, these findings 

suggest that developing shading elements may have a significant impact on cooling energy 

loads, and that relying on a prescriptive approach by modifying the values of the engineering 

parameters for the building envelope may not achieve the necessary reductions in solar 

gains. 

Fixed vs. Adaptive   

As presented in chapters 4 and 5, different scenarios of external shading systems include 

fixed vertical shading, fixed horizontal shading, AF with scaling movement, and AF with 

folding movement; these were simulated and compared to the base case model in terms of 

energy cooling consumption. Overall, all the examined external shading systems saved 

cooling energy loads since they reduced the solar heat gain. However, the simulation results 

revealed that the AFs with scaling and folding movements performed the best in terms of 

reducing the cooling loads compared to fixed shading and the base model. This is because 

AFs have the adaptability to react to short-term changes of the surrounding environment. 

The simulation results demonstrated that an AF with a light dimming strategy reduced the 

cooling loads by 36.7%, 34.6%, 33.6%, and 33.8% for the south, west, north, and east 

orientations, respectively compared to the base case model. On the other hand, when AFs 

were compared to the fixed shading system, the cooling loads were reduced by 27.3%, 

27.2%, 26.3%, and 26.9% for the south, west, north, and east orientations, respectively. The 

obtained results align with several studies that compared AF shading with fixed shading and 

a base model (Hammad and Abu-Hijleh 2010; Giovannini et al. 2015; Lee 2019; Sheikh and 

Asghar 2019; Bui et al. 2021; Attia et al. 2022), which proved that an adaptive shading 

system is more effective in terms of cooling load reduction.  

When the two proposed movements were compared, the results showed that both the 

scaling and the folding movements have almost a similar performance in terms of cooling 

energy loads. Based on the analysis, although external shading devices can greatly enhance 
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the thermal performance of the building envelope and the energy efficiency of office 

buildings, their effectiveness may be compromised if the thermal performance of the wall 

and glazing types is not carefully examined. 

Automatic Control Scenarios   

Following that, the study examined different automatic control scenarios in terms of cooling 

loads, as these are the backbone of any AF shading system. Employing environmental 

sensors to automate the AF shading system in either an open loop or a closed loop 

mechanism can have a positive influence on energy loads. Therefore, the study evaluated 

four control scenarios, including (C1: incident solar radiation on window (W/m2), C2: 

transmitted solar radiation (W/m2), C3: direct solar radiation (W/m2), and C4: combinations 

of incident solar radiation and operative temperature), two exterior parameters, one 

interior parameter, and one that combined both exterior and interior parameters. Overall, 

the results showed that all four control scenarios resulted in a reduction in cooling energy 

loads; however, some scenarios were not effective in terms of lighting energy savings and 

providing adequate natural daylight.  

The simulation results revealed that AF with control C3 and C4 achieved a better 

performance in terms of cooling load reduction. However, in the case of C3, which used 

direct solar radiation as a trigger, it improved the cooling loads while it increased lighting 

loads due to the high number of times that the shade system was completely closed. 

Consequently, if outdoor views are a priority, this control strategy poses potential concerns 

in addition to lighting-saving issues. On the other hand, control scenario C2, which applied a 

transmitted solar radiation sensor, achieved the lowest performance compared to other 

controls, as it maximised the cooling loads. Therefore, these observations indicate that 

outdoor-based control scenarios perform better than using solely indoor controls. 

Moreover, the results demonstrated the capability of such control scenarios to close the 

shades prior to allowing the penetration of undesired solar gains to indoor spaces.  

The results also discovered that when taking into consideration the need to reduce both 

cooling loads and lighting loads, the most efficient energy performance was achieved with 

control scenario C4, as it applied a closed loop mechanism that considered both outdoor and 

indoor environmental parameters. Hence, a closed-loop control algorithm performed better 

than the proposed open-loop scenarios. Moreover, the results showed that control scenario 

C4 achieved an average energy saving of 30.5%. These findings are generally consistent with 

Tabadkani et al.'s (2021) study, which investigated the potential of different automatic 

control systems to reduce energy consumption in different climates.  
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With respect to building orientation, the results observed that the performance of 

automatic shading control can be influenced by building orientation, which exploits the sun's 

position and its positive or negative effects on the interior environment.  Consequently, the 

energy cooling loads, solar gain, and lighting loads varied based on the orientation. The 

findings demonstrated that the south and west orientations consumed higher cooling loads; 

however, these orientations benefited the most in terms of cooling load reductions, while 

lighting load variations were relatively similar among all orientations, except for control 

scenario (C3). On the other hand, all control scenarios with north orientation performed 

similarly in terms of annual cooling loads, due to the low levels of solar radiation intensity 

that strike this particular façade. Thus, the AF is mostly open, except during the summer 

months of May through to August, when it receives more sunlight in the morning and 

afternoon to block solar radiation from the northwest and northeast. 

Furthermore, the results showed that the AF in the west orientation was mostly closed 

(state F) or 20% semi closed (State E) during the summertime from May to September in the 

afternoon between 2:00 pm and 4:00 pm, which refers to the hours that exceeded the SR 

and OT thresholds. Meanwhile, it was fully open (state A) in the morning from 6:00 am until 

12:00 pm, where the SR and OT values were in the acceptable range. Then, the adaptive 

shading altered to different states after 12:00 pm, and were adjusted mostly between 20% 

(state E) up to 80% (state B) for the hours from 12:00 pm to 2:00 pm and from 4:00 pm to 

6:00 pm. Hence, in each orientation, the shading states performed differently, as 

orientations varied in terms of the solar radiation received on the building envelope and the 

level of operative temperature inside the room. 

8.2.3. Parametric Generative Database based on Simulation Approach  

Due to the absence of real data, the study generated a synthetic database parametrically 

using simulation. It was not possible to access real data, as there were no buildings in the 

studied region that implemented an AF shading system. Therefore, simulation was used in 

this study to collect data because it is the most cost-effective way when time and money are 

the main constraints and because it is a widely used method especially given the 

unavailability of a physical building in which to conduct experiments. Furthermore, with 

simulations, it was possible to analyse a wide range of design scenarios and complex 

modelling that could not be accomplished easily on a real-world scale. The study employed a 

parametric simulation technique within Grasshopper to perform a wide range of design 

iterations since ML demands a sufficiently large database. Different parameters were 

considered to create the database of AF shading systems including the building envelope, a 
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responsive time scale of AFs, orientation, building contexts, and environmental parameters. 

In terms of data processing, it was found that compared to real data, simulated data 

required less time for pre-processing prior to being used to train the ML models. This is 

because most real data contain errors, such as missing values, duplicate data, inconsistent 

data, and noise data. 

8.2.4. Machine Learning (ML) Models to Predict Energy Performance of Adaptive 

Façades  

Due to the complexity and the enormous amount of time required to simulate AF shading 

systems, the study proposed the use of the ML method to provide alternative emulators of 

simulation tools. Thus, as presented in chapter (5), different supervised ML models were 

developed including Artificial Neural Network (ANN) and Random Forest (RF) models to 

predict both the hourly cooling loads (HCL) of AF and the hourly solar radiation (HSR) in the 

early design stages. These models were trained, tested, and validated using the generated 

synthetic database that were generated based on the simulation in chapter (4). The 

developed surrogate models were proposed to examine the potential of using ML 

techniques as alternative emulators of simulation tools for predicting the energy 

performance of AF shading systems. In general, the results demonstrated that surrogate 

modelling has immense potential to accurately predict the solar radiation and cooling loads 

of AFs in an office tower. In the case of ANN, the model achieved an accuracy of (R2: 

0.8531965) between the simulated and the predicted hourly cooling loads of AFs. On the 

other hand, in the case of RF, the model showed a high accuracy of (R2: 0.99985) between 

the simulated and the predicted hourly cooling loads of AF.  

These obtained results are generally consistent with other studies that employed ANN and 

RF models to predict energy performance in buildings (Wong et al. 2010; Kialashaki and 

Reisel 2013; Zhang et al. 2015; Deb et al. 2016; Khayatian et al. 2016; Ilbeigi et al. 2020; Yu et 

al. 2010; Ahmad et al. 2017b; Asl et al. 2017).  

The results of the study revealed that both the ANN and RF models can predict HCL and HSR. 

However, the RF model performed better in terms of prediction accuracy compared to the 

ANN model in both the HCL and HSR predictions. This is because RF algorithms have a better 

performance when most of the input features are categorical. During training the model, it 

was found that random forest has a significant advantage over neural network modelling 

since DTs are highly suitable for categorical inputs in the learning setting. In addition, 

random forest is an ensemble algorithm; this is a class of ML where a set of learning 

programs are combined together to give accurate predictions Instead of relying on a single 
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algorithm, the predictions from such multiple algorithms are considered, and the error is 

reduced significantly. Since this feature is implicitly embedded with random forest 

modelling, its performance was significantly better than that of neural networks in this case. 

These findings align with the findings of several studies (Tso and Yau 2007; Ahmad et al. 

2017b; Ahmad et al. 2017a) that compared the use of ANN and RF and concluded that RF 

performed better in predicting the energy performance due to the nature of the inputs or 

features.    

Furthermore, in both models (ANN and RF), there were no significant differences in the 

results achieved by K-fold cross validation experiments compared to hold-out validation 

experiments. It was also found that K-fold cross validation requires more computational 

power and time for training compared to hold-out validation. Regarding ANN efficacy, when 

training the ANN model to predict the energy performance, different parameters were 

found to significantly affect the efficacy of the ANN and its accuracies, such as the 

architecture of ANN, the learning rate, the batch size, and the number of epochs. With 

respect to the size of ANN architecture, the study found that selecting the optimum 

structure is an essential step to optimize the ANN model. Therefore, different numbers of 

hidden layers and numbers of neurons were tested to avoid the under-fitting and overfitting 

of the data and for better generalisation of the network to be used with unseen future data.  

In the case of cooling loads, it was found that as the number of layers and neurons 

increased, the performance score of the ANN model dropped compared to shallow 

networks. This indicates that having deeper networks with a large number of neurons 

resulted in the overfitting or poor generalisation of the data. On the other hand, the 

performance of deeper networks with a lower number of neurons (64 and 128) was 

comparatively better than those with a larger number of neurons (256 and 512). The 

experiments showed that as prediction accuracy converged, some measures should be 

specified in order to minimise ANN training time. For example, training should cease 

whenever the validation loss increases compared to training loss using an early stopping 

criterion.  

In the case of solar radiation, it was found that as the number of hidden layers increased, 

the performance metrics decreased up to a three-layer network. Then, selecting a higher 

number of hidden layers and neurons did not make a significant difference in the accuracy of 

the model; therefore, the selected architecture was a three-layer network with 256 neurons 

in each layer. The results in both experiments revealed that ANN architecture can vary based 
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on the training sample size, the type of features, and the complexity of the relation between 

input and output variables.  

Regarding RF efficacy, the number of trees was found to significantly affect the accuracy of 

the RF model. In the case of cooling loads, the results revealed that, as the number of trees 

increased, the performance of the RMSE score showed an oscillatory behaviour. On the 

other hand, in the case of solar radiation, the results showed that there was no significant 

variation in the RMSE value as the number of trees increased. In terms of training time, it 

was shown that it is faster to train and tune RF modelling than ANN modelling. The training 

time for the RF model was significantly less than for the ANN model (a few seconds 

compared to minutes). This is due to the simplicity and lower number of parameters used to 

tune the model compared to ANN training. It was evident that RF performed better with 

superior performance metrics values (lower RMSE, MAE, and higher R2 values). Both models 

showed a strong performance for non-linear mapping generalisation ability; hence, it can be 

concluded that both models can be effective in predicting the hourly solar radiation and 

hourly cooling loads of AF shading systems. 

Regarding the time series data modelling, it was found that time window approach achieved 

better performance compared to time differencing approach. Moreover, the results 

revealed that processing both time series data and non-time series data together is not an 

effective approach. Depending on the modelling situation, sometimes non-time series inputs 

are important and cannot be neglected. Thus, the conventional method of modelling can be 

more effective due to the influence of non-time series inputs in the prediction.  

8.2.5. Surrogate Model to Assist in Early Design Stages of AF for Decision Making  

Current building simulation tools are unable to keep up with the speed of early design 

phases since evaluating a single concept requires defining a large number of parameters. 

Therefore, the architect's creative process will be disrupted by the extended run time of the 

simulation and the AF system's complexities. After training and validating the model, the 

trained surrogate models were imported into a computational design tool (the Grasshopper 

environment) to develop a workflow for the proposed surrogate model to provide instant 

feedback between a new design model and energy performance evaluation. The study 

showed that the workflow of the surrogate model within Grasshopper was simplified in 

comparison to detailed simulation, and the prediction and computation time were 

drastically reduced, which is essential for early design phases. This highlights the time 

savings associated with using ML approaches for prediction as opposed to simulation tools.  
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With regard to prediction accuracy, unseen cases and new design cases were tested to 

evaluate the developed surrogate model. In the case of hourly solar radiation prediction, 

random cases were selected, and the results revealed highly accurate prediction results 

where the predicted results using the RF model matched the simulation results. Moreover, 

the results demonstrated that the RF model predicted the solar radiation of the proposed 

150 new cases with high accuracy, and the time required was reduced compared to 

simulation. In the case of hourly cooling loads, the results revealed highly accurate 

prediction results, with predicted case outcomes matching or reaching close to simulation 

outcomes. Nevertheless, RF model prediction outperformed ANN in terms of the prediction 

accuracy of hourly cooling loads, with a minimal squared error. In addition, a significant time 

reduction was observed for predicting cooling loads; thus, this approach will be even more 

effective when simulating large scale projects. The results also observed that predicting new 

design scenarios would be more accurate once the new design ranges within the input 

parameters of the ML models that were trained on. Once the input parameters vary more 

than the range of inputs of the surrogate model, the prediction will be less accurate. 

Architects and façade engineers can utilise the developed surrogate model in practice in the 

early stage of the design for decision making regarding to any proposed adaptive skin that is 

within a hot climate zone and falls within the range of the trained data. To use the surrogate 

model, the input of the new geometry has to be defined and placed in the same order as the 

developed workflow. The workflow is easy to use for energy prediction because users are 

not required to have extensive knowledge regarding the use of ML algorithms or coding. 

However, parametric design skills are required to utilise the proposed workflow. The 

proposed surrogate model would be easier and more attractive for users if the model were 

applied as a design tool. Moreover, to investigate the easiness or the difficulties of using the 

proposed tool, a study can be conducted to evaluate the usability of the tool by using the 

system usability scale (SUS). This measurement will be useful in measuring how easy or 

difficult using the tool is in practice.    

8.3. Achievement of the Research Objectives 

Five objectives were established as the central aim of the research. The following sections 

provide a detailed demonstration of how this research was effectively carried out through 

the use of a quantitative research method and how each of the objectives was achieved.  
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Objective One: “Investigate the impact of adaptive façades on energy 

performance” 

This objective was addressed in Chapter 2 by conducting a comprehensive literature review 

regarding the impact of AFs on energy saving and the evaluation process of their 

performance. The literature review presented the existing AF studies looking at different 

factors including AF system type, the adaptability of the system, the performance, and the 

influences of AFs on buildings' energy consumption. In addition, the literature review 

explored the challenges and difficulties designers face in predicting the performance of an 

AF shading system using the current BPS tools. It also examined some of the current 

simulation tools, and their limitations regarding AF performance prediction were 

highlighted. The literature revealed that most simulation software tools have difficulty 

modelling complex AF systems whose geometry components vary based on minute, hour, or 

seasonal time steps. In addition, there was no straightforward approach for modelling the 

adaptive behaviour of a façade. It was also found that, due to the complexity and interface 

constraints of existing PBS systems, only a few researchers had adapted an automatic 

control system to automate non-conventional AF systems. However, automatic control was 

found mostly in the case of façades with basic movement, such as venetian blinds, roller 

shades, and dynamic blinds. It was discovered that studies in the literature addressed the 

capability of employing a co-simulation technique, such as Energy Management System 

(EMS), to evaluate and control the AF system. 

Objective Two: “Develop an algorithmic workflow to evaluate the energy 

performance of AF shading system” 

This objective was achieved in Chapter 4 through the use of a computational parametric tool 

‘Rhinoceros 3D’ and its plug-in ‘Grasshopper’ to assist in the parametric generation and 

simulation of the AF shading systems. Moreover, Ladybug and Honeybee plug-ins were 

utilised; they were linked to Energy Plus and Radiance to calculate energy loads and solar 

radiation. The algorithmic workflow created a link between plug-ins including Ladybug, the 

Honeybee tools, and Energy Plus for running the simulation with EMS to program a code to 

automate the AF system in each time step of the simulation. The workflow successfully 

addressed the time-varying dynamic behaviour of AFs in relation to indoor and outdoor 

environmental conditions. A coded conditional statement was used within EMS to define 

different environmental sensors including incident solar radiation, direct solar radiation, 

transmitted solar radiation, and operative temperature with a predefined threshold for each 

sensor. Moreover, this objective was addressed in (Chapter 5) to evaluate the energy 
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performance of AFs. Different external shading systems (fixed and adaptive) were compared 

in terms of energy consumption. In addition, different automatic control scenarios were 

evaluated to select the one that performed best in terms of energy cooling reduction.  The 

findings concluded that an AF shading system is more effective in terms of cooling load 

reduction compared to static façades. It was also found that control scenario C4, which 

triggers both incident solar radiation and operative temperature in a closed loop mechanism 

performed better than other control scenarios.    

Objective Three: “Generate a synthetic database of AF cooling energy loads of 

offices to train and test the surrogate models”   

To achieve this objective, both a simulation and parametric tools were used, which 

facilitated performing a large number of simulation iterations. A generative parametric 

office tower and its urban context were designed and simulated in a generative way. 

Different dynamic inputs were defined to create a range of different design scenarios. 

Within the simulation framework, the Colibri plug-in tool was integrated to step through all 

the design variations automatically to create the dataset. In addition, the TT toolbox plug-in 

tool was used to store the resultant data in an Excel spreadsheet of all the design iterations. 

To that end, different databases were generated including a solar radiation (KWh/m2) 

database, a shade factor (SF) database, and an energy (cooling loads) (KW/m2) database.  

Objective Four: “Develop machine learning models to predict energy performance 

of AF in the early stage of the design” 

This objective was achieved by employing two different supervised ML algorithms (ANN and 

RF) to predict the hourly cooling loads of AF in an office tower. The simulation created the 

synthetic database, which was afterwards imported and pre-processed into two ML models. 

The collected cooling loads database and solar radiation database were used to perform the 

training. The models were constructed utilising the Python programming language (PyTorch 

framework) and (scikit-learn). The development of the surrogate model consisted of three 

major steps: data pre-processing, model training, testing, and hyper-parameter 

optimisation, and model validation. Prior to the training of the surrogate model, the data 

were split into different sets, namely, a training set, a testing set, and a validation set. 

Following that, a hyperparameter tuning procedure was carried out to select the most 

suitable parameters. In addition, ANN and RF models were compared in both scenarios of 

the design objectives, namely, hourly solar radiation and hourly cooling loads, in terms of 

prediction accuracy. The results showed that the RF model performed better than the ANN 

model in terms of prediction accuracy. Therefore, ML surrogate models showed a promising 
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approach to evaluate the AF hourly cooling loads in an office tower. It was also found that 

when developing an ML surrogate model, it is essential to employ a substantial dataset to 

ensure highly accurate prediction outcomes. 

Objective Five: “Establish a workflow that incorporates the surrogate model within 

a computational design tool to assist in decision making in the early design 

stages.” 

This objective was accomplished by deploying the developed surrogate models into a 

computational design tool (Grasshopper). The surrogate models (ANN and RF) were saved as 

a PyTorch file to run the models in an external environment. The models were then loaded 

into Grasshopper using GH-C Python to import in python libraries. The workflow in 

Grasshopper was created to predict the energy performance (cooling loads) of the design 

scenarios of an AF system early in the design process to assist in making design decisions. To 

define the inputs of the model, the workflow was developed with three alternative scripts: 

from a loaded CSV file, from the slider's components, or from a text panel. The hourly 

cooling loads and hourly solar radiation were visualised in GH-C Python and using the 

Conduit plugin tool. After that, the surrogate models were evaluated based on prediction 

accuracy, time efficiency, and potential for generalisability. The findings revealed that the 

workflow of the surrogate model in Grasshopper was easier than using simulation and that 

the amount of time needed for prediction and computation was dramatically reduced. The 

findings also showed that the input of new cases has to fall within the range of the input 

parameters of the trained ML models to achieve accurate results. 

Architects and façade engineers can use the developed surrogate model in the early design 

phases to predict the energy cooling loads of an AF in an office tower instantly to assist in 

decision making, before other architecture, engineering, and construction systems are 

incorporated into the design. This workflow allows architects and façade engineers to 

evaluate the adaptive skin in terms of energy consumption and solar radiation analysis on 

the building envelope, and to evaluate the automatic control system. In addition, they can 

use the proposed model for large urban projects that required massive simulation runs, as 

the proposed model reduces the time spent on the simulation process, which often disturbs 

the thinking process in the early design phases.   

8.4. Simulation Novelty and Surrogate Model Generalizability  

Existing building performance tools (BPS) were originally intended for evaluating static 

façades, where alterations to the façade's shape are neglected during the simulation 
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process. The simulation technique for conventional fixed envelopes is straightforward and 

involves only a few variables, such as the U-value and g-value, to create accurate 

predictions. In contrast, an AF is more complex and comprises a greater number of 

components, making it more challenging to properly predict its building performance. These 

features include (1) the behaviour of time variation, (2) the modelling of the dynamic 

operation of the facade adaptation, and (3) the multiple physical domains. Recent studies 

have indicated that simulation software does not support modelling complex AF systems 

that fluctuate on a minute-by-minute, hourly, or monthly basis (Loonen et al. 2017). 

Recent studies have not properly examined the automatic control system required to 

automate complex (non-conventional) AF systems dependent on various environmental 

parameters due to the complexity and interface limitations of current BPS systems. 

Nonetheless, the automatic control system was employed successfully for basic façades with 

basic movement (such as Venetian blinds, roller shades, dynamic blinds, and louvres). Driven 

by this knowledge gap, the simulation of non-standard AFs in this research includes a novel 

control technique that was developed to address the limitations of existing simulation 

interfaces. EnergyPlus includes a built-in function called EMS, which is where the controlling 

mechanism is implemented to modify the opening percentage on an hourly basis in 

response to varying internal and external environmental variables. The complex shading 

geometry is expressed as a shaded factor area on the window and translated into a 

transmittance schedule and called within the EMS prior to each simulation for the software 

to understand the geometry. It is important to note here that expressing the geometry as a 

shading factor makes the workflow generalizable to other shading geometries. As a result of 

this novel algorithmic workflow, architects and façade engineers can model and simulate a 

variety of adaptive façades and simulated their behaviour in a unified parametric 

computational environment.  

The surrogate model was developed within a computational design tool to assess the energy 

performance of AFs in the early stages of the design in a significantly faster time compared 

to simulation. The proposed model is effective for large urban projects that required massive 

simulation runs, as the model reduces the time spent on the simulation process.  

While the surrogate model achieved high accuracy on unseen data (99% accuracy), the time 

and resource limitations of this dissertation placed constrains on the scope and size of the 

dataset used for training. As a result, the surrogate model can only be applied to buildings 

within hot climatic regions. Its generalizability to other climatic regions will require further 

work and training on a larger and more diverse dataset. However, the contribution of this 
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research is in defining the framework and methodology required to accurately simulate AF 

and build surrogate model for any climatic region.  

8.5. Contributions to the Body of Knowledge  

This research makes novel contributions to the knowledge as follows:  

- A comprehensive literature review has revealed the impact of AF on energy 

performance as well as a knowledge gap in how to accurately simulate it.  

- A comprehensive framework was developed that allows architects and façade 

engineers to evaluate the benefits of AFs in terms of energy saving in the early 

stages of the design, as there is no straightforward framework.  

- A generative of a large synthetic database of AFs were performed with a different 

range of parameters considering the time-varying behaviour of AFs in a working 

environment. Then, this database was used to develop the ML surrogate models.  

- This study is the first to explore the potential of ML models to predict the energy 

performance of AFs, thus overcoming the complexity of simulation tools and 

reducing the computation time of prediction. 

- A surrogate model as developed within a computational design tool to assess the 

energy performance of AFs in the early stages of the design. 

8.6. Research Limitations 

Although the findings of this study have been very encouraging, there are some limitations. 

The following present the limitations that the researcher encountered while carrying out this 

study: 

- This research investigated the impact of AF shading systems on energy performance 

for the office buildings in Riyadh, Saudi Arabia. The scope of this research is limited 

to the assessment of AFs in regions with the characteristics of hot climates. Thus, 

the results obtained in this research cannot be generalised to other climate zones; 

however, it is feasible to apply the developed algorithmic framework of AFs to other 

different climates. 

- Due to the non-existence of AF shading systems in the region of the study to obtain 

real data or to conduct on-site measurements, the researcher had to rely on a 

synthetic database using simulation approach. 

- Due to computational power constraints, only six shading positions were 

considered, resulting in a restricted range of view ratio to the outdoors. 
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- The developed framework is limited to AF types that have an extrinsic control 

system. Hence, AFs that have intrinsic controls or material-based actuators cannot 

apply the proposed control framework of this study. 

- The operation and the maintenance of AFs require additional costs and resources 

that are not examined in this study. 

- Due to the timeframe of the PhD and the computation time, this study examined a 

certain range of parameters to train the ML models, which would restrict the 

generalisability of the developed surrogate model to predict other parameters. 

Basically, the ML models are applicable only to the scenarios covered by the training 

data. 

- The results confirmed that ML surrogate models are an effective method for 

emulating simulation tools to predict the energy performance of AFs and provide 

high prediction accuracies for a variety of design variables. Despite the strengths of 

this promising approach, a notable limitation concerns the unaddressed question of 

how surrogate models would perform in more complex design scenarios beyond the 

range of the examined inputs. 

8.7. Recommendations and Future Work  

The findings of the study and limitations showed important recommendations and future 

research to be investigated. 

- The study encourages architects and façade engineers to implement more AF 

shading systems in regions with hot climates, as they have been proven to be 

effective in saving energy in office buildings. In addition, to motivate architects to 

develop more AFs, it is feasible to implement the method to similar AFs in different 

climates. 

- The study explored the impact of AF shading systems on the energy performance of 

buildings. However, there is still a lot of scope for investigation that researchers into 

AFs can explore including visual comfort, thermal comfort, and daylight quality.  

- Future research should investigate the satisfaction of occupants based on post-

occupancy evaluations. A post-occupancy assessment is an appropriate method for 

evaluating the performance of AFs with the help of surveys. 

- The research recommends the use of a co-simulation approach within the 

parametric design tool to accurately simulate the performance of AFs and their time 

varying behaviour during the early stages of the design.    

- ML methods are a promising approach in the field of architecture; nevertheless, big 

data is required to develop the models, and such data is not easily accessible or does 

not exist. Therefore, this study encourages public and private institutions in the KSA 
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to develop a national database similar to the Commercial Buildings Energy 

Consumption Survey (CBECS) system in the United States (US). 

- In this research, the ANN architecture was optimised using different numbers of 

layers and neurones. Future research may employ alternative network architecture 

algorithms and training methods, such as the Recurrent Neural Network (RNN) and 

the Long-Short Term Memory (LSTM).  

- This study developed ML surrogate models to predict only the hourly cooling loads 

of AFs; hence, additional research is needed to construct ML surrogate models to 

predict other performance metrics such as annual energy consumption, daylighting 

metrics, etc.  

- The developed surrogate models particularly examined hot climate zones; thus, the 

models’ applicability to other climates must be determined in future research.  

- The study developed a workflow of the trained surrogate model within a 

computational design tool (Grasshopper) for instant design decision-making; 

however, future work is required to develop design tools that simplify such 

procedures and make them more attractive to designers. 

8.8. Chapter Summary  

Throughout my research, I strived to conduct this work following the most accurate methods 

used by researchers in the literature. If I had to do my research again, I would conduct the 

experiment using real data instead of the simulation approach. Even though data obtained 

using simulation tools with the inevitable limitations are considered reliable, real data 

represent the actual settings more accurately. If I had the time, I would apply the surrogate 

model in a design tool for architects and façade engineers in a simple and attractive way, 

and I would test its usability. In addition, at the beginning of my research, there was a plan 

to include biomimicry as an inspiration for adaptive design; however, there was not enough 

time to conduct the experiment in an appropriate way.  

Moreover, if I had the time, I would generate a variety of building contexts to make the 

model generalizable to different design settings. In addition, I would train a second model 

only on solar radiation and operative temperature to find out if the model could be 

generalized by following this approach. Lastly, I would test the developed model on real 

urban contexts in downtown Riyadh. 
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Appendix A: Validation 
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Sample of the monthly electricity bills for the examined office building.  
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Sample of the monthly electricity bills for the examined office building.  
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Appendix B: High Rise Buildings (Case Studies) 
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Office building Case studies. 

Case 
No 

Name 
Total 
NLA 

Total 
GFA 

Tower 
Height 

Floor to ceiling 
Height 

Number of 
Floors 

Core 
Dimensions 

Core 
Configurations 

Floor 
efficiency 

Leasing 
Depth 

Façade Glazing 
Orientation 

Shading 
System 

Existence 

E W S N 
No
n 

Poo
r 

Exis
t 

Case 1 Public Investment Fund (PIF) Tower 1800m2 2400m2 385 m 4 m 77 600m2 Central core 78% 12m to 14m ✓ ✓ ✓ ✓ – – ✓ 

Case 2 Al Faisaliah Tower 1300m2 1700m2 267 m 4 m 44 400m2 Central core 80% 10m ✓ ✓ ✓ ✓ – – ✓ 

Case 3 Samba Bank HQ Tower 
1640 
m2 

2050 
m2 

231.2 m 4.0 m 40 410 m2 Central core 80% 10m to 13m ✓ ✓ ✓ ✓ – – ✓ 

Case 4 KAFD Parcel 1.18 
1880 
m2 

2350 
m2 

150 m 3.8 m 32 470 m2 Central core 82% 11m ✓ ✓ ✓ ✓ ✓ – – 

Case 5 PPA 30 Parcel 5.03 
1390 
m2 

1780 
m2 

105 m 4 m 26 390m2 Central core 78% 10m ✓ – ✓ ✓ ✓ – – 

Case 6 KAFD World Trade Center 
1815 
m2 

2270 
m2 

304 m 4 m 67 455m2 Central core 77% 10m to 14m ✓ ✓ ✓ ✓ – – ✓ 

Case 7 KAFD Parcel 3.05 960 m2 
1200 
m2 

84 m 4.20 m 19 240 m2 Central core 80% 10m ✓ ✓ ✓ ✓ ✓ – – 

Case 8 KAFD Parcel 5.08 
1208 
m2 

1510 
m2 

107.96 m 4.20 m 24 302 m2 Central core 80% 10m ✓ ✓ ✓ ✓ – – ✓ 

Case 9 PP 10 Parcel 3.04 665 m2 950 m2 144.60 m 4 m 34 285 m2 Side core 70% 10m ✓ ✓ ✓ ✓ – – ✓ 

Case 
10 

Kingdom Tower 
1950 
m2 

2450 
m2 

302.3 m 4 m 41 500 m2 Central core 80% 13m ✓ ✓ ✓ ✓ ✓ – – 

Case 
11 

KAFD Parcel 4.01 
1000 
m2 

1250 
m2 

71.98 m 4.20 m 16 250 m2 Central core 80% 9m to 10m ✓ ✓ ✓ ✓ – – ✓ 

Case 
12 

KAFD Parcel 4.04 -waterfall tower 880 m2 
1160 
m2 

107.96 m 4 m 20 280 m2 Central core 80% 11m ✓ ✓ ✓ ✓ – ✓ – 

Case 
13 

KAFD Muqarnas Tower 
1274 
m2 

1820 
m2 

138 m 4 m 30 546 m2 Side core 70% 9 m ✓ ✓ – ✓ – – ✓ 

Case 
14 

KAFD Parcel 2.12 
1108 
m2 

1438 
m2 

105 m 4 m 23 330 m2 Central core 77% 10m to 12m ✓ ✓ ✓ ✓ – – ✓ 

Case 
15 

PPA 30 Parcel 4.09 765 m2 980 m2 182 m 4.0 m 46 215 m2 Central core 78% 10m ✓ ✓ ✓ ✓ – ✓ – 

Case 
16 

KAFD Parcel 3.09 
1615 
m2 

1900 
m2 

138 m 4.20 m 33 285 m2 Central core 85% 11m ✓ ✓ ✓ ✓ ✓ – – 

Case 
17 

KAFD Parcel 2.13 710 m2 900 m2 160.7 m 4 m 34 190 m2 Central core 79% 9 m ✓ ✓ ✓ ✓ – – ✓ 

Case 
18 

KAFD PPA 30 Parcel 2.11 
1008 
m2 

1260 
m2 

55 m 4 m 13 252 m2 Side core 80% 10m ✓ – ✓ ✓ ✓ – – 
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Case 
No 

Name 
Total 
NLA 

Total 
GFA 

Tower 
Height 

Floor to ceiling 
Height 

Number of 
Floors 

Core 
Dimensions 

Core 
Configurations 

Floor 
efficiency 

Leasing 
Depth 

Façade Glazing 
Orientation 

Shading 
System 

Existence 

E W S N 
No
n 

Poo
r 

Exis
t 

Case 
19 

Olaya Tower 1 
1320 
m2 

1650 
m2 

166 m 4.0 m 34 330 m2 Central core 80% 10m to 14m ✓ ✓ ✓ ✓ ✓ – – 

Case 
20 

Crystal Tower 2 (PPA 30 Parcel 1.10) 960 m2 
1200 
m2 

80 m 4.00 m 18 240 m2 Central core 80% 10m ✓ ✓ ✓ ✓ – – ✓ 

Case 
21 

Crystal Tower 1 (PPA 30 Parcel 1.10) 858 m2 
1100 
m2 

135 m 4.00 m 26 242 m2 Central core 78% 10m ✓ ✓ ✓ ✓ – – ✓ 

Case 
22 

GCC Bank Headquarters (KAFD 
Parcel 1.14) 

1515 
m2 

2020 
m2 

264 m 4 m 53 505 m2 Central core 75% 10m ✓ ✓ ✓ ✓ – ✓ – 

Case 
23 

KAFD Parcel 2.11 840 m2 
1050 
m2 

77 m 4.0 m 17 210 m2 Central core 80% 9m to 10m ✓ – ✓ ✓ – ✓ – 

Case 
24 

KAFD Parcel 4.06 
1264 
m2 

1580 
m2 

122 m 4.00 m 33 316 m2 Central core 80% 11m to 13m ✓ ✓ ✓ ✓ – – ✓ 
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High-rise buildings in the studied context. 

# Building Height Floors Building type Year 

Glazing 
Orientation 

Shading System 
Existence 

Building 
Geometry 

E W S N Non Poor Exist 

1 Kingdom Trade Center Tower III  148 33 high-rise building - N N N N N N N N 

2 Kingdom Trade Center Tower II  148 33 high-rise building - N N N N N N N N 

3 King Fahd Twin Towers 2  144 32 high-rise building 2021 ✓ ✓ – – ✓ – – Tringle 

4 KAFD Tower 4.06 135 30 high-rise building 2020 ✓ ✓ – ✓ – – ✓ Irregular Form 

5 SABB Bank Tower  135 30 high-rise building 2021 ✓ – ✓ ✓ – ✓ – Square 

6 Muqarnas Tower 135 30 high-rise building 2014 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

7 Al Khozama Towers I 135 30 high-rise building - ✓ ✓ ✓ ✓ ✓ – – Rectangle 

8 Rafal Residence Tower  126 28 high-rise building 2016 ✓ ✓ ✓ ✓ ✓ – – Circle 

9 Riyadh Bank  126 28 high-rise building - N N N N N N N N 

10 KAFD Tower 4.12 121 27 high-rise building 2020 ✓ – ✓ ✓ – – ✓ Square 

11 KAFD Tower 4.10 117 26 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Rectangle 

12 Malthak  117 26 high-rise building 2018 N N N N N N N N 

13 Al-Birr Foundation Office Tower  117 26 high-rise building - ✓ ✓ ✓ ✓ – – ✓ Square 

14 Riyadh Sofitel  112 25 high-rise building 2021 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

15 Alyaaah Hospital  112 25 high-rise building 2020 ✓ ✓ ✓ ✓ ✓ – – Square 

16 Al Fawaz Tower 112 25 high-rise building 2018 ✓ ✓ – ✓ ✓ – – Rectangle 

17 Al Khozama Towers III 112 25 high-rise building - N N N N N N N N 

18 Kingdom Trade Center Tower IX  112 25 high-rise building - N N N N N N N N 

19 Kingdom Trade Center Tower VIII  112 25 high-rise building - N N N N N N N N 

20 Kingdom Trade Center Tower IV  112 25 high-rise building - N N N N N N N N 

21 KAFD Parcel 3.04 Residential Tower  98 26 high-rise building 2014 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

22 Crystal Towers 2  95 18 high-rise building 2019 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

23 Hilton Riyadh Hotel  93 23 high-rise building 2016 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

24 Wyndham Grand Hotel  92 20 high-rise building 2020 ✓ ✓ ✓ ✓ – ✓ – Rectangle 

25 KAFD Parcel 4.07  88 18 high-rise building 2016 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

26 KAFD Parcel 3.05 Office Tower  83 19 high-rise building 2014 ✓ ✓ ✓ ✓ ✓ – – Square 

27 KAFD Parcel 5.01  83 19 high-rise building 2020 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

28 KAFD Parcel 1.11  83 18 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

29 KAFD Parcel 5.03, Tower 2  76 16 high-rise building 2019 ✓ – ✓ ✓ – ✓ – Square 

30 Hilton Riyadh Residence  71 16 high-rise building 2016 ✓ ✓ ✓ ✓ ✓ – – Irregular Form 

31 KAFD Tower 4.11 70 12 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

https://www.emporis.com/buildings/102340/kingdom-trade-center-tower-iii-riyadh-saudi-arabia
https://www.emporis.com/buildings/102339/kingdom-trade-center-tower-ii-riyadh-saudi-arabia
https://www.emporis.com/buildings/1573238/king-fahd-twin-towers-2-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523743/kafd-tower-4-06-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445327/sabb-bank-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192856/muqarnas-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/224822/al-khozama-towers-i-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445317/rafal-residence-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/136408/riyadh-bank-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523733/kafd-tower-4-12-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523737/kafd-tower-4-10-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445318/malthak-riyadh-saudi-arabia
https://www.emporis.com/buildings/349881/al-birr-foundation-office-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523661/riyadh-sofitel-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445324/alyamamah-hospital-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445316/al-fawaz-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/225193/al-khozama-towers-iii-riyadh-saudi-arabia
https://www.emporis.com/buildings/102346/kingdom-trade-center-tower-ix-riyadh-saudi-arabia
https://www.emporis.com/buildings/102345/kingdom-trade-center-tower-viii-riyadh-saudi-arabia
https://www.emporis.com/buildings/102341/kingdom-trade-center-tower-iv-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373869/kafd-parcel-3-04-residential-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192447/crystal-towers-2-riyadh-saudi-arabia
https://www.emporis.com/buildings/1197582/hilton-riyadh-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192855/wyndham-grand-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192853/kafd-parcel-4-07-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373870/kafd-parcel-3-05-office-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373871/kafd-parcel-5-01-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373872/kafd-parcel-1-11-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373873/kafd-parcel-5-03-tower-2-riyadh-saudi-arabia
https://www.emporis.com/buildings/1197583/hilton-riyadh-residence-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523735/kafd-tower-4-11-riyadh-saudi-arabia
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# Building Height Floors Building type Year 

Glazing 
Orientation 

Shading System 
Existence 

Building 
Geometry 

E W S N Non Poor Exist 

32 KAFD Parcel 3.05 Residential Tower  67 17 high-rise building 2014 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

33 Vertical Medina  66 16 high-rise building 2020 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

34 The Butterfly  66 15 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

35 King Faisal Foundation North Building  65 15 high-rise building 1984 – – ✓ ✓ ✓ – – Tringle 

36 King Faisal Foundation South Building  65 15 high-rise building 1984 – – ✓ ✓ ✓ – – Tringle 

37 Cascading Condos 60 13 high-rise building 2017 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

38 KAFD Parcel 2.12  55 13 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

39 Criminal Court  45 - high-rise building 2007 ✓ ✓ ✓ ✓ – – ✓ Square 

40 King Faisal Foundation Phase II  36 8 high-rise building 1985 ✓ – – ✓ ✓ – – Tringle 

41 Kingdom Trade Center Tower XI  112 25 high-rise building - N N N N N N N N 

42 KAFD Tower 5.08 108 24 high-rise building 2016 ✓ ✓ ✓ ✓ – – ✓ Square 

43 Al-Jomaiah Tower 108 24 high-rise building - ✓ ✓ ✓ ✓ ✓ – – Square 

44 Hital Tower 108 24 high-rise building 2015 ✓ ✓ ✓ ✓ – – ✓ Square 

45 Al Munaje Tower 103 23 high-rise building 2012 ✓ ✓ – – ✓ – – Rectangle 

46 Marriott Courtyard  103 23 high-rise building - ✓ ✓ ✓ ✓ ✓ – – Square 

47 KACST Tower 103 23 high-rise building 2019 ✓ ✓ ✓ ✓ – – ✓ Square 

48 Kingdom Trade Center Tower VI  103 23 high-rise building - N N N N N N N N 

49 Kingdom Trade Center Tower V  103 23 high-rise building - N N N N N N N N 

50 Waterfall Tower 99 22 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Rectangle 

51 Al Khozaa Towers II 99 22 high-rise building - N N N N N N N N 

52 Al Waseel Tower  94 21 high-rise building 2011 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

53 4250 King Fahd Rd  94 21 high-rise building 2012 N N N N N N N N 

54 King Abdullah Center for Tumors and Liver Disease  94 21 high-rise building 2015 ✓ ✓ ✓ ✓ – – ✓ Rectangle 

55 TAM Tower 90 20 high-rise building 2021 ✓ – – ✓ ✓ – – Square 

56 Khaldia Tower 4 90 20 high-rise building - ✓ – – ✓ ✓ – – Circle 

57 Spiaco Addwaeih Tower  90 20 high-rise building 2018 ✓ ✓ ✓ ✓ ✓ – – Ellipse 

58 InterContinental Riyadh King Abdullah Financial District  90 20 high-rise building 2019 N N N N N N N N 

59 Haven Towers 81 18 high-rise building 2018 ✓ ✓ ✓ ✓ ✓ – – Square 

60 5565 King Fahd Branch Rd  81 18 high-rise building 2016 N N N N N N N N 

61 Clemenceau Center  81 18 high-rise building 2019 ✓ ✓ ✓ ✓ ✓ – – Tringle 

62 Al-Sahab Tower 76 17 high-rise building 2021 ✓ – – ✓ ✓ – – Rectangle 

63 Al-Suwaile Tower  76 17 high-rise building 2018 ✓ ✓ ✓ ✓ – ✓ – Square 

64 The Council of Cooperative Health Insurance  76 17 high-rise building 2015 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

https://www.emporis.com/buildings/1373874/kafd-parcel-3-05-residential-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192480/vertical-medina-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373875/the-butterfly-riyadh-saudi-arabia
https://www.emporis.com/buildings/125890/king-faisal-foundation-north-building-riyadh-saudi-arabia
https://www.emporis.com/buildings/125889/king-faisal-foundation-south-building-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373876/cascading-condos-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373877/kafd-parcel-2-12-riyadh-saudi-arabia
https://www.emporis.com/buildings/341173/criminal-court-riyadh-saudi-arabia
https://www.emporis.com/buildings/225251/king-faisal-foundation-phase-ii-riyadh-saudi-arabia
https://www.emporis.com/buildings/102337/kingdom-trade-center-tower-xi-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523729/kafd-tower-5-08-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445319/al-jomaiah-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445315/hital-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445349/al-munajem-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445326/marriott-courtyard-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445320/kacst-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/102343/kingdom-trade-center-tower-vi-riyadh-saudi-arabia
https://www.emporis.com/buildings/102342/kingdom-trade-center-tower-v-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523736/waterfall-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/224823/al-khozama-towers-ii-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373856/al-waseel-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543793/4250-king-fahd-rd-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445314/king-abdullah-center-for-tumors-and-liver-disease-riyadh-saudi-arabia
https://www.emporis.com/buildings/1573241/tam-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543804/khaldia-tower-4-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445328/spimaco-addwaeih-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1216068/intercontinental-riyadh-king-abdullah-financial-district-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543810/haven-towers-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543785/5565-king-fahd-branch-rd-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445322/clemenceau-medical-center-riyadh-saudi-arabia
https://www.emporis.com/buildings/1573240/al-sahab-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543771/al-suwailem-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543765/the-council-of-cooperative-health-insurance-riyadh-saudi-arabia
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# Building Height Floors Building type Year 

Glazing 
Orientation 

Shading System 
Existence 

Building 
Geometry 

E W S N Non Poor Exist 

65 Indigo Hotel Riyadh King Abdullah Financial District  76 17 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

66 SABIC Headquarters  76 17 high-rise building 2002 ✓ ✓ ✓ ✓ ✓ – – Square 

67 Arab National Bank Building  76 17 high-rise building - ✓ ✓ ✓ ✓ ✓ – – Square 

68 Verona Tower 2 72 16 high-rise building - N N N N N N N N 

69 Movepick A  72 16 high-rise building 2020 ✓ ✓ ✓ ✓ ✓ – – Square 

70 Al Moosa Hotel 72 16 high-rise building 2020 ✓ ✓ ✓ ✓ ✓ – – Square 

71 KAFD Parcel 4.01  72 16 high-rise building 2019 ✓ ✓ ✓ ✓ – ✓ – Irregular Form 

72 Marriott Executive Suites  67 15 high-rise building 2012 ✓ ✓ ✓ ✓ ✓ – – Square 

73  Waha Centre 67 15 high-rise building 2018 ✓ ✓ ✓ ✓ – – ✓ Rectangle 

74 Hilton Garden Inn  67 15 high-rise building 2020 ✓ ✓ ✓ ✓ – – ✓ Square 

75 Swiss Spirit Hotel  67 15 high-rise building 2017 ✓ – – ✓ ✓ – – Square 

76 Swiss International Royal Hotel  67 15 high-rise building 2017 ✓ ✓ – ✓ ✓ – – Square 

77 Ion Suites  67 15 high-rise building 2015 ✓ – – ✓ ✓ – – Square 

78 KAFD Tower 4.03 67 15 high-rise building 2020 ✓ ✓ ✓ ✓ ✓ – – Irregular Form 

79 Le Meridien Riyadh  67 15 high-rise building 2019 ✓ ✓ ✓ ✓ ✓ – – Ellipse 

80 Ministry of Communication and IT  67 15 high-rise building - ✓ ✓ ✓ ✓ – – ✓ Rectangle 

81 Morena Tower 63 14 high-rise building 2021 ✓ ✓ ✓ ✓ ✓ – – Square 

82 Movepick B 63 14 high-rise building 2020 ✓ ✓ ✓ ✓ – ✓ – Square 

83 Al alqa Elite Hotel  63 14 high-rise building 2017 ✓ ✓ ✓ ✓ ✓ – – Square 

84 Rose Continental Hotel 63 14 high-rise building 2015 ✓ – – ✓ ✓ – – Square 

85 Safwa Complex  63 14 high-rise building - ✓ ✓ ✓ ✓ ✓ – – Circle 

86 Corp Inn Deira 58 13 high-rise building - ✓ ✓ ✓ ✓ ✓ – – Rectangle 

87 Cayan Office Building  58 13 high-rise building 2018 ✓ – ✓ ✓ ✓ – – Square 

88 Al Rossais Commercial Center  58 13 high-rise building - ✓ ✓ ✓ ✓ ✓ – – Irregular Form 

89 Futuro Tower 54 12 high-rise building 2009 ✓ ✓ ✓ ✓ ✓ – – Square 

90 The Capital Market Authority Tower  385 77 skyscraper 2017 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

91 Burj Rafal 308 68 skyscraper 2014 ✓ ✓ ✓ ✓ ✓ – – Ellipse 

92 KAFD World Trade Center  304 67 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

93 Kingdom Centre Tower 302 32 skyscraper 2002 ✓ ✓ ✓ ✓ ✓ – – Ellipse 

94 Al Faisaliyah Center  267 30 skyscraper 2000 ✓ ✓ ✓ ✓ – – ✓ Square 

95 Takeen Tower 258 58 skyscraper 2012 ✓ ✓ ✓ ✓ ✓ – – Ellipse 

96 GCC Bank Headquarters  254 53 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

97 Al Rajhi Tower 250 33 skyscraper 2017 ✓ ✓ ✓ ✓ ✓ – – Square 

https://www.emporis.com/buildings/1216044/indigo-hotel-riyadh-king-abdullah-financial-district-riyadh-saudi-arabia
https://www.emporis.com/buildings/203217/sabic-headquarters-riyadh-saudi-arabia
https://www.emporis.com/buildings/125877/arab-national-bank-building-riyadh-saudi-arabia
https://www.emporis.com/buildings/1573243/verona-tower-2-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543779/movempick-a-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543770/al-moosa-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/1216035/kafd-parcel-4-01-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543817/marriott-executive-suites-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543782/centro-waha-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543781/hilton-garden-inn-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543778/swiss-spirit-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543775/swiss-international-royal-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543769/ion-suites-riyadh-saudi-arabia
https://www.emporis.com/buildings/1523741/kafd-tower-4-03-riyadh-saudi-arabia
https://www.emporis.com/buildings/225238/le-meridien-riyadh-riyadh-saudi-arabia
https://www.emporis.com/buildings/224825/ministry-of-communication-and-it-riyadh-saudi-arabia
https://www.emporis.com/buildings/1573242/morena-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543780/movempick-b-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543776/al-malqa-elite-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543768/rose-continental-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/224824/safwa-complex-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543809/corp-inn-deira-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543766/cayan-office-building-riyadh-saudi-arabia
https://www.emporis.com/buildings/197475/al-rossais-commercial-center-riyadh-saudi-arabia
https://www.emporis.com/buildings/1543813/futuro-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192428/the-capital-market-authority-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192430/burj-rafal-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192429/kafd-world-trade-center-riyadh-saudi-arabia
https://www.emporis.com/buildings/100934/kingdom-centre-riyadh-saudi-arabia
https://www.emporis.com/buildings/125879/al-faisaliyah-center-riyadh-saudi-arabia
https://www.emporis.com/buildings/1201658/tamkeen-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192438/gcc-bank-headquarters-riyadh-saudi-arabia
https://www.emporis.com/buildings/286054/al-rajhi-tower-riyadh-saudi-arabia
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# Building Height Floors Building type Year 

Glazing 
Orientation 

Shading System 
Existence 

Building 
Geometry 

E W S N Non Poor Exist 

98 Al ajdoul Tower 244 54 skyscraper 2019 ✓ ✓ ✓ ✓ – ✓ – Irregular Form 

99 Saba Bank HQ Tower 231 40 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

100 Rafal Living Tower 213 62 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Square 

101 Al Rajhi Bank Headquarters  205 37 skyscraper 2017 ✓ ✓ ✓ ✓ ✓ – – Square 

102 DAAC Tower by Paramount Hotels & Resorts  200 45 skyscraper 2016 ✓ – – ✓ ✓ – – Rectangle 

103 Tadawul Tower 200 41 skyscraper 2020 ✓ ✓ ✓ ✓ – ✓ – Irregular Form 

104 Al-Obeikan Hilton Tower Hotel  200 35 skyscraper 2017 ✓ ✓ ✓ ✓ ✓ – – Circle 

105 Nakheel Tower 200 26 skyscraper 2011 ✓ – ✓ ✓ ✓ – – Square 

106 KAFD Tower 4.09 182 46 skyscraper 2015 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

107 Olaya Tower 2 180 38 skyscraper 2013 ✓ ✓ ✓ ✓ ✓ – – Square 

108 Olaya Tower 1 166 36 skyscraper 2013 ✓ ✓ ✓ ✓ ✓ – – Square 

109 ETLAL Residence  165 40 skyscraper 2021 N N N N N N N N 

110 Villas In the Sky  165 34 skyscraper 2016 ✓ ✓ ✓ ✓ ✓ – – Square 

111 Hamad Tower 163 39 skyscraper 2016 ✓ ✓ ✓ ✓ – ✓ – Rectangle 

112 Boudl-Narcissus Classic Tower  155 28 skyscraper 2017 ✓ ✓ ✓ ✓ ✓ – – Square 

113 Burj Al-Swaile  151 28 skyscraper 2017 ✓ ✓ ✓ ✓ ✓ – – Square 

114 Burj Rala 150 37 skyscraper 2020 N N N N N N N N 

115 DAAC Esclusiva  150 30 skyscraper 2016 ✓ – ✓ ✓ – ✓ – Rectangle 

116 KAFD Parcel 5.05 Residential Tower  149 38 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

117 Burj Al Anoud  145 20 skyscraper 2005 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

118 KAFD Parcel 3.04 Office Tower  145 34 skyscraper 2014 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

119 KAFD Parcel 5.09  138 33 skyscraper 2017 N N N N N N N N 

120 KAFD Parcel 3.10  138 30 skyscraper 2020 N N N N N N N N 

121 Crystal Towers 1  135 26 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

122 KAFD Parcel 4.08  133 32 skyscraper - ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

123 Moon Tower 133 27 skyscraper 2013 ✓ ✓ ✓ ✓ ✓ – – Circle 

124 Elegance Tower 130 27 skyscraper 2016 ✓ ✓ ✓ ✓ ✓ – – Square 

125 Palm Tower 130 27 skyscraper 2017 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

126 Alnood Tower 2  125 25 skyscraper 2012 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

127 KAFD Parcel 5.05 Office Tower  125 23 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

128 KAFD Parcel 5.03  105 26 skyscraper 2020 ✓ – ✓ ✓ ✓ – – Irregular Form 

129 KAFD Parcel 2.12  105 23 skyscraper 2020 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

130 KAFD Parcel 2.14  105 19 skyscraper 2018 ✓ ✓ ✓ ✓ – – ✓ Irregular Form 

https://www.emporis.com/buildings/1240975/al-majdoul-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373852/samba-bank-hq-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373853/rafal-living-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1219150/al-rajhi-bank-headquarters-riyadh-saudi-arabia
https://www.emporis.com/buildings/1241024/damac-tower-by-paramount-hotels-resorts-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192439/tadawul-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373855/al-obeikan-hilton-tower-hotel-riyadh-saudi-arabia
https://www.emporis.com/buildings/906021/nakheel-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445329/kafd-tower-4-09-riyadh-saudi-arabia
https://www.emporis.com/buildings/1219138/olaya-tower-2-riyadh-saudi-arabia
https://www.emporis.com/buildings/1219137/olaya-tower-1-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445321/etlal-residence-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192851/villas-in-the-sky-riyadh-saudi-arabia
https://www.emporis.com/buildings/1240938/hamad-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373857/boudl-narcissus-classic-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1359472/burj-al-swailem-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373858/burj-ramla-riyadh-saudi-arabia
https://www.emporis.com/buildings/1241022/damac-esclusiva-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373859/kafd-parcel-5-05-residential-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373860/burj-al-anoud-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373861/kafd-parcel-3-04-office-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373863/kafd-parcel-5-09-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373864/kafd-parcel-3-10-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192446/crystal-towers-1-riyadh-saudi-arabia
https://www.emporis.com/buildings/1192852/kafd-parcel-4-08-riyadh-saudi-arabia
https://www.emporis.com/buildings/1219132/moon-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373865/elegance-medical-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445325/palm-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1445313/alnood-tower-2-riyadh-saudi-arabia
https://www.emporis.com/buildings/1216036/kafd-parcel-5-05-office-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373866/kafd-parcel-5-03-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373867/kafd-parcel-2-12-riyadh-saudi-arabia
https://www.emporis.com/buildings/1373868/kafd-parcel-2-14-riyadh-saudi-arabia
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# Building Height Floors Building type Year 

Glazing 
Orientation 

Shading System 
Existence 

Building 
Geometry 

E W S N Non Poor Exist 

131 KAFD Parcel 1.12  102 21 skyscraper 2020 ✓ ✓ ✓ ✓ ✓ – – Rectangle 

132 Abraj Atta'Awuneya South Tower  101 21 skyscraper 1999 ✓ ✓ – – ✓ – – Tringle 

133 Abraj Atta'Awuneya North Tower  101 21 skyscraper 1999 ✓ ✓ – – ✓ – – Tringle 

134 Alrriyadh Tower 288 64 skyscraper - N N N N N N N N 

135 Riyadh Commercial Tower 243 54 skyscraper - N N N N N N N N 

136 King Fahd Twin Towers 1  216 48 skyscraper 2021 N N N N N N N N 

137 Kingdom Trade Centre Tower VII  180 40 skyscraper - N N N N N N N N 

138 Average 121.8            

 
 
 

https://www.emporis.com/buildings/1192854/kafd-parcel-1-12-riyadh-saudi-arabia
https://www.emporis.com/buildings/147996/abraj-atta-awuneya-south-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/125878/abraj-atta-awuneya-north-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1151040/alrriyadh-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/906022/riyadh-commercial-tower-riyadh-saudi-arabia
https://www.emporis.com/buildings/1573239/king-fahd-twin-towers-1-riyadh-saudi-arabia
https://www.emporis.com/buildings/102344/kingdom-trade-center-tower-vii-riyadh-saudi-arabia
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Typical floor office plan of the investigated case studies. 
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Appendix C: Modelling and Simulation Workflow 

(Database Generation) 
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Screenshot showing the workflow of the parametric modelling and simulation in 

Grasshopper environment 

 

 

Screenshot showing the zone settings (top), and the construction materials settings (down).
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Screenshot showing the office room zones and materials for four orientations. 



APPENDIX 

345 

 

Screenshot showing the window materials and specifications.  

 

Screenshot showing the window materials and specifications.  
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Screenshot showing the HVAC system, occupancy schedules, and zone loads.  

 

Screenshot showing the shade factor of all shading states loaded from Csv. Files.   
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Screenshot showing the conditional statement to actuate the AFs shading system. 
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Screenshot showing the transmittance schedules of the AFs shading systems loaded from a 

CSV. File. 

 

Screenshot showing the transmittance schedules processed within the Honeybee schedule 

component.  
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Screenshot showing the iterative workflow of all variable inputs.  

 

Screenshot showing the AFs shading states modelling.  
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Screenshot showing the energy simulation settings, and energy results processing. 

 

Screenshot showing the environmental control results processing. 
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Screenshot showing the energy results processing. 

 

Screenshot showing the database recording.  
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Screenshot showing the solar radiation analysis settings. 

 

Screenshot showing the processing of solar radiation results. 

 

Screenshot showing the shade factor analysis and results processing. 
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Web-based comparison of energy performance for control scenario (C1), (C2), (C3) and (C4) showing 
optimum and worst cases. 
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Scatter plot of all design cases in relation to cooling loads and annual energy consumption. 
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Shading states for two different days of the year (21 March, and 21 September) in different contexts. 
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Appendix D: Synthetic Database 
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The database is loaded into the web-based data visualization tool (Design Explorer): 

Adaptive Façades Control Scenario (C1).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3SEYQbY 

Adaptive Façades Control Scenario (C2).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3BSZP1l 

Adaptive Façades Control Scenario (C3).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3ULMJeZ 

Adaptive Façades Control Scenario (C4).  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3eJReGq 

Adaptive Façades All Control Scenarios.  

https://tt-acm.github.io/DesignExplorer/?ID=BL_3E7vqPE 

 

 

 

https://tt-acm.github.io/DesignExplorer/?ID=BL_3SEYQbY
https://tt-acm.github.io/DesignExplorer/?ID=BL_3BSZP1l
https://tt-acm.github.io/DesignExplorer/?ID=BL_3ULMJeZ
https://tt-acm.github.io/DesignExplorer/?ID=BL_3eJReGq
https://tt-acm.github.io/DesignExplorer/?ID=BL_3E7vqPE
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Sample of the parametric generation database for cooling loads using simulation approach. 
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Sample of the parametric generation database for cooling loads using simulation approach. 

 

 

 



APPENDIX 

366 

 

Sample of the parametric generation database for solar radiation using simulation approach. 
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Sample of the parametric generation database for solar radiation using simulation approach. 
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Sample of the parametric generation database for solar radiation using simulation approach. 
 



APPENDIX 

369 

 

Sample of the parametric generation database for shade factor using simulation approach. 
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Sample of the parametric generation database for shade factor using simulation approach. 
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A sample of the solar radiation data stored and how the data are organized in the Excel sheet. 
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Shade factor database for scaling movements prototype stored in Excel. 
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Shade factor database for folding movements prototype stored in Excel. 
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Energy simulation database for adaptive façade (scaling movement) which was stored in Excel. 

 

Energy simulation database for base case model, which was stored in Excel. 
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Energy simulation database for adaptive façade (folding movement), which was stored in Excel. 
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Appendix E: ML Surrogate Models Codes and 

Deployments   
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The codes and files of the surrogate models can be accessed from this link:  

https://github.com/archammar/Predicting-Hourly-Cooling-Loads-of-Adaptive-Facades-
Using-Machine-Learning.git 
 
https://github.com/archammar/Solar-radiation-prediction-for-office-tower-using-machine-
learning.git 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/archammar/Predicting-Hourly-Cooling-Loads-of-Adaptive-Facades-Using-Machine-Learning.git
https://github.com/archammar/Predicting-Hourly-Cooling-Loads-of-Adaptive-Facades-Using-Machine-Learning.git
https://github.com/archammar/Solar-radiation-prediction-for-office-tower-using-machine-learning.git
https://github.com/archammar/Solar-radiation-prediction-for-office-tower-using-machine-learning.git
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SOUTH 

 

 

WEST 
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NORTH 

 

 

EAST 

 

Some selected cases to show actual simulated data vs. predicted data with ANN. 
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NORTH 

 

 

EAST 

 

Some selected cases to show actual simulated data vs. predicted results with ANN surrogate model. 
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Comparison analysis between DT model prediction and the simulation prediction of hourly solar 
radiation. 
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Comparison between RF model predictions, ANN model predictions, and simulation predictions of 
hourly cooling loads. 

P-AF-SCM C4_Or0_B00Low_B01Low_FLLow_ExtW0_Glaz0 

  

Date/Time Simulated DT Prediction 
ANN 

Prediction 
Squared 
Error- DT 

Squared 
Error ANN 

03/21 06:00 

 

0 0 0.00063962 0 4.09114E-07 

03/21 07:00 

 

0 0 0.0018528 0 3.43287E-06 

03/21 08:00

 

0 0 0.00347372 0 1.20667E-05 

03/21 09:00 

 

0 0 0.00482053 0 2.32375E-05 

03/21 10:00 

 

0 0 0.00486856 0 2.37029E-05 

03/21 11:00 

 

0 0 0.00781538 0 6.10802E-05 

03/21 12:00 

 

0 0 0.01052411 0 0.000110757 

03/21 13:00 
 

 

0.002935 0.00295205 0.00946786 2.90702E-10 4.24558E-05 

03/21 14:00 

 

0.006068 0.00609395 0.00987883 6.73403E-10 1.43253E-05 
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03/21 15:00 
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0.033673 0.0323202 0.01772165 1.83007E-06 0.000213 

06/21 12:00 

 

0.035112 0.03327895 0.01814125 3.36007E-06 0.000229 

06/21 13:00 

 

0.03847 0.0367129 0.01778296 3.0874E-06 0.000358 



APPENDIX 

397 

06/21 14:00 

 

0.040883 0.0380818 0.01898606 7.84672E-06 0.000365 

06/21 15:00 

 

0.040538 0.0393877 0.01952982 1.32319E-06 0.000394 

06/21 16:00 

 

0.041028 0.0399767 0.01969586 1.10523E-06 0.000411 

06/21 17:00 

 

0.038693 0.0378785 0.02080395 6.6341E-07 0.000292 

06/21 18:00 

 

0.03743 0.03693465 0.01955895 2.45372E-07 0.000302 

RMSE    0.001322136 0.0157 

09/21 06:00 

 

0 0 0.01232615 0 0.000152 

09/21 07:00 

 

0.009475 0.00938795 0.01248029 7.58E-09 9.56E-06 

09/21 08:00 

 

0.014123 0.0141736 0.01475517 2.56E-09 3.38E-07 

09/21 09:00 

 

0.024685 0.02441 0.01660042 7.56E-08 6.1E-05 

09/21 10:00 

 

0.026623 0.02644025 0.01826062 3.34E-08 6.69E-05 

09/21 11:00 

 

0.029634 0.02942275 0.0207883 4.46E-08 7.46E-05 

09/21 12:00 

 

0.03161 0.03167685 0.02130514 4.47E-09 0.000108 



APPENDIX 

398 

09/21 13:00 

 

0.034053 0.03413245 0.02171762 6.31E-09 0.000154 

09/21 14:00 

 

0.036311 0.0363179 0.02179689 4.76E-11 0.000211 

09/21 15:00 

 

0.037411 0.03732795 0.02132144 6.9E-09 0.000256 

09/21 16:00 

 

0.037316 0.0373728 0.01977217 3.23E-09 0.00031 

09/21 17:00 

 

0.035338 0.03536515 0.01877693 7.37E-10 0.000275 

09/21 18:00 

 

0.034004 0.0340319 0.01627251 7.78E-10 0.000315 

RMSE    0.00012 0.012383 

12/21 06:00 

 

0 0 1.74E-03 0 3.02462E-06 

12/21 07:00 

 

0 0 1.09E-03 0 1.19594E-06 

12/21 08:00 

 

0 0 8.51E-05 0 7.24765E-09 

12/21 09:00 

 

0 0 4.74E-04 0 2.24532E-07 

12/21 10:00 

 

0 0 3.50E-04 0 1.22783E-07 

12/21 11:00 

 

0 0 8.36E-04 0 6.98996E-07 
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12/21 12:00 

 

0 0 1.02E-03 0 1.04557E-06 

12/21 13:00 

 

0 0 8.46E-04 0 7.1547E-07 

12/21 14:00 

 

0 0 6.32E-04 0 3.98999E-07 

12/21 15:00 

 

0 0 8.77E-04 0 7.69061E-07 

12/21 16:00 

 

0 0 7.56E-04 0 5.7175E-07 

12/21 17:00 

 

0 0 1.89E-03 0 3.55341E-06 

12/21 18:00 

 

0 0 1.35E-03 0 1.83322E-06 

RMSE    0 0.001043721 
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Comparison between RF model predictions, ANN model predictions, and simulation predictions of 
hourly cooling loads. 

P-AF-SCM C4_Or1_B00High_B01Low_FLMedium_ExtW1_Glaz3 

  
Date/Time Simulated DT Prediction ANN 

Prediction 
Squared Error 

DT 
Squared Error 

NN 

03/21 06:00 0 0 0.00269247 0 7.25E-06 

03/21 07:00 0 0 0.00024311 0 5.91E-08 

03/21 08:00 0 0 0.00163205 0 2.66E-06 

03/21 09:00 0.002077 0.00205845 0.00208605 3.44E-10 7.62E-10 

03/21 10:00 0.005596 0.005488 0.00128663 1.17E-08 1.77E-05 

03/21 11:00 0.006531 0.00652235 0.00327451 7.48E-11 1.05E-05 

03/21 12:00 0.006263 0.00626365 0.00420784 4.22E-13 4.23E-06 

03/21 13:00 0.00825 0.00824135 0.00491856 7.48E-11 1.1E-05 

03/21 14:00 0.009119 0.0090998 0.00595564 3.69E-10 9.89E-06 

03/21 15:00 0.009889 0.00988845 0.00785162 3.03E-13 4.15E-06 

03/21 16:00 0.010042 0.010027 0.00620709 2.25E-10 1.46E-05 

03/21 17:00 0.006821 0.00681345 0.00642306 5.7E-11 1.52E-07 

03/21 18:00 0.005477 0.00546695 0.00491066 1.01E-10 3.09E-07 

RMSE    3.15E-05 0.00252 

06/21 06:00 0 0 0.01446847 0 0.000209 

06/21 07:00 0.014706 0.0144129 0.01335956 8.59E-08 1.11E-06 

06/21 08:00 0.014031 0.0140291 0.01351771 3.61E-12 2.62E-07 

06/21 09:00 0.021098 0.0205188 0.01325031 3.35E-07 5.28E-05 

06/21 10:00 0.021375 0.0205924 0.0126246 6.12E-07 6.35E-05 

06/21 11:00 0.021702 0.02174935 0.0134067 2.24E-09 6.96E-05 

06/21 12:00 0.021103 0.02019575 0.01333381 8.23E-07 4.71E-05 

06/21 13:00 0.022922 0.0220854 0.01471085 7E-07 5.44E-05 

06/21 14:00 0.023689 0.0223639 0.01950239 1.76E-06 8.19E-06 

06/21 15:00 0.023236 0.02313125 0.02248658 1.1E-08 4.16E-07 

06/21 16:00 0.023413 0.02311535 0.02369244 8.86E-08 3.33E-07 

06/21 17:00 0.021088 0.021134 0.02363452 2.12E-09 6.25E-06 

06/21 18:00 0.01999 0.01943825 0.01826493 3.04E-07 1.38E-06 

RMSE    0.000603 0.006292 

09/21 06:00 0 0 0.00931766 0 8.68E-05 

09/21 07:00 0.009838 0.00984 0.00943285 3.42E-12 1.66E-07 

09/21 08:00 0.010496 0.010483 0.01030559 1.73E-10 3.14E-08 

09/21 09:00 0.018807 0.018796 0.01014763 1.24E-10 7.48E-05 

09/21 10:00 0.019239 0.019234 0.00975762 2.86E-11 8.98E-05 

09/21 11:00 0.02023 0.02023 0.01150014 9E-14 7.62E-05 

09/21 12:00 0.019705 0.019701 0.01170036 1.3E-11 6.4E-05 

09/21 13:00 0.021256 0.021253 0.01432112 1.23E-11 4.8E-05 

09/21 14:00 0.021753 0.021751 0.01805645 3.8E-12 1.37E-05 

09/21 15:00 0.022016 0.022013 0.02142563 1.16E-11 3.45E-07 

09/21 16:00 0.021545 0.021536 0.0215202 7.57E-11 2.59E-10 

09/21 17:00 0.019495 0.019494 0.01917387 4.22E-13 1.03E-07 

09/21 18:00 0.018191 0.018185 0.01248406 3.84E-11 3.25E-05 

RMSE    6.1E-06 0.006117 
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12/21 06:00 0 0 0.00378397 0 1.43E-05 

12/21 07:00 0 0 0.00257411 0 6.63E-06 

12/21 08:00 0 0 0.00186988 0 3.5E-06 

12/21 09:00 0 0 0.00225542 0 5.09E-06 

12/21 10:00 0 0 0.00287586 0 8.27E-06 

12/21 11:00 0 0 0.00165981 0 2.75E-06 

12/21 12:00 0 0 0.00237481 0 5.64E-06 

12/21 13:00 0 0 0.00213686 0 4.57E-06 

12/21 14:00 0 0 0.00181599 0 3.3E-06 

12/21 15:00 0 0 0.00122759 0 1.51E-06 

12/21 16:00 0 0 0.00145808 0 2.13E-06 

12/21 17:00 0 0 0.00021952 0 4.82E-08 

12/21 18:00 0 0 0.00032277 0 1.04E-07 

RMSE    0 0.002109 
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Comparison between surrogate models’ prediction and simulation prediction for four different cities. 

P-AF-SCM C4_Or0_B00High_B01Low_FLLow_ExtW1_Glaz3 
Location: Jeddah  

Date/Time Simulated DT Prediction ANN Prediction Squared Error- DT Squared Error NN 

09/21 06:00 0 0 0.01449259 0 0.00021 

09/21 07:00 0.025571 0.02416015 0.01286777 1.99E-06 0.000128 

09/21 08:00 0.028366 0.02588355 0.01390472 6.16E-06 0.000143 

09/21 09:00 0.040585 0.0345987 0.0147919 3.58E-05 0.000392 

09/21 10:00 0.037648 0.0315219 0.01643904 3.75E-05 0.000227 

09/21 11:00 0.035595 0.029368 0.01884475 3.88E-05 0.000111 

09/21 12:00 0.034336 0.02961785 0.01935158 2.23E-05 0.000105 

09/21 13:00 0.037398 0.0354318 0.01984899 3.87E-06 0.000243 

09/21 14:00 0.034207 0.02903395 0.01999195 2.68E-05 8.18E-05 

09/21 15:00 0.03018 0.0284952 0.01929807 2.84E-06 8.46E-05 

09/21 16:00 0.034228 0.0297973 0.01829678 1.96E-05 0.000132 

09/21 17:00 0.031411 0.02663725 0.01775941 2.28E-05 7.88E-05 

09/21 18:00 0.030042 0.0254701 0.01522427 2.09E-05 0.000105 
 

P-AF-SCM C4_Or0_B00High_B01Low_FLLow_ExtW1_Glaz3 

Location: Kuwait 
 

Date/Time Simulated DT Prediction ANN Prediction Squared Error- DT Squared Error NN 

09/21 06:00 0 0 0.01231566 0 0.000151675 

09/21 07:00 0.018542 0.01795565 0.01191821 3.43806E-07 3.64507E-05 

09/21 08:00 0.015749 0.0136542 0.01360248 4.38819E-06 2.67496E-09 

09/21 09:00 0.03054 0.0241262 0.01517036 4.11368E-05 8.02071E-05 

09/21 10:00 0.027721 0.02317645 0.0168404 2.06529E-05 4.01455E-05 

09/21 11:00 0.02825 0.0260543 0.01969854 4.8211E-06 4.03957E-05 

09/21 12:00 0.027265 0.0280171 0.02020409 5.65654E-07 6.10431E-05 

09/21 13:00 0.028858 0.03010145 0.02083067 1.54617E-06 8.59474E-05 

09/21 14:00 0.028802 0.0338863 0.02152199 2.58501E-05 0.000152876 

09/21 15:00 0.034824 0.03379085 0.02119408 1.0674E-06 0.000158679 

09/21 16:00 0.03496 0.03210395 0.01969337 8.15702E-06 0.000154022 

09/21 17:00 0.029383 0.0289755 0.01872011 1.66056E-07 0.000105173 

09/21 18:00 0.026936 0.028347 0.0157568 1.99092E-06 0.000158513 

 

P-AF-SCM C4_Or0_B00High_B01Low_FLLow_ExtW1_Glaz3 

Location: Phoenix 
 

Date/Time Simulated DT Prediction ANN Prediction Squared Error- DT Squared Error NN 

09/21 06:00 0 0 0.00372739 0 1.38934E-05 

09/21 07:00 0 0 0.00565509 0 3.198E-05 

09/21 08:00 0 0 0.00824758 0 6.80226E-05 

09/21 09:00 0.005187 0.00016015 0.01084305 2.52692E-05 0.000114124 

09/21 10:00 0.008298 0.0091609 0.0145648 7.44596E-07 2.92021E-05 

09/21 11:00 0.010004 0.01846345 0.01877742 7.15623E-05 9.85772E-08 

09/21 12:00 0.010381 0.0219027 0.02018813 0.00013275 2.93975E-06 
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09/21 13:00 0.01255 0.0218241 0.02113594 8.60089E-05 4.73564E-07 

09/21 14:00 0.014213 0.02556085 0.02179296 0.000128774 1.4197E-05 

09/21 15:00 0.015357 0.0273997 0.02163508 0.000145027 3.32308E-05 

09/21 16:00 0.015774 0.02944635 0.02011921 0.000186933 8.69955E-05 

09/21 17:00 0.014624 0.0270655 0.01895543 0.000154791 6.57732E-05 

09/21 18:00 0.013121 0.0253331 0.01544593 0.000149135 9.77561E-05 
 

P-AF-SCM C4_Or0_B00High_B01Low_FLLow_ExtW1_Glaz3 

Location: Tucson 
 

Date/Time Simulated DT Prediction ANN Prediction Squared Error- DT Squared Error NN 

09/21 06:00 0 0 0.00774492 0 5.99838E-05 

09/21 07:00 0 0 0.00835961 0 6.98831E-05 

09/21 08:00 0.001833 0 0.01169577 3.35989E-06 0.000136791 

09/21 09:00 0.008994 0.0093566 0.01478599 1.31479E-07 2.94783E-05 

09/21 10:00 0.010813 0.01962565 0.01751973 7.76628E-05 4.4349E-06 

09/21 11:00 0.012827 0.02284225 0.02085647 0.000100305 3.94332E-06 

09/21 12:00 0.012451 0.02240855 0.02125269 9.91528E-05 1.33601E-06 

09/21 13:00 0.015034 0.02475925 0.02133584 9.45805E-05 1.17197E-05 

09/21 14:00 0.016502 0.0270583 0.02137996 0.000111435 3.22435E-05 

09/21 15:00 0.016838 0.0285472 0.02059869 0.000137105 6.31788E-05 

09/21 16:00 0.017034 0.02976985 0.0186174 0.000162202 0.000124377 

09/21 17:00 0.015505 0.0277367 0.01760292 0.000149614 0.000102693 

09/21 18:00 0.012961 0.02523125 0.01447455 0.000150559 0.000115707 
 

 
 

 


