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Abstract
Random field generation through the solution of stochastic partial differential equations is a computationally inexpensive 
method of introducing spatial variability into numerical analyses. This is particularly important in systems where material 
heterogeneity has influence over the response to certain stimuli. Whilst it is a convenient method, spurious values arise in 
the near boundary of the domain due to the non-exact nature of the specific boundary condition applied. This change in 
the correlation structure can amplify or dampen the system response in the near-boundary region depending on the chosen 
boundary condition, and can lead to inconsistencies in the overall behaviour of the system. In this study, a weighted Dir-
ichlet–Neumann boundary condition is proposed as a way of controlling the resulting structure in the near-boundary region. 
The condition relies on a weighting parameter which scales the application to have a more dominant Dirichlet or Neumann 
component, giving a closer approximation to the true correlation structure of the Matérn autocorrelation function on which 
the formulation is based on. Two weighting coefficients are proposed and optimal values of the weighting parameter are 
provided. Through parametric investigation, the weighted Dirichlet–Neumann approach is shown to yield more consistent 
correlation structures than the common boundary conditions applied in the current literature. We also propose a relation-
ship between the weighting parameter and the desired length-scale parameter of the field such that the optimal value can be 
chosen for a given problem.

Keywords  Random field · Boundary conditions · Spatial variability · Parametric · Uncertainty

1  Introduction

A degree of randomness is often included in numerical 
analyses to account for uncertainty within systems. Numeri-
cal simulation techniques rely on having a description of 
randomness through spatial variability across the compu-
tational domain [6, 11, 21, 27, 28]. In many cases, this can 
be introduced by including random fields. In its most basic 
form, initial conditions, material parameters, or the physical 
geometry can be represented by spatial values assigned by a 
scaled uncorrelated normal distribution having no inherent 
structure. However, this is often not physically meaning-
ful, and having a correlation structure imposed on the field 
would result in a structure more consistent with the pat-
terns of spatial continuity seen in physical systems, such as 
for example in soil bodies [19]. Existing methods of gen-
erating correlated random fields include Karhunen-Loève’s 
expansion [12, 20], local averaging subdivision methods 
[8], covariance matrix decomposition [5, 13, 23, 26] and the 
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solution of stochastic partial differential equations (PDEs) 
derived from Whittle-Matérn’s autocorrelation function 
(ACF) [18, 25].

The latter of these methods is computationally efficient 
due to sparse matrix linear algebra, and is well suited to 
existing FEM codes due to the construction of the PDE 
components and their solution. Another key aspect is the 
strong theoretical basis in the desired domain properties of 
the fields that can be produced, being due to the clear dis-
tinction between the construction of the theoretical model 
and the numerical methods used in the solution process [17]. 
The approach also allows for many generalisations of sta-
tionary Matérn fields such as non-stationary fields and those 
generated over less idealised domains [2, 10, 18]. For practi-
cal simulations, the domain must be reduced to a bounded 
domain of interest, requiring boundary conditions that are 
not generally known [14]. By applying a non-exact condition 
at the boundary, the approximation of the ACF that the sto-
chastic PDE represents will breakdown, resulting in spurious 
values in the near-boundary region. Often, the homogenous 
Neumann or homogeneous Dirichlet condition is chosen due 
to the ease of implementation. To deal will this, the compu-
tational domain Ω is often extended, such that solving the 
stochastic PDE over the extended domain and extracting Ω 
will result in minimal effects from the applied the boundary 
condition. The reduction in error at the boundary is relative 
to the size of extension, and has been previously studied 
[14].

An alternative approach is to apply the Robin boundary 
condition through careful choice of the Robin coefficient � , 
which can be thought of as a tuning parameter. The choice of � 
can be problem dependent, but a choice of � = 1.42l , where l is 
defined as the length-scale parameter, has been found to be an 
adequate approximation [25]. As such, the use of an extended 
computational domain is not strictly necessary when applying 
this condition. It is worth noting that this choice of � = 1.42l 
was not established in a rigorous way, as it was deemed out of 
the scope of the study [25], and it was suggested that � should 
vary as a function of the boundary. This was later considered 
by Daon and Stadler [7], who utilised a spatially varying Robin 
coefficient to provide domain Green’s functions that are close 
to the free-space Green’s functions of the Matérn covariance 
function. Through numerical experiments, the approach was 
seen to reduce the observed boundary effects, but the compu-
tation of the spatially dependent coefficient posed difficulties 
due to integral singularities and a required prior knowledge of 
pointwise variance over the domain which may not always be 
available. Other approaches have been taken, such as the use 
of a partial Dirichlet-to-Neumann operator on the extended 
boundary [3]. The mapping depends on the unknown cor-
relation structure of the extended domain, and as such is an 
unknown itself that needs to be estimated. It was later shown to 
have suitable representation by a lower dimensional truncated 

Karhunen-Loève expansion based on information about the 
desired correlation structure [4]. The mapping was seen to 
result in reductions in computational complexity and matched 
well with simulated and real data.

In this study, an alternative approach is presented for reduc-
ing spurious values in the near-boundary region through a 
weighted Dirichlet–Neumann (D–N) boundary condition. Two 
variants of the condition are proposed based upon adopting 
different dependencies to define the Neumann coefficient used. 
The proposed conditions are both dependent on a weighting 
parameter α that controls the ratio of Dirichlet-to-Neumann 
components applied to the boundary, with the second also 
implementing a dependency based on l . Through a detailed 
parametric investigation, optimal values of α are found based 
on the length-scale parameter l . To allow for comparison 
between the two weighted D-N approaches, the homogene-
ous Neumann boundary condition, with and without domain 
extension, and the Robin boundary condition with � = 1.42l 
are also applied. The error reduction at the boundary based 
on the applied condition is then evaluated through comput-
ing the covariance functions of the corresponding generated 
fields, and comparing against the true autocorrelation function. 
Finally, a relation between � and l is proposed to generalise the 
condition, allowing for simpler application when considering 
wider problems.

The layout of the remainder of the paper is as follows; 
Sect. 2 presents the theory of Gaussian random field genera-
tion through the solution of stochastic PDEs; Sect. 3 introduces 
the weighted Dirichlet–Neumann boundary condition; Sect. 4 
outlines the test cases and testing regime; Sect. 5 presents 
and discusses the results of the parametric investigation; and 
Sect. 6 presents the main conclusions of the study.

2 � Theory and numerical discretisation

Let � ∈ ℝ
d be a Gaussian random field whose contents are 

a parameterised collection of Gaussian random variables 
{�(�)}�∈ℝd . The field is assumed to be stationary, such that 
the covariance function defining the correlated structure of 
the field is a function of spatial distance alone. In this way, the 
resulting field structure can be defined by the standard autocor-
relation form, where here the Matérn autocorrelation function 
ACFX(�) is chosen

for � ∈ ℝ
d , where |�| is the Euclidean distance, ν > 0 is the 

smoothness parameter, Γ is the gamma function, and Kν 
is the Bessel function of the second kind of order ν [24]. 
The parameter l > 0 is the length-scale parameter where 
δ = l

√
8ν is the distance for correlations near 0.1 [18], and 

(1)ACFX(�) =
21−�

Γ(�)

(
|�|
l

)�

K�

(
|�|
l

)
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controls the correlated structure of the generated fields. 
Equation (1) can be approximated by posing the function 
as a stochastic PDE, the full details of which are given in 
Roininen et al. [25], such that

where d = 1, 2, 3 , � is white noise on ℝd , and α is a constant 
defined as

The PDE in Eq.  (2) is rendered elliptic by fixing the 
smoothness parameter as ν = 2 − d∕2 , resulting in the 
equivalent matrix equation

where � is the standard identity matrix. Alternative choices 
of ν would lead to different -potentially fractional- differen-
tial operator powers, and would require a significant change 
in approach due to the methods employed to discretise the 
problem [9]. As such, the results that follow are associated 
with the value of ν implied by the regularised Laplacian 
operator, being a common choice in spatial statistics [2, 24].

Consider � a generalised random variable, i.e. a continu-
ous linear mapping from the space of rapidly decreasing 
smooth functions S

(
ℝ

d
)
 to square-integrable random vari-

ables. In this way, if � is also a generalised random variable, 
then

is a square-integrable random variable for all �,� ∈ S
(
ℝ

d
)
 . 

Similarly, ⟨�,�⟩ is a Gaussian random variable by its own 
definition, such that

Finally, by extending � to be a linear function on L2
(
ℝ

d
)
 

[16], Eq. (2) can be reduced to: find � such that

for all � ∈ S
(
ℝ

d
)
.

To solve the problem numerically, it must be reduced 
to a bounded domain. Let Ω ⊂ ℝ

d  be a bounded Lipshitz 
domain, and as such, the problem becomes: find � on Ω 
such that Eq. (7) holds for all C∞

0
(Ω) . Here, the solution is 

non-unique, so boundary conditions need to be supplied. 
The well-known Dirichlet, Neumann and Robin conditions, 
respectively, are specified

(2)
�
1 − l2Δ

� (ν+d∕2)

2 � =
√
�ld�

(3)� ∶= σ2
2dπd∕2Γ(ν + d∕2)

Γ(ν)
.

(4)
�
� − l2Δ

�
� =

√
�ld�

(5)⟨�,�⟩ = ∫ �(�)�(�) dx

(6)E⟨�,�⟩ = 0andE(⟨�,�⟩, ⟨�,�⟩) = ∫ �� dx.

(7)⟨
�
� − l2Δ

�
�,�⟩ = ⟨

√
αld�,�⟩ = ⟨�,

√
�ld⟩

where � is the unit normal to the boundary, and � the Robin 
coefficient (a scalar value). The choice of condition imposed 
will result in slight changes in the resulting matrix equation 
to be solved.

Here, the Neumann condition Eq. (9) is considered first. 
To derive a weak bilinear approximation of the problem 
that lies in the defined problem space, we employ the finite 
element approximation

where ψj are the basis functions in H1(Ω) (Sobolev space), 
and Xj are random variables. Applying Green’s first identity 
to Eq. (7) results in

and by making the usual Galerkin choice � = ψi, the prob-
lem can be approximated as

where a is a bilinear functional defined as

As such, the following matrix equation can be solved

where � =
(
Xj

)
 is our generated Gaussian field and � and 

� and the vector � are

When considering the Robin condition, following the 
application of Green’s theorem, the bilinear functional 
becomes

(8)� |�Ω = 0,

(9)
��

��
|�Ω = 0,

(10)
(
� + λ

��

��

)
|�Ω = 0,

(11)� ≈

N∑

j=1

Xjψj,

(12)⟨
�
� − l

2Δ
�
�,�⟩ = ∫ Ω

��dx + l
2∫ Ω

∇� ∙ ∇�dx

(13)
find � ≈

N�

j=1

Xjψj such that a
�
�,ψi

�

= ⟨�,

√
�ldψi⟩ for all i = 1,… ,N,

(14)

a(�,�) = ∫ Ω

��dx + l2∫ Ω

∇� ∙ ∇�dx,�,� ∈ H1(Ω).

(15)�� =
(
� + l2�

)
� = �,

(16)

Mi,j = ∫ Ω

ψjψidx, Si,j = ∫ Ω

∇ψj ∙ ∇ψidx,Wi = ⟨W,

√
αldψi⟩.
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where � = �Ω being the domain boundary, such that the 
matrix equation becomes

Considering the Dirichlet condition results in an equation 
that shares the form of Eq. (15) through choice of the func-
tion space to be H1

0
(Ω).

3 � Weighted Dirichlet–Neumann boundary 
condition

Here, two alternative coefficients �1, �2 are proposed by 
formulating the Robin condition in Eq. (10) as a weighted 
boundary condition between the Dirichlet and Neumann 
components, denoted as the weighted Dirichlet–Neumann 
(D–N) condition. The conditions will depend on the weight-
ing parameter α ∈ [0, 1] which controls the ratio of the Dir-
ichlet and Neumann components.

Let us first consider �1 , where the weighted D-N condi-
tion is

Taking Eq. (19) in the form of Eq. (10), then it can be 
seen that

(17)b(�,�) = a(�,�) +
l2

λ ∫ �

��d�,�,� ∈ H1(Ω)

(18)

�� =
(
� + l2� + l2∕λ�

)
� = �, where Ni,j = ∫

�

�j�id�.

(19)
(
αX + (1 − α)

�X

��

)
= 0 on �Ω.

Similarly, when considering λ2 , the given boundary con-
dition is

where in this case

Both conditions are functionally the same as the Robin 
condition, where � can be used to tune the influence of 
its components. The inclusion of l in Eq. (22) follows the 
functional dependency of the proposed Robin coefficient in 
Roininen et al. [25], and whilst similar to Eq. (20), the addi-
tional dependence will result in a different optimal range 
when tuning α to reduce errors in the near-boundary region. 
Equations (19) and (21) can be applied by simply exchang-
ing the expression for λ in Eq. (18) to that of�1,�2 . To illus-
trate the effects of changingα , random fields were generated 
by solving Eq. (18) after applying Eq. (21) for a 1 m cube 
consisting of hexahedral elements with l = 0.2 m. Figure 1 
shows a partition of the resulting fields generated over a 
cube for (a) � = 0 , (b) � = 0.5 , (c) � → 1 , and (d) the result 
of implementing the standard Neumann condition Eq. (9) 
where the fields are scaled to have zero mean and a standard 
deviation of 1.

As � → 1 , the Neumann component of Eq. (21) tends 
to zero, relating to a fixed (Dirichlet) condition Eq. (8) on 
the boundary as seen in Fig. 1c. On the other hand, when 

(20)λ = �1(�) =
1 − �

�
.

(21)
(
�X + (1 − �)l

�X

��

)
= 0 on �Ω,

(22)λ = �2(�, l) =
1 − α

α
l.

Fig. 1   Differing correla-
tion structures based on the 
weighted D–N boundary 
condition for changing � where 
a � = 0 , b � = 0.5 , c � → 1 , 
and d the result of applying the 
standard Neumann condition 
Eq. (9) (scaled to zero mean and 
standard deviation of 1)
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α = 0 , the Dirichlet component is removed, leading to the 
resulting field matching the corelation structure of the pure 
Neumann enforcement Eq. (9) (see Fig. 1a, d). It can also 
be seen in (a) and (d) that variability within the domain is 
more diffuse than the variation over the boundary. This is 
commonly observed when considering Neumann bound-
ary conditions. The converse is apparent in Fig. 1c, as 
� → 1 , with no variability over the boundary and more 
pronounced structures within the domain. Figure 1b is 
the generated field for � = 0.5 , highlighting that combing 
the components of both conditions can lead to correlation 
structures that are more consistent with those expected 
over the whole domain (this is more explicitly quantified in 
the following sections). Whilst � = 0.5 may not the optimal 
value of � for this l , there is a distinct reduction in error 
in the near-boundary region with the field sharing its cor-
relation structure over the full domain.

4 � Testing procedure

To determine the relationship between α and l for �1 and 
�2 , a detailed parametric testing regime was devised to find 
the optimal value of � for a given range of l . Here, l is in 
relative terms, where l = 0.1 would relate to a length-scale 
parameter of 10% of the domain length. The fields were 
generated for values of l = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 
and 0.4. For each l , � is varied from 0 to near 1 in incre-
ments of 0.1, with 10 realisations being generated at each 
� to allow for the average covariance function for each � to 
be calculated and compared with the true ACF in Eq. (1). 
The average is taken since it is common when modelling a 
stochastic problem to do so for many realisations, and find 
a range of responses. Once the optimal value of α is found 
for this level of precision, the search is continued between 
the two best choices of � for each l  . Here, the maximal 
value of l is taken as 0.4. When applying spatial variation 
using Gaussian random fields in numerical models, it is 
unlikely that higher values will be used due to low levels 
of variation across the domain defeating the purpose of 
imposing variability in the system. It is more likely to be 
at most 0.3 in relative terms. Similarly, due to the break 
down in the formulation, taking l larger than 0.4 will not 
give a reasonable approximation of the desired correlation 
structure for all boundary conditions considered.

To compare the generated field structures with Eq. (1), 
the semivariogram of each field is computed. The semi-
variogram is used to measure the level of spatial continuity 
for a given domain, being most commonly applied in the 
area of geostatistics [1, 29]. It can be calculated as half 
the average squared difference of values separated by a 
location vector

where h is the lag distance, N(h) is the number of pairs of 
points in Ω of separation h , � is the location vector, and z(�) 
is the value in the domain at the vector � . The covariance 
function and semivariogram are directly related by

where σ2
STD

 is the standard deviation of the field values. In 
this way, we can compute the covariance function of each 
field, average over the 10 realisations for each choice of � , 
and compare this with Eq. (1) to determine an optimal value 
of �.

The standard Neumann and Robin conditions, with 
� = 1.42l , are also given the same treatment, with 10 reali-
sations being generated for each l . In doing so, the optimal 
choice of boundary condition can be evaluated, and further 
insight to the choice of � = 1.42l can be used to determine 
its suitability in matching the true covariance function 
Eq. (1). Furthermore, use of an extended domain,  ΩEXT 
and a Neumann condition is also considered (denoted as 
Neumann-Extended) again with 10 realisations being gener-
ated for each l.

Here, the covariance functions are computed over the full 
domain Ω , as well as the near-boundary region. We define 
ΩB as the near-boundary region which includes all points 
that are a distance of less than or equal to l from �Ω . As 
l grows, the approximation of Eq. (1) in the formulation 
breaks down in ΩB due to its increasing size relative to Ω . 
When implementing the SPDE approach, it is advisable to 
minimise ΩB in relation to Ω to avoid heavily constrain-
ing the problem. It is possible for complex geometry that 
Ω = ΩB , leading to the choice of boundary condition applied 
becoming irrelevant due to the propagation of error through 
the whole domain.

5 � Results and discussion

In this section, results relating to the application of the 
following boundary conditions are presented: Neumann, 
Neumann-Extended, Robin with � = 1.42l , weighted D–N 
with� = �1 , and weighted D–N with � = �2 . The computa-
tional domain of the Neumann-Extended case—ΩEXT—is 
a 1.5 m cube consisting of 97,336 nodes discretised into 
91,125 8-noded hexahedral elements, the computational 
domain of the standard case ( Ω ) is a 1 m cube sub-domain of 
ΩEXT , aligned concentrically, consisting of 29,791 nodes dis-
cretised with 27,000 elements. For both domains, the relative 
element length is 0.03333. Once the field has been generated 
over ΩEXT , the 1 m cube internal domain Ω is extracted and 

(23)γ(h) =
1

2N(h)

∑N(h)

i=1

(
z
(
�i
)
− z

(
�i + h

))2
,

(24)C(h) = σ2
STD

− γ(h),
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used to compare with the other methods whose fields are 
generated directly over Ω . The computational domains can 
be seen in Fig. 2, being Ω (a) and ΩEXT (b).

It is worth noting that the strongly enforced Dirichlet 
boundary condition is neglected here as upon its enforce-
ment, the variation on the boundary will vanish (as in 
Fig. 1c), defeating the purpose of having a random field to 
represent variable spatial continuity. It could be argued that 
the domain extension principle should be applied in this 
case, but doing so would lead to an almost identical field 
as that of the Neumann-Extended condition, so it has been 
neglected in this study.

Figure 3 shows the range of average covariance func-
tions obtained when applying the weighted D–N boundary 
condition with � = �1 for α from 0 to near 1 with increas-
ing correlation length (a–d) over Ω . In (a–d), the maximum 
and minimum alpha will define the range over which the 
covariance functions lie for linearly increasing � , and are 
compared against the ACF Eq. (1).

The covariance functions over Ω can also be visualised 
when considering � = �2 , and is shown in Fig. 4.

In both Figs. 4 and 5, the shaded curves plotted between 
the maximal and minimal � values relate to linear increases 
in � between the given region.

Finally, Fig. 5 compares the average covariance function 
over Ω of all considered boundary conditions with the true 
ACF Eq. (1), where the optimal values of � at each l have 
been chosen for both weighted D–N conditions. The coef-
ficient of determination R2 of the covariance functions and 
(1) were used to determine which � resulted in the best fit, 
by maximising R2.

Figure 3 depicts a clustering of curves as � → 0 , suggest-
ing that the optimal � values should have a more non-linear 
relationship with increasing l . What is more enlightening 
are the results seen in Fig. 5 when comparing all tested 
boundary conditions. In (a), almost all applied boundary 

conditions result in a correlation structure that matches well 
with the ACF, with the exception being Neumann without 
extension due to much larger error in ΩB . As l increases, the 
performance of the proposed method progressively degrades 
due to ΩB becoming larger, meaning that the approximation 
of Eq. (1) will weaken in all cases. However even though 
there is a reduction in accuracy, the weighted D–N with opti-
mal α appears to give better matches to the ACF than the 
standard applied boundary conditions.

This can be quantified by computing the R2 values of the 
curves presented in Fig. 5 to evaluate their performance in 
matching the correlation structure of Eq. (1) with increas-
ing l . Consequently, the optimal values for α at each l used 
in Fig. 5 were determined through maximising R2 when 
measuring the goodness of fit between the weighted D–N 
covariance function curves over Ω with the ACF Eq. (1). 
Figure 6 shows the full comparison of all considered bound-
ary conditions in terms of their R2 value for average covari-
ance functions computed over Ω and ΩB , where the suffix 
“- F” and “- B” denote calculation over the full domain and 
near boundary, respectively.

It can be seen in Fig. 6 that the weighted D-N approach 
yields a more consistent match to the ACF. Almost all 
applied boundary conditions result in fields that follow a 
similar pattern of a decreased wellness of fit as l increases, 
and similarly after a certain point as l → 0 . An exception 
is seen when the Neumann boundary condition is applied. 
As l → 0.5 , the correlation structure becomes unchanging, 
where further increasing l will have no effect on the static 
structure. By this, we can assume that the correlation struc-
ture is beginning to stabilise at l = 0.4 , which can be seen 
in the difference in the covariance function of the Neumann 
boundary condition in Fig. 5c, d. Thus, as l increases, the 
ACF will shift closer to the static Neumann covariance 
curve, resulting in a larger R2 value but not necessarily a 
truer correlation structure. It is also worth noting that when 

Fig. 2   The computational 
domains used for field gen-
eration, being: a Ω , a 1 m cube 
with 29,791 nodes, and b ΩEXT , 
a 1.5 m cube with 97,336 nodes
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l = 0.5 , our domain Ω = ΩB , suggesting that the error in the 
correlation structure at the boundary can be seen throughout 
the whole domain regardless of the applied boundary con-
dition. Figure 6 also shows that the Robin condition with 
� = 1.42l may not always be the best choice for approximat-
ing the ACF due to its sharper fall in R2 . This supports the 
suggestion in Roininen et al. [25] that � could be given as a 
function on the boundary.

The effect of the applied boundary condition on the level 
of error in ΩB can also be quantified in this way, being visu-
alised in Fig. 6 as the separation between a given boundary 
conditions R2 curves when calculated over Ω and ΩB respec-
tively. The largest level of disparity is seen when the Neu-
mann boundary condition is applied without extension, where 
the covariance functions calculated over ΩB appear to have a 
better fit. This can be further seen in Fig. 1d, where the cen-
tre of the domain appears more diffuse. On the other hand, 
Neumann-Extended results in the least error over ΩB . This 
is due to the computational domain being extended, and the 
errors seen in the near boundary of will not be carried through 
to the inner cube Ω . The weighted D–N approach also has 
marginal differences in R2 over Ω and ΩB , where the choice 

of � = �1 or � = �2 has negligible effects on the level of dif-
ference. As l decreases, the near-boundary effects can be seen 
to reduce to the point where the curves appear identical, sug-
gesting that an appropriate choice of � can mitigate error seen 
over ΩB . This is in contrast to the Robin condition, whose 
near-boundary effects begin to increase as l decreases from 
0.15 to 0.1, and the Neuman-Extended condition whose near-
boundary effects increase over the full domain but decrease 
over the near-boundary region with decreasing l in this range 
(see Fig. 7). When generating fields with Neumann-Extended 
boundary conditions, the combination of domain extraction 
and a decreasing l suggests the error in the near boundary and 
full domain will converge due to the shrinking of near-bound-
ary region as l reduced. After a certain point, the difference 
between the boundary regions of the weighted D–N conditions 
begins to grow as seen in Fig. 7, and could be mitigated with 
slight variation in the chosen α or using a finer mesh.

Finally, the relationship between the optimal values of α 
with respect to l can be determined as seen in Fig. 8.

The functions can be described as

(25)�(l) = al2 + bl + c

Fig. 3   Average covariance functions over Ω for weighted D–N with � = �1 for full range of � for l equal: a 0.1, b 0.2, c 0.3, and d 0.4
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where a = −4 , b = −0.3857 , and c = 0.9679 when � = �1 , 
and a = −1.1905 , b = −0.6262 , and c = 0.5229 when 
� = �2 . The functions were determined over l from 0.1 to 
0.4, but are applicable from 0 to 0.445. Both instances of 
Eq. (25) are quadratic, with � = �2 being smoother in nature. 
This suggests that upon implementing the weighted D–N 
condition, small variations in the chosen α from its optimal 
value with have a less detrimental effect on the resulting 
correlation structure when � = �2 as opposed to � = �1 . As 
l increases, the optimal value of α reduces in both cases. 
This relates to a more dominant Neumann component in 
the condition. This also agrees with the increase in R2 for 
the Neumann condition, suggesting that at larger l , a larger 
Neumann component would result in a better matching cor-
relation structure. It is also worth highlighting that both fit-
ted curves converge to a common root l = 0.445 . Here, the 
Dirichlet component of the weighted D–N condition van-
ishes, suggesting that the pure Neumann condition will give 
just as sufficient an approximation.

5.1 � Mesh convergence

A similar testing procedure was carried out as above for 
l = 0.1 over the same 1 m cube as in Fig. 2a for differ-
ent mesh sizes to determine if the solution is mesh con-
verged. Here, the weighted D–N boundary condition was 
applied with � = �2 . The mesh was divided into relative 
element lengths Le of 0.1, 0.05, 0.03333, and 0.025 for 
the regular hexahedral elements. The testing range of � 
was chosen as 0.41–0.49 to assess the capabilities of the 
relationship between � and l given in Eq. (25) and shown 
in Fig. 8, where the functions exact value gives � as 0.45 . 
Here, the goodness of fit was determined by Root Mean 
Squared Error (RMSE) and R2 values of the covariance 
function plots to the true ACF. The RMSE was used here 
as an additional metric as it quantifies the error as absolute 
values as opposed to the R2 which is a percentage based 
indicator and can be less interpretable for ill-fitting curves. 

Fig. 4   Average covariance functions over Ω for weighted D–N with � = �2 for full range of α for l equal: a 0.1, b 0.2, c 0.3, and d 0.4
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The covariance functions compared with the ACF for dif-
ferent mesh sizes can be seen in Fig. 9.

Apart from the element length 0.1 case (Fig. 9a), the 
covariance plots match well with the true function, showing 

that for all mesh sizes, the mesh is converged and the �2 rela-
tionship Eq. (25) gives a sufficiently accurate choice of � . 
This can be seen further in Table 1, where the R2 and RMSE 
values are presented for the considered mesh sizes when 
� = 0.45 , with the RMSE values being visualised in Fig. 10.

Fig. 5   Average covariance functions comparison for weighted D–N with � = �1 and � = �2 , Robin, Neumann and Neuman-Extended boundary 
conditions for full range of � for l equal: a 0.1, b 0.2, c 0.3, and d 0.4

Fig. 6   R2 values for average 
covariance functions of all con-
sidered boundary conditions, 
where optimal � values are 
utilised, computed over Ω and 
ΩB denoted by the suffix “- F” 
and “- B” respectively
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The convergence of the mesh—as well as the confirma-
tion of the �2 relationships in Eq. (25) applicability—sug-
gests that the values of � fit through the parametric investiga-
tion are reasonable, and are done so on an appropriate mesh.

5.2 � Dog bone example

To further test the applicability of the weighting parameter, 
random fields were generated over a dog bone shaped spec-
imen, whose shape is synonymous with the experimental 
determination of tensile properties of cement composites 
[15, 22, 30]. The domain Ω was discretised to contain 91,203 
nodes, where the mesh and relative dimensions can be seen 
in Fig. 11a.

The length scale given is relative to the central portion of 
the dog bone, whose dimensions are of 1 in both the x- and 
z-axis. The size and shape of the domain was chosen such 
that the percentage of the domain which is dominated by ΩB 
is relatively low. This ensured that the problem formulation 
is not heavily constrained due to the domain shape, and the 

error seen in the near-boundary region does not propagate 
through the whole domain. Similar to the parametric regime, 
10 fields were generated with a length scale of l = 0.25—
relative to the dimensions of the central portion—for each 
applied boundary condition, with � = 0.32 for the weighted 
D–N condition with � = �2 . A sample field is shown in 
Fig. 11b when using the weighted D–N condition with 
� = 0.32 . The average covariance function for each applied 
boundary condition was determined, as seen in Fig. 12.

As expected, the Neumann case offers the worst fit to 
the function, with the Robin and weighted D–N conditions 
offering a marginal under and over estimation respectively. 
The choice of � adopted here is based on a function obtained 
from a domain where the relative length scale is well defined 
in all directions. For the case of the dog bone, the true rela-
tive length scale differs in each portion of the domain, where 
the top and tail sections have a smaller associated l than that 
considered. This will be reflected in the chosen � , where 
a smaller l suggests taking a larger � . In this way, taking 
a larger alpha will shift the covariance function closer to 
the true ACF, converging to the best possible fit in terms 
of the error estimation for this domain and applied bound-
ary condition. Both the robin and weighted D-N provide an 
R2 > 0.99 from Fig. 12, suggesting that both are more than 
sufficient to apply in this case. The benefit of applying the 
weighted D–N condition here is the choice of whether or not 
to tune it by small variations in α to further reduce the error.

The near-boundary error associated with complex geom-
etries is related to the size of the near-boundary region rela-
tive to the full domain, as well as the distinct portions that 
it may encompass. Having complex geometry could lead 
to regions of the domain that are entirely made up by the 
near-boundary region due to its size being dependent on the 
length scale. Having a smaller relative length-scale value 
would suggest a reduction of the near-boundary region, 
so the chance of having zones that are purely made up of 
the near-boundary region would decrease. However, it is 

Fig. 7   R2 values for average 
covariance functions over a 
relative length scale of 0.1–0.15 
for all considered bound-
ary conditions excluding the 
standard Neumann condition, 
where optimal α values are 
utilised, computed over Ω and 
ΩB denoted by the suffix “- F” 
and “- B” respectively

Fig. 8   Relationship between the relative length scale l and optimal �
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possible that small relative length-scales will not be suffi-
cient to reduce this as there could be thin sections of domain 
that contain points that are always close enough to the 
boundary to be considered inside the near-boundary region. 
In extreme cases, where much of the domain is considered 
as the near boundary, a convenient but less computation-
ally efficient choice may be to apply the Neumann-Extended 
boundary condition to an extended domain which envelopes 
the desired numerical domain, such that it is largely out of 
the near-boundary region and can be extracted for further 
use.

6 � Concluding remarks

An optimised boundary condition has been proposed and 
applied to the formulation of the stochastic PDEs solved 
to generate correlated Gaussian random fields. The condi-
tion aimed at reducing spurious values in the near-boundary 
region, and was found to perform well inside and outside of 
the range of the parametric analysis that followed. It was 
found that the near-boundary error of the weighted D–N 
approach reduced with decreasing l when employing optimal 

Fig. 9   Covariance plots of cubed domain, with l = 0.1 , over the optimal range of � for Le of a 0.1, b 0.05, c 0.03333, and d 0.025

Table 1   R2 and RMSE for � = 
0.45 and l = 0.1 for different 
relative mesh sizes

L
e

R
2 RMSE

0.1 − 2.60544 0.19559
0.05 0.94716 0.05224
0.03333 0.98970 0.02410
0.025 0.99522 0.01643

Fig. 10   RMSE values for � = 0.45 and l = 0.1 with different relative 
mesh sizes
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values of � , and is more consistent with the correlation 
structure of the full domain. Similarly, the weighted D–N 
approach provides an overall better match to the autocorrela-
tion function when compared with all other applied bound-
ary conditions. This was also tested for complex geometry 
and was found to perform well. The functions for � based 
on the parametric study enable its optimal value to be deter-
mined for other domains and desired length-scales.

As such, the weighted D–N approach is recommended as 
being the applied boundary condition when formulating the 
stochastic PDEs to be solved. Whilst both � = �1 and � = �2 
perform equally well, � = �2 is a more practical choice. 
When � = �2 , the resulting covariance functions show that 
changing � leads to more uniform variation in resulting 
covariance structure, providing a more linear relationship 
than if � = �1 . This suggests that choosing an α with small 
variations from its fitted value will have less of an impact on 
the final correlation structure than if � = �1 , making it more 

consistent when applying the condition outside of the tested 
range or on less regular domains. The other main advantage, 
as opposed to the Neumann boundary condition with exten-
sion, is the lack of dependence on an extended domain. In 
this case, the computational domain was chosen as a cube 
with relatively low numbers of elements, so computational 
expense did not need to be considered when solving over an 
extended domain. If the field generation method was con-
ducted over a finer mesh, then this dependence could cause 
complications. Finally, the weighted D–N approach was 
shown to be significantly more accurate for larger values of 
l as opposed to the Robin condition with � = 1.42l , thus pro-
viding better control over the resulting correlation structure 
where the formulation begins to break down.

The relationships presented are given in relative terms, 
being highly applicability to a wider range of domains and 
engineering problems. The proposed boundary condition is 
aimed at giving a more sufficient approximation of the cor-
relation structure of said parameters, allowing for a more 
robust quantification of uncertainty through numerical 
analyses.
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