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GEOMETRIC STRUCTURES ON THE ORBITS OF LOOP DIFFEOMORPHISM GROUPS
AND RELATED HEAVENLY-TYPE HAMILTONIAN SYSTEMS. 11

O. E. Hentosh,! Ya. A. Prykarpatskyy,>> A. A. Balinsky,* and A. K. Prykarpatski® UDC517.9

We present a review of differential-geometric and Lie-algebraic approaches to the study of a broad class
of nonlinear integrable differential systems of “heavenly” type associated with Hamiltonian flows on the
spaces conjugated to the loop Lie algebras of vector fields on the tori. These flows are generated by
the corresponding orbits of the coadjoint action of the diffeomorphism loop group and satisty the Lax—
Sato-type vector-field compatibility conditions. The corresponding hierarchies of conservation laws and
their relationships with Casimir invariants are analyzed. We consider typical examples of these systems
and establish their complete integrability by using the developed Lie-algebraic construction. We also
describe new generalizations of the integrable dispersion-free systems of heavenly type for which the
corresponding generating elements of the orbits have factorized structures, which allows their extension
to the multidimensional case.

1. Multidimensional Systems of the Heavenly Type: Modified Lie-Algebraic Scheme

Let ]if/fi(’]l‘"), n € Z, be subgroups of the diffeomorphism loop group
Diff (T") := {C > S* — Diff(T")}

holomorphically extended to the interior D} C C and exterior D C C of the central unit disk D' c C!,
respectively, so that

§(c0) = 1 € Diff(T")
for any g(\) € ﬁf_(T”), A € D! . The corresponding Lie subalgebras

diff 1 (T™) ~ Vect (T")

of the diffeomorphism loop subgroups f)\if/fi (T") form vector fields on T" that are holomorphic on the do-
mains D} C C!, respectively, where, for any a()\) € diff_(T"), we have a(co) = 0.
The Lie algebra diff (T™) can be split into the direct sum of two Lie subalgebras:

diff (T™) = diff  (T") & diff_(T™).
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Its regular adjoint space a;fJf(T")* with respect to the convolution:

(@) = res (i(z; A)la(z; A)) go, (1.1)

where

(1 Ml \)) gro = / d{I(z; N), alz; V)

"H‘n

is the ordinary scalar product in the Hilbert space HO := Lo(T™; R") for any elements | € E(T”)* and a €

aﬁ:f/(']T”) of the form
0 0
M(‘)Tj = <a(x’)\)’8x>’

> (s Nday = (1w M), da),
j=1

Il
o,
i M:
I

=

<

]

can be identified with the Lie algebra Eﬂff/(’]l‘")* Here,

o _ (o 9 9N
Or " \0z1 Ozo’ " Oz,

denotes the operator of gradient in the Euclidean space (E";(-,-)). The Lie commutator of any vector fields
a,b € diff (T™)can be found according to the rule

= (ot g )bl g1 ) = (b o a5 )-

In addition, we have the following identification of regular adjoint subspaces:
diff | (T ~ diff _(T™),  diff_(T™)* ~ diff  (T"),

where any [()\) € E,(T")* satisfies the condition [(0) = 0.
We now construct the loop Lie algebra

G := diff (T") x diff(T™)*

as the semidirect sum of the Lie algebra diff (T™) and its regular adjoint space diff (T™)* on which the Lie com-
mutator, for any pair of elements (a; x ll) (ag X lg) €q,is given by the rule

a1 x 11, a2 % o] == [a1, 2] X (adj,li — ad, 21), (1.2)
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where

a5 gy (D) — ()",

(adil|b) == (I|[a,b]) for [ € diff(T™)* andany a,b € diff(T™),
is a standard coadjoint mapping of the Lie algebra (/iﬁ(T") on its regular adjoint space a;ff(’]l‘”)* with respect

to convolution (1.1). On the Lie algebra G, we can introduce an ad-invariant nondegenerate scalar product in
the form

(a1 X I1|ag x Ip) == (la|ar) + (I1)az), (1.3)

where aq X l~1 an as X l~2 g , which enab~les one to identify the regular adjoint space G* with respect to (1.3)
for the algebra G with this Lie algebra, i.e., G* ~ G.
We can split the Lie algebra G into the direct sum of two subalgebras [1-3]: G = G & G_, where

Gy = diff(T"), x diff(T")*, G := diff(T")_ x diff(T™)%.
This enables us to introduce a new Lie commutator on ,C’; in the form
[y, W2 = [Ridy, we] + [W1, Ruz],

where Wy, € G, R = (Py — P-)/2 is the standard R-operator homomorphism [10, 11, 15] on G and,
by definition, Py : G — G+ C G. Thus, we can apply the classical AKS (Adler—Konstant—Symes) theory to the
Lie algebra G in order to construct Hamiltonian systems on the regular adjoint space G* ~ G with the use of
hierarchies of Casimir invariants for the base Lie commutator (1.2).

To describe the corresponding Lie-algebraic scheme in detail, we determine the Casimir invariants h € (_C’; ).
By definition, these invariants satisfy the relation

* . e —
ath(~;a)(l, a) =0,
which can be rewritten in the commutator form as follows:

[Vh(l;a),ax 1] =0, (1.4)

where

Vh(l;@) == Vh; x Vhg € diff(T") x diff(T")* = G

is the gradient of the Casimir invariant i € I(G*) at the point (I;a) € G* ~ G. Relation (1.4) is equivalent to the
system of differential-algebraic equations

[Vhy;al =0,

adygy, | — ad;Vhs = 0.
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In the explicit form, these equations can be rewritten as follows:

(Vhy,0/0zx) a — {a,0/0xz) Vh; =0,
(1.5)
(0/0x,Vhy) 1+ (1,(0/0x)Vhy)) — (0/0x,a) Vhe — (Vhg, (0/0x)a) = 0,

where
Vhi = (Vh,0/0z), [:=(l,dx),

Vhg = (Vhg,dx), a:= (a,0/0x).

The system of linear equations (1.5) for a given element a X [ € G, which is singular as |A\| — oo, can be
solved by using the asymptotic expansions

Vi~ S VRPN, Vhe~ Y VRN, (1.6)

JEL+ JEL4
which enable us to get the infinite hierarchy of gradients
VAP (;a) = APVh(l;a) € G,  peZy,

for the corresponding Casimir invariants h(®) & T (G*), p € Z,. If the given element a x l€Gis singular
as |A| — 0, then the system of linear equations (1.5) can be solved by using the asymptotic expansions

Vi~ > VRON,  Vhe~ Y VADN, (1.7)

JEZ+ JEZ+

which enable us to construct an infinite hierarchy of gradients
Vh?)(:a) = APVh(a, ) e G, peZy,

for the corresponding Casimir invariants h(?) € I(G*), p € Z,..
Further, we assume that the gradients

VW (@;1) := XvvhM(a, 1) and  VAD(@;1) = VhP(a;l) e G
are found for two Casimir invariants A h(®) € T (G*) (not necessarily different) with some integer p,,p; € Z

satisfying Eq. (1.5). By using the classical AKS theory, we construct two commuting flows for the evolutionary
parameters y, ¢ € R in the regular adjoint space G* ~ G:

0 v - O (o) -
5= [Vhl ), ] TR [th, a} (1.8)
and
a * 8 T *
a—yl = —ad, (y>l+ad (Vhi), 5L = —ady, (t)l—i—ad (vh), (1.9)
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where

(VA % VhY)) = PR (@0 € Gy and (VA" x VAL ) i= PyVAY (330) € Gy

l~7+ a,+ a,+

are the projections of the corresponding asymptotic expansions (1.6) and (1.7). For the chosen element a x [ e
G* ~ G, flows (1.8) and (1.9) are caused by the Hamiltonian flows

9
oy

0

ax ) ={axlh®
(@xi)={axl,h¥}r, =

(axl)={axl,hg (1.10)
generated by the R-deformed Lie—Poisson bracket [10-12, 15]:
{h, fir = (ax LIVh(Ea), VF(La)x) (L.11)

in the regular adjoint space Q~* ~ Q~ . Here, h, f € D(g~*) are Fréchet-smooth functionals. The condition of
commutativity of these flows is equivalent to the following system of two equations:

W o] _ 9o, | 9 o)
[th, th] ~ 5 L+ 5 kL =0 (1.12)
and
adiP =0,
P =ad . (VhY & vy~ Lgpw o 9 gy
=a th"yl( a,+) —a thgti( a,+) ~ otV lat + afy a,+

for any element a X = Q .
Thus, the following statement is true:

Proposition 1.1. Hamiltonian flows (1.10) in a regular adjoint space G*~¢G generate the systems of com-
muting evolutionary equations (1.8) and (1.9). The commutativity condition for the evolutionary equations (1.8)
is equivalent to the Lax—Sato compatibility condition (1.12) for a certain system of nonlinear partial differential
equations of the heavenly type.

We generalize the described scheme of construction of Hamiltonian flows in the regular adjoint space G*
as follows:

. . 4 . . "Sl L 5 . . .
We parametrize the Lie algebra G by using the point product G := H - G and consider its central extension

FAS

by the Maurer—Cartan 2-cocycle ws : é X Q — C:
@olay x Iy, dg X Ig) = /[(zl,aag/az) — (Iy,0a1/02)),
St
where a; X [1, as X l} € G. On the central extension & := G & C, the commutator is given by the rule

[(dl X l~1;041), (ELQ X Zg;al)} = ([dl,ag] X (adglig — ad22l~1);d)2(&1 X l~1,(~12 X ZNQ))

for any pair of elements (a; x I a1), (ag X lo; a1) € 6.
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For any smooth functionals h, f € D(®*), the R-deformed Lie—Poisson bracket (1.11) in the regular adjoint
space &* has the form

{h, [}z = (ax I, [Vh(;a), Vf(;a)]r)
@2 (RVA(l;a), Vf(l,a)) + @ (Vh(l;a), RV f(I;a)). (1.13)

The corresponding Casimir invariants h(?) ¢ T (Q~5*), p € Z, are determined by the standard Lie—Poisson
bracket as follows:

{h(p), f} =0,
(1.14)
(@ w1, VA (1,a), V£ (@ D)]) + @2(Vh®(@,0), V f(a,D)),

for all smooth functionals f € D((;S*). By using equality (1.14), we conclude that the gradients VA(®) € & of the
Casimir invariants h(?) € I(&*), p € Z, satisfy the equations

~ 0 * 7 * 0
[Vhia} - &Vhl" = 07 athZl - adth& - &Vh& =0

for any chosen element @ x | € G*. By using some of the obtained Casimir invariants (®), h(®) Sy ((;5*) and
relation (1.13), we construct the following commuting Hamiltonian flows in the regular adjoint space &*:

T 9
a—y(axl):{axl,h(y)}n, 8t(a><l {axl,n®W} (1.15)

which are equivalent to the system of evolutionary equations

9 W -1, 9 oW 9 ® 1, 9o
8ya = [th,a} + 82Vhl~7+, 5=~ [th, al + (%th, (1.16)
and
P ) B © N ()
ayl = _athlgyll + ada( C h&7+) + az ChaﬁL,

; (1.17)
_ « 0 (1
5l = —ady, mH—ad (Vhe)) + 5V,

The condition of commutativity of these flows is given by the following system of two equations:

l ,+ 8 ] + ay ] -‘r
and
P=ad. (V) —ad® ., (VRY)) - th(y) 9 g
va® Y Nt va) VAt gt 83/ a+
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for any a X [ € G. The first of these equations can be regarded as the Lax-type compatibility condition for the
evolutionary equations (1.16). As a consequence, we can formulate the following statement:

Proposition 1.2. The Hamiltonian flows (1.15) in the regular adjoint space & ~ & generate systems of
commuting evolutionary equations (1.16) and (1.17). The commutativity condition for the evolutionary equations
(1.16) is, in fact, the compatibility condition for the set of linear vector-field equations

O/0y + VR =0, 0/dz+ap =0,  9/dt+ VA Y =0 (1.18)

forall (y,t;\,z,7) € R? x (C x St x T?) and the function v € C?(R? x (C x S' x T"); C); moreover, on the
orbits of coadjoint action of the Lie algebra & it is reduced to a system of nonlinear partial differential equations
of heavenly type.

According to the Lie-algebraic approach described above, every Casimir invariant RO e I (8*), j € Zy,
for the element a x [ € &* generates, in the regular adjoint space &*, the following hierarchy of commuting
Hamiltonian flows:

d . _ @) A1, 9 o, 0)
i ~[Vh{) ] + 5 Vhy),

(1.19)

d - N T R TR )
ditjl = —de}ll{]ll + ad&(Vhd,+> + %VhdﬁL.

The hierarchy of flows (1.19) can be represented with the help of a generating vector field

as follows:
L) =~ [Thy(), a0+ L Vhy(n) (1.20)

and

— L, Th) T () = (wdw)m))

- (iia(#)dw&(x)\?(x)) + (diLa(M)Vha()\)\Y()\)» (1.21)

p—=A H—A
where Y()\) € & and p € C is such that |\/u| < 1 as |A|, |u| — oo. Here,

diff(T") ~ T'(T") and diff(T")* ~ AY(T").
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For the generating element @(\) x [(\) € T'(T™) x A*(T™), relations (1.20) and (1.21) can be rewritten in the form

d _ o -
@a(k) = %K(/M) (1.22)
and
ii(x) = L(d/d Vhi ()N + Lz, Vha(p) + giv( )
dt - -\ £, AV AN AV EP al\l
= div K (p, \) [(\) + d%Vh&(u), (1.23)
where
dfdt =00t + Lz, dfdz = ﬁ@/@z + L iy
and also

Liay = Rundt diggy  and Lz, =ig,a)d+dig,

are the Cartan expressions [11, 13, 14] for the derivatives along the vector fields

Rlu ) = Vi = 2 (T, )

and

A3 = i) = 2 (ol 4 )

respectively, where |\/u| < 1 as |p|, |[A\| = oo, which are equivalent to the hierarchies of the Lax—Sato equations
[5, 6, 8,9, 16-18] for the generating flows (1.23) and (1.22). These flows can be interpreted by using the classical
Lagrange—d’ Alembert principle [13] in exactly the same way as in [4].

The proposed Lie-algebraic scheme can be used to construct a broad class of integrable multidimensional
systems of heavenly type on function spaces.

1.1. Example: New Modified Mikhalev—Pavlov Equation in the Four-Dimensional Space. If the generat-
ing element a X [ € G* of Hamiltonian flows in the regular adjoint space &* is chosen in the form

ax 1= ((ug + veh — X)3/0x X (wy 4 (A )da), (1.24)

where u,v,w,( € C?(R? x S' x T';R), then the asymptotic expansions of coordinates of the gradient of the

corresponding unique functionally independent Casimir invariant h € I(®*) as |[A\| — oo can be represented
in the form

Vhy~1-— VAN TE—up A2 — AT — (uy + vv, — 2(8;1vmvz)))\_4

+ 0 AP — (—uy — vy + 2(95 vy DA+
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Vha o —CA ™ = wed ™2 = CATP = (w2 — Qv + 205G + (05 M02Ge) )N

+ AT — (—wy 4 vy — 202Gy + (07 0aCe) )N+
Vhlgyl = A =0\ —up N — o\ — (uz + vv, — 2(0; 1vzv2)),

thﬁ = *C:c)\3 — wx>\2 = GA = (wy — Gvz + 2v2(; — (830_1U$C1)Z)

Vhlgtjr =20 — NS — A — 0\ — (uy + vpv, — Q(G;IUMUZ)))\Q

+ vy A — (—uy — VU, + 2(8;1vxxvy)),

Vh((}t’)jL = _Cx)\5 - wm)\4 - Cz)\g - (wz - CI'UZ + 2'U36Cz - (aas_lvzgx)z)A2

+ GA — (—wy + Guy — 2v,Gy + (@Zlvxéz)y),

the commutativity condition for the Hamiltonian flows (1.15) is reduced to the following system of equations:

Uzt + Uyy = —UylUgy + U Ugy — UyUzy + VpUzt — UzVUyUzy + UyVrVszy

— vgvzvxy + vivyvm — 2€Ugy — 28Uz, + 2€; — 28y + 2€0yVzy + 25V, V4,
Vot + Uyy = —UyVUgz + Uz VUgy — UylUgz + VzUgy
— 2€Uzy — 28V, — 20,VyVp, + 2050, Vgy,
“Ugy — Uzz = UgUgz — UzUggy — UggUzVz

+ Uz VrzVzr — Uz Uz Vs + (Uacvz)z + 2uwxe - 2637 (125)

_ 2
Uy — VUzz = UgzVUg — UzVUgy — UgzUz + UgVzz — 2V52V50, + VyUgz + 2Vzz€,

—Ugt + uyz = _u:vu:vy + uyu:czr + ua:asvasvy
— UgUpyVg + UV Uy — (Vz0y) 2 + 2Uges — 255,
—Ugt + Vyz = —UgyVg + UyUzz + UgzVy
— UgVgy + 2052V Vy — vgvxy + 20428,

€x = UggUyz, Sg = —UzaUy-
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As aresult of the reduction v = 0, we get a collection of independent differential relations obtained in [18-20],
namely, two four-dimensional (in the space variables) equations

Uzt + Uyy = —Uylzy + UyUgy (1.26)
and

—Ugt + Uy = —Uglgy + UyUzy (1.27)
and one three-dimensional (in the space variables) equation

—Ugy — Uy = Uplpz — UpUgg. (1.28)

In particular, in the case of reduction of independent space variables + — y € R, t — z € R, Eq. (1.27)
becomes trivial, while Egs. (1.26) and (1.28) are reduced to the Mikhalev—Pavlov-type equation

Uyy + Uyy = —Uylly, + Uy lyy. (1.29)

Proposition 1.3. The modified system of Mikhalev—Pavlov equations (1.25) admits a vector-field Lax—Sato
representation with a “spectral” parameter \ € C and the generating element a X | € G* of the form (1.24).

The generating element (1.24) can be rewritten in the form
axli=——wxdp, dG=u+vr=Nz,  p=w+\ (1.30)
which is explicitly connected with the space of moduli of gauge connectedness for the coadjoint action of the
corresponding Casimir invariants. This enables one to construct multidimensional generalizations of system (1.30)
by choosing the generating element in the form
axil:=(Vi, V) x dp, (1.31)

where 7, 5 € Q°(T") ® C, n € N. Case (1.31) will be analyzed elsewhere.

1.2. Example: New Modified Martinez-Alonso-Shabat Equation in the Five-Dimensional Space. For a gen-
erating element a x [ € G* of the form

ax 1= (((ug, + cg,) + eX)d/0x1 4+ ((vg, + cvg,) + cA)D/x)
X ((wg, + cwy,)dz1 + (Czy + cCyy)dx2), (1.32)

where u, v, w, ( € C?(R2xS!xT?;R), ¢ € R\{0}, we obtain the following asymptotic expansions of coordinates
for the gradients of the corresponding two independent Casimir invariants h(1 h(2) € I(&*) as |\| — oo:

W L+ (g, + gy AN —u A2+
Vig = -1 —2 ’
C+ (Vgy 4 CUOZ)AT — 0 A7+ ...
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) (Way + W) A —w A2 4
Vhg = 1 2 ’
(gm + ch))‘_ - Cz)\_ + ...
and
@ L+ (Ugy — gy A E+ A2+
Vhl~ ~
—c+ (Vg — V)AL +FWAT2 L.
@ (Wz, — CWe )N+ 0A72 4 ...
Vhy' ~
(Coy — Clan)NEHXAT2 4.
where
Ky + CRzy = —(Uzgy — ClUzyy)
+ 2C(uﬂcluﬂﬂlﬂﬁz = UgyUg gz + Vg Uzgzy — Uwzuwlm)v
(1.33)
Woy + ey = —(Vawy — CVzay)
+ 2c(urlvﬂf1$2 = Ugy Vg 2y + Vg1 Vzozy — v332v$1-'52)7
and
Oz, + COzy = _(wle - szxg)
+ 20(Ugy Way 2y — Uy Way 2y + 2Wap Uy g — 2Wary Uspy g
+ UV Wagzy — Vo Waizg T WaaVpyze — WagVagws + C:rgvzmcl - Cxl Umlxz)v
X1 + CXxy = _(szl - Cszg)
+ 2C(UI1C:E2:EQ — Uz, Cxlétz + 2<xzvx1$2 - 2C361 Vzoxo
+ uﬂ?lcl‘llEQ - umzczlm + Cﬁfzuzlm - Cllurlm + WgoUzizo — wﬂ?lumzm)'
If
W A2+ (ug, + Clg,)\ — U, W (Wgy + CWgy )X — W,
Vh1~+ = , Vhfl,-i- =
7 A + (Vzy + V2 )A — vz (Coy + €Can)A = ¢,
and

(t) >‘2 =+ (um - Cux2)>\ +K (t) (wxl - waz))‘ +o
Vhi-i- = y Vh& + = )
’ —eA? 4 (Vg — CUR )N+ W 7 (Cay — Cap) A+ X

then the commutativity condition for the Hamiltonian flows (1.15) is reduced to the following system of equations
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of heavenly type:
Uzt + Ky = —Uzg K — UzgoW + Uz Ry + VzRay,
Uzt + Wy = Vg K — Uz W + UzWyy + VWay,
Uyay + Clyzy = —(Uay + Clgy)Uzz; — (Vay + CVay ) Uzay
+ (uzlml + Cuaclxg)uz + (ux1z2 + Cumﬁcg)“z — Uzz,
(1.34)

Vyz, + CUyzy = —(Uzy + CUy)Vzzy — (Vay + U2y ) Vi
+ (Vayzy + CUzyzy) Uz + (Vayzy + CUpyay )Vz — Vzz,

Utz + ClUizy = (uxl + Culz)’iml + (Ufrl + C'UI2)’{962
- (uwlxl + cuﬂhm)"’<u - (uwlm + Cuxzwz)w + Kz,
Vigy + CUtzy = (ul’l + Cuwz)wxl + (Uétl + CUHC2)WI2

- (lewl + CU-'EI-’JUQ)H - (lefm + Cva?zwz)w + wz.

Thus, the following assertion is true:

Proposition 1.4.  The constructed system of equations of heavenly type (1.34), (1.33) admits a vector-field

Lax—Sato representation with “spectral” parameter X\ € C, which is connected with the element & x | € G*
in the form (1.32).

For v = u, w = k, and ¢ = 1, system (1.34), (1.33) can be reduced to the following system:
Uzt + Ky = —(Uzgy + Usgy) K+ Uz (Kgy + Kay),

(1.35)

Koy + Koy = = (Uszy — Uzwy) = 2((Uay Uy )y — (Uy Uy )y )-
The presence of additional constraints u, = u,, + ug, for Eqs. (1.35) leads to the following system:
(ugp, + Up,) — (Ugay — Ugas) = Uaizo (Uz; — Uay) — Uz Uay + Uspaolay — Uayzs (Us, — Us,)
— Uy Uy (Uy + Uiy + Uy Uiy (Uy + Usy)
— 205 + (Usyzy + 2,z + Uy ) Ps
Py F Pry = (UzyUsy)zy — (Uzy Usy )y

where £ = 2t and §j = 2y, which can be regarded as a modification of the system of Martinez-Alonso—Shabat-type
equations of heavenly type [21].
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2. Multidimensional Systems of ‘“Heavenly’” Type: Generalized Lie-Algebraic Structures

For subsequent generalizations of the Lie-algebraic scheme connected with the loop group ﬁf(’ﬂ‘") on the
torus T", n € Z,, we can use the approach proposed in [5].

Since the Lie algebra 51\5(11‘”) is formed by elements of a loop group analytically extended from the circle
S' := oD', which is the boundary of the central unit disk D' C C, with the help of a complex “spectral”
variable A € C, both to the interior D! C C and to the exterior D1 C C of the disk D' C C, it is analytically
invariant under the diffeomorphism group of the circle Diff (S'). This property enables one to consider the extended
Lie algebra

diff (T" x C) = diff (T" x D} ) & diff(T" x D' )

of holomorphic vector fields on the Cartesian product T¢ := DL x T™ whose elements are vector fields of the form
_ 0 o) = )
a(x; A) := ag(x; )\)5 + <a(:c; A), 8x> = ; aj(z; )\)a—xj,

where x € T, a(\;x) € E x E™ are vectors on E x E™ holomorphic in A € D}, and in addition,

o _(o 0 o 9\

Ox = \ON Ox1’ Oz2’ """ Oxp

denotes the gradient operator in the Euclidean space E x (E™;(-,-)) with respect to the vector variable x :=
(A z) e TR

Consider a semidirect sum

G = diff(T" x C) x diff (T" x C)*

of the loop Lie algebra diff (T™ x C) and its regular adjoint space diff (T™ x C)* with respect to the convolution:

(Ia) := yes (I(x)]a(x)) mo

for any [ € diff(T™ x C)* and @ € diff(T™ x C). Here, each element [ € diff(T" x C)* has the form

L= (l(x; ), dx) = lo(z; \)d\ + ilj(:n; N)dzx;.

J=1

The commutator on the loop Lie algebra G for any its elements a; x Iy, as X Iy € G is given by the rule
[dl X Zl,ELQ X Zg] = [@1,&2] X adleQ — adZJl.

By using the decomposition of the Lie algebra G into the direct sum of two Lie subalgebras: G = G, & G_,
we can construct the R-deformed commutator as follows:

[(_11 X l_l,C_ZQ X Z_Q]R = [R((_ll X l_l), as X Z_Q] + [C_L1 X l_l, R((_Iz X 1_2)],

where a; X l_l, as X Z_Q € G, R := (P+ — P_)/Q, and P:tg = Gi - G
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On the Lie algebra G, we can introduce an ad-invariant nondegenerate scalar product:

3w 07 x 1) o= res (@ x 17 x 7
(@ x Il|r x m) ;\"g(%(ax |7 X M) go,

where, by definition,
(@ x I|F x m)go = (m|a)go + (I|F) o 2.1
for any pair of elements @ x [, ¥ x m € G. By using this product, we can identify its regular adjoint space G* with

the Lie algebra: G ~gG.
For any smooth functionals f,g € D(G*), we can construct the following two Lie—Poisson brackets:

{£.9} = (ax UIVf(Ea), Vo(i:0)])

and
{f.9}r= (axVf(Ea), Voa)lr). 22)
where
Vf(l;a):=Vfix Vfa~(Vf(l;a),(0/0x,dx)T) € G
and

Vy(l;a) .= Vg; x Vga ~ (Vg(l;a), (0/0x,dx)T) € G*

are the gradients of the functionals f, g € D(G*) with respect to the scalar product (2.1) at the point axl € G* ~ G.
Here,

Vii=(Vf,0/0%x), Vfs=(Vfa,dx) and Vg =(Vg,0/0x), Vgs=(Vga,dx).

Assume that a smooth functional h € I(G*) is the Casimir invariant, i.e.,

ady i (@ x 1) =0 (2.3)

for a chosen element @ x [ € G* ~ G. Since, for any element a x l € G5 ~ G and any smooth functional
f € D(G*), the coadjoint map has the form

ad oy (@w 1) = ([Vhy, a] (ad*w[i + adiVhy),

V(

we can rewrite condition (2.3) as follows:
[Vhi,a] =0, ad*wj —ad;Vhg = 0.
Moreover, the Casimir invariant h € I(G*) satisfies the system of equations
(Vh;,0/0x)a — {(a,0/0x) Vh; =0,

2.4)
(0/0x, 0V ) L+ (1, (0/0xVIy)) + (8/0x, 0a) Vha + (a, (/0xVhga)) = 0.
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For any Casimir invariant h € D(G*), the system of equations (2.4) can be solved analytically. If the element
I x @ € G* has a singularity as |A\| — oo, then, for every p € Z,, we determine this solution by using the
asymptotic expansion

VP (1;a) ~ AP Y (VAP VRE) AT (2.5)
JELy

and substitute it in the system of equations (2.4). Hence, the asymptotic solutions of system (2.4) can be found
with the help of recurrence relations.

Further, we assume that, for some Casimir invariants h*), h() € I(G*) involutive with respect to the Lie—
Poisson bracket (2.2), the generators of Hamiltonian vector fields can be chosen in the form

Ve (la), = (VAP (za),, VRO (Ga), = (VAP (La)), (2.6)
where
VAW (La), = (Vi) x VAY)) € Gy, VRO (Ga), == (Vi) x VAL ) € Gy,
p®) p® ¢ Zy.
In view of the Lie—Poisson bracket (2.2), these invariants generate the commuting Hamiltonian flows
0 ,_ = X _ 7
ETy(a 1) = —adgy) 1a), (@ % 1),
2.7)
0, _ = " _ 7
&(G; X l) = —adv]_b(t)(l:a)+ (G/ X l)

for any element @ x | € G* ~ G with respect to the evolutionary parameters y, ¢ € R. The constructed flows (2.6)
can be represented in the form

Da)dy = — <Vh§y), aax> a+ <a, aax> vhY,

(2.8)
_ 0 9 9 (t)
Oa /ot = <Vhl ,8X>a+<a, 8x>Vhl
and
_ /9 gyw\, _ [
9l /oy = <8X,Vhl >z <z, <8Xle
0 0
~ (v) il vaN()
(o) T+ (a (o))
(2.9)
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The commutativity condition for the flows (2.6) is equivalent to the system of equalities

0 0

) (t Yo 9o _
(VA V]| — SR+ 5y Vi =0 (2.10)
and
adiP =0,
P—ad o, (VE) = adr. o (VA®)) = Lyp® 4 9 gy
Vhlg,?:)_ a,+ Vh;ﬂ_ a,+ ot a,+ 8:1/ a,+

where ax ! € G. In addition, equality (2.10) is the compatibility condition for the following three linear vector-field
equations:
oY oY

Fhs Vh%{gw =0, (a,0/0x0 =0, S+ Vhlﬁfiw -0, @.11)

for some function ¢ € C?(R? x T#;C), all y,t € R, and any x € T¢. The obtained results can be formulated as
the following statement:

Proposition 2.1. Let h¥) (") ¢ | (G*) be Casimir invariants for the loop Lie algebra G with respect to the
scalar product (-,-) at a point @ x | € G* of the regular adjoint space G* ~ G of this Lie algebra. Then evolu-
tions (2.7) on G* are commuting Hamiltonian flows equivalent to the system of evolutionary equations (2.8), (2.9).
The commutativity condition for the evolutionary equations (2.8) is the condition of compatibility of three linear
vector-field equations (2.11).

Note that, in the case where the generating element @ x [ € G* is singular as |\| — 0, the asymptotic

expansion (2.5) should be replaced by the formula

VP (a) ~ A ST VP 1 a)N

JELy

for every p € Z,. The corresponding commuting Hamiltonian flows for the chosen integers p,,p; € Z, have
the form

a0, = " _ =
&(G X l) = ath(t)(l*7a)7(a X l),
0 ,_ - " _ =
%(a X l) = ath(y)(l—ﬁ)i (a X l),

where

VAW(I,a)_ = AN P VAP (1 a))_,

VA1 a)_ == A\APIVRP)(1 a))

and y,t € R.
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As in Sec. 3, we consider the central extension of the point product GShi= H ESlg‘ of the holomorphic loop
_ _ _ z
Lie algebra G by the Maurer—Cartan 2-cocycle ws: G x G — C of the form

@2(@1 X l_l,(_lz X Z_Q) = / [([1,8@2/82)1 — (1_2,%1/82)1],
St

where a; X I1,as X Iy € G.
For any smooth functionals h, f € D(&*) on the regular space &* adjoint to the centrally extended holomor-
phic loop algebra & := G @ C, the R-deformed Lie—Poisson bracket has the form

{h Iz = (ax L[VA(,a), V(I a)lr)
+ w02 (RVA(l,a), Vf(l,a)) + w2 (Vh(l,a), RV f(I,a)). (2.12)

The corresponding Casimir invariants h(?) € T (&*), p € Z, are determined by the standard Lie—Poisson bracket
as follows:

(1P £} = (@ 1,[vh?(l,a), V£ ([,a)]) + @ (VAP (1,a),V f(I,a)) = 0

for any smooth functional f € D(&*).
It follows from equality (1.18) that the gradients VA(®) € G of the Casimir invariants h(?) € T (&%), p € Zy,
satisfy the equations

0 - 0
[Vhg,a] — %Vh; =0, ad*Vhl,l —ad:Vhg — awa =0
at the point a x [ € G
For some Casimir invariants h¥), h®) € | (&*), we use the Lie—Poisson bracket (2.12) to construct the com-
muting Hamiltonian flows on &*:

0

—(axl)={ax,h®}g o

(axl)={axl,h®}z. (2.13)

These flow are equivalent to the evolutionary equations

9 () TN 0)
a—ya:—[Vh’ a + 5-Vhy'),
(2.14)
9 ® 1.9 o0
5,0= (Vi + 5!
and
0 . ) 0
@zz —ad;, (y>l+ad (VAY)) + 5 —vhY,
(2.15)
0 . 0
ol = —ad, (t)H—ad (VA )+ aZVh()
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The commutativity condition for these flows is equivalent to the system of equations

W o, ®] 90w, 9o _
(VA" Vb | — SR+ oy Vo =0 (2.16)
and
op
@ + ad&P = 0,

for any a X leg.
Hence, the following statement is true :

Proposition 2.2. The Hamiltonian flows (2.13) on the regular adjoint space &* generate systems of com-
muting evolutionary equations (2.14), (2.15). The commutativity condition for the evolutionary equations (2.14) is
equivalent to the Lax—Sato representation (2.16) for some system of nonlinear partial differential equations of the
heavenly type and coincides with the condition of compatibility of three linear vector-field equations

oY
dy

O

0z

o

o +Vh(t =0

+ Vi) =0, + (a,8/0x)1) =

forall (y,t,z;x) € (R* x S') x T& and some function 1 € C?((R? x S') x T%; C).

2.1. Example: New Generalized Mikhalev—Pavlov Equation in the Four-Dimensional Space. If the gen-
erating element @ x [ € G* has the form

axl=((uz — N)0/0x +v;0/0N) x (wydz + EdN), (2.17)
where

u, v, w, & € C*(R? x (S* x TH);R),

then the asymptotic expansions for the coordinates of gradients of the Casimir invariants h(®) € T (&%), p € Zy,
as |A\| — oo, take the form

1= A 4 (—us + (p— D0)A2 + (uy + (p— 2)(—tav + £)A + ..
Vhi’: NP
_Ux)\_l — Uz)\_2 + (Uy _ (p _ Q)Uﬁv))\_s +

—w A — w2+ (wy — (p— 2)(wv) )N "3 +
Vha ~ )\p
e = (64 (= DA (& — (9 — D)~ + v, T )N +

where p € Z, and, in addition,

Ky = Uz + UgUy, Wy = Wy — UpWy — Vgl (2.18)
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In the case where

op® . <A2 ~upA (st ”)>
I+ )

' —Ug\ — U,

(v) < ~Wek — Wy >
Vhdri— =
=& — (£ +w)

N — ug A+ (—uy 4+ 20)A + (uy — ugv + K)

and

vhl) = )
bt —0 A2 — v\ + (vy — vg)
" —wp A% — w4 (wy — (wo)y)
Vh:’ =
a,+ ’

—E N2 — (6, + 2w\ + (&y + ugw — V€ — W)

the commutativity condition for the Hamiltonian flows (2.13) is reduced to the following system of evolutionary
equations:

Uzt + Uyy = —UylUzy + UpUgy — UgyV — Uz U — Klgy,
— 02 2 2
Uzt + Vyy = VUV — Uy — VUgy — VVzz — UyUgz + UVUzy — UV, — KUgz,

“Ugy — Uzz = UgUgz — UzUgy + Ugzg ¥,
(2.19)

2
Uy — Vzz = Uy + Vgz¥ + UgVgz — UpVgy,
—Ugt + Uyz = —UgUgy + UylUzy + Uz ¥V + Uz K,

2
—Ugt + Vyz = —UgUpy + UyUzy + UV + Uz U + KUz + 20,05

For v = 0, we again arrive at system (1.29).
Thus, the following statement is true:

Proposition 2.3. The generalized Mikhalev—Pavlov system (2.19), (2.18) admits a vector-field Lax—Sato rep-
resentation (2.16) with “spectral” parameter \ € C generated by an element @ x | € G* in the form (2.17).

Element (2.17) can be rewritten in the form

06 0 | 96 0 _ 9po
(8;1381: o ax) 8 (d””” m)’

<
X
=
I

'f]:U—)\ZL‘, 77/0:)\1}%) ﬁ:wa ;50:>\£x7

where d := d, + d), connected with the geometry of the space of moduli of gauge connectedness corresponding
to the coadjoint actions of the Casimir invariants.
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By using an element @ x [ € G* of the form

ST . Oy 0 9po

where 7, g, p, po € Q°(T") ® C, n € N, N > 2, we can get a Lax—Sato integrable multidimensional analog of
the generalized Mikhalev—Pavlov system (2.19), (2.18) in the (n + 3)-dimensional space, where n > 2. This case
will be considered elsewhere.

3. Conclusions

We present a review of differential-geometric and Lie-algebraic approaches to the construction of Lax—Sato
integrable differential systems of equations of heavenly type based on the development of the Adler—Konstant—
Symes structure and the R-operator structures associated with this structure. We propose the generalization of this
structure to the case of central extensions of the loop Lie algebras G := diff (T™) x diff (T™)* and their holomorphic
extensions

G := diff(T" x C) x diff(T™ x C)*.

Within the framework of the developed approach, the corresponding systems of equations of heavenly type
follow from the condition of commutativity of two Hamiltonian flows on regular spaces adjoint to these Lie al-
gebras as one-parameter orbits of the coadjoint action of holomorphic group of diffeomorphisms. In particular,
in numerous cases, the solutions of these systems can be found by using the corresponding version of the method
of inverse scattering problem [7]. The proposed approach enables us to obtain the Lax—Sato integrable modified
and generalized heavenly Mikhalev—Pavlov systems in the four-dimensional space, a modified Martinez-Alonso—
Shabat heavenly system in the five-dimensional space, and the corresponding hierarchies of conservation laws.
It becomes also possible to consider the problem of construction of their integrable analogs in the spaces of higher
dimensions. In addition, on the basis of the proposed approach, it is possible to find the Hamiltonian representa-
tions for the constructed heavenly systems as a result of reduction of the R-deformed Lie—Poisson bracket to the
phase space of the generating element. This will be done elsewhere.

The authors are deeply grateful to M. Btaszak, E. Tseslins’kyi, and B. Szablikowski for useful discussions of
the results obtained in this paper during the symposium on Integrable Systems (June 29-30, 2018, Poznari (Poland))
and to J. Goldin and A. Odzijewich for constructive comments and remarks during the XXXVIIth International
Seminar on Geometric Methods in Physics (June 30-July 7, 2019, Biatowieza (Poland)).
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