
Citation: Lin, M.; Wen, K.; Zhu, X.;

Zhao, H.; Sun, X. Graph Autoencoder

with Preserving Node Attribute

Similarity. Entropy 2023, 25, 567.

https://doi.org/10.3390/e25040567

Academic Editors: Yongpan Sheng,

Hao Wang and Yixiang Fang

Received: 12 February 2023

Revised: 17 March 2023

Accepted: 24 March 2023

Published: 26 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Graph Autoencoder with Preserving Node Attribute Similarity
Mugang Lin 1,2,* , Kunhui Wen 1, Xuanying Zhu 1, Huihuang Zhao 1,2 and Xianfang Sun 3

1 College of Computer Science and Technology, Hengyang Normal University, Hengyang 421002, China
2 Hunan Provincial Key Laboratory of Intelligent Information Processing and Application,

Hengyang 421002, China
3 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK
* Correspondence: mglin@hynu.edu.cn

Abstract: The graph autoencoder (GAE) is a powerful graph representation learning tool in an
unsupervised learning manner for graph data. However, most existing GAE-based methods typically
focus on preserving the graph topological structure by reconstructing the adjacency matrix while
ignoring the preservation of the attribute information of nodes. Thus, the node attributes cannot
be fully learned and the ability of the GAE to learn higher-quality representations is weakened. To
address the issue, this paper proposes a novel GAE model that preserves node attribute similarity.
The structural graph and the attribute neighbor graph, which is constructed based on the attribute
similarity between nodes, are integrated as the encoder input using an effective fusion strategy. In
the encoder, the attributes of the nodes can be aggregated both in their structural neighborhood
and by their attribute similarity in their attribute neighborhood. This allows performing the fusion
of the structural and node attribute information in the node representation by sharing the same
encoder. In the decoder module, the adjacency matrix and the attribute similarity matrix of the
nodes are reconstructed using dual decoders. The cross-entropy loss of the reconstructed adjacency
matrix and the mean-squared error loss of the reconstructed node attribute similarity matrix are
used to update the model parameters and ensure that the node representation preserves the original
structural and node attribute similarity information. Extensive experiments on three citation networks
show that the proposed method outperforms state-of-the-art algorithms in link prediction and node
clustering tasks.

Keywords: graph representation learning; graph autoencoder; unsupervised learning; k-nearest
neighbor

1. Introduction

Graphs are an essential tool to describe and model various complex systems in the real
world, where their nodes can represent the entities in complex systems, and their edges
can effectively describe the relationship between entities. For instance, the social network
between individuals formed by QQ, WeChat, and Weibo, the network of web links consist-
ing of thousands of pages on the Internet, and the logistics network consisting of transport
traffic between cities, all can be modeled as graphs. Moreover, many real-world problems
can be solved by transforming them into optimization problems on graphs. For example,
identifying hackers or terrorists can be considered as a problem of detecting anomalous
nodes in a graph, and knowledge graph completion can be viewed as a link prediction
problem in a graph. Therefore, graph deep learning has recently emerged to solve many
problems in graphs and tasks of graph analysis. However, in contrast to regular Euclidean
space data, graphs have a nonlinear data structure defined in an irregular non-Euclidean
space. This nonlinearity is due to the disorder of nodes and the connectivity between them.
An adjacency matrix is a straightforward representation of a graph. However, this repre-
sentation only captures neighboring relationships between vertices and cannot describe
higher-order structure information, such as paths. Furthermore, for large-scale graphs,

Entropy 2023, 25, 567. https://doi.org/10.3390/e25040567 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4938-4407
https://orcid.org/0000-0002-6114-0766
https://doi.org/10.3390/e25040567
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040567?type=check_update&version=2

Entropy 2023, 25, 567 2 of 22

adjacency matrices have high dimensionality and data sparsity. Therefore, traditional deep
learning techniques designed for regularly structured data cannot be applied to graph-
structured data. Transformation of graph-structured data into general data that traditional
methods can easily process is a challenging task in deep learning.

Graph representation learning is effective for obtaining latent low-dimensional rep-
resentations that facilitate subsequent graph analysis tasks by learning graph structure
and node attributes, while ultimately preserving the properties required for subsequent
tasks [1,2]. In recent years, graph representation learning has been widely studied, and
several graph representation learning methods have been proposed. For instance, the
matrix factorization-based methods obtain low-dimensional representations by factorizing
the adjacency matrix using suitable methods such as GraRep [3], HOPE [4], and M-NMF [5].
Random walk-based methods, such as DeepWalk [6], Node2vec [7], and Metapath2vec [8],
learn local neighborhood connectivity and global structure information by traversing a
graph to obtain its low-dimensional representation. Proximity-based methods, such as
SDNE [9] and LINE [10], apply deep learning methods that use proximity loss functions
to preserve the node proximity in a graph, such that nodes that are close together in the
input graph are likewise in the embedding space. In the real world, nodes in most graphs
come with rich attribute information. However, while most proposed methods design
algorithms based solely on the topological structure of graphs, they often overlook valuable
attribute information associated with nodes. In reality, node attributes and graph structure
are two distinct, yet complementary sets of information for successful graph analysis tasks
in attribute networks. Therefore, for effective graph analysis in attribute networks, both the
topological structure of networks and the attribute information associated with nodes must
be considered.

In recent years, graph convolutional networks (GCNs) have demonstrated high per-
formance in graph representation learning due to their capacity to aggregate and transform
information from graph structure and node attributes within a node’s neighbors into node
representations [11–15]. GCN is a semi-supervised graph representation learning method
that requires a wide range of labeled nodes for representation learning. Since labeling nodes
is usually expensive, and the graph representation learning is considered a generic task
independent of the downstream tasks, graph representation learning is typically performed
in an unsupervised learning manner. Graph AutoEncoders (GAEs) [12], which are unsu-
pervised learning models composed of the concept of autoencoders with GCN and graph
representation learning, have been researched lately. GAEs consist of two parts: an encoder
and a decoder. The encoder uses GCNs to embed the nodes into a low-dimensional space
by learning from the adjacency matrix and node attribute matrix of an input graph. The
decoder reconstructs the adjacency matrix of the graph by a simple inner product. During
network training, the network preserves the topological structure of the graph by the de-
coder to perform unsupervised learning. Many GAE variants have been proposed to learn
node representation in an unsupervised way. Due to their high node representation ability
under unsupervised learning, they have been utilized in various graph analysis tasks, such
as node clustering [16,17], link prediction [18,19], and graph anomaly detection [20,21].

Although many GAE-based methods have been proposed, unsupervised learning of
these models is highly dependent on the reconstruction of the graph structure and ignores
the attribute information of nodes. Therefore, these models cannot determine the amount of
information on the latent node attributes contained in the node embedding. Consequently,
these models do not ensure that the node vector representation contains reliable node
attribute information. Additionally, most GAE models use the GCN as their encoders, and
a fixed 0/1 adjacency matrix and a node attribute matrix as input. During model training,
when aggregating node attributes, each neighbor node is aggregated using the same
weight. Thus, the aggregation process of GCN smooths the node attributes, preserving the
structural proximity, while destroying the node attribute similarity of the original attribute
space [22]. The node attribute similarity plays a crucial role in many graph analysis tasks.
For instance, in attribute networks, node clustering consists of partitioning the nodes based

Entropy 2023, 25, 567 3 of 22

on attribute and structure similarities, and link prediction consists of predicting whether an
edge exists between every two nodes based on these similarities. For graph representation
learning, the node information is mapped from an original high-dimensional space to a
latent low-dimensional space. Furthermore, regardless of the different node representations
between the original space and the latent space, it is expected that the similarity between
the nodes in the two spaces is preserved. This is particularly desirable for downstream
tasks, such as node clustering and link prediction.

In this paper, we aim to propose a novel graph autoencoder model that can better
maintain the attribute similarity between nodes. Two main challenges were faced when
designing this model. Firstly, the designed GAE framework should effectively fuse topolog-
ical structure and node attributes to alleviate the destruction of node attribute similarity by
neighbor smoothing during the aggregation process of GCN. To address this, a fusion strat-
egy that naturally incorporates the original graph structure and the node attribute neighbor
graph based on node attribute similarities as the input of the graph convolutional encoder
was proposed in the designed GAE framework. In the graph convolutional encoder, the
node aggregation operation can be decomposed into two parts: the mean aggregation from
node neighbors in the original graph and the linear aggregation by similarity coefficients
from node attribute neighbors. The aggregation process alleviates the destruction of node
attribute similarity and strengthens its maintenance. Secondly, the node attribute similarity
should be preserved in an unsupervised learning manner. Thus, when developing the
structure reconstruction decoder, a similarity reconstruction decoder that directly computes
the similarity between node representation vectors and steers the unsupervised learning
of the model by the node similarity difference between the original attribute space and in
embedding space is added. As a result, the model ensures that the node representations
preserve both the structure and attribute similarities between nodes.

The main contributions of this paper can be summarized as follows:
(1) A novel GAE framework integrating node attribute similarity and structural in-

formation is proposed. This new framework can effectively reconstruct node attribute
similarity, ensuring that the obtained node representations maintain the same node attribute
similarity between nodes as the original attribute space.

(2) An effective fusion strategy for node attribute similarity and structural information
is proposed. An attribute neighbor graph is constructed by using the attribute similar-
ity between nodes as edge weights, and then integrated with the original graph as the
structural input of the GCN encoder. In this way, nodes can aggregate their neighbor
attribute information in two distinct ways in the GCN encoder to effectively fuse node
attribute similarity and structural information while avoiding over-smoothing of GCN to
some extent.

(3) Extensive experiments on link prediction and node clustering are conducted on
three real-world datasets to evaluate the effectiveness of the proposed model. The exper-
imental results show that the proposed model outperforms state-of-the-art methods in
two graph analysis tasks.

2. Preliminary and Related Work

In this section, the notations and definitions used in this paper are introduced, and
the attributed graph representation learning and GAE models in attribute graphs are
then reviewed.

2.1. Notations and Definitions

Definition 1 (Graph). A graph is defined as G = (V, E), where V = {v1, v2, · · · , vn} denotes a
set of nodes with |V| = n and E ⊆ V ×V representing a set of edges connecting node pairs.

The graphs are usually represented by an adjacency matrix A =
[
aij
]
∈ Rn×n. For

an unweighted graph, if there exists an edge eij between nodes vi and vj, then aij = 1.

Entropy 2023, 25, 567 4 of 22

Otherwise, aij = 0. For a weighted graph, aij is a non-negative weight associated with the
edge eij. If vi and vj are not directly connected, then aij = 0.

Definition 2 (Attributed graph). An attributed graph is defined as a graph G = (V, E, X),
where V is a set of nodes with |V| = n and E ⊆ V × V representing a set of edges in graph
G. X = [X1, X2, · · · , Xn] ∈ Rn×c is the node attribute matrix, where Xi ∈ Rn represents the
attributes associated with node vi, c is the dimension of the node attributes, and xij is the value of
the i-th node on the j-th attribute.

Definition 3 (Graph representation learning). Given an attribute graph G = (V, E, X), the task
of graph representation learning is to learn a mapping function f : vi → zi ∈ Rd , where zi is
the latent representation of node vi in a d dimensional latent vector space. The transformation f
should preserve the original graph information so that two similar nodes in the original graph are
represented similarly in the latent vector space.

Graph representation learning, also known as network embedding, aims to map graph
data into a latent space making it more convenient to cope with subsequent tasks. There-
fore, the node representations should satisfy the following conditions: (1) To improve the
computational efficiency of subsequent tasks, the dimension of the node representation
vectors should be much smaller than the number of nodes in the network, i.e., d�|V|.
(2) The node representation vectors should have continuous real values to facilitate subse-
quent tasks using classical methods. (3) The node representation vectors should preserve
the node similarity as reflected by node attributes and graph structure in the original graph.
In graph representation learning, two similar nodes in the original graph should preserve
the similarity in the embedded representation space.

For an attribute graph, the node similarity is generally measured using structural
proximity and attribute similarity.

Definition 4 (Structure proximity). The structure proximity is the similarity of graph structure
information between nodes, which plays an important role in preserving the graph structure
information in graph representation learning. Three different measures of structure proximity exist.
The first-order proximity describes the local pairwise proximity between nodes linked by edges. For
two nodes vi and vj, if they have an edge directly connecting them, then the first-order proximity
between them is equal to the edge weight; otherwise, it is null. The first-order proximity matrix
is the adjacency matrix. The second-order and high-order proximities describe the similarities of
second-order and higher-order neighbors between nodes, respectively. For two nodes vi and vj, the
second-order proximity is determined by the number of common neighbors of the two nodes, and the
high-order proximity is measured by calculating the k-step transition probability from vi to vj.

In graph representation learning, it is necessary to preserve the first-order proximity.
This is because if two nodes are connected by an edge with greater weight, they are more
similar in the real world and should be closer to each other in the embedding space.
For example, self-supervised learning of GAE is performed by preserving the first-order
proximity of graphs [12]. In this paper, only the first-order proximity of nodes is considered.

Definition 5 (Attribute similarity). The attribute similarity describes the similarity of attribute
information between nodes. Given an attribute graph G = (V, E, X), the attribute similarity
between nodes vi and vj is computed by the attribute vector Xi of node vi and the attribute vector
Xj of node vj.

2.2. Attributed Graph Representation Learning

The early methods for graph representation learning focus on the graph’s structural
information. These methods only consider the graph structural information to learn node
representation while ignoring the node attribute information, and thus their performance

Entropy 2023, 25, 567 5 of 22

is not satisfactory [1–10]. In attribute graphs, node attributes can provide an effective
complement to graph structural information. Nevertheless, node attributes and graph
structure are two distinct types of information, making effective use of node attributes
for graph representation learning a challenging task. In graph representation learning,
there are three ways to integrate node attributes with graph structure information into the
node representation. The straightforward approach involves first learning representation
from node attributes and graph structure information separately, and then concatenating
or fusing the two individual representations. However, since both types of information
are relevant, the learning process must take into account their interaction. For instance,
DANE [23] uses two autoencoders to learn the structural and node attribute information,
and then concatenates the two representations together as a node representation. By intro-
ducing the corresponding loss functions, the node representation is guaranteed to possess
consistent and complementary information from the graph structure and node attributes.
RolEANE [24] uses two autoencoders to learn the structural and node attribute information
separately, and subsequently applies a neighbor-modified skip-gram model integrating
the two kinds of information. To effectively capture the important potential information
about complex coupling and interaction in the network, the model adopts two structural
role proximity enhancement strategies that improve the structural role of proximity. The
second way consists of fusing the node attribute and graph structure information before
performing representation learning. Although the two types of information are learned
together, effectively fusing them can be challenging. For instance, ASNE [25] first inte-
grates structural and attribute information, and then uses a neural network to learn its
representation. NetVAE [26] uses a shared encoder to learn node representation from graph
structure, as well as node attribute information, and a dual decoder to separately recon-
struct the two types of information. The third way consists of integrating the two types of
information—graph structure and node attributes—using one to constrain the operation
of the other. TADW [27] is proposed as a matrix factorization framework incorporating
DeepWalk and contextual text features. It uses the textual feature matrix of nodes to restrict
the matrix decomposition process, which combines the structural information with textual
features to compensate for the lack of structural information in the network. However, it is
a linear model and is insufficient for a sophisticated attribute network. Graph neural net-
works (GNNs) have recently become an important tool for graph representation learning.
GNNs [11,28–31] mostly follow a recursive neighborhood scheme, using graph structural
information to constrain each node to aggregate the attribute vectors of its neighborhood,
and thus update its feature vector. After k aggregation iterations, a node representation
is obtained, which fuses the structural and node attribute information within the node’s
k-hop neighborhood.

2.3. GAE Models in Attribute Graphs

Preserving graph topological information, which is the fundamental information of
graph-structured data, is crucial for graph representation learning. In addition to the struc-
tural information, nodes in attribute networks also have rich attribute content attached to
them, which significantly affects the formation of networks and is an effective complement
to graph structural information. Thus, it is expected to preserve the corresponding node
attribute information. However, most GAE models only reconstruct the graph structure in
unsupervised learning, which means that they do not ensure reliable node attribute infor-
mation contained in the node representation. To overcome this limitation, Park et al. [32]
proposed the symmetric graph convolutional autoencoder which can use both the graph
structure and the node attribute information throughout the entire encoding–decoding pro-
cess. However, its decoder reconstructs the node attribute matrix instead of the adjacency
matrix of the graph, making it impractical. Recently, some methods have used two decoders
to separately reconstruct the graph structure and node attributes from low-dimensional
node representations, to ensure that the node representation can preserve the structural
information of the input graph and the attribute information of the nodes. Zhou et al. [33]

Entropy 2023, 25, 567 6 of 22

and Sun et al. [34] proposed two deep learning frameworks to obtain a latent embedding
by integrating both the structure information and attribute information in a GAE with dual
decoders, where one inner product decoder is used to reconstruct the graph adjacency
matrix, and the other graph convolutional decoder is used to reconstruct the node attribute
matrix. Similarly, Wang et al. [35] designed a novel GAE with two decoders, called GASN,
where the encoder is a low-pass graph filter, one decoder uses a high-pass graph filter to
reconstruct node attributes, and the other is an inner product decoder. Although these
GAE models adopt two decoders to respectively reconstruct the structure and attribute
features of nodes, the effectiveness of learned node representations is reduced because
they use graph convolutional neural networks as their encoders, which to some extent
destroy the attribute similarity between nodes in the original space during the aggrega-
tion process [22]. The main differences between these models above and our proposed
model are as follows: (1) Our model reconstructs the structure and attribute similarity
between nodes with two decoders, whereas the models above reconstruct the structure
and node attributes. (2) Our model uses two different aggregation methods in the GCN
encoder aggregation process to aggregate neighborhood attributes in the original structure
graph and attribute similarity neighborhood graph, respectively, effectively eliminating the
destruction of attribute similarity between nodes in the original space by GCN, whereas
the models above use the common GCN mean aggregation method in the GCN encoder
aggregation process, which destroys to some extent attribute similarity between nodes
in the original space. Currently, some GAE methods are studied from multi-scale and
multi-view perspectives. Guo et al. [19] proposed a novel multi-scale variation GAE to
improve the robustness of existing GAE models. The model learns the adjacency matrix
and attribute matrix with different scales by the encoder, and reconstructs the two matrices
by the decoder to preserve the original structural and attribute information. MVGAE [36]
is a multi-view GAE that can aggregate latent information from local topology, global
topology, and feature similarity. It uses an attention mechanism to fuse the three kinds of
information into node representation and simultaneously reconstruct the graph structure
and node features. Similarly, A2AE [37] first embeds the attribute multi-view graph into
latent representations by multi-encoders, then fuses the view-specific latent representations
into node representation using the attention mechanism, and finally reconstructs the graph
structure and attributes using multi-decoders.

3. Graph Autoencoder with Preserving Node Attribute Similarity

In this section, the graph autoencoder with preserving node attribute similarity
(GAEPNAS) is presented, including the basic model framework, fusion module with
graph structure and node attribute similarity, encoder module, decoder module, and
training algorithm.

3.1. Overall Model Framework

Given an attribute graph G = (V, E, X), the topology structure of graph G is des-
ignated by an adjacency matrix A and X denotes an attribute matrix of the nodes. The
objective is to embed graph structures and node attributes into a low-dimensional repre-
sentation Z using GAEPNAS, where Z preserves the attribute similarity of the nodes in X
and the graph structural information. The overall framework of the proposed GAEPNAS
model is shown in Figure 1.

The model is mainly composed of three modules: a fusion module, an encoder module,
and a decoder module. First, in the fusion module, a k-nearest-neighbor (KNN) graph is
constructed based on the similarities between nodes. The KNN graph and the original
input graph are then integrated into a synthetic graph to combine the graph structure infor-
mation and node attribute similarity information in a unified way. Second, in the encoder
module, the latent node representation is obtained through l-layers GCN to learn from the
synthetic graph. Third, in the decoder module, dual decoders are used to reconstruct the
graph adjacency matrix and the node attribute similarity matrix. Finally, the loss function

Entropy 2023, 25, 567 7 of 22

containing a structural loss and a loss of node attribute similarity is calculated to update the
parameters in reverse and thus ensure that the node representation preserves the original
structural and node attribute similarity information.

Entropy 2023, 25, x FOR PEER REVIEW 7 of 22

Given an attribute graph 𝐺 = (𝑉, 𝐸, 𝑋), the topology structure of graph 𝐺 is desig-
nated by an adjacency matrix 𝐴 and 𝑋 denotes an attribute matrix of the nodes. The ob-
jective is to embed graph structures and node attributes into a low-dimensional represen-
tation 𝑍 using GAEPNAS, where 𝑍 preserves the attribute similarity of the nodes in 𝑋
and the graph structural information. The overall framework of the proposed GAEPNAS
model is shown in Figure 1.

Figure 1. Overall Framework of the proposed GAEPNAS model.

The model is mainly composed of three modules: a fusion module, an encoder mod-
ule, and a decoder module. First, in the fusion module, a 𝑘-nearest-neighbor (KNN) graph
is constructed based on the similarities between nodes. The KNN graph and the original
input graph are then integrated into a synthetic graph to combine the graph structure
information and node attribute similarity information in a unified way. Second, in the
encoder module, the latent node representation is obtained through 𝑙-layers GCN to learn
from the synthetic graph. Third, in the decoder module, dual decoders are used to recon-
struct the graph adjacency matrix and the node attribute similarity matrix. Finally, the loss
function containing a structural loss and a loss of node attribute similarity is calculated to
update the parameters in reverse and thus ensure that the node representation preserves
the original structural and node attribute similarity information.

3.2. Fusion Module
In attribute networks, similarities exist between the nodes in terms of both the net-

work structure space and the node attribute space. However, it is important to note that
just because two nodes have a similar network structure does not necessarily mean they
have similar node attributes and vice versa. Thus, in graph representation learning, it is
crucial to consider the dependency of both spaces and align them cohesively. To learn the
node attribute similarity information using GAE, the attribute similarity relationship be-
tween nodes must be converted into an attribute neighbor space. Constructing KNN
graphs is an effective way to achieve this conversion. Therefore, a KNN graph is first con-
structed based on the similarities between nodes. The KNN graph and the input graph
are then integrated into a synthetic graph so that the attribute similarity information can
be fused with the structural information. The process is described below.

(1) Calculating the attribute similarity matrix
The attribute similarity matrix 𝑆 = [𝑆] ∈ 𝑅 × , where 𝑆 represents the attribute

similarity between nodes 𝑣 and 𝑣 , is calculated by a similarity function 𝑆𝑖𝑚(𝑋 , 𝑋) on
attributes 𝑋 and 𝑋 as 𝑆 = 𝑆𝑖𝑚 𝑋 , 𝑋 (1)

This similarity function can be a cosine similarity function 𝐶𝑜𝑠 𝑋 , 𝑋 = or

other similarity functions such as Jaccard coefficient, Euclidean distance, and Pearson cor-
relation, depending on the characteristics of the node attributes.

Figure 1. Overall Framework of the proposed GAEPNAS model.

3.2. Fusion Module

In attribute networks, similarities exist between the nodes in terms of both the network
structure space and the node attribute space. However, it is important to note that just
because two nodes have a similar network structure does not necessarily mean they have
similar node attributes and vice versa. Thus, in graph representation learning, it is crucial
to consider the dependency of both spaces and align them cohesively. To learn the node
attribute similarity information using GAE, the attribute similarity relationship between
nodes must be converted into an attribute neighbor space. Constructing KNN graphs is an
effective way to achieve this conversion. Therefore, a KNN graph is first constructed based
on the similarities between nodes. The KNN graph and the input graph are then integrated
into a synthetic graph so that the attribute similarity information can be fused with the
structural information. The process is described below.

(1) Calculating the attribute similarity matrix
The attribute similarity matrix S =

[
Sij
]
∈ Rn×n where Sij represents the attribute

similarity between nodes vi and vj, is calculated by a similarity function Sim
(
Xi, Xj

)
on

attributes Xi and Xj as
Sij = Sim

(
Xi, Xj

)
(1)

This similarity function can be a cosine similarity function Cos
(
Xi, Xj

)
=

XiXT
j

‖Xi‖‖Xj‖
or other similarity functions such as Jaccard coefficient, Euclidean distance, and Pearson
correlation, depending on the characteristics of the node attributes.

(2) Constructing a KNN graph
In the attribute similarity matrix S, if the value of Sij is closer to 1, Xi and Xj are more

similar, which indicates that it is more likely that the two nodes vi and vj are linked. Thus,
given a parameter k, a KNN graph GK, based on the similarity between each node pair
in the similarity matrix S, is generated. The node set of the graph GK is similar to that of
the input graph. If Xj is one of the top-k similar neighbors of Xi, or the latter is one of the
top-k similar neighbors of Xj, then an edge between vi and vj in the KNN graph exists.
Otherwise, there is no edge between vi and vj. The weight of the edge connecting nodes vi
and vj is calculated as

AKij =

{
Sij, Xj ∈ Nk(Xi)

∨
Xi ∈ Nk

(
Xj
)

0, Xj /∈ Nk(Xi)
∧

Xi /∈ Nk
(
Xj
) (2)

where Nk(Xi) denotes the node set of the top-k similar neighbors of Xi.
For Xj /∈ Nk(Xi)

∧
Xi /∈ Nk

(
Xj
)
, it is considered that Xi and Xj are dissimilar, and

thus AKij = 0. If Xj ∈ Nk(Xi)
∨

Xi ∈ Nk
(
Xj
)
, Xi and Xj are more similar, and the weight

Entropy 2023, 25, 567 8 of 22

AKij of the edge linking the two nodes vi and vj is greater. Note that if AKii = 1, node vi has
a self-loop, which is not currently considered and will be considered again in the encoder
module, and therefore it can be assumed that AKii = 0. Therefore, the adjacency matrix AK
is given by

AK =

0 AK12 · · · AK1n

AK21 0 · · · AK2n
...

...
. . .

...
AKn1 AKn2 · · · 0

 (3)

(3) Integrating KNN graph with original input graph
For attributed networks, the structural and node attribute information are two different

types of information that are independently and mutually complementary. Effectively
integrating them is a challenging task. In this paper, the KNN graph GK and the original
input graph G are integrated into a synthetic graph GF with edge weights. The adjacency
matrix AF of the graph GF is calculated as

AF = βA + (1− β)AK (4)

where β ∈ [0, 1] is a parameter that balances the effect of the input graph and the
KNN graph.

Analyzing matrix AF using Equation (4) shows that matrix AF =
[

AFij

]
∈ Rn×n is a

symmetric matrix and AFij ∈ [0, 1] i, j ∈ {1, 2, . . . , n} The pseudocode of the whole fusion
module is summarized in Algorithm 1.

Algorithm 1. Fusiongraph

Input: Adjacency matrix A, Attribute matrix X, Number of nearest neighbor k, and β.

Output: Similarity matrix S =
[
Sij

]
and Adjacency matrix AF =

[
AFij

]
of graph GF.

1. for i = 1 : n //n represents the number of nodes.
2. for j = i : n
3. Sij = Sji = Sim

(
Xi, Xj

)
;

4. end
5. end
6. Let AK =

[
AKij

]
= [0]n×n; //AK denotes the adjacency matrix of the KNN graph.

7. for i = 1 : n
8. for j = 1 : n
9. if Xj ∈ Nk(Xi) then AKij = AKji = Sij;
10. end
11. AKii = 0;
12. end
13. AF = βA + (1− β)AK ;
14. return S and AF;

3.3. Encoder Module

The encoder is the core module of the GAEPNAS, which obtains a latent node repre-
sentation by learning the attribute and structure information of the synthetic graph. GCN
is an excellent graph neural network, which generalizes the convolutional neural network
(CNN) in graph space and uses the first-order approximation of Chebyshev polynomials
to simplify the computation [11]. Because of the powerful graph representation learning
capability of GCN, GAE usually uses GCN as its encoder. In the encoder module, the graph
encoder consists of l GCN convolutional layers. The input of the encoder is the adjacency
matrix AF and the attribute matrix X, while the output is the node representation matrix

Z. In is the n× n identity matrix.
∼
A = In + AF (by adding a self-loop for each node, it is

ensured that it also participates in the attribute aggregation of new node embedding), and

Entropy 2023, 25, 567 9 of 22

the diagonal matrix
∼
D with

∼
Dii = ∑n

j=1

∼
Aij, are first calculated. The l-layer GCN encoder

model learns the node representation with the following propagation rule:

H(i+1) = ReLU

(
∼
D
− 1

2 ∼
A
∼
D
− 1

2
H(i)W(i)

)
, i = 0, 1, . . .

Z =
∼
D
− 1

2 ∼
A
∼
D
− 1

2
H

(l−1)

W(l−1)

(5)

where W(i) is the trainable weight matrices of the i-th layer, H(0) = X, ReLU(.) = max(0, .)
is the activation function for the first l − 1 layers, and a linear activation function is used
for the last layer. The encoder embeds the topological structure and node attribute of the
input graph into representation Z.

By substituting Equation (4) and
∼
A = In + AF into Equation (5), the following

is obtained:

H(i+1) = ReLU

(
β
∼
D
− 1

2
(In + A)

∼
D
− 1

2
H(i)W(i) + (1− β)

∼
D
− 1

2
(In + AF)

∼
D
− 1

2
H(i)W(i)

)

Z = β
∼
D
− 1

2
(In + A)

∼
D
− 1

2
H(l−1)W(l−1) + (1− β)

∼
D
− 1

2
(In + AF)

∼
D
− 1

2
H(l−1)W(l−1)

(6)

Let H(i) =
{

H(i)
1 , H(i)

2 , · · · , H(i)
n

}
and Z = {Z1, Z2, · · · , Zn}NAj and NAF j are the

neighbor set for node j in graph G and GF which contains node j, respectively. Then
Equation (6) can be written in the following form:

H(i+1)
j = ReLU

∑k∈NAj

βW(i)H(i)
k√

∼
Djj
∼
Dkk

+ ∑ f∈NAF j

(1−β)Sj f W(i)H(i)
f√

∼
Djj
∼
D f f

Zj = ∑k∈NAj

βW(l−1)H(l−1)
k√

∼
Djj
∼
Dkk

+ ∑ f∈NAF j

(1−β)Sj f W(l−1)H(l−1)
f√

∼
Djj
∼
D f f

(7)

It can be deduced from Equation (7) that the graph convolutional operation of the
encoder can be decomposed into two convolutional suboperations: one on the original
input graph and one on the KNN graph, with parameter weight matrices W(i) shared in the
i-th layer. For the convolutional operation on the original graph, the message propagation
occurs in terms of the neighbors of nodes in graph structure space, while its aggregation is
mean due to the adjacency matrix A being a 0/1 matrix. In contrast, for the convolutional
operation on the KNN graph, the propagation of node representation is in terms of the
attribute neighbors of nodes in attribute space, and it aggregates the representation of the
top-k nearest neighbors based on the different attribute similarities between the nodes.
This can be interpreted as a similarity attention coefficient. Therefore, the encoder can
propagate and aggregate node characteristics in both the structure space and attribute
space, using sharing parameter matrices. This enables the node representation to effectively
fuse information from both spaces, to alleviate the destruction of node attribute similarity,
and to avoid over-smoothing of GCN to some extent.

3.4. Decoder Module

The decoder module consists of two decoders: a structure decoder and a similarity
decoder. The structure decoder is used to reconstruct the adjacency matrix A′ by computing
the inner product of the node representation as

A′ = sigmoid
(
ZZT) (8)

where sigmoid(x) = 1
1+e−x denotes the activation function.

Entropy 2023, 25, 567 10 of 22

The similarity decoder is used to reconstruct the attribute similarity matrix S′ =
[
S′ij
]
∈ Rn×n

between nodes in the embedded space by computing the node representation similarity
between them:

S′ij = Sim
(
Zi, Zj

)
(9)

where Sim(., .) is a similarity function, and Zi and Zj are node representation vectors of
nodes vi and vj, respectively.

The two decoders are designed to perform unsupervised learning of the GAEPNAS
model by comparing the adjacency matrix and attribute similarity matrix of the embedded
space with those of the original space, so that the whole encoding–decoding process can
make full use of the graph structure and node attribute information to obtain a better node
representation that preserves both the topological structure and node attribute similarity.
Therefore, with the two decoders, the GAEPNAS model can implement unsupervised
learning by comparing the adjacency matrix and attribute similarity matrix of the embedded
space with those of the original space, so that obtaining a noderepresentation can effectively
preserve both the topological structure and node attribute similarity.

3.5. Loss Function

In the GAEPNAS model, the primary focus is on the error that arises between the
reconstructed adjacency matrix and that of the original graph. Additionally, the error
between the reconstructed similarity matrix and the node attribute matrix of the original
graph is also taken into account. Thus, a structure loss and a similarity loss are defined
to measure the two errors. The structure decoder reconstructs the adjacency matrix A′ by
computing the inner product. As the input adjacency matrix A is a 0/1 matrix, the structure
loss Lstr is defined using a cross-entropy of the following form:

Lstr = − 1
n2 ∑n

i=1 ∑n
j=1

(
AijlogA′ij +

(
1− Aij

)
log
(

1− A′ij
))

(10)

The similarity decoder reconstructs the attribute similarity matrix. The similarity loss
is defined as

Lsim = 1
n2 ‖S− S′‖2

F
= 1

n2 ∑n
i=1 ∑n

j=1

(
Sij − S′ij

)2
(11)

where ‖.‖F is the Frobenius norm.
Therefore, the overall loss function is expressed as

L = λLstr + (1− λ)Lsim (12)

where λ ∈ [0, 1] is a parameter used to balance the structure loss and the similarity loss.

3.6. Training Algorithm

The whole GAEPNAS model is optimized by minimizing the loss function L. The
training algorithm for GAEPNAS is presented in Algorithm 2. Given an attribute network
G = (V, E, X), Algorithm 1 is initially called to convert the neighborhood relationship of
the nodes in the attribute space into a KNN graph based on their attribute similarity, and
then fuse it with the topology graph of the original network so that the fused graph has
both the topology of the original network and the neighborhood relationship of the nodes’
attributes (line 1). The self-loops are then added to the fusion graph, the degree matrix is
computed, and the parameters of the GAEPNAS model are initialized in preparation for
the model training (lines 2–4). Subsequently, t-rounds are started to train the model (lines
5–14). In the forward propagation process (lines 6–12), the node representation matrix Z is
obtained by l-layers GCN of the encoder (lines 6–9), the adjacency matrix and similarity
matrix are reconstructed, and the loss function is calculated (lines 10–12). The model is
updated with its stochastic gradient by minimizing the loss function (line 13). After t
rounds of the model training, the graph embedding Z is derived and a trained model is
ultimately obtained.

Entropy 2023, 25, 567 11 of 22

The time complexity of the training algorithm is analyzed in the sequel. It can be seen
that the time complexity of Algorithm 1 to compute matrices S and AF is O

(
cn2), where n

is the number of nodes and c is the dimension of the node attributes. In lines 2–4, the time
complexity of some simple addition and initialization operations is O(1). In lines 5–14, the
reconstruction of the node attribute similarity matrix is added to the general GAE model
to train the proposed GAEPNAS. Thus, the main calculation amount is attributed to the
training of the model and the computing of the similarity matrix S′. The time complexity
of the general GAE model is O(tmcd1· · · dl) and that of the computation of matrix S′ is
O
(

dln
2
)

, where t denotes the number of iterations, m denotes the number of edges, and
di(i = 1, 2, · · · , l) denotes the dimension of the i-layer of the encoder. In summary, the time
complexity of the model training is O

(
tmcd1· · · dl + cn2 + dln

2
)

.

Algorithm 2. Training GAEPNAS

Input: Adjacency matrix A, Attribute matrix X, Number of nearest neighbors k, Number of
iterations t, Number of hidden layers l, and Parameters β and λ.

Output: Node Representation matrix Z and model parameter W =
{

W(0), W(1), . . . , W(l−1)
}

.

1. Compute similarity matrix S and adjacency matrix AF of graph GF by calling Algorithm 1;
2. Compute

∼
A = In + AF and diagonal matrix

∼
D with

∼
Dii = ∑n

j=1

∼
Aij;

3. Initialize model parameter W =
{

W(0), W(1), . . . , W(l−1)
}

;

4. H(0) = X;
5. for i = 1 : t
6. for j = 0 : (l − 1)

7. H(j+1) = σ

∼D− 1
2 ∼

A
∼
D
− 1

2
H

(j)

W(j)

;

8. end
9. Z = H(l);
10. Reconstruct adjacency matrix A′ = sigmoid

(
ZZT);

11. Reconstruct similarity matrix S′ by specific similarity function;
12. Compute L = Lstr + λLsim according to Equations (10) and (11);
13. Compute partial derivative ∂L

∂W(i) with back-propagation algorithm to update model

parameter W =
{

W(0), W(1), . . . , W(l−1)
}

;

14. end
15. return Z and W;

4. Experiments

In this section, experiments are conducted on benchmark datasets, and the effec-
tiveness of the proposed GAEPNAS is evaluated with relevant baselines on two classic
downstream tasks, namely link prediction and node clustering. The experimental environ-
ment is as follows:

Intel(R) Core(TM) i7-12700 CPU @2.10 GHz 4.90 GHz, 128 G of RAM, NVIDIA Ge-
Force RTX 3090 GPU; Ubuntu22.04.1LTS, Python 3.6.13, Pytorch 1.10.2.

4.1. Datasets

To evaluate the effectiveness of the proposed model, three public real-world citation
network datasets (Cora, CiteSeer, and PubMed), which are the most commonly used
graph datasets to evaluate the GAE and VGAE models, are considered. In these citation
networks, the nodes represent scientific papers and the links represent citation relationships
between papers. Cora’s papers are from machine learning fields, and they are classified into
seven classes; CiteSeer contains papers from six categories in the computer science field;
and PubMed contains scientific papers related to diabetes and its papers can be classified
into three classes. The detailed information is presented in Table 1.

Entropy 2023, 25, 567 12 of 22

Table 1. Datasets information.

Dataset # Nodes # Edges # Attributes Attribute Type # Classes

Cora 2708 5429 1433 Binary 7
CiteSeer 3327 4732 3703 Binary 6
PubMed 19,717 44,338 500 Continuous 3

In the Cora and Citseer datasets, the attribute vector of each paper takes the form
of 0/1-valued word vector indicating the absence/presence of the corresponding word
from the dictionary. When a word does not present in either paper, it does not impact
the similarity between the two papers. Thus, in the original attribute space, the attribute
similarity between attribute vectors Xi and Xj can be expressed as

Sij = Sim
(
Xi, Xj

)
=

∑c
h=1|Xih∧Xjh|

∑c
h=1(|Xih∧Xjh|+|Xih

⊕
Xjh|) (13)

where ∧ and
⊕

respectively denote the “AND” and “XOR” operations and c is the dimen-
sion of the node attributes.

In the PubMed dataset, the attribute vector of each paper contains term frequency–
inverse document frequency (TF–IDF) scores for 500 words. The attribute similarity be-
tween nodes is calculated by the cosine similarity in the original attribute space because
the attribute vectors have continuous real values.

In the embedding space of nodes, all three use cosine similarity to calculate the
attribute similarity between nodes because their node representations have continuous
real values.

4.2. Baseline Methods

Some classical baseline methods are considered for comparison with the proposed
GAEPNAS. In most related studies, these methods have been used for comparison on link
prediction and node clustering tasks. These methods are summarized as follows:

Spectral clustering [38]: an effective graph representation method to perform dimen-
sionality reduction by the eigenvalues.

DeepWalk [6]: a classical graph representation method that trains the skip-gram
model for sequences generated by random walk on graphs.

GAE and VGAE [12]: popular unsupervised graph representation methods that
combine GCN with the (variational) autoencoder to graph representation learning.

Graphite-AE and Graphite-VAE [39]: variants of the GAE and VGAE methods that
reconstruct the original graph by a multilayer iterative procedure.

ARGA and ARVGA [17]: variants of the GAE and VGAE methods that use adversarial
models to learn node representation.

Linear GAE and Linear VGAE [40]: simplified versions of the GAE and VGAE meth-
ods with one-hop linear models.

GASN [35]: a variant of the GAE method where the graph structure and node attribute
are reconstructed using two decoders.

AT-GAE and AT-VGAE [41]: generalization methods of GAE and VGAE using adver-
sarial training.

4.3. Link Prediction

Link prediction is one of the most important tasks in graph analysis. Its objective
is to find missing links between nodes or predict possible links between nodes in the
future. The performance of GAEPNAS is evaluated with the link prediction task. In the
experiments, the adjacency matrix reconstructed by the decoder is directly used as the
predicted adjacency matrix.

Entropy 2023, 25, 567 13 of 22

4.3.1. Metrics of Link Prediction

The accuracy of various link prediction methods is determined using two metrics: the
area under a receiver operating characteristic curve (AUC) score and the average precision
(AP) score. The AUC is defined as the area enclosed by the coordinate axis under the
receiver operating characteristic (ROC). It is used to quantify the accuracy of link prediction.
In practice, it can be seen as the probability that the link prediction score of a missing link
randomly chosen is higher than a nonexistent link [42]. For n independent comparisons, if
missing links having a higher score exist n′ times and those having the same score exist n′′
times, then the AUC is calculated as:

AUC = n′+0.5n′′
n (14)

Because the ROC curve is located above the line y = x and its area is not greater than
1, AUC ∈ [0.5, 1]. For a link prediction algorithm, the closer the AUC to 1, the higher
its accuracy.

The AP quantifies the precision of link prediction, which is defined as the area under
the precision–recall curve. In practice, it is calculated by the weighted mean of precisions
achieved at each threshold, while the increase in recall from the previous threshold is used
as the weight [43]:

AP = ∑
k
(Rk − Rk−1)Pk (15)

where Rk and Pk are the recall and precision at the k-th threshold, which are calculated as
in [43]. For a link prediction algorithm, the higher the AP value, the higher its precision.

4.3.2. Implementation

For each dataset, all the edges are randomly split into a training set (85%), a validation
set (5%), and a test set (10%). In addition, the same number of non-edges is randomly
sampled as negative samples added to both the validation set and the test set. Because the
Cora and CiteSeer are relatively small datasets, the GAEPNAS was trained for 200 epochs
and updated using the Adam algorithm with a learning rate of 0.001. For PubMed, the
model is trained for 500 epochs and optimized using the Adam algorithm with a learning
rate of 0.01. The parameter settings of the GAEPNAS model are shown in Table 2. Because
the characteristics of each dataset (e.g., the average degree of nodes, the dimensionality and
distribution of attributes, etc.) are different, the values k, β and λ in Table 2 are also taken
differently. All parameters of the baseline methods are set according to their original papers.
Each experiment is randomly run 10 times, and the averaged AUC and AP are determined.

Table 2. Experimental settings for training the GAEPNAS model in the link prediction task.

Dataset Epochs Learning Rate # Neurons k β λ

Cora 200 0.001 1433-512-16 45 0.2 0.6
CiteSeer 200 0.001 3703-128-32 35 0.1 0.4
PubMed 500 0.01 500-256-16 45 0.8 0.4

4.3.3. Experimental Results

The experimental results of link prediction are shown in Table 3, where the best
results are marked in bold. Note that the inputs of Spectral and DeepWalk include only
graph structure, while the inputs of the other methods include graph structure and node
attributes. The GASN and GAEPNAS methods aim to reconstruct the node attributes and
attribute similarity, while the other methods (GAE and VGAE, Graphite AE and VAE,
ARGA and ARVGA, Linear GAE and VGAE) only focus on reconstructing the graph
structure. It can be observed from Table 2 that the methods using graph structure and node
attribute information perform significantly better than those (Spectral and DeepWalk) only
using graph structure information. This shows that both the graph structure and node
attribute information are beneficial for the link prediction task. In addition, the GASN and

Entropy 2023, 25, 567 14 of 22

GAEPNAS methods, which reconstruct both the graph structure and the node attribute
information, perform better than the other methods that only reconstruct graph structure
information. This is because the preservation of node attribute information is crucial.
Furthermore, GAEPNAS performs better than GASN for the Cora and CiteSeer datasets,
but slightly worse than GASN for the PubMed dataset. The proposed GAEPNAS model
integrates the graph structure information with the node attribute similarity information in
the encoder by the KNN graph, and reconstructs the graph structure and node attribute
similarity in the decoder, while the GASN model uses a general encoder and reconstructs
the graph structure and node attribute in the decoder. Thus, the proposed model can more
adequately learn the node attribute similarity information to node representation in the
encoder, resulting in higher link prediction performance.

Table 3. Experimental results (%) in the link prediction task.

Method
Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

Spectral 84.6 88.5 80.5 85.0 84.2 87.8
DeepWalk 83.1 85.0 80.5 83.6 84.4 84.1

GAE 91.0 92.0 89.5 89.9 96.4 96.5
VGAE 91.4 92.6 90.8 92.0 94.4 94.7

Graphite-AE 91.0 92.8 92.6 94.1 94.5 95.7
Graphite-VAE 91.5 93.2 93.5 95.0 94.6 96.0

ARGA 92.4 93.2 91.9 93.0 96.8 97.1
ARVGA 92.4 92.6 92.4 93.0 96.5 96.8

Linear GAE 92.1 93.3 91.5 93.0 95.9 95.9
Linear VGAE 92.6 93.7 91.6 93.1 95.9 95.8

GASN 93.8 94.2 93.5 95.1 96.8 97.2
GAEPNAS 95.3 95.7 96.3 96.6 96.7 97.0

4.3.4. Parameter Analysis

The main parameters that affect the performance of GAEPNAS are β in Equation (4)
and λ in Equation (12). This paper only studies the impact of these two parameters on the
link prediction task for the Cora dataset. In Equation (4), as β increases, the ability of the
model to learn graph structural information becomes more powerful while the ability to
learn the node attribute similarity becomes weaker. In Equation (12), as λ increases, it is
expected that more information about graph structure is preserved in node representation
and less information about node attribute similarity is preserved accordingly. In the
experiments, β and λ are chosen in the range of [0.1, 0.9] with an interval of 0.1. The model
achieves the highest performance for β = 0.2 and λ = 0.6. By fixing λ to 0.6, the AUC
and AP curves of parameter β are plotted (Figure 2a). Similarly, by fixing β to 0.2, the
AUC and AP curves of parameter λ are drawn (Figure 2b). The 3D surface plots of AUC
and AP for β and λ are shown in Figure 3a,b. It can be observed from Figure 2a that as
β increases, AUC and AP first increase and then decrease. When β = 0.2, AUC and AP
reach their maximum values. This may be due to the fact that the link prediction for the
Cora dataset is mainly based on the similarity between node attributes, while relying on
less information about the graph structure. From Figure 2b, it can be observed that as λ
increases, AUC and AP first decrease, then increase, and finally decrease again. When
λ = 0.6, AUC and AP reach their maximum values. Moreover, when λ increases into the
[0.6, 0.7] interval, the two types of information preserved in the node representation reach
a relative balance, which results in a higher link prediction performance. From Figure 3
it can be observed that as β increases, AUC and AP first increase and then decrease.
Furthermore, the GAEPNAS model achieves a high performance of link prediction when
β ∈ [0.1, 0.3] and λ ∈ [0.6, 0.7]. The AUC and AP vary with parameters β and λ in the
ranges of [0.921, 0.953] and [0.936, 0.960], respectively. Thus, the GAEPNAS model can lead
to acceptable results for all the combinations of parameters β and λ.

Entropy 2023, 25, 567 15 of 22

Entropy 2023, 25, x FOR PEER REVIEW 15 of 22

𝐴𝑈𝐶 and 𝐴𝑃 curves of parameter 𝛽 are plotted (Figure 2a). Similarly, by fixing 𝛽 to 0.2,
the 𝐴𝑈𝐶 and 𝐴𝑃 curves of parameter 𝜆 are drawn (Figure 2b). The 3D surface plots of 𝐴𝑈𝐶 and 𝐴𝑃 for 𝛽 and 𝜆 are shown in Figures 3a,b. It can be observed from Figure 2a
that as 𝛽 increases, 𝐴𝑈𝐶 and 𝐴𝑃 first increase and then decrease. When 𝛽 = 0.2, 𝐴𝑈𝐶
and 𝐴𝑃 reach their maximum values. This may be due to the fact that the link prediction
for the Cora dataset is mainly based on the similarity between node attributes, while re-
lying on less information about the graph structure. From Figure 2b, it can be observed
that as 𝜆 increases, 𝐴𝑈𝐶 and 𝐴𝑃 first decrease, then increase, and finally decrease again.
When 𝜆=0.6, 𝐴𝑈𝐶 and 𝐴𝑃 reach their maximum values. Moreover, when 𝜆 increases
into the [0.6,0.7] interval, the two types of information preserved in the node representa-
tion reach a relative balance, which results in a higher link prediction performance. From
Figure 3 it can be observed that as 𝛽 increases, 𝐴𝑈𝐶 and 𝐴𝑃 first increase and then de-
crease. Furthermore, the GAEPNAS model achieves a high performance of link prediction
when 𝛽 ∈ [0.1,0.3] and 𝜆 ∈ [0.6,0.7]. The 𝐴𝑈𝐶 and 𝐴𝑃 vary with parameters 𝛽 and 𝜆
in the ranges of [0.921,0.953] and [0.936,0.960] , respectively. Thus, the GAEPNAS
model can lead to acceptable results for all the combinations of parameters 𝛽 and 𝜆.

(a) 𝐴𝑈𝐶 and 𝐴𝑃 for different 𝛽 values with 𝜆 = 0.6. (b) 𝐴𝑈𝐶 and 𝐴𝑃 for different 𝜆 values with 𝛽 = 0.2.

Figure 2. Link prediction performance of GAEPNAS for different 𝛽 and 𝜆 values on the Cora da-
taset.

(a) 𝐴𝑈𝐶 surface on parameters 𝛽 and 𝜆. (b) 𝐴𝑃 surface on parameters 𝛽 and 𝜆.

Figure 3. Impact of parameters 𝛽 and 𝜆 on the link prediction performance of GAEPNAS on the
Cora dataset.

Figure 2. Link prediction performance of GAEPNAS for different β and λ values on the Cora dataset.

Entropy 2023, 25, x FOR PEER REVIEW 15 of 22

𝐴𝑈𝐶 and 𝐴𝑃 curves of parameter 𝛽 are plotted (Figure 2a). Similarly, by fixing 𝛽 to 0.2,
the 𝐴𝑈𝐶 and 𝐴𝑃 curves of parameter 𝜆 are drawn (Figure 2b). The 3D surface plots of 𝐴𝑈𝐶 and 𝐴𝑃 for 𝛽 and 𝜆 are shown in Figures 3a,b. It can be observed from Figure 2a
that as 𝛽 increases, 𝐴𝑈𝐶 and 𝐴𝑃 first increase and then decrease. When 𝛽 = 0.2, 𝐴𝑈𝐶
and 𝐴𝑃 reach their maximum values. This may be due to the fact that the link prediction
for the Cora dataset is mainly based on the similarity between node attributes, while re-
lying on less information about the graph structure. From Figure 2b, it can be observed
that as 𝜆 increases, 𝐴𝑈𝐶 and 𝐴𝑃 first decrease, then increase, and finally decrease again.
When 𝜆=0.6, 𝐴𝑈𝐶 and 𝐴𝑃 reach their maximum values. Moreover, when 𝜆 increases
into the [0.6,0.7] interval, the two types of information preserved in the node representa-
tion reach a relative balance, which results in a higher link prediction performance. From
Figure 3 it can be observed that as 𝛽 increases, 𝐴𝑈𝐶 and 𝐴𝑃 first increase and then de-
crease. Furthermore, the GAEPNAS model achieves a high performance of link prediction
when 𝛽 ∈ [0.1,0.3] and 𝜆 ∈ [0.6,0.7]. The 𝐴𝑈𝐶 and 𝐴𝑃 vary with parameters 𝛽 and 𝜆
in the ranges of [0.921,0.953] and [0.936,0.960] , respectively. Thus, the GAEPNAS
model can lead to acceptable results for all the combinations of parameters 𝛽 and 𝜆.

(a) 𝐴𝑈𝐶 and 𝐴𝑃 for different 𝛽 values with 𝜆 = 0.6. (b) 𝐴𝑈𝐶 and 𝐴𝑃 for different 𝜆 values with 𝛽 = 0.2.

Figure 2. Link prediction performance of GAEPNAS for different 𝛽 and 𝜆 values on the Cora da-
taset.

(a) 𝐴𝑈𝐶 surface on parameters 𝛽 and 𝜆. (b) 𝐴𝑃 surface on parameters 𝛽 and 𝜆.

Figure 3. Impact of parameters 𝛽 and 𝜆 on the link prediction performance of GAEPNAS on the
Cora dataset.
Figure 3. Impact of parameters β and λ on the link prediction performance of GAEPNAS on the
Cora dataset.

4.4. Node Clustering

Node clustering is one of the fundamental unsupervised methods of graph analysis.
Its goal is to classify similar nodes into the same clusters and dissimilar nodes in different
clusters without supervision or prior knowledge of the clusters. In the experiments, node
clustering is used as a downstream task to evaluate GAEPNAS.

4.4.1. Metrics of Node Clustering

The clustering results are measured using three metrics: clustering accuracy (ACC),
normalized mutual information (NMI), and adjusted Rand index (ARI). The values of
these metrics are in the range of [0, 1], while the larger the value, the higher the clustering
performance. It is assumed that C = {C1, C2, . . . , Ck} and C′ =

{
C′1, C′2, . . . , C′k′

}
are,

respectively, the ground truth classes and the clustering results of the dataset with n
nodes, where C1 and C′1 represent a ground-truth class and a cluster, respectively. Let

nij =
∣∣C′i ⋂Cj

∣∣, nCi =
∣∣Ci
∣∣ and nC′i

=
∣∣∣C′i ∣∣∣; the three metrics are then defined as follows:

The ACC measures the percentage of the best matching between the clustering result
and the ground-truth class:

ACC =
∑k′

i=1 maxk
j=1nij

n
(16)

Entropy 2023, 25, 567 16 of 22

The NMI measures the normalized similarity between the predicted clusters and the
ground truth classes [44]:

NMI = −
∑k′

i=1 ∑k
j=1 nij

n·nij
nC′i
·nCj

1
2

(
∑k

j=1 nCj
log

nCj
n +∑k

i=1 nC′i
log

nC′i
n

) (17)

where the numerator is the mutual information between the ground truth classes C and
the predicted clusters C′ and the denominator is the arithmetic mean for the information
entropy between C and C′. If C = C′, NMI = 1; and if C and C′ are completely different,
NMI = 0.

The ARI measures the similarity between the predicted clusters and the ground truth
classes based on the pairwise comparison of included nodes [45]:

ARI =

(
n
2

)
∑k′

i=1 ∑k
j=1

nij
2

−∑k′
i=1

nC′i
2

∑k
j=1

nCj

2

1
2

(
n
2

)∑k′
i=1

nC′i
2

+∑k
j=1

nCj

2

−∑k′
i=1

nC′i
2

∑k
j=1

nCj

2

 (18)

4.4.2. Implementation

In the experiments, node representations are first obtained by the baseline methods
and the proposed method, and then clustered into classes using the K-Means clustering
algorithm. The cluster number in K-Means is set as the number of classes for each dataset.
For the node clustering task, we do not use any label in the unsupervised learning process.
As with the link prediction task, the dataset is randomly separated into a training set (85%
edges), a validation set (5% edges), and a test set (10% edges) for each experiment. The
experimental parameters of GAEPNAS are set as shown in Table 4. All parameters of
the baseline methods are set according to their original papers. Each experiment is also
repeated 10 times, and the averaged ACC, NMI, and ARI are determined.

Table 4. Experimental settings for training the GAEPNAS model in the node clustering task.

Dataset Epochs Learning Rate # Neurons k β λ

Cora 200 0.001 1433-512-16 7 0.5 0.5
CiteSeer 200 0.001 3703-128-32 15 0.5 0.4
PubMed 500 0.01 500-256-16 15 0.4 0.6

4.4.3. Experimental Results

The experimental results of the node clustering task are presented in Table 5. It can be
observed that the models that use both structure and attribute information perform signifi-
cantly better than Spectral and DeepWalk, which solely rely on graph structure information.
Thus, the node attribute information plays a crucial role in enhancing the node clustering
performance. The proposed GAEPNAS model shows superior performance compared to
GAE-based models (GAE and VGAE, Graphite AE and VAE, ARGA and ARVGA, Linear
GAE and VGAE) that only reconstruct the graph structure. Specifically, the GAEPNAS
model demonstrates better performance than the GASN, which reconstructs both the graph
structure and node attribute. GAEPNAS incorporates the structural and attribute similarity
information in the encoder and simultaneously reconstructs the graph structure and node
attribute similarity. Furthermore, the effective integration and complementarity of both
types of information improve its node clustering performance. Thus, the GAEPNAS model
outperforms the other models on all three datasets, as shown in the results of all the metrics.

Entropy 2023, 25, 567 17 of 22

Table 5. Experimental results (%) on the node clustering task.

Method
Cora CiteSeer PubMed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Spectral 36.7 12.6 3.1 23.8 5.5 1.0 52.8 9.7 6.2
DeepWalk 48.4 32.7 24.2 33.6 8.7 9.2 68.4 27.9 29.9

GAE 59.6 42.9 34.7 40.8 17.6 12.4 67.2 27.7 27.9
VGAE 50.2 32.9 25.4 46.7 26.0 20.5 63.0 22.9 21.3
ARGA 64.0 44.9 35.2 57.3 35.0 34.1 66.8 30.5 29.5

ARVGA 63.8 45.0 37.4 54.4 26.1 24.5 69.0 29.0 30.6
AT-GAE 67.1 51.4 43.4 61.6 36.3 34.6 68.4 31.9 30.2

AT-VGAE 67.3 50.5 44.3 60.4 36.5 34.7 69.8 33.2 32.5
GASN 66.9 48.4 39.2 60.3 38.6 37.1 69.2 31.3 31.0

GAEPNAS 74.3 51.8 51.3 66.1 39.2 40.2 71.3 34.5 35.2

4.4.4. Parameter Analysis

In this subsection, the impact of parameters β and λ on the node clustering results
is studied for the Cora dataset. Similarly to the previous link prediction task, β and λ
are varied in the range of [0.1, 0.9] with an interval of 0.1. The model shows the highest
node clustering performance for β = 0.5 and λ = 0.5. The ACC, NMI, and ARI curves
of β with λ = 0.5 are shown in Figure 4a. Similarly, the ACC, NMI, and ARI curves of
λ with β = 0.5 are shown in Figure 4b. The 3D surface plots of ACC, NMI, and ARI
for β and λ are shown in Figure 5a–c, respectively. It can be observed from Figure 4a,b
that the performance measured by ACC, NMI, and ARI is low at both ends and high in
the middle. The maximum values of ACC, NMI, and ARI are achieved for β = 0.5 and
λ = 0.5, respectively. Figure 5 shows that the GAEPNAS model achieves high clustering
performance for β ∈ [0.4, 0.6] and λ ∈ [0.5, 0.7]. In node clustering, similar nodes are
classified into the same clusters and dissimilar nodes are grouped in different clusters.
Nodes in the same cluster are expected to be adjacent to each other and similar in attribute
space; while nodes in different clusters are dissimilar and not adjacent. Therefore, the node
attribute similarity information plays the same role in node clustering as graph structural
information. As a result, β and λ should be reasonable and interpretable in the range of
[0.4, 0.6] and [0.5, 0.7], respectively. As can be observed in Figures 4 and 5, the performance
of the proposed model is slightly sensitive to the parameters β and λ.

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22

(a) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different β values with λ = 0.5. (b) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different λ values with β = 0.5.

Figure 4. Node clustering performance of GAEPNAS for different values of β and λ on the Cora
dataset.

(a) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different β values with λ = 0.5. (b) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different λ values with β = 0.5.

(c) 𝐴𝑅𝐼 surface on parameters 𝛽 and 𝜆.

Figure 5. Impact of 𝛽 and 𝜆 on the node clustering performance of GAEPNAS on the Cora da-
taset.

4.5. Ablation Study

Figure 4. Node clustering performance of GAEPNAS for different values of β and λ on the
Cora dataset.

Entropy 2023, 25, 567 18 of 22

Entropy 2023, 25, x FOR PEER REVIEW 18 of 22

(a) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different β values with λ = 0.5. (b) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different λ values with β = 0.5.

Figure 4. Node clustering performance of GAEPNAS for different values of β and λ on the Cora
dataset.

(a) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different β values with λ = 0.5. (b) 𝐴𝐶𝐶, 𝑁𝑀𝐼, and 𝐴𝑅𝐼 for different λ values with β = 0.5.

(c) 𝐴𝑅𝐼 surface on parameters 𝛽 and 𝜆.

Figure 5. Impact of 𝛽 and 𝜆 on the node clustering performance of GAEPNAS on the Cora da-
taset.

4.5. Ablation Study

Figure 5. Impact of β and λ on the node clustering performance of GAEPNAS on the Cora dataset.

4.5. Ablation Study

To further analyze the effectiveness of the various modules in the proposed model, an
ablation study on the Cora and CiteSeer datasets is conducted in four different configura-
tions: GAE (the general GAE model), GAE+KNN (adding the fusion module to the general
GAE model), GAE+RecSim (adding a node attribute similarity decoder and corresponding
reconstruction loss to the general GAE model), and GAEPSNA (GAE+ KNN+Recsim).

The ablation experimental results are presented in Tables 6 and 7. It can be observed
that GAE has the worst results because it only preserves the structural information in the
learning process. Additionally, GAE+KNN and GAE+Recsim show higher performance
than GAE due to their strengthened learning of node attribute information. Furthermore,
the proposed GAEPNAS model has the highest performance. This is because its learning
process enhances the learning for node attribute information and emphasizes the preser-
vation of node attribute similarity in the node representation. It can also be deduced that
each module of the proposed model is effective and can contribute to its high performance.

Entropy 2023, 25, 567 19 of 22

Table 6. Ablation experimental results of link prediction.

Method
Cora CiteSeer

AUC AP AUC AP

GAE 91.0 92.0 89.5 89.9
GAE+KNN 93.2 93.9 94.6 95.2

GAE+RecSim 93.1 94.2 93.8 94.5
GAEPNAS 95.3 95.7 96.5 96.6

Table 7. Ablation experimental results of node clustering.

Method
Cora CiteSeer

ACC NMI ARI ACC NMI ARI

GAE 59.6 42.9 34.7 40.8 17.6 12.4
GAE+KNN 71.2 50.2 50.1 62.1 34.1 35.3
GAE+RecSim 69.9 49.8 48.2 60.4 35.7 33.9
GAEPNAS 74.3 52.2 51.6 63.2 37.8 37. 0

5. Discussion

The GAEPNAS model fuses the KNN graph that can represent the attribute similarity
between nodes with the original graph, then learns the representation of the nodes from
the synthetic graph though a GCN encoder, and finally reconstructs the original graph
structure and attribute similarity between nodes by leveraging dual decoders so that the
nodes maintain the same attribute similarity between nodes in the embedding space as in
the original space. Despite the model’s effectiveness, there are some limitations. Below, we
discuss two major limitations of the model and how they can be overcome in future works.

(1) Computational scalability: In the proposed model, we need to calculate the node
attribute similarity for each pair of nodes in the graph in order to construct the KNN
graph and reconstruct the node attribute similarity matrix, which results in quadratic
computational complexity. Thus, for real-world large graphs, the theoretical complexity
is unacceptable. However, in real networks, it is difficult for two nodes to interact with
each other if they are not in the same connected component, even if they are similar in
node attributes. The closer they are in the network, the more interconnected they are.
For example, in a citation network, researchers usually search papers with no more than
five hop neighbors to keep track of a paper. Therefore, in the future, in order to reduce
computational overhead, we will consider computing the attribute similarity between each
node and its k-hop neighbors to avoid computing the full pairwise similarity matrix.

(2) Fusion of structural and attribute similarity information: It was experimentally
discovered that our model’s performance is slightly sensitive to the parameters β and
λ. β is used to balance the fusion effect of the original input graph and the KNN graph,
and λ is used to balance the structure loss and the similarity loss. For the performance
of the proposed model, the balance of structural and attribute similarity information is
crucial. However, in Equation (4), β is a scalar parameter which is difficult to adapt to the
requirements of complex networks. Setting the parameter β as a learnable vector or matrix
may be an effective way to do this. Therefore, in future work, we will attempt to introduce
learnable parameters β and λ into the GAEPNAS model to reach more stable performance.

6. Conclusions

In this paper, a novel GAE model with preserving node attribute similarity is proposed
for unsupervised graph representation learning. In this model, graph structural information
and node attribute information are fused by generating a KNN graph. The model then
learns the fusion information by sharing the same set of parameter weights and using
two different aggregating methods in the encoder. In the decoder module, the model uses
two different decoders to simultaneously reconstruct the graph structure information and

Entropy 2023, 25, 567 20 of 22

node attribute similarity information. The structure loss and attribute similarity loss are
used to update the parameters and preserve the graph structure information and node
attribute similarity information in node representations. The experimental results show that
the proposed model outperforms baseline methods in link prediction and node clustering
on three citation networks. Finally, we discuss two limitations of the GAEPNAS model and
provide an outlook for future research.

Author Contributions: Conceptualization, M.L. and K.W.; methodology, M.L. and K.W.; software,
K.W. and X.Z.; validation, K.W. and X.Z.; formal analysis, M.L.; writing, M.L.; review and editing,
H.Z. and X.S.; visualization, K.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported in part by the Scientific Research Fund of Hunan Provincial
Education Department (22A0502), the National Natural Science Foundation of China (61772179),
the Hunan Provincial Natural Science Foundation of China (2019JJ40005), the 14th Five-Year Plan
Key Disciplines and Application-Oriented Special Disciplines of Hunan Province (Xiangjiaotong
(2022) 351), the Science and Technology Plan Project of Hunan Province (2016TP1020), the Science
and Technology Innovation Project of Hengyang (202250045231), the Open Fund Project of Hunan
Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang
Normal University (2022HSKFJJ012), and the Postgraduate Scientific Research Innovation Project of
Hunan Province (QL20210262).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. IEEE Database Eng. Bull.

2017, 40, 52–74.
2. Cai, H.; Zheng, V.W.; Chang, K.C.C. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE

Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [CrossRef]
3. Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management (CIKM 2015), Melbourne, VIC, Australia, 19–23
October 2015; pp. 891–900.

4. Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), San Francisco, CA, USA, 13–17
August 2016; pp. 1105–1114.

5. Wang, X.; Cui, P.; Wang, J.; Pei, J.; Zhu, W.; Yang, S. Community preserving network embedding. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI 2017), San Francisco, CA, USA, 4–9 February 2017; pp. 203–209.

6. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2014), New York, NY, USA, 24–27 August 2014;
pp. 701–710.

7. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2016), San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

8. Dong, Y.; Chawla, N.V.; Swami, A. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017), Halifax, NS, Canada,
13–17 August 2017; pp. 135–144.

9. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2016), San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234.

10. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web (WWW 2015), Florence, Italy, 18–22 May 2015; pp. 1067–1077.

11. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International
Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

12. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, preprint arXiv:1611.07308.
13. Zhu, Y.; Ma, J.; Yuan, C.; Zhu, X. Interpretable learning based dynamic graph convolutional networks for alzheimer’s disease

analysis. Inform. Fusion 2022, 77, 53–61. [CrossRef]
14. Park, J.; Yoo, S.; Park, J.; Kim, H.J. Deformable graph convolutional networks. In Proceedings of the 36th AAAI Conference on

Artificial Intelligence, Virtual Event, 22 February–1 March 2022; pp. 7949–7956.

http://doi.org/10.1109/TKDE.2018.2807452
http://doi.org/10.1016/j.inffus.2021.07.013

Entropy 2023, 25, 567 21 of 22

15. Dwivedi, V.P.; Luu, A.T.; Laurent, T.; Bengio, Y.; Bresson, X. Graph Neural Networks with Learnable Structural and Positional
Representations. In Proceedings of the 10th International Conference on Learning Representations (ICLR 2022), Virtual Event,
25–29 April 2022.

16. Wang, C.; Pan, S.; Long, G.; Zhu, X.; Jiang, J. Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings
of the 26th ACM on Conference on Information and Knowledge Management (CIKM 2017), Singapore, 6–10 November 2017;
pp. 889–898.

17. Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially regularized graph autoencoder for graph embedding. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden, 13–19 July 2018;
pp. 2609–2615.

18. Salha, G.; Limnios, S.; Hennequin, R.; Tran, V.A.; Vazirgiannis, M. Gravity-inspired graph autoencoders for directed link
prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM 2019),
Beijing, China, 3–7 November 2019; pp. 589–598.

19. Guo, Z.; Wang, F.; Yao, K.; Liang, J.; Wang, Z. Multi-Scale Variational Graph AutoEncoder for Link Prediction. In Proceedings of
the 15th ACM International Conference on Web Search and Data Mining (WSDM 2022), Tempe, AZ, USA, 21–25 February 2022;
pp. 334–342.

20. Ahmed, I.; Galoppo, T.; Hu, X.; Ding, Y. Graph regularized autoencoder and its application in unsupervised anomaly detection.
IEEE Trans. Pattern Anal. 2021, 44, 4110–4124. [CrossRef] [PubMed]

21. Du, X.; Yu, J.; Chu, Z.; Jin, L.; Chen, J. Graph autoencoder-based unsupervised outlier detection. Inform. Sci. 2022, 608, 532–550.
[CrossRef]

22. Jin, W.; Derr, T.; Wang, Y.; MA, Y.; Liu, Z.; Tang, J. Node similarity preserving graph convolutional networks. In Proceedings
of the 14th ACM International Conference on Web Search and Data Mining (WSDM 2021), Jerusalem, Israel, 8–12 March 2021;
pp. 148–156.

23. Gao, H.; Huang, H. Deep attributed network embedding. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI 2018), Stockholm, Sweden, 13–19 July 2018; pp. 3364–3370.

24. Li, Z.; Wang, X.; Li, J.; Zhang, Q. Deep attributed network representation learning of complex coupling and interaction. Knowl.-
Based Syst. 2021, 212, 106618. [CrossRef]

25. Liao, L.; He, X.; Zhang, H.; Chua, T.-S. Attributed social network embedding. IEEE Trans. Knowl. Data Eng. 2018, 30, 2257–2270.
[CrossRef]

26. Jin, D.; Li, B.; Jiao, P.; He, D.; Zhang, W. Network-specific variational auto-encoder for embedding in attribute networks. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, China, 10–16 August 2019;
pp. 2663–2669.

27. Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; Chang, E.Y. Network representation learning with rich text information. In Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, 25–31 July 2015;
pp. 2111–2117.

28. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035.

29. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the 6th
International Conference on Learning Representations (ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018.

30. You, J.; Ying, R.; Leskovec, J. Position-aware graph neural networks. In Proceedings of the 36th International conference on
machine learning (ICML 2019), Long Beach, CA, USA, 9–15 June 2019; pp. 7134–7143.

31. Yang, T.; Wang, Y.; Yue, Z.; Yang, Y.; Tong, Y.; Bai, J. Graph pointer neural networks. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI 2022), Virtual Event, 22 February–1 March 2022; pp. 8832–8839.

32. Park, J.; Lee, M.; Chang, H.J.; Lee, K.; Choi, J.Y. Symmetric graph convolutional autoencoder for unsupervised graph representation
learning. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019), Seoul, Republic of
Korea, 29 October–1 November 2019; pp. 6519–6528.

33. Zhou, X.; Wang, H.; Li, Z.; Zhang, S. Graph Autoencoder Combined with Attribute Information in Graph. In Proceedings of
the 6th International Conference on Big Data and Information Analytics (BigDIA 2020), Shenzhen, China, 4–6 December 2020;
pp. 28–34.

34. Sun, D.; Li, D.; Ding, Z.; Zhang, X.; Tang, J. Dual-decoder graph autoencoder for unsupervised graph representation learning.
Knowledge-Based Syst. 2021, 234, 107564. [CrossRef]

35. Wang, J.; Liang, J.; Yao, K.; Liang, J.; Wang, D. Graph convolutional autoencoders with co-learning of graph structure and node
attributes. Pattern Recognit. 2022, 121, 108215. [CrossRef]

36. Li, J.; Lu, G.; Wu, Z. Multi-View Graph Autoencoder for Unsupervised Graph Representation Learning. In Proceedings of the
26th International Conference on Pattern Recognition (ICPR 2022), Montréal, QC, Canada, 21–25 August 2022; pp. 2213–2218.

37. Sun, D.; Li, D.; Ding, Z.; Zhang, X.; Tang, J. A2AE: Towards adaptive multi-view graph representation learning via all-to-all graph
autoencoder architecture. Appl. Soft Comput. 2022, 125, 109193. [CrossRef]

38. Tang, L.; Liu, H. Leveraging social media networks for classification. Data Min. Knowl. Discov. 2011, 23, 447–478. [CrossRef]
39. Grover, A.; Zweig, A.; Ermon, S. Graphite: Iterative generative modeling of graphs. In Proceedings of the 36th International

Conference on Machine Learning (ICML 2019), Long Beach, CA, USA, 9–15 June 2019; pp. 2434–2444.

http://doi.org/10.1109/TPAMI.2021.3066111
http://www.ncbi.nlm.nih.gov/pubmed/33729925
http://doi.org/10.1016/j.ins.2022.06.039
http://doi.org/10.1016/j.knosys.2020.106618
http://doi.org/10.1109/TKDE.2018.2819980
http://doi.org/10.1016/j.knosys.2021.107564
http://doi.org/10.1016/j.patcog.2021.108215
http://doi.org/10.1016/j.asoc.2022.109193
http://doi.org/10.1007/s10618-010-0210-x

Entropy 2023, 25, 567 22 of 22

40. Salha, G.; Hennequin, R.; Vazirgiannis, M. Simple and effective graph autoencoders with one-hop linear models. In Proceedings
of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, Ghent, Belgium,
14–18 September 2020; pp. 319–334.

41. Huang, T.; Pei, Y.; Menkovski, V.; Pechenizkiy, M. On Generalization of Graph Autoencoders with Adversarial Training. In
Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021,
Bilbao, Spain, 13–17 September 2021; pp. 367–382.

42. Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed graph clustering: A deep attentional embedding approach. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, China, 10–16 August 2019;
pp. 3670–3676.

43. Wu, Z.; Lin, Y.; Wang, J.; Gregory, S. Link prediction with node clustering coefficient. Phys. A Stat. Mech. Its Appl. 2016, 452, 1–8.
[CrossRef]

44. Su, W.; Yuan, Y.; Zhu, M. A relationship between the average precision and the area under the ROC curve. In Proceedings of the
2015 International Conference on The Theory of Information Retrieval (ICTIR 2015), Northampton, MA, USA, 27–30 September
2015; pp. 349–352.

45. Vinh, N.X.; Epps, J.; Bailey, J. Information theoretic measures for clusterings comparison: Is a correction for chance necessary? In
Proceedings of the 26th Annual International Conference on Machine Learning (ICML 2009), Montreal, QC, Canada, 14–18 June
2009; pp. 1073–1080.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.physa.2016.01.038

	Introduction
	Preliminary and Related Work
	Notations and Definitions
	Attributed Graph Representation Learning
	GAE Models in Attribute Graphs

	Graph Autoencoder with Preserving Node Attribute Similarity
	Overall Model Framework
	Fusion Module
	Encoder Module
	Decoder Module
	Loss Function
	Training Algorithm

	Experiments
	Datasets
	Baseline Methods
	Link Prediction
	Metrics of Link Prediction
	Implementation
	Experimental Results
	Parameter Analysis

	Node Clustering
	Metrics of Node Clustering
	Implementation
	Experimental Results
	Parameter Analysis

	Ablation Study

	Discussion
	Conclusions
	References

