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Abstract: In recent years, millimeter-wave communication has played a crucial role in satellite com-
munication, 5G, and even 6G applications. The millimeter-wave electro-optic modulator is capable
of receiving and processing millimeter-wave signals effectively. However, the large attenuation of
millimeter waves in the air remains a primary limiting factor for their future applications. Therefore,
finding a waveguide structure with a high quality factor (Q-factor) is critical for millimeter-wave
electro-optic modulators. This manuscript presents the demonstration of a double ring modulator
made of lithium niobate with the specific goal of modulating an RF signal at approximately 35 GHz.
By optimizing the microring structure, the double ring resonator with high Q-factor is studied to
obtain high sensitivity modulation of the RF signal. This manuscript employs the transfer matrix
method to investigate the operational principles of the double ring structure and conducts simulations
to explore the influence of structural parameters on its performance. Through a comparison with
the traditional single ring structure, it is observed that the Q-factor of the double ring modulator
can reach 7.05 × 108, which is two orders of magnitude greater than that of the single ring structure.
Meanwhile, the electro-optical tunability of the double ring modulator is 6 pm/V with a bandwidth
of 2.4 pm, which only needs 0.4 V driving voltage. The high Q double ring structure proposed in
this study has potential applications not only in the field of communication but also as a promising
candidate for a variety of chemical and biomedical sensing applications.

Keywords: ring resonator; lithium niobate; high quality factor; RF signal; modulation

1. Introduction

As a key device of photon integrated circuits (PICS), the microring resonator (MRR) [1,2]
shows excellent performance in filtering [3], sensing [4,5], high-speed electric-optical mod-
ulation [6,7], generation of optical frequency comb [8], and wavelength division multiplex
(EDM) [9,10] due to its unique properties, such as wavelength selectivity, compactness, and
high Q-factor. Over the past few decades, electro-optic modulator (EOM) composed of MRR
has been extensively studied in various material systems, including graphene [11], silicon
(Si) [12], lithium niobate (LN) [13,14], indium phosphide (InP), and polymers [15]. These
materials have their own advantages, but there are still some limiting factors for their appli-
cation. The development of Si and InP modulators for ultrahigh speed data transmission
will be limited as they depend on plasma dispersion effect and the quantum local Stark
effect, respectively. The problem with graphene is that its monolayer structure is technically
difficult to be separated; it cannot be mass-produced [14]; even though electro-optic polymers
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have shown very high electro-optic coefficients, this coefficient will gradually decrease as the
material ages, leading to less effective stability.

Lithium niobate is an artificially synthesized material that possesses remarkable
electro-optical, acoustic, piezoelectric, and nonlinear optical properties, as well as out-
standing transmittance [16] in the near-infrared spectral range. The lithium niobate on
insulators (LNOI) platform has been extensively studied for the fabrication of various
waveguide structures, including LN waveguides [17], proton-exchanged waveguides [18],
and strip-loaded waveguides [19]. Due to the higher electric-optical coefficient of LN
(γ33 = 31 pm/V) and large refractive indices, EOM based on LN material has developed
rapidly in recent years. Several hybrid waveguide modulators have been proposed, includ-
ing Si/LiNbO3 and Si3N4/LiNbO3 [20]. As the LN material has been recognized as difficult
to etch, its fabrication technology has been studied for years. In 2017, Mian Zhang et al.,
at Harvard University, developed the optimized standard etching process to prepare LN
waveguides with propagation loss as low as 2.7 ± 0.3 dB/m. In 2018, Wu et al. reported a
LN waveguide with propagation loss as low as 2.7 dB/m by using a chemical mechanical
polishing method [21]. In recent years, the use of lithium niobate in the field of optics
has attracted increasing attention [22,23]. After careful consideration of various factors,
including the advancement in lithium niobate etching processes, we ultimately selected
lithium niobate as the waveguide material.

In this paper, a high-sensitivity electro-optical modulator for 35 GHz satellite commu-
nication is designed, and the structural parameters and ideal performance of the double
ring modulator are determined by using FDTD. The structural coefficients that fundamen-
tally affect the performance of the double ring structure, such as transmission coefficient
and transmission loss, are exhaustively studied by the transmission matrix method. The
optimized double ring structure can achieve a Q-factor that is two orders of magnitude
higher than that of the single ring structure, and its application in 35 GHz communication
can achieve higher modulation sensitivity. Compared with other devices used in the field
of high frequency RF modulation, it has the characteristics of higher sensitivity and integra-
tion. Ultimately, the optimized double ring structure with excellent performance has a very
broad application potential in the field of communication and biochemical sensing.

2. Materials and Methods

The schematic structure of the waveguide and the substrate is shown in Figure 1a.
The underlying substrate is 0.5 mm thick silicon with a coating layer of 2 µm thick silicon
dioxide. The core layer is composed of 600 nm thick x-cut LN film. Lumped gold electrodes
deposited on the left and right sides of the inner ring waveguide are used to apply RF
signals. In order to prevent external dust, water vapor, and other pollutants from affecting
the performance of the structure, a layer of SiO2 is deposited on the top to enhance the
stability of the device. The light of 1550 nm is used as the carrier wavelength and the
refractive indices of the waveguide are ne = 2.138, no = 2.211, and nSiO2 = 1.444, which
possess a large core-envelope refractive index difference of the LNOI structure (∆n > 0.7),
providing strong light field restriction of the proposed waveguide. The outer ring adopts
the add-drop structure. By optimizing the dimensions of the waveguide cross section,
bending radius, upper coating thickness, electrode spacing, and other parameters, the
insertion loss of the transmitted light can be minimized. For the light induced into the inner
ring resonator, it will meet its resonant conditions and start to oscillate, which will help
to enhance the interaction with the electric field and achieve higher modulation efficiency.
The transmission parameters of the double ring modulator are shown in Figure 1b, which
consists of waveguide length (L), intensity of light field (E), transmission coefficient (t), and
coupling coefficient (k).
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Figure 1. (a) Schematic diagram of the structure of the double ring modulator, where the enlarged 
area is a crossing-section view of the devices. (b) Parameter distribution in the schematic diagram 
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length (L), and the intensity of light field (E). 
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Figure 1. (a) Schematic diagram of the structure of the double ring modulator, where the enlarged
area is a crossing-section view of the devices. (b) Parameter distribution in the schematic diagram
of double ring structure, including transmission coefficient (t), coupling coefficient (k), waveguide
length (L), and the intensity of light field (E).

Assuming that the amplitude of incident light is Ei1 in the case of no coupling loss,
the transmission characteristics of the three coupling regions can be obtained by using the
transmission matrix method, and the matrix relationship among the coupling regions can
be expressed as in Equations (1)–(3);[
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where t and k represent the transmission and coupling coefficients of the coupling regions,
and the relationship between these two parameters is: |t|2 + |k|2 = 1. When add port has
no add input (Ei2 = 0), the transmission relationship between different coupling regions
can be expressed by Equations (4)–(7);

E2 = e−ρL1 ejθ1 E1 (4)

E6 = e−ρL2 ejθ2 E3 (5)

E8 = e−ρL3 ejθ3 E7 (6)

E5 = e−ρL4 ejθ4 E4 (7)

where ρ is the loss coefficient of the microring, Li (i = 1,2,3,4) is the length of each part of
the microring, and θi (i = 1,2,3,4) is the phase change over the corresponding length Li. The
final transmission equation of the through port can be obtained through the normalization
of the light field amplitude at each port, as shown in Equation (8):
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Et1
Ei1

= t1 +
−k2

1t2t3e−ρ(L1+L2+L3)+j(θ1+θ2+θ3) + k2
1t2

2t3e−ρ(L1+L2+L3+L4)+j(θ1+θ2+θ3+θ4) + k2
1k2

2t3e−ρ(L1+L4)+j(θ1+θ4)

1− t2e−ρL4+jθ4 − t1t2t3e−ρ(L1+L2+L3)+j(θ1+θ2+θ3) + t1t2
2t3e−ρ(L1+L2+L3+L4)+j(θ1+θ2+θ3+θ4) + t1k2

2t3e−ρ(L1+L4)+j(θ1+θ4)
(8)

Using the same method, the transmission equation of the through port of single ring
resonator can be obtained, as in Equation (9):

Et1
Ei1

=
t2 − t2e−ρL4+jθ4

1− t2
2e−ρL4+jθ4

(9)

The transmission spectra of the double ring and single ring resonators can be plotted
based on Equations (8) and (9), as illustrated in Figure 2. Since the inner ring of the double
ring structure is equivalent to increase the virtual length of the outer ring, which increases
the length of the optical field reacting with the waveguide, the double ring structure
achieves resonance enhancement. This eventually makes the resonance peak of the double
ring resonator much sharper than that of the single ring resonator. The Q-factor of the
double ring resonator can reach 7.05 × 108, which is two orders of magnitude higher
than that of the single ring resonator. The high Q-factor plays a crucial role in facilitating
efficient interaction between the optical and electric fields, ultimately resulting in improved
electro-optic tunability of the device.
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Figure 2. Comparison of resonant peaks of double ring resonator and single ring resonator at the
same resonant wavelength. The ring length of the single ring resonator is the same as the inner ring
length of the double ring resonator.

3. Results and Discussion
3.1. Optimization Design of the Waveguide Parameters

To realize low loss and efficient transmission of optical carrier, the dimensions of
the waveguide cross section and bending radius of the waveguide are optimized. The
ridge-type waveguide structure can effectively reduce the scattering loss as this structure
can reduce the light interaction with the sidewalls. In this work, the proposed device
adopts this structure. The total thickness of lithium niobate film is 600 nm, in which the
thickness of residual layer is 250 nm and the ridge height is 350 nm. Figure 3a shows the
single-mode condition of the waveguide. The critical points of single-mode of both TE and
TM modes can be found at w = 1 µm and 0.8 µm, respectively. Figure 3b,c show that with
gradually increasing waveguide width (w), the waveguide transmission loss decreases and
the optical power propagated in LN layer increases. The higher proportion of light field
confined in LN, the greater the opto-electric overlap factor will be, causing the modulator
to have higher electro-optic modulation efficiency. Figure 3e shows that with the increase
of the electrode spacing, the absorption of the waveguide gradually decreases, resulting in
a gradual decrease of waveguide loss. Finally, the dimensions of the waveguide are also
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determined. As shown in Figure 3a, the waveguide width is chosen to be 0.8 µm in order to
guarantee the single-mode condition. In this case, the effective refractive index (neff) is 1.85,
and the group refractive index (ng) is 2.23. It can be seen from Figure 3c that with 0.8 µm
waveguide width, the optical power ratio in LN waveguide exceeds 80%. It can be noticed
from Figure 3d that when the bending radius is greater than 100 µm, the waveguide loss is
approximately equal to that of the straight waveguide and tends to be stable. Therefore,
the bending radius of 100 µm is chosen in our design. The electrode spacing of 6 µm is
selected for a lower insertion loss.
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Figure 3. (a) The effective refractive index at different waveguide width; (b) the waveguide loss
at different waveguide width; (c) the optical power ratio in lithium niobate at different waveguide
width; (d) the waveguide loss at different bending radius; and (e) the transmission loss of the LN
waveguide with different electrode spacing.
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3.2. Modulation Mechanism of the Microring Resonator

As shown in Figure 4a, the working principle of the lumped electro-optic modulator
is that when the radio frequency field incidents into the microring resonator of LNOI,
the refractive index of the LN crystal varies linearly with the electric field intensity due
to the Pockels effect, resulting in the drift of the microring transmission spectrum, and
finally changing the output light intensity. Figure 4b shows that when the optical carrier
with the frequency of fopt is modulated by the RF electric field, two sidebands of different
frequencies will be generated near the optical carrier with the frequency of fopt − fRF and
fopt + fRF. Free Spectral Range (FSR) is the distance between adjacent resonant peaks,
which is one of the key parameters of microring resonator. To observe the change of
the output light intensity, the two sidebands should fall within the microring resonance
peak; that is, conditions fRF = m· fFSR (m = 1,2,3 . . . ) or fRF < fFWHM, where fFWHM is
the full width of the resonant peak. The second condition ( fRF < fFWHM) is suitable for
low-frequency signal modulation, but the target RF signal of the modulator designed in
this paper is 35 GHz, so the condition fRF = m· fFSR should be satisfied. It is noteworthy
that the input light needs to be placed at the maximum slope of the resonant peak. In this
case, even if the received RF signal Is very weak, the modulation light intensity will change
greatly.
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Figure 4. (a) Intensity modulation of the microring resonator. The green, black and blue lines show
the drift of the resonant wavelength of the material in the microring modulator due to the pockels
effect due to the change in RF signal, and the red line shows the change in light intensity as the
RF signal is modulated onto the light. (b) Mechanisms for setting the parameters of the microring
resonator. The red line is the local oscillation light and the yellow line is the sideband of the modulated
finished RF signal, which carries the RF information.

The relationship between FSR and the length of the microring can be expressed as in
Equation (10);

fFSR =
λ2

L · ng
(10)

where L is the total length of microring, ng is group refractive index, and λ is optical carrier
wavelength. Given the values of ng and λ, the length L can be derived by Equation (10),
which yields a result of 3846.6 µm. This corresponds to the microring length for a 35 GHz
RF modulator.

Figure 5 shows that when transmission loss is not taken into account, the maximum Q-
factor is reached when the length of the outer ring is twice that of the inner ring. Considering
the factors of the integration of the chip and the improvement of sensitivity, the parameters
will be discussed and analyzed below when the outer ring length as twice the inner ring.
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3.3. Analysis of Double Ring Structure

Assuming no waveguide loss under the analysis and comparison of the coupling coeffi-
cients k1, k2, k3 on the transmission characteristics of the double ring resonator, as shown in
Figure 6. Figure 6a shows that with k1 = 0.1, the Q-factor and extinction ratio of the inner
ring resonance peak gradually decrease as k2 and k3 gradually increase, and the inner ring
resonance peak drifts toward the longer wavelength. Figure 6b shows that with k2 = k3 = 0.1,
k1 gradually increases, and the extinction ratio of the inner ring resonance peak gradually
decreases, but the resonant peak does not drift apparently. Figure 6c shows that with k2 = 0.1,
k1 and k3 increase gradually at the same time, and the position and extinction ratio of the
inner ring resonance peak do not change significantly, but the Q-factor of the resonance peak
decreases accordingly. By comparing Figure 6a–c, it can be concluded that in the preparation
process, if the two gaps of the straight and curved waveguides are different, the coupling
coefficients will be different, which destroys the resonance enhancement of the double ring
and thus affects the critical coupling state. Figure 6d shows that in the case of k1 = k2 = 0.1,
with the gradual increase of k2, the extinction rate of the resonant peak of the inner ring
does not change significantly, but the position of the resonant peak drifts toward the longer
wavelength and the Q-factor decreases. Based on the above discussion, it is concluded that
since a smaller coupling coefficient leads to a smaller bandwidth of light being coupled into
the microring, making the resonant enhancement of light at specific wavelengths more intense,
resulting in a high Q-factor. Therefore, it is necessary to ensure a smaller coupling coefficient in
the structural design and a higher precision in the coupling region during the chip fabrication
to obtain a high Q-factor of the device.

When the waveguide loss of the microring is considered, the greater the loss, the worse
the transmission characteristics of the microring. The field attenuation of outer ring and
inner ring for one round trip are characterized by A1 and A2, respectively, and the relation
between the transmission loss ρ and the field attenuation is A = e−ρL. Figure 7a shows
that in the case of no loss in the inner ring, the Q-factor and extinction ratio of the double
ring resonant peak gradually decrease with the reduction of A1. Figure 7b shows that with
no loss in the outer ring, the resonance peak of the inner ring deteriorates significantly
with the continuous reduction of A2. This result reveals that the transmission loss of the
microring has a great impact on the performance of the modulator. As LN is recognized
as a difficult material to be etched, large losses will inevitably be introduced in the actual
preparation process of the waveguide, it is important to determine the critical coupling
conditions to remedy this problem.
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When it meets the critical coupling condition, the output power of the through port
drops to zero. At this time, the relationship between transmission coefficient and transmis-
sion loss is shown in Equation (11).

t1 = t3 A1

∣∣∣∣ t2 − A2

1− t2 A2

∣∣∣∣ (11)

Figure 8a shows that with the value of A1 decreases from 1 to 0.98, the power of input
light coupled into the outer ring resonator decreases by about 35%, and the Q-factor of
the resonant peak of the inner ring decreases by an order of magnitude. Figure 8b shows
that without waveguide loss in the inner ring, the influence of the outer ring waveguide
loss on the transmission characteristics is insignificant; the inner ring waveguide loss has a
greater influence on the transmission spectrum than that of the outer ring. Figure 9 shows
the influence of the transmission coefficients of ring-ring waveguide (t2 ) and ring-straight
waveguide (t3 ) on the transmission spectrum of the double ring resonator. Figure 9a shows
that with the transmission coefficient increasing from 0.7 to 0.9, the optical power coupled
into the outer ring resonator decreases by about 18%. It is helpful to reduce the interference
of outer ring to inner ring transmission characteristics. Figure 9b shows that compared
with t3 , the increase of t2 will offset the resonance peak of the outer ring, but the effect on
the Q-factor of the inner ring is not as obvious as that of t3 .
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3.4. Double Ring Electro-Optic Modulator

After the analysis of the waveguide loss, characteristic parameters of the coupling
region and critical coupling conditions, the modulator with high electro-optic modulation
efficiency can be designed according to the factors that affect the performance of the dou-
ble ring resonator. To analyze differences between double ring resonator and single ring
resonator, the parameters are determined as ρ = 3 dB/m, t2 = 0.9, t3 = 0.995, t1 = 0.779 and
the resonator satisfies the critical coupling condition. The simulation result is shown in
Figure 10. The single ring resonator has a Q-factor of 6.2 × 104, and 23% of its light is con-
fined to resonating in the microring. The double ring resonator has a Q-factor of 6.5 × 105,
FWHM = 2.4 pm (300 MHz), FSR = 35 GHz and almost all of the light is confined to
resonating in the inner ring. Figure 11 shows the relationship between coupling coefficient
and coupling gap in the coupling region between straight–ring waveguide and ring–ring
waveguide. The coefficients of the coupling region are determined: t1 = 0.779, t2 = 0.9
and t3 = 0.995, the corresponding gap parameters are Gap1 = 565 nm, Gap2 = 520 nm and
Gap3 = 1205 nm.
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Figure 11. (a) The coupling coefficient of the coupling region of the straight-ring waveguide at
different coupling gap and (b) the coupling coefficient of the coupling region of the ring–ring
waveguide at different coupling gap.

With 35 GHz RF signal applied to the electrodes, the electric field generated between
the electrodes will change the refractive index of LN, which will shift the transmission
spectrum of the microring. This eventually results in output light intensity change. The
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applied RF signal and the effective refractive index neff of the waveguide can be represented
by Equation (12):

n
′
e f f = ne f f −

1
2d

n3
e f f γ33ΓV (12)

V =
2
T

V
∫ T

2

0
sin
(

2π

T
t
)

dt =
2V
π

(13)

where d is the electrode spacing, Γ is an electric-optical overlap factor; its value is 0.7, and
V is the average voltage applied on the electrode as shown in Equation (13), where V is the
peak voltage of the input RF signal.

Figure 12a shows the relationship between the transmission characteristic curves of
the double ring resonator and the applied voltage V. Figure 12b shows the drift of resonant
peak under different applied voltages, and the electro-optic tunability of the double ring
resonator is 6 pm/V by linear fitting.
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4. Conclusions

In summary, through the comparison and analysis of the double ring resonator and
the single ring resonator, we demonstrate that the Q-factor of the double ring resonator
under modulated 35 GHz RF signals is 7.05 × 108 in an ideal situation. It is improved
by two orders of magnitude and can effectively improve the modulation performance
of the conventional single ring resonator. In the future, the processing of the chip will
be completed based on the parametric analysis of the microring structure presented in
this paper in order to verify the performance of the double ring structure under 35 GHz
modulation. Meanwhile, the proposed double ring resonator has certain scalability and its
potential applications in microwave photonics, biosensing, and communication fields.
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