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Summary

In 2014, the Computational Music Research Group of the School of Computer Science, Cardiff
University, demonstrated (Sidorov, Jones, & Marshall, 2014) the utility of computing compressive
context-free straight-line grammars as a powerful framework for symbolic analysis of music (with
applications in structure analysis, error detection/spell-checking, and high-level editing).

The attempt to use grammar-based compression to automatically perform musicological tasks,
such as pattern discovery, is a relatively new and promising technique. Using a publicly-available
collection of nearly 8000 digital scores, this thesis provides an extensive investigation detailing the
performance of grammars against a range of compressors, when applied to error detection, classifi-
cation and segmentation tasks, and detailing a novel method of transcription error location, where
grammars outperform the other algorithms tested. Grammar-based compressors are demonstrated
to be a competitive tool for musicological investigation.

Increasing the coverage a single production rule can provide within the encoding of a grammar is
a technique proven to be effective in increasing compression. This study demonstrates the possibil-
ity of leveraging an additional dimension in the substring search space in order to produce smaller
models. Experiments confirm that even with stringent constraints the production of smaller en-
codings is possible, and, particularly with regard to musical data, even minor reductions are able to
produce better results for analytical applications.

The study also presents a novel method of selecting substrings for inclusion in a grammar under
construction, using a heuristic which loosely approximates the ability of a candidate production
rule to best reduce a grammar’s encoding length. Some background theory is provided as a devel-
opmental basis, after which the effectiveness of the heuristic is explored empirically, showing that a
logarithmic decrease in grammar production complexity is possible, but this does not always enable
the production of more compact grammars which include rule modifiers. Nonentheless, it is shown
to be effective in the fast production of compact grammars.
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A Study of Grammar-based Compression in Application to
Music Analysis

Abstract

Music is an important phenomenon in human civilization, about which we understand surpris-
ingly little. In 2014, the Computational Music Research Group of the School of Computer Science,
Cardiff University, demonstrated the utility of computing compressive context-free straight-line
grammars as a powerful framework for symbolic analysis of music (with applications in structure
analysis, error detection/spell-checking, and high-level editing).

This work explores the hypotheses that (a) constructing grammars from music data is a viable
method of music analysis, with the smallest grammar producing the most significant representation,
and (b) it is possible to improve upon analytical effectiveness by increasing substring similarity in
order to produce smaller models.

Many studies have presented computational models of musical structure, particularly as logically-
coded algorithms or deep learning models, as an important aspect of musicological analysis. How-
ever, the attempt to use grammar-based compression to automatically perform musicological tasks
(such as pattern discovery) is a relatively new and already promising technique. Using a publicly-
available collection of nearly 8000 digital scores, this thesis represents an extensive investigation
detailing the performance of grammars against a range of compressors, when applied to error detec-
tion, classification and segmentation tasks, and detailing a novel method of transcription error loca-
tion, where grammars outperform the algorithms tested. Despite making no use of specific domain
knowledge, grammar-based compressors are demonstrated to be a competitive tool for musicologi-
cal investigation.

Increasing the coverage a single production rule can provide within the encoding of a grammar is
a technique proven to be effective in increasing compression. However, the use of domain-specific
structures may provide an advantage over more general or constrained approaches to modelling
equivalence. Using a novel method of increasing similarity which is fully adaptable to include gen-
eral, specific or domain-based modification or production rules, this study demonstrates the possi-
bility of leveraging an additional dimension in the substring search space in order to produce smaller
models. Experiments confirm that even with stringent constraints the production of smaller en-
codings is possible, and, particularly with regard to musical data, even minor reductions are able to
produce better results for analytical applications.

The study also presents a novel method of selecting substrings for inclusion in a grammar under
construction, using a heuristic which loosely approximates the ability of a candidate production
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rule to best reduce a grammar’s encoding. Some background theory is provided as the basis develop-
ment, after which the effectiveness of the heuristic is explored empirically. A conclusion is reached,
showing that a logarithmic decrease in grammar production complexity is possible, but that a strong
performance boost may result in a failure to explore the search space sufficiently to produce more
compact grammars overall when the modification of production rules is included. Nonetheless, it
is shown to be effective in producing more compact grammars than a standard method which does
not allow rule modification, and in a fraction of the time possible when using that method to ex-
plore the extended search space.

The work presented in this thesis builds on existing studies, as follows:

1. New applications of standard grammar-based compressors are investigated, including the
automatic identification and reversal of data errors, classification of music into similarity-
based groups, and division of the musical surface into analytically significant segments.

2. Development and investigation of a novel method of grammar encoding is conducted, which
allows increased substring similarity to enable the production of smaller grammars, and aims
to leverage this ability against exsting musical and non-musical applications.

3. A novel heuristic which reduces production complexity is developed and investigated, which
allows complex grammars to be constructed more quickly than is currently possible with
standard methods.

4. Where possible, empirical results are obtained for all methods and applications presented in
this study, and these are rigorously compared to produce an evaluation of their effectiveness
in each specific case.

5. A set of considerations and recommendations for future work are provided, using experi-
mental observations to highlight promising areas of investigation by which the ideas pre-
sented in this study may be further explored and improved.

Overall, this study represents an exploration of leveraging straight-line grammars against analyti-
cal tasks, specifically given data from musical scores, and presents methods which allow the inclusion
of domain knowledge to produce smaller models with strongly decreased computational complex-
ity.
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1
Introduction

According to Nicholas Cook, “If a few combinations of pitches, durations, timbres and dynamic val-
ues can unlock the most hidden contents of man’s spiritual and emotional being, then the study of
music should be the key to an understanding ofman’s nature” (Cook, 1994). The tantalising question
of how music may be understood, and what mapping exists between composition and the often sub-
conscious effects experienced by a listener, has been the subject of much study and philosophy, e.g.
(D. Arnold, Arnold, & Scholes, 1983), (Palisca, 2000), (Clark & Rehding, 2001), (Kaser, 1993).

The analysis of structure within amusical piece is an important approach tomusic analysis, and is
traditionally achieved through the context of music theory. Schoenberg (1967) asserted that organisa-
tion in the form of logic and coherence is what separates random noise and musical form, comparing
this structure to the application of grammar to a language. Schenker (1969) was also convinced of
the existence of organisation, and developed a pitch-based hierarchical model of musical form which
he used to analyse a great many works. Both authors identified hierarchical elements based on pitch
and rhythm, but did not offer a scientific formalism of their observations. Many other analytical ap-
proaches exist, including those which focus on performance (Lerch, Arthur, Pati, & Gururani, 2019),
compositional form, and even physical gesture (Gritten & King, 2006), where a listener’s physical re-
sponses may be used to map expressive dynamics to the musical surface. Structural analysis, and the
role of grammars in performing such analysis, is the basis of this study.

Repetitive structures present within a musical piece may be leveraged to compress it. The Mini-
mumDescription Length principle (Rissanen, 1978) suggests that the best description of a given data
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sequence, such as that formed by the temporal series of notes present in amusical score, is represented
by the smallest model capable of reconstructing that series with the minimum error. Since repeating
patternswithin note sequencesmay be replaced by references to a single copy of each pattern, such pat-
terns may be used to compress a sequence; this provides one method of generating a compact model,
and thus, for our purposes, measuring description length as an approximation of Kolmogorov Com-
plexity.

Following this observation, the present thesis explores these specific hypotheses:

• Symbolic music data contains regularities whichmay identified using compression techniques.

• Such regularities are significant to the structure of the music, and, in turn, to the intentions of
the composer with regard to the music’s composition.

• Having identified such structure, the information may be used to perform useful musicolog-
ical tasks, such as grouping pieces by similarity, or identifying motifs or patterns which are
characteristic of a particular piece, or composer.

This work aims to show that compression may be used to solve a number of musicological tasks,
despite an absence of knowledge of the musical domain.For the purposes of this work, the term “do-
main knowledge” may be loosely defined as the level of knowledge a person with moderate musical
training may possess in this area – perhaps through academic study, experience as a musician or com-
poser, or adherence to a particular school of analysis –whichmay be useful or evenmandatory to their
ability to perform a givenmusicological task. Such tasks include the detection and correction of errors,
such as those which may occur during transcription; the classification of pieces by melodic character-
istic; the segmentation of pieces in a manner similar to an expert human analyst; and the possibility
of a structural approach to the manual editing of music. As such, it explores the following research
questions:

• Can accepted string compression techniques, specifically, straight-line grammar constructors,
be used to compress symbolic music data in a way which is useful to the research hypotheses,
despite having no knowledge of the musical domain?

• Can grammar-based compressors:

1. Discover and correct simplistic errors in musical sequences?

2. Group musical works by their similarity to each other?

3. Select note sequences (patterns) which are highly similar to those an expertmusicologist
would select?
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Figure 1.1: The main melody of “Three Blind Mice” (Sabrebd, 2009).

4. Compete against specialised techniques on known Music Information Retrieval tasks?

• Can a grammar-based compressor be improved – specifically, in compression ability, and its
performance on the above tasks –by increasing the count of sequenceswhich it considers equiv-
alent, by widening this concept to that of similarity, in a musically-relevant fashion? Does
doing so produce a significant increase in the computational complexity of the construction
process?

• Can the computational complexity of the grammar construction process be reduced by the
introduction of some form of heuristic, such that grammars may be built quickly, or very com-
plex and previously intractable grammars may be constructed in a practical manner?

Answers to these questions are important to assessing the applicability and usefulness of string-
based compression, and in discovering whether such techniques may be improved in capability and
practicality, in relation to musicological tasks.

A simple example Grammar
A simple melody – that of the traditional English nursery rhyme “Three Blind Mice” (Howard,

1952) – may be seen in Figure 1.1. Note that bars 1 and 2 repeat twice, as do bars 3 and 4 (although the
final crotchet in bar 4 is not played until the final repeat occurs). The notes of this melody may be
represented (including repetitions) as the following sequence of note names, simplified by ignoring
rests and treating same-key tied notes as a single entity:
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Figure 1.2: The simple dual-level hierarchy represented by a grammar generated from the main melody of “Three
Blind Mice”.

[F,E,D, F,E,D,A,G,G, F,A,G,G, F,A,D,D,C,B,C,D,A,A,A,D,D,D,C,B,C,
D,A,A,A,D,D,C,B,C,D,A,A,A,G, F,E,D]

In turn, this list may be turned into a sequence of string characters, as follows:

FEDFEDAGGFAGGFADDCBCDAAADDDCBCDAAADDCBCDAAAGFED

If fed into a standard grammar-based compressor (Carrascosa, Coste, Gallé, & Infante-Lopez,
2011), the following output is produced, representing an encoding of the grammar generated:

r1r1r2r2Ar3Dr3r3Gr1$FED$AGGF$DDCBCDAAA$

In this encoding, the symbol $ represents a separation between production rules, and the rules
[S, r1, r2, r3] are therefore distinguishable. Beginning with the rule S, and replacing any rule symbol
with the contents of the rule it references, the original string shown earlier may be exactly reproduced.
The input requires 47 string characters to store, whereas the grammar requires only 31; thus, the latter
is a compressed version of the former. An expanded version of the encoding may be represented by
the hierarchy shown in Figure 1.2:

The rules chosen by the compressor during the grammar’s construction may be indicated on the
originalmusical score, as shown in the Figure 1.3. Asmuchof the nursery rhyme’s repetition as possible
has been identified, and leveraged in generating the compressed version of the note name sequence.
Although musically it is arguably an imperfect segmentation, this simple example clearly shows that
some significant patterns within the piece have been identified as part of the compression process.
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Figure 1.3: Note groups represented by the rules of a grammar generated from the main melody of “Three Blind
Mice”.

Generalised algorithms
Many algorithms which are designed to assist in the analysis of music either rely on additional

input from a user with some knowledge of the art, or require some domain-specific prior set-up, such
as those which are based on Deep Learning models and must first be trained from a large number of
inputs. A simple example of the application of such “domain knowledge” may be the segmentation
of a sequence of notes into likely groups of bars; to achieve a reasonable degree of success on such a
task, it is necessary to understand what is commonly meant by the term “bar”, and what characteris-
tics a group of these measures is likely to present, perhaps estimated from observing correspondences
and differences between a large number of example sequences. This informationmay then be used to
predict a segmentation of the sequence which is likely to be both valid and highly probable given the
known context. However, it can be desirable to employ an algorithm which either does not possess
prior knowledge, or relies on the most rudimentary of rules, because such a system can offer a con-
tinually generalised response to any new input it is presented with regardless of whether it has seen
an input of that character previously. As such, it is capable of immediately responding to novel data,
does not cause any training overhead, and assures continued performance to a known standard.

There is strongmotivation for discovering useful algorithms of this type, because of their versatil-
ity andpotential for use ondatawhichhas yet to be created. A systemwhich is capable of automatically
generating a complete and valid musicological explanationmay be used not only to provide an under-
standing of an existing musical work, but also in the generation of new material. A composer might
experiment with a variety of new ideas, and examine the structural changes which result from their
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exploration – the availability of an automatic analysis of the score’s structure could aid learning at a
student level, or even provide feedback to an expert, allowing them an external perspective on their
work which might be used to extend the range of known options at any given stage of composition.

Alternatively, a systemwhich is capable of identifying information which is common to different
works, which by extension may also be used to measure uniqueness, might be used to allow a user to
selectmusicwhich is similar to a preferred example, retrieve a specific piece from a collection by feature
or segment, or test their ownworks to prevent accidental plagiarism and enhance originality. The user
may be highly experienced, or novice; under ideal circumstances, the response of the system might be
similar in quality to that of an expert musicologist, and so able to provide as much or as little expertise
as needed for the application. Any algorithm which can deliver this performance is desirable, but a
particularly versatile algorithm may be able to continue to deliver without any intervention even on
unseen data.

Clearly, a method which does require training to be able to correctly handle novel types of data,
such as a Neural Network based analyser, may be preferable if it is able to operate more quickly, more
efficiently, or more accurately than amethod which does not needmaintenance or expansion. Thus it
is important to evaluate any candidates of the latter class, to ascertain whether they are indeed useful
alternatives, and what trade-off exists when selecting between the two classes. These considerations
are all strong motivations for this work: the discovery of algorithms which do not include any spe-
cific representation of domain knowledge but are able to perform analytical tasks given musical data;
assessment of the conditions under which such algorithms function, alongside their advantages and
disadvantages; and empirical evaluation of performance on actual tasks given real-world data.

Grammars are a strong candidate structure, and their associated generation techniques offermuch
promise in this regard. Steedman (1984) showed it was possible to construct a generative grammar
which correctly modelled known 12-bar blues sequences, along with unusual but valid variants, and
more recently Sidorov et al. (2014) showed that grammar-based compressionwas able to generate struc-
ture highly similar to that identified by a musicologist. Whether the identified features are extracted
because of their musical salience, their repetition, or both, is an interesting research question. How-
ever, no study has yet evaluated the ability of such grammars to perform musicological tasks given a
large sample of musical scores, or the effect of grammar construction algorithms which can produce
smaller, more optimised models on these tasks. There exists the opportunity to investigate these tech-
niques, with the compelling possibility of discovering an algorithmwithout domain knowledgewhich
is highly effective when applied to the analysis of musical scores.
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More compact models
The Minimum Description Length principle supports the assertion that a more compact model

is a better representation of the underlying structure and parameters of the object it represents. It
follows, therefore, that techniques which may be used to further reduce the size of the encoding are
likely to lead to generation of amore representative, andmore usefulmodel. Techniqueswhich enable
a “flexible” approach to the representation of substrings within the model, such as the pattern-based
approach of Siyari and Gallé (2017), have demonstrated the existence of smaller models and the possi-
bility of their discovery when greater substring similarity is enabled.

Using such techniques as a foundation, this study presents an alternative approach designed to
increase similarity within the input data, as a framework within which the type and extent of equiva-
lence may be customised in any manner which aids the application. Instead of seeking segments a, b
which contain identical symbolic sequences, it is possible to instead identify those whichmay be trans-
formed by some function f given a parameter T which defines how the transformation is performed,
such that a = f(T, b). From this premise, it is possible to define similarity in a highly custommanner.
The ability to automatically select from the strongly increased possibilities such a framework provides
is also explored, and a powerful optimisation algorithm, Zig-Zag (Carrascosa et al., 2011), is applied to
the parallel traversal of the existing dimension of substrings, and an additional dimension of ways in
which substrings may be considered approximately equivalent. This thesis demonstrates that includ-
ing custom transformations between two similar stringswithin a grammar is possible, and limited only
by the ability to encode the transform in the model, and that of the restoring program in applying it.
Experimentation is used to evaluate the effectiveness of the approach in generating smaller models
from musical data; performing automatic segmentation of musical scores; and to classify pieces by
melodic characteristic, to discover whether an increase in performance is obtained.

Reducing Construction Complexity
Since addition of a second dimension of transforms to the existing search space of substrings

which must be explored, in order to produce the most compact representation, will naturally vastly
increase the complexity of discovering suitable minima, the already expensive process of grammar
construction can become largely impractical given large inputs, or those with high internal similar-
ity. Given this observation, the study introduces a heuristic which can determine which production
rules are likely to be most effective during grammar construction without the parsing operation nec-
essary to generate concrete observations, by approximating the effect a new rule is likely to have on a
grammar’s encoding using an easily computable operation. The technique uses an array of bits which
represents the input’s sequence of symbols, and generates a linear approximation of the gain a given
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rule may provide, allowing all candidate gains to be quickly evaluated. Once a list of gains has been
sorted, it is a trivial matter to evaluate each in turn, and select the first which provides any benefit for
addition as a production rule.

Since the effect and applications for grammars which allow the modification of production rules
during expansion are known from investigating the production of more compact models, the final
section of this study explores the effectiveness of the bitmask-based technique in generating grammars
which are at least approximately equivalent in encoding length, with greatly reduced construction
times. A comparison between techniques in generating both regular grammars, and thosewhich allow
rule modification, is made using standard corpora and a large, custom collection of digital scores. The
results provide an interesting insight into the effect of reducing the proportion of the search space
which is explored, and suggest future work which may further improve the techniques described.

1.1 Roadmap

In this thesis, a review of existing work and relevant literature is first presented in Chapter 2, covering
the development of grammars and their application to the analysis of language, DNA and musical
data, along with alternative approaches to computation-based music analysis.

Representations ofmusical scores exist inmany varieties, both as traditional, physicalmedia and as
digital structures, the latter being necessary where any form of digital computation is to be performed.
The choice of representation can have a significant impact on the breadth of information present in
an algorithm’s input, and on the quality of the results obtained, and a selection must be made which
is appropriate to the specific task. Chapter 3 discusses some of these representations, and provides a
definition of the representations used here for development and experimentation.

Chapter 4 provides a background for the compression techniques usedwithin this study. A defini-
tion of Kolmogorov Complexity (Vitányi & Li, 2000) and straight-line grammars are given, followed
by methods and attributes of grammar compression which are relevant to the work later described.
This chapter introduces ZZ (Carrascosa et al., 2011) as an important approach to optimisation of gram-
mar encoding length.

Experiments are performed using a large corpus ofmusical data inChapter 5, including evaluation
of the ability of grammars to detect and correct errors in musical scores, to classify music by “tune
family” (van Kranenburg, Janssen, & Volk, 2016), and to segment scores in a manner similar to that
of an expert musicologist. A novel method of error detection is described, and alternative methods of
compression are used to provide a benchmark for comparison.

In Chapter 6, an extension to traditional straight-line grammars is presented which allows the
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encoding of transformations which can modify production rules during expansion, thereby allowing
them to flexibly match in a manner which is extensible and offers the opportunity to add domain
knowledge, such as the common transposition of patterns within amusical score. Challenges with the
method are discussed, and an approach based upon ZZ optimisation is defined which allows a locally
compact grammar of this type to be discovered. The method is explored empirically in Chapter 7,
where its ability to compress, discover significant sections within musical data, and classify by “tune
family” are explored.

This experimentation shows that the method results in a dramatic expansion of the search space
whichmust be traversed during discovery of a compact grammar, and this issue is discussed inChapter
8. Here, a heuristic is presented which produces a strong reduction in practical search complexity, and
allows the fast generation of grammars which may results from the use of ZZ. The technique works
by approximation of the gain each constituent can provide to grammar, creating the opportunity to
perform only a limited umber of expensive computations during their selection. Chapter 9 explores
the effectiveness of themethod empirically, evaluating its ability to compressmusical inputs bothwith
and without encoding transformations.

Finally, Chapter 10 gives a summary of the overall findings of the work, along with separate con-
clusions for the experimental sections exploring the application of straight-line grammars to musical
data, the addition of rule modifications, and the effectiveness of the presented heuristic in reducing
occurrence-optimised (Carrascosa, Coste, Gallé, & Infante-Lopez, 2010) grammar construction com-
plexity.

1.2 Contributions

The key contributions of this study are as follows:

1. An extensive investigation of the performance of grammar-based compressors on a range of
orthogonal analytical tasks, given a large corpus of musical scores as input (Chapter 5).

2. A novel method of generating more compact grammars, by allowing production rules to
become modified during expansion by versatile transforms also stored within the encoding
(Chapter 6).

3. A heuristic allowing the faster construction of grammars by simple approximation of their
benefit to the encoding, enabling constituents tobe chosenwithoutprior, expensive evaluation
(Chapter 8).

Item (1) above covers a number of applications, which may broadly be split into the tasks of clas-
sification, segmentation, and correction of data errors. The specific applications explored are:
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• Identification of a single data error within a musical score (Section 5.4.3).

• Identification of multiple data errors within a musical score (Section 5.4.3).

• A novel method allowing the automatic selection of candidate Transcription Error positions
(Section 5.4.3).

• Classification of theMeertens Tune Collections by “tune family” (Section 5.5).

• MIREX 2016Discovery of Repeated Themes & Sections task (Section 5.6.3).

• Structural Analysis of Bach’sWell-Tempered Clavier (Section 5.6.3).

• Simple grammar-assisted editing of a musical score (Section 5.6.3).

Exploring the performance of grammar-based compressors on these tasks provides an indication
of their usefulnesswith respect tomusic analysis, and ameasure of the responsewhichmaybe expected
from grammars which model musical sequences. Introducing custom transforms into a grammar en-
coding enables increased equivalence between segments of the input sequence, and allows some do-
main knowledge to be considered during the construction process. Finally, enabling grammars to be
constructed with reduced computational complexity not only allows existing tasks to be performed
more quickly, but also alleviates the strong complexity which the addition of rule modification can
introduce to a grammar.
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It is much more rewarding to do more with less.
Donald Knuth

2
Literature Review

The analysis of structurewithin amusical piece is an important aspect ofmusic analysis, and tradition-
ally achieved through the context ofmusic theory. Schoenberg (1967) asserted that organisation in the
form of logic and coherence is what separates random noise and musical form, comparing this struc-
ture to the application of grammar to a language. Schenker (1969) was also convinced of the existence
of organisation, and developed a pitch-based hierarchical model of musical form which he used to
analyse a great many works. Both authors identified hierarchical elements based on pitch and rhythm,
but did not offer a scientific formalism of their observations. Nonetheless, their work highlights the
ability to discern hierarchy as an important aspect of music analysis, and suggests any successful solu-
tion to this problem should take such structure into account. Many other analytical approaches exist,
including those which focus on performance (Lerch et al., 2019), compositional form, and even physi-
cal gesture (Gritten&King, 2006), where a listener’s physical responsesmay be used tomap expressive
dynamics to the musical surface. Although an entirely holistic approach is not unthinkable, the var-
ious techniques should be individually understood. Structural analysis, and the role of grammars in
performing such analysis, has been selected from the studied techniques as an appropriate basis for
this study.

Repetitive structures present within a musical piece may be leveraged to compress it. The Mini-
mumDescription Length principle (Rissanen, 1978) suggests that the best description of a given data
series, such as that formed by the sequences of notes present in a musical score, is represented by the
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smallestmodel capable of reconstructing that series with theminimum error. Since repeating patterns
within note sequences may be replaced by references to a single copy of each pattern, such patterns
may be used to compress a sequence; this provides one method of generating a compact model, and
thus, for our purposes, measuring description length.

Following this observation, it is a reasonable hypothesis that compression may be used to solve a
number of musicological tasks, despite an absence of any knowledge of the musical domain: to detect
and correct errors, such asmight occur during transcription; to classify pieces bymelodic characteristic;
to segment pieces in a manner similar to an expert human analyst; and to offer a structural approach
to the manual editing of music. This thesis extends the work of Sidorov, Marshall & Jones (Sidorov
et al., 2014), experimentally validating the hypothesis that compression is applicable to these tasks,
before introducing a custom, flexible-matchingmethodwhichmay be used to producemore compact
grammars, and a technique capable of reducing the practical complexity of grammar construction
based upon approximation of the potential encoding gain an individual production rule may offer.
This dissertation aims to evaluate the relevance of these novel approaches to musicological tasks, and
lays the groundwork for future improvements and development.

In this chapter, grammars are presented in a historic context, alongside their usefulness in fields
such as linguistics and biology, to show their origin and applicability to the purpose of this disserta-
tion. Computational techniques for grammar construction are discussed, along with work detailing
their application to the task of music analysis, to show their suitability. Finally, alternative approaches
to analysis are explored, and some of the challenges facing themethods this thesis will focus on are out-
lined.

2.1 Grammars

The discrimination and modelling of structure, particularly in relation to language, has an interest-
ing and extensive history. As described by Bhate and Kak (1991), an algebraic expression of Sanskrit
was presented in the 5th century BC by Pāṇini, perhaps the first example of a linguistic grammar. In
1956, Chomsky (1956) formally defined grammars as part of his hierarchical theory of languages, inves-
tigating their properties further in 1959 (Chomsky, 1959). Such grammars were designed to capture
language and “phrase” structure, and allow derivation of a large but specific set of sentences, produc-
ing more realistic output than existing techniques, such as finite-state Markov models. Chomsky also
showed transformations, which he defined as connections between terms which could be used to in-
fer relationships between them, could be applied to produce more complex variations. These works
suggest that grammars are highly suitable for modelling human-generated structures across a wide va-
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riety of communication styles, which in turn may make them applicable to the modelling of musical
sequences. The principal component of a grammar is its production rules, each representing a seg-
ment of the symbol sequence being modelled. A single symbol, referring to a rule, may then be subsi-
tutedwithin that sequence during expansion to allow reproduction of the original sequence. Symbols
within a grammar are composed of the output alphabet, known as terminal symbols, and rule refer-
ences, known as non-terminal symbols since they represent additional content, or “branches”, within
the grammar’s hierarchy.

Grammars have been strongly studied and applied to a wide variety of tasks, in particular within
the fields of linguistics and biology. In 1964, Solomonoff (1964) explored their relevance to phrase
structure induction, and a year later Bellert (1965) compared phrase structure grammars to relational
grammars, showing only the latter was able to correctly generate specific Polish kernel sentences. Cer-
tainly, these studies show that grammars are able to correctly capture complex structural and relational
information, and may be manipulated for useful purpose.

Sundberg and Lindblom (1976) noted great similarity between the derivation of generative gram-
mars fromboth linguistic andmusical sources during their 1976 study, wheremodels which could gen-
erate a set of nursery rhymes and folk songs were explored, underlining the usefulness of grammars in
the musical context. The importance of identification of hierarchical structure was highlighted, and a
general method of studying both language andmusical data was outlined, in which the production of
amodel was shown to be guided by both observation and feedback based on evaluation of predictions
made.

Langley (1995) presented an alternative approach to linguistic grammars, using sets of sentences to
produce an adaptivemodel capable of identifying and generating valid sentenceswith highprobability.
VanLehn and Ball (1987) applied version space learning to the induction of context-free grammars, to
enable human-like modelling of arithmetic procedures. They concluded that although it is apparent
the method could not directly emulate human learning, it performed well in their application, and
allowed determination of both accepted and rejected generalisations at any point of operation. Their
workdidnot attempt to adapt themodel to different inputs, such asmusic orDNAstrings, but instead
demonstrated that the use of grammars as functional models was both practical and extensible.

Construction of a grammar with the intention of creating a minimal encoding of a sequence is a
valid method for compressing it (Nevill-Manning & Witten, 1997). However, it has been shown that
common grammar-based compression techniques do not produce models of the smallest possible en-
coding length, and are thus theoretically sub-optimal (Lehman & Shelat, 2002). Since the problem
of producing a Smallest Grammar is NP-Hard (Charikar et al., 2005), an approximation may instead
be sought with lesser time complexity. Unfortunately, maximising the degree to which a generated
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grammar approximates the optimal solution may be important in the context of the Minimum De-
scription Length Principle (Rissanen, 1978), as structure present in a compressed model may repre-
sent structure which is meaningful in the context of the composition of its input (Rissanen, 1978),
and the obtained structure may vary strongly for models with varying degrees of compression. For
instance, the three sections of a Sonata may be reflected by the top level of a grammar’s hierarchy as
being formed from three distinct rules, each aligned with its respective section of the original musical
input. A less-compressedmodelmay not contain three suchwell-formed rules, the compressor having
instead selected a sub-optimal combination. Lehrman et al. (2002) defined compressive bounds for
the grammar-based compressors Sequential (Kieffer & Yang, 2000), Bisection (Kieffer & Yang, 2000),
Greedy (Apostolico & Lonardi, 1998) and LZ78 (Ziv & Lempel, 1978), and provided theoretical ar-
guments supporting their suggestion that far greater optimisation of grammar-based compressors is
both possible and difficult. The study showed no non-NP-Hard method with polynomial time com-
plexity may exist with an approximation ratio smaller than 8569

8568 given a specific set of constraints, but
suggested careful analysis of the function of existing compressors may yieldmore ideal algorithms. As
such, the search for algorithms which generate structure as a by-product of their operation, are not
excessively complex, and are heavily optimised with respect to encoding length, is likely to be of con-
tinuing interest and of practical use. Potentially, such algorithms may be important to the field of
automatic data analysis.

Carrascosa et al. (2010; 2011; 2012) showed that a variety of existing grammar-based compressors
performed identical steps during the construction process. These compressors differed only in score
function, selecting one of three specific functions: Maximal Length (ML), where the repeating term
with the greatest length was chosen; Most Frequent (MF), where the repeating term with the highest
number of occurrences in the inputwas chosen; andMostCompressive (MC),where both term length
l and frequency fwere combined as lf to allow selectionof the termoffering the greatest reduction in en-
coding lengthwhen all its instances were replacedwithin the input. The study presented an algorithm
unifying these approaches, which they termed Iterative Repeat Replacement (IRR) schemes, and a
new algorithm able to optimise constituent occurrence, using their Zig-Zag optimiser (ZZ) which ex-
plored the lattice of all possible constituent combinations in a locally optimal fashion. Occurrence
optimisation addressed an issue present in all IRR algorithms, and consistently smaller models were
produced (Carrascosa et al., 2011) than IRR-Mx with any score function, Sequitur, or LZ78 on pieces
from the Canterbury Corpus (R. Arnold & Bell, 1997), a set of text files considered representative of
a wider file collection, and intended particularly for the evaluation of compression algorithms. It was
also applied to large sequences (Carrascosa et al., 2012) and DNA strings, where it exhibited the same
strong performance. The authors suggest the addition of inexact constituents, or removal of the loss-
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less constraint, may be worthwhile, and in the latter case may allow better recovery of structure from
DNA sequences. Their comments provide an instance of support for the research of more flexible
and powerful representations of repetitions within a sequence, a concept fundamental to this thesis –
specifically, a range of possible transformations might be associated with each pattern, so that a higher
number of repetitions may be identified with a given string.

Benz andKötzing’s GA-MMAS algorithm (2013) used heuristics in its traversal of the same search
space asZZ to select constituentswith a highprobability of belonging to anoptimal set of constituents,
enabling it to construct grammars of equal and lesser size in fewer parses. Greedy selection of the
constituent giving an immediately smaller model was notmade at each lattice traversal step. Instead, a
Min-Max Ant System (Stützle &Hoos, 2000) was first used to guide the traversal swiftly to selections
close to the node representing the smallest grammar, where a genetic algorithm with a population of
size 30was used to choose a selectionminimising the size of the resulting grammar. On theCanterbury
Corpus, GA-MMASproduced smaller grammars than those found byZZ (Carrascosa et al., 2011), and
when applied to Grumbach and Tahi’s DNA corpus (Grumbach & Tahi, 1994), was able to improve
on ZZ models for all but three sequences. No implementation of GA-MMAS was made available by
the authors. Nonetheless, the work demonstrates the utility of heuristics in the constituent selection
process, and the existence of smaller encodings where an alternative path through the search space is
traversed. Since the work represents the most powerful variation on ZZ optimisation to date, further
focus on constituent selection and discovery of more optimal encodings is warranted.

Siyari and Gallé (2017) introduced the concept of flexible matching, where terms to be replaced
within the input string were not limited to those which exactly repeat, but instead constucted from a
patternuwvwherewwas allowed to vary so that only theprefixu and suffix vof eachpatternwere equal.
Their approach allowed the use of flexible patterns without an explosion in the size of the search space.
The technique was also applied as a post-processing step to the output of existing grammar-based
compressors, and theirmethodwas shown to produce smaller encodings formost files within both the
Canterbury Corpus andGrumbach and Tahi’s DNA corpus. Experiments showed that the technique
was better able to identify syntactical structure in linguistic data than IRR or ZZ. In many cases, their
flexible matching outperformed GA-MMASwhen applied to the Canterbury Corpus, although only
oneDNAsequence resulted in a smallermodel. The authors identified the necessity to avoid inclusion
of a separator symbol between each replacement instance within a branching rule, since this factor
alone increased the cost of the rule to a point where its gain was negated. This finding is significant –
it highlights the importance of includingprocesseswhich apparently allowa reduction in encoding size
when calculating that size. They noted that a single two-element rule containing separators, although
allowing each of its elements to be of varying length, could not offer better gain than selecting two
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individual, exactly matching rules for inclusion within a given grammar. This fact demonstrates care
must be taken when selecting an encoding for any flexible matching scheme, in order for it to present
any advantage to a grammar-based compressor. Most importantly, the work proves that alternative
models do exist for a data sequence which are more compact – and, potentially, more accurate given
theMinimumDescriptionLength principle – yetwhich rely on production rules which do not always
generate a uniform output. These factors suggest the existence of different types of rules which may
be important to a more optimal solution. Development of such rule types is a foundational concept
for the work presented in this thesis.

Overall, these existing studies show that compression can be appropriate to themodelling of data,
and that grammars constructed from music – and other input types – can exhibit useful structural
properties. Grammars generated by compression therefore have the potential to be an effective tool for
use in analytical tasks, and there are still many aspects to their form and construction which represent
interesting and promising research opportunities.

2.2 Grammars in Application to Music Data

In his review of Bernstein’s lecture series, “The Unanswered Question: Six talks at Harvard” (Bern-
stein, 1976), Keiler (1978) warned that direct application of linguistic structures to music analysis may
not be appropriate, although he believed its principles and the process of clearly formulating analytical
problems in search of formalism remained important. However, Roads and Wieneke (1979) investi-
gated the suitability of grammars to the study of music composition and structure, demonstrating
that they were indeed useful: in reference to a model representative of poetry, the authors state that
“a new poetry is only possible with a new grammar”, and suggest great flexibility may be achieved by
separation of a model of musical composition into symbolic and sonic components, whereafter the
grammar may generate a set of musical scores. Discovery of the extent of the relationship of language
tomusic, andhowpractical usemaybemade of this knowledge, is clearly an interesting andpotentially
important area. Recognition of the individual, often interacting layers present within a composition
is also important, and a reflection of the hierarchical approach taken bymusicologists to score analysis.

Many studies have suggested formalisations of generativemusical grammar. Steedman (1984) pre-
sented amusic-orientated example of such formalism in 1984. Referencing the ability ofmusicians and
non-musicians alike to evaluate whether melodies are well coupled to the piece to which they belong,
he suggested that a chord sequence forms the foundation which enables such distinction to be made,
and from which a model representative of a piece may be created. He outlined a generative grammar
modelling various sequences of the traditional 12-bar blues, and showed it were possible to derive new
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variations on this structure, pointing out that additional rules might allow for a more refined defini-
tion. Although admittedly based on a relatively simple and tightly-specified form, the work showed a
generative, hierarchical model could indeed represent real-world musical structures.

In 1968,Winograd (1968) explored the application of Chomsky’s linguistic techniques in order to
model the specific rules and structure whichmay be observed in themajority ofmusical works. In par-
ticular, emphasis was placed on harmonic structure as described by Forte (1974), and a heuristic-driven
algorithmwas developed, allowing production of amodel generally applicable to a givenmusical piece
or type. Winograd observes that “a complete parsing system for music would be extremely complex”,
and highlights the significance of interplay between different compositional factors, such as pitch, in-
versions and time signatures, along with the existence of multi-dimensional, independent structures.
His work highlights the need tomodel themore complex interactions occurringwithin amusical com-
position if an attempt to construct its completemodel ismade, and the potential for these interactions
to occur in an overlapping manner. It is possible that domain-specific knowledge must be integrated
into such a system, and a universal approach may not entirely capture the closely-coupled factors he
observed.

Ulrich (1977) applied generative grammars to the task of harmonicmatching, computing themost
probable chord and key for each step of a chord sequence, and showing how this may be used to fit
abstract melodies to a given piece in a musically acceptable fashion. This work was intended as a lim-
ited demonstration of the computational analysis of music, and Ulrich’s algorithm selects the model
containing the fewest key changes as the most likely representation of chord sequence, in contrast to
Winograd’s use of heuristics. However, it offers evidence supporting the assertion that a grammarmay
realistically represent the underlying structure of a piece, and parameter minimisation as a standard
optimisation technique may prove useful in discriminating between possible versions of a model.

In 1997, Nevill-Manning and Witten presented Sequitur (1997), a grammar-based compression
algorithm with time complexity O(√n). It was applied to an English novel, and the authors demon-
strated that potential compression was directly related to information entropy. Their method was
shown to compress large DNA sequences more effectively than competing algorithms, and segment
text hierarchically in a meaningful manner, despite having no prior knowledge of either subject. It
was also shown to be able to correctly select repeating motifs from two Bach chorales, although its
performance in this regard was not extensively or musicologically assessed. Despite this, Sequitur is
often referenced in connection with the ability of a compressor to discern phrase structure in music,
and proves at minimum thatmusicologically-significant phrases may be recovered frommusic data by
methods which are not constructed specifically for that purpose. It also shows that a computationally
complex algorithm is not necessarily required to achieve this, and it is possible for amore practical, less
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optimal process to have relevance to the task. It is probable that investigation of response on a large,
representative population of musical works may yield useful insights in this respect.

Abdallah, Gold and Marsden (2016) took a probabilistic approach to structural analysis by gram-
mar, and provided an in-depth review of related methods. Grammars were also used to model a cor-
pus ofmusical scores, fromwhich they claimed “sentences” characteristic of the corpuswere generated.
They suggested the formof a grammar intrinsicallymodelsmusical segments, the classes towhich they
belong, and their relationships. Their study provided an overview of techniques for performing infer-
ence,music analysis and grammar construction, alongside a demonstration that theirmodelswere able
to effectively segment symbolic scores within a dataset of Bach chorales into groups of repeating sym-
bols, represented by the right-hand sides of the grammars’ rules. They noted, however, that Markov
models remained superior when applied to a corpus of folksongs gathered by the University of Essen
(Schaffrath&Huron, 1995), although these lacked the structural benefits of grammars. The paper did
not evaluate the musicological correctness of the obtained models.

In 2014, Sidorov, Jones and Marshall (2014) presented a concise study showing that straight-line
grammars formed from sequences of voice intervals could be applied to tasks such as editing and er-
ror detection, and suggested they might also be useful for summarisation, simplification, similarity
estimation, and plagiarism detection. Single-symbol data errors were introduced to successive inter-
vals within Bach compositions, and the resultingmodel size variations recorded, producing a response
which generally increased; the authors attribute this to degraded structure, causing the data to be less
compressible. Rules within a grammar hierarchy were shown to map well to a human-defined mu-
sicological segmentation, although the authors did not investigate correlation with accepted expert
analyses. The grammar construction algorithm used, whilst effective, was not optimal in constituent
selection, potentially resulting in an undesirable increase in the size of somemodels. Nonetheless, the
authors presented a compelling case for the relevance of minimal grammars to the analysis of music.

In 2020,Mondol (Mondol, 2020) demonstrated the suitability of theContext FreeGrammar as an
estimation of Kolmogorov Complexity, using models constructed from individual and concatenated
musical pieces to generate pairwise normalised distances fromwhich classification by genre, composer
and style was accurately performed. This work was extended (Mondol & Brown, 2021) by using spe-
cific candidate production rules from a model in the compression of other inputs, showing the ap-
proach was most successful where both inputs were created by the same composer, thus providing a
measure of similarity between pieces. The study provided strong support for the hypothesis that the
rules of a grammar are able to capture information which is structurally significant to a composition.

The works referenced in this section often demonstrate that, as noted by musicologists and com-
posers such as Schoenberg and Schenker, it is probable that musical scores contain patterns which in-
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teract on the musical surface in a complex manner, but equally that even relatively simple approaches
mayyield surprisinglyuseful resultswith amusical context. Further study in this directionmay include
searching for methods which are able to correctly identify and model these patterns and interactions,
and should not necessarily exclude algorithms which are not optimal in terms of compression. How-
ever, more information is needed to help quantify the performance of grammars and compressors
with respect to music analysis, and whether compression strength must be optimal in order to have
real-world applicability across the population of musical inputs.

2.3 Algorithms for Music Analysis

The previous section focusses on the application of grammar-based techniques to the tasks of identi-
fying potentially useful or significant structures within music data, and of deriving a concise represen-
tation of any given musical score. However, much of the research conducted into approaches for the
automatic analysis of music is aimed at a more specific goal, and often targeted at a specific theory or
methodology. Some notable examples are discussed within this section.

Lerdahl and Jackendoff presented A Generative Theory of Tonal Music (1983), where they dis-
cussed two complementary aspects of analysis, structural correctness and rules of preference, before
presenting a defined, hierarchical method. There have been several strong attempts to implement
their techniques computationally, including an interactive analyser (Hamanaka & Tojo, 2009) which
outperformed a purely automated approach, a variety of analysers (Hamanaka, Hirata, & Tojo, 2016)
designed to overcome theoretical difficulties, and a deep learning approach (Lai & Su, 2021) trained
on a large, algorithmically-generated dataset which outperformed existing boundary detectors based
on grouping preference rules. Alongside showing that the task of music analysis may be conducted
computationally but based upon a human-defined process, these contributions also draw attention
to the wide range of techniques which can be successfully applied, including neural networks, fixed
rules, and human-guided processing.

Many other algorithms have been developed specifically for application to music data. Building
on earlier work (De Haas, Rohrmeier, Veltkamp, & Wiering, 2009) and implementing a modified
representation of harmonic structure based on generative grammars (Rohrmeier, 2007), De Haas et
al. presented the Haskell-based HarmTrace (2011), which was capable of producing an analysis of
harmonic progression given a sequence of chord labels. It was unable to delineate phrase boundaries,
although the authors suggest this may have been possible as additional processing, and it was shown
to performwell on harmonization, chord recognition and harmonic similarity tasks. The earlier study
(DeHaas et al., 2009) showed inclusion of musical knowledge was able to improve performance for a
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similarity-based retrieval task, suggesting domain knowledgemaybe important to algorithmic analysis.
As stated in a later journal article (De Haas, Magalhães, Wiering, & C. Veltkamp, 2013), the use of
grammars in this context allows generalisation over a large state space, and automation of conditional
rule selection. Inclusion of domain knowledge in straight-line grammars was not part of these studies,
and may be a promising area of investigation.

Rohrmeier (2011), extending a study proposing a phrase-structure grammar (Rohrmeier, 2007),
provided further support for the existence of discernible recursive and hierarchical structure within
music, and offered a review of work demonstrating that contextual importance and purpose may be
attributed to logicalmusical progressions. The studypresented apractical formalisationof a generative
grammatical model capable of explaining the harmonic structure of an extensive number of varied
works, where units such as chords and notes were themselves derived from tonal elements. Although
drawing strongparallels betweenmusic and language, the temporal nature ofharmonic relationships is
highlighted as beingworthy of further investigation, and caution against assuming a direct correlation
is given. Rohrmeier states in reference to Markovian models:

“Transitionmatrices or n-grammodels maywell merely reflect statistical properties
of underlying more complex deep structure processes (Rohrmeier & Cross, 2008) and
therefore cannot be easily argued to constitute ‘the’ structure-building process (pace
(Tymoczko, 2003)). By themselves, they donot embody sufficient complexity to express
the formal structure of harmonic tonality, modulation processes or overarching formal
processes.”

An automated approach capable of modelling such generative processes is clearly desirable, and
the author does not discount the potential of statisticalmodelling as away toharnessmusical structure,
although the importance of hierarchy and abstraction in understanding harmony is demonstrated and
discussed. The study does not itself suggest a scheme making use of straight-line grammars may be
successful in discovering the identified processes, but does offer support for the validity of further
research into structural approaches for harmonic modelling and analysis.

Some notable studies which explore statistical or rule-based approaches to the extraction of infor-
mation from symbolic music have been conducted. Temperley (2001) developed a “preference rule”
system which aimed to identify high-level structure within 18th and 19th century tonal music, using
rules based upon six specific attributes: metre, phrase structure, counterpoint, pitch spelling, har-
mony, and key. These were based on empirical observations from the field of psychology, alongside
analytical theory. The scheme was applied to music which was performed with an expressive inter-
pretation, as well as unmodified scores from which more conventional compositional elements may
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be discovered, although only an elementarymusical structure overall was sought given the constraints
of the chosen parameters. A simple “piano-roll” representation was employed, with timbre and am-
plitude information discarded from the input data, although the system still performed effectively,
suggesting these attributes were not critical to the tasks being investigated. Dynamic programming
was discussed as a method for selecting between competing interpretations, highlighting that optimi-
sationmay be usefully employedwhere ambiguity exists. Theworkwas aimed towards higher-level ab-
stractions of musical perception, and outlined a belief that minor changes to an expertly-constructed
score – for example, the alteration of single note – would not necessarily be of significant detriment
to the piece. This supposition was not explicitly tested, although it is reasonable to assume the pre-
sented system may prove invariant to such changes, perhaps unlike a more granular method. Overall,
the publication provided an accessible and comprehensive introduction to the cognition of musical
structure, and rule-based computational approaches to the modelling of human analysis.

Temperley (2007) also applied Bayesian reasoning (Berry, 1996) to the identification of musical
structure, and presented three probabilistic models. The first inferred metric structure given a mono-
phonic sequence of note onset times, by the fitting of a grid which maximised both the probability
of a rhythmic pattern existing within it, and the likelihood of the grid’s existence given the specific
pattern. A dynamic programming scheme was presented to perform the optimisation. Initial param-
eters were either empirically estimated from a collection of scores, or manually chosen, showing that
a limited degree of context was required for correct operation. The secondmodel inferred a key given
a monophonic sequence of pitches, using assumptions for the likely distribution of the pitch range
of a melody, the pitch interval between adjacent notes, and the major or minor scale degrees in use,
and selecting the key for which all probabilities were maximised. Once more, initial parameters were
required to be set, and these were estimated from the analysis of a score collection. Performance was
shown to be as strong as existing key-finding algorithms. A thirdmodel inferred a key, and keymodula-
tions, fromapolyphonic score represented as a sequence of unordered lists of scale degrees. Themodel
sought to maximise both the probability of a key for the piece, and of the likelihood of a sequence of
keys existing, based upon the anticipated key. Musical context was provided by the extraction of a set
of scale degree frequencies from a corpus of 19th century music, and a dynamic programming scheme
was once again presented as an optimiser. The model did not perform as effectively as Temperley’s
earlier preference rule system. The author suggests that Schenkerian Analysis might be evaluated “as a
theory” using similar probabilisticmodels, and also postulates thatOccam’s Razor (Sober, 2015)might
be appropriate in further evaluating models which represent competing interpretations for a given
piece of music.

Pearce (2018) applied statistical learning to simulation of the human response tomusic, in particu-
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lar with regard to the expectation a listener may have of events which will occur at any point in a given
musical score, whichmay be based on a wide variety of psychological factors. The probabilistic model
IDyOM was presented; individual instances were trained in an unsupervised manner on varying col-
lections of digital scores, each representing a cultural perspective to which a listener may be exposed.
The concept of enculturation was central to the study, which asserted that an individual’s perception
depends on the probabilistic prediction of upcoming musical events, based upon probabilities which
are learned from their perception of regularity. IDyOM is a dynamic, variable-order Markov system,
containing individual short- and long-term models, the former being progressively trained from the
repeating structures within the piece being processed, the latter pre-trained on a large corpus of mu-
sic and thus possessing some knowledge of the musical context. Although the inputs to IDyOM are
composed only of a single representation – for example, note sequence index, pitch interval, or note
duration – models may be combined in a similar manner to that observed of human listeners when
identifyingmusical structure. Experiments showed there was good correlation between the output of
IDyOM and the expectation, uncertainty and emotional response of listeners to a range of musical
pieces. The study provided compelling evidence that probabilistic models may prove effective when
applied to musicological tasks, and that statistical regularity within musical data may be leveraged to
simulate a human-like recognition of structural boundaries.

IDyOM was also included in a comparison of statistical and rule-based models (Pearce, Müllen-
siefen,&Wiggins, 2008), where a range of systems capable of segmenting a piece ofmusic intomelodic
groups by the delineation of boundaries were individually assessed on a common scale, and their out-
puts later combined with the intention of harnessing the optimum performance of each. The task
was defined as identification of human-annotated phrase boundaries from a subset of the Essen Folk
Song Collection (Schaffrath & Huron, 1995), where non-hierarchical phrases cover all events within
each melody of the set. The studied algorithms included Grouper (Sleator, Daniel and Temperley,
David, 1999), the Local Boundary Detection Model (Cambouropoulos, 2001), and a Grouping Pref-
erence Rule parser (Frankland & Cohen, 2004). Of all the systems tested, IDyOM represented the
only method based on statistical, unsupervised learning. The combined model achieved a higher F1
score overall, and, notably, IDyOM performed relatively well in comparison to the rule-based meth-
ods, showing that the inclusion of explicit musical knowledge is not mandatory when segmenting a
melodic sequence in the manner of a human expert.

Marsden (2012) examinedmelodic similarity, concluding that human opinion was so widely vary-
ing that it may be considered non-deterministic, although the sample used was too small to allow
definite identification of salient factors. A previous study A. Marsden (2010), where the space of pos-
sible Schenkerian reductions was shown to be computationally large, is cited as an example of the
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significance of coincident, valid interpretations. The work suggested the presence of a third melody
may affect the perceived similarity of an existing pair, and that a model capable of multiple interpreta-
tions given different data combinations may be a suitable definition of the reductive space. Here, the
“structure-building process” as described byRohrmeier (2008) directly represents the intention of the
composer; the paper shows how Mozart made explicit use of the human tendency to seek similarity
within his String Quartet in A Major (K. 464) and C Major (K. 465), and as such discovery of this
process requires context, and cannot be understood from a single-viewpoint reduction. The study
underlines a challenge for the evaluation of systems which generate a single output when attempting
to perform structural analysis: a large number of possible outputs may be entirely valid, but eachmay
require validationby expert as confirmation,making automatic assessment of performance non-trivial.
However, it also highlights the relevance of similarity tomusical compositions, which suggests a useful
analyser should take repetitions and variations into account as part of its function.

Combinatory Categorical Grammars (M. Steedman & Baldridge, 2011), which are lexicalised lin-
guistic grammars, have been used tomodel the harmonic structure ofmusic (M.T.Granroth-Wilding,
2013). In this approach, statisticalmodels whichwere able to leverage historic parsing results were used
to separate syntactic structure from semantic, hierarchical chord sequences over amanually annotated
corpus of jazz pieces. Chord sequences were defined via grammatical modelling. This work empha-
sised the importance of such separation, highlighting where previous studies had failed to consider
these elements individually. The authors demonstrated the superiority of their method toMarkovian
analysis, and also showed how note data from MIDI performances may be used as input to gener-
ate harmonic structures. They liken these analyses to the task of sentence interpretation in natural
language processing, and suggest the high degree of ambiguity to be found within long sentences is
parallelled by musical constructs. Their study provides convincing evidence that statistical modelling
is capable of recovering meaningful information from rawmusical data when applied with considera-
tion, and specialist grammars may make good hierarchical descriptors given a suitable input.

McLeod and Steedman (2017) presented a grammar-based method of meter detection within
monophonic symbolic music, using a combination of lexicography and probabilistic context free
grammars. Lexicalisation was applied to CFGs so that note durations could be considered in a rela-
tive context; this was achieved by associating the value of the longest note duration in each subtree
of a grammar with its head. The probability of the correctness of various metrical interpretations for
a given input was then used to generate a valid segmentation of the musical sequence at a bar level.
The method exhibited stronger performance than a simplistic guessing scheme, or a non-lexicalised
CFG approach, showing that significant and often complex dependencies exist between the rhythmic
components of a score.
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In a subsequent publication, a combination of NLP-based statistical learning and hierarchical
grammar (M. Granroth-Wilding & Steedman, 2014) were again shown to be more effective than a
Markovian model. Interestingly, the study proposed that difficult chord sequence analyses may be
achieved by first isolating structures which are identified with high confidence, allowing a less con-
strained search tomodel the remaining segments. Additionally, it suggested that a desirable extension
might be to perform prerequisite tasks, such as identification of prominent notes and segmentation
into musically appropriate passages, as part of the analytical process. Given that it is possible to infer
parameters inherent to the construction of a data series from aminimal model of that data (Rissanen,
1978), a compressive modelling technique capable of representing musically significant parameters,
such as dominant note or pattern occurrence within a hierarchy, might present an opportunity to
perform this type of comprehensive analysis automatically.

Although the above approaches vary widely in technique, aim, and outcome, there are several
common elements to be found. Perhaps the most notable is the complexity of the compositional pro-
cess, and the great space of valid interpretations as defined by human perception. The works suggest
a truly successful approach to music analysis, which is able to account universally across genre, style
and form, would not only be inclusive of a large number of concepts, contexts and compositional
devices, but would also be likely to generate a wide range of different outputs, each correct from its
own perspective. No unified theory of music which explains the vast array of known compositions
currently exists, and potentially the attempts which target specific analytical paradigms, such as the
Generative Theory of Tonal Music, may bemost successful, or at least simplest to demonstrate as such.
Nonetheless, if a less holistic approach is undertaken as foundational work building towards a unified
system capable of automatic analysis, these works support the potential of hierarchical, statistical or
similarity-based modelling to discover relevant properties and structure in musical scores.

More specifically, the present thesis focusses on the application of string-based compression al-
gorithms to digitally-represented musical scores, and exploration of other promising approaches –
statistical learning, rule-based models, or neural networks, for example – is considered outside of its
scope. There are several reasons for this decision. Amodel which does not require any training would
be beneficial, since it would be able to respond in a generalised manner to previously unseen inputs,
and an understanding of its operation might in turn enable a more formal explanation of the process
of music analysis. It may also be possible to identify areas in which musical knowledge is explicitly
required by examining where such a technique fails, and an exploration of the effectiveness of any
method which does not require preparation or pre-training is likely to provide knowledge which is
useful in guiding future development decisions. Much is known regarding the creation and perfor-
mance of probabilistic and rule-based models, and examination of the manner in which these operate
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individually is helpful in creating hypotheses regarding how the algorithmic analysis of music may
work generally. This would, of course, also be true of any additional exploration of compression-
based modelling. As discussed here, much existing work shows that the inclusion of human-defined
musical knowledge is beneficial to algorithms which retrieve information from musical scores, but
may also result in an inability to correctly process music whose attributes or style fall outside of that
definition. Other work highlights the existence of techniques which are able to use machine learning
to develop musical knowledge. As a relatively new approach which does not necessarily require such
knowledge, the depth to which string-based compressors may be used in the generation of grammati-
cal models which expose musical information is not yet known, and an exploration of this is likely to
result either in an additional method of computational music analysis, or to provide an insight into
where existing techniques may be improved or parallelled by alternative or adaptedmethods. As such,
this thesis chooses not to pursue the development or improvement of machine learning approaches,
and instead seeks to evaluatewhether grammar-based compression, as a general and hierarchicalmodel
of arbitrary data, may be realistically applied to tasks which are useful in the computational analysis
of music.

2.4 Conclusions

Music itself, and study of the art, is ancient and historic. A great many approaches exist to music
analysis, which aims to understand and define a composition and the act thereof, ranging from exam-
ination of the psychological effects a performance induces in its audience, to formal, structural and
mathematical approaches, many seeking to create a framework within which all music may be decom-
posed. Repetition has a general relevance to the generation and enjoyment of music, and is often
used as a compositional tool, frequently in combination with other functions which allow variation
to occur, adding texture, progression and interest to a work.

As hierarchical and structural models which can be parsed to produce an output, grammars have
been shown to be useful the modelling of musical forms and individual pieces. Such models are ca-
pable of identifying patterns and structure which expert musicologists consider most significant as a
result of their analyses. Straight-line grammars are suitable for this purpose, and several well-known
methods exist for their construction, including Zig-Zag, an optimisation technique which is capable
of selecting a combination of constituents which produce a highly compact grammar when used in
combination with a graph-parsing process which outputs the most compact encoding possible given
that combination.

Methods have been publishedwhich seek to producemore compactmodels, either throughwider
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exploration of the search space of possible production rules, or through modelling the similarity of
substrings occurring in the input by allowing sections which are related but are not exactly equiva-
lent to match each other at a reasonable cost. However, no large-scale study of the effectiveness of
these methods when applied to musicological tasks has been conducted, and compositional devices
frequently seen in the musical domain have not been added to straight-line grammars with the aim
of automatically producing more compact models. As such, the potential improvement which such a
reduction might offer in a grammar-based musicological task is largely unknown.

Given that much work continues in the field of music information retrieval, further knowledge
in this area is desirable and can help to highlight circumstances where grammar-based techniques can
prove advantageous over existing methods, as well as delineate where they may fail or prove inferior
to the alternative approaches. On the basis of the findings of the research discussed within this chap-
ter, this thesis will evaluate the effectiveness of straight-line grammars on a range of analytical tasks
given a large corpus of musical scores, explore ways in which substring similarity may be increased in
a musically-relevant manner, and detail an approach by which the production of such grammars can
be temporally optimised.

The following chapters will discuss suitable representations andmusical data, and define straight-
line grammars within the context of this study, before exploring how they may be manipulated and
improved with respect to musical data and analytical tasks.
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There can be no “true” representation just as there can be
no closed definition of music.

Roger B. Dannenberg, 1993

3
Representing Musical Data, & Digital

Corpora

There are a great many ways of representing music, but all may be broadly categorised by two classes:
performance (Godlovitch, 2002), and notation (Apel, 1961). Performance is often a live in-person ren-
dition by one or more musicians, recorded onto somemedium fromwhich it is later reproduced, or a
combination of both. Notation instead relies on representing the music as a physical artifact, usually
written, intended to be followed by musicians during later performance.

There exists a wide variety of ways in which music may be physically represented, from the hand
symbols of Kodály’s Solfrège (Dobszay, 1972) to simple notation such as recorded early Plainsong
(Sachs, 1948), or from traditional scores (Apel, 1961) to digital archives composed of files in formats
such as MIDI (MIDI Association, 1996), MusicXML (Good, 2001) or ABC (Oppenheim, Walshaw,
& Atchley, 2011). Each representation has its own rules, attributes and advantages, and, regardless of
its form, any study which endeavours to process music must employ some means of correctly inter-
preting its chosen sources, potentially translating representations which are not immediately suitable.

As discussed in Chapter 2, there appears strong potential in the use of straight-line grammars
as compressed models for symbolic music, and the properties of those models may be used to achieve
manymusicological tasks. It is the intention of this study to examine the general response of grammar-
based analytical methods with regards to a range of these tasks, and, as such, a sufficiently large pop-
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ulation of musical works is required to enable a reasonable approximation of the universal response
to be measured. Given the relative ease with which digital representations of symbolic scores may be
obtained for research purposes, the potential to select between any available scale types they contain,
and their symbolic, digital nature negating the need for optical recognition (as would be necessary
for printed or written manuscripts), digital musical scores are selected as the source for this study.
The term “digital scores” is used generally throughout this dissertation to refer to symbolic musical
scores which are represented in a format suitable for storage within a digital medium, and containing
sufficient symbolic information to allow the production of a full, printed manuscript, suitable for
professional musical performance. Such representation also enables a subset of the information to be
extracted, which may then be algorithmically processed.

A great many file types exist which are suitable for the storage of digital scores, and, within them,
a wealth of forms through which the data itself may be represented. In this chapter, various methods
of representing musical information in a form suitable for compression by grammar are discussed –
in particular, symbolic sequences – since this is a requirement of the study as defined above. The rele-
vance of each to thework’s intentions is highlighted, and the various representationswhich are applied
in later chapters during experimentation are defined, aiding reproducibility and an understanding of
their benefits and limitations.

This chapter begins with a general description of score attributes and digital formats, and contin-
ues with a discussion of abstract representations suitable for processing and experimentation, before
defining the study’s chosen musical datasets and their collective properties.

3.1 Musical Scores

The terms “musical score” and “manuscript” commonly refer to a specific formofwrittenmusical rep-
resentation, whose interpretation is taught worldwide. The method was originally designed to stan-
dardise written music so that is could be accurately reproduced by different religious groups (Hall,
Hall, Battani, & Neitz, 2003). It is still the primary method of sharing pieces in a written form be-
tween performers, and remains popular due to its ability to capture not just the pitch-time informa-
tion within a musical work, but also emphasis and context. A musical score may contain indications
of dynamic (such amarkings for “piano” for quiet playing, or “forte” for loud), provide a quick visual
cue to the harmony of other performers in an ensemble, ormay include lyrics, speech or scripting cues
where the music accompanies a non-instrumental performance.

Ideally, a score will contain only information which is in some way vital to the correct interpre-
tation and performance of the music it represents. Despite this, it is possible to examine different
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facets of a score, either individually or in concert, to obtain useful information. An example of this
is Schenkerian reduction (Schenker & Salzer, 1969), a common task during musical analysis (Cook,
1994): some aspect of the underlying structure of a musical piece or segment is identified by reducing
its complexity, commonly by removing elements so that those which remain represent the simplified
structure upon which the piece or segment is based. For instance, given a sequence of several bars or
notes, it is often possible to arrive at a small set of notes which represent the root pitch at any given
point in the sequence. It is possible to make valid musicological observations given a subset of the
information a score contains. Note that such reduction, for the purpose of analysis, is distinct from
orchestral or piano reduction, where a score is reduced in complexity so that it may be performed on a
single instrument whilst retaining as much of its original character as possible (so that a piece written
for a full symphony orchestra may be played by only a pianist or organist, for example).

It is also not uncommon to discover that certain informationwithin a scoremust, on occasion, be
inferred. A good example of this is the assignation of voice (Apel, 2003), defined as a single melodic
thread playing within a polyphonic ensemble, and commonly assigned to a specific musician, instru-
ment, or group of instruments, resulting in the part’s possession of a discernible character during per-
formance. According to Purwins et al. (2008), a voice may consist of a temporal sequence of pitches
which belong perceptually to a greater entity, and a voice of great salience may be considered a pri-
mary melody of a piece. Voices are sometimes specified explicitly, such as the separation of an orches-
tral work into individual scores, one for each instrument or section, but they may also be left for the
performer or transcriber to identify using their highly-developed sense of musical perception. The
task of voice inference is non-trivial (A.Marsden, 1992), and research has not yet produced a definitive
method to accomplish it, although it remains an area of interest. Creative interpretation of the notion
of “voice” by composers prevents a strict definition: a note which is assigned to a particular musician
can be considered as belonging to their instrument’s “voice”, but itmay also belong to amelodywhich
may be played, entirely or in part, by different groups of instruments, often moving between them as
a performance progresses.

3.1.1 Attributes of a Score

A stored representation of a musical score, regardless of its medium, may be abstractly viewed as a
hierarchical composition of several elements. For the purposes of this study, the following terms are
defined to represent those elements, and will be used throughout the thesis where stored score at-
tributes are discussed. The defined terms are loosely based on those which apply to traditional West-
ernmanuscripts (Apel, 2003), digitally encodedmusic (A. A.Marsden, 2007;Nápoles, Vigliensoni, &
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Fujinaga, 2018), or to the general perception of music (Carpenter, 1967), and are intended to form a
simple, abstract framework which applies with equal relevance to an original manuscript as to a mu-
sical piece represented within a computer’s memory as a set of data structures. They are not intended
as a canonical definition, and are distinct from the over-arching facets (Downie, 2003) defined as sig-
nificant to the domain of Music Information Retrieval. The following elements may be considered
important to any musical representation, and represent decreasing levels of abstraction:

• Container: This forms the boundaries of the score, and the foundation upon which the repre-
sentation is constructed. It may be a physical, visually-represented score or a digital encoding,
such as a manuscript or MIDI data file, and may contain one or more pieces or “movements”
(such as may be found in a multi-part composition, or a composite collection of works).

• Surface: The format of the score, which dictates the type and context of the musical objects
within it. For written, Western musical works, this is most commonly composed of staves,
uponwhich the “context” (e.g. staff type, key signature) and “body” (e.g. notes, chords) of the
music are written. For digital scores, context and body may be stored as collections of data ele-
ments from a defined framework, such as the MIDI standard (MIDI Association, 1996). The
style of their visual representation may also be specified, as is possible within Sibelius-format
scores (Avid Technology Inc., 2011).

• Structure: Explicitly specified, implied or underlying groups, segments or delineations within
the score. Form (Caplin, 2001) is an important example of such structure; for example, the clas-
sical Sonata is conventionally composed of three specific segments, beginning with a primary
“pattern”, which is then transformed / developed, and finally repeated and resolved, but it may
be left to the performer to identify these segments in practice. A score may contain visual in-
dications of its structure, such as repeat symbols or brackets which mark segment boundaries.
Thesemay be seen as “sub-containers” which belong on themusical surface, and are associated
with its objects. It is at this level of abstraction that a composer may manipulate patterns and
segments to produce a score whose performance is an interesting and engaging experience.

• Objects: Primarily, Musical Objects. These are the “building blocks” of the music; examples
include clef symbols, notes and rests, each representing concepts such as current state (e.g. mu-
sical key) or event (e.g. the absence or playing of a specific tone). Other objects may also be
present on the surface (or associated with its contents), such as lyrics or written cues.

• Object attributes: Each object is likely to have an attribute attached to it. For instance, where a
key signature is present in a Western score, this is denoted by marking the notes which much
be sharpened (+1 semitone) or flattened (-1 semitone) to produce the correct seven-note scale;
the placement of these markings may be computed given the root key and scale type (e.g. G
major, which contains F-sharp), and as such only the value of the root itself needs to be stored
to be able to reconstruct the scorewhendigitally represented. Conversely, when a visual score is
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produced, the key signaturemarkings are placed on their relevant stave lines, and the root itself
is not recorded. In this case, it is up to the performer to work out the root key if they wish,
which may be done by examining the markings and using their knowledge of music theory to
identify the only possible value for the root in question.

It is worth highlighting the strong presence of context, which, by tradition, is a part of human-
designed musical representations. Unlike linguistics, where a particular symbol is associated with a
limited set of possible interpretations or pronounciations, the symbol for a musical note may repre-
sent any of the available tones within a given pitch system, depending on its placement on themusical
surface. There may also be interaction between instruments or melodic passages, such as “call and
response” or harmonisation, but these interactionsmay be designed to occur in a fluid, changingman-
ner, so that they appear to alternate between dominant and supporting roles within the music. Such
flow can be directed by cues present on the musical surface, such as indications of timbre or volume,
but the composer may intend the performance to be interpreted in a specific style. Overall structure
may also be left to the performer to interpret, with the aim of either leveraging their knowledge of the
musical domain to make informed judgements, or providing them with a range of possible options
from which they may choose artistically to create a “unique” performance. As such, when attempt-
ing to create or model a musical score, domain knowledge may be required to arrive at an acceptably
accurate interpretation. However, as with linguistic data, it is possible to exactly copy the layout and
symbols of a givenworkwithout a loss of context, and leave themore difficult task of its interpretation
for a future time. As such, musical scoresmay be converted betweenmediums and formats, providing
all the significant components of the score are recoverable, and adequately represented in their new
container.

3.1.2 Symbolic Digital Scores

Storingmusical scores in a digital form can offermany advantages, although the practice can also create
new difficulties (Smith, 1999). The longlevity of digital media continues to be discovered, and conver-
sion to a digital encoding is often a costly process, both financially and in terms of resources. Where
storage space must be kept to a minimum, or post-processing is intended, visual or contextual inter-
pretation of the input is often required, such as optical music recognition, which is itself a challenging
task (Bainbridge & Bell, 2001).

Nonetheless, there are sufficient positives to ensure the continued efforts of archivists and indi-
viduals in creating digital representations of new and existing music. Such advantages include preser-
vation attempts: as the physical material that a musical piece is written on degrades with time, it is
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necessary to copy its contents to a fresh medium, on which it may continue to be stored within a col-
lection or archive. If that storage medium is digital, the music may be duplicated, distributed and ma-
nipulated with ease, and there is an opportunity to apply non-destructive restorative techniques such
as error correction to help safeguard the data. It is important, however, to prevent against medium
obsolesence; providing it is legible, a musical score may always be read by a knowledgable human; by
contrast, a digital score requires a compatiblemedia reader and display equipment before it is viewable.

Although it is of course possible to digitise a written or printed score by taking a bitmap scan of its
physical form, possibly adding compression to reduce its size, it is more common to use optical recog-
nition techniques (Byrd & Simonsen, 2015) to identify the elements present within it, and represent
these as encoded objects. This greatly increases the potential for editing and manipulation, and also
reduces the storage space needed by recording only the identities and positions of the objects required
for its reproduction, and not their physical images. Of course, music which has been composed since
digital score editing became available may use this representation as their primary form. Scores whose
elements have already been converted into their symbolic representations are the primary target of the
research documented within this thesis.

Where a model of the music data is chosen as the container, as opposed to a simple graphical
image, it is necessary to define the structure and attributes of the model (its “surface”), so that it may
be read and manipulated, and potentially converted back to an image to be printed or displayed for a
performer. There are many model formats in common use, including the following:

• MusicXML (Good, 2001): An open format designed to represent Western musical scores,
which follows the XML (Bray, Paoli, Sperberg-McQueen, Maler, & Yergeau, 2000) specifica-
tion, enabling the use of standard parsers to extract score data.

• Sibelius (Avid Technology Inc., 2011): Although Sibelius itself is a piece of notation software
developed and marketed by Avid, it features a file format capable of storing a full manuscript
layout alongside the musical score. Some applications are capable of importing Sibelius files,
but it is not an open format. Sibelius itself allows the export of files in other formats, so music
stored in this manner may still be manipulated with relative ease.

• MuseScore (Watson, 2018): Like Sibelius, MuseScore is a piece of notation software, developed
as open-source and provided free of charge, complementing the sheet-music sharingwebsite of
the same name. Although scores can be stored or imported in a variety of formats, MuseScore
incorporates an open-source, native encoding capable of specifying a manuscript’s layout in
addition to the music it contains, making it a powerful open-source alternative to existing no-
tation formats.

• ABC (Oppenheim et al., 2011): This text-based format was designed for easy interpretation by
both humans and computers. It is composed of a header and set of notes, and symbolic labels
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which denote the meaning of particular fields within the file. It does not carry typesetting
information, unlike MusicXML or Sibelius.

• Humdrum (“**kern”) (Sapp, 2005): This is also a text-based format similar to ABC, and uses
numbers to encode note durations. It also contains only the “functional” components of a
musical score, without any typesetting instructions.

• MIDI (MIDI Association, 1996): An event-based format for storing musical information.
Each event is composed of a set of attributes including onset time, note number, and veloc-
ity, and only minimal contextual information is stored, such as tempo and meter. Principally,
MIDI data is designed to directly control instruments, instead of representing a score to be
read by a human performer. Despite this,MIDI remains a highly popular and portable format
for sharing music data.

3.2 Musical Objects

Since the same piece of music may be represented by any of the above models, it is unsurprising that
many musical objects are shared between them. These objects may be broadly categorised into those
which define the context of the surface (for instance, clef markers or key signature), and those which
define the events which are present within the piece (notes or chords, for instance, or rests where no
additional notes are to be played). A note may consist of the following attributes:

• Pitch: Thekeywhich thenote refers to. InWesternmusic, thismaybe chromatic and associated
with one of twelve notes into which each octave is divided equally, or it may be scale-based,
where all noteswithin the octavemay still be represented, but in reference to a reduced number
of notes per octave. For example, a diatonic scale has only seven notes per octave, but those
which remain from the chromatic scale can still be referenced as “accidentals”, identified as
a single/double (or, rarely, triple) sharpened or flattened version of a diatonic scale note, the
selection of which depends on the pitch interval and key context. Commonly, a unique value
is assigned to each pitch across all octaves.

• Duration: The period for which the note should sound. This is defined relative to the me-
ter of the score, and the actual duration in time is dependent upon the pace of performance.
Durations are commonlymeasured in fractions of a beat, with a particular number of beats oc-
curring in each bar (for instance, 4/4 time, where each bar is composed of four quarter beats).

• Intensity: The volumeof the note. In some representations, thismaybe dictated by the context
in which the note occurs (for example, within a “forte” section of the piece), or a unique value
within a fixed rangemay be assigned to indicate relative amplitude (such as the the velocity field
of a MIDI file).
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• Accidental: Where a non-chromatic scale is used, this attribute – composed of a maximum of
7 discrete values – indicates that the note is unaltered, or single/double/triple sharpened or flat-
tened relative to its assigned pitch (see Pitch above). For simplicity, some representations treat
accidentals as a trinary flag (unaltered, sharp or flat) since single accidentals are most common
in classical notation.

• Tie or Slur: A note may be connected to another of the same pitch by a tie; this may be to
extend the duration of the note but demonstrate its connection with a subsequent event. Al-
ternatively, a slur may form a connection to a note of a different pitch, denoting that a curved
transition should occur between the current a new pitch.

A rest may be considered as similar to a silent note, and associated only with a duration. The
inclusion of rests in traditional scores allows notes to be written as offset from the start of each bar,
eliminating the need for horizontal quantisation and allowing bars to be represented in a compactway.
Rests are represented as objects in many containers, such as MusicXML or Sibelius scores, but some,
such as MIDI, rely on absolute positioning of note objects using a [ bar, beat ] format.

In this study, musical data is extracted from Sibelius scores into a MusicXML format, where the
values of the attributes listed here may be easily accessed and separated or processed at will. Western
music is used exclusively, to simplify data extraction and allow for a direct comparison between the
representation of each piece.

3.3 String Representations

The current thesis makes extensive use of digitally-stored musical scores, however the algorithms se-
lected for evaluation are designed exclusively to process symbolic strings, such as linguistic or DNA
data. To allow musical data to be passed to these algorithms as input, specific attributes are selected
whose values can be represented as individual sequences. This section provides an overview of the
attributes selected, and how they are prepared for processing.

As an example of the representation of written music as symbolic data sequences, the following
pair of strings can be generated given the two-voice score in Figure 3.1:

A variety of representations relevant to the work detailed in later chapters is now presented.

• Chromatic pitch: MIDI note values 0 ≤ v ≤ 127 as defined in the MIDI 1.0 standard (MIDI
Association, 1996), each representing an individual semitone (12 notes per octave, as commonly
found in Western music, where middle C = 60). To simplify pre-processing, rests are ignored,
and tied notes& slurs are both represented as a pair of values, with their initial and subsequent
pitch values stored individually and in sequence.
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Figure 3.1: The first two bars from Bach’s Fugue No. 1, WTC I., with MIDI note values shown for the first bar.

pchr1 := [60, 62, 64, 65, 67, 65, 64, 69, 62, 67, 67, 69, 67, 65, 64, 65, 64, 62, 60, 62, 60, 59]

pchr2 := [67, 69, 71]

For this study, tied or slurred notes are included as [start, end] pairs, and since the representa-
tion defines a twelve-note scale accidentals are not strictly required.

• Diatonic pitch: Note values 0 ≤ v ≤ 75 taken directly from the diatonic pitch attributes of a
Sibelius 7 representation of each piece, as defined in Sibelius 7: Using theManuScript language
(AvidTechnology Inc., 2011) as “the number of the ‘note name’ towhich this note corresponds,
7 per octave …35 = middle C, 36 = D, 37 = E and so on”. Rests are ignored, and accidentals are
converted to their base notes.

pdia1 := [35, 36, 37, 38, 39, 38, 37, 40, 36, 39, 39, 40, 39, 38, 37, 38, 37, 36, 35, 36, 35, 34]

pdia2 := [39, 40, 41]

The degrees present within a given diatonic scale are relative to a single key signature which
is composed of a root note and a mode, the latter denoting the intervals between each degree.
Diatonic pitch values are directly related to the chromatic notes they may represent, and so
the chromatic surface is divided into n(7/12) values, where n is the size of the set of all possible
chromatic pitch values. This produces ameanof 12/7 chromatic pitches per diatonic value, and
indication of which chromatic pitch is represented by any given value is given by the active key
signature, or by the accidentals present, where these are sufficient to infer the current mode.

• Chromatic / diatonic intervals: For a string of pitch values p with n = |p|, an interval string d
is generated, where |d| = n− 1, as follows:

di := pi+1 − pi

dchr1 := [2, 2, 1, 2,−2,−1, 5,−7, 5, 0, 2,−2,−2,−1, 1,−1,−2,−2, 2,−2,−1]

dchr2 := [2, 2]
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The interval representation allows for the existence of considerable transposition invariance
between patterns which are played in differing keys. However, as shown by Cambouropoulos
(Cambouropoulos, Crawford,& Iliopoulos, 2001), since each element of the interval sequence
then represents the delta between two notes, if a contiguous portion of the string is divided
into two segments then the same note will be represented by both intervals at the point of
division. For example, consider the interval-based representation of pdia2 . If it is separated into
two groups, each containing the interval 2, then the portions of pdia2 contained within each
will be [39, 40] and [40, 41], thus the note with value 40 is present within both segments. It is
important to be aware that operations such as thismaynot function as expectedwhere adjacent
groups are not separated by≥ 1 symbol.

• Note in chromatic / diatonic octave: For a string of pitch values p, each element becomes

pi := pi (mod 12)

pchr1 := [0, 2, 4, 5, 7, 5, 4, 9, 2, 7, 7, 9, 7, 5, 4, 5, 4, 2, 0, 2, 0, 11]

pchr2 := [7, 9, 11]

This representation is useful in the discovery of equivalent notes, or inverted chords, which
occur in different octaves. For example, a C-major triad which is played in the third octave will
contain the notes C3,E3,G3, and the first inversion of this chord played in the fifth octave will
contain the notesE5,G5,C6. If the octave number is ignored, both patterns become equivalent
since they contain the notes C,E,G.

• Chromatic / diatonic contour: For a string of pitch values p with n = |p|, a contour string c is
generated, where |c| = n− 1, as follows:

ci := sgn(ci+1 − ci)

cchr1 := [1, 1, 1, 1,−1,−1, 1,−1, 1, 0, 1,−1,−1,−1, 1,−1,−1,−1, 1,−1,−1]

cchr2 := [1, 1]

This type of interval representation can be helpful in identifying patterns whose contours are
equivalent – i.e. the amount by which two notes with a given numeric sign deviate is not
significant, only that their signs are identical – such as where a phrase is repeated in a different
musical mode, altering the magnitude of pitch intervals between notes.

• Chromatic / diatonic histogram: A score may be divided up into segments – fractions of a
bar, for example – and a count kept of note occurrences for each segment. Where pitch values
are chosen, each vector represents a pitch histogram from which it is possible to identify the
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most frequent, and potentially most significant, occurrences of pitch for that segment. It is of
course necessary to pre-define the pitch value assigned to each element of the vector, so that
a comparison may be drawn between them. This discussion relates to the direct use of pitch
values, but pitch intervals, note durations, or other attributes may also be used.
For the excerpt shown in Figure 3.1, a vector of length 12 may be defined whose elements hold
the count of chromatic pitch occurrences for the values 59-71. Splitting the example into groups
of length 1 bar results in the following histograms:

hchr := ([0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 1, 0, 0], [1, 2, 0, 3, 0, 2, 2, 0, 4, 0, 2, 0, 1])

• Duration: Note duration values as defined in Sibelius 7: Using the ManuScript language (Avid
Technology Inc., 2011), where 1 unit = 1

256 of a crochet.

d1 := [128, 128, 128, 192, 32, 32, 128, 128, 128, 128, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64]

d2 := [128, 128, 128]

Use of this representation alone can allow examination of only the rhythmic aspect of amusical
score, without reference to the pitch being played, each note’s placement, or the intensity with
which it sounds.

• Onset intervals: From a string of note onset values, also defined in Sibelius 7: Using the
ManuScript language (Avid Technology Inc., 2011) (where a bar has duration of 1024), a string
of intervals may be generated in a manner similar to that of the pitch interval representation.

o1 := [128, 128, 128, 192, 32, 32, 128, 128, 128, 128, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64]

o2 := [128, 128]

In order to represent multiple voices within a score as a single symbolic sequence, some opera-
tion by which they may all be included is necessary. For the purposes of this thesis, where multiple
notes found in an input score possess the same onset time, they may be converted to a sequence, and
ordered by note value (for instance, an inversion of the chord C-E-G, with note values 60, 64, 55, will
become [55, 60, 64]). Where multiple voices are present within a score, regardless of the polyphony of
any given voice, they are treated individually and presented within the sequence as “separated” strings.
This is achieved by their concatenation, separated by unique termination symbols to prevent an algo-
rithm which seeks repeats from matching substrings across their boundaries. For instance, an input
composed of the chromatic intervals of two voices may be generated as follows, with the symbol $
chosen here as a unique terminator t1:

S := [dchr1 , t1, dchr2 ] := [2, 2, 1, 2,−2,−1, 5,−7, 5, 0, 2,−2,−2,−1, 1,−1,−2,−2, 2,−2,−1,
$, 2, 2]
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3.4 Representing Musical Data as Point Clouds

Given that all note attributes are required for a lossless model of a musical score, it may be considered
an advantage for each element of a representation to include every attribute. In a representation com-
posed of one symbolic string per attribute, a common index may be shared by each note in the score.
However, this necessitates the access of several strings per note to extract the required elements. A
representation where a single access retrieves all possible attributes avoids this behaviour.

Meredith et al. (2002) described such a representation during their presentation of the SIA fam-
ily of algorithms. Multi-dimensional point clouds were chosen to represent a musical score, where
each dimension referred to a specific note attribute, and each point within the space may therefore
be referenced by a multi-dimensional vector representing a single note. If the number of dimensions
is unrestricted but fixed, then all attributes can be modelled simultaneously, and so it is possible to
contain all object data from a score within a single point cloud, resulting in no loss of information.

A disadvantage to this approach is that each note becomes unique unless it is an exact duplicate,
whose existence could be considered an error. No equivalance naturally exists betweenpatternswithin
the cloud if the vector describing each point is considered a symbol string. However, it is possible to
select a set ofn attributes a–where each attribute set forms a vector va of lengthn–whichmay then be
translated given an n-dimensional vector vt, and seek patterns within the cloud composed of p points
which are equivalent under the translation va + vt.

For example, consider the score segment in Figure 3.1. The following attributes might be assigned
to each dimension:

[onset, root,mode, pitch, duration]

The first bar of the figure could then be represented with the following vectors:

[128, 60, 1, 60, 128] (3.1)

[128, 60, 1, 62, 128] (3.2)

[128, 60, 1, 64, 128] (3.3)

[192, 60, 1, 65, 192] (3.4)

[32, 60, 1, 67, 32] (3.5)
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[32, 60, 1, 65, 32] (3.6)

[128, 60, 1, 64, 128] (3.7)

[128, 60, 1, 69, 128] (3.8)

In contrast to channel-based compression of symbol sequences, Meredith et al. (2002) presented
the SIA family of algorithms. For this approach, events within the score were represented as points in
multi-dimensional space, which enabled coupling of all related attributes to the event in question.
This in turn allowed consideration of non-contiguous, cross-dimensional patterns, a geometic ap-
proach which seems intuitively of benefit in the analysis of music. The SIA family of algorithms de-
scribed seek event groups in point space which may be translated to match other groups, forming sets
of repeating patterns without pre-selected dominant attributes, whose events do not have to be adja-
cent, unlike channel-based string matching. This forms a powerful approach to repeat identification
and piece segmentation, and some experiments within this thesis include a compression-based version
of this algorithm, COSIATEC (Meredith, David, 2013), in their comparison. Given the strong results
the SIA algorithms have returned over many musical studies, it is important to align the observed
performance of the generalised compressors in these experiments against point-cloud based methods.

Meredith has identified key challenges in pattern discovery, along with drawbacks of the sequen-
tial representation and string matching approach, in a discussion of the SIA family (2006a). He be-
gan by citing the significance of repeats, before demonstrating the wide variation in structure and
transform that must be considered, using examples from scores by Rachmaninoff, Barber and Bach.
Highlighting the use of edit distance and separation of harmony into monophony, he showed how
simple embellishment can break pattern equivalence, an issue which cannot be solved by allowing in-
creased distance as ambiguity is likely to become dominant. A demonstration of the impracticality of
inter-stringmatching tomodel harmony and voice transition was also given, showing the exponential
growth in search space as each simultaneous note is encountered.

The geometric approach to pattern discovery can indeed overcome such difficulties. However,
a single representation, or combination of representations, may not be ideal for every purpose. For
example, use of diatonic intervals produces a more constrained search space, since a single step change
may represent several chromatic pitches, resulting in a structure more sensitive to unit errors than
its chromatic counterpart; such a representation might be useful for detection of change. Similarly,
representing notes by chromatic pitch can provide greater similarity between pieces of a common key,
a beneficial property when emphasis on primary pitch is desirable. Grammars by definition operate
on sequences of symbols from the input’s alphabet, necessitating the representation ofmusic as strings
for the purposes of this thesis. They are also trivial to construct, and limits imposed by their sequential
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Figure 3.2: Reacধon of grammar-based compressors to an increasing number of errors, in all available symbolic repre-
sentaধons, for Bach’s Fugue No. 10 from Das Wohltemperierte Clavier Book I. On average, diatonic intervals produce
the strongest response.

nature serve to reduce search space complexitywhen seeking repeating patterns. Differentmodelsmay
be constructed fromeachnote attribute, highlighting variationsbetween them inunderlying structure.
This study investigates the performance of this simple representation on real-world data for various
applications, demonstrating its continued relevance against more advanced techniques such as point
sets.

Where a diatonic pitch representation is selected for a particular experiment, it is important to
note that some ambiguity between pitch values is naturally introduced. The structure of this map-
ping is harmonic in nature and based on key scale positions, thus this representation incorporates
some domain knowledge and may be seen as the result of pre-processing chromatic data. An exami-
nation of the score collection discussed below showed, on average, no direct mapping from diatonic
to chromatic pitch existed for 13% of all diatonic values (with a standard deviation of 14%), with 4%
and 22% of values being ambiguous in the best and worst cases respectively. This is a significant sim-
plification of the input data, since the original chromatic values cannot be fully recovered from their
corresponding diatonic pitches. However, the representation can provide enhanced results in suitable
applications (Figure 3.2), as demonstrated in Chapter 5.
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3.5 Multiple Viewpoint Systems

Witten andConklin (1995) introducedmultiple viewpoints as a distributedmethodof solvingproblems
involving the processing of sequences, in response to the observation that existing contextmodelswere
unable to properly represent complex event sequences, such as symbolic music, where intricate rela-
tionships exist between the types of event which occur within a domain. For example, a note’s pitch,
duration and onset point are separate values, but they are not chosen in an arbitrary and independent
manner; within the music, a strong relationship is exhibited between them (Cook, 1994).

A viewpointmay be considered as belonging to one of three classes (Conklin, 2013b). A basic view-
point can represent an attribute sequence from a discrete string of events, such as a sequence of pitch
values occuring within a musical piece. A derived viewpoint may be seen as the result of processing a
basic viewpoint, such as the output of a function which returns a sequence of pitch intervals, given
a sequence of pitch values. Other examples of derived viewpoints include pitch or duration contour,
where each element is a trinary value representing a neutral, positive or negative change from the pre-
ceeding input value. A constructed viewpoint forms a more powerful representation, where basic or
derived data can be combined in a connected fashion – such as the product of inter-onset intervals
(Pearce, 2018) and pitch intervals – allowing an algorithm which processes such a sequence to oper-
ate on a context formed from any number of recent events, and understood in a manner appropriate
for the domain to which the input belongs. Viewpoints may be combined in an attempt to leverage
the most useful features of each in any specific situation, using techniques such as arguments of the
maxima or majority voting, to producemultiple viewpoint systems which explore many facets of each
input’s event sequences simultaneously. Multiple viewpoint systems have been shown to improve
the accuracy of computational approaches to various musicological tasks, including music prediction
(Conklin & Witten, 1995) and folk tune classification (Conklin, 2013b), when compared to basic con-
text models, or algorithms which operate on basic viewpoints independently.

Given the success of multiple viewpoints, in particular with regard to symbolic music, it is rea-
sonable to suggest their use may extend the ability of grammar-based models. Integration of multiple
viewpoints into the grammar construction process is, however, not immediately trivial. A number of
possible approaches exist to their inclusion, the most naïve being the construction of entirely separate
models from each basic viewpoint, and the combining of results in a manner which aids the specific
objective. As this study will show in Chapter 5, a weighted model combination can indeed prove use-
ful for tasks such as the classification of folk tunes. However, a truly combined approach might be
taken by generating a model which represents more than one viewpoint, and this may be problem-
atic. A grammar-based compressor generates a model which exactly represents a single interpretation
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of its input; if several viewpoints are directly combined, the result may lead to an output structure
which approximates all viewpoints, but does not entirely represent any as effectively as is possible if
they are separately processed. Instead,multiple viewpointsmay be presented to the compressor as con-
catenated, separated strings. In this case, the output is also likely to be formed as a concatenation of
separatemodels, and any benefit to compression can only arise if the alphabets of different viewpoints
contain common symbols, and similar patterns exist within them. This also offers no guarantees of
being useful, since common symbols may have distinct meanings (such as the discrete value −1 in
pitch interval and duration contour sequences), and so rules which match across viewpoints may not
necessarily have any common contextual meaning. Viewpoints may be combined by constructing an
input sequence for the compressor which is composed of elements which are multi-dimensional, but
this is likely to strongly decrease the equivalence of substrings within the sequence since the number
of unique elements may greatly increase, which does not aid compression. It is probable that such a
representationwill be ofmore use to an algorithm such as COSIATEC (Meredith, David, 2013) which
is designed to work on multi-dimensional data. A more integrated approach would be necessary to
effectively construct compact grammars frommultiple viewpoints, and although a scheme of this type
may prove successful, it is considered beyond the scope of the current thesis.

Nonetheless, thisworkdoes consider theuse ofderived viewpoints in the constructionof compact
grammars, alongside the weighting of models built from multiple viewpoints as described in Section
5.5. Many of the inputs fed into the compressors are composed of diatonic intervals, and pre-processed
representations such as diatonic contour, and chromatic pitch modulo 12, are also investigated. For
the purposes of this thesis, constructed viewpoints are not chosen, despite their usefulness in other
studies. This decision was taken so that an evaluation of the performance of grammar-based com-
pression on simple, individual viewpoints could be presented, as a foundation which may serve as a
baseline in future studies which augment and extend the experiments presented here. Although sim-
plistic grammars are arguably useful as models of musical structure, as discussed in Section 2.2, no
large-scale study has yet been conducted to indicate their effectiveness on musicological tasks given a
general population ofmusical scores. Such knowledge, in itself, a useful indication ofwhether it is pos-
sible to apply grammar-based compression to basic symbolic musical sequences – if a method exists
which can equal the performance of existing work without requiring the use of complex or multiple
viewpoints, it may provide a simpler approach to practical tasks, and, where this is not the case, the
possibility of augmentation with a multiple-viewpoint approach remains, offering a strong potential
for improved performance, as seen in tasks such as folk tune classification (Conklin, 2013b). As such,
this study has chosen to focus generally on the use of single viewpoints, and consider only a limited
set of derived viewpoints, as targets uponwhich the performance of grammar-based compressors may
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be quantified.

3.6 A gathered Corpus of Musical Scores

Ideally, the results of any study will represent the universe of all possible behaviours. That ideal is not
always attainable, and as a substitute a set of generalisable behavioursmay be examined, or a limited set
of behaviours with specific significance to the problem. For this study, it is also desirable to conduct
experiments on data which are representative of a large proportion of data available, and which are
inclusive of a sufficiently large population of strongly structured compositions, with the aim of pro-
ducing useful, generalisable results which representmore than just the sample under test. Historically
important classical works were chosen as the basis for the study, since these possess clear structure –
often with at least one analytical interpretation provided by an expert musicologist – and are available
in a great enough quanitity to allow for a large number of experiments to be conducted.

Such an extensive dataset allows the establishment of a general relevance of results, and a cross-class
evaluation of testedmethods, given thewide variety of works and genres it may contain. A substantial
collection of symbolic music data was gathered for this study, hereafter referred to as the corpus, and is
composed of scores from the following sources: theAcadia EarlyMusic Archive (Callon, 1998-2009);
the Choral Public Domain Library (CPDL organisation, 2018); Musopen, a repository of free scores
and recordings (Musopen organisation, 2018);Music21, a toolkit for computer-aidedmusicologywith
a large accompanying dataset (Cuthbert & Ariza, 2010);KernScores, an online symbolic music library
(Sapp, 2005); a digital archive of the 1850 edition of O‘Neill’s Music Of Ireland (Chambers, 2015);
theMeertens Tune Collections, a database of Dutch folk songs (Meertens Instituut, 2018); and the Jo-
hannes Kepler University Patterns Development Database (Johannes Kepler University, 2013), itself
using data from KernScores. Some overlap between collections exists, for example between the Mu-
sic21 corpus andKernScores; for simplicity, duplicate pieces were not removed, and digital representa-
tions ofmulti-movement works were not split into their separate components, since such occurrences
formed only a minority of the corpus. In total, 7961 digital scores were gathered, of which 7928 were
converted to a suitable common format.

The MTC Annotated Corpus v2.0.1 (van Kranenburg et al., 2016) is worthy of note, since each
of its 360 members is bound to a “tune family” group as defined by musicologists at the Meertens
Institute, and described byVolk andKranenburg (2012) during their study of the relationship between
musical features and similarity. This dataset is presented as “ground truth” which may be used to
assess retrieval methods, and has formed the basis of several studies against which performance of
such a method may be compared. 26 tune families exist within the Annotated Corpus v2.0.1, along
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Source Proportion
Music21 37%
KernScores 28%

O‘Neill’s Music of Ireland 25%
Meertens Tune Collections 4%

Miscellaneous 4%
Acadia Early Music Archive 1%

Choral Public Domain Library 1%
Musopen <1%
JKU PDD <1%

Table 3.1: Distribuধon of pieces by source; three primary sources make up the majority of the corpus.

with reference melodies (the “master” tune within the family), motif occurrences, phrase and song
similiarities, andmelody formwithin each strophe. In thepresent study,weuse compression to classify
each strophe by its tune family label.

Table 3.1 shows the distribution of pieces within the corpus by source.
Several score formats existed within the gathered data; compressed and uncompressed Mu-

sicXML (Good, 2001),Humdrum (Sapp, 2005), andABC (Oppenheim et al., 2011). Scores not already
in Sibelius 7 format (AvidTechnology Inc., 2011) were converted, where, once loaded into the program
and in an internal representation, datawas exported to a customXML format using aManuScript plu-
gin from the sib2ly utility (Sidorov, 2015). From this, the following informationwas extracted for each
piece: pitch values and intervals (chromatic and diatonic), note duration, absolute position and ac-
cidental status (the latter represented within Sibelius 7 as trinary flags), and bar offsets. In addition,
trinary contour vectors were constructed from both interval representations, where each interval was
replaced by an element of−1, 0, 1, indicating the direction of change and thus representing the step-
wise contour of the input. Note information was assigned to voices specified in the original digitised
scores. At this stage, testing was conducted to ensure the extracted data was not corrupted in anyman-
ner, by converting each piece back into its original representation and comparing each corresponding
event.

3.6.1 Distribution of Pieces by Source

The assembled corpus contains works by 39 known composers, with 3662 pieces whose composers are
unknown. Of the latter, the majority belong to the three primary folk collections included: O‘Neill’s
Music Of Ireland (1850), the Essen Folksong Collection and Ryan’s Mammoth Collection. The last
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Composer Proportion
Unknown 46%

Bach, Johann Sebastian 20%
da Palestrina, Giovanni Pierluigi 17%

Haydn, Joseph 4%
Corelli, Arcangelo 3%

Mozart, Wolfgang Amadeus 3%
Beethoven, Ludwig van 2%

Vivaldi, Antonio 2%
Others (<1% each) 4%

Table 3.2: Distribuধon of pieces by composer (to 0 d.p.); Bach and Palestrina make up a large porধon of the corpus,
but the majority of pieces have no recorded composer.

two of these are contained within the KernScores and Music21 collections, the first consisting of ap-
proximately 6,255 folksongs originating from a variety of geographical regions, the second of 1,059
traditional Irish fiddle tunes. Table 3.2 provides details of the distribution of sources. Pieces are also
categorised by period and genre; Tables 3.3 and 3.4 show how the collection is divided. For the major-
ity of pieces, an accurate date of creation was not available; this “undefined” group forms themajority
of the corpus, and is composed almost entirely of Folk music from the three listed collections. Period
information for each piece was not independently sourced, insteadmetadata associatedwith a piece or
collection was parsed for date information, and this recorded against each piece where available, with
a label of “undefined” associated with any pieces for which a date could not automatically be found.
Although creation dates are available for many folk tunes, this information was not included within
the chosen collections, all of which were gathered in the 19th and 20th centuries but contain material
from hundreds of years earlier. No attempt was made to verify the date information gathered, aside
from manual checks as the scores from each collection were added to the corpus.

As an approximation of corpus complexity, times taken to construct grammars using ZZ were
stored for each piece. These were used as a sort criterion to allow processing in order of run-time.
Number of notes represented within each piece were also recorded. The relationship between sym-
bolic length and approximate complexities for each piece is shown in Figure 3.3.

3.6.2 Correctness of Scores within the Corpus

The focus of this study is the response of compressors to a “real-world” collection of digital musical
scores, whose data may be loosely qualified as being reasonably accurate with respect to the original
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Period Proportion
Undefined 46%
Baroque 25%

Renaissance 18%
Classical 7%
Romantic 2%
Medieval 1%
Georgian 1%
Tudor <1%

Table 3.3: Distribuধon of pieces by period, the three largest being Baroque, Renaissance, and “undefined” – this
last group contains pieces with a creaধon date which is either unknown, or was not recorded within the associated
metadata.

Genre Proportion
Classical 55%
Folk 43%

Undefined 2%
Jazz 1%

Table 3.4: Distribuধon of pieces by genre; most scores are either classical pieces or folk songs.

Figure 3.3: Relaধonship between symbolic length and approximate complexity of pieces within the corpus.
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sources of transcription. The corpus of musical scores gathered for this study originate from a variety
of sources, and are encoded in various formats, so it is reasonable to anticipate representational differ-
ences to exist after conversion to a common format. Given that the majority of sources are intended
to aid academic study, it would be convenient to assume the bulk of the data were entirely accurate.
However, this is unlikely to be true, especially where pieces are automatically transcribed or unverified
against their original scoring. Indeed, some scores may contain errors prior to conversion. As such,
data within the collection should only be considered partly accurate, and any observations made with
this limitation in mind.

Some representational conventions which affect processing attempts by string-based algorithms
were observed within the gathered corpus, in particular for pieces from Bach’s Das Wohltemperierte
Clavier, and it is possible that other issues exist generally. A good example in the case of the Bach
pieces occurs because the score is represented by bass and treble clefs, assigned to the player’s left and
right hands respectively: when a pitch transition causes the notes of a motif to be split between the
fingers of bothhands, those notes are assigned to their related clef, and soneither clef contains the exact
sequence of notes necessary to contiguously represent the pattern, making discovery of the instance
by a sequential string-processing algorithm impossible.

The results of any experiments which assume entirely accurate data will obviously be affected by
such inconsistencies. It would also be advantageous in some respects to equalise the distribution of
composers, periods and genres present within the corpus, so that a more balanced and general dataset
may be created. Nonetheless, the experiments contained within this study have been conducted on
unmodified scores, with the aim of observing the results which may be expected given real-world dig-
ital music collections, including any inconsistencies and characteristics they may contain. Ideally, the
music-processing algorithmwill be robust to such variation, in the samemanner as human perception.
The accuracy of each converted output was tested to ensure the music data it contained matched ex-
actly with that of the original input, but any further balancing or treatment of the collections is left
for future investigation.

3.7 Summary

This chapter provided a general definition of themusical score in the context of the study’s intentions,
anddiscussed the various levels of abstraction, attributes andobjectswhich adigital score contains. File
formats which are commonly used to store digital symbolic music were also summarised, including
proprietary encodings such as Sibelius (Avid Technology Inc., 2011), open-source encodings such as
MusicXML (Good, 2001),MIDI (MIDI Association, 1996) andMuseScore (Watson, 2018), and text-
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based formats such asABC (Oppenheim et al., 2011) andHumdrum (Sapp, 2005). It was noted that
these formats may be used to store scores which have been converted from physical manuscripts, and
that a large collection of 7961 such conversions, predominantly from the classical and folk genres, was
gathered for the purposes of the experiments detailed in later chapters.

Having discussed the objectswhich are necessarily presentwithin a digital score, the various string-
based representations which have been chosen for the construction of experimental input data were
defined, including chromatic and diatonic pitch & interval, pitch class as a function of scale degree
within an octave, pitch interval contour, the segment-based pitch histogram, note duration and onset
interval sequences. An example of the encoding of multiple sequences, via concatenation and separa-
tion with unique terminator symbols, was provided for a simple diatonic interval sequence consisting
of two scored voices. These definitions show how a single symbol sequence which is suitable for input
to a string processing algorithm may be produced from a polyphonic, multi-voice digital score, such
as those present in the corpus, and demonstrate the pre-processing which occurs before the methods
described later in this thesis are used to process score data.

The following chapter will discuss the production of straight-line grammars upon which this
study is based, and define their properties, alongside introducing some other popular compressors
selected as suitable baselines against which experimental results may be compared.
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The grammar of a language can be viewed as a theory of
the structure of this language.

Noam Chomsky, 1956

4
Straight-Line Grammars

The research presented in this thesis focusses particularly on the application of grammars to the anal-
ysis of music, and specifically on the use of grammars as compressedmodels of digital score data, since
this appears to be a promising technique (Sidorov et al., 2014) as discussed in Chapter 2. Such models
appear capable of identifying structure which is musicologically relevant to a score (Nevill-Manning
&Witten, 1997), and responding to changes in structure in amanner which suggests a degree of recog-
nition of musical context (Sidorov et al., 2014). This chapter provides a definition of grammars, and
their important properties, as theoretical structureswhich are central to this study. Other compression
techniques, which are used to produce a baseline against which experimental resultsmay be compared,
are also described. Although the definition of a grammar does not place it within themusical domain,
a grammar may indeed form a lossless model of a musical sequence, and so its inclusion is important
in laying the foundation upon which the contributions in this thesis – an exploration of grammars
with respect to music analyis, augmentation of grammars with flexible production rules, and approx-
imation of constituent gain as a heuristic to reduce construction time – are built.

A straight-line grammar is a formal, hierarchical model which generates exactly one output string.
Existing work has shown that grammars may represent a descriptive model (Mondol, 2020) in the
context of Kolmogorov Complexity (Kolmogorov, 1963). Given that music may be represented as a
symbolic string s, its Kolmogorov Complexity can be defined as follows:
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KT(s) = min (|P|,T(P) = s)

WhereT is aUniversal TuringMachine (Turing, 1936), andP is a programwhich exactly generates
s. KT(s) cannot be exactly computed (Chaitin, 1966), but it may be approximated as an upper semi-
computable function (Li & Vitányi, 2008) (defined as a partial function f : Q → R which, if there
exists a computable function f(x, k) : Q × N → Q, where k is the level of approximation chosen in
calculating the parameter of f(x), may be approximated from above). As such, minimisation of |P| is
equivalent to approximating the Kolmogorov Complexity of s. Minimisation of grammar size |G(s)|
produces a small encoding which may exactly reproduce s using a simplistic expansion process, anal-
ogous to T. As stated in (Carrascosa et al., 2010), this approach allows computation of a variation of
KT(s).

4.1 Straight-Line Grammars

This section defines the components which constitute a straight-line grammar, as used throughout
this dissertation. Such definition is important to ensure the workmay be alignedwith existing studies,
and follows accepted conventions from the literature (Carrascosa et al., 2011) for consistency. It is
from these components that an encoding is generated, such as that which is output from a grammar
construction algorithm such as ZZ (Carrascosa et al., 2011); knowledge of these components is key to
understanding the grammar construction process, and how an encoding may be generated, encoded
and quantified from a given model.

For this study, the following definition has been adopted. As shown by Carrascosa et al. (2011), a
straight-line grammarGmay be defined by the following components:

G = ⟨Σ,N,P, S⟩

Σ is the set of terminal symbols, and comprises the finite symbolic alphabet fromwhich the input
string s is formed. N is the set of unique non-terminal symbols, where Σ andN are disjoint. P contains
the grammar’s production rules, each of the form A → α, where A ∈ N, and α is a sequence from
(Σ ∪ N)∗. S is known as the start symbol, and refers to a special production rule from P, with S ∈
N, known as the primary rule (Charikar et al., 2005); all other rules in P are referred to as secondary.
Expansion of the grammar begins with S, and whenever a non-terminal A ∈ N is encountered it is
replaced with α from the right-hand side of the corresponding production rule..

G is encoded as a string, composed of a sequence of symbols, each an instance of g ∈ (Σ ∪ N),
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representing a concatenation of all rules in P in the form (PS,P1,P2, . . . ,Pn). Rules are separated by
a special terminator symbol |, making it unnecessary to includeA→ α explicitly within the encoding;
instead, each rule is encoded as α|, with the order of their concatenation defining their positionwithin
P, and, consequently, their reference A ∈ N. This results in a string of the form αS|α1|α2| . . . αn|.
Conventionally, the size ofGmay be calculated as follows:

|G| =
∑

A→α∈P(|α|+ 1) (4.1)

G must be fully expanded in order to reproduce s. The expansion of a rule r ∈ P, with non-
terminalAr ∈ N is denoted by ⟨Ar⟩, and overall expansion of G always begins with ⟨S⟩, continuing
iteratively until c /∈ N for all c ∈ ⟨S⟩. G is therefore acyclic, and there exists a global expansion
function ε(G) = ⟨S⟩ for all such grammars.

4.1.1 Grammar-based Compression

The goal of a smallest grammar algorithm is to minimise |G| by generating a grammar forming the
smallest possible encoding of the input string s, resulting in |G| < |s|. This is approached by only
including production rules whose symbolsA ∈ Nwill replace instances of substrings in s in a combi-
nation which produces the smallest possible encoding overall. Given a straight-line grammarGwhich
exactly reproduces the string s, where |G| < |s| the encoding represents a compressed encoding of s,
although it may not necessarily be the smallest encoding possible.

During the construction ofG as a compressed encoding of s, a rule r should not be included in P
unless it results in compression. Given v = ⟨Ar⟩, replacing n instances of that substring v in s with
the symbolAr ∈ N, it must hold that |αr| + 1 < |v| · n in order for r to remain compressive within
G. This inequality assumes that no other rules are formed from substrings which are also substrings
of v; where this is the case, |v| is reduced, and r becomes less compressive.

Computationally, construction of a smallest straight-line grammar (one which reproduces only
its input string) is a complex process proven to be NP-Hard (Lehman & Shelat, 2002). However, a
close approximation may be discovered with lesser complexity, making algorithms which generate a
compact grammar, such as ZZ, suitable for practical use. Existing grammar construction methods
vary in complexity and performance. Carrascosa et al. (2010; 2011; 2012) showed the time complexity
of IRR schemes to be O(n2 log n), compared to O(n7) for ZZ, where n is the length of the input in
symbols. It is important to note that this represents maximum complexity; in practice, convergence
usually occurs far earlier.

When drawing comparisons in performance betweenmultiple compression techniques, the tech-
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niques chosen should bear sufficient similarity in function and output to enable a relevant compar-
ison to be made, and in an equivalent context. This study selects ZZ and IRR-MC as well-known
algorithms which may be suitably compared, and as a basis for further development. IRR-MC is in-
cluded so that experimental results obtained from a less powerful compressor may be compared to
those obtained using ZZ, to explore the hypothesis that there is a relationship between compressor
strength and performance for particular tasks. The process of ZZ optimisation can also be compared
to methods this study presents, allowing them to be evaluated against current knowledge.

4.1.2 General Grammar Construction

A grammar may be constructed based on the definition in Section 4.1, as follows. Initially, P is empty
andN contains only a reference to S. The right-hand side of the rule associatedwith the start symbol S
is initialised with the input string s, producing S→ s, and thus the unique set of its symbols are added
to Σ. Substrings of ⟨S⟩ are then added as new production rules and their occurrences in P replaced
with a rule reference symbol, which itself becomes amember ofN. How andwhen these replacements
are made depends on the grammar construction method. The goal of a smallest grammar algorithm
is to minimise |G| by only generating new production rules which replace substrings in P with their
respective references in a combination which gives the greatest overall reduction in grammar size.

4.1.3 IRR-MC and ZZ in Operation

IRR-MC begins with P empty and N containing only S, as a reference to the primary rule within P.
Variable S is initialised with the input string s, and all members of the unique set of its symbols are
added to Σ. At each iteration, the most compressive substring within the right-hand sides of all rules
in P is added as a new production rule, and its occurrences replaced with a rule reference symbolAn,
which itself becomes a member ofN. As shown by Carrascosa et al. (2011), replacement of a substring
ωwhich occurs n times in the right-hand sides of the rules in Pwith a new rule causes a decrease in |G|
of (|ω|−1)·n, and an increase in |G|of |ω|+1. Assuming a function f(G, ω, n) = (|ω|−1)·n−(|ω|+1),
themost compressive substring may then be defined as argmax f(G, ωi, ni) for all ω in the right-hand
sides of all rules in G. The process is complete when no ω exists which further reduces |G|, and the
result is a greedy minimisation of |G|. The grammar produced will exactly generate s alone upon
expansion.

In contrast, ZZ traverses a lattice of possible substrings, known as constituents, where moving to
a different node within the lattice represents addition or removal of a constituent from the current set,
and so of a production rule from P. Traversal ends when no move to a neighbouring node results in

52



the possibility of constructing a more compact grammar from that node’s constituent set, thus locally
minimising |G|.

4.1.4 Approximation Ratio

Grammar construction for a string s containing c constituents possesses a combinatorial space ofΟ(2c),
making selection of a smallest grammar for a large s untractable. Instead, an approximation is com-
monly sought, in order to allow the production of an upper semicomputable function (as defined
at the beginning of the chapter). Given a grammar construction algorithm λ(s) 7→ G(s), and a per-
fect smallest grammar construction algorithm Λ(s) 7→ G(s), an approximation ratio for the smallest
grammar problem (Charikar et al., 2005) can be defined as a function f(n):

f(n) = max
s∈

∑n

(
|λ(s)|
|Λ(s)|

)
For a specific class of grammar constructors, global algorithms (2005), Charikar et al. defined the

following properties for any grammar G generated, where g is the concatenation of all the right-hand
sides of rules in P:

• For any pair of right-hand side rule definitions(α, β) ∈ P with |α| ≥ 2 and |β| ≥ 2, α =
β ⇐⇒ ⟨α⟩ = ⟨β⟩.

• For all non-overlapping symbol pairs (α, β), (β, γ) ∈ g, (α, β) ̸= (β, γ).

• For eachA ∈ N, the count of all instances ofA occurring in g is≥ 2.

Given these properties, the approximation ratio of this class of algorithm may be defined:

O(
(

n
log n

) 2
3
)

The same study provided a proof (Lemma 1) demonstrating that for a smallest grammar G(s) of
this class, with n = |s|, encoding size may be taken as follows:

|G(s)| = Ω(log n)

4.1.5 Performance of Grammar Construction Algorithms

Carrascosa et al. (2010; 2011; 2012) showed that a variety of existing grammatical compressors per-
formed identical steps during the construction process, differing only in constituent score function,
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and presented an algorithm unifying these approaches. At each iteration of the algorithm, repeating
terms are identified within S and P, and the reduction in |G| resulting from their replacement by ref-
erence to an additional rule in P is calculated. The term t providing the greatest anticipated reduction
(over n instances) is chosen as the next constituent, replacement is made, and iteration continues. The
algorithm terminates when no further reduction is possible. The study defined three principal score
functions –Maximal Length (ML,max(|ti|)), Most Frequent (MF, max(ni)), andMost Compressive
(MC, max(|ti|ni)) – and demonstrated that all IRR schemes are prone to loss of compression due
to greedy constituent choice blocking globally more compressive combinations at subsequent itera-
tions. In answer to this, Carrascosa et al. described Occurrence Optimisation, and presented a search
space traversal method, ZZ, capable of removing sub-optimal constituents and arriving at a local min-
imisation of |G| without the complexity associated with an exhaustive examination of constituent
combinations.

Existing grammar construction methods vary in complexity and performance. The Sequitur al-
gorithm’s smallest grammar (Nevill-Manning & Witten, 1997) is bounded O(log n), and the LZ77-
basedAVL-grammar algorithm (Rytter, 2002) can approximate a ratio ofO(log n) inO(n log |Σ|) time,
where Σ is the input string’s unique symbols. Charikar et al. (2005) presented an approach capable of
ratioO(log n/m), wherem is the size of the smallest grammar per input. Carrascosa et al. (2010; 2011;
2012) showed time complexity of IRR schemes to be O(n2 log n), compared to O(n7) for the more
powerful ZZ. Consistently smaller models were produced by ZZ relative to IRR-Mx across inputs of
varying size. Benz andKötzing’sGA-MMAS (2013) offered slightly smallermodels thanZZ, at the cost
of greater time complexity. Due to the unavailability of a GA-MMAS implementation, ZZ’s minimal
time complexity, and the volume of data to be processed, we select the latter as the principal compres-
sor for this study. We also include IRR-MC, as the optimum IRR-Mx scheme, to provide a direct
comparison against less compressive models in our experiments.

4.1.6 Hierarchical Structure

The hierarchical structure of a straight-line grammar has useful properties when modelling many dif-
ferent data types, including musical data. An example of this may be seen in a later chapter; Figures
5.3 and 5.4 provide an example of the manner in which structure may be represented for musical com-
positions. Any production rule may contain references to sub-rules in P, making grammars suitable
for modelling sequences which exhibit nested structure when decomposed into significant segments.
Music is known to be composed of units such as melodic phrases which are often present within re-
curring passages, and although it is reasonable to state that disjunctive segmentation alone such as that
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presented by a straight-line grammar cannot entirely explain a score (Singer, 2004), it is still possible
that such disjunctive segmentation in part represents structure intentionally defined by the composer.
As such, nested rules within the grammar remain useful to segmentation-based tasks (Sidorov et al.,
2014).

Grammar-based compression is of particular interest for this study, not only due to the promis-
ing results of previous work, but because such a grammar models a hierarchical, approximate smallest
encoding of some particular input data, without loss. Top-level rules may resemble semantic segmen-
tation as defined by humans, with low-level rules forming the building blocks fromwhich higher level
structure is formed. Alphabet symbols may be directly edited, allowing simultaneous processing of
multiple sequence positions, across multiple sequences. This study begins by proposing that a com-
pressive grammar for a given piece can effectively model such hierarchy, and is therefore useful in
performing musical tasks which are based upon segmentation.

4.2 Compressors selected for Study

This study adopts ZZ as its primary existing compression method, since one of its key aims is to ex-
amine whether hierarchical, compressed models may be directly leveraged in analytical tasks. As dis-
cussed earlier, IRR-MC is included so that direct comparison against a less optimised compressormay
be made. The geometric point-set compressor COSIATEC (Meredith, 2006a) is known to be a more
powerful pattern discovery method on symbolic music data. However, it is not designed to perform
optimally on many of the tasks selected for testing, and produces a very different encoding to that of
ZZ or IRR, making a direct comparison between the output of COSIATEC and a grammar-based
compressor unfeasible. Where this output is used as part of a subsequent processing task, encoding
differences may also cause a variation in task performance which is not immediately reflective of the
ability of the compressor, making the comparison of results between compressor types less meaning-
ful. Most importantly, as a point-set algorithm specifically designed to process polyphonic music,
COSIATEC accepts an input of an entirely different form, distinct from the strict sequences of string-
based compressors such as ZZ or IRR.When seeking repetition, COSIATEC is able to build patterns
from separate events spread across the temporal domain; using the representation style described in
Section 3.3, a string-based compressor can only group events which are adjacent within a given time
sequence when selecting a pattern. Such differences are likely to cause the results of the experiments
conducted for this study to varywidely between compressor types, without necessarily providing a use-
ful foundation for the analysis of inter-class performance on tasks specifically designed for string-based
compressors. Due to these factors, COSIATEC is not selected for inclusion in these experiments.
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Different compression techniques are notably capable of producing useful and interesting re-
sults given musical data. Many previous studies have employed popular file compressors for classi-
fication and segmentation. Cilibrasi, Vitányi, and Wolf (2004) experimented with different methods,
including GZIP (Deutsch, 1996), BZIP2 (Seward, 1996) and the Linux standard command compress
(Welch, 1984), during their investigation of clustering by normalised information distance. Li, Chen,
Li, Ma, and Vitányi (2004) also use GZIP in their presentation of a normalised information distance.
Louboutin and Meredith (2016) considered the Lempel-Ziv Welch algorithm for classification and
pattern discovery, but stated that they chose LZ78 (Ziv & Lempel, 1978) as this would require stor-
age of an unbounded alphabet within the compressed output. Since input alphabets are constrained
for symbolic music data, this study includes LZW (Welch, 1984) within its set of compressors, along
with GZIP, and run-length encoded (Tsukiyama et al., 1986) Burrows Wheeler Transform (Burrows
& Wheeler, 1994), the last of which forms core layers in the BZIP2 compression stack. These refer-
enced studies demonstrated the effectiveness of generalised compression when applied to symbolic
music data, and it is useful to include this class of algorithm so that experimental results may be placed
within a wider context.

Although model size is the primary metric in the experiments within this study, it is not used
to directly compare compressors due to the differences in encoding. An additional c = |P| separator
symbols are required for grammars, with rules being explicitly stored. LZWrequires l = |σ| additional
symbols, where σ is the set of symbols present in the input, since this input alphabet forms an initial
dictionary. However the remainder of the dictionary is generated upon decode, and so is not explicitly
encoded. COSIATEC simply returns the total number of points and offsets within the patterns it
discovers, defined as Maximal Translational Equivalence Classes (Collins & Meredith, 2013), along
with a set of residual points not referenced in anyMTEC.WhereGZIP is used, the literal file length in
bytes is taken as the size of the compressedmodel. It is clear that encoding size alone cannot be used for
cross-method evaluation, and so compression ratios are included in the presented experiments where
appropriate. It is worth noting that differences in encoding may obviously affect measurement of
compressor sensitivity, even where the process by which a compressor is applied to a particular task
remains identical.

4.3 Examples of Grammar-based Compression

This section contains discussion and simple examples of how a grammar may be constructed using
different schemes, all of which are relevant to the work presented in this thesis: Iterative Repeat Re-
placement using aMost Compressive score function, Iterative Repeat Choice withOccurrence Optimi-
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sation, andZig-Zag. For the latter, the search space of constituents associated with the algorithm– the
Lattice of constituents – is briefly discussed, and work presented in later chapters may be understood
in reference to this structure. For each example, an encoding of the grammar will be used as its rep-
resentation, with unique terminator symbols $1, $2, . . . , $n used to separate S from each production
rule, and production rules in P from each other. Non-terminals from N are defined as r1, r2, . . . , n,
where rn is the nth production rule in P.

4.4 Iterative Repeat Replacement

Carrascosa et al. (2011) define a general scheme which most offline grammar construction algorithms
may be shown to follow. Beginning with assignation of the inputs string’s symbolic sequence s to S,
construction of the grammar follows an iterative procedure which continues until no reduction in
the grammar’s length, as defined in Section 4.1, is possible. At each iteration, a score function is used
to evaluate the “best” substring to replace within S or P, and replacement is carried out by addition
of a new production rule to P, assigned its own, unique non-terminal symbol which is added to N.
This non-terminal symbol is subsituted for all non-overlapping occurrences of the substring, chosen
greedily from ascending indices of the grammar’s sequence, except for the sequence on the right-hand
side of the new production rule. In this way, a grammarG is generated which represents a compressed
encoding of the original input s.

Given a simple input string s = abcabcdbcebc, a brief example of grammar construction can be
outlined. First, s is added to the grammar, resulting in the encoding a, b, c, a, b, c, d, b, c, e, b, c$1, with
length |G| = 13. AssumingMost Compressive is chosen as a score function, the score of each substring
in the encoding will be |ti|ni as defined in Section 4.1.5. The set of all possible substrings of length≥ 2
and with number of occurrences≥ 2 are {ab, bc, abc}. These are of length [2, 2, 3], and occur [2, 4, 2]
times within the input s, producing MC scores of [4, 8, 6].

If the substrings are ordered firstly by descending score, and secondly by their index, the substring
bc is chosen first for addition to the grammar. Knowing that n = 4 occurrences of the substring of
length l = 2 will be replaced, and each occurrence will be substituted by exactly one non-terminal to
represent the new production rule, the gain which the replacement alone will offer is n(l − 1) = 4.
However, the production rule itself must be encoded, and terminated by an additional, unique sym-
bol. This results in a loss of l + 1 = 3. Therefore, the overall gain is n(l − 1) − l + 1 = 1. The
existing grammar is of length 13, and so choosing bc as a new production rule would result in |G| = 12.
Since this is less than the length of the previous encoding, bc is selected for addition to the gram-
mar. Replacement then occurs in a greedy fashion over all indices of the encoding, here producing
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a, r1, a, r1, d, r1, e, r1, $1, b, c, $2, which represents S = a, r1, a, r1, d, r1, e, r1, and P = [b, c], where
|G| = 12. At this point, a new iteration begins.

Within this new encoding, the set of all possible substrings is {[a, r1]}. No other repeats now exist.
The substring is of length 2 and occurs twice within the encoding, resulting in a score of 4. Knowing
here that n = 2, l = 2, and so n(l− 1)− l+ 1 = −1, it follows that |G| = 13 for a grammar containing
a, r1 as a production rule. Since this is greater or equal to the length of the previous encoding, it is
not retained, and G remains the same as in the previous iteration. Had a, r1 been included in G, it
would have resulted in the encoding r2, r2, d, r1, e, r1, $1, b, c, $2, a, r1, $3 of length |G| = 13. As the
most compressive substring offered no reduction to |G|, the algorithm now terminates, and outputs
the following, final encoding:

a, r1, a, r1, d, r1, e, r1, $1, b, c, $2

4.5 Occurrence Optimisation

Considering the process described above, no provision is made for optimisation of the occurrences of
substringswhich are replacedwithin SorP, as newproduction rules are iteratively added. If a grammar
G contains a production rule r1 which replaces substrings matching w1 in S or P, a new candidate rule
r2 may refer to substrings w2 in the original input s which overlap with instances of w1. It is entirely
possible that r2 may offer sufficient gain to the grammar to be useful in reducing |G|, but only if one
or more instances of w1 are not replaced by the non-terminal of r1. Indeed, r1 may continue to offer
sufficient gain even if those instances are not replaced by its non-terminal in the encoding, but since
all occurrences of w1 were replaced in the process of IRR, evaluation of the score for the candidate r2
cannot accurately reflect the potential for gain provided by r1, r2 in combination, and the candidate
r2 may not be chosen during that iteration, or perhaps at all, for inclusion in G. This may result in a
sub-optimal encoding, with a length |G| greater than is possible if the occurences of the substrings each
production rule replaces during grammar construction were optimised.

Carrascosa et al. (2011) introduced the process ofOccurrence Optimisation, in which all encodings
in S and P are represented by Directed Acyclic Graphs (Thulasiraman & Swamy, 2011), where each
edge between two neighbouring nodes represents a symbol in the rule’s sequence, and edges between
non-neighbouring nodes represent substring occurrences which may be replaced by production rules
present within G. In this manner, the choice of constituents from which to form production rules
is separated from the choice of substring occurrences in the encoding, and the optimal model which
may be produced given a specific set of production rules may be found by performing aminimal parse
of all graphs. This is termedMinimal Grammar Parsing, orMGP.
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MGP may be performed by applying any algorithm which is capable of finding a shortest path
through a Directed Acyclic Graph, such as Dijkstra’s algorithm (Dijkstra, 1959) or the Bellman-Ford
algorithm, first proposed by Shimbel (1954), to a graph representing the input string and all substrings
forming its constituents. Tracing the shortest path through this graph results in a sequence of symbols:
terminal symbols results from the traversal of an edge containing an element present in the original
input, and non-terminal symbols results from the use of an edge which is associated with an available
constituent. The sequence of symbols produced during the traversal forms the grammar’s encoding,
and represents the smallest encoding it is possible to generate given the available constituents. The
computational complexity of MGP depends on the shortest path algorithm used. For the purposes
of this thesis, it is O(|E| + |V|) where E is the set of all edges and V the set of all vertices, since every
edge which leads to any vertex v ∈ Vmust be considered in order to ascertain which is the last link in
the shortest path arriving at v, this step must be performed for all vertices in the graph, and each edge
arrives at exactly one vertex.

In an extension of IRR which is able to optimise substring occurrences, called Iterative Repeat
Choice with Occurrence Optimisation, or IRC-OO (Carrascosa et al., 2011), the score function is re-
placed by a Minimal Grammar Parse of S and P, resulting in scores which are optimal with respect to
the new candidate constituent, unlike Most Compressive. This allows the actual gain which a candi-
date can provide to a given grammar G to be known, ensuring that new production rules which are
capable of reducing |G| are not ignored due to the failure of the score function to observe optimal
encodings during evaluation. IRC-OOwas shown to allowmore compact grammars to be discovered
for certain inputs (Carrascosa et al., 2011).

4.6 Lattice of Constituents

The work of Carrascosa et al. (2011) also defined a search space of all possible candidate constituents,
each representing a set of substrings whichmay be replaced through the addition of a production rule
to a given grammar. This space represents all possible combinations of production rules, including the
empty set, and since a globally optimal modelG contains≥ 0 constituents, the space must contain at
least one combinationwhich, when used in aMinimal Grammar Parse, generates the globally optimal
encoding. An example lattice may be considered for the input string s = abcabcdbcebc, where the set
of all repeating substrings is {ab, bc, abc}. If these are considered constituents 1, 2 and 3, the search
space of all possible combinations can be visually represented as shown in Figure 4.1.

For any node within the lattice, it is possible to traverse at least one edge to arrive at a different
node. Each edge represents the addition or removal of a constituent from the current combination:
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Figure 4.1: An example of a Laষce of all possible consধtuents – i.e. all potenধal producধon rules – for a grammar
whose input contains exactly 3 repeaধng substrings.

where the edge leads downwards, a new constituent is added to the set, and where it leads upwards a
constituent is removed. Motion from one node to another represents a single operation, and motion
from one level to another represents a change in the number of constituents within the combination.
For n constituents, the maximum depth of the lattice is n + 1, and there will be a total of 2n nodes
within it. The maximum width of the lattice is defined as:

n!
⌈n2 ⌉!(n− ⌈

n
2 ⌉)!

Grammar construction algorithms may be said to begin at the top-most node, containing an
empty set, and aim to traverse the space to arrive at the node containing the globally-optimum com-
bination of constituents. Performing MGP using the set of constituents any given node represents
results in production of a grammar G, for which an encoding length |G| can be calculated. Optimal
nodes in the lattice are those for which |G| is globally minimal.

4.7 ZZ

In the same work, Carrascosa et al. presented the optimisation method Zig-Zag (ZZ) (Carrascosa et
al., 2011), designed to traverse the lattice in search of the first nodewhich resulted in a locally-optimum
value for |G|. Although any node may be selected as a combination of constituents C to begin with,
it is common to begin with C = ∅. ZZ operates in two phases – top-down and bottom-up – which are
identical except for the vertical direction they explore within the lattice, examining connected nodes
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Figure 4.2: An example parse graph for the input abcabcdbcebc, and the consধtuent ab. The minimum encoding
length is 14, and may be found by Minimal Grammar Parsing.

in the level above or below respectively. The goal of both phases is to discover the encoding lengths
associated with each connected node, each representing a possible choice of constituent to add / re-
move from the current set, so that a node which minimises |G| to smaller value than the current node
can be chosen. Such a choice results in the progressive optimisation of G with respect to encoding
length. Where no candidate node produces a smaller value for |G|, no movement occurs, and the
phase changes so that results of the opposite operation can also be evaluated. When movement in
either direction cannot reduce |G|, the algorithm terminates, and returns the selected set of locally-
optimal constituents. Ideally, this set will also represent the global optimum, but this will not be true
if the globalminimumvalue for |G|has not beenobservedby the algorithm for anynodes encountered
during traversal.

Beginning with the input string s = abcabcdbcebc, and the set of all possible substrings
{ab, bc, abc} assigned to constituent numbers [1, 2, 3], a simple example of grammar construction us-
ing ZZ can be outlined. Initially, since the set of chosen constituents is empty, C = ∅. ZZ begins in
the top-down phase, so the effect of adding a single constituent to C can be explored. Since the encod-
ing length of a string s is |s|+ 1, as a terminator symbol must be appended tomark its end, it is known
that |G| for C = ∅ here is 13. For a combination to be selected as an improvement on C = ∅, it must
result in |G| < 13.

The set of nodes which must be explored from the node ∅ is [{1}, {2}, {3}]. The parse graph
for the first node, representing the substring ab is shown in Figure 4.2. By parsing the graph starting
from the first node, of index 0, such that the minimum number of vertices are visited, the encoding
r1, c, r1, c, d, b, c, e, b, c, $1, a, b, $2 of length 14 is produced.

Next, the parse graph for the second node, representing the substring bc, is shown in Figure 4.3.
By again parsing the graph starting from the start node such that theminimumnumber of vertices are
visited, the encoding a, r1, a, r1, d, r1, e, r1, $1, b, b, $2 of length 12 is generated.

Finally in this phase, the parse graph for the third node in the current level of the constituent
lattice, representing the substring abc, is shown in Figure 4.4. Again, performing a minimal parse of
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Figure 4.3: An example parse graph for the input abcabcdbcebc, and the consধtuent bc. The minimum encoding
length is 12, and may be found by Minimal Grammar Parsing.
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Figure 4.4: An example parse graph for the input abcabcdbcebc, and the consধtuent abc. The minimum encoding
length is 13, and may be found by Minimal Grammar Parsing.

the graph produces the smallest possible encoding for this constituent combination, resulting in the
encoding r1, r1, d, b, c, e, b, c, $1, a, b, c, $2 of length 13. Now that all three encoding lengths are known
– [14, 12, 13] – it is possible to select the first occurrence of the minimum, and to verify it is indeed less
than the smallest known encoding at this point. At 12, it is smaller than the encoding forC = ∅which
is 13, and so the set of constituents changes to C = {c2} as ZZ moves to the corresponding node.

The next set of nodes reachable from the new position are {[1, 2], [2, 3]}. Figure 4.5 shows the
parse graph for the constituent combination {1, 2}. Two encodings of identical length are possible
for this graph, and selection of the first of these results in r2, c, r2, c, d, r1, e, r1, $1, b, c, $2, a, b, $3 with
length 15 symbols.

Next, the node representing combination C = {c2, c3} is evaluated. Figure 4.6 shows the node’s
parse graph, for which a minimal parse results in the encoding r2, r2, d, r1, e, r1, $1, b, c, $2, a, r1, $3 of
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Figure 4.5: An example parse graph for the input abcabcdbcebc, for the consধtuents ab and bc. The minimum encod-
ing length is 15, and may be found by Minimal Grammar Parsing.

62



c
2

1 2 3 4 5 6 7 8 9 10 11 12 13
b c

0
a a b c d b c e b c $

1 14 15 16
c $

213
b

c
2 c

2 c
2

13
a

18 19 20
c $

317
b

c
3 c

3

c
2

Figure 4.6: An example parse graph for the input abcabcdbcebc, for the consধtuents bc and abc. The minimum encod-
ing length is 13, and may be found by Minimal Grammar Parsing.

length 13. Now both encoding lengths reachable in the top-down phase from the node representing
C = {c2} are known – [15, 13] – it is again possible to select the first occurrence of the minimum, and
check whether it offers an improvement on the smallest known encoding. At 13, it does not, and so
the phase of the traversal switches to bottom-up, where each constituent in the current combination is
removed to see if a reduction in |G| occurs. Since the best combination known isC = {c2}, for which
only one move is possible to the node ∅ with encoding length 13, no further improvement can occur.
At this point, ZZ terminates, and returns the constituent set C = {c3} as the observed optimum.

By performing a Minimum Grammar Parse using this constituent set, the following, final encod-
ing can be obtained:

a, r1, a, r1, d, r1, e, r1, $1, b, c, $2
Note that, in this toy example, no optimisation of substring occurrences was necessary to discover

the smallest grammar. Nonetheless, this simple example demonstrates the manner in which ZZ tra-
verses the lattice of all possible constituent combinations, and also highlights that each candidate node
in this lattice must be evaluated in either phase before a choice of destination node can be made.

4.8 Summary

This chapter presented a brief overview of straight-line grammars as approximations of Kolmogorov
Complexity, along with a definition of their components. The compressors which will be employed
within this thesis were outlined, and a description of the operation of the grammar-based compression
methods IRR, IRC-OO and ZZ was given, highlighting the improvement which IRR-OO and ZZ
offer over IRR schemes. A simple example of grammar construction was given for IRR-MC and ZZ,
and the lattice representing the search space of all possible constituentswhichmaybe consideredwhen
constructing a grammar was described.

The following chapter will explore the application of ZZ to various analytical tasks given musical
data, to demonstrate the relevance of grammars to such tasks, and evaluate the level of performance
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which may be expected. Later chapters will examine the role of parse graphs and Minimal Grammar
Parsing in the production of more flexible grammars, and also the significance of evaluating all neigh-
bouring nodes in the Lattice of constituent combinations during a ZZ traversal.
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The true worth of an experimenter consists in his pursuing
not only what he seeks in his experiment, but also what he
did not seek.

Claude Bernard

5
Grammars in Application to Music Data:

Initial Experiments

This chapter introduces a set of experiments conducted on symbolic musical scores, within which
compression is employed as a process by which pertinent information may be obtained and used to
perform a specific analytical task. The accuracy with which each task is performed is recorded, and the
results are analysed in order to evaluate the degree to which compression, and specifically grammar-
based compressors, are applicable and appropriate within the musical context. The purpose of the
following experiments is to apply the existingworks andmethods discussed inChapter 2 to a large, real-
world data set, and explore the depth to which the theory that grammars can aid in musical analysis
(Sidorov et al., 2014) is valid.

5.1 Introduction

Despite the existence of the works discussed in Chapter 2, such as the use of CFGs in the classifica-
tion of pieces by genre, composer and style (Mondol & Brown, 2021), grammar-based compression
algorithms have yet to be applied to a large, real-world collection of symbolic music, to discover how
effective they may be on the wider set of musicological problems. In order to understand and evalu-
ate the usefulness of grammars in relation to music analysis, it is necessary to define a group of tasks
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representative of common problems to which they may be applied, and to gauge performance against
existing algorithms, including those designed specifically to process musical data. A large collection of
digital scores is also required to obtain a true measure of response to widely varying input size, struc-
ture, and information content.

This chapter describes the wide-scale study of the application of grammars to three distinct types
of analysis, using a collection of nearly 8000 pieces of symbolic music, and represents a significant
contribution to current knowledge as the first large study of its kind using grammar-based compres-
sion. Its purpose is to investigate the hypothesis that grammars are capable of identifying musically
significant structure in a score, which would allow their use in error detection and correction systems.

In order to evaluate the response of a grammar-based model to structural changes within mu-
sical sequences, both single and increasing numbers of alterations are made to elements of a score’s
pitch sequences. Each change is equivalent to the displacement of a note by a single staff line, such as
might be foundwhere an error has occurred during transcription, and the change this produces in the
compressed model is measured. In an entirely novel approach, this response is used in the selection
of candidate error positions, and its effectiveness is quantified and ranked over compressors used in
previous musical studies, including grammar-based techniques. This chapter also introduces a novel
method of discovering and correcting note errors which may be present in a musical score, and shows
that grammar-based compression, without any additional domain knowledge such as the conventions
governing the selection of key or scale, is able to isolate and suggest corrections for altered notes with
an accuracy significantly greater than random chance.

The hypothesis that identification of musical structure is significant to the classification of folk
tunes into families, where a family represents a set of closely related variants (since form within such
families is likely to be similar), is also tested, along with pattern discovery and segmentation, as such
patterns are by their nature significant and structural. To test this, it is necessary to gather a set of
ground truth expert identifications from which accuracy may be quantified.

This study assesses the performance of grammars, given different musical representations to dis-
cover the range of possible response, against a well studied folk song classification task, the families
of the ‘Meertens Tune Collections’ (van Kranenburg et al., 2016). The algorithms’ ability to select
patterns in a similar manner to a human expert is also tested, by evaluating performance on an offi-
cial music information retrieval task from MIREX 2016, and calculating intersection over union for
closest-matching grammar rules against segmentation by musicologist Siglind Bruhn (1993), for se-
lected pieces from Bach’sDasWohltemperierte Clavier.

Although grammatical compressors do not possess musical context, the results show that they are
able to perform musicological analysis, including more accurately identifying positive transcription
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errors than any other compressor tested. These are significant findings, and support the consideration
of grammar-based techniques as viable alternatives to existing methods of music manipulation and
analysis, such as those discussed in Chapter 2. This study represents the first extensive evaluation
of these compressors on a large collection of music data, and extends the findings of Sidorov et al.
(2014) to highlight previously unexplored possibilities when grammars are used as musical models.
Alongside quantifying the ability of grammars to perform such orthogonal musical tasks, these novel
experiments provide a foundationuponwhich the contributions of later chapters are constructed, and
are also intended to show the potential for development of further grammar-based applications.

5.2 Method

The following experiments assess the performance of compression in three specific areas ofmusic anal-
ysis. Following the hypothesis that a smallest model of a given digital score contains significant infor-
mation regarding its composition, experiment classes which may leverage model features to solve or-
thogonal tasks are selected. Introduction of note errors which cause degradation of deliberate musical
structure should also cause degradation in potential compression, resulting in larger, less compressed
models. Musical similarity, such as between pieces of a common class, should be reflected by struc-
ture or content similarity within themodel, allowing ametric such as compression distance to be used
to cluster and therefore classify. Lastly, structures within the model should directly correspond with
some structures defined during development of themusic, since such grouping arrangements are com-
mon to both human composers and compressive explanations of input data.

Given these applications, it is now possible to identify common experimental elements. Each ex-
periment class requires iteration over input scores, with some alteration of the data in the case of error
introduction, or pairwise concatenation for distance calculation. At each step, compression of the
data occurs, and resulting models and model sizes are recorded, and used to calculate further metrics
where appropriate. Upon completion, results from each iteration are combined to produce an evalua-
tion of success for each compressor. It is important to ensure input scores are composed of valid data,
and consistent in representation. Since construction of a grammar from a large input may be highly
complex in computational terms, it is also necessary to restrict experimentation to pieces for which the
compression required for the experiment is feasible. Such a prediction may be made based upon the
time required to produce a compressed model – or, indeed, the time needed to evaluate the addition
of one constituent to a grammar-based model – as a measure of approximate complexity, as discussed
in Section 3.6.

The study operates within this general framework, with specific parameters and features defined
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for each experiment, as detailed in Sections 5.4 – 5.6. A substantial collection of digital music scores
is formed, with each piece processed into a common, easily processed format. The collection is cat-
alogued, and compression times recorded so that pieces may be ordered by approximate complexity.
For each experiment, pieces are selected from this catalogue in an iterativemanner. Wherever possible,
processing occurs in parallel to reduce the time required. Nonetheless, the computational complexity
associated with compression and a high number of iterations prevent processing of the entire corpus
during all tests; limitations are noted for each individual experiment.

5.3 Experiments: Error Correction, Classification and Segmentation

The following sections assess the capability of grammar-based compression to detect or correct errors
in musical scores (such as those which may occur during transcription), classify folk songs by “tune
family”, and segment sequences a musicologically meaningful manner.

In Section 5.4, the response of compressors to the presence of single and multiple errors is inves-
tigated. Where response alone is evaluated in Sections 5.4.3 and 5.4.3, models are constructed from
digital score data with and without changes which simulate basic transcription errors, and the length
of their encoding is compared. A novel method of selecting candidate error positions is also presented
in Section 5.4.3, where score data which contains an error is systematically altered, andmodels are con-
structed from the changed data, to examine whether a change which corrects an error is discernible
from the compressor’s response.

Section 5.5 applies grammar-based compression to the task of classifying the Meertens Tune Col-
lectionsAnnotated Corpus v2.0.1 (van Kranenburg et al., 2016) by “tune family”, where grammars are
constructed from pairwise concatenations of pieces in the collection, and their encoding lengths used
to compute a matrix of compression distances. 1-Nearest-Neighbour classification (Cover & Hart,
1967) is then performed, and the accuracy with which the process is able to classify the tunes evalu-
ated with leave-one-out cross-validation (Kohavi, 1995). The purpose of this section is to assess the
usefulness of grammar-based compression in the recognition of melodic similarity.

Finally, Section 5.6 explores the leverage of hierarchical structure present inmodels constructed by
a grammar-based compressor to achieve musicological tasks where the aim is to delineate a score into
musically-significant segments. In Section 5.6.3, the production rules present in grammars constructed
from themusic of the JohannesKeplerUniversity PatternsTestDatabase (JohannesKeplerUniversity,
2013) are considered to be “significant” to each piece, and passed into the publicly-available evaluation
code for the MIREX 2016 Discovery of Repeated Themes & Sections task, whereafter the results are
compared to those of the officially submitted algorithms. Section 5.6.3 compares the production rules
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of grammars built from eight pieces from Bach’sWell-Tempered Clavier Book I to those identified by
the musicologist Siglind Bruhn (1993), to assess whether such grammars are capable of segmentation
in a similar manner to a human expert. The last experiment in this chapter, described in Section 5.6.3,
explores the possibility that manually altering the production rules of a grammar constructed from a
musical piece may provide useful assistance when editing a score to change or improve it, or to create
an entirely new composition with the same hierarchical structure.

5.4 Applying Grammar-based Compression to the Prediction of Data Er-
rors

5.4.1 Purpose

These experiments are designed to test the hypothesis that a grammar-based compressor may be used
to detect the presence of data errors within a musical score. Any such error is likely to degrade the
regularities present within the piece, reducing the ability of the compressor to exploit regularity and
causing production of a larger grammar. Similarly, correction of an existing error should, in many
cases, allow production of a smaller grammar. A musical “spell-checking” system might be based on
this technique, automatically locating incorrect data arising fromOMRorhuman transcription errors.
The experiments are constructed to demonstrate a relationship between data errors and compression
strength, measured here as model size.

Ideally, compressor response to a range of real-world errors would be evaluated, with instances of
each error type drawn fromobservations based upon the study ofOpticalMusicRecognition, and the
work of scribes. However, the approach adopted here does not allow for awide range of possibilities to
be tested, and, as such, these experiments are designed only to explore compressor response to a single
type of error, so that a great many inputs may be tested and an overall measure of ability taken within
the confines of the task. To achieve this objective, a data error resulting in the displacement of a note
by±1 interval has been selected. As noted by Bainbridge & Bell (2001) in their discussion of the dif-
ficulties associated with OMR, many different types of error can occur which result in the alteration,
commission or omission of note symbols. Insertion or deletion of a symbol in a compressor’s input is
very likely to result in the generation of a compressed model of a different encoding length, but when
a symbol is altered a change in encoding length will only occur if the symbol was useful during com-
pression. Stutter (2020) described human transcription errors within D-W Cod. Guelf. 628 Helmst.
(“Magnus Liber Organi; W1” ) (Baxter, 1931), where notes appear displaced a musical third from their
intended position, detectable due to the unusual dissonance created. An exploration of OMR sys-
tems (McPherson, 2006) such as CANTOR (Bainbridge, 1996) showed it was not uncommon for an
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automatic transcription system to erroneously offset a note by a single step on the staff where its note-
head is in contact with another immediately below or above it, thus altering the bounding box used
to identify its position sufficiently to associate its centre with a neighbouring line or space. Burlet et
al. (2012) proposed an online music notation editor which made use of human input to correct errors
introduced during transcription, including the correction of notes which the OMR system had been
placed 1-2 vertical positions from their written noteheads. As such, displacement of notes by a single
staff position is reasonable to represent an instance of a possible transcription error, in order to inves-
tigate the possibility that structure present within a grammar built from a symbolic musical sequence
has a relationship to correct pitch structure within that sequence.

5.4.2 Method

TheperformanceofZZand IRR-MCarehere compared to three general-purpose compressors, as a ba-
sis forwhatmay be expected from standard tools. LZW,Burrows-WheelerTransformwith run-length
encoding, and GZIP are selected for this study. BWT and LZ-derived algorithms have been shown to
perform well on tasks involving the approximation of Kolmogorov Complexity (Kolmogorov, 1963),
and produce a clearly defined symbolic output, the size of which may be easily computed and com-
pared to an encoded grammar. Model size for ZZ and IRR-MC is defined in Equation 4.1. For LZW,
model size is taken as the sum of the length of the alphabet and encoded output, plus a separator sym-
bol between them. For BWT with RLE, model size is taken as the sum of the length of the encoding
of each symbol and the number of times it repeats. For GZIP, model size is taken as the number of
bytes necessary to store the compressed output on a filesystem. Because thesemeasures are not directly
comparable, the ratio of compression achieved is computed instead.

These experiments are computationally expensive. Evaluation of the change in ZZmodel sizes to
an increasing number of errors (Section 5.4.3) in each representation for Bach’s FugueNo. 10 fromDas
Wohltemperierte Clavier Book I, shows that sequences of note intervals in the diatonic scale produce
the strongest general response (Figure 5.1). Based on this result, performance on a diatonic interval
representation of music alone is evaluated, as described in Section 3.3. A “ground-truth” model is
produced by compressing this diatonic data. A model containing n errors is produced by selecting
n non-boundary symbols within the data, and altering them before generating a compressed model;
selected values are changed by±1 interval, to simulate a common single staff-line transcription error.
The subsequent interval value is also changed so that the following notes remain unaffected.

Positionswhere alterationswill occur are chosen at random fromwithin each input, in an attempt
to prevent themeasurement of response to a specific or uniform set of circumstances, such asmight be
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Figure 5.1: Reacধon of grammar-based compressors to an increasing number of errors, in all available symbolic repre-
sentaধons, for Bach’s Fugue No. 10 from Das Wohltemperierte Clavier Book I. On average, diatonic intervals produce
the strongest response.

observed if a degree of correlation existed between the chosenpositions and the structure of a score (for
example, if the nth element of the sequence were consistently selected, but had a high probability of
fallingwithin a strongly-repeatingmotifwhere itwouldbemore likely to cause a reduction inpotential
compression). The use of entirely random values aids in the measurement of a general response, such
as that which would be observed over a large population of scores.

Compressor response is measured by computing the difference in model size for ground-truth
and altered data. Ability to correct errors is measured using precision, recall and F-measure, with the
following definition:

• True positive: a correction of a previously altered value.
• False positive: alteration of a previously correct value.
• True negative: no alteration of a previously correct value.
• False negative: a failure to correct a previously altered value.
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Table 5.1: F-measures: Accuracy of model size response to error.

Experiment ZZ IRR-MC LZW BWT GZIP

1 (3107 pieces,
asc. comp. time) 0.79 0.77 0.81 n/a 0.72
2 (all pieces, 25%

of each piece tested) 0.81 0.79 0.73 0.60 0.72

5.4.3 Experiments

Response to a single Error

For each piece, the unaltered data is first compressed, and the size of the model measured. Then, for
each position selected as described in the following paragraph, a single error is introduced into the
data, generating a compressed model, and its size is measured. The difference in model size is taken as
the response of the compressor to this single error.

Two variations of the experiment are performed. In the first, all values within the piece are altered,
but for a limited number of pieces since experiment run-time in this case is tl for each piece, where t is
grammarbuild time and l is input length in symbols (as shown inFigure 3.2),making a test of the entire
corpus impractical. In the second, only 25% of each piece is considered for candidate error positions,
which allows every piece in the corpus to be tested.

Results
The results are presented in Table 5.1.
The results show that all the compressors tested respond to the presence of a data error, regard-

less of the difference in compressor strength or output encoding. Hypothesis testing, with the null
hypothesis that the result values obtained for each pair of methods may come from the same distri-
bution, confirms that the results for each method belong to Student’s t-distribution (Student, 1908)
and are statistically distinct from each other given a significance level of 5%. Result distribution is
presented in Figure 5.2, where ZZ and IRR are seen to possess similar characteristics.

The simple run-length encoded Burrows-Wheeler Transform gives the weakest response, fol-
lowed by GZIP. The grammar-based methods show good performance, with ZZ consistently out-
performing IRR, as expected.

72



Figure 5.2: Histograms highlighধng the overall trend in response for each compressor. Each figure shows the distri-
buধon of mean compression raধo change observed for each piece, following the introducধon of a single data error.
Note that the LZW figure contains three raধo groups which contained no pieces (y = 0).
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Despite LZWbeing a poorer compressor in comparison to statistical coding techniques (Shanmu-
gasundaram&Lourdusamy, 2011), it exhibits themost sensitivity to errors in the datawhen applied to
short musical sequences. This occurs because LZW is able to take advantage of short, rarely repeating
sequences within an input, whereas a grammar requires a greater overall gain before such sequences
may be chosen as constituents for the model. Due to this fact, LZW is responsive to single errors
within a greater proportion of each piece. Since constituents chosen for inclusion in a grammarmight
be considered structurally significant, the primary interest is in the compressor’s response to errors
within these segments.

ZZ response over tested positions for two scores may be seen in Figures 5.3 and 5.4. The rule
hierarchy chosen by the compressor is plotted above each note sequence in S. The average change in
grammar size for an interval at a given position in the input sequence, resulting from the independent
introduction of a ±1 interval error to each voice, is plotted at the top of each figure, with standard
deviation shown as grey shading. Averaging model size changes for all voices in each figure was done
to enable the display of the overall response of the model per interval; where no deviation exists, an
identical response occurred across all voices.

It is important to note that the simplicity of the experiment may itself introduce a degree of bias.
Alteration of a single symbol, representing a diatonic interval, causes the loss of an instance of that
symbol within the input sequence, and adds to the count of its substitution. Additionally, the fol-
lowing position in the sequence undergoes the same process, resulting in a worst-case difference of 4
in the count of unique symbols present within the input’s distribution, producing a likely imbalance
of the input in its altered state. However, since pitch is represented as diatonic intervals, the value
chosen by each alteration is likely to be present within themajority of inputs, and where this is untrue
the input will contain characteristically few unique symbols, and should indeed alter noticably when
an error is introduced; only where the original interval represented an extreme of the same sign as the
introduced error would the alteration be certain to introduce an entirely unique symbol. With regard
to the grammar construction process, it is certainly not impossible that the alteration may reverse the
effect of an intended state in such a way as it becomes more useful during compression; for instance,
changing a final note in a pattern which deviated from its template due to an approaching harmonic
change might result in its return to an exact match to the template. Alteration of a set proportion
of each input sequence means that fewer symbols will be changed for smaller inputs, which in turn
reduces the degree towhich their associated responsemay be taken as representative of the population
of inputs, although since a large sample of such inputs was tested this effect is softened. Overall, there
is aminimal risk of bias strongly affecting the experiment’s outcome, and the response seen remains in-
dicative of the potential to detect a change in structure. Nonetheless, the results should be considered
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Term Instances (Non-overlapping)
0,0 3
0,0,0 2
1,1 1
1,0 3

Table 5.2: Repeaধng terms within the vector [0,0,0,-2,1,1,1,-4,1,2,0,0,-1,1,0,1,0,0,0,1,0].

with the limitations highlighted by these observations in mind.

LZW Error Sensitivity What is the reason for LZW’s success in some circumstances? Two sig-
nificant factors are its compound use of repeating terms, and the lack of a score function to exclude
sub-optimal terms from its dictionary. This causes any reduction in repeating terms to affect the size
of themodel resulting fromLZW’s processing. ZZ and IRR, on the other hand, only add constituents
which decrease overall model size at each iteration, thus it is possible for structural alterations to occur
in small inputs without affecting the grammar hierarchy. For these reasons, LZW is the most respon-
sive of the three compressors for this class of input.

As an example, consider the following vector (|v| = 21):

v = [0, 0, 0,−2, 1, 1, 1,−4, 1, 2, 0, 0,−1, 1, 0, 1, 0, 0, 0, 1, 0]

Repeating terms within vwhere |t| > 1 are shown in Table 5.2.
During dictionary construction and encoding, LZW uses all but the second term:

v = [0, 0, 0,−2, 1, 1, 1,−4, 1, 2, 0, 0,−1, 1, 0, 1, 0, 0, 0, 1, 0]

A single reference is required for each replacement, giving encoding |e| = 15.
ZZ, however, is unable to perform any such replacement. Each constituent used would require

one rule reference per instance, plus its length including terminator symbol, in the encoding. This
results in the gains shown in Table 5.3

ZZ is unable to compress this input, instead returning the original vector as an encoding, giving
|e| = 22.

If an error is introduced in any position which prevents the use of a repeat instance, ZZ will still
be unable to compress. However, LZW continues to use all remaining repeats, giving |e| = 16:

v = [0, 0, 0,−2, 1, 1, 1,−4, 1, 2, 3, 0,−1, 1, 0, 1, 0, 0, 0, 1, 0]
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Term Gain Reference cost Inclusion cost Total gain
0,0 6 3 3 0
0,0,0 6 2 4 0
1,1 2 1 3 -2
1,0 6 3 3 0

Table 5.3: Overall gain / cost, of replacing terms within the vector [0,0,0,-2,1,1,1,-4,1,2,0,0,-1,1,0,1,0,0,0,1,0] with
referenced producধon rules.

Thus LZW is responsive to minor structural changes which ZZ ignores.

Response to an increasing number of Errors

For each piece of length l, a set of nl symbols to alter is selected from a uniform distribution, choosing
n = 0.5 as early experiments showed no significant response could be clearly detected beyond this
threshold. Errors are then introduced at 0 ≤ p ≤ nl positions, generating a compressed model at
each iteration, and its size is measured. A change in model size from the model for p = 0 is taken as
the response of the compressor.

Pieceswere split by length into three groups, l = 1–200, 201–1000 and≥ 1001, so that the response
to inputs of different lengths could be observed. Since distribution of piece lengthwithin the corpus is
non-linear, a strong decline in the number of data points comprising the average occurs as e increases.
For this reason, only results for smaller counts should be considered an accurate representation of
response.

Results
The results are presented in Figures 5.5a – 5.6c.
Different compressors produce differently encoded models, and so the sizes of their models may

not be directly compared. To aid the attempt to compare compressor performance, the compression
ratio each model achieves is calculated. Hypothesis testing confirms that results for each method be-
long to Student’s t-distribution given a significance level of 5%, but not all results within each group
are distinct from each other. For the group 1–200, the null hypothesis is true between ZZ, IRR and
BWT. Where pieces are of length≥ 1001, ZZ and IRR are not distinct from each other, however it is
important to note that the group’s sample size is markedly small at 134 pieces, which may account for
the failure in differentiation.

All piece groups exhibit a detectable rise in model size as the number of errors increases, until
approximately p ≥ 0.25l, where a significant proportion of the input has become corrupted; such re-
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(a) Group 1: pieces of length 1–200 (b) Group 2: pieces of length 201–1000

(c) Group 3: pieces of length 1001+

Figure 5.5: Average response of each compressor to an increase in the proporধon of each piece containing errors,
over three length-based groups.
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sponse is supportive of the hypothesis. Of the three groups (lengths 1–200, 201–1000,≥ 1001, Figures
5.5a – 5.5c), the first two then show a reduction in response with the 1–200 group levelling, perhaps
as structure within the input data becomes degraded to that of noise. The group formed from pieces
of length ≥ 1001 does not exhibit a decreased response within the range tested, p ≤ 0.25l. Instead,
model size continues to grow, suggesting this larger input data contains more structure which may be
compressed, and is therefore more error-sensitive.

All groups show a similar response, but with more instability as group sample size decreases, as
might be expected. Each existing error simultaneously raises the probability of encountering noise,
and also reduces the available structure from which to discriminate errors. This causes the reduction
in response with increasing errors, resulting in a plateau where detection is no longer possible. De-
termination of the point at which this effect begins for pieces of high complexity is left for a future
exercise.

Perhaps the most significant result is the clearly superior performance of GZIP in the group con-
taining pieces of length≥ 1001, where it responds with greater sensitivity than all other methods; for
pieces of length≤ 1000, ZZ offers the best performance. This suggests ZZ and GZIP are best able to
compress and therefore leverage structural information from smaller and larger pieces respectively.

Standard deviation is significant, with each method showing a highly similar response; for this
reason, plots for ZZ alone are included here (Figures 5.6a – 5.6c). Greater variance as p increases is to
be expected, since errors in this contextmay introduce different structure as well as degrade that which
exists. However, it is notable that an overall decrease in compression occurs in all cases, demonstrating
the response of the compressor to overall and not simply local structures. Variance has an apparent
relationship to p, with the greatest effect visible in the group of largest pieces. The plot for the 201–
1000 group contains some local maxima, correlating with common piece lengths within it. Overall,
such large variance means no method in this study may be relied upon to show a strong response to
given errors within music data, but since all methods exhibit decreasing compression a response will
certainly occur, albeit minor in magnitude.

Automatic selection of candidiate Transcription Error Positions

Building on the previous experiments, a novel method capable of automatically selecting notes be-
lieved to be errors is now presented, designed as an aid to the process of transcription error correction.

For each piece, c = mp representations are created, where p represents the number of positions
which will be altered, and m represents a proportion of each containing a single error in one of the
c positions. A compressed model is then constructed for each representation, with its size taken as a
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(a) Group 1: pieces of length 1–200 (b) Group 2: pieces of length 201–1000

(c) Group 3: pieces of length 1001+

Figure 5.6: Average response of ZZ to an increase in the proporধon of each piece containing errors, with standard
deviaধon, over three length-based groups.
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Table 5.4: F-measures: Correct selecধon of candidate error posiধon; pieces are tested in ascending order of computa-
ধon ধme.

Experiment ZZ IRR-MC LZW BWT GZIP

m=n=1 (565 pieces,
100% of each piece tested) 0.22 0.20 0.19 n/a 0.16
m=0.5, n=0.25 (565 pieces,
25% of each piece tested) 0.27 0.24 0.26 0.15 0.20

m=0.5, n=0.25 (5735 pieces,
25% of each piece tested) 0.35 0.32 0.21 0.12 0.24

baseline for a version of the piece containing an error.
For each such version, p = nl positions are individually altered by±1 interval. Exactly one such

change will correct the error in that version. A compressed model is then constructed for each poten-
tial correction, and the model’s size measured. Following the hypothesis that a musical piece which
contains errors has a degraded structure and is therefore less compressible, the size of the resulting
model is compared with that of the version containing an error. Any alteration which results in a
smaller model size is taken as a likely successful correction, and identification of a candidate transcrip-
tion error position.

For the c versions of each piece into which an error was introduced, precision, recall and F1 are cal-
culated for each alteration, to evaluate the method’s performance. Any size smaller than the baseline
is taken as a positive, and any greater than or equal to the baseline as a negative. Two versions of this
experiment are conducted, the first withm = n = 1, the second withm = 0.5 and n = 0.25, as pre-
liminary experiments showed this would allow a reasonable proportion of the corpus to be processed
within the available time. The second experiment is repeated on the same pieces used for the first, to
provide an indication of the difference in observed performance when testing a smaller proportion of
each piece.

Results
The results are presented in Table 5.4.
Hypothesis testing again confirms that results for each method are statistically distinct from each

other. Result distribution is presented in Figure 5.7, where ZZ and IRR can be seen performing con-
sistently well.
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Figure 5.7: Distribuধon of mean F-measure per piece for each compressor (in ascending order).

These figures again suggest a relationship between the strength of each compressor and its perfor-
mance on this task. When provided with more complex data for the second experiment, the ability
of GZIP to compress with greater strength than LZW (Savakis, 2000) is clear, and BWT shows poor
accuracy, likely a result of reduced compression. ZZ consistently produces the best result ahead of
IRR, which is by comparison a naïve method. Perhaps most interesting is the clear advantage both
grammar-based methods exhibit.

An overall increase in F-measure can be seen to take place with m = 0.5, n = 0.25 instead of
m = n = 1, partly due to the increased probability of correctly selecting a candidate selection from
the smaller option set. This limitation is also present in the test results from the larger group of 4390
pieces; actual performance will be poorer than shown if pieces are processed in their entirety.

Although direct comparison of compressors by the length of their encoded representations is not
possible without full consideration of encoding differences, it is interesting to note that average piece
compression ratios, as may be seen in Table 5.5, generally support the hypothesis that greater compres-
sion results in best performance for this application.

Method Practicality
Although theoretically interesting, selection of candidate error positions in this manner is a com-

putationally complex task, and potentially impractical. If t corrections per position are to be tested,
given ZZ complexity g = O(n5 × m2), where n = number of symbols in the input sequence and
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Table 5.5: Average raধo of compressed to uncompressed data for pieces in both experiment groups, for each com-
pressor.

Experiment ZZ IRR-MC LZW BWT GZIP

m=n=1 (565 pieces) 0.86 0.88 0.86 n/a 1.13
m=0.5, n=0.25 (5735 pieces) 0.89 0.89 0.87 0.838 0.728

m = number of constituents per node in the lattice (Meredith, 2014), and substring search complex-
ity s = O(n2), the computational complexity of this method isO(t(n7 × m2)). However, this upper
bound is rarely reached in practice, and the experiment highlights the superior ability of grammar-
based compressors over the tested algorithms to identifymusically incorrect structure. Despite the rel-
atively low F1 scores achieved overall, the results are stronger than could be expected by chance, show-
ing that the compressor exhibits a definite reaction to the degradation of structure within the musical
sequences. This supports the hypothesis that note errors can indeed be detected by a grammar-based
compressor, since a measurable accuracy is observed, as would be expected if the hypothesis were true
to any degree.

5.5 Classification

In this experiment, ZZ and IRR-MC are applied to the task of classifying the Meertens Tune Collec-
tionsAnnotated Corpus v2.0.1 (vanKranenburg et al., 2016) by “tune family”, as defined by expertmu-
sicologists from theMeertens Institute. Selecting this widely attempted task provides an opportunity
to examine the performance of the grammar-based method in the context of many published studies.
Its success is evaluated for eight individual musical representations, and when these are weighted and
combined to classify each piece in the collection, overall performance is calculated.

5.5.1 Purpose

This experiment is designed to test the hypothesis that the computed compression distance between
grammar-based models for two musical scores may represent an approximation of their similarity,
andmay therefore be useful in the classification of scores by pairwise distance. An ideal grammar con-
struction algorithmwill select the set of patterns which, when replaced within the input, produce the
smallest model. Thus, where a pattern exists in both scores, it provides more potential for compres-

84



sion than a pattern unique to one score, and compressing scores with common components is likely
to produce smaller models than those generated from dissimilar pieces.

5.5.2 Method

For a given compressorC, scores are selected in a pairwise fashion. For each piece, eight strings are pro-
duced, one for each individual representation described in Section 3.3 except note in diatonic octave,
resulting in x1, x2, . . . , x8 for the first piece, and y1, y2, . . . , y8 for the second piece. For each pair of
representations, three models are constructed: C(x), C(y), and C(xy), where xy represents a concate-
nation of x and y separated by a unique symbol. ANormalised CompressionDistance (Li et al., 2004)
is then computed for each pair of scores, as defined in Equation 5.1:

NCD(x, y) = C(xy)−min(C(x), C(y) )
max(C(x), C(y) ) (5.1)

For each representation, 1-Nearest-Neighbour classification (Cover&Hart, 1967) is used to cluster
scores by distance, with leave-one-out cross-validation (Kohavi, 1995) used to evaluate “tune family”
prediction accuracy against expert-defined ground truth. The known overall success rates for each
representation are then used as weights in combining class predictions for each score, and their sum
used to arrive at the final class. Success rate r is calculated as follows, where c is the number of correct
predictions, and t is the total number of pieces tested:

r = c/t (5.2)

5.5.3 Results

The results for each individual representation using ZZ are shown in Table 5.6. Success rates for each
compressor when combining weighted representations is shown in Table 5.7.

Of the individual music data representations used, chromatic-based pitch interval vectors pro-
duces the greatest success rate, with both pitch and pitch-interval vectors generating the strongest
response from the types tested. This is perhaps unsurprising; a chromatic representation retains all
available pitch detail, and use of intervals offers some degree of invariance to repeating patterns which
are transposed within a piece. Since the MTC Annotated Corpus v2.0.1 contains short strophes (av-
erage length is 48 notes), often in a single key, it is reasonable to expect transpositions to be less im-
portant than in longer works. This may be reflected in the good performance of both pitch vectors.
The duration vectors provide least success during classification; distribution of note lengths within
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Table 5.6: Per-representaধon success rates from NCD classificaধon of the MTC-ANN v2.0.1 using ZZ.

Representation Success rate

Intervals (chromatic) 0.88
Pitch (diatonic) 0.87
Pitch (chromatic) 0.87
Intervals (diatonic) 0.85

Octave note (chromatic) 0.76
Contour (diatonic) 0.69
Contour (chromatic) 0.68

Duration 0.63

Table 5.7: Rate of successful classificaধon of pieces from the MTC-ANN v2.0.1 for ZZ and IRR-MC.

ZZ IRR-MC

0.92 0.83
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Table 5.8: Classificaধon success rates achieved by various methods on the MTC-ANN v2.0.1.

Work Avg. success rate

Kranenburg et al. (van Kranenburg et al., 2013) 0.99
Stober (Stober, 2011) 0.98

Conklin (Conklin, 2013a) 0.97
Goienetxea et al. (Goienetxea, Neubarth, & Conklin, 2016) 0.96
Louboutin & Meredith (Louboutin & Meredith, 2016) 0.94

Hillewaere et al. (Hillewaere, Manderick, & Conklin, 2014) 0.94
Volk & Haas (Boot, Volk, & de Haas, 2016) 0.93

This work 0.92
Velarde et al. (Velarde, Weyde, & Meredith, 2013) 0.84

Meredith (Meredith, 2014) 0.84

theAnnotated Corpus v2.0.1 is highly skewed, with one duration alone accounting for over half of all
instances, and another for 30%. This causes a reduction in information from which to characterise
each tune family, a likely reason for this representation’s loss of accuracy.

Despite performing well, ZZ is not able to improve upon the techniques used in some existing
studies, most notably van Kranenburg, Volk, andWiering (2013) who achieved an accuracy of 0.99 us-
ing a combination of InnerMetric Analysis, pitch, and note phrase-offset features. Table 5.8 provides
a comparison of classification results on theMTC-ANN v2.0.1 for selected studies.

Within the context of these studies, the grammar-based method performs as may be expected of
a sequence-based similarity model without domain knowledge. Kranenburg et al. computed rate of
successwhen interval sequences onlywere used, achieving an average of 0.92. There, transpositionwas
used to place each pair of scores into a common key, and the Needleman-Wunsch alignment (Needle-
man & Wunsch, 1970) balanced to minimise the penalty for continued shifting of a pattern segment
when alignment is sought. This allowed for flexible patternmatching, akin to human-like recognition
of simple musical variations. It is possible that this strategy provided a performance gain similar to
that obtained from this study’s use of multiple representations, suggesting that the addition of flexi-
ble matching may further improve the method. However, verifying whether this is the case is left for
later chapters.

Stober (2011) adopted a generalised approach, creating a distance measure based on the weighting
of various domain-based facets, such as chords and harmonies. In contrast to the average success rate
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of 0.99 from van Kranenburg at al. (2013), he achieved an average of 0.97 where the class of the query
piece is unknown. The grammar-based method’s lower success rate is expected given the lack of do-
main knowledge employed, and perhaps it is reasonable to suggest that use of pitch-based facets alone
for Stober’s method might cause a drop in accuracy similar to that seen with these constraints in the
study by van Kranenburg et al. (2013).

Studies by Conklin (2013a) and Goienetxea et al. (2016) reported average success rates of 0.97
and 0.96 respectively, both higher than the method presented here, and also incorporated domain
knowledge in the form of viewpoints, each representing features derived as a function of note pitch,
duration and onset time. In particular, Goienetxea et al. (2016) employed a reductive heuristic based
on the novelty of common patterns, and both works suggested that features such as motifs, metric,
and phrase information are important in addition to pitch for this task. The increase in accuracy seen
in this experiment when distance is based on a weighted combination of representations supports
these assertions, and the greater success of all these studies where higher level musical features are used
suggests that such an addition might also improve the accuracy of a grammar-based method.

Work by Louboutin&Meredith (2016) employedmorphetic pitch alone (Meredith, 2006b), and
reported an average success rate of 0.85 where COSIATECwas used to process a single viewpoint, sim-
ilar in informational terms to where this study operates on diatonic pitch vectors. Their method out-
performed the grammar-based approachwhere different compressors, includingLZ77 (Ziv&Lempel,
1977), were givenmultiple viewpoints and the results combined. Their work highlights the suitability
of LZ77 in the analysis of polyphonic music, and the potential gain from leveraging compressedmod-
els of various types, a strategy which might also improve this study’s method. Hillewaere et al. (2014)
employed a flexible approach, using Levenshtein distance for pairwise alignment of bothmelodic and
rhythmic data, but without compressedmodelling. They achieve an average success rate of 0.94, com-
pared to0.92 by vanKranenburg et al. (2013) using the same representation, suggesting a superiority of
edit distance over Needleman-Wunsch, and highlighting a link between flexible patterns and musical
variations.

Interestingly, Boot et al. (2016) reported best results for sequence alignment of uncompressed
data, where 0.93 is achieved using a note-to-note correspondence comparable to that employed by van
Kranenburg et al. (2013). It is important to note that all cited studies related to the latter work demon-
strate high success rates despite making use of fewer musical representations than this experiment,
showing that higher level modelling of features may be more significant to tune family classification
than awider combination of lower-level data. However, the grammar-based approach improves on re-
sults from Volk & Haas when using compressed representations, perhaps pointing to the superiority
of grammars in isolating patterns significant to classification of the MTC.
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Velarde et al. (2013) recognised that their Haar Wavelet analysis method underperformed in com-
parison to string-matching approacheswhen classifying theAnnotated Corpus v2.0.1, and showed that
the use of chromatic pitch instead of a scale-based representation such as morphetic pitch limited ef-
fectiveness. However, chromatic pitch provides the best success rate in this experiment. It is possible
that combining results from wavelet analysis of multiple representations could also present an im-
provement.

In conclusion, existing studies suggest the performance achieved on this task is to be expected
when using grammar-based compression of such sequences as the basis of a distance metric. The addi-
tion of flexible matching which better captures musical structure, higher level feature modelling, and,
perhaps, combining grammar-based distances with those of other compressedmodels is likely to offer
a measurable improvement.

5.6 Segmentation

5.6.1 Purpose

This experiment is designed to test the hypothesis that, following the Minimum Description Length
principle (Rissanen, 1978), generating a model of music data using a grammar-based compressor may
cause division of that data to occur in amusicologically significant fashion, resulting in structurewhich
is similar to that which a human expert would define for the piece. The ability to automatically seg-
ment a score intomeaningful segments could have several applications. Primarily, an accurate analysis
of a piece may be obtained very quickly, providing an aid to academics and performers and a potential
insight into the intentions of its composer. Indeed, the differences between an automatic and human-
made segmentationmay themselves highlight overlooked interpretations, or simply an alternative per-
spective, consideration of which may benefit musicological knowledge. Such a model might also be
employed as a compositional aid, allowing alterations in flow and structure to be made to a score at a
high level, but usingmeaningful “units” of note sequences. These experiments are designed to demon-
strate the degree of similarity between computationally-derived structures and human analyses, and
the potential for high-level score manipulation, when grammar-based compression is employed.

5.6.2 Method

The diatonic interval representation is selected for these segmentation experiments, encoding each
piece as a concatenated sequence of voices as described in Section 3.3. For the examination of grammar-
assisted editing, chromatic intervals, note onset intervals and durations are chosen, since all notes
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Figure 5.8: MIREX 2016 Discovery of Repeated Themes & Secধons symPoly task, Establishment F1 score for 2016
algorithms DM1, DM2 & DM3 with addiধonal ZZ results.

within a score may be modelled using this combination. In each experiment, ZZ is then used to
construct a grammar for each piece, and all sub-rules within S are selected and processed using the
following experimental methods.

5.6.3 Experiments

MIREX 2016 Discovery of Repeated Themes & Sections task

Grammars are built from each of the pieces in the Johannes Kepler University Patterns Test Database
(Johannes Kepler University, 2013). Each sub-rule of S is passed to the MIREX 2016 code designed
to evaluate algorithm performance on the symbolic, polyphonic Discovery of Repeated Themes &
Sections task. Focus is given to two of the available metrics: establishment and occurrence. Establish-
ment is a measure of an algorithm’s ability to identify any instance of a ground truth pattern, whereas
occurrence measures its ability to identify all instances within a piece. As defined by the evaluation
procedure, matches with a score threshold≥ 0.75 are selected as positive identifications. F-measures
are calculated from each metric, and these are compared to the official results for 2016.

Results
The results are shown in Figures 5.8 and 5.9.
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Figure 5.9: MIREX 2016 Discovery of Repeated Themes & Secধons symPoly task, Occurrence F1 score for 2016
algorithms DM1, DM2 & DM3 with addiধonal ZZ results. A score of 0 results from failure of an algorithm to idenধfy
at least 75% of the total instances of any paħern - no bar is ploħed for these cases.

ZZ outperforms all other methods in identifying patterns for Bach’s Fugue No. 20 from Das
Wohltemperierte Clavier Book II, and improves on the poorest method when seeking any instance of
ground truth patterns within Gibbons’ The Silver Swan, although it fails in retrieving all instances.
On all other pieces in the dataset, it responds most poorly, in particular failing to identify pattern sets
within the performance threshold for Beethoven’s Op. 2 No. 1 Movement 3, or Chopin’s Op. 24 No.
4.

ZZ’s strong performance on the Bach Fugue may be attributed to the frequent repetition of its
subject, forwhich exact sequencematching ismost suitable. AlgorithmsDM1–3 are based on SIATEC
(Meredith et al., 2002), an algorithm capable of flexiblematchingwhen applied to inexact sequences of
significant similarity. This makes them more suitable for use with musical data containing variations,
such as the pieces by Beethoven andChopin. The suggestion that grammars built on exactly repeating
patterns are unsuitable for such data may be reasonably supported by ZZ’s strength in pattern estab-
lishment over identification of instances; difference of a single symbol within a pattern instance causes
ZZ to split the entire sequence around this symbol, whereas SIATEC simply omits the point from its
pattern definition, resulting in the latter’s greater ability to retrieve all pattern instances.
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Structural Analysis of Bach’sWell-Tempered Clavier

Given the strong response obtained to the Bach Fugue on the MIREX 2016 task, the response of
grammar-based compression to Bach works is investigated further, in an attempt to evaluate whether
stuctures present within the grammar may directly relate to those deemed significant by a human
expert in a specific musical analysis. As discussed in Chapter 2, a variety of approaches exist to the
analysis of music, an automated approach such as grammar-based segmentation is clearly conducted
very differently to a holistic understanding built from years of human study and experience. Differ-
ent approaches may also result in widely different structures, and the simple comparison made in
this experiment is intended only to examine the musical significance of the structure returned by a
grammar-based compressor in the context of a single interpretation. Nonetheless, an algorithmwhich
can automatically provide a segmentation which aids in the analysis of music is clearly a useful tool.

The first eight pieces from Bach’sDas Wohltemperierte Clavier Book I are selected for use in this
experiment. For each piece, a set of segments is first defined as (start, end) offsets into the sequence of
intervals used to represent it. Each segment is defined by the following process:

• Where Bruhn(1993) shows a definite start and end point for a given repeating section, the in-
tervals representing these sequences are located within the input data.

• For each instance of these sequences, (start, end) pairs are defined for each exactly repeating sub-
pattern, since the chosen compressor operates only on groups of exactly repeating symbols.

• Each set of (start, end) pairs is labelled followingBruhn’s description, and considered a “ground
truth” unit which it is desirable for an automatic segmentation tool to identify.

Grammars are then built for each piece, and a set of (start, end) pairs created for each of its sub-
rules in S, by iteratively expanding the grammar and recording the offsets of each rule occurrence
within the input sequence. Where rules may be obviously grouped, such as two consecutive non-
terminal symbols occurring beneath a single span specified byBruhn, an artificial rule containing these
group elements is manually added to the grammar.

A score is then greedily computed to represent match degree between the ground truth segments
and the grammar’s rules. For each ground truth segment, the sum of Jaccard Distance to instances of
each grammar rule is calculated, and the rule at minimum distance is considered a unique match to
the target segment. Where no match exists, distance is set to maximum. The overall match between
a set of expert-derived segments and the grammar rules which most closely represent them is taken as
the mean Jaccard Index for all such segments.
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Table 5.9: Mean Jaccard Index to Bruhn’s analyses of J.S. Bach’s Das Wohltemperierte Clavier Book I, No. 1–4.

WTC I

No. Prelude Fugue

1 0.82 0.86
2 0.87 0.95
3 0.91 0.78
4 0.66 0.62

Results
The results are presented in Table 5.9.
Figures 5.10 and 5.11 show the hierarchy produced by ZZ forWTC I FugueNo. 2 and Prelude No.

3, in “piano-roll” format.
These figures show matching typical of that returned by the experiment. Rules are selected from

various levels of the hierarchy, yet generally where a human-chosen span occurs there exists a grammar
rule of markedly similar length and offset, and a strong correlation between them is predominant.
Each ground truth section within Fugue No. 2 almost exactly aligns with a grammar rule in the first
three layers of the hierarchy, with 64% of matches occurring at the top level. Some low level rules
begin with an additional symbol over the target sections, causing the reduction in accuracy. Although
such symbols form part of exactly repeating sequences, they exist beyond Bruhn’s boundaries, and
thus outside what this experiment considers accurate against the ground truth. There are some weak
results, in particular for No. 4 Prelude and Fugue.

The grammar for Fugue No. 4 exhibits good correlation, but with important exceptions. For
example, several instances of the first subject are not matched to any candidate rule. Two distinct cir-
cumstances explain these omissions. In some cases, intervalswithin the subject exposition differ, either
because of a change inmusical scale or by deliberate variation, such as a transitive note linking a subject
to the following phrase. This shortcoming might be addressed by incorporating domain knowledge
into the grammar construction process, so that sequences containing variations may also be consid-
ered as repeating. In other instances, the compressor has not chosen a rule matching a subject span;
instead, a rule producing greater compression has been formed using a symbol also present within
the subject, thus preventing use of an existing rule which defines the subject alone. It is conceivable
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this might occur because a smallest model was not produced by ZZ. However, it may be more rea-
sonable to suggest that overlapping structural explanations exist for this passage, such as may be seen
in Bruhn’s analysis of Book I Prelude No. 1 (1993). This is a more serious shortcoming: the branch-
ing of a grammar’s hierarchy prevents the modelling of intersecting structures, which may represent
important complementary explanations in a musical analysis.

The greedy approach to choosing grammar rules does not restrict matches to a single level of the
hierarchy, and the most closely correlating rules are not always those from the top level. For example,
in Figure 5.10, rules 16 and 18 are selected together as the strongest candidates for counter-subject 1,
part b (bars 3–5 and 20–22). However, rule 28 exists at a higher level and contains both chosen rules,
suggesting that extension of Bruhn’s segment by a single interval might be a good representation of
this counter-subject instance. Mismatches such as these may indicate a failure of the model to recover
a musicologically ideal segmentation, or present an alternative explanation of a score’s structure. The
rule hierarchymay indeed provide an advantageous view of a given segment at various levels of abstrac-
tion, and hint at the manner in which a composer employs compound motifs and techniques when
creating the piece.

It is important to note the small sample presented here. Digitisation of expert analyses is time con-
suming and open to interpretation, and access to a wide collection of digital interpretations from vari-
ous analytical schools against which to evaluate alogrithmic methods is currently unavailable – such a
resource could significantly benefit similar research. Accepting this limitation, the results suggest the
level of correlation between grammar rules and expert-defined segments is notable, and likely aided by
the highly-structured nature of the analysed pieces, making identification of exactly-matching repeats
relevant and useful.

Grammar-assisted Editing

To demonstrate some benefits and disadvantages of a grammar-based editing system, a simple editing
tool was developed, choosing Bach’s PreludeNo. 1 fromDasWohltemperierte Clavier Book I as input
since it has a clearly-defined structure against which alterations can be easily distinguished. A single
grammar is built for this piece, and its non-S rules are altered with the intention of producing a mu-
sically reasonable output. In this case, an attempt is made to simply reverse the ascending motif used
throughout. Finally, the grammar is expanded to produce edited score data, whichmay be represented
visually or played.

Edit operations are restricted to the substitutionof individual terminal symbolswithin rules repre-
senting pitch intervals, to demonstrate the effect of changes to individual pitch values only, and avoid
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Table 5.10: Changes applied to rules of the grammar modelling the chromaধc intervals of J.S. Bach’s Prelude No. 1
from Das Wohltemperierte Clavier Book I.

Rule Instances Original intervals Edited intervals

2 9 3, -3 -9, 9
3 22 3, 5 12, -4
4 7 4, -4 -8, 8
6 4 -7, 4, 3 -3, -4, 7
7 3 -6, 3, 3 -3, -3, 6
9 7 0, 0, 0 0, -7, 7
10 4 3, -10, 7 -7, -2, 9
11 3 3, -8, 5 -5, -4, 9
13 4 5, 7, -12 12, -7, -5
15 2 -6, 2, 4, -6, 2 12, -4, -2, -6, -4
19 10 5, 4, -9, 5, 4 9, -4, -5, -3, 12
20 4 5, 5, -10, 5, 5 10, -5, -5, 10, 0
21 8 7, 5, -12, 7, 5 12, -5, -7, -5, 17
22 8 -10, 4, 6, -10, 4, 6 -6, -4, 10, -6, -4, 10

the alterations in structure which are likely to occur if non-terminal symbols are changed. Edits were
further constrained so that the sum of each rule remains unchanged, to avoid introduction of a pitch
offset for subsequent notes.

Results
The rule hierarchy produced by ZZ from the unaltered score is shown in Figure 5.12, represented

as a two-voice piano-roll.
Terminal symbols in 14 of the 29 rules of the pitch grammar are changed; Table 5.10 provides

details of the edits made.
The frequencies withwhich rules 2, 3 and 19 occur in the expanded score are high, indicating these

are important foundational elements. Indeed, altering them has a strong effect across the entire piece,
highlighting that many related changes may be made simultaneously using this method. As a human
editor, care must be taken to preserve the context of each rule. For example, a rule containing only
scale degrees 1 and 5 may appear in a major and minor setting, and introduction of a 3rd can cause
dissonance where the rule coincides with the opposite scale. Auditioning after each rule is edited will
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allow a manual check to be made, and undesirable changes to be reversed.
These simple edits allow fast production of a believable score, where the goal of reversing ascend-

ing figures is mostly achieved. However, for two-symbol rules such as 2 and 3 this is not possible, since
only one pitch change may be made before returning to the original note; in these cases, inversion of
the motion was chosen. Enforcing the constraint that the rule’s sum must not alter for rule 20 also re-
quires a compromise: its final interval cannot be a negative value, which breaks the descending pattern
it otherwise maintains. Rule 9 represents four identical bass notes, and a 5th was substituted for the
third note in the sequence to show additional movement is easily possible whenever the change does
not violate the context of the rule’s occurrence. A segment of the resulting score is shown in Figure
5.13.

Several disadvantages to this approach can be seen. Since pitch and rhythm are represented sep-
arately as sequences in S, insertion or deletion of a single element results in misalignment between
note attributes, and will occur as many times as the rule is used during grammar expansion. Encoding
voices in separate sequences as described in Section 3.3 does not support the modelling of harmonic
relationships such as chords, and where related notes are edited these relationships must be manually
preserved. The ability to make multiple changes from editing a single symbol may also result in dis-
sonant combinations which are not immediately obvious, as a single rule can exist in several different
musical contexts. Care must be taken not to allow the effect of altering a rule to impact subsequent
rules and values, especially where interval-based data representations are chosen.

However, grammar assisted editing naturally enables changes specifically relating to content or
structure to be made, either individually as in this experiment, or in combination. Where the musical
context of a rule is known, for example the scale its pitch values belong to, it may be altered to contain
anything within that context. Large-scale modifications to a score are possible via rule editing, from
alteration of low-level building blocks containing only terminal symbols to strong structural changes
through manipulation of rules containing a deep hierarchy. Binding information such as pitch, on-
set and duration together symbolically could help address some of the disadvantages affecting such
operations. Since, as shown in the previous experiments, a grammar’s rules may represent a musically
significant segmentation of a piece, it is reasonable to suggest this grammar-basedmethod allows edits
to occur within a contextual, musical framework.

5.7 Summary

In this chapter, the applicationof grammar-based compressors to six practicalmusical applicationswas
investigated, and their performance compared to that achieved by the use of other popular compres-
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Figure 5.13: Bars 5-16 of Bach’s Prelude No. 1 from WTC I ađer grammar-assisted ediধng.
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sion algorithms. The responsiveness of each method to errors was examined, and their performance
measured when applied to the location of errors, classification of folk music by tune family, and the
discovery of expert-defined musicological patterns.

When tasked with detection of a common transcription error, LZW proved most responsive for
pieces too small to compress by standard grammar, but beyond this margin ZZ provedmost sensitive.
All methods showed a logarithmic response to an increasing number of errors, with GZIP outper-
forming ZZ as input length became significant. ZZ was most successful in correctly identifying the
position of a single error, with an F-measure of 0.22 − 0.35. Strong variation in response was mea-
sured for all methods, showing none can be relied upon to respond correctly in each individual case.
However, every method generated a larger model in the majority of cases.

When grouping pieces from the Meertens Tune Collections by tune family, ZZ was able to per-
formmoderately by comparisonwith existing studies, when the results frommultiple representations
were weighted and used in nearest-neighbour classification. ZZ was also applied to the discovery of
expert-defined patterns from the polyphonicDiscovery of Repeated Themes& Sections task presented
in MIREX 2016, where it bettered all submitted methods for a highly-structured Bach fugue, but
gave unstable results for the other four scores, highlighting the greater flexibility of SIATEC-based
algorithms in discovering inexactly repeating patterns. Finally, exactly repeating structures identified
by musicologist Siglind Bruhn within eight works from Bach’s Das Wohltemperierte Clavier Book I
were compared to rules within grammars produced byZZ for each piece. Although the results showed
wide variation, a strong correlation was observed at high levels of the hierarchy, a notable achievement
considering that ZZ possesses no domain knowledge.

The results generally support the link between strength of compression and the information re-
covered, as suggested by theMinimumDescriptionLengthprinciple (Rissanen, 1978). They also show
that ZZ can outperform several popular compressors when applied to detect degradation in musical
structure and classification of Dutch folk tunes, in the latter case when provided with attribute-rich
note data. However, exact grammars cannot rival current techniques when seeking expert-defined pat-
terns containing variations, and can fail to generate desirable rules where an overlapping explanation,
and therefore rule, exists. These findings highlight the significance of intersection in the analysis of
musical compositions, and support suggestions by existing studies that the ability to abstract musical
features and pattern templates using domain knowledge is important to algorithmic analysis; such
additions are likely to improve the performance of ZZ on these applications.

In the following chapter, a method is presented by which the transformation of patterns may be
incorporated into a grammar-based model during its contruction, thus allowing fundamental equiv-
alence within the input to be handled despite the presence of incidental variations, in order to enable
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the inclusion of domain-specific features.
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We are considering on how to build on the efficient algo-
rithms developed in the field to capture more such rules.

Payam Siyari & Matthias Gallé, 2017

6
Grammars allowing Rule Modification

This chapter presents a novel addition to straight-line grammars, which allows them to contain pro-
duction rules that may be modified during expansion. This enables an increase in substring similarity
during their construction,which, by creating anopportunity for rules to performgreater replacements
within the input string, allows the production of smaller grammars. This is achieved by the introduc-
tion of “transforms” which are encoded within the grammar itself, and may apply to any of its rules
when their associated reference symbol follows a non-terminal symbol. As with non-terminals, the
expanding program is designed to recognise the transform’s instructions and perform the desired op-
eration.

A novel aspect of the scheme is the ability for the transform to be customised, so that both gener-
alised and domain-specific operations can be encoded, and may be included or excluded by the gram-
mar construction programdepending onwhether they prove useful in generating a smaller encoding –
thus, it is possible for them to be leveraged following theMinimumDescriptionLength principle (Ris-
sanen, 1978). This introduces a “dimension” of rule modifications, in addition to the existing dimen-
sion of substrings, which much be traversed during grammar construction. The following sections
introduce and describe the key concepts behind the contribution, and suggest a method of selecting
constituents and transforms based upon the existing optimisationmethod ZZ (Carrascosa et al., 2011).
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6.1 Introduction

A classical straight-line grammar for a given input string makes use of a dictionary of terms which
exactly repeat within that string. A number of terms are chosen as candidates, and where these occur
within the string they are replacedwith references to production rules. The result may be an encoding
of fewer symbols in length than the original string, due to the replacement of many instances of a
given group of symbols with a single reference symbol per occurrence, with only a single instance of
that group as overhead within the encoding.

Each term, represented within the grammar as a production rule, may be said to represent the
“template” from which replacements are made during expansion of the grammar back into the orig-
inal string. During that process, it is possible to augment the replacement in some fashion, i.e. to
modify the string the production rule generates, such that every instance of the rule’s output occur-
ringwithin the expanded string is not identical. An additional symbol, assigned specifically to indicate
the modification, may be included immediately following (or preceeding) any rule reference. During
expansion, the rule’s output may be modified given the presence of the modifier symbol.

Existingwork shows it is certainly possible to successfullymodel ruleswhichmay bemodified. An
alternative flexible matching scheme (Siyari & Gallé, 2017) was shown to offer an improvement when
identifying syntax within linguistic data, and to produce more compact encodings of both linguistic
and symbolic representations of DNA sequences. The scheme itself was constrained to providing
an alternative prefix and suffix for each flexible match on subsequent instances of a given rule, and
as such relied on the explicit encoding of each variation to be included upon model expansion. A
possible advantage of the transform-based method presented in this chapter is the potential for im-
plicit operations, and the use of specific domain-based transformations, which may be applied by the
program which expands the encoding, allowing for the inclusion of very complex and sophisticated
modifications. In this manner, blends and overlaps between segements may also be made; however,
this idea is beyond the scope of the current thesis, and as such is left for future work.

A key hypothesis for this study is that there is a relationship between the compactness of a model
representing specific data, and the accuracy of the information which may be obtained from examina-
tion of that model. Assuming the existence of a deliberate hierarchical structure within the data, such
as human-selectedmusical form or repetition, theMinimumDescription Length principle (Rissanen,
1978) suggests that compression of that data by an algorithm which can generate such hierarchical
structure is most likely to return a structure as close to the original as possible where the most com-
pact possible model is generated, as opposed to larger or non-hierarchical models. In the case of a
musical score, expected structure (Spring & Hutcheson, 2013) can include high-level concepts such as
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form (for example, Rondo, Fugue or Sonata), or medium-level organisational units such as phrases
and measures. The ability to discover such structure as a result of processing by algorithm would
mean it were possible to automatically obtain a structural analysis of a given musical score, such as
may be performed by an expert musicologist, which would be helpful in a great many music-related
tasks, such as understanding or teaching composition, grouping or selecting works by similarity, or
the generation of entirely novel structures through comparison against a database of known pieces.
Anymethod which contributes towards an automatic analytical approach, whether specific to a given
school of analysis or universal in nature, is a valuable contribution.

As shown in Chapter 5, there is a general correlation between the effectiveness of the compressor
used and its rate of success on anyof the analysis-based experimental tasks; thismaybe seenparticularly
in the comparison between ZZ and IRR, where ZZ consistently shows stronger performance. If the
input data contains terms which repeat within it, but with minor differences, it may be possible to
achieve greater compression by considering all such instances relative to the “template” term, avoiding
the costly need to add each as separate production rules.

This concept is strongly related to an additional hypothesis: where a sequence is modelled partly
from patterns whose forms vary within it, those variations may be considered incidental, and the un-
derlying similarity between pattern instances seen as the fundamental “template” uponwhich all such
patterns are based. The manner in which an instance is transformed from its fundamental form is a
specific representation of its variation, and basing substring similarity within the sequence primarily
on the fundamental differences between patterns instead of their literal sequence allows a higher-level
form to be identified. Very minor variations between patterns are clearly heard within musical se-
quences, in a change frommajor to minor for example, or from onemode to another. Capture of this
transformed structure is likely to expose the patterns fundamental to the sequence, and, separately, the
types of variation occurringwithin it. Where this simplifies the understood structure, greater compres-
sion should also be possible, alongside a more fundamental segmentation of the sequence itself.

6.1.1 Proposed Solution

It is possible to augment a grammarby allowing approximatematches tobemadewhilst seeking repeat-
ing terms within the input, and storing the information required to reconstruct each approximately-
similar instance given the template term. The cost of signalling that a specific instance of a rule requires
modification, and the cost of storing the instructions required to perform the correct modification,
must be considered as part of the encoding of the grammar.

In this chapter, a solution is proposed to the problem of constructing a grammar which allows
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substrings to be flexibly matched, and yet is encoded with little difference to a straight-line grammar,
allowing it to be processed andmanipulated bymethodswhich are designed to operate on such encod-
ings. The solution makes use of a set of versatile transformations which may be customised to allow
approximate equality between substrings using specialised domain knowledge, or basic symbolic or ge-
ometric operations such as insertions or reversal. The idea extends the work of Carrascosa et al. (2010),
and follows the same generalised process of constructing a compact grammar G from an input string
S:

1. Discover equivalent substrings in S,

2. Pick a combination of substrings to use in construction ofG,

3. Construct a directed acyclic graphwhose edges represent choosing or rejecting the replacement
of a substring,

4. Find aminimal parse of the graph, and compute the grammar’s length |G| fromboth parse and
substrings, and

5. Repeat the process from step 2 until no further reduction in |G| is possible.

This approach represents an alternative to flexible matching schemes such as was proposed by
Siyari and Gallé (2017), and is not limited to any specific definition of substring similarity.

6.2 Applications

Grammars which allow rule modification during expansion may benefit any application where
grammar-based compression is appropriate, including general compression tasks where exact repro-
duction of the input is desired, and the nature of the data being processed means that such com-
pression is more successful. Siyari and Gallé’s flexible approach (Siyari & Gallé, 2017) was shown to
produce smaller encodings for the Canterbury Corpus than that of Benz and Kötzing’s GA-MMAS
algorithm (2013). Where rule modifications allow a more inclusive modelling of patterns within the
input data, more compact encodings than those attainable by grammar constructors such as ZZ or
GA-MMAS may result, potentially even more compact than those produced by Siyari and Gallé’s
method.

Since the addition of transforms is an augmentation of straight-line grammars, a grammar con-
structor which allows for rule modification possesses all the advantages of the straight-line scheme,
along with the benefits which transformations provide, discussed within this chapter. One particular
advantage of such a grammar is its hierarchical structure. Such a structure may represent a hierarchy
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which underlies the input data, possibly chosen with purpose where the input is human-generated. A
hierarchy may have creative implications, such as sub-divisions within the musical form of a classical
piece, or a compositional meaning, as may be found in DNA strings by elements which are repeated
within larger structural segments. Grammars which allow rule modification may also be applied to
any application where discrimination of a hierarchy is useful, and a better-fitting hierarchy may be
discovered where it includes segments which make use of transformed terms.

The following section describes the fundamental operations required by a grammar constructor
which is based upon the exact matching of substrings, and the subsequent section presents a method
by which such grammars may be augmented to allow the modelling of flexibly-matching substrings.

6.3 Exact Matching

6.3.1 Selection of Candidate Terms

To demonstrate the difference of approach between exact and flexible matching, consider the follow-
ing process, which may be used to discover and represent exactly repeating segments during grammar
construction. More efficient methods of repeat discovery exist; this explanation is included only for
illustrative purposes.

Algorithm 1 Find all exactly repeating segments
Require: S,minLength,maxLength
Ensure: D, (dictionary of all exact repeats)

1: for l← minLength tomaxLength do
2: for i← 1 to length(S)− l do
3: a← S[i : i+ l]
4: for j← 1 to length(S)− l do
5: b← S[j : j+ l]
6: if a = b then
7: if doesn’t existD[a] then
8: D[a][1] = [i, l]
9: end if
10: D[a][ end ] = j
11: end if
12: end for
13: end for
14: end for
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The procedure results in a dictionary D with key set k, where |k| = u and 0 ≤ u ≤
5(length(S) + 1)/2. Each element of k represents a term t from S, and each term has a first occurrence
at i = D[t][1] with length l = D[t][2], with subsequent occurrences at D[t][≥ 3]. All terms repeat
at least once in S. The complexity of this procedure is O(rn2), where n is the length of S and r is the
range of lengths to search for bounded by n tomakeO(n3). Each termmay be considered a constituent;
that is, it may be added to a grammar as a production rule, and its instancesD[t] in S replaced with a
symbol which references it.

There are several alternatives to Algorithm 1. One possibility is the use of suffix trees (Stoye &
Gusfield, 2002), where each node in the tree represents a symbol present in S, and repeating terms of
n symbols in length may then be discovered by traversing from the root through any n nodes. This
approach can have time complexity O(n) (Ukkonen, 1995) for tree construction and term discovery.
It is also possible to construct a matrix based on Levenshtein distance, using an algorithm such as that
proposed by Wagner and Fischer (1974), and seek diagonals with unchanging values to identify the
positions of repeating terms. This approach is less efficient atO(n2).

6.3.2 Constituent Selection and Minimal Grammar Parsing

For a typical input S, many constituents exist. Where there are i constituents, the search space of pos-
sible constituents to include in a grammar is 2i. As shown by Carrascosa et al. (2011), it is possible to
traverse this search space in O(n7), where n is the length of the input, by progressively adding or re-
moving a constituent from the set of those currently selected, until a locally smallest grammar is found.
Separation of the problem into constituent choice andminimal grammar construction allows the pars-
ing of the input to become a problem of minimal parsing, which may be achieved by constructing a
directed acyclic graph g of length l = |g|, where l − 1 is the number of symbols present in the string
to parse, and a termination symbol is present at the end of g. Each edge taken in g adds either a sym-
bol from the string, or a symbol referencing an instance of one of the currently active constituents.
A minimal traversal of this graph yields the shortest possible symbol string, including references to
constituent rules, which can expand to form the original string. The graphs of the constituents them-
selves can also be parsed, allowing them to contain sub-constituents which further reduce the model’s
encoded length.
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6.4 Flexible Matching

6.4.1 Selection of Candidate Terms

Instead of seeking segments a, bwhich contain identical symbolic sequences, taking a = b directly, it
is possible to instead identify those whichmay be transformed by some function f given a parameterT
which defines how the transformation is performed, allowing a = f(T, b). Where a and b are exactly
equal, noT is required, and its absencemay be taken as a = f(b)where f simply returns its input. The
transformation T can be computed by a function t, and so obtained by T = t(b, a), where t returns
the operations required to transform b ⇒ a. In principle, the function tmight be extended to itself
return a function capable of transforming b ⇒ a, in which case the transform may be considered
a good representation of P in the context of Kolmogorov Complexity (Kolmogorov, 1963) since it
would encapsulate the transformation program. However, this study focusses on the concept of T as
a parameter, and any other definition of t is left for future work.

If T is not constrained, it is possible for a = f(T, b) for any substring b, although theoretically
the encoding length of T should prevent all terms a and b for being considered similarly equivalent.
Nonetheless, quantifying the degree of similarity is necessary to allow discrimination between sub-
strings. Therefore, a cost c may be calculated for T, based on the instructions it contains, and any
transform with c > w, where w is a threshold of reasonable cost, may be discarded. In this scheme,
c may be said to represent the cost of altering the difference between a and b, and a measure of the
complexity of describing T.

Where |a| = |b|, Algorithm 1 may be used to discover matching terms, replacing the comparison
a = b with a = T(b). There is additional complexity to consider for this process, which depends on
the specific algorithm used to create the function T, but this is not necessarily greater than a regular
comparison; for instance, symbols between strings a, bmay be compared by indices i, j inO(n) time,
regardless of whether j increments or decrements at each step. In the worst case, if |a| ≈ |b|, the
following process may be used to discover all terms forD:

The procedure results in a dictionary D as in Algorithm 1, but in this case an additional value
is stored in D[a][≥ 2] for each match to the template a, containing the length of the match (m in
Algorithm 2). The complexity is increased to O(mrn2), where m and r are bounded by n to make
O(n4). The cost of a flexible repeat amay be stored withinD, or may be re-computed when required
by querying the function t to recover the transform T. The cost of T may be taken as |T| in some
scheme γ, where γmay depend on the context of the model. In the case of a musical score, γmay be
the space of possible compositional variations, pre-defining the context, and |T|may be a minimal set
of instructions to transform a⇒ b.
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Algorithm 2 Find all exact and flexible repeats
Require: S,minLength,maxLength,w
Ensure: D, (dictionary of all exact and approximate repeats)

1: for l← minLength tomaxLength do
2: for i← 1 to length(S)− l do
3: a← S[i : i+ l]
4: for m← minLength tomaxLength do
5: for j← 1 to length(S)−m do
6: b← S[j : j+m]
7: if a ≈ b|w then ▷ If a is approximately equal to b,

beneath some threshold w
8: if doesn’t existD[a] then
9: D[a][1] = [i, l]
10: end if
11: D[a][ end ] = [j,m]
12: end if
13: end for
14: end for
15: end for
16: end for
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It is of course possible to further reduce the complexity of the match discovery process. At min-
imum, a threshold w of reasonable cost may be set based upon the minimum gain required to make
the match useful in the grammar construction process. Unfortunately, selection of an appropriate w
is not a trivial calculation: for a function Twhich transforms a⇒ b and features as part of a smallest
grammar, there may be only one instance of bwithin S since b is chosen as an approximate match for
term a (and is likely to form the exact template for its own constituent if other instances of b exist
elsewhere in S). However, the same transform T might also be applied to many other terms, and so
storage of the encoded form of T and its separator with size |T| + 1 does not necessarily prevent T
from being used to reduce the encoding size |G|, even when |T| + 1 is relatively large. Thus, treating
w as a number of symbols and limiting it to the count required to store the term a it transforms could
conceivably prevent a transform |T| > w from being considered, and result in a larger than optimal
grammar. A calculation of the maximum gain possible from T could be made, based on the terms
term1, term2 . . . termn it can be applied to, but this more challenging; it is not impossible that Tmay
apply to an entirely new symbol combination, composed of original symbols from S and references
added to grammar rules, which will not be seen until the construction process is underway, and thus
its potential gain depends on how the grammar is minimised. It is reasonable to suggest that more use
may be made of compact forms of T, perhaps relative to |a| or |b|, and especially to those which will
apply to a greater number of matches; as such, wmay be set as a proportion of |a| or |b|, and used as
a rough parameter to constrain the space of transforms considered during the selection of candidate
constituents.

6.4.2 Augmenting Grammars with Rule Transforms

To elaborate on the above, consider the following string, composed of a repeating term a = [1, 2, 3, 4]:
S = [1, 2, 3, 4, 1, 2, 3, 4]
Here, |S| = 8 symbols. This may be encoded in grammar form by adding a termination symbol

$, marking all preceeding symbols as belonging to the starting symbol S fromG =< Σ,N, S,P >:
G := 1, 2, 3, 4, 1, 2, 3, 4, $
This encoding results in |G| = 9 symbols. The term itself may now be added to G as the first

production rule in P, separated from Swith an additional termination symbol:
G := r1, r1, $, 1, 2, 3, 4, $
Now, |G| = 8 symbols, and represents a compressed version of S encoded as a grammar. It is

not shorter than the original string, but no larger, despite the inclusion of two termination symbols
$ and two rule references rn. Now consider a modified version of S, composed of the same term a =
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[1, 2, 3, 4] and a single reversed match b = [4, 3, 2, 1]:
S = [1, 2, 3, 4, 4, 3, 2, 1]
Again, |S| = 8 symbols. This may be encoded in grammar form as follows:
G := 1, 2, 3, 4, 4, 3, 2, 1, $
The encoding results in |G| = 9 symbols. The term itself may be added to G as the first produc-

tion rule in P, separated from Swith an additional termination symbol, but it cannot yet provide any
compression as it is not repeated in S:

G := r1, 4, 3, 2, 1, $, 1, 2, 3, 4, $
This encoding is of size |G| = 11 symbols, and greater than its representation without r1. We may

mark symbols 5-8 as belonging to r1, temporarily ignoring the need to reverse them upon expansion
into the original string S:

G := r1, r1, $, 1, 2, 3, 4$
This model is compact at |G| = 8, and seems intuitively correct, but cannot yet reproduce the

string it represents. We may mark that the second occurrence of r1 requires modification, denoting
this with the symbol ′:

G := r1, r1,′ , $, 1, 2, 3, 4, $
Although now |G| = 9 symbols, it is only possible to obtain the original input if the prime is

taken as a specific transformation, reversing any rule preceeding it. This is a valid encoding scheme,
but limited by the lack of other available transforms, sinceT = reverse(a) and therefore rn = a, r′n =
reverse(a) must be implicit. The addition of the modification symbol has not added significantly to
the alphabet of the grammar; indeed, adding a second production rule insteadwould have increased it
by the same amount. If two other symbols are chosen to represent the transform type, selecting R =

reverse(S) for this example, and a break point between the production rules rn and transformation
rules tn, choosing !, we obtain the following encoding:

G := r1, r1, t1, $, 1, 2, 3, 4, !,R, $
Here, |G| = 11, and so the representation, although seemingly reasonable, is unable to compress

the original string S. In order to benefit any single existing rule rn, a transform encoded in this manner
must enable the removal of sufficient symbols from G to cancel out the cost of its inclusion in the
grammar and the transform reference appended to a rule reference, amounting to g = |T| + 1 + 1.
Given a constituent of length l, a gain of l − 1 is possible upon unmodified replacement of a single
occurrence of the constituent’s term, due to the addition of its reference. Thus, gain > cost equalling
l− 1 > |T|+ 2 must be satisfied before any gain is possible relative to a single rule. In the above
example, the potential gain is 3 symbols, at a cost of 3 for inclusion of T within the encoding, and so
it is impossible to use T to produce a more compact form of G. Increasing l = 5 demonstrates this
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effect:
G := 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, $
The uncompressed encoding of this grammar has |G| = 11. Once again, a new production rule

can be generated for the first occurrence of the term:
G := r1, 5, 4, 3, 2, 1, $, 1, 2, 3, 4, 5, $
Not surprisingly, adding the rule, which requires additional terminator and reference symbols,

does not produce a compressed model; now, |G| = 13. However, since l = 5, it is now possible to
produce a smaller encoding than that shown above:

G := r1, r1, t1, $, 1, 2, 3, 4, 5, !,R, $
The inclusion of T here results in |G| = 12, which, although not yet a reduction in encoded

size, is nonetheless a smaller and potentially “better” explanation than the above grammar without
transforms. It is also now possible to denote new transform types, by adding new symbols which
modify the preceeding rule in a specific manner.

With this scheme, where generally |T| ≪ l and T may be applied to≫ 1 rules, compression
greater than an encoding which does not include transforms is possible.

6.4.3 Modifier and Constituent Relationships to Grammar Size

As a simple demonstration of the relationships between modifier and constituent attributes, a con-
strained grammar scenario may be modelled, with the following assumptions:

1. Input data consists only of n repeating terms.

2. Only one transform T, of length t, is present within the final grammar.

3. Each constituent is associated with o exactly matching substrings within the input.

4. Each constituent has an identical length of l symbols.

5. The transform T applies to exactly one instance of each constituent.

6. The substrings represented by all constituents, and all terms which may be transformed by T
to match any constituent’s substring, are distinct from each other.

The variables n, t, o, lmay nowbe assigned different values, and themetrics |Ginput|, |Gstd|, |Gmod|
calculated for encoded input length, standard grammar length, and grammar length when T is in-
cluded, respectively. These equations may be defined as follows:

|Ginput| = n(lo+ l) + 1 (6.1)
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|Gstd| = n(o+ l) + n(l+ 1) + 1 (6.2)

|Gstd| = n(o+ 2) + n(l+ 1) + t+ 2 (6.3)

Given that all terms, including those which may be transformed by T, are distinct, it is possible
to state that a grammar which does not make use T will instead possess an additional l symbols, for
the moment assigned to the label x, as these occur only once within the input and are not matched
by any other constituent. Within a grammar including T, these symbols may be replaced by exactly
one reference to the constituent with term c for which x = T(c), and one reference to the transform
T which modifies it. An additional separator symbol is required within the encoding between the
existing symbols and the encoded transform. Although the scenario is clearly heavily constrained, it
does allow an evaluation of the effects of varying transform lengths, constituent lengths, and number
of exact occurrences within the input to be made, with the aim of exposing some of the behaviour of
grammars which include transforms under differing conditions.

Figure 6.1 charts the difference in grammar sizes given various values for n, o, l where t is held
constant. In general, it is clear that the more rules a transform applies to under these constraints,
the greater the reduction in encoding length which may be achieved. However, it is only when the
length of the substring each constituent represents is notably larger than the length of T that use of
the transform becomes beneficial. The number of occurrences of each constituent, o, is unimportant
to the overall gain achieved through the addition of the transform, since each exact occurrence is not
applicable to T; that is, T(ca) ̸= cb for any pair of constituents a, b. Under real-world conditions, it
is entirely possible that a given transform may apply to multiple, identical substring occurrences, and
may therefore beuseful in removing thenecessity for an additional production rule to reduce encoding
size by replacing them.

These figures show that rule modifiers can remain beneficial to the minimisation of |G| even as l
increases andonly one instance ofT ismadeper constituent, and in aworst-case scenario are unaffected
by changes in o, providing each transform applies to a sufficient number of constituents to reduce
encoding length, and are themselves much shorter in length than the constituents which they apply
to.
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Figure 6.1: Difference in output encoding size between grammars with and without the inclusion of transform T, for
transform lengths t = 1, 2, 3, 4. Overlaid plots are shown for inputs containing n = 1 : 4 consধtuents, with results
shown for consধtuents of length l = 1 : 10, and exact occurrences o = 1 : 10 for each length.
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6.4.4 Transform Encoding

As shown, a grammarGmay be encoded as a sequence S,P,Z, extending its definition to include the
encoded set of all t ∈ Z which apply to S,P. Where n rules are present in P, references rn+1, rn+2 . . .

rn+j can refer to transforms ti, ti+1 . . . ti+j, which requires the addition of a single unique symbol to
the alphabet to mark the separation between P and Z. For this study, each type of transform is repre-
sented by a unique symbol in the same manner as non-terminal rule references rn, and any additional
information required to complete the transformation of a⇒ b is added sequentially to tn prior to the
termination symbol.

To allow a comparison to be made between the properties of grammars constructed from dif-
fering input data, and across different applications, a limited set of transforms were chosen for this
study, composed of operations which may apply to generic, primitive data, operations which may
apply specifically to musical data, and those which may be appropriate to both types.

A Levenshtein edit-distance (1966) basedmodifier was added as a generic operation, as this allows
generalised matching to occur between a pair of non-equivalent substrings, such as may be found in
linguistic data, but matches are constrained by the minimum number of characters which must be
edited to transform any term within the pair into the remaining term (Navarro, 2001). Although
capable of calculating the number of symbol-level changes required to change one term into another,
this form of edit distance measurement does not capture operations which apply at a term level, such
as a reversal of sequence ordering. For example, to transform the word rat into tar at a symbolic level
would require two substitutions: the replacement of r with t, and t with r. These are complementary
changes, and a humanwould intuitively know a simple reversal of the entire sequence would produce
the required output. Such a reversal also applies to musical data, where retrograde is a reversal in the
order of amotif’s note sequence (Spring&Hutcheson, 2013), and so thepossibility of directly reversing
a substring sequence is also included in the set of this study’s transforms.

Three further transforms were added to the set, applying with increasing relevancy to musical
data. The first of these is a simple numeric translation, where a set positive or negative value is added
to every element in a sequence, providing the opportunity of matching one pattern to another of
identical shape but with a relative offset. When working directly with pitch values, this allows simple
transpositions of a musical pattern to occur (Spring & Hutcheson, 2013). The second transform at-
tempts to capturemore complex patternmanipulation by allowing the application of a “origin” value
to a sequence, around which the elements of that sequence are “reflected”. Where the origin value
is outside the range of the values within a sequence, this will result in its inversion, which may then
be transposed to produce a directly inverted motif, commonly used as a compositional device (Spring
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& Hutcheson, 2013). Finally, transformation of a symbol sequence from an expected Western mode
into a set of scale degrees, followed by expression of the pattern in an alternative mode, provides an
attempt to capture a composer’s use of mode change when repeating motives (Spring & Hutcheson,
2013). Although not representing an exhaustive exploration of the compositional space, the chosen
modifiers are intended to enable the evaluation of a small range of generalised and domain-specific
transforms when constructing grammars which allow rule modification, as a proof of concept upon
which future work can be based.

The following provides a detailed explanation of the operation of each transform:

1. Levenshtein: A sequence of operations is generated by following the path through the Leven-
shteinmatrix comparing two terms. Three operations are encoded: substitute, insert anddelete.
Each refers to a specific index in the sequence awhichTmodifies as b = f(T, a), and two types
of encoding are possible: a) an index may be associated with each operation, or b) each index
in T may correspond with an index in a. The former is most suitable for modification of a
large sequence a requiring few non-contiguous operations, the latter where many operations
are required relative to the length of a.
Where (b) is used, a fourth special symbol is required, no-op, which shows that no alter-
ation of ai is made where no-op occurs at index i. The operations substitute and insert re-
quire an additional parameter p, representing the symbol which should be substituted or
inserted at the current index. For example, a Levenshtein transform for a ⇒ b where
a = [1, 2, 3, 4, 5] and b = [1, 6, 3, 5] might be encoded in form (b) as the sequence T =
[Levenshtein, no− op, subtitute, 6, no− op, delete], with length |T| = 6. In order for T to en-
able a reduction in |G|, itmust also apply to other pairs of a, b, for example a = [7, 8, 9, 0], b =
[7, 6, 9] or a = [3, 3, 3, 3, 3, 3], b = [3, 6, 3, 3, 3]. Since either of the forms (a) and (b) are likely
to cause |T| ≫ 1, representing a Levenshtein-derived transform in this manner mandates it
should apply to n≫ 1 constituents inG to be included to reduce |G|.

2. Reverse: Where a = s[i : j] for some string s and there exists an equivalence b = s[j : i], a
simple transform T may be encoded as T = [reverse]. Since |T| = 1, minimal occurrences of
b = f(T, a) need to exist within G for T to offer a potential reduction in |G|, providing such
equivalences are present.

This transform may be used as a simplistic model of a musical “retrograde” (Apel, 2003), in
which a group of notes or phrase is scored with an exact reversal of its pitch sequence and
rhythm.

3. Translate: If element-wise addition is applied to a resulting in b = a + d, where d is the
difference in indices between a and b for all elements, then a may be translated in alphabetic
space by T to give b = f(T, a). It is only necessary to specify d, and so a transform T may be
encoded as T = [translate, d]. There is only a single symbol of difference in length between
Treverse and Ttranslate, and so the transform provides a reasonable opportunity for reducing |G|
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with |T| = 2. However, unlike Treverse which may be applied to any suitable a, b pair, there
exist 2c−1 possible combinations ofTtranslate where c is the size of the terminal alphabet derived
from the original input string G is constructed from. Therefore, it is necessary for there to be
several instances of b = f(T, a) for each Ttranslate chosen for inclusion inGwhich reduces |G|.
In the context of musical score data, where the alphabet is composed of chromatic pitches, a
translation may replace the function of data conversion to intervals, which is commonly per-
formed to provide transposition invariance by increasing equivalence. As discussed by Cam-
bouropolous et al. (Cambouropoulos et al., 2001), such conversion introduces the undesirable
property of dualmembership of a single note to two contiguous and adjacent rules. The use of
a transform to translate patterns composed of chromatic pitches also provides increased equiva-
lence, but avoids this issue, and represents an online alternative to pre-processing into intervals.

4. Reflection around an axis: A term a may be equivalent to a term b which has been rotated
on the horizontal axis whose origin is offset vertically. Given this offset o in alphabetic space,
an element-wise operation is applied to a resulting in b = a − o − 2(a − o) + o. All that
is necessary to perform this operation for any term a is the value of o, thus a transform may
be encoded as T = [axis, o]. Like the Translate transform, encoding length is short, giving a
reasonable chance of the transform reducing |G| if a few instances of reflection exist within the
input.
This transform may be used as a simplistic version of musical reflection, or horizontal mir-
roring (Kempf, 1996). Mirroring occurs in-place and without transposition only when o =
min a + max a−min a/2. For all other values of o, an offset is introduced, for which addi-
tional translation may be required to produce equality between a and all potential b.

5. Mode: This transform is based on the concept of modes in Western music, where there exists
a vector of n− 1 intervals, each representing the difference in semitones between the n degrees
of the scale for that mode. For instance, Ionian has chromatic intervals [2, 2, 1, 2, 2, 2, 1], and
Dorian has [2, 1, 2, 2, 2, 1, 2], a left rotation of Ionian. Any note within a musical score may
be separated into the components root, octave,mode, degree, which may also be represented as
offset,mode, degreewhere offset = 12octave+ root. A transform betweenmode for the pair a, b
may be simply made where the following conditions are satisfied: (a) a and b are chromatic
pitch values, (b) aoffset = boffset, and (c) both terms have identical degrees for two different
modesma,mb. Where these are true, amay be reduced to scale degrees by offset = min a and
adegrees = a − offset. As set of possible modes my be obtained by eliminating any candidates
which do not contain chromatic degrees present in adegrees (such as 1, 3, 6, 8, 10 in Ionian), and
a transformTmay be constructed for a, bwhere bdegrees = b− offset andmode(adegrees,ma) =
mode(bdegrees,mb).
Using this process, the information required for a transform a ⇒ b is relatively minimal, as
b = f(T, a) can be completed as long as ma and mb are known. Thus, T may be encoded as
T = [mode,ma,mb]. For a small alphabet in a, b there may be up to v2 − v combinations of
ma,mb where v is the number of available modes, and since optimal transform use is ensured
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when T applies to the most possible rules in G it is desirable to consider all possibilities for
ma,mb,ma ̸= mb when constructingG. This can strongly increase the size of the search space
of all T. In this study, only the seven “modern modes” are considered, comprised of Ionian to
Locrian as all possible rotations of the interval sequence [2, 2, 1, 2, 2, 2, 1].

This method allow for the addition of any transformation which is compact enough in its encod-
ing length l to allow positive gain g over all instances of its use across all production rules, and thus
satisfying the condition l + 1 < g. There is great versatility in the types of possible transform, which
may range from generic operations which apply to a wide range of data, to domain-dependent opera-
tions crafted specifically to represent structural or element-based constructs to be found in the input.
Theoretically, all possible transformations could be considered during substring search and grammar
construction.

This differs significantly to some existing flexible matching schemes, such as that proposed by
Siyari and Gallé (2017) which constrains the search space to terms with the same prefix and suffix.
However, note that an approximation of their scheme is possible in this method through the use
of “Levenshtein” transforms, if the encoding is such that a string of symbols with no fixed length
may follow an instruction to substitute a segment of a rule which is bounded by a start and end
index. For instance, to model equivalence between the terms a = [1, 2, 3, 4], b = [1, 5, 6, 4] and
c = [1, 7, 8, 4], two transforms with the form T = [Levenshtein, index, s1, s2 . . . sn] may be encoded
as T1 = [Levenshtein, 1, 5, 6] and T2 = [Levenshtein, 1, 7, 8]. Providing the form of any given T is
defined at the time of encoding and decoding, any suitable form may be chosen.

6.4.5 Compound Transforms

For any substring term s1, s2 . . . sn, a match between it and another term may depend on the applica-
tion of multiple transforms. For instance, it is quite possible that a given musical phrase might exist
elsewhere within a score in a reversed form, but transposed into an alternative key, requiring both
transformations to be applied before a ⇒ b is complete. In this case, a solution could be to specify
both transforms sequentially following the rule reference withinG, and apply each during expansion
of that rule. Where the order the transforms are applied in is important, they may simply be specified
in that order within the encoding. For instance, where a = [1, 2, 3, 4] and b = [4, 3, 3, 1], a reversal T1

of a is required, but the symbol 2 must also be replaced by T2. If this is done pre-reversal then index
1 should be specified, and conversely index 2 is needed if the substitution is made post-reversal. The
optimal selection of T2 depends on its use elsewhere within the encoding, and also on any additional
reduction in |G| possible because of the sequence rn,Tu,Tv. Potentially, Tu may apply to rn in the
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absence ofTv in other places withinG (perhaps the phrase a repeatsmost oftenwithout transposition,
for instance), making the ordering rn,Tu most suitable for a model of a particular score.

One approach to the representation of compound transforms when parsing a graph of G, is to
allow an edge representing a constituent instance rn of length l from position s requiringmodification
to lead to an intermediate vertex, instead of returning directly to the vertex representing position s+ l
and associating aweight equivalent to the cost of the non-terminal for rn plus its associated transforms
Tu,Tv. Under such a scheme, the edge belonging to rn may carry a weight of 1 to account for its non-
terminal symbol, and additional edges may lead from its vertex through an arbitrary number of edges
and vertices, each representing an applicable transform Tn and also with an associated edge weight
of 1, to account for that transform’s non-terminal symbol. During parsing, the constituent cannot
be chosen without also selecting a return path through the transform vertices to s + l, at a cost of
1 + nv where nv is the count of transform vertices visited. The disadvantages of such an approach are
twofold: each selected transform incurs the cost of an additional non-terminal to represent it within
the encoded output, and overall graph complexity increases due to the extra vertices which must be
included within it. Parsing of the graph alone cannot help discriminate between each Tn in selection
of an ideal set of modifiers, just as it cannot select an ideal constituent set, only the shortest encoding
possible given the available components – an optimisation approach such as ZZ is still necessary.

It is equally possible to specify compound transformations as unique, single transforms. An ad-
vantage of this approach is the ability to minimise the encoding of compound transforms to just their
specific parameters. In the example above, two separate encodings are made: T1 = [reverse] and
T2 = [Levenshtein, substitute, index, 3], each requiring a terminator symbol, resulting in |G| + 7.
However, where it is known that an encoding may benefit from multiple applications of both trans-
forms in this order, a single compound version T = [reverseandLevenshtein, substitute, index, 3]may
be stored instead, resulting in |G| + 5 < |G| + 7. Where the sequence is not known, all possible
orderings may be considered, if the accompanying increase in search complexity is warranted. The
overhead required to add such a compound transform to the encoding of G is one additional charac-
ter in the alphabet, per transform. However, in the worst case, the use of such transforms causes a
strong increase in the transform search space, and potentially, therefore, of the substring search space
for each constituent.

To illustrate this, we can consider a simple example. Assume n = 2 transform types are to be used,
both ofwhich accept a single parameterwith a range of three discrete values, yielding a parameter space
of p = 3 possibilities per transform type. From this combination, np = 6 individual transforms exist
which would each need to be considered during a search of the transform space. However, where the
compound versions of these transforms are also to be considered, all possible combinations of pos-
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sibilities and ordering for both transforms must be added to the space. In this case, each compound
transform type requires pn transforms to combinewith its counterpart, and there are n!÷(n− r)!per-
mutations without repetition of transform types, with r = n since there are only 2 types to consider.
This results in a total of pn ∗n! = 18 additional transforms for consideration, causing an increase from
6 to 24, even in this basic example. Where compound transforms are used, the number of transforms
in the worst case may be defined as follows, assuming an equal parameter space p for each type:

n∑
i=1

pi n!
(n− i)!

Clearly, this results in a far greater transform search space, and may cause a significant increase in
parse graph and substring search complexity dependingon the character of the input string. Heuristics
might beused to abort a search attempt earlywhere a specific combinationof transform types is known
to be unsuitable, which can aid in constraining computational complexity.

6.5 Construction of a Flexible Grammar

The approach of Carrascosa et al. (2010; 2011; 2012) demonstrated that when attempting to solve the
Smallest Grammar Problem it is possible to separate construction of a compact grammar into two
sub-problems: constituent selection and Minimal Grammar Parsing. When considering the Smallest
Grammar Problem, there is a direct dependency between the replacementswhichmay bemadewithin
the input string and the substrings which have been selected as constituents for inclusion in the gram-
mar, with respect to the minimal sequence length for the encodingG; inclusion of all constituents in
the encoding results in a minimal-length representation of the input, but a maximal-length encoding
of constituents. For a search space of c constituents, there are O(2c) combinations within the lattice
which must be tested to minimise |G|, for which it is necessary to minimise both sub-domains. ZZ
may be used as an optimiser to traverse the constituent search space, altering theO(2c)bound toO(n7)
where n is the length of the input in symbols. ZZ explores the space of all possible constituents greed-
ily, and a minimal encodingG is generated at each step given the current combination of constituents
ZZ has selected. Traversal completes when no further improvement is possible when moving to a
neighbouring node in the lattice.

Equally, there is a direct dependency between the replacements which may be made within the
input string and the transformations which are available and potentially applicable to a subset of re-
placements. A smaller encodingmaypotentially resultwhere a transformcanbe applied, as it can allow
a constituent which does not exactly match the term being examined to be used as a replacement at a
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cost of a single symbol marking its modification. However, the inclusion of a transform adds to the
length of the encoding, and, in a similar manner as inclusion of constituents, inclusion of all possible
transforms results in a minimal-length representation of the input, but a maximal-length encoding of
transforms. Given a particular constituent set C and an empty set of transforms, Minimal Grammar
Parsingmay be used to produce the shortest encoding possible forC. Where t possible transformsmay
be applied toC to increase the substrings whichmay be replaced, there areO(2t) combinations within
the lattice of transforms which must be tested to minimise |G| given C. Thus, adding transforms to a
grammar also adds a dimension to the lattice, which increases in size to 2ct nodes.

6.5.1 Traversal of the Search Space

ZZ may be extended to provide a means of greedily selecting a combination of both constituents and
transforms. For each constituent combinationC and transformcombinationM, all possible additions
of a new constituent to C may be tested, and a new combination of C selected where |G| is reduced.
Following this step, all possible additions of a new transform t to M may also be tested, and a new
combination of M selected where |G||C is also reduced. In this manner, traversal through the space
can continue, removing selections from C or M as appropriate following the ZZ algorithm until a
locally minimal |G| is discovered. At this point, traversal may stop, and a compact G given C,M
output.

However, it is likely that addition of a new constituent c to C also provides opportunities for
transforms which are applicable to C ∪ c, but not C \ c. In this scenario, it is also possible that a
number of existing transforms t ∈Mwill no longer be useful givenC∪ c, and will increase the size of
the encoding beyond the minimum possible with a subset of M \ t. Since a transform has no direct
dependency to any single constituent, the optimal combination forM depends specifically on C and
may not necessarily be found by simultaneously performing a stepwise traversal of the constituent and
transform spaces.

As an example of this, consider an input G = a, b, c, d, a, b, c, d, d, c, b, a, e, f, g, h, e, f, g, h,
h, g, f, e, $, with an encoded length |G| = 25 symbols. Where a stepwise selection of C andM is con-
ducted, all available constituents will first be considered for addition to C, with the candidate produc-
ing the greatest reduction in encoding length retained. Next, all available transformswill be considered
for addition toM, and, once again, the candidate which allows the greatest possible reduction in |G| is
added. Construction continues in this manner until no further reduction of |G| is possible, at which
point each c ∈ C is removed in turn, followed by the removal of each t ∈M, in an attempt to reduce
|G|. If the attempt succeeds, the process repeats with the current C,M. When no further minimi-
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sation of |G| is possible, the algorithm terminates and the current encoding is output as the smallest
identified grammar. Given the input, and a candidate ordering of Ccand = {[a, b, c, d], [e, f, g, h]},
Mcand = {[translate, 4], [reverse]}, construction ofGmay proceed as follows:

1. The constituent sets C ∪ {[a, b, c, d]} and C ∪ {[e, f, g, h]} are evaluated, withM = ∅. Both
produce a reduction of |G| = 24, and so the first candidate minimising |G| is chosen. With
C = {[a, b, c, d]},M = ∅, the encoding G = r1, r1, d, c, b, a, e, f, g, h, e, f, g, h, h, g, f, e, $,
a, b, c, d, $ results from parsing.

2. The modifier sets M ∪ {[translate, 4]} and M ∪ {[reverse]} are evaluated, with C =
{[a, b, c, d]}. The first transform produces |G| = 23, the second |G| = 24, and so M =
{[translate, 4]} is chosen, since it allows the existing production rule r1 = a, b, c, d to match
the substring e, f, g, h within G, for two occurrences – simply reversing r1 only allows a single
occurence to be additionally matched. The encoding G = r1, r1, d, c, b, a, r1, t1, r1, t1, h, g, f, e,
!, translate, 4, $ results fromparsing, with the symbol ! indicating the start of transform encod-
ing.

3. The remaining candidate consitituent is now tested, and C ∪ {[e, f, g, h]} is evaluated. By in-
cluding the candidate, encoding length is increased to |G| = 24, since the modification of r1
can now be stored as a new rule r2 = r1, t1, saving two symbols, but two non-terminals for r2
must be added along with a terminator for the rule, resulting in a loss of three symbols, giving
|Gcurr| = |Gprev| + 1 overall. Since G = r1, r1, d, c, b, a, r2, r2, h, g, f, e, $, a, b, c, d, $, r1, t1,
!, translate, 4$ is a larger encoding, [e, f, g, h] is rejected for inclusion in C.

4. The remaining transform is tested next, and M ∪ {[reverse]} is evaluated. Assuming com-
pound modifiers are allowed, the new modification allows the expansion of both the produc-
tion rule a, b, c, d and its modified version e, f, g, h to match both reversed instances of those
terms within G, resulting in a reduced |G| = 22 with the encoding G = r1, r1, r1, t2, r1, t1, r1,
t1, r1, t2, t1, $, a, b, c, d, !, translate, 4, $, reverse, $. The transform is retained inM.

5. The remaining candidate is now tested, and C∪ {[e, f, g, h]} is evaluated. It is now possible to
replace all occurrences of the candidate in G with instances of a new production rule r2, and
assign it to be amodified version of r1, as r2 = r1, t1. This saves 3 symbols by removing the need
to follow r1 with t1 in three instances, but adds anoverheadof 3 symbols in storing r2, producing
an encoding G = r1, r1, r1, t2, r2, r2, r2, t2, $, a, b, c, d, $, r1, t1, !, translate, 4, $, reverse, $ with
length |G| = 22. Since the candidate does not reduce |G|, it is rejected for inclusion in C.

6. Since all candidates have been tested and no smaller |G| could be found, members of C =
{[a, b, c, d]} and M = {[translate, 4], [reverse]} are now removed in turn, to discover which,
if any, are preventing the generationof a smaller encoding. Removing the single candidate from
C also removes the possibility of using any transform inM, and is not constructive. Choosing
M = M − {[translate, 4]} means r1 can no longer match any substring based on e, f, g, h,
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and increases encoding length to |G| = 24. ChoosingM = M − {[reverse]}means reversed
versions of either candidate cannot be represented by any rule since they occur only once in the
grammar, and this increases encoding length to |G| = 23.

7. Stepwise addition or removal of any single element given C = {[a, b, c, d]},M = {[translate,
4], [reverse]} has proven unsuccessful, and so the algorithm terminates, and the encodingG =
r1, r1, r1, t2, r1, t1, r1, t1, r1, t2, t1, $, a, b, c, d, !, translate, 4, $, reverse, $ is output with |G| = 22.

Unfortunately, a smaller encoding does exist: if the two substrings a, b, c, d and e, f, g, h are seen
as separate entities, which exist with both repeated and reversed instances within the input, it is pos-
sible to generate an encoding G = r1, r1, r1, t1, r2, r2, r2, t1, $, a, b, c, d, $, e, f, g, h, !,R, $ with length
|G| = 21. This combination for C,M could not be reached in a stepwise fashion because the trans-
form translate, 4 offered an improvement when added, but its presence in the encoding prevented the
constituent e, f, g, h from reducing |G|, and so the latter was not available when the optimal transform
reversewas later considered.

Although overly simplistic, this example helps to demonstrate why it is not possible to reach a
globally-optimal state when treating constituents and rulemodifiers as entirely separate entities which
may be independently selected. Instead, given a set of constituentsC, there exists an optimal selection
of modifiersM composed only of transforms which minimise |G|. As such, if Cmin represents a set of
constituents which produce a minimal encoding given a set of candidate constituents Ccand, it is not
possible to derive Mmin from Mcand without first knowing the set Cmin to which the modifications
will apply, or vice versa – no direct relationship exists between a transform and a constituent, but a set
of ideal transforms is entirely dependent upon its associated set of constituents, just as a set of ideal
constituents is entirely dependent upon its associated set of transforms.

A stepwise approach to solving this problem is clearly not optimal. Instead, an entirely separate
ZZ traversal of the constituent space may be made for each move ZZ makes between nodes of the
transform space. Although this clearly introduces greater computational complexity to the attempt
tominimise |G|, the result is consideration of all combinations ofC returned by a local ZZ search, and
the possibility ofmeasuring their effect for a given transform combinationM, thusminimising |G| by
manipulatingC givenM. In this manner,C is optimised for eachMcurr considered, and both searches
of the lattice are conducted independently to produce locally optimal results.

The following example provides a simplified demonstration of the approach outlined above, be-
ginning again withG = a, b, c, d, a, b, c, d, d, c, b, a, e, f, g, h, e, f, g, h, h, g, f, e, $:

1. To begin with, C = ∅ and M = ∅. For each candidate constituent ci, the constituent set
C ∪ ci is evaluated, resulting in two grammars of identical encoding length |G| = 24, since
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both candidates replace exactly 8 symbols each, and require 2 non-terminals and a production
rule of encoded length 5. The first candidate which reduces |G| is retained, resulting in C =
{[a, b, c, d]}.

2. Next, any remaining constituents are tested, resulting in an evaluation being made for C ∪
{[e, f, g, h, ]}. As with the first constituent, a reduction of 1 symbol is possible, and so with
no remaining candidates to consider an encoding of length |G| = 23 is returned. No fur-
ther improvement is possible through removal of any element of C, and so the encoding
G = r1, r1, d, c, b, a, r2, r2, h, g, f, e, $, a, b, c, d, $, e, f, g, h, $ is recorded as the most compact
encoding seen givenM = ∅. This encoding forms the baseline against which all models with
M ̸= ∅will be compared.

3. A vertical movement is now made through the lattice of transforms, producing M =
{[translate, 4]}. Starting again with C = ∅, each candidate constituent ci is added to C, re-
sulting in two encodings of lengths |G| = 23 and |G| = 27 for the candidates a, b, c, d and
e, f, g, h respectively, since the modifier in M can only transform the former candidate string
into the latter. C = {[a, b, c, d]} is therefore retained.

4. The remaining constituents are tested, resulting in an evaluation ofC∪{[e, f, g, h]}. This gen-
erates an encoding of length |G| = 24, since the transform translate, 4 can be used to shorten
the encoding of the candidate production rule. With no further constituents to test in this
simple example, and no improvement possible through the removal of any element of C, the
encoding G = r1, r1, d, c, b, a, r2, r2, h, g, f, e, $, a, b, c, d, $, r1, t1, !, translate, 4, $ is recorded
as the most compact encoding seen givenM = {[translate, 4]}.

5. A further candidate to be considered for initial addition to M remains, and so the set of rule
modifiers becomes M = {[reverse]}. Starting once more with C = ∅, each candidate con-
stituent is added individually to C, producing two encodings of identical length |G| = 24,
since the transform reverse applies equally to both constituents. The first candidate which re-
duces |G| is retained, resulting in C = {[a, b, c, d]}.

6. The remaining constituents are now tested, resulting in the evaluation of C ∪ {[e, f, g, h]}.
This generates the ideal encoding of length |G| = 21, and, since there are no more candidates
to consider and no removal of elements of C can generate a smaller model, the encoding G =
r1, r1, r1, t1, r2, r2, r2, t1, $, a, b, c, d, $, e, f, g, h, !, reverse, $ is recorded as themost compact seen
givenM = {[reverse]}.

7. Having exhaustively tested all single-transform additions toM, it is nowpossible to select a can-
didate for retention as the search of the transform space continues. There are two possibilities,
with encodings of length |G| = 23 and |G| = 21 for the first and second transforms respec-
tively. As such, the first is retained, and the search continues from the nodeM = {[reverse]}
in the lattice.

125



8. A vertical movement can now bemade through transform space, producingM = {[translate,
4], [reverse]}. Starting with C = ∅, each candidate is considered for addition to C, resulting
in encodings of length |G| = 22 and |G| = 27 for the two respective candidates. The first
addition is retained, and so the set of constituents becomes C = {[a, b, c, d]}.

9. The remaining constituents are tested oncemore, producing an evaluation forC∪{[e, f, g, h]},
for which an encoding of length |G| = 22 results. There are no other candidates to consider
and no improvement to be made through removal of elements in C, and since this encoding
is not more compact than any previously encountered with the modifier set under test, the en-
coding G = r1, r1, r1, t1, r1, t2, r1, t2, r1, t2, t1, $, a, b, c, d, !, translate, 4, $, reverse, $ is recorded
as the most compact encoding seen givenM = {[translate, 4], [reverse]}.

10. Having exhaustively tested all single-transform additions toM = {[reverse]}, and discovered
an encoding of length |G| = 22 which is not more compact than that observed for M =
{[reverse]} alone, any additions to M are rejected. Only the removal of individual modifiers
may offer any opportunity for a reduced |G|. In this simple example, both possibilities –M =
{[translate, 4]} andM = {[reverse]} – have already been observed, and cannot further refine
the model.

11. Finally, with no movement possible in the C orM lattices which further reduces |G|, traversal
ends. The ideal encoding G = r1, r1, r1, t1, r2, r2, r2, t1, $, a, b, c, d, $, e, f, g, h, !, reverse, $ of
length |G| = 21 is output.

Exploration of the smallest grammar which may be constructed given any specific combination
of transforms M, alongside a ZZ traversal of the space of those combinations, have prevented any
constituent combination from blocking the use of a particular transform. Thus, separation of the
optimisation process into individual searches of constituent and transform space enables the discovery
of an encoding which is locally optimal in both domains combined.

6.5.2 Reduction of Complexity using Heuristics

Without optimisation, traversing the lattice of all possible transform combinations for each chosen
combination of constituents is an overly complex solution. Instead, heuristics may be employed to
reduce the total number of nodes evaluated in both the transform and constituent dimensions.

Early Stopping
A ZZ traversal through the lattice of constituents is characterised by a decrease in encoding size

for each node selected from the pool of neighbouring candidates. For a given node x, representing a
combination of constituents C, all neighbours which add one constituent to C will be evaluated in a
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decending step, and all neighbours which remove one constituent will be evaluated in an ascending
step. The size of the encoding for each, |G|, will vary, and three specific conditions are probable:

1. The range of values will be< |G| to> |G|,

2. Variance within the values will be small relative to |G| for the source node, and

3. There will be at least one value< |G|.

When condition (3) no longer occurs, the traversal is complete, and the locally smallest |G| has
been found. During this traversal, a set of nodes n1,1, n1,2 . . . ni,j ∈ N is explored, each representing a
different combination of C. Since each transform is likely to apply to several constituents – it could
not reduce |G| unless this were true, as shown earlier – it is also probable that it will be leveraged early
on in the ZZ traversal through C and its usefulness will be visible by comparing values for |G| during
traversals with and without the inclusion of t ∈ M. Thus, a historyH of |G|∀N whereM = ∅may
be kept, and compared to |G|∀NwhereM ̸= ∅ to identify where the continued search ofC is unlikely
to offer an improved |G|.

Naturally, this approach is not exhaustive; if a transformcombinationM applies to a subset s ⊂ C,
and s does not provide a gain greater thanC\s, then swill not be selected during the traversal ofCuntil
after C \ s. Therefore, comparison of values for |G| during the search would need to continue until
c ∈ s is reached, and search complexity would not be reduced greatly, if at all. Equally, if s provides
greater gain than C \ s, it is possible to quickly detect that M allows for a smaller |G| within N, and
that traversal should continue as there is a possibility of finding a locally smaller grammar given the
current M. With brief experimentation, it is possible to see that there is no single optimal value for
h = |H| for all inputs, but that a reasonable approximation is h = ⌈0.5|H(full)|⌉, and this may be
reduced where appropriate.

To achieve this, for each input a ZZ traversal with M = ∅ is performed, beginning with C = ∅
and ending with C ̸= ∅, and the values of |G| for each selected node recorded in H, until |H| = h.
Following this, a step is taken in transform space, adding t ∪M, followed by another traversal of the
constituent space. When h steps have been taken, each a local minimisation q = |G|, the valueH[h] is
queried; if q >= H[h], the constituent space search is terminated, and q taken as the resulting |G| for
that node in transform space. Since q >= H[end], it will not be selected as a local minimum of |G|,
and traversal will continue through the transform space in search of a more effective combination of
M and C.

If grammars are being constructed for a number of similar inputs, it is possible to begin with a
high value forh and reduce it by a convex function such as gradient descent, to arrive at an approximate
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balance betweenminimal traversal steps of the constituent space andmaximal use of transform in each
M of the transform space. This may result in a more effective h, but adds greater overhead initially as
h ≈ |H| until the descent reaches an optimal value.

Elimination of Non-Useful Transforms
During the search for substrings b in the input for which b = f(Tany, a) can apply, a great many

transforms T1,T2 . . .Tn are likely to be identified, where n≫ 1. If a transform T applies only to one
instance of a substring b, it is not useful; as discussed previously, the cost of including and referencing
TwithinGmandates that it apply to> 1 rule before it can offer any reduction in |G|. Such transforms
may be immediately discarded fromM before the search for optimal C andM combinations begins.

It is also possible to identify and discard transforms which apply to too few substrings to present
any gain in the best case. Given a transformTwith length |T|, and a set of associated substrings u ⊂ S
with quantity |u| and whose lengths are length(ui), the maximum gain which is possible given T is
g =

∑|u|
i=1 length(ui) − 2|u| − |T| + 1. Therefore, the condition g ≥ 1 must be satisfied to make it

worthwhile to consider T. Where g < 1, Tmay simply be omitted from the transform space.

Limiting the number of Candidate Transforms
A further reduction to the transform search space may be made by retaining only the T with the

highest probability of providing a reduction in |G|. The amount of gain possible in the best case can
be used to roughly approximate this figure, and the transform space limited to an arbitrary number k
of T. Once again, g =

∑|u|
i=1 length(ui) − 2|u| − |T| + 1 can be calculated to produce a list of gains

for allT, which in turn may be sorted in descending order, and only the top k entries retained. In this
manner, the transform space can be constrained whilst approximately minimising the loss incurred
from excluding any Twhich may otherwise have provided a reduction in |G|.

Equally, it is possible to seek transforms only for a specific set of lengths lmin, lmax for term a, such
that lmin ≤ |a| ≥ lmax, where it is reasonable to believe that the range l contains useful transforms
for a ⇒ b. A naïve search for a, b pairs here is reduced in complexity from O((nl)2)∀l = |a| where
n is the length of the string a = S[i, j] with 0 ≤ i, j ≤ |S|, to O((nl)2) where lmin > i, j > lmax and
O(n2l) where lmin ≤ i, j ≤ lmax. Since every search for b = f(T, a) could produce a potential match,
and therefore require consideration during the ZZ traversals, computational complexity of grammar
construction is also similarly reduced.
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6.6 Examples

Appendix A presents two grammar encodings for Bach’s FugueNo. 20 fromWTC-II, the first includ-
ing no rule modification, the second with modification enabled. A worked example of the construc-
tion of a transform-enabled grammar, for the chromatic pitch values of “NLB073516_01” from the
Meertens Tune Collections (Meertens Instituut, 2018), may be seen in Appendix B.

6.7 Applications

Awide variety of applications exist for a grammar constructorwhich is able to generate smallermodels,
andwhichmay segment not only by repetition but also by similarity, based uponmodifications which
may be customised to suit the nature of the input or task.

The method is broadly useful for general compression where a grammar-based compressor is de-
sirable. Given the off-line nature of this class of algorithm, and since construction is computationally
complex but recovery of the original input via model expansion is linear to the input’s length, it is
best suited for situations where compression is performed once but retrieval may occur frequently,
and structure present within the input data is such that it may be leveraged to reduce a model’s size.
Since the addition of rule modification to a grammar’s encoding increases substring similarity, the set
of inputs to which grammar-based compression can apply in this scenario also increases, along with
reducing the storage space required for each model.

Any task for which a straight-line grammar is usefulmay conceivably benefit from the application
of grammars which allow rule modification. For example, the classification of digital musical scores
into contextual groups such as composer, genre or family (van Kranenburg et al., 2016) may be possi-
ble with increased accuracy where, following the Minimum Description Length principle (Rissanen,
1978), a smaller model better represents the characteristics of the music and allows computation of a
more accurate relative position within the contextual space. Equally, any grammar which is able to
delineate segments with common domain-based relationships, for example musical devices such as in-
version and retrograde, is better equipped to generate segmentations which are closer in structure to
those an expert musicologist might produce (Bruhn, 1993). Where the structure of a grammar such as
this is a better representation of a composer’s intended structure, that grammarmay provemore useful
in retrieving themes and sections as a subtask of musical analysis (Meredith, David, 2013), particularly
where those sections do not exactly repeat witin the piece.

Generally, any application to which a standard grammar containing exactly expanding rules may
applymay benefit from the addition of rulemodification, if the data being processed contains relevant
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patterns forwhich suitable transform can be devised, and discovery only of exactly-repeating segments
is not the objective.

6.8 Summary

This chapter presented a novel approach to the construction of grammars containing production rules
whichmaybemodified during expansion, so theymay generate outputswhich are similar but not iden-
tical to their encoded term. This enables the creation of smaller grammars where substrings which ap-
proximately or “flexibly”match each other are present within the input string, by increasing substring
similarity. The primary contributions of the presented method are the encoding of modifications
which are applied to one or more production rules within the grammar itself, and the separation of
the search space of constituent and modifier combinations into two individual domains. As demon-
strated in Section 6.6, ZZ (Carrascosa et al., 2011) may be used to control the traversal of both search
spaces, and a locally optimal constituent combination C selected for the best seen modifier combi-
nation M. The addition of a second search space increases complexity approximately by a power of
2, but heuristics such as early stopping, consideration only of modifications with a high probability
of reducing the overall encoding length, and limiting the number of available modifiers, can help to
reduce construction time. Nonetheless, further reducing computational complexity would be of ben-
efit; Chapter 8 examines a technique by which this can be achieved.

The usefulness of the method, and how it functions given real-world data, may be best examined
empirically. Chapter 7 explores its performance, and offers an evaluation of the properties of gram-
mars which allow rule modification to occur, in particular the degree to which encoding length can be
reduced.

130



Our empirical evaluation shows that we are able to find
smaller models than the current best approximations to
the Smallest Grammar Problem on standard benchmarks,
and that the inferred rules capture much better the syntac-
tic structure of natural language.

Payam Siyari & Matthias Gallé, 2017

7
Grammars allowing Rule Modification:

Experiments & Results

In this chapter, the novel method of constructing grammars presented in Chapter 6 is empirically
evaluated on three specific tasks: generation of compressed models from musical data; identification
of musicologically-significant segments as defined by a MIREX Discovery of Repeated Themes and
Sections task (Collins, 2016); and classification of folk music into “tune family” (van Kranenburg et
al., 2016). The principal contribution of this chapter is a demonstration that the method is able to
generate smaller encodings than ZZ (Carrascosa et al., 2011), despite the applied heuristics limiting the
search space of rulemodifier combinationswhich is explored during grammar construction, andproof
that this reduction in model size is able to improve normalised compression distances to produce an
increase in classification accuracy, supporting the hypothesis that smaller grammars are more appro-
priate models for this purpose. An exploration of the method shows a strong increase in construction
complexity occurs as a result of the addition searches required to optimise the constituent combina-
tionC given each combination of rulemodifiersM, and smallermodels are generated for aminority of
inputs. However, these models are able to improve task performance, and transforms chosen during
the construction process are notably relevant to the musical context of the input they are applied to.

Anovel aspect of this chapter is the evaluationof the performance of a grammar-based compressor
allowing rule modification on a large corpus of musical works. Without a substantial population of
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results it is difficult, or even impossible, to define orunderstand the response of themethod to a specific
type of input. These experiments are designed to provide an indication of the suitability of grammars
which feature rule modifications for use on musical data, and the level of performance which can be
expected of the method, as a foundation upon which the improvements presented in Chapter 8, and
future developments, can be based.

7.1 Introduction

Although grammars which allow for modifications to be applied to their rules during expansion ap-
pear interesting, their utility must be demonstrated through study and experimentation. Grammars
have been shown to be useful in many applications, including generating compressed representations
(Carrascosa et al., 2011), modelling musical structure (Giraud & Staworko, 2015), and seeking a hier-
archy within DNA strings (Gallé, 2011). A key hypothesis in this study is that a representative seg-
mentation of any intelligently generated or naturally occuring data sequence is very likely to contain
related segments which do not exactly repeat, and are instead based upon transformed versions of
themselves, potentially blending and overlapping with each other. Where this is true, the smallest
model of the data will include such transformations, either directly within the encoding or by inher-
itance of existing model attributes. Although the type of grammar described in Chapter 6 does not
allow rules to transition or overlap, segments in the data which do not make use of such features may
be well represented by its transforming rules, providing the transformations considered correspond
to those applied during creation of the sequence. As such, a partial validation of the hypothesis may
be reached by demonstrating that such a grammar more accurately models the data, when compared
to a straight-line grammar composed only of exactly-repeating segments.

In this chapter, several applicationswhich are relevant to both exact and rule-modifying grammars
are explored, and the performance of a standard grammar-constructionmethodwhich is only capable
of modelling exactly-matching rules is compared to the same method, but modified to incorporate
the ability to model rules which may be transformed, resulting in the production of grammars which
allow themodificationof their rules during expansion, as described inChapter 6. Thepurpose of these
experiments is to evaluate the effectiveness of grammarswhich include rulemodifiers inmodelling real-
world data, given a limited pool of potential transforms, with respect to grammars containing fixed
rules only. This evaluation is intended as a contribution to current knowledge, demonstrating the
ability of the novel and extensible technique presented in Chapter 6 to isolate appropriate, flexible
patterns across a large collection ofmusical scores, and showing that this achievement often allows the
production of smaller models which, in turn, can offer an improvement in performance on real-world
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tasks against which such grammars can be leveraged.

7.2 Experiment 1: Grammars as Compressed Models

Where the aim of compressing an input is to produce a compact encoding of that input, encoding
length may be considered a reasonable measure of effectiveness. A compressor possesses characteris-
tics arising from its algorithms, which often cause it to be more effective for a specific type of input
data. For example, a dictionary-based compressormay bemore effective on linguistic datawheremany
repeating symbol groups are found, and less effective on a time series composed of real values. A lim-
ited ability to generalise may be seen where results for differing input types are compared; Siyari and
Gallé’s flexiblematching approach did not generate smallermodels thanGA-MMAS given a corpus of
DNAstrings except in one instance, butwasmore effective for themajority of pieces in theCanterbury
Corpus. The transforms discussed in Chapter 6 are designed with the intention of increasing equiva-
lence within symbolic music, and so this experiment will concentrate on the scheme’s effectiveness for
musical data.

7.2.1 Purpose

The purpose of this experiment is to test the hypothesis that increasing substring similarity can enable
more compact grammars to be generated, and that transforms of the type described in 6 are able to in-
crease equivalence given strings of symbolic music. This idea relates to a hypothesis stated in Chapter
5 regarding the possibility of using grammars to identifymusically significant structure in a score, inso-
far as amore compactmodel should bemore capable of correctly identifying such structure, following
the Minimum Description Length principle – this ability will be explored in the further experiments
detailed in this chapter. Additionally, the ability to generate more compact models is an advantage
where the general compression of musical data is intended, and grammars are chosen as the model
type.

It is possible to explore the various attributes of a grammar which includes rule modifications
by examining the models such grammar-based compressors generate. For example, there may be an
imbalance in the effectiveness of different transform types, resulting in a tendency of the compressor
to select only specific instances of each type, and this can be seen by looking at the distribution of
transforms chosen over a large number of inputs. It is also possible that a grammar which does not
include rule modifications may be more compact where there are few instances of the use of each
transform type, limiting the ability of transforms to reduce encoding length. This experiment aims
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to examine the attributes of grammars which includes rule modifications, in addition to the encoding
lengths which they produce.

7.2.2 Method

This experiment is conducted on pieces from the corpus of musical scores introduced in Section 3.6.
For each piece, an input string S is generated from the chromatic pitch vales of each voice present
within the input, with these sequences concatenated and separated by unique terminator symbols. S is
then passed to two grammar-based compressors, the first exactly following theZZ algorithmdescribed
in Chapter 4 and featuring no rule modifiers, the second also performing a traversal of an additional
lattice of transforms, and able to generate grammars which include rule modification. The length of
the input, |S|, is recorded for each piece, as is the output encoding size for the grammars generated by
both compressors, and their construction times. The encodings themselves are also recorded, so that
the types and attributes of any encoded transforms may be extracted and analysed.

As discussed in Chapter 5, the complexity of generating a compact grammar can lead to pro-
hibitively high construction times, and this challenge is strongly magnified where an additional di-
mension of rule modifications must also be traversed. In order to allow as many inputs as possible
to be evaluated in the time available, pieces are processed in order of increasing approximate complex-
ity, defined in Chapter 3 as the run-times required to produce standard grammars for each using ZZ.
Given that there is a direct correlation between this definition of complexity and piece length, any
bias which might be introduced by failing to process the largest pieces should be minimal, providing
a reasonably large sample is processed, and there is no indication from the results of a trend towards a
decreased effectiveness for grammars which allow rule modification as input size increases. In theory,
such bias should not exist; the addition of useful transforms should increase the number of substrings
which can provide compression, creating an effect similar to providing ZZ with an input which con-
tains greater exact repetition: the models produced using grammars which allow rule modification
should be smaller than their ZZ counterparts, and the effectiveness of the transforms chosen may be
observed by their inclusion in such models.

7.2.3 Results

Of the 7928 pieces in the corpus, it was possible to process 5521 in the time available, thus covering a
large proportionof the available data.Nonetheless, the omissionof 2407pieces altered the distribution
of attributes, primarily resulting in the inclusion of approximately only half of scores from the corpus
belonging to the classical genre, and allowing folk pieces to become the dominant group for the ex-
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Composer Proportion
Unknown 42%

Bach, Johann Sebastian 15%
da Palestrina, Giovanni Pierluigi 9%

Others (<1% each) 3%
Haydn, Joseph <1%

Corelli, Arcangelo <1%
Mozart, Wolfgang Amadeus <1%

Beethoven, Ludwig van <1%
Vivaldi, Antonio <1%

Table 7.1: Distribuধon of the 5521 pieces processed during this experiment by composer, relaধve to the enধre cor-
pus; three primary composers conধnue to form the majority of the inputs, although the number of pieces by all
named composers is strongly reduced overall.

periment. Tables 7.1 – 7.3 show the altered distributions as proportions of pieces relative to the entire
corpus (as shown originally in Tables 3.2 – 3.4). Aside from the strong reduction overall in classical
pieces, some notable changes are the omission of all but four pieces by Haydn, the loss of approxi-
mately 30% and 52% of pieces sourced fromMusic21 andKernScores respectively, and the retention of
over 87% of pieces from the medieval period.

For the majority of inputs, no benefit arose from the addition of rule modifiers given the chosen
constraints, resulting in an equal model size being produced by bothmethods for 75.46% of all inputs
(4066 of 5521 grammars). No model including rule modifiers had an encoding size in excess of its
fixed-rule counterpart. Figure 7.1 shows that there is a general trend to smaller model size ratios for
grammars which allow rule modification, compared to those which do not. However, it is important
to note that each curve’s values are sorted independently, and any single smaller model size results
in a continuous offset on the figure. Representation of the figure in this manner is necessary due to
the high piecewise variation in encoding lengths observed during the experiment, resulting in a chaotic
sequence of values in one array used to plot the figure if it is sorted according to the indices of the other,
but independently sorting the arrays in this manner allows for observation of an over-arching trend
across the population; generally, for eachmodelwhich included rulemodifications, the corresponding
model without rule modifications was larger in encoding length. Despite the large number of models
which did not benefit from rule modification, a reduction in encoding size for 24.54% of all models
remains a significant amount, and it is possible with different constraints or additional, more relevant
transforms available that a greater proportion of all inputs may generate smaller models.

Figure 7.2 charts grammar construction times for bothmethods, with values sorted independently
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Period Proportion
Undefined 43%
Baroque 15%

Renaissance 9%
Medieval 1%
Classical <1%
Romantic <1%
Georgian <1%
Tudor <1%

Table 7.2: Distribuধon of the 5521 pieces processed during this experiment by period, relaধve to the enধre corpus;
the three largest conধnue to be Baroque, Renaissance, and “undefined” (where creaধon dates were unavailable), but
the number of pieces is almost halved for the Baroque and Renaissance periods.

Genre Proportion
Folk 41%

Classical 27%
Undefined 1%

Jazz <1%

Table 7.3: Distribuধon of the 5521 pieces processed during this experiment by genre, relaধve to the enধre corpus;
the majority of scores are now folk pieces, although just under half of all classical pieces from the corpus remain.
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Figure 7.1: A comparison of compression raধos for the target pieces, for both standard grammars and those which
allow rule modificaধon. Raধos are sorted independently for each method, and presented as a response curve which
is relaধve to the size of the input which the model represents.
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Figure 7.2: A comparison of grammar construcধon ধmes in seconds for the target pieces, for both standard gram-
mars and those which allow rule modificaধon. Times are sorted independently for each method, and presented as a
response curve over all pieces tested.

and plotted against a logarithmic scale to provide a comparison of run times in practice. For both
traces, data input length undergoes an overall increase, with the shortest pieces represented by leftmost
data points, and the longest by those on the right. As the figure demonstrates, there is an exponen-
tial increase in construction time when grammars are built using rule modifiers, and this increase is
proportional to the construction time for standard grammars.

Difference in generated model sizes between the two methods is generally consistent; standard
deviation is within 8.78 symbols, with a maximum difference of 103 symbols across all pieces tested.
For models including rule modifiers which offered an improvement over fixed-rule models, standard
deviation is within 12.0, with an average of less than 15.0. The most compressed model was less than
0.279 times the size of the input, and this was not improved by the addition of rule modifiers – the in-
put was amongst the largest in size at 266 symbols (the maximum tested had a length of 879 symbols).
The most compressed model which benefitted from the addition of rule modifiers was less than 0.653
times the size of the input, which was of length 407 – this piece was amongst the top 7% of largest
inputs tested. From the set of all models whose encoding length was reduced by the addition of rule
modifiers, the average increase in compression was > 5.47%, with a minimum of > 0.14%, a maxi-
mum of> 22.6%, and a standard deviation of> 3.18%. Figure 7.3 shows the range of improvements
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Figure 7.3: Reducধon in model sizes observed when choosing grammars which allow rule modificaধon over those
which do not, in comparison with the lengths of input tested. All y-axis values are in symbols.

rule modifiers offer over standard grammars in comparison with the range of input sizes processed.
Where the addition of rule modifiers was able to offer a reduction in encoding size, compression

ratios ranged between 0.42 – 0.963 as may be seen in Figure 7.4. For models which could not be
improved, ratios ranged between 0.2782 – 1.25, with all models whose ratios are greater than 1.0 being
composed of S$, where S is the input string and $ is the encoding terminator symbol. Note that ratios
converge at 0.42, suggesting themost compressive pieces in the corpusmay be composed of substrings
which strongly and exactly repeat.

Figure 7.5 shows the distribution of the transforms chosen, from all 802 grammars whose encod-
ings included rule modifications. From these, 63 unique transforms were used, with 32 individually
appearing in only one model. For clarity, the figure only shows the distribution of transforms which
appeared in at least 5 grammars; the remainder included transforms which deleted rule elements, sub-
stituted them, translated them by a specific amount, reflected them around the axis of a given value,
or – in 2 instances only – combined one of these operations with an initial reversal of the sequence
generated by the rule.
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Figure 7.4: Compression raধos for the pieces for which the addiধon of rule modifiers offered smaller models. Values
are sorted by raধo in ascending order, and presented as a response curve which is relaধve to the size of the input
which the model represents.

7.2.4 Analysis

Given that themajority of inputs did not benefit from the addition of rulemodifiers to theirmodels, it
may reasonably suggested that either no further reduction beyond a standard grammar is possible for
these inputs, or that the constraints applied during modifier-enabled grammar construction were too
narrow. From examination of the grammar-based segmentations shown in Chapter 5, Section 5.6, it is
clear evenwith very little knowledge ofmusic analysis that further equivalence exists between segments
– for example, the Subject sections of voice 1 in Bach’sWTC I FugueNo. 2, figure 5.10 – and that these
are likely to produce a shorter explanation of the piece than if exact equivalence is used alone. This
suggests it is probable that the addition of further types of modification, perhaps based specifically on
analytical techniques from the musical domain, could allowmore compact grammars to be generated
and thus increase the proportion of pieces in the corpus which would benefit from rule modifica-
tion. Equally, inputs with a different context may benefit from other, specifically-targeted transforms.
However, the experiment itself does not provide anything beyond supposition to this theory. It does,
however, prove that rule modification is both appropriate and useful to a large minority of musical
inputs, even when heavily constrained and consisting only of quite simplistic transforms.
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Construction times for grammarswhich include rulemodification are prohibitive – the additional
dimension ofmodifiers whichmust be traversed causes an exponential increase in computational com-
plexity, proportional to the size of the set of transforms which are to be tested for potential inclusion.
This increase is especially noticable for larger inputs, but does affect all input lengths. The greater
the number of possible transforms whichmust be considered, the greater the increase in construction
complexity, but equally the greater the potential for leveraging a transform to reduce the size of the
model constructed. This clearly demonstrates, for this version of the algorithm, that grammars which
allow rule modification are appropriate for offline applications where generation of a smaller model is
desired, for compression or analytical purposes, but fast construction times are not required. Whether
it is possible to limit the additional complexity caused by the introduction of transforms through dis-
covery of an alternative construction algorithm, or whether this complexity is inherent as one moves
closer to the theoretical minimum possible encoding and with diminishing returns, is, unfortunately,
a question which is beyond the scope of this study.

In compression terms, the benefit of allowing rule modification is not great at a reduction of over
5% average on the tested inputs. However, it is not minimal, and at an average encoding side over 8
symbols less than the equivalent standard grammar encoding, it is reasonable to suggest that theremay
be a connection between the context of the segments formed by production rules and the number of
symbols saved. For example, it is common to find a group of quavers fully occupying a bar with a
4/4 time signature, and a reduction of 8 symbols in a musical encoding could signify anything from
the addition of single notes to existing rules, to identification of an entirely new multi-note segment,
for which one or more transforms have enabled equivalence. Given that the transform itself incurs a
cost within the grammar’s encoding, more than 8 notes must be leveraged to gain such a reduction,
suggesting the segments involved in the reduction are likely to have some contextual significance in
connectionwith the transform types involved (and are notmerely random,minimal gainsmade possi-
ble by the transform in general). In the best case, a reduction in encoding size of over 22%was possible,
for a model of length 105 symbols, with an original input length of 181 symbols. Without the use of
rule modification, a grammar of length 146 was generated, showing a total saving of 41 symbols was
possible for this particular example. These observations show grammars which include transforms
are certainly useful in generating models of reduced size, and these models may contain rules with a
greater contextual relevance, although this experiment alone does not itself prove that any such rele-
vance exists.

Transform Type
It is of particular interest that the context of the transform types most often chosen for inclusion
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in the grammars which include rule modification is, arguably, strongly musical; if this characteristic
were not present, it might highlight a failure of the method to discover structure known to be present
within the data being processed, which is likely of great significance to a concise explanation of its con-
figuration. As shown in Figure 7.5, themost common transforms occurred in approximately 10% - 25%
of all such grammars, and were often complementary, for example representing translations of both
±12 semitones. Themost popular transform, a full reversal of the production rule’s sequence, may be
considered a generalised operation. Within a musical score, however, it may represent the latter half
of a sequence which ascends and then descends, and may equally apply to a motif which passes into
a harmonic passage, and is later used in the opposite temporal order to close it.It is also important to
note that a reversal carries a cost of only 1 symbol (plus terminator) for inclusion as amodifier, less than
all other chosen transforms, and this causes a bias towards its selection during grammar construction.
A more concrete statement may be made regarding the following six transforms: three individual op-
erations are represented, and the group contains inverted versions of each. These transforms take the
sequence of values a production rule generates, and numerically translates them, shifting their value
by the amounts given, in this case±12,±7, and±5. From amusical perspective, these values are highly
significant, given the use of chromatic pitch values in the input data. The±12 represents an increase or
decrease in pitch of exactly one octave. A shift of+7 or−5 represents a raise or drop in pitch from the
tonic note by a perfect fifth – an extremely commonmelodic movement, as may be seen in the perfect
cadence. Similarly, a change of−7 or+5 results in a step of a fourth from the tonic note. Given that
steps of fourths and fifths are very often foundwithin classical music, of which the inputs in this exper-
iment are primarily formed, the frequent use of such transforms to generate more compact encodings
is unsurprising, and points towards correct identification of several underlying pitch relationships by
the compressing program.

Examination of the figure’s remaining transforms yields similar relationships – a shift of ±19 is
likely to represent compound translations, of either an increase of an octave plus a perfect fifth, or a
decrease of an octave plus a fourth, from a tonic pitch. Limited usewas alsomade of±2 semitones; if it
is assumed that these transforms are applied to the tonic, the resulting pitchwould be either a second –
a common interval in an ascending harmonic progression – or a seventh, whichmay be found in some
descending patterns and phrases. A translation of+24 is also present; this may have allowed produc-
tion rules which represent patterns primarily found on a bass clef to also produce identical patterns
on a treble clef. The remainder of the transforms relate to removal of pattern elements, for individual
indices of the second, fifth, sixth and seventh notes in a sequence. Without close examination of the
patterns which these transforms are applied to it is impossible to provide a definite description of the
context and purpose of the operations performed, but it is certainly reasonable to assume that a less
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complex or cut-down version of a pattern may appear elsewhere within a musical score. For example,
a basic progression ofC, E, Gmay later appear in a shorter form asC, G, where the note at the second
index is removed, and such variation may be seen in a great many works. It is perhaps most likely that
the positions 2, 5, 6 and 7 refer commonly to the last note within a pattern, allowing other instances
whose final note is either changed or absent to remain a match.

Overall, the experiment shows that a small group of transformsweremost commonly chosen, and
given their nature it is highly probable that their relevance in the context of the inputs’ domain is re-
sponsible for their usefulness in generating compact models. The fact that their presence was able to
reduce encoding length supports the hypothesis that domain-based transforms are relevant to the pro-
duction of smaller grammars, and that the construction program was able to select them specifically
from the wide range of available modifications demonstrates the ability of a compressor to discrimi-
nate between useful and non-useful operations. Certainly, the construction of smaller grammars is on
occasion more successful where such transforms are considered for inclusion within their encoding.

7.3 Experiment 2: MIREX2016DiscoveryofRepeatedThemes&Sectionstask

As previously discussed, the MIREXDiscovery of Repeated Themes and Sections task explores the ef-
fectiveness of an algorithm to identify patterns selected by experts as musicologically significant from
within a small collection of musical scores. The Johannes Kepler University Patterns Test Database
(Johannes Kepler University, 2013) contains the necessary data, segmentations and evaluation code.
In this experiment, grammars which include rule modification are applied to the task, and their per-
formance compared to other existing methods.

7.3.1 Purpose

The primary purpose of this experiment is to test the hypothesis that a grammar construction algo-
rithm which is able to apply compositionally-relevant transforms between segments is more likely to
correctly identify patterns in a musical score, in a similar manner to an expert musicologist. Such pat-
terns may be said to be structurally significant to the composition, and musically important to the
piece’s context. In the absence of a large corpus of musical analytical data against which performance
for the various analytical techniques may be tested, the MIREX 2016 Discovery of Repeated Themes
and Sections task is chosen as an approximation, albeit with a very small sample of the population of
musical works.
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7.3.2 Method

Following the previous experiments detailed in Section 5.6.3, grammars whichmay contain rule modi-
fiers are constructed from each of the pieces in the Johannes Kepler University Patterns Test Database
(Johannes Kepler University, 2013). Due to the high complexity of constructing grammars allowing
rule modification, pieces are processed in order of approximate complexity, as discussed in Chapter
3, Figure 3.1, to enable the largest possible number of inputs to be processed. Each sub-rule of S is
expanded using all its associated transformsTn ∈M, to produce a set of all used variations, and these
fully expanded instances are passed to the MIREX 2016 code designed to evaluate algorithm perfor-
mance. The polyphonic version of the symbolic task has been selected for investigation, and the focus
is again on the metrics establishment and occurrence. As defined by the provided evaluation proce-
dure, matches with a score threshold ≥ 0.75 are selected as positive identifications. F-measures are
calculated from each metric, and these are compared both to the official results for 2016, and to the
results obtained using ZZ in Chapter 5, to discover whether the addition of rulemodifications enables
any improvement in performance.

7.3.3 Results

In the available time, only the two least complex pieces could be processed: Bach’s Fugue No. 20
from Das Wohltemperierte Clavier Book II, and Gibbons’ The Silver Swan. The results are shown
in Figures 7.6a and 7.6b. The addition of rule modification did not allow production of a smaller
model for Gibbons’ The Silver Swan, and so no improvement in the F1 scores occurred for this piece.
However, grammar size decreased from 583 to 411 for Bach’s Fugue No. 20 with the addition of rule
modification. A human-readable version of these encodings may be seen in Appendix A.

The number of rules decreased from 40 to 36, and 9 transforms were selected: a reversal, deletion
of an 8th element, translations of -24, -5, 7, 10, 12 and 17 semitones, and a translation of -7 semitones
followed by deletion of the 1st element. F1 scores for this piece were increased where rule modification
was used, and in particular a strong increase was observed for pattern occurrence, from 0.47 to 0.61.

7.3.4 Analysis

Because a less compact model could not be found for Gibbons’ The Silver Swan, the lack of improve-
ment in F1 scores is, of course, to be expected. It is possible that selection of a different set of modifier
constraintsmight allow a greater or different transform search space to be explored, and could result in
the discovery of a smaller model, but whether this could produce an improvement in performance for

145



(a) Establishment F1 score

(b) Occurrence F1 score

Figure 7.6: MIREX 2016 Discovery of Repeated Themes & Secধons symPoly task, Establishment & Occurrence F1
scores for 2016 algorithms DM1, DM2 & DM3 with addiধonal results for ZZ, and ZZ with the addiধon of rule modifi-
caধon. An occurrence F1 score of 0 results from failure of an algorithm to idenধfy at least 75% of the total instances
of any paħern - no bar is ploħed for these cases.
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the piece is left for future work. The increase in F1 score for Bach’s Fugue No. 20 fromDas Wohltem-
perierte Clavier Book II is certainly linked to the difference in production rules which occur within
the more flexible grammar, and it is reasonable to suggest the improvement is caused by the ability of
the grammar to create a segmentation which is more musically significant to the task.

Where a transform is applied to a production rule, an expansion of that rule which differs from
the rule’s encoding is output. As such, any rule which is modified generates a different segment of the
input score, thus associating it with a greater overall coverage of the input sequence. The Discovery
of Repeated Themes & Sections evaluation code scores an algorithm more highly where it returns a
greater number of segments which have been identified as significant by expert musicologists, and so
it is logical that an algorithm which selects a greater number of segments may score better in recall
terms. However, precision is also high for this piece, showing that the segmentation is relatively accu-
rate in discriminating between segments which are contextually significant, and those which are not.
For the establishment metric, precision and recall are 0.29 & 0.82 for ZZ respectively, and 0.3 & 0.84
for ZZ allowing rule modification. For occurrence, precision and recall are 0.89 & 0.32 for ZZ, and
0.9 & 0.46 for ZZ allowing rule modification. These figures highlight the more flexible grammar’s
increased ability to identify occurrences of the target pattern in the piece, due to the larger number
of segments each rule represents. Indeed, F1 score for occurrence is higher for the grammar which in-
cludes transforms than any other method, including those submitted to MIREX 2016. This result
clearly supports the hypothesis that greater rule flexibility can create a more structurally-significant
segmentation, although the single result alone is insufficient to allow a generalisation of far greater
scope to be suggested. The transformswhichwere chosen by the algorithm during grammar construc-
tion have enabled the generation of a far smaller grammar, potentially showing they are highly to the
musical domain of the input sequence.

7.4 Experiment 3: Classification of the Meertens Tune Collections by
“tune family”

This experiment continues the comparison of results from tests conducted in Chapter 5 by applying
grammars which include rule modification to the task of classifying the Meertens Tune Collections
Annotated Corpus v2.0.1 (van Kranenburg et al., 2016) by “tune family”. As a widely-investigated task,
a great deal of context exists againstwhich to analyse results, and it is of course useful toplace grammars
which include rule modification into this context.
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7.4.1 Purpose

The primary purpose of this experiment is to test the hypothesis that a grammar which is able to in-
clude musically-relevant transforms is better able to model differences and similarities between pairs
of musical inputs. As an approximation of similarity between two musical scores, normalised com-
pression distancemay be used to compute a pairwisemeasure whichmay then be used in the classifica-
tion of a collection of inputs. Since the compressor ideally selects the combination of patterns which
produce the smallest possible model which describes two scores, it is reasonable to hypothesise that
extending the compressor’s ability to choose segments in amusically-related fashionmay allow smaller
models to be generated, which in turn may be used to measure similarity more effectively.

7.4.2 Method

The method for this experiment closely follows that given in Section 5.5. Grammars which are able
to make use of rule modifications are constructed by the compressor C for each of the 360 scores in
the Meertens Tune Collections Annotated Corpus v2.0.1 (van Kranenburg et al., 2016) in a pairwise
fashion, and three models are constructed for each: C(x), C(y), and C(xy), where xy represents a con-
catenation of x and y separated by a unique symbol. A Normalised Compression Distance (Li et al.,
2004) is then computed for each pair of scores, as defined in Chapter 5 in Equation 5.1. Due to the
complexity involved in the construction of a grammar which includes rule modifications using the
method described in Chapter 6, the only representation given to C is chromatic pitch values. Due
to this, results are compared only to the performance of the ZZ-based method without rule modifica-
tion enabled, and given the same representation, and others tested in Section 5.5 are not considered.
Comparison of performance based on other representations is left for future work.

Classification into “tune-family” as defined in the corpus is performed using the 1-Nearest-
Neighbour algorithm (Cover & Hart, 1967), producing distance-based clustering, and leave-one-out
cross-validation (Kohavi, 1995) is used to evaluate accuracy against the ground truth included in the
collection; this process closely follows that of Meredith (2014). Success rate r is calculated simply as
per Equation 5.2, where c is the number of correct classifications and t is the total number of pieces
tested. The results obtained are compared directly to those discussed in Section 5.5.3, but only for a
chromatic pitch input representation.

7.4.3 Results

The accuracies with which ZZ-derived NCDs could be used to classify pieces from the MTC-ANN
v2.0.1 are shown in Table 7.4, both with and without rule modification enabled during grammar con-
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Table 7.4: Rate of successful classificaধon of pieces from the MTC-ANN v2.0.1 for ZZ, with and without rule modifi-
caধon enabled.

Rule Modification Standard

0.875 0.8583

struction. Where grammars which include modifiers were used to construct the models, classification
accuracy improved by of 1.7%.

Of the 360 pieces in the collection, sizes ofmodels constructed from an individual piece varied for
only 4 models, where the addition of rule modifiers reduced encoding length by 6, 6, 4 and 2 symbols
respectively. This alteration affected just over 1.1% of all inputs. Of the 3602 pairwise combinations,
smaller models were generated for 4776 inputs, representing 3.69% of all pairs. For the latter group,
the average reduction in encoding length was approximately 5.8 symbols, with a standard deviation of
2.48. In the best case, model size was reduced by 24 symbols.

Of the pieces which could not be further compressed individually by the addition of rule modi-
fiers, 3.3% of all pairwise models exhibited reduced encoding lengths when compared to their counter-
parts without rulemodifiers. On average, encoding size was reduced by 0.193 symbols, with a standard
deviation of 0.4. The best case reduction of 24 symbols fell within this group.

When distances were computed from the model sizes obtained both for single and concatenated
pairs of inputs, a greater number of differences were observed within the distance matrix: 5178 el-
ements were less within the matrix calculated from models which included rule modification, and
2044 were greater, representing just under 4% and 1.58% of all elements respectively. Of all possible
distances, 5.57% were altered through the presence of more flexible grammars. The average distance
within both matrices was 0.476245 when calculated from standard models, and 0.4753 when calcu-
lated from models which included rule modification, with standard deviations of 0.0285 and 0.0294.
The average reduction in distance within the latter matrix was 9.12× 10−4, with a standard deviation
of 0.008329, representing a change of 0.0167% from the original distances.

When used to classify the collection, predicted class differed for 26 pieces, representing> 7.2% of
the corpus. Of these, 10 were newly assigned to an incorrect class, and 16 were newly assigned to their
correct class, providing an overall increase in the number of correct classifications by 6 pieces. Of the
newly correct classifications, 1 was associated with an input whose individual encoding was reduced
through the addition of rule modifiers, and all 16 were related to reduced distances within the matrix
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of NCDs.

7.4.4 Analysis

Although the degree of classification accuracy is similar, the addition of rule modifications has altered
the resulting grammars sufficiently to provide aminor improvement in classification ability of+0.0167.
Given that 3602 measurements exist within the matrix of Normalised Compression Distances used
during classification, and that 5.57% of these of these offered potentially more relevant distances due
to the presence of transforms within their related encodings, it might be reasonable to anticipate a
roughly proportionate improvement in classification accuracy. In the best case, this may lead to an
ability to correctly classify a further 5.57% of all pieces, resulting in ⌊360 · 0.0557⌋ = 20 additional
correct classifications, resulting in an accuracy of 329

360 = 0.9139. In the worst case, changed distances
may be associated with already correctly-classified pieces, resulting in no improvement. The actual
observed accuracy of 0.875 is less than the best-case expectation, but greater than the worst case. Thus,
it may be stated with certainty that altered distances are associated with some pieces which were previ-
ously incorrectly classified, and the change, although minor at an average of -0.1672%, is sufficient to
produce an improvement on the task. These results suggest that even aminor difference inmodel sizes
used when calculating NCDsmay be significant to classification accuracy, and thus the more compact
grammars produced when rule modification is permitted are relevant to such a task.

It is important tonote that the change indistances caused 10pieceswhichwerepreviously correctly
classified to become incorrectly identified. Of the output classes which were affected by the changed
distances, over 38% exhibited degraded performance, whilst over 61% were improved, representing
2.78% and 4.44% of all inputs respectively. This single experiment cannot provide sufficient proof
that use of more compact grammars is likely to offer improved classification in the majority of cases,
although in this instance accuracy was shown to have increased. Standard deviation is notably high
for the difference in distances between the twomethods, potentially signifying a relationship between
this wide variation and the number of degraded – as well as improved – class selections. However,
in the majority of cases changes in distance resulted in an increase in performance, and this is likely
connected to the measured average reduction in distance.

A significant outcome of this experiment is that the use of grammars which include rule modifi-
cation can allow calculation of smaller NCDs, even when they cannot offer a reduced encoding length
for most individual inputs alone. The pairwise concatenation of inputs presents a greater opportu-
nity for equivalence given the availability of transforms, and greater equivalence in turn may lead to
an increased ability to discriminate between similar and dissimilar inputs.
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7.5 Summary

This chapter presented a novel comparison between the performance of two grammar-based com-
pressors using ZZ optimisation – one which traverses an additional space of transforms in order to
produce grammars which include rule modifications, and one which does not – on three real-world
tasks: compressionofmusical inputs, identification ofmusicologically-significant segments ofmusical
scores, and classification of folk songs by “tune-family” using normalised compression distance. The
presented experiments explored the effect of augmenting a particular grammar-based compressorwith
the ability to select custom rule transformations. Overall, experimental results showed the inclusion
of rule modifers was able to reduce grammar encoding lengths for a significant minority of inputs,
and an improvement in classification accuracy was observed when the smaller models were used to
compute pairwise distances, supporting the hypothesis that more compact models more accurately
represent the structure and properties of their input data.

When applied to the task of compressing pieces from a large corpus of digital scores, the inclusion
of rulemodification enabledmore compactmodels to be built for< 25% of all inputs, which were on
average 5% smaller than their standard counterparts. Despite the imposition of a limit on the number
of transforms which may be considered for inclusion in each grammar, in an attempt to reduce time
complexity, a strong increase in construction times was noted, and the following chapter introduces a
method by which ZZ-based grammar optimisation may be accelerated to help address this challenge.

Where the production rules belonging to grammars constructed from two of the five pieces from
the Johannes Kepler University Patterns Development Database (Johannes Kepler University, 2013)
were taken as candidate note sequences, and compared against those identified by expertmusicologists,
a definite improvement in identification ability as evaluated by the task’smetrics was observed over the
use of production rules from standard grammars. However, the encoding length of one piece onlywas
reduced by the addition of transforms to its grammar. Improvement on the task occurred because the
inclusion of transforms allowed production rules to represent a greater number of musically-relevant
segments. The inability of the newmethod to generate a smaller encoding for only one input was not
unexpected: only aminority of pieces from the corpus ofmusical scores benefitted from the inclusion
of rule modifiers, and that particular score from the JKU-PDD did not fall within the group.

Grammars allowing rule modification were constructed for each piece in theMeertens Tune Col-
lections Annotated Corpus v2.0.1 (van Kranenburg et al., 2016), and from pairwise concatenations
of each piece. The resulting model sizes were then used to compute a pairwise matrix of normalised
compression distances, and thismatrix used to classify each piece by “tune-family” using the 1-Nearest-
Neighbour algorithm (Cover &Hart, 1967). The process was repeated using standard grammars, and
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the classification accuracy each method achieved compared. An improvement was observed where
models were constructedwhich included rulemodification, and classification accuracy increased from
0.858 to 0.875. Since the presence of transforms produced the improvement, the results do not reject
the hypothesis under test. However, the sample size is small, and the outcome cannot conclusively
prove its validity. Further testing on a variety of larger problems is desirable, as future work.

These results generally demonstrate that the addition of rulemodification to a grammar construc-
tion algorithm can, in principle, allow the production of smaller models, which in turn can be used
to produce interesting, improved results on a variety of tasks. The technique provides an alternative
to existing flexible-matching approaches, such as the encoding of prefix and suffix variations (Siyari &
Gallé, 2017) in a non-recursive grammar, and allows the manner in which rules may be altered to vary
depending on the set of transforms defined at the time of construction. The results show the trans-
forms chosen for these experiments are useful in the compression of digital score data. Construction
complexity is, however, prohibitive; the following chapter presents a novel method of lattice traversal
which seeks to improve this shortcoming.
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First, we improve the complexity of existing algorithms by
using the concept of maximal repeats when choosing which
substrings will be the constituents of the grammar.

Rafael Carrascosa et al., 2012

8
An improved method of Lattice Traversal

for Grammar Construction

8.1 Introduction

A key consideration for any compression scheme designed to operate on real-world data is its time
complexity. If execution time were of no importance, an ideal compressor – one which always finds
themost highly-compressedmodel from the universe of all possiblemodels – could easily be designed,
even if an exhaustive exploration of its search space were required. Conversely, an ideal compressor
in temporal terms is equally simple: whilst any alteration may be made which reduces the size of a
givenmodel, the best change which is immediately available can be selected from the space of all possi-
ble changes, even where further exploration is likely to result in greater compression, and this process
continued until no obvious improvement exists. In this example, the resulting model can be said to
represent the encoding which may be generated most quickly. Unfortunately, neither scheme is effi-
cient; an exhaustive approachmay prove impossible or simply impractical to compute, and an entirely
greedy approach is likely to produce an unnecessarily large encoding of little practical use or compres-
sion.

ZZ (Carrascosa et al., 2011) provides a logical path to achieving a balance between speed and ef-
ficiency. The space of all possible changes is constrained to the addition of a single constituent to a
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current encoding, and the result of each possible addition is assessed by generating the encoding itself,
ensuring the actual outcome of each option is knownprior to the choice beingmade. The algorithm is
greedy in the sense that a constituent whichmay prove less optimal overall, for example by preventing
the addition of two others which offer greater combined compression, will still be chosen if it offers
an immediately greater gain. However, it retains the possibility of later rejecting the sub-optimal con-
stituent, if its removal results in a more compact encoding at that later time. Unfortunately, for the
rejection to occur, the combination of constituents which it blocksmust be already present within the
encoding, so that these become fully active when each possible rejection is tested. Since such blocked
constituents do not present sufficient gain in terms of model compactness to warrant their earlier in-
clusion, the circumstance cannot arise, and only a locally optimal encoding may be discovered by ZZ.
Regardless of this, the algorithm remains a benchmark in straight-line grammar construction, and it
is certainly possible that many local minima are useful in practical terms, despite not representing the
smallest grammar it is possible to generate from the input.

A disadvantage to ZZ is the need to consider each possible addition to the current set of con-
stituents before making a selection, to discover the next node of the lattice in the path which leads
to the locally-minimal encoding of interest. Without prior knowledge of which addition is locally
optimal, a selection cannot be made, yet computation of the encoding itself via Minimal Grammar
Parsing (Carrascosa et al., 2011) is expensive, and this complexity is scaled by the number of candidate
constituents which must be considered. For an input containing n candidates, for any current set of
chosen constituents C there are n− |C| encodings which must be computed before the next addition
to C is known. This makes exploration of the space proportional to both |C| and the length of the
input, since the process ofMGPmandates atminimum that each node in the graph, representing each
symbol in the input, be considered. An ideal solution might quickly predict the size of each encoding
given the possible choices, without the need to compute them entirely. In the absence of such fore-
sight, it is possible an approximation of these sizes may be arrived at by some method less complex in
computational terms than Minimal Grammar Parsing.

Discovery of such a method is not only desirable as a step towards a computationally cheap algo-
rithmwhichmay rival or better ZZ in the production of highly compact grammars, but also to enable
the production of more complex grammars at a computational cost similar to that currently required
to generate a straight-line grammar. This is especially important given the scaling which the addition
of a dimension of rule modifiers introduces to grammar construction complexity. As discussed in
Chapter 6, the space of all possible grammars allowing rule modification is 2nc · 2nm where nc is the
number of candidate constituents and nm is the number of candidate rule modifiers, compared to a
space of 2nc for a grammar withoutmodifiers. Since the value of 2nc is likely to be considerable, scaling
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by even a small value of 2nm is likely to result in a prohibitive search space. As shown by Carrascosa et
al. (2011), ZZ is capable of exploring a space of 2nc with complexity O(n5 · m2), where n is the length
of the input andm is the number of candidate constituents in the input. Introducing another dimen-
sion composed of candidate rule modifiers requires a grammar to be constructed from its candidate
constituents for each modifier considered, in the simplest case. Potentially, a transform may exist for
each substring which allows a complete cross-equivalence; where there are O(n2) possible substrings,
there is the potential for O(n4) transforms, resulting in a complexity of approximately O(n9 · m2).
Despite the considerable improvement ZZ offers over a naïve exhaustive exploration of this space, in
order to allow a practical constructor to be built for grammars which allow rule modification, further
improvement is clearly needed.

This chapter presents an alternative method of selecting candidate constituents, based onOccur-
rence Optimisation and the ZZ search algorithm (Carrascosa et al., 2011), which allows a strong reduc-
tion in the constituent search space to occur during grammar construction. Its novelty lies in the
dynamic approximation of constituent suitability in a manner which is computationally simple. An
improved construction time is possible not because the method reduces the functional complexity of
constituent selection, but because it simplifies the operation of evaluting a constituent’s fit prior to
selection. By approximating the suitability of a constituent in a given solution, the expensive use of
Minimal Grammar Parsing as a prior to adding to C during construction is avoided, and only con-
ducted for the most promising candidates to verify their actual suitability as they are added.

The process of approximating constituent gain is well known; IRR schemes (Carrascosa et al.,
2011) implement a score function such asML (maximal length),MF (most frequent), orMC (maximal
compression in an attempt to generate a prior order of selection which will most benefit the grammar
overall. However, these functions calculate gain based only on the potential replacements a given
constituent might offer, such g = (i− 1)l− i− l− 1 where i is the number of repeat instances and l is
the length of each repeat. They donot account for any reduction in gain due to the presence of existing
constituentswhichmaybemore optimally occupying elements also associatedwith the new candidate,
at any stage of construction. ZZ, however, adopts an opposite approach, and evaluates the overall
reduction each constituent actually offers at each stage, greedily selecting a most optimal choice based
on this information. AlthoughML,MF andMC are simple to calculate and thus fast to compute, ZZ
requires an MGP for each candidate prior to selection, and computation is comparatively slow. The
novel method presented here attempts to leverage the advantages of both approaches, by making use
of prior knowledge regarding candidate constituents and approximating the MGP process, allowing
the latter step to be computed simply.

The following sections describe the new approach, discuss its properties, and present algorithms
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enabling its implementation.

8.2 Approximation of Constituent Gain

A simple but effective method of constituent selection may be found by approximating the result of
evaluating a single candidate’s addition to an existing grammar, which would otherwise require an
expensive Minimal Grammar Parse. If no edges overlapped within the parse graph, it would be possi-
ble to immediately identify the most compressive constituent and add this to the set of constituents
chosen to produce the smallest possible grammar. When two or more edges overlap, this introduces a
branchwithin the tree of possible edge choices, where each branch has a potentially reduced set of can-
didate constituents; such reduction in candidate space is directly related to the reduced potential of the
available candidates to compress, due to the unavailability of associated edges which may previously
have provided them with a sufficient advantage. As such, stepwise selection of a suitable candidate
may be considered not only a problem of (a) choosing the most compressive candidate from all avail-
able constituents, but also of (b) calculating the remaining compression possible given the candidate’s
edges in the current solution, and (c) calculating the compressionwhichwill be lost from future candi-
dates given the edges belonging to the current candidate which will become part of the final solution.

Since a practical evaluation of observation (c) above requires knowledge which is not yet available
at any given step during grammar construction, the problem may be simplified by disregarding (c),
and instead testing whether removal of any currently chosen constituents offers a reduction in encod-
ing size after each step, in the same manner as ZZ. Evaluation of (a) is simple, and may be achieved
by subtracting the total cost of inclusion of the constituent in the encoding from the total gain its
non-overlapping edges provide, the latter of which may be discovered by a Minimal Grammar Parse.
It is worth noting that the result of (a) does not alter, and as suchmay be computed once for each con-
stituent. An accurate evaluation of (b) would require a full MGP of the graph produced by inclusion
of the candidate in the current constituent set. However, it may be simplified by considering each
node within the parse graph which remains unused in the current solution, to which the candidate
will be added, as “available for use”, and as such a gain equal to the use of that node alone, without
consideration of whether the node belongs to a candidate edge which would be “blocked” by an ex-
isting constituent edge, may be taken as the amount of gain possible for the candidate, as a rough
approximation.

Such an approximation will function perfectly where no overlapping edges occur, and will dete-
riorate progressively as more edges become coincident, causing greater branching within the tree of
possible edge selections. However, computation of this simplified representation is easy and requires
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very little memory. Although the scheme is unlikely to provide a huge improvement over ZZ where
the proportion of candidates in the current solution is high relative to that of the final solution, in
the worst case it results in a blind exploration of the candidate space, and until that point provides a
greater probability of selecting a suitable candidate than ZZ, which of course does notmake selections
a priori. In the early stages of grammar production, it offers the opportunity to immediately select
the most compressive constituents for inclusion in the grammar’s encoding, and gradually degrades
towards a ZZ-like exploration, allowing constituents key to the final encoding to be quickly added
without excessive comparison by MGP.

8.3 Background Theory

Calculation of the actual gain it is possible to achieve through the addition of a constituent cnext to
an existing set of constituents C is computationally expensive, requiring a single MGP for the set
{cnext} ∪ C in the most basic case. However, it is possible to calculate approximate gain for cnext if
certain limitations and inaccuracies are permitted. This section provides the supporting theory which
is used as a basis for such an approximation.

8.3.1 Coincident Edges

When adding a constituent cnext to an existing constituent set C, a branch condition can occur when
an edge from cnext coincides with an edge from an existing constituent from C, and a choice must be
made between them, usually byMGP, to decide which edge – and so which rule instance – forms part
of the model constructed from {cnext} ∪ C. The interaction between many constituents is complex,
and so C is considered to contain only a single constituent, cprev, for this example.

In a parse graph containing just cnext, such as would be passed into anMGP function to generate
a model for cnext alone, the gain which it is possible to achieve for cnext may be defined as follows:

gain(cnext) = (

n∑
i=0

length(enext[i])− 1)− length(cnext)− 1

Where enext is the set of edges comprising cnext, for which length returns the number of symbols
belonging to an edge, n is the count of edges within cnext, and length(c) returns the number of symbols
the production rule for c contains, excluding any termination symbol.

In a parse graph containing cprev and cnext, such as would be passed into an MGP function to
generate a model for {cnext} ∪ C, the gain which it is possible to achieve for cnext may be defined as
follows:
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gain(cnext, cprev) = (
∑n

i=0(length(enext[i])− 1)× eactivenext [i])
+(

∑n
i=0(length(eprev[i])− 1)

×eactiveprev [i])− length(cnext)− length(cprev)− 2

Where eactivec [i] is a boolean value representing whether edge i of constituent c is chosen for in-
clusion in a grammar generated during MGP. Where two edges with index i from two constituents
a and b are coincident, eactiveb [i] = 1 − eactivea [i] with either eactivea [i] = 1 or aactiveb [i] = 1, since
only one of the two coincident edges may be active in the generated model. These equations allow
an edge-based calculation of constituent gain to be made for two constituents, providing no edge in
either constituent coincides with more than one edge in the other.

8.3.2 Edge-based Constituent Gain

It is common to calculate the potential gain of a constituent from the length of its associated produc-
tion rule, and the number of times the rule may replace a term within the grammar encoding, such
as Most Compressive as discussed in 4.1.5. ML becomes inaccurate where one or more instances of a
single constituent’s terms overlap each other, since all instances may not be leveraged simultaneously,
making the calculation |ti|ni an overestimate. This may be remedied by using MGP to parse a graph
containing only that single constituent, resulting in the set of edges which provide themaximum cov-
erage of all the graph’s nodes.

Once themaximumnumber of usable edges is known, and providing tnext is equal to the number
of edges which will be chosen during MGP, the gain for a single edge with index imay be defined as:

gain(enext[i]) = (length(enext[i])− 1)− ((length(cnext) + 1)/tnext)

Where enext is an array of all usable edges, and tnext is the count of usable edges for constituent c.
The sum of all usable edge gains is then equal to the maximum possible constituent gain:

gain(cnext) =
n∑

i=0

gain(enext[i])

Where n is the number of edges in enext.
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8.3.3 Node-based Constituent Gain

Assuming tnext is available, or a degree of error is acceptable, the unit of gain may be further decom-
posed as follows:

covg(cnext) =
n∑

i=0

length(enext)

ngain(cnext) = (covg(cnext)− |enext| − length(cnext)− 1)/covg(cnext)

Where ngain(cnext) represents any single nodewithin the set of edges enext. Effectively, the symbol-
wise gain possible through addition of the constituent to C = ∅, minus the cost of including the con-
stituent in the grammar, is spread over all usable nodes within the graph; where covg(cnext) is correct,
ngain(cnext)will also be accurate.

Given an accurate set of edges enext, representing the maximum coverage and therefore gain cnext
can provide, an overall gain for the constituent can now be calculated from the node-based gain value
p:

gain(cnext | pnext) = ngain(cnext) · covg(cnext)

8.3.4 Limitations of Node-based Constituent Gain

Because calculation of node-based gain requires prior knowledge of the number of edges which will
be chosen during MGP (where all edge lengths are equal), or specific knowledge of which edges will
be chosen (where edge lengths are not equal) so that a total number of nodes n can be calculated, it
cannot be used to produce an accurate figure when n ̸= covg(cnext).

In the best case, covg(cnext) edges will be used during MGP, and gain(cnext | pnext) = gain(cnext).
In the worst case, 0 edges will be used during MGP, and gain(cnext | pnext) = 0.

In the latter case, actual gain for cnext will be −length(cnext) − 1, since the constituent must still
be included within the grammar, as a production rule with appended termination symbol, despite
offering no usable edges during MGP.

Looking at this relationship, it is possible to see that gain(cnext | pnext) gradually alters from
gain(cnext) to 0, in proportion to covg(cnext) as the number of nodes belonging to the constituent
which are chosen during MGP decreases. When used as an approximation, it is easy to demonstrate
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the calculation’s inaccuracy, as even removing a single node from the count of available nodes alters the
value of gain(cnext | pnext) by−ngain(cnext). The unavailability of a single nodemay have a large effect
in practice; it may cause an edge to become unavailable, altering the actual gain for the constituent by
−length(cnext) + 1 (one less constituent edge, but at a gain of requiring one less rule reference within
the grammar).

Examination of these factors shows that a node-based approximation of gain with respect to a
single constituent c is linear in nature, whereas actual gain for c will alter in steps of length(c) − 1 as
edge use within the graph changes. However, when the estimated number of nodes nest is equal to
the actual number nact, the figure of estimated gain is accurate to within length(c) + 1, and when
nest = covg(c) that margin becomes 0. Thus, a node-based approach to constituent gain estimation is
potentially useful, albeit limited and accurate only within its bounds.

8.3.5 Limitations with respect to Coincident Edges

As discussed previously, where two or more separate constituents contain at least one coincident edge
each, an interaction occurs where the gain from the previously-added constituent(s) already present
in C may drop as edges belonging to the constituent currently being evaluated as an addition to C
are chosen over existing edges duringMGP. As such, as gain(cnext) increases, gain(cexisting) can reduce,
potentially to 0. To accurately estimate the overall, actual gain gain(Cact) forC = {cexisting}∪{cnext}
as gain(Cest), it is necessary to include any negative change in gain(Cact) for C = {cexisting} caused
by the introduction of cnext into C. Any estimation which ignored this change is therefore inaccurate,
within the following bounds:

In the best case, gain(Cact) = gain(Cest).
In theworst case, gain(Cact) = gain(cnext)−gain(cexisting), where only edges from cnext are chosen.
As such, a node-based approximation of gain with respect to all constituents in C = {cexisting} ∪

{cnext} and based solely on gain(cnext) can result in an overestimation of gain gain(Cest)≪ gain(Cact).
An underestimate is not possible, because nest <= nact where edges do not coincide, and for an edge
from cnext to be chosen the gain produced by that constituent must, overall, be greater than that pro-
duced by selection of edges belonging to cexisting.

8.3.6 Assumption and General Properties

Assuming that constituents are added to a grammar in sequence, and the final gain for each constituent
in that sequence is known in advance, any step in that sequencewill see the constituentswhich aremost
compressive overall already present within the grammar. Thus, any constituent in the sequence will
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possess a gain gain(c[i+ 1] < gain(c[i]) < gain(c[i− 1]), and the next most compressive constituent
at index iwill be i+ 1.

Actual discovery of this sequence, as discussed above, requires a full exploration of each combi-
nation of C, or prior knowledge of the binary relationship between eactivenext and eactiveexisting , pairwise,
for each edge of each constituent, and for the final, optimal solution (i.e. the set of all constituents
producing the smallest grammar). This exploration is expensive and impractical, and instead may
be reduced to an estimated, linear relationship between eactivenext and eactiveexisting for any step in the se-
quence of adding constituents to the grammar. Itmay be further reduced to an estimated, node-based
relationship, with the following caveats:

1. Gain ngain(cnext) can be overestimated with respect to gain(Cact), since ngain(cnext) >= 0
and addition of cnext can cause a reduction in current gain for cexisting.

2. Gain ngain(cnext) can be overestimated with respect to gain(cnextact), since nact = k · l where
l = length(cnext) and k is the number of edges chosen during MGP, but nest does not have a
modulo relationship to l.

3. Gains are calculated only for the current constituent set C, as the most compressive combina-
tion of all candidate constituents is not known in advance.

However:

• max(ngain(cnext)) is completely accurate if covg(cnext) is based on the set of edges offeringmax-
imum coverage during MGP with C = cnext.

• All candidate constituents cnext are subject to the same limitations when their gains are esti-
mated, thus gain values are correct relative to each other.

Although strongly limited, a node-based approach to selection of the next candidate to add to a
given constituent set C does offer some benefits. In particular, it is linear in time complexity to com-
pute ngain for each possible candidate, after which a fast sort algorithm can quickly yield an estimated
most-compressive choice.

8.3.7 Expression of Linear Approximation

A linear approximation gain for a candidate constituent c can be computed as:

gain(c) = gain(c | p) · n
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Where n is the number of nodes in the current solutionwhich are not yet used by any constituent
edge andwhich are associated with the constituent c, and p indicates the use of a node-based approach
to gain calculation.

Therefore:

0 ≤ gain(c | p) · n ≤ gain(c)

Where gain(c) isMaximumCompression (Carrascosa et al., 2011) as a function of substring occur-
rences and length, and gain(c | p) is the approximate gain for a solution given an arbitrary number
of existing constituents. In summary, since all candidate constituents c are affected equally by the
above conditions, gain(c | p) may be considered a reasonable approximation of gain(c) which does
not require an expensive MGP to be executed.

8.4 Proposed Solution

There now follows a description of grammar construction using the principles which have been dis-
cussed.

Initially, a dictionary D of repeats occuring in the input string S is constructed, as described in
Chapter 6, Algorithms 1 and 2. The dictionary may be composed of exactly matching segments, or
of flexible matches which rely upon a transform to provide equivalence, depending on which is most
applicable to the compression of S.

Given D, directed, acyclic graphs may now be constructed for the input string S, and for each
dictionary key k ∈ D, where kn represents the nth candidate production rule for the grammar G
which will be constructed. To achieve a Minimal Grammar Parse, each graph may be evaluated from
nodesNstart toNend, and the edge arriving at any nodeNn with the smallest cumulative cost u taken as
the fastest route fromN<n toN, and therefore chosen for inclusion in the final MGP solution. Since
uN =

∑n
i=1 uNi for all nodesNi visited during a traversal ofNstart toN, uNend is theminimumpossible

cost u of traversing the graph, and the list of nodes visited forms the MGP of the string being parsed.
For a string s, this process has complexityO(nd), where n = |s| and d is the maximum degree of edges
arriving at anyN, since it is proportional to both the number of choices at each node, and the number
of nodes required to represent s.

Prior to parsing, a list of active constituents may be constructed, representing all edges belonging
to each active constituent. This list forms the combination of constituents currently being evaluated
in the construction of G, and represents a specific node in the Lattice (Carrascosa et al., 2010) of all
possible combinations. When computing a cost c for any nodeN in the graph, only edgeswhich arrive
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atN and use either a direct path from the previous node or an active constituent edge are considered.
In this manner, a single set of DAGs for S and each of its candidate constituents may be produced
during initialisation, and only the active constituent list requires alteration during evaluation of any
constituent combination during the construction of a minimal grammarG.

ZZ operates in “downwards” traversal mode – addition of a constituent to the current set – by
considering the effect of adding a single constituent cn to a current combination of constituents C,
and the candidate c which produces a minimal |G| is retained as C = C ∪ {c}. Assuming that no
“upwards” traversals are required during the construction ofG– that no constituentsmay be removed
to minimise |G| – the number of MGPs required to produce a grammar G with final constituent set
of size l = |Cfinal| is |Cfinal| · |Dkeys| since all keys inDmay have been considered when adding a single
constituent fromDkeys to Cfinal, and this must occur at minimum |Cfinal| times. Parsing each graph is
a relatively expensive process, and the solution proposed here improves on ZZ’s traversal of the Lattice
using three specific changes:

1. Use of ui = MGP(C ∪ {ci}) for each ci ∈ Dkeys is replaced with a less expensive gain approx-
imation g, representing the total number of nodes which may be skipped in the parse graph
following the inclusion of ci.

2. The list of possible gains gi = g(ci) for each ci /∈ C is sorted prior to considering MGP(C ∪
{ci}), to approximate consideration of a “best” constituent first, with g(ci) ≥ g(ci+1).

3. During any MGP(C), the set of constituents which are actually used during parsing are re-
turned, and the resulting computation of |G| is based only upon these.

Computing an order of constituents to evaluate in this manner attempts to ensure that the accel-
eration of a downwards traversal of the Lattice does not result in inclusion of constituents which are
not useful in minimising |G|, and aids in preventing the greediness of the algorithm from causing a
non-optimal solution to be constructed. Computation of |G| based only on used constituents allows
the smallest encoding givenMGP(C) to be discovered, and any completely unused constituents to be
discarded since they are not relevant to the current solution.

8.4.1 Algorithm Pseudocode

Overview
Pseudocodewhichmodels the process described above is shown inAlgorithms 4 and 5. Firstly, the

maximumpossible gainwhichmaybe obtained from the inclusion of the ith constituent in a grammar
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G is recorded, by generating a grammar containing only that constituent, and calculating the difference
between its size and the length of the original input S. These gainsmaybe used to indicate the best-case
potential of each constituent, and guide construction of the actual grammar. Algorithm 4 illustrates
this step.

Once the maximum possible gain of each constituent is known, the order in which they are likely
to be most beneficial to a grammarG containing a given combination of constituents may be derived
using the bitmask-based approximation described above, and candidates may be added to G based
upon this ordering. Algorithm 5 illustrates this process. The following steps describe the general
scheme followed byAlgorithm 5, and are provided as clarification of the purpose of the groups of state-
ments which the algorithm contains. Indentation is used here to signify that a block of operations is
contained within a loop, the continuation of which is loosely specified by the statement immediately
above:

Repeat until no improvement to |G| has occurred during an entire pass:
Create a sorted list of approximate gains, gainsSorted (one for each constituent).
Let i equal the index of the first constituent in gainsSorted.
Repeat while no improvement to |G| has occurred, and constituents remain to be tested:

Add constituent i from gainsSorted toG, and compute |G|.
If |G| has reduced, keep the new constituent inG.
Otherwise, increment i to operate on the next constituent in gainsSorted.

Let j equal the index of the first constituent inG.
Repeat while an improvement to |G| has occurred:

Remove constituent j fromG, and compute |G|.
If |G| has reduced, continue without the constituent inG.
Otherwise, increment j to operate on the next constituent inG.

Process
This section presents the pseudocode for Algorithms 4 and 5, and describes their operation in

greater detail. Pseudocode for the creation of empty bitmask arrays is also provided in Algorithm 3, to
simplify the expression of those algorithms.

Initially, a parse graph set P is constructed for S and each candidate constituent, containing edges
for S and all available constituents which are to be considered for inclusion inG (with the set of all pos-
sible constituents denoted by Call). Within each graph, each edge contains an associated constituent
number, an edge instance number, and an edge cost. Edge costs are set at 1 for all edges except those
requiring a transform, which are instead set at 2, since they require a transform reference symbol in ad-
dition to their production rule reference symbol during encoding, as discussed in Chapter 6, Section
6.4.2.
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As an initial step, each constituent c is individually activated, and a Minimal Grammar Parse of
P given C = {ci} is performed, beginning with the graph representing S. The edges chosen during
MGP(P,C)which belong to ci are examined, and the total number of nodes avoided through the use
of these edges is recorded as the gain gi for that constituent ci. These values represent the maximum
gain it is possible to achieve through the addition of ci to C, but do not take into account the cost of
including ci within the encodingG as a production rule. Algorithm 4 shows how this may be achieved
given the graphs P and constituents C for which gain values are to be computed.

Algorithm 3 createBitmasks(): Create a blank bitmask array for S, and one for each con-
stituent
Require: lengthS, constituentLengths
Ensure: bS, bCons

1: bS ← false[lengthS] ▷ Create an empty bitmask for S
2: for i← 1 to length(constituentLengths) do
3: bCons[i]← false[constituentLengths[i]] ▷ Create an empty bitmask

for each constituent
4: end for

Algorithm 4 computeMaxGains(): Compute the maximum possible gain for each con-
stituent in C
Require: P,C
Ensure: maxGains, (array of size |C|)

1: for i← 1 to length(C) do
2: maxGains[i]← 0
3: cost, usedEdges←MGP(P, {C[i]})
4: for edge← usedEdges do
5: if edge.constituentNumber = i then
6: maxGains[i]+ = edge.endNode− edge.startNode− 1
7: end if
8: end for
9: end for

Once the maximum possible gain of each constituent is known, the search for a combination of
constituents C which will produce a compact encoding of G may begin. Algorithm 5 illustrates this
process.
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Algorithm 5 computeCompactC(): Compute a constituent setCbelonging to compact gram-
mar encodingG
Require: P,Call, S, constituentLengths
Ensure: C (combination of constituents from Call which produce a compact encodingG)

1: maxGains← computeMaxGains(P,C)
2: numRestarts← 0
3: C← ∅
4: cost← Inf
5: bS, bCons ← createBitmasks(length(S), constituentLengths)
6: while numRestarts < 2 do
7: gainsSorted, gainsOrder← sort(

computeApproximateGains(C ·∪ Call,C, bS, bCons,maxGains,
length(S), constituentLengths), order = descending)

8: i← 1
9: while repeat do
10: repeat← false
11: ctarget ← gainsOrder[i]
12: Cadd ← C ∪ {ctarget}
13: costadd, usedEdges←MGP(P,Cadd)
14: if costadd < cost then ▷ If an improvement occurred
15: C← Cadd
16: cost← costadd
17: bS, bCons ← addConstituentToMask(bS, bCons,C, ctarget)
18: numRestarts← 0
19: else ▷ If an improvement did not occur
20: if i < length(gainsSorted) then ▷ If there are still candidates to

consider in gainsSorted
21: i++
22: repeat← true
23: else
24: numRestarts++
25: end if
26: end if
27: end while
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(Algorithm 5 continued)
28: while improvement do
29: improvement← false
30: Cdel, costdel ← ZZRemove(P,C) ▷Try a ZZ-style removal of a constituent

in C to minimise cost
31: if costdel < cost then
32: C← Cdel
33: cost← costdel
34: bS, bCons ← createBitmasks(length(S), constituentLengths)
35: usedCons← membersOf(C)
36: for j← 1 to length(usedCons) do
37: ctarget ← usedCons[j] ▷ Store the number of current constituent

to add to bitmasks bS & bCons
38: bS, bCons ← addConstituentToMask(bS, bCons,C, ctarget)
39: end for
40: improvement← true
41: end if
42: end while
43: end while
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At the beginning of each iteration, a list of approximate gains which may be expected due to the
addition of each ci toC is computed as shown inAlgorithm7, and sorted in descending order as shown
after the first while statement in Algorithm 5. Using this ordering, a Minimal Grammar Parse using
C ∪ {ctarget} is performed, and the constituent ctarget only retained and added to C if the resulting
overall encoding size |G| is smaller than any encoding yet seen.

If the constituent does not meet the above criteron, it is rejected, and the next constituent in the
ordered list considered for addition to C by incrementing the index i. When the list is exhausted, an
attempt is made to further reduce the encoding size |G| by removing constituents currently in C in
the samemanner as ZZ (represented by the function callZZRemove(P,C) in Algorithm 5). In testing
whether a removal reduces the model size, each ci ∈ C is removed in turn, and the combination with
|GCdel | < |GC| producing theminimal value of |G| is retained; where all |GCdel | ≥ |GC)|, no alteration
to C occurs.

These attempts continue until no improvement in |G| is possible, at which point execution re-
turns to the while statement at line 9, and a new overall iteration begins.

The search for a C which minimises |G| continues until a specific condition is met, that of
numRestarts = 2. When no improvement to |G| may be made within an iteration, during which
time all constituents which remain to be added to C have been evaluated for their potential to min-
imise encoding length, numRestarts is incremented. Whenever an improvement occurs, numRestarts
is reset to 0. Therefore, once this value equals 2 there are no constituents to add to Cwhich are useful
in reducing the encoding length, and no removal of constituents from C can improve |G|. At this
point, the algorithm terminates.

8.4.2 Approximation of Constituent Gain

Fast construction of a grammar based on constituent selection may be said to depend upon prior
knowledge of which constituents will be useful in the minimisation of |G|, and so allow selection of
thosewhich are required to forma compact final encoding. ZZ relies on testing eachpotential addition
to an existing constituent set C before including it. Although this is an expensive computation given
significantly large or repetitive inputs, the approach benefits from being able to observe the actual
effect of a constituent on the current encoding, or indeed the effect of removing an existing constituent
from the encoding in the case of an upwards lattice traversal, and this advantage allows ZZ to improve
upon greedy approaches such as IRR-MC.

A key improvement offered by this study’s method is the ability to evaluate the effect of a con-
stituent c on an existing encoding through the use of a far simpler computation, at the expense of
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arriving only at an approximation of the constituent’s ability to offer an improvement to |G|. To
achieve this, only the gain which is approximately available in the current solution, given the use of
any edge belonging to the new candidate constituent c, is considered as a basis for its candidacy.

This is made possible by treating each node associated with an edge belonging to c as providing a
proportion of the overall possible gain c can provide, in a solution containing no other constituents,
i.e. where c is maximally used. This results in a gain per node of x = g/n, where g is the total gain
reported by Algorithm 4 for ci, and n is the total number of unique nodes associated with the edges
of constituent c.

A bitmask bcurrent of all nodes currently used by any constituent C in a given solution may be
maintained during grammar construction, and a bitmask bcandidate quickly generated for the c being
considered for inclusion in C. Computing bnew = (NOT bcurrent) AND bcandidate is trivial, and the
sum t = sum(bnew) can be taken as an approximate indication of the number of times the node-wise
gain xmight be applied in the current solution to minimise |G|. Thus, an approximate gain for cmay
be produced by calculating gc = xt, and gc for all c /∈ C used to discriminate between likely useful and
non-useful candidate constituents, a priori.

Algorithm 6 is included below to demonstrate the addition of bits for the edges of a constituent
q to a bitmask set belonging to an existing constituent combination C. It is a utility function for
Algorithms 5 and 7, and produces a bitmask set showingwhere the edges of q occur within the current
solution’s parse graphs when superimposed upon the existing bitmasks.

The following is a description of the process shown in Algorithm 7, to clarify the simplicity of
its operation. First, a set of zeroed masks are constructed for S and for each constituent in C, the
latter with dimensions length(ci ∈ C). Each bit within these masks represents a node within the
current parse graphs. As discussed in regard to Algorithm 6, when considering the effect of adding a
constituent q to C, the nodes which its edges allow to be avoided may be set to truewithin each mask,
for S and each constituent inC, to indicate the positions inwhich these edges exist. The zeroredmasks
may conveniently be passed into the function described by Algorithm 6, and their bits set as required
by the existence of the edges belonging to q.

Each constituent q from the set Q is then individually processed by Algorithm 7 to discover an
approximate gain forC∪{q}, with the resulting value stored in the array approxGains. This is achieved
by first fetching a bitmask set (btmpS, btmpCons) for q, as described above, and counting the number
of nodes associated with q which are not yet associated with any other constituent in C. Discovery
of the available nodes may be made using a simple bitwise AND operation for each mask, which is
computationally cheap in comparison to a call toMGP(P,C∪{q}). Given the total nodes associated
with q, and the number of these which are unused by other constituents inC, the proportion of nodes
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Algorithm6 addConstituentToMask(): activates bitswithin the input bitmask set binS, binCons
(associated with the constituent set C) where an edge from a constituent q is associated with
any node in the parse graphs for C
Require: binS, binCons,C, q
Ensure: boutS, boutCons

1: boutS ← binS
2: boutCons ← binCons
3: constituentEdges← getConstituentEdges(q) ▷ Each element of constituentEdges

contains a start and end node index, and the
number of the constituent the edge occurs within

4: for edge in constituentEdges do
5: if edge.occursIn = 0 then ▷ If this constituent occurs within S
6: boutS[edge.startNode : edge.endNode]← true
7: else if edge.occursIn ∈ C then
8: boutCons[edge.occursIn][edge.startNode : edge.endNode]← true
9: end if
10: end for

Algorithm 7 computeApproximateGains(): computes a list of approximate gains for a set of
constituents Q based on bitmasks bS, bCons for the current constituent set, C
Require: Q,C, bS, bCons,maxGains, lengthS, constituentLengths
Ensure: approxGains (a list of approximate gains of length |Q| for each q ∈ Q)

1: bemptyS, bemptyCons ← createBitmasks(lengthS, constituentLengths)
2: unusedCons← membersOf(Q)
3: for i← 1 to length(unusedCons) do
4: q← unusedCons[i] ▷ Store the number of current constituent

for which to calculate gain
5: btmpS, btmpCons ← addConstituentToMask(bemptyS, bemptyCons,C, q)
6: totalNodes← sum(btmpS)
7: availableNodes← sum(btmpS AND (1− bS))
8: for c← 1 to length(bCons) do
9: totalNodes+ = sum(btmpCons[c])
10: availableNodes+ = sum(btmpCons[c]AND (1− bCons[c]))
11: end for
12: approxGains[i]← (availableNodes/totalNodes) ·maxGains[q]
13: end for
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which remain available to provide potential gain is calculated, and the previously computedmaximum
gain maxGains scaled by this amount to produce an estimation of the gain which q may offer to the
current solution C.

There are several assumptionsmade by this approximation, due to the high level of simplification
it takes towards the problem. However, since these are applied to every constituent during calcula-
tion of their approximate gain, the relationship between them in the current solution C is generally
maintained, and as such the resulting values provide a useful practical approximation of the actual
gain which may be expected from C ∪ {q}.

8.5 Failure Modes

Thismethod of estimating constituent edge use, given that it is a simplistic approximation, is suscepti-
ble to failure under certain conditions. Perhaps the most obvious is within a solution where the edges
of the candidate being considered overlap those of an existing, more optimal constituent. Here, it will
produce a positive estimation of gain, whereas the existing constituent’s edges will always be selected
during Minimal Grammar Parsing, and the estimation should in fact be non-positive. If a second
candidate exists whose edges do not overlap those of any existing constituent, but the candidate’s max-
imum gain is low, it is possible that it will be initially ignored as a suitable constituent since it appears
another, better alternative exists. This particular failure is alleviated, but not fully addressed, by the
use of MGP prior to final inclusion of the candidate in the grammar as shown in Algorithm 5. Since
MGP returns the actual, overall gain resulting from the candidate’s addition, testing whether an im-
provement in encoding length occurred prevents any failures in estimation from affecting the set of
constituents chosen, and instead only those with a genuine positive gain value will be retained.

However, it is possible for a bitmask to become “saturated”, either because a high proportion of
true values exist which overlap with the edges of all remaining candidate constituents, or because all
positions have been occupied by an existing edge, and none remain bywhich a candidate’s gainmay be
estimated. In such circumstances, the existence of a candidatewhich reduces the encoding length is still
possible, and such a candidate will provide a gain which exceeds that of any existing combination of
constituents it will replace. Ideally, this circumstancewould not occur – if approximation of gainwere
accurate, it would already have been selected over any less-optimal constituents – but as the algorithm
only observes a change in grammar encoding length when adding a constituent with non-zero gain, it
is not improbable that the better candidate may be considered later in the construction process.

Given n positions within the bitmask, as the number of occupied positions approaches n there
are progressively less opportunities for a candidate’s edges to achieve an estimated positive gain, and
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so the range of possible values shrinks and causes a reduction in the ability to discriminate between
candidates, ultimately resulting in all candidates being considered of equal value. At this point, it is im-
possible to sort the remaining constituents by their gains, and so the first candidate which produces a
reduction in encoding length followingMGPwill be added to the grammar at each iteration. Optimal
selection of a candidate is therefore impossible, and further approximation will fail.

How and when this occurs depends on the structure of the input data, and on how accurate the
approximation has been at any given point in the construction process. Some inputs may produce
candidate constituents which are largely disjoint from each other, making it easy for the algorithm
to discriminate between them. Where gains have been accurately estimated, the optimal set of con-
stituents will have been selected before bitmask saturation begins to degrade the algorithm’s ability to
usefully estimate them, preventing any adverse effect. It is beyond the scope of this work to examine
such failuremodes in depth, but a study of their occurrence, and research into their prevention, would
be useful as future work.

8.6 Summary

In this chapter, a method was presented by which the potential gain of candidate constituents may
be estimated during grammar construction, based upon the existing constituent edges which are in
use at any stage of construction, and the positions which remain unused and may be leveraged by a
candidate’s edges. Theory was outlined showing that the method produces a linear approximation of
a candidate’s gain, in constrast to the binary selection of edges which result in the actual gain produced
by a constituent during Minimal Grammar Parsing. However, the bitmask-based approach to its cal-
culation is far less complex to compute than MGP performed on a graph representing a grammar’s
elements, and so it enables the number of MGPs required during construction of the grammar to be
massively reduced by replacing their function with a simple calculation which can be computed in a
shorter time. As such, the method provides an improvement over the use of ZZ to traverse the lattice
of candidate constituents, and allows an approximately-optimal ordering of candidates to occur from
which the most immediately beneficial option may be selected, effectively limiting the space of lattice
nodes which must be considered prior to selection of a locally-ideal constituent combination to only
those which are approximately ideal given the current solution. In this manner, compact grammars
can be quickly constructed using a fraction of the expensive MGPs required by an unmodified ZZ
traversal, and in a greatly reduced time.

In the following chapter, the performance of an implementation of this approach to the construc-
tion of grammars from real-world data will be investigated, with the aim of demonstrating the validity
of the theory behind the approach, and its relevance to practical applications.
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The true method of knowledge is experiment.
William Blake, 1788

9
An improved method of Lattice Traversal:

Experiments & Results

9.1 Introduction

Any approximation of global optimisation, i.e. any locally-optimal scheme, is by definition likely to
produce sub-optimal results. The way in which the terminal state is reached depends on the specifics
of the problem being addressed, and of the scheme in operation. Each such schememay be said to pos-
sess particular characteristics which determine its ability and performance, for example the optimum
accuracy whichmay be expected in practice, and the classes of input which are known to cause failures
and degraded performance.

In this chapter, several experiments are presentedwhich explore the performance of the improved
lattice traversal method discussed in Chapter 8, designed to highlight the improvement it provides
over ZZ and discover the circumstances under which it operates poorly. Of particular interest is the
manner inwhich it operates in theworst case: should its ability remain at least equivalent toZZ in such
instances, any benefit which it provides at other timesmay safely be leveraged without resorting to ZZ
itself as a fallback process. Performance is explored not only on music corpora, as the variety of data
which is of primary interest in this thesis, but also on standard DNA and linguistic corpora, the use
of which represents best practice in the evaluation of the performance of grammar-based compression
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algorithms (Benz & Kötzing, 2013; Carrascosa et al., 2011; Siyari & Gallé, 2017).
In these experiments, the new method will firstly be used to construct grammars for inputs from

standard corpora, to provide a direct comparison against the results of existing studies. Pieces from
the corpus of musical scores gathered specifically for this study will then be used as inputs, to examine
the differences in the method’s response to musical and non-musical input types. Finally, a detailed
analysis of the construction process itself given specific inputs is provided, to show how the scheme
achieves its improvement in practice, and identify input types for which it is particularly appropriate.

Given the high construction times for particularly large or complex inputs, all relevant experi-
ments are conducted on collections which are ordered by approximate complexity, so that the greatest
number of inputs may be processed in the available time. Where inputs are from standard corpora
such as the Canterbury Corpus (R. Arnold & Bell, 1997) or a collection of DNA sequences (Grum-
bach&Tahi, 1994), they are processed in order of ascending file size. Where inputs are from the corpus
of digital scores described in Chapter 3, they are processed in ascending order of ZZ-based grammar
construction time, in the samemanner as the experiments presented in Chapter 5. The proportion of
the collection processed in each experiment is recorded in its associated results section.

9.1.1 The Importance of Candidate Ordering

It is important to note that a direct comparison between grammar constructionmethods based on an
insufficient number of samples and encoding size alone is not likely to be fully indicative of perfor-
mance. ZZ itself is deterministic, since it consistently selects the locally optimal choice for any given
position in the lattice, and does not contain any randomisation of its behaviour, rendering its output
entirely repeatable on separate executions.

However, it is possible to implement aZZ-based grammar constructor indifferentways; candidate
constituents may be stored or selected in a variety of different orderings, for example by the position
of the first substring instance in the input string, by the length of the first substring, or, in a transform-
enabled system, by the type of their associated transforms. This ordering has a marked effect on the
final encoding – given a set of candidates which all produce the same reduction in grammar size, only
the first (|Gnext| < |Gcurr|) or last (|Gnext| ≤ |Gcurr|) candidate will be chosen for inclusion at any
given iteration, and every candidate has the potential to “block” another, resulting in a different path
being chosenduring lattice traversal. Therefore, if candidates are trialled in a different order, a different
encoding is likely to result, often with a very different length.

Due to this, it is important not to immediately equate a smaller output encoding size with amore
optimal compressor. Over a large sample, it should be possible to observe a general trend in compres-
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sion strength, but, as discussed previously, grammar construction for large inputs is inherently expen-
sive and so it is unlikely a sufficient sample size is achievable for a single study if a good distribution
of large inputs are to be included. Instead, it is perhaps more indicative to examine the general level
of compression which a method achieves for such inputs – it is known that ZZ produces consistently
smaller grammars than IRR schemes, and so where the method presented in Chapter 8 is capable
of improving on the results of IRR, and encoding size does not differ significantly from that of ZZ-
generated grammars, it is probable that the new method is performing approximately as effectively
as ZZ itself. Equally, where the new method produces a smaller grammar, this does not necessarily
indicate a stronger ability to compress, but rather the reaching of a different locally-optimum node in
the lattice. The primary intention of the technique presented in Chapter 8 is to provide a similar level
of compression to ZZ, but to do so in a more time-efficient manner.

A definitive empirical approach to comparing the ability of ZZ against that of the method this
study presents would be exhaustive: it is the inability of IRR schemes to reach nodes in the lattice
which are as optimal as those arrived at by ZZwhich indicates a failure in IRR to optimise occurrences,
as identified by Carrascosa. Given that a different ordering of candidate constituents can result in a
different path through the lattice being chosen, all possible orderings could be tested and the nodes
reached recorded. Where our method can be shown to arrive at the same set of nodes, it may be said
that compression potential is equal to that of ZZ. Even on a small input with n candidate constituents,
there are n! possible constituent permutations, making such an exhaustive experiment computation-
ally costly to run. For this reason, only an approximation is sought within the following experiments
betweenZZand thepresentedmethod, alongside and improvement in comparisonwith IRRschemes,
as a general indication of performance equality.

9.1.2 Applications

Compression of a given input may be considered a primary application of a grammar construction al-
gorithm. Fromthe compressed representation, other applications becomepossible, such as calculation
of a compression-based distance between inputs. As such, compression effectiveness and efficiency
are aspects which are important to the evaluation of any new or modified compression scheme. This
section explores the effect of the improved lattice traversal method presented in Chapter 8 on the com-
pression of standard andmusical corpora, bothwhen constructing grammars containing non-altering
production rules, and when constructing grammars whose rules may be modified during expansion.
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9.2 Experiment 1: Grammars constructed from Standard Corpora

In this experiment, the method of grammar construction detailed in Chapter 8 is used to generate
grammars for selected items from the Canterbury Corpus (R. Arnold & Bell, 1997) and a collection
of DNA sequences (Grumbach&Tahi, 1994). Sizes of the resulting encodings are compared to those
produced by ZZ and IRR-MC (Carrascosa et al., 2011, 2012), and the number of operations required
to produce a grammar with an equal number of constituents is compared for both methods.

9.2.1 Purpose

The experiment is specifically designed to demonstrate that the dynamic ordering of constituents by
approximate gain allows grammars to be constructed significantly faster than when using ZZ, given
real-world data. The process of computation of an approximate gain for a given constituent is clearly
not a free one, although it is not as expensive as performing a Minimal Grammar Parse. The experi-
ment is also designed to show that, despite this, fewer operations overall of any type are required to
produce an approximately equivalent grammar, i.e. one which results from arrival at a node in the
lattice which is locally optimal and reachable by ZZ search given a particular constituent ordering.

9.2.2 Method

Given the time complexity of grammar construction for large inputs, items are selected from the Can-
terbury andDNACorpora based on their storage size, in ascending order, so that as many inputs may
be processed as possible given the available experimental time. The order of computationmay be seen
in Table 9.1.

For each item, all data is read into an array, and represented as a sequence of integers. The se-
quence is then passed as input into an implementation of the algorithm detailed in this study. During
construction, a count is kept of how many MGP operations are performed, and how many times a
bitmask is updated and applied, for instance to approximate the gain of adding a new constituent to
an existing combination. Record is also kept of the number of MGPs and current encoding size each
time a more compact encoding is discovered. Each reduction in model size is the result of adding a
new constituent to the grammar, or removing a constituent which is no longer useful. Construction
continues until addition or removal of any constituent from the current set of constituents provides
no decrease in encoding size.

This process is repeated for all inputs tested, and the resulting encoding sizes andoperation counts
analysed and directly compared to their ZZ-derived equivalent. Encoding sizes for ZZ-generated gram-
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Canterbury Corpus DNA corpus
File Bytes File Bytes

grammar.lsp 3721 humdyst 38770
xargs.1 4227 humprtb 56737
fields.c 11150 humhdab 58864
cp.html 24603 humghcs 66495
sum 38240 humhbb 73308

asyoulik.txt 125179 mtpacga 100314
alice29.txt 152089 chmpxx 121024
lcet10.txt 426754 chntxx 155844

plrabn12.txt 481861 mpomtcg 186609
ptt5 513216 vaccg 191737

kennedy.xls 1029744 hehcmv 229354

Table 9.1: Items from the Canterbury and DNA Corpora, ordered by file size in bytes – processing in this order allows
the largest number of items to be considered in the shortest ধme.

mars are drawn from existing studies (Carrascosa et al., 2011, 2012), and where a study reports an en-
coding size as a percentage of a quantified IRR-MC encoding, the most compact possible encoding is
calculated from these values.

9.2.3 Results

DNA Corpus

Grammars were generated for three items from the DNA corpus; Table 9.2 contains the results, and
relevant metrics computed from the process or from the associated studies. The minimum number
of MGPs required to produce an equivalent grammar using ZZ is approximated by cn, where c is
the number of constituents used in the encoding and n is the total number of candidate constituents
during construction. This approximately represents optimal construction, and assumesnooccurrence
optimisation is attempted or required (i.e. constructionwas completed using only “add” steps by ZZ).
Grammar sizes are reported in number of symbols.

Encoding length at each observed reduction during construction was plotted against the number
ofMGPs for each piece, to show the construction rate achieved, asmay be seen in Figures 9.1 – 9.3. The
rate at which the equivalent grammar is constructed by ZZ is also plotted on each figure, to provide a
direct indication of the improvement possible through the use of the bitmask-based method.
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Sequence: humdyst humprtb humhdab
|G| 10,050 13,667 13,980

Number of constituents chosen 403 of 29,986 706 of 60,662 783 of 71,252
Number of MGPs 359,912 1,820,940 3,340,902
Time per MGP (s) 0.33 1.858 2.019

Number of Bitmasks 17,813,688 60,211,460 80,983,229
Time per Bitmask (s) 1.57× 10−4 0.0123 2.95× 10−4

Total time (s) 122,755 4,164,184 6,768,176
|GZZ| 10,078 (-8.93%) 13,658 (-8.27%) 13,993 (-8.7%)

Number of MGPs (min) 12,084,358 42,827,372 55,790,316
Total time (min, s) 3,991,500 79,573,257 112,623,981
|GIRR−MC| 11,066 14,890 15,327

MGP ratio (this vs. ZZ) 0.03 0.043 0.06
Time ratio (this vs. ZZ) 0.031 0.052 0.061

Table 9.2: The result of generaধng grammars encoding items from the DNA corpus using the method described in
the previous chapter. Encoding sizes for ZZ- and IRR-MC-derived models are taken from studies by Carrascosa et
al., with the stated improvement for ZZ over IRR-MC given as a percentage in brackets, following the calculated ZZ
model size.
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Figure 9.1: Number of MGPs to encoding length observed during construcধon, for humdyst from the DNA corpus,
shown for the bitmask-based method and standard ZZ. Both axes are ploħed logarithmically to highlight the differ-
ence in performance.

178



10 4 10 5 10 6 10 7 10 8

Number of MGPs

1.5

2

2.5

3

3.5

4

4.5

5

|G
| (

sy
m

b
o

ls
)

10 4

Bitmask-based

ZZ

Figure 9.2: Number of MGPs to encoding length observed during construcধon, for humprtb from the DNA corpus,
shown for the bitmask-based method and standard ZZ. Both axes are ploħed logarithmically to highlight the differ-
ence in performance.

9.2.4 Analysis

From the results, it may be stated that the new method generates models of comparable size to those
created by ZZ, and significantly smaller than those created by IRR-MC. The newly-generated gram-
mars are not equal to their ZZ counterparts; for example, the ratio of encoding size of the newmethod
to ZZ for humdystand humhdab is< 0.998 and< 0.992 respectively, but for humprtb it is less than
< 1.001. Notably, ratios for both methods against IRR-MC are approximately 0.91 for humdyst, and
0.92 for humprtb and humhdab, highlighting the similarity in encoding size between them and the
improvement both methods offer over IRR-MC.

In terms of computational complexity, the difference in number of MGPs is great; in every case,
< 6% of ZZ’s graph parses are required to produce a grammar of comparable compactness by the
presented method. Of course, this is due to the substitution of the MGP step for each candidate
constituent with the bitmask-based approximation of their gain. Although the latter is a far less com-
plex operation, we may for a moment consider the effect if this were not true. For humdyst, 359,912
MGPs are required to produce a grammar of comparable compactness to ZZ, and 17,813,688 bitmasks
are computed during the process. The resulting grammar contains 403 constituents, from a pool of
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Figure 9.3: Number of MGPs to encoding length observed during construcধon, for humhdab from the DNA corpus,
shown for the bitmask-based method and standard ZZ. Both axes are ploħed logarithmically to highlight the differ-
ence in performance.
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29,986 candidates. To generate a similar grammar, ZZ would require approximately 403 · 29,986 =
12,084,358 MGPs. The number of total MGPs and bitmask computations for the new method com-
bined is 359,912 + 17,813,688 = 18,173,600, which is approximately 1.5 times greater than the number
of MGPs required by ZZ. Thus, it is important to examine the complexity of a graph parse in pro-
portion to that of a bitmask operation, and the run-times of these steps in practice, to decide whether
the method presented here offers better performance for this class of input. Importantly, this high-
lights that the scheme does not reduce the number of overall operations, but instead trades an increase
in the total number of operations required for the opportunity to replace the majority of expensive
operations with others which are far cheaper to compute.

An examination of the average operation times demonstrates the performance increase this strat-
egy offers. For humdyst, under these experimental conditions, a single MGP requires approximately
0.33s, but a single bitmask operation requires 1.57× 10−4 s. Operation time is measured from when
the function implementing the operation is called to the time its result is fully computed. An “MGP
operation” is defined as a parse of the graph for S and all constituents currently chosen for inclusion
in the grammar, given a bit vector representing that combination of constituents, and resulting in a
total parse cost in symbols and a bit vector of all constituents whose edges have been actively used. A
“bitmask operation” is defined as an approximation of gain for a candidate constituent, given a bit-
mask representing the currently used nodes within the current parse graph, a bitmask representing
the nodes which may be occupied by the candidate constituent, and a maximum possible gain value
for that candidate. The operation results in an estimation of the total possible gain if the candidate
were added to the current combination of constituents.

In the case of humdyst, a bitmask operation takes approximately 4.76× 10−4 of the average time
of an MGP operation, and the proportion of total MGPs to bitmask operations is 0.02, enabling the
completion of 2100 bitmask operations – an estimation of gain for 1/14 of all possible constituents – in
the time required to perform a single MGP resulting in an actual gain for a single constituent. Given
that an equivalent, idealised grammar construction using ZZ for humdyst would require 12,084,358
MGPs at an average of 0.33s each, construction time using the bitmask-basedmethod is over 35.4 times
faster than ZZ.

The scheme relies on the fact that potential gainsmust be computed for all candidate constituents
before a locally optimal constituent may be added to the current set, and these gains may be quickly
computed with sufficient accuracy to prevent many MGPs from being performed before a candidate
is found which produces an actual gain in encoding size. Because the approximation is sufficiently
accurate in practice and does not rely on any particular attribute of a constituent, the method may be
applied effectively to all input types and is capable of producing a result comparable to that of ZZ.
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Itmaybe seen that somemodels producedby the presentedmethod are in factmore compact than
those produced by ZZ. This is not, however, an indication of better compression, as discussed earlier;
because encoding sizes for both methods are comparable in ratio, they may be considered approxi-
mately equivalent, and occur because a different locally optimal node in the lattice has been reached,
and not necessarily because a globally optimal path has been discovered. This method performs oc-
currence optimisation in the same manner as ZZ, and is also not able to differentiate between nodes
which lead to those which are are globally optimal or sub-optimal when selecting a single candidate at
each iteration. Despite this, very compact grammars can be produced, and this method is shown to
be as powerful as ZZ with regards to potential compression.

Canterbury Corpus

In a similar manner to the experiment conducted on the DNA corpus above, grammars were gener-
ated for three items from the Canterbury corpus; Table 9.3 contains the results, and metrics resulting
from these and other associated studies. As previously described, the minimum number of MGPs
required to produce an equivalent grammar using ZZ is optimally approximated by cn, where c is the
number of constituents used in the encoding and n is the total number of candidate constituents dur-
ing construction. Grammar sizes are reported in the number of symbols which constitute the final
encoding, |G|.

Encoding length at each observed reduction during construction was again plotted against the
number ofMGPs for each piece, to show the construction rate achieved, as may be seen in Figures 9.4
– 9.6. The rate at which the equivalent grammar is constructed by ZZ is also plotted on each figure,
to provide a direct indication of the improvement possible through the use of the new method.

9.2.5 Analysis

The new method was able to generate a smaller encoding than IRR-MC for two of the tested inputs
only, and no models were smaller than their ZZ counterparts on this occasion. Encoding size ratios
from the newmethod toZZ for grammar.lsp, xargs.1 and fields.cwere 1.012, 1.008 and 1.012 respectively.
Ratios from the newmethod to IRR-MCwere 1.006, 0.991 and 0.981, highlighting the newmethod’s
failure to generate a smaller model for grammar.lsp. The reason for this failure is not clear from the
results, and requires further investigation. However, it is not impossible for substring replacement to
be performedby an IRRalgorithm in amannerwhich produces a relatively compactmodel, providing
the order inwhich replacements aremade is such that only substitutionswhichmaybe retained during
a ZZ-based construction are considered. Encoding size ratios from IRR-MC toZZ are noticably lower
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Sequence: grammar.lsp xargs.1 fields.c
|G| 1,482 1,988 3,350

Number of constituents chosen 138 of 12,717 194 of 7,439 342 of 56,044
Number of MGPs 152,662 133,757 1,227,949
Time per MGP (s) 0.078 0.081168 0.629288

Number of Bitmasks 2,804,250 1,749,421 33,031,002
Time per Bitmask (s) 6.5× 10−5 7.7× 10−5 1.21× 10−4

Total time (s) 12,200 11,093 779,139
|GZZ| 1,465 1,972 3,311

Number of MGPs (min) 1,754,946 1,443,166 19,167,048
Total time (min, s) 137,200 117,139 12,061,596
|GIRR−MC| 1,473 2,006 3,416

MGP ratio (this vs. ZZ) 0.087 0.093 0.064
Time ratio (this vs. ZZ) 0.089 0.095 0.065

Table 9.3: The result of generaধng grammars encoding items from the Canterbury corpus using the method described
in the previous chapter. Encoding sizes for ZZ- and IRR-MC-derived models are taken from studies by Carrascosa et
al.
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Figure 9.4: Number of MGPs to encoding length observed during construcধon, for grammar.lsp from the Canterbury
corpus, shown for the bitmask-based method and standard ZZ. Both axes are ploħed logarithmically to highlight the
difference in performance.
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Figure 9.5: Number of MGPs to encoding length observed during construcধon, for xargs.1 from the Canterbury
corpus, shown for the bitmask-based method and standard ZZ. Both axes are ploħed logarithmically to highlight the
difference in performance.
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Figure 9.6: Number of MGPs to encoding length observed during construcধon, for fields.c from the Canterbury cor-
pus, shown for the bitmask-based method and standard ZZ. Both axes are ploħed logarithmically to highlight the
difference in performance.
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for these inputs from the Canterbury Corpus than for those of the DNA corpus, at 1.006, 1.009 and
1.032. It is possible that the chosen Canterbury Corpus inputs are relatively suitable for compression
with IRR-MC, as performed byCarrascosa et al. (Carrascosa et al., 2011), or that a specific failuremode
is being activated in the new method for grammar.lsp. Such a mode might occur because the order of
constituent selection is preventing a more optimal path through the lattice to be followed, or because
approximation of constituent gain is incorrectly functioning during the grammar’s construction due
to some particular characteristic of the input’s parse graph. Isolating the cause of this failure could
provide a greater understanding of the properties of the bitmask-based approach in practice, andmay
lead to development of an adapted approachwhich is able to better IRR-MCon all inputs as intended.

Once again, the difference in number of MGPs is great, with < 10% of ZZ’s graph parses being
required by the new method for grammar construction, for every input tested, and < 7% for the
largest. Based upon the average time taken for each MGP operation, construction time is reduced
to < 10% of the time which would be needed to produce a grammar with an equivalent number of
constituents using ZZ in the best case, as previously described. Although the reduction in complexity
seen over ZZ is less than that observed for inputs from the DNA corpus, it is not due to an increase
in input complexity, as might be assumed – the inputs for this experiment are notably smaller in size
and contain fewer repeating substrings. Instead, it is likely due a less uniformoccurrence of substrings,
as suggested by Figures 9.4 – 9.6. Unlike the curves produced during construction of models for the
DNA corpus, these figures show a shallower transition from high- to low-gain for each additional
constituent, and instability in the last third of the progression towards the final encoding. This may
highlight a failure in the approximation of constituent gain, since each chosen candidate ci should
ideally reduce |G| less than ci−1.

Unlike the models generated by the new method for inputs from the DNA corpus, no models
produced from the Canterbury Corpus are more compact than those created using ZZ. As discussed
during analysis of the previous experiment, a single more compact encoding is not necessarily an indi-
cation of an algorithm’s general ability to better compress its inputs. It is possible that the grammars
output by the new method are approximately equivalent to their ZZ counterparts, as locally optimal
constituent combinations based upon the specific configuration of the lattice seen by the algorithm
during construction.

However, these limited results do not by themselves support the assertion that the new method
is consistently as powerful as ZZ with regards to potential compression, and the larger encoding gen-
erated for grammar.lsp is a significant indication that a failure condition exists which can degrade per-
formance to below that of the naïve IRR-MC. The number of inputs in this experiment is extremely
limited, and certainly not representative of the universe of linguistic inputs. Therefore, further testing

185



is required to assess the general ability of themethod to compress, forwhich amore representative sam-
ple is needed. The following experiment attempts to address this with respect to the musical domain
by applying the method to a large pool of symbolic inputs.

9.3 Experiment 2: Grammars constructed from the Corpus of Musical
Scores

This experiment demonstrates the grammar construction method’s response to musical data, and
specifically to pieces from the corpus ofmusical scores introduced in Section 3.6, fromwhich all input
data is sourced. The experiment is conducted on pieces in order of increasing approximate complexity,
as shown in Chapter 3, Figure 3.1. As described previously, complexity is approximated using the run-
times required to produce normal ZZ-generated grammars for each piece. As has also been previously
highlighted, grammars are computationally expensive to construct, potentially resulting inprohibitive
run-times. Processing pieces in the order dictated by known construction times using ZZ allows for
coverage of as much of the corpus as possible in the available time.

9.3.1 Purpose

The experiment is designed to allow a direct comparison to be made between the new method and
ZZ in terms of output encoding size, construction time and complexity, in order to evaluate the level
of improvement which the new method of traversal provides. It would be possible to substitute an
alternative to MGP at each step which is, itself, no more efficient or effective in comparison to MGP,
and yet still reduces the number of MGP operations. This experiment enables a close examination of
the cost or number of operations,MGP or otherwise, which are required during construction, so that
it is possible to evaluate whether the new method provides an advantage or simply an alternative to
ZZ in practical terms.

9.3.2 Method

For each piece within the corpus, grammars are constructed from chromatic pitch values using the
method detailed in Chapter 8, and ZZ. Rule modification is not enabled, producing grammars which
are directly comparable from both methods. All grammars are fully expanded and compared to their
input strings, to ensure they are able to exactly reproduce it, and thus are valid models for each data
sequence. The length of the resulting encodings are stored, along with the time required for their
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construction. For the new method, the total number of MGP and bitmask operations are stored,
along with the total time taken performing MGP and bitmask manipulation steps.

The number of MGPs required for construction of a specific grammar by ZZ may be measured
empirically, although it is important to note that the grammar produced may be significantly differ-
ent from that constructed via the new method, particularly in structure. There is also likely to be a
difference in encoding size, given the large number of locally-optimal models it is possible to produce.
These differences may make it impossible to directly compare the efficiency of both algorithms, since
the results obtained are not equal. However, there is merit in attempting such a comparison; if it may
be shown that one algorithm generates a smaller model in fewer operations on a given input, that algo-
rithm is provably more efficient in that specific case. In order to capture as much of the characteristics
of both algorithms in this experiment, ZZ-optimised model sizes and MGP counts will be obtained
both by actual grammar construction, and by calculation of the minimum possible MGP steps re-
quired to arrive at a ZZ-built grammar with the same encoding as that produced by the new method.
Calculation of this “best case” MGP count will be achieved in the manner described in Section 9.2.3
above, using the number of possible and chosen constituents in the encoding, and assuming the final
node in the lattice is arrived at in the minimum number of steps.

9.3.3 Results

Of the 7928 pieces in the corpus, it was possible to process 7448 in the time available, thus covering
over 93% of the available data. For 71 inputs, ranging in size from 4 to 87 symbols in length, addition
of any tested combination of constituents did not produce an encoding at least as compact as the
original input string. For these pieces, a construction time of 0s was recorded, along with an encoding
size |G| = l + 1 where l is the length of the input in symbols. Such pieces were excluded from the
construction time comparisons.

Figure 9.7 shows the measured grammar construction times for ZZ and the new method intro-
duced in this study, here referred to as the Bitmask method. Times for each method are indepen-
dently sorted, so as to present their general response characteristic. Construction times ranged from
0.358ms to 37m 17s for ZZ, and from 0.334ms to 5m 39s for the new method. Overall, the Bitmask-
basedmethod offered an improved construction time for over 96.7% of inputs, and a slower construc-
tion time for over 3% of inputs. Mean input lengths for the slower groupwere small, at 55 symbols out
of an average length of 300.7 for the pieces tested, butwith a standard deviation of 37.77. Input lengths
in this group ranged from 6 to 230, and of the 234 pieces it contained, 59 could not be compressed by
either method.
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Figure 9.7: Independently-sorted construcধon ধmes for grammars built using ZZ, and the Bitmask-based method
introduced in this study. The y-axis is logarithmic to highlight the relaধonship between methods.

Average construction times across the corpus were 32.6s for ZZ, and 5s for the Bitmask-based
method. Standard deviation for both groups is obviously high, at 141.5 and 19.4 respectively). The
reduction in construction time resulting from the use of the new method over ZZ ranged from a -
1.05s increase to a 2025.4s decrease, with an average decrease of 26.7s and standard deviation of 123.4s.

Figure 9.8 shows the range of compression achieved by both methods on the tested pieces, as a
ratio of compressed:uncompressedmodel size. Where compression was impossible for smaller inputs,
ratios range between 1 and 1.25, the latter for an input of size 4 with 1 additional terminator symbol.
Graph traces appear approximately equal, and this is generally true, with over 52.8% ofmodels exhibit-
ing an equal size for bothmethods. Where unequal, there is a bias towards the newmethod producing
larger models: almost 38% are larger, whilst the remaining 9.2% are more compact. Over all inputs,
models constructed by the newmethodwere atmost 9 symbols smaller than their ZZ-produced coun-
terparts, and at worst 58 symbols larger. However, the average size difference was an increase of 0.924
symbols, with a standard deviation of 2.51.

Overall, use of the new constructionmethod gave an average degradation inmodel size of< 1%of
the original input size, with a standard deviation of 0.0085. In theworst case, amodel produced by the
new method was< 11% of the original input size greater in encoding length than its ZZ counterpart.

The difference in model sizes between methods is highlighted in Figure 9.9. Size difference is
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Figure 9.8: Independently-sorted raধos of compressed:uncompressed model size for grammars built using ZZ, and
the Bitmask-based method introduced in this study. Model sizes between methods are approximately equal, but with
a greater bias towards larger models over smaller models for the new method. Difference is raধos is too close to
allow both traces to be clearly disধnguished.

189



1000 2000 3000 4000 5000 6000 7000

Piece number

-10

0

10

20

30

40

50

60

M
o
d

e
l 

si
z
e
 d

if
fe

re
n

c
e
 (

Z
Z

 -
 B

it
m

a
sk

 m
e
th

o
d

)

Figure 9.9: Difference in model sizes between methods, calculated as b − z where sizes are b for the Bitmask-based
method, and z for ZZ.

calculated by subtracting, piecewise, the size of each model produced by ZZ from the size of each
model produced by the new method. Since model sizes are from the set of integers, there are many
differences of equal value, giving the figure a step-like appearance. As noted above, the majority of
models are equal in size, but a greater proportion of the remainder are larger.

Figure 9.10 records the number of MGPs required by both methods for construction of their
grammars, and also for an estimated “best case” ZZ-produced model of equivalent encoding to that
produced by the new method (i.e. one containing an equal number of rules). MGP counts are in-
dependently sorted, so that the general characteristic of each method may be observed. There is a
relationship between the exponential nature of the construction times required by the corpus, and
the number ofMGPs performed during grammar construction. Due to this, the y-axis of the figure is
logarithmic, highlighting the close relationship between response curves.

Estimated “best case” MGP counts closely track those measured during grammar construction
by ZZ. In the most extreme cases, estimated MGP count is 39.7% less, and over 99% more than the
measured count. However, average difference between these values is under 3.4%, with a standard de-
viation of 0.095. In both extreme cases, the input contained a large number of candidate constituents:
29,940 in the former case (the maximum of all tested inputs), and 7,127 in the latter (over 11 times
greater than the average number of candidates over all inputs). In the first instance, ZZ used fewer
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constituents in practice to produce a smaller model than that generated by the new method (41:51,
with model sizes 552:553 for an input of length 1109 symbols), and in the second instance ZZ used
a greater number, again producing a smaller model (15:12, with model sizes 422:452 for an input of
length 858 symbols).

To examine the distribution of difference inMGP counts between methods, Figure 9.11 plots the
ratio of counts between the Bitmask-based method and ZZ against the length of each input. A ratio
of 1 here indicates that an equal number of MGPs were required by both methods when generating a
grammar from a given input, and a ratio greater than 1 indicates that ZZ was able to produce a model
in fewerMGPs than the newmethod. The relationship between this ratio and the length of the input
is highlighted by the wide spread of ratios for small inputs, and the logarithmic tailing effect as input
sizes grow strongly.

The average ratio of MGP counts between the new method and ZZ is 24.1%, with a standard
deviation of 0.265, showing the mean reduction in number of MGPs offered by the new method is
approximately 76%. In the best case, less than 3.4% of theMGPs required by ZZwere necessary for an
input of length 793, to produce amodel with an encoding length of 505 symbols compared to amodel
of length 485 symbols produced by ZZ. That specific input contained 5,031 constituents, over 8 times
greater than the average number of constituents over all inputs. In the worst case, almost 300% of
theMGPs required by ZZ were necessary. However, this was from an input of length 87 symbols, for
which neither method was able to produce a more compact encoding – the minimumwas l+ 1 = 88.

Across all inputs tested, the Bitmask-based method of grammar construction offers a reduction
in the number of MGPs in over 99% of cases. Degradation occurred in under 1% of cases, and these
involved only small inputs of< 88 symbols in length (with an average of 33 symbols, standard devia-
tion< 18.4). An equal number of MGPs were also needed in under 1% of cases, for inputs of length
< 20 symbols (with an average of 11 symbols, standard deviation< 5.87).

9.3.4 Analysis

Approximation of constituent gain during grammar construction was able to provide a significantly
improved construction time for the vast majority of the tested inputs. This was achieved through
minimisation of the number of MGP operations required, and replacement of the remaining evalua-
tions with a bitmask operation which is vastly simpler and therefore faster to compute. For 175 pieces
from the selection under test, although it was possible to produce a compressed encoding, construc-
tion times were not improved through the use of bitmasks, despite fewer or equal numbers of MGPs
being used. Instead, the degradation is due to the additional overhead introduced by the computation
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Figure 9.10: Independently-sorted MGP counts for the new Bitmask-based method (blue), ZZ (red), and a calculated
best-case ZZ model equivalent to that of the new method (yellow). The esধmaধon is so close to the actual counts
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Figure 9.11: Distribuধon of difference in MGP counts between the Bitmask-based method and ZZ, relaধve to the
length of each input (x-axis). A high raধo indicates the former method required far greater MGPs when generaধng a
grammar for that input.

of the masks, relative to the very short runtimes required to construct the grammars: the maximum
time within this group is 5.3s and 6.4s, for ZZ and the bitmask method respectively. It is possible
to construct these grammars quickly because of the low number of constituents chosen for inclusion
– on average, models in this group were composed of 1.5 constituents, with a maximum of 7 used.
Since the bitmask method in this configuration requires prior knowledge of the maximum possible
compression each constituent can provide when applied alone to form a grammar, construction does
not begin until nMGPs have been performed, where n is the total number of candidate constituents
available. In contrast, ZZ begins its traversal immediately, and is able to select its first constituent af-
ter n parses. Of these 175 pieces, ZZ produced smaller encodings for 6 inputs, and the new method
produced smaller encodings for 13 inputs. Of all pieces tested, 522 were of less or equal length to the
average of the group under discussion.

These observations show that the bitmaskmethod is not a better choice than ZZ for small inputs,
but it is capable of producing a smaller encoding for them in a minority of cases. Inputs of length
≤ 61 symbols and producing models with≤ 7 production rules might be approximately considered
too short for the scheme to offer any benefit in construction time over ZZ. However, for all other
inputs, the bitmask method is proved capable of offering a reduction as great as > 99% of the con-
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struction time (for a small input of length 10 symbols), and 53.8% on average for the experimental data
(approximately, for inputs typically ranging from 100 to 200 symbols in length). Even for large inputs,
a significant reduction is possible: for one input of length 1605 symbols, the new method produced
a grammar < 0.4% larger in < 7% of the time required by ZZ – a reduction of over 93%. From all
pieces of length≥ 1000 symbols, a minimum reduction in construction time of> 66%was observed
along with an average of> 84%, suggesting the method is most suitable for large inputs.

However, this increase in speed is available at the risk of marginally greater encoding lengths;
37.96% of all models generated by the new method were larger than their ZZ counterparts, by an
average of 0.9236 and a maximum of 9 symbols. In the worst cases, this increase represented between
1.01% and 3.24% of the size of the ZZ-producedmodel, and occurred on inputs of approximately 1000
symbols in length. Given that standard deviation for the average increase in model size is 2.5074, and
standard deviation of input sizes is > 329, from the results it can be suggested that an increase in
encoding length of approximately 0.8%may be expected in the worst case, for inputs with the same
characteristics as those tested; in paticular, this may be considered a good estimation for sequences
of musical notes. The majority of the models produced by the bitmask method were equal in size to
those produced by ZZ, suggesting that, although the final node reached in the lattice may be different
– resulting in a different encoded structure – the outputs generated are likely to be equivalent in terms
of encoding length. Processing of the results confirms that a notable number of final nodes differ be-
tween both methods: < 31.4% of all encodings were found to contain the same constituents, and
< 31.4% of those which contained a different combination of constituents were equal in encoding
length, showing that the new method was often able to generate an equally small model even when
the same node chosen by ZZ could not be reached during traversal.

The results exhibit further evidence that the difference in encoding lengths between methods is
generally very minor. As may be seen from Figure 9.8, when lists of compression ratios achieved by
both methods are sorted and compared, they appear visually close to identical, especially as less com-
pression becomes possible. A mathematical comparison of these lists reveals an average difference of
0.0029x the length of the input, with a standard deviation of 0.0014, proving that ratios achieved over
many inputs are, for this data, highly similar. It is reasonable to suggest thismay be a general trait as the
number of inputs increases, although confirmation of this hypothesis is beyond the scope of this study.
If the sizes of the generated models belong to the same class between methods – that is, if encodings
differ because they are determined by the arrival of the algorithms at different, locally-optimal nodes
in the lattice, but the paths for each include reasonable occurrence optimisation – then they would in-
deed exhibit individual differences in encoding length, but over the universe of all possible inputs the
sum of all differences would by asymptotic. The bias to a slight increase in model size observed in this
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experiment may be an indication that constituent selection via the bitmask method is marginally less
optimal than ZZ with respect to encoding length, or indeed that the sample size is too small to clearly
demonstrate the asymptote. The fact that a minority of grammars produced by the bitmask method
have smaller encodings than their ZZ counterparts offers support to the idea that a class of local “op-
timally compact” encodings exists, and both methods are capable of generating models belonging to
this class.

Some models produced by the bitmask method were notably larger than those produced by ZZ.
Of all models, 722 were larger than the average size difference plus the deviation, representing almost
9.7% of the encodings generated by the new method. These also represent a range of compression
ratios, from 0.29x to 0.86x the size of the original input. In the worst case – an encoding 58 sym-
bols greater than that of ZZ, for an input of length 541 – a compression ratio of 0.46, at the highest
end of the spectrum, is exhibited by ZZ. The number of constituents chosen for the grammar by ZZ
is greater, at 16 versus 13. Given that such strong compression is achieved, it is likely that this input
possesses several conflicting candidate constituents with high potential for compression (i.e. they rep-
resent many substring instances, and are long in length), and a globally sub-optimal choice at an early
stage of lattice traversal by the newmethod could account for the relatively large encoding size increase.
In itself, this represents a known deficiency when selecting a local optimum. Although this case can-
not account for all results within this group of 722 models, general compression ratios achieved by
the newmethod once again track those of ZZ relatively closely, with an absolute maximum difference
of 0.0284 between the lists of sorted ratios, again suggesting the global differences in encoding size
might be relatively minor over a larger input sample. Without examination of results over a larger
sample, it is impossible to concretely state which models represent outliers, or which are members of
an “optimally compact” class.

Aside froma small number of failure cases for very small inputs, the results clearly demonstrate the
newmethod offers a significant decrease in grammar construction time, and that this is related directly
to its ability to reduce thenumber ofMGPs requiredduring construction, as shown inFigures 9.10 and
9.7. This reduction tends to steadily increase as input lengths grow, as shown in Figure 9.11, although
the relationship is not directly proportional (i.e. the saving in construction time offered by the new
method cannotmatch the exponential increase in complexity relative to the length of the input). This
shows that although the newmethod is significantly more efficient than ZZ, it naturally cannot allow
Occurrence-Optimised grammar construction algorithms to approach the linear complexity offered
by IRR algorithms.

Although, as noted above, there is a differencebetween thenumberof observedMGPsusedbyZZ,
and the estimated “best-case” MGPs which would be required by ZZ to produce a grammar with the
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same constituents as those chosen by the bitmaskmethod for each piece, this difference is insignificant
to the purpose of the experiment. As Figure 9.10 shows, correlation between actual and estimated
number of MGPs for ZZ is high, and unimportant when evaluating the improvement the bitmask
method offers over ZZ in terms of MGP count and, therefore, construction time. These results also
show that estimation of MGP count is a reasonable approximation of ZZ build complexity, and may
be used in a direct comparison against the new method.

Examination of the ratio ofMGP counts between bothmethods in relation to input length shows
clearly that the new method does not always require a lower number of MGPs for small inputs, par-
ticularly those less than 100 symbols in length, and the number of requiredMGPs reduces until input
lengths are≥ 250 approximately, at which point≤ 0.5 times the number of parses are needed. This
ratio is directly related to grammar construction time, although construction andmaintenance of the
bitmasks introduces some additional overhead. Nonetheless, MGP count ratios may be considered
a reasonable indication of best-case expected build times. Figure 9.11 shows a steady reduction in the
number of MGPs required by the new method as input size increases, although the sample size for
inputs of length aproximately≥ 1800 is far smaller than those of length< 1800. The figure suggests
there is a continuing trend towards a logarithmic reduction in MGP count as input length grows, in-
dicating that the bitmask method may be highly beneficial in a situation where it is desirable to build
grammars of comparable size to those produced by ZZ, from large inputs.

For the best case, where the new method was able to construct a grammar using less than 3.4%
of the MGPs required by ZZ, it is important to note that the resulting encoding was larger than that
generated by ZZ, at a ratio of 505:485 for an input of 793 symbols – an increase in size of over 2.5%.
However, the results contain a great number ofmodelswith similar compression ratioswere generated
for other inputs, and only a small proportion ofmodels constructed via the newmethod suffered from
a large increase in encoding length. Figure 9.11 shows a significant portion of the generated models
were constructed using less than 0.35 times the number of MGPs, and so a correlation between fewer
MGPs and significantly increased encoding lengths is not shown to exist. It is likely, therefore, that
the best-case example discussed in this paragraph is an outlier in terms of its increased encoding length,
and the results show that a great reduction inMGP counts is in fact a general characteristic of the new
method.

Overall, this experiment shows that a bitmask-based approach to grammar construction is appro-
priate for inputs which are not small – at least a few hundred symbols in length – andmay offer a good
advantage in terms of computational complexity for very large inputs. However, there is a stronger
bias towards the production of larger encodings than ZZ, but this increase is minimal, and the new
method often produced equally small models for the experimental data used. Such reduction in the
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number of MGPs required cannot reduce the complexity of the algorithm to that of an IRR scheme,
but it does allow larger inputs to be handled than ZZ given the same allowed runtime. Providing a
linear-time algorithm is notmandated by the task, the bitmaskmethod is, inmost cases, more efficient
than ZZ for producing compact grammars.

9.4 Experiment 3: Grammars constructed from the Corpus of Musical
Scores, with Rule Modification

Given that it is possible to construct a grammar which includes rule modifiers using a straight-line
grammar constructor and lattice-traversal optimisation method such as ZZ, it is also possible to gen-
erate grammars which include rule modifications via the method presented in Chapter 8. Since the
method itself does not alter the construction process, and instead reduces the time required to add a
new constituent to a grammar, it needs no alterations toworkwith rulemodifiers beyond thosewhich
are required in order to explore the additional dimension of modifiers. The increase in complexity
which this space introduces is a distinct disadvantage to the use of grammars which include rule mod-
ification, and so it is certainly desirable to use any algorithm or heuristics which reduce grammar con-
struction time in order to make the scheme practically useful. This section explores the performance
of the bitmask-based method in the production of grammars which allow for rule modification.

9.4.1 Purpose

Specifically, this experiment is designed to allow a direct comparison to be made between ZZ-based
and bitmask-based grammar construction algorithms, in terms of construction time and compression
ratio. This is significant because without a strong reduction in construction complexity, the addition
of rule modifiers to the grammar construction process is impractical for any situation where large
periods of computation per model are unacceptable. As demonstrated in Chapter 5, ZZ is a useful
algorithm for several musicological tasks, needing no domain knowledge to produce some musically-
relevant observations. All that is required for many such tasks is the production of a model from
a symbolic input sequence, and the aim of this experiment is to demonstrate whether the bitmask
methodoffers a great enough reduction in computational complexity to allow thepractical production
of models which make use of rule modifiers.
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9.4.2 Method

As in Experiment 9.3, grammars are constructed from chromatic pitch values for each piece within the
corpus. The construction process again uses themethod detailed in Chapter 8, but includes the explo-
ration of the rule modifier dimension as presented in Chapter 6. Following that method, a grammar
is first constructed which does not allow rule modification, and then each candidate modifier is added
to the grammar in turn, with anymodifier generating a smaller encoding added to the set of usedmod-
ifiers. New candidate modifiers are tested in this manner until no reduction in encoding size occurs,
and the smallest model discovered during this ZZ-style traversal of the lattice of modifiers is output
as the final encoding. All generated grammars are expanded and compared to their original inputs, to
ensure they model each piece correctly. The length of the resulting encodings are stored, along with
the time required for their construction.

Three specific construction methods are included in the investigation:

1. Bitmask-based, with rule modification (producing a flexible grammar)

2. ZZ-based, with rule modification (producing a flexible grammar)

3. ZZ-based, without rule modification (producing a standard grammar)

9.4.3 Results

For this experiment, it was possible to process 6100 pieces in the time available, of which 5718were also
processed in Experiment 9.3, thus covering over 72% of the available data in a manner which allows
piece-wise alignment of the results. For 68 inputs, amodel whichwith amore compact encoding than
the original input could not be found when building a grammar which either did not allow rule mod-
ification, or a grammar which did allow modification but was constructed using the bitmask method.
By comparison, use of the ZZ-style traversal presented in Chapter 6 resulted in a failure to produce
more compact encodings for 66 inputs.

Figure 9.12 shows the measured grammar construction times for the three methods. Again, times
are independently sorted, so as to present the general response characteristic of each method to the
tested inputs. Construction times for method 1 (bitmask-based, with rule modification) ranged from
498ns to 11m 10s, compared a range of 34ms to 18h 54m formethod 2, and 27ms to 3m 16s formethod 3.
Method 1 was able to generate grammars faster than method 2 in every case, and faster than method 3
in over 6.7%of cases. Itwas, however, slower thanmethod 3 in over 93%of cases. Average construction
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Figure 9.12: Independently-sorted construcধon ধmes for bitmask-based and ZZ-based grammars which include rule
modificaধon, and ZZ-based grammars which do not include rule modificaধon. The y-axis is logarithmic to highlight
the temporal relaধonship between methods.

times were 15s for method 1, 18m 7s for method 2, and 1s for method 3, with preditably large standard
deviations of 41.48s, 58m 41s, and 4.5s for each group respectively. Over all inputs and on average,
method 1 was able to construct its grammars in under 0.044x the time required by method 2, and
needed almost 13.17x the time required bymethod 3. Standard deviation for these averages were 0.045
and 12.896 respectively.

Figure 9.13 shows the compression ratios which each method achieved on the input data, repre-
sented as independent plots of compressed:uncompressed model size ratios. As noted in Experiment
9.3, a grammar with a smaller encoding than the original input string could not be produced for some
small inputs, and these are represented by ratios≥ 1 in the figure. Graph traces appear approximately
equal, and the maximum observed differences in output encoding size were 68, 28, and 83 symbols
between methods 1 & 2, 1 & 3, and 2 & 3 respectively, for which ratios in each group were 0.6826 &
0.5274, 0.6418 & 0.5582, and 0.6904 & 0.8640. In each case, these differences represented an increase
of less than 16%, 9% and 18% in model size. On average, models produced by method 1 were < 3.58
symbols larger than those produced bymethod 2, and> 0.04 symbols smaller than those produced by
method 3, with standard deviations of< 7.05 and> 3.27 respectively. Relative to the original inputs,
method 1 produced models which were on average < 1.6% larger than those produced by method
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Figure 9.13: Independently-sorted raধos of compressed:uncompressed model size for grammars allowing rule modifi-
caধon built using bitmask- and ZZ-based methods, and for grammars without rule modificaধon built using ZZ. Model
sizes between methods are approximately equal, but with some variaধon between methods.

2, and < 0.24% larger than those produced by method 3, with standard deviations of < 0.025 and
> 0.016.

Overall, use of the new construction method gave a degradation in model size for approximately
53.4% of all inputs, relative to method 2, and an improvement for just under 8% of inputs. Output
encoding size was equal in approximately 38.6% of cases. In comparison to method 3, the new con-
struction method gave a degradation in model size for approximately 34.9% of all inputs, and an im-
provement of under 8%, equivalent to that shown against method 2. Output encoding size was equal
in approxiately 57.2% of cases.

Figure 9.14 charts the difference in model size between the three method groups 1 & 2, 1 & 3, and

200



500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Piece number

-100

-80

-60

-40

-20

0

20

40

60

80

M
o
d
e
l 

si
z
e
 d

if
fe

re
n
c
e
 (

M
e
th

o
d
 A

 -
 M

e
th

o
d
 B

)

A=Bitmask (w/modifiers), B=ZZ (w/modifiers)

A=Bitmask (w/modifiers), B=ZZ

A=ZZ (w/modifiers), B=ZZ

Figure 9.14: Difference in model sizes between methods, calculated as a − b where sizes are a for the first method,
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2 & 3. Grammars produced via the bitmask-based method exhibit an increase in size for some inputs,
relative to those produced by method 2 or 3. However, no such increase occurs between ZZ-based
methods.

9.4.4 Analysis

In every case, the use of bitmasks in approximating constituent gain during grammar construction
allowed grammars to be constructed more quickly than those which relied on MGPs to achieve the
same aim. Onaverage, construction timewas reducedbyover 22.7x, and times requiredby thebitmask-
based method were closer to those needed by ZZ when disallowing rule modification than to those
when rule modification is allowed. In the best case, construction time was reduced by over 309x to
produce a grammar with an encoded length of 481 symbols, compared to an encoding of length 442
from method 2, from an input of length 693 symbols.

In almost 8% of cases, the bitmask-based method was able to produce smaller models in a shorter
time thanmethod 2. Thosemodels were, on average, 1.56 symbols smaller and constructed 19.8x faster,
with standard deviations of< 1.21 and< 18.5 respectively – this was true for 457 models, comprising
nearly 8% of all inputs.

However, in themajority of cases the sizes of themodels produced usingmethod 1 did not have en-
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codingswhichwhere at least as small as those producedbymethod 2– the latter condition occurred for
46.59% of all inputs, where average difference from method 2 was> −0.267 symbols with standard
deviation 0.7717. This difference is significantly small, and over 17% of the models from this group
featured a smaller encoding length. Where method 2 generated smaller models, the average difference
was > 6.92 symbols with standard deviation 8.2702. These results indicate that grammars of a com-
parable class in terms of size my be produced using the bitmask-based method, for a large proportion
of inputs of this type, but it is more likely a larger grammar will be produced. Relative to the original
inputs, larger models had an encoding length which was, on average, < 3.2% greater, with standard
deviation 0.0265. By comparison, models produced by ZZ for these inputs had an encoding length
which, on average, increased by> 2.5%, with standard deviation 0.0349, when rule modification was
disallowed.

These findings demonstrate a weakness in the bitmask-based method when attempting to pro-
duce comparable grammars to method 2, with encoding lengths more strongly resembling those of
models produced by method 3. However, in the majority of cases method 1 is capable of producing
smaller grammars thanmethod 3. Examination of the mean suggests the potential reduction is minor,
with a mean saving of> 0.044 symbols, although deviation here is high at over 3.27 symbols – where
method 1 produced smaller encodings thanmethod 3, the average reduction was> 3.75 symbols with
a deviation of> 4.7, showing that there is a clear split between cases where the newmethod was, and
was not, able to further compress the input. Given the practical reduction in construction time the
bitmask-based method achieves, it may be said to be suitable for applications where grammars which
include rule modifiers must be quickly constructed, and an increase in model sizes of approximately
3% over ZZ-based grammars is tolerable.

It is reasonable to suggest that the strong decrease in computational complexity themethod allows
is also strongly limiting the number of nodes in the lattice of all possible constituent combinations that
is being explored, which in turn is preventing the discovery of smaller local minima. Despite the fact
this equates to an inability to fully rival method 2 in compression strength, the bitmask-basedmethod
is still capable of producing smaller rule-modifier models frommusic data than a two-dimensional ZZ
in the majority of cases, and can do so in a fraction of the time.

9.5 Experiment 4: Exhaustive Discovery of Locally-optimal Nodes in the
Lattice

All the experiments in this chapter have resulted in the production of models which are often measur-
ably larger when constructed using the bitmask-basedmethod, thanwhen constructed using standard
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ZZ, regardless of whether rulemodification is enabled. The analysis in Section 9.4 tentatively suggests
the possibility that a class of models exists, within which all encodings may be considered “sufficiently
compact”, and represent nodes within the lattice of candidate constituents which are locally optimal
– that is, no further minimisation of |G| can occur if a constituent is added or removed from the cur-
rently chosen set of constituents, represented by the inability to move to a neighbouring node in the
lattice which offers a reduction of |G|. The space of all possible constituent combinations which the
lattice represents is large, at 2n nodes given n candidates which must be considered, and an optimisa-
tion scheme which approximates the global minimisation of |G| by allowing a local optimum to be
selected is able to arrive at any of the set of locally-optimal nodes present within the lattice, of which
one or more is the global optimum.

How, then, might the performance of two algorithms which arrive at different nodes which are
both locally optimal be compared? One possibility is to exhaustively explore the space of all nodes
from which no improvement is possible, and examine the set of model sizes present within it. Where
the proportion of nodes which represent the global optimum to all nodes the space contains is high,
the algorithm does not need to explore the space in a particularly rigorous, intelligent, or exhaustive
manner in order to discover an idealmodel. Equally, where the proportion is very small – perhaps only
one optimum node is present within an intractably-large space, for example – it may be impossible
for an algorithm to arrive at the global optimum without beginning in a state where its actions will,
cirumstantially, guide it directly to the ideal node. If it were possible to know the space of all possible
solutions a priori, the use of an optimisation algorithmwould be redundant. Instead, itmay be useful
to discover any generalised characteristics of the solution space, so that any pair of solutions may be
considered relative to each other, based on the sizes of the models they generate given knowledge of
the position which one of the solutions occupies within that space.

9.5.1 Purpose

Given that it is combinatorically difficult to construct a model which reasonably approximates the
smallest grammar, this experiment aims to explore the hypothesis that there exists generally a distinct
and limited set of “compact” models, and a far larger set of models which do not approximate the
smallest grammar well, for any given input. It is designed to explore the space of all nodes in the
lattice which minimise |G|, using a large population of inputs, in order to discover the distribution
of model sizes within the space, so that the characteristics of that distribution might be used as an aid
in the evaluation of the “compactness” of one model relative to another, as an approximation of the
performance of a grammar-building algorithm. The experiment is presented here as a simple proof of
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concept, which may be explored more thoroughly in future work.

9.5.2 Method

Pieces from the corpus of musical scores were chosen for use as inputs in this experiment, since the
corpus consists of a large number of pieces, they are all from a particular domain – in this instance,
musical – and are relatively small in length compared to the DNA and Canterbury corpora, enabling
the processing of as many inputs as possible in the available time. As in previous experiments, pieces
are processed in order of their approximate construction complexity.

For each input, each repeating substring is located and stored, to produce a list of all possible
candidate constituents. Only substrings whose instances exactly match each other are considered; no
rulemodification is allowed. Beginningwith the set of constituentsC = ∅, all possible orders bywhich
candidatesmaybe added toC are tested, and only thosewhich result in a reduced |G| are retained– any
which result in an increase in encoding size are discarded. Ahistory is kept of eachC considered. When
a combination is reached from which no addition or removal of a candidate constituent is possible
without increasing |G|, the combination is stored as a “locally optimal” node, and traversal continues
from the last C where it is possible to choose an alternative candidate which does not degrade |G|.
Exploration of the space is terminated when all possible combinations of C have been evaluated for
the given input. In this manner, every “locally optimal” node within the lattice is located and stored,
alongwith the size of the encoding the combination generates, providing amap ofmodel sizes present
within the lattice.

Once these nodes are known, a histogram for observed model size counts is calculated for each
piece. The smallest encountered model represents the global optimum encoding, and the largest
model which it is possible to construct is simply the input sequence plus a termination symbol, with-
out any production rules which reduce |G|. In order to allow a comparison between inputs to be
made, model sizes are represented on a normalised scale, where 0.0 is the most compact encoding pos-
sible, and 1.0 is the least compact. A number of bins is chosen, into which the model size counts are
placed, and finally an average is computed across all inputs. Where the difference between the smallest
and largest encodings encountered is smaller than the number of bins for a given piece, its encoding
space is interpolated so that a characteristic curve is maintained across all bins, in an attempt to enable
a direct comparison between pieces with varying encoding length ranges without the introduction of
statistical artefacts.

Observed model size counts are also separated into three groups, based upon the total count of
models of any encoding length which exist for each piece. Boundaries are chosen so that each group
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contains a reasonably large number of pieces relative to any other group, whilst maintaining a use-
ful and characteristic response. Model size counts are converted to proportions of the total number
of models per piece, to enable the normalised response curve of each to be compared, and a general
average response to be computed for the group.

9.5.3 Results

In the time available, it was possible to entirely process 4,329 inputs from the corpus, covering over
54% of all pieces in the collection. The average difference between the minimum and maximum sizes
seen per piece was under 32 symbols, with a standard deviation of > 21 and a maximum of 347. In
order to provide a good historgram resolution, 100 bins were chosen within which to represent the
results. Figure 9.15 shows the average counts observed, along with their variance.

Figures 9.16a – 9.16c show the average proportion of locally-optimal models observed, relative to
the total number ofmodels observed per piece. Tomaintain a clear indication of the response, groups
were manually chosen with counts of 1–20, 21–200 and 201+ models, containing 3,472, 541 and 316
pieces respectively. The number of pieces for group 1 was high due to the large number of smaller
inputs processed, and, due to an exponential growth in piece length within the corpus, a naturally
strongdecrease in pieces per groupoccurred as input size increased, and it becamepossible to construct
a greater number of models per piece.

9.5.4 Analysis

There is a distinct and relatively smooth curve to be seen in Figure 9.15, showing a steadily-growing
increase in the average count of models of a particular size as model compactness increases. The aver-
age count peaks in the range 0.109-0.119, and follows a reducing curve to an average of 3 most compact
models. The average count of globally optimal models was 1.9109, with a variance of 3.2066. This is
distinctly different from the highest model count around the range 0.109-0.119 of 7.83, with standard
deviation 22.1239, where there are approximately 4 times the number of nodes which locally minimise
|G|. However, standard deviation is overall very large, showing great instability which grows and re-
duces in magnitude along the curve of the average. This unfortunately highlights the fact strongly
different results may be expected between different inputs, and, as such, the presence of a large or
small count of models of a given size cannot be used as a direct indication of the position of that so-
lution within the space of model size counts. Nonetheless, on the chosen input data at least, there
appears to be a definite curve, and it is potentially possible that a sample of several model size counts
for a given input may be used as an indication of their general position within the solution space. If
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corpus of musical scores, with standard deviaধon shown as error bars. Model sizes are represented as a proporধonal
increase from the global opধmum (0.0) to an uncompressed encoding (1.0).
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(a) Group 1: pieces with model count 1–20
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(b) Group 2: pieces with model count 21–200
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(c) Group 3: pieces with model count 201+

Figure 9.16: The average proporধon of locally-opধmal models exisধng within the laষces, over three groups based on
total model count per piece, with standard deviaধon shown as error bars. Model sizes are represented as a propor-
ধonal increase from the global opধmum (0.0) to an uncompressed encoding (1.0).
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it were possible to predict an approximate position, this information might be used to guide choices
made during constituent combination optimisation, perhaps as a heuristic used during construction,
but the comment is included here merely as a suggestion for future work, and exploring the idea is
beyond the scope of this study.

As previously described, results segmented into three groups based upon the total number of pos-
sible models per piece, and the proportion of model counts per bin used to enable response curves of
differing amplitudes to be normalised, and directly compared (Figures 9.16a – 9.16c). As the number
ofmodelswhichmaybe constructed for a given input increased, a definite clustering of locally-optimal
models which were significantly larger than the global optimum occured. The first group (1-20 pos-
sible models per piece) did not contain this characteristic, instead displaying a peak average of 0.0525
in the range 0.0-0.01, corresponding to an average of 3.37/64.3 models. This steady increase may be
attributed to the shortness of inputs within this group: encoding length differences between various
constituent combinations results in a spread of possibilities over a small number of discrete model
sizes as the global optimum is approached, represented by the steady increase in model counts over a
relatively large portion of the x axis. Inclusion of any useful constituent is likely to result in a signifi-
cant reduction in |G| given the short length of the original string, and this causes a sudden decline in
model counts as |G| reduces from the global maximum.

The second and third groups, representing models of increasing complexity, showed a strongly
increased probability for the selection of a model which was not globally optimal, given a random
choice between groups of constituent combinations which generate exactly one unique model. For
the group of pieces with a total model count of 21-200, the maximum proportion of model counts
was 0.0489 on average, and occured in the range 0.05-0.059. In contrast, the proportion of smallest
models was 0.018, representing an average of 6.97/387.94models. For the group of pieces with a total
model count of 201+, the maximum proportion of model counts was 0.0419, occurring in the size
range 0.099-0.109, and the proportion of smallest models was 0.0078 (corresponding to an average
of 13.97/1795.58 models). As can be seen in the figures, variance also decreased as total model count
increased between groups, suggesting the observed tendency became more stable as the space of all
possible models grew in complexity. Notably, the curve became broader in Figure 9.16c, and the peak
average model count occured for a proportionally larger model than all other groups. Additionally,
he count of smallest models was shown to be greatly reduced. Separation and representation of the
results in this way demonstrates the apparent trend shown in Figure 9.15 does not exist purely as a
statistical anomaly, andwas strongly associatedwith an increase in lattice search space complexity. This
is perhaps supported by the empirical observation that moderately compact models can be generated
with relative ease, but the discovery of smaller models becomes increasingly more difficult.
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Despite the presence of this characteristic, the hypothesis that a distinct group of “compact” so-
lutions exist within the sampled space cannot be upheld by these results. However, it is clear that
very few highly compact solutions exist on average given any sufficiently complex input, relative to
a high count of sub-optimal solutions, suggesting this is a general characteristic of the search space
generated by that input. As such, it may be suggested that a class of “sufficiently compact” solutions
could be defined, based on each individual application, and used to discriminate between models of
a desired target range in size and those which are to be rejected. Overall, an average of approximately
231 locally-optimal models were discovered during the experiment, making the proportion of opti-
mal and highest-count solutions present within the space 1.22% and 5.21% respectively. The response
curve observed is perhaps most likely caused by two main factors: the decreasing probability of en-
countering a largemodel fromwhich no improvement can bemade from 0.115-1.0 approximately, and
the decreasing probability of discovering a new constituent compatible with the current combination
which reduces |G| from 0.115-0.0. Discovery of the factors which actually form the response is left for
future work.

For a grammar being constructed using ZZ, if groups of constituents which lead to a unique leaf
node are considered in a random order, the probability that the algorithm will reach the optimal so-
lution given the same type of input data used for this experiment is approximately 2.83/231 on aver-
age. Consequently, the probability that the algorithm will return a sub-optimal result is 228.3/231,
or 98.8%. For the group of pieces with 201+ possible models shown in Figure 9.16c, these values de-
grade further: the probability of reaching the optimal solution becomes approximately 9.84/1796,
and the likelihood of obtaining a sub-optimal result becomes 99.45%. In this manner, the expectation
of achieving a particular value of “compactness” on the scale shown in Figure 9.15 can be estimated,
providing the global minimum for |G| is first known.

Approximate Evaluation of Algorithm Performance On the basis of these results, it is
possible to approximate the performance of the newmethod for the earlier experiments in this chapter,
but very loosely – the following comments cannot be considered definitive, as the results show that
the model size count characteristic is strongly linked to the individual input, and the experiment does
not provide any evidence that these results generalise to other inputs, of identical or different types.
With these limitation in mind, a solution’s position on the normalised model size count scale shown
in Figure 9.15 may be calculated as g− x/g− s where g is the length of the input in symbols + 1 and
represents the largest possible encoding, s is the length of the smallest possible encoding, and x is the
observed size of the model which is to be evaluated.

In Section 9.2, models were generated which were larger than those produced by ZZ for inputs
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humprtb from the DNA corpus, and grammar.lsp from the Canterbury Corpus. The latter, in par-
ticular, was larger than a model constructed using IRR-MC. For humprtb, if it is assumed that the
ZZ-produced encoding of length 13,658 is approximately equal to the global minimum for |G|, the
encoding produced by the newmethod exists at 2.09× 10−4 percent on the scale of model sizes. This
is very close indeed to the global optimum, and falls within the histogram bin chosen in this experi-
ment to contain the minimum value for |G|. However, the encoding produced by IRR-MC exists at
0.028598. This value falls within the second histogram bin, and for the purposes of this discussion
might be considered roughly “distinct” from the “most compact” models. For grammar.lsp, making
the same assumption for the ZZ-generated encoding, the new method’s model is present at 0.007532,
and the model generated by IRR-MC exists at 0.003545. Both are again very close to the global opti-
mum, and can tentatively be considered sufficiently small, or “most compact” encodings on this scale,
albeit from an input of a different type to that evaluated in this experiment.

In Section 9.3, it was observed that use of the new method produced an average increase in en-
coding size of 0.9236 symbols for pieces from the corpus of musical scores, with a standard deviation
of 2.5704. The average input length for the tested pieces was 405.8 symbols, although with a large
standard deviation of 763.2 which, for now, will be ignored. The average size of models generated by
the new method was 222.8 symbols, with a deviation of 239.5. Very approximately, this places the av-
erage model size at 0.005022 on the scale shown in Figure 9.15, again well within the “most compact”
range of 0.0 − 0.01 chosen for this discussion. An exploration of individual pieces, with discovery
of the position the new method’s models occupy within their own space of locally-optimal models,
would be necessary before a generalised and accurate evaluation could be made of the “compactness”
of the encodings produced. However, this initial, simple calculation does not immediately discount
the suggestion that the models generated by the new method in the experiment belong to the same
“compactness class” as those produced by ZZ. The results in Section 9.4 are even stronger, with an
average increase in model size of < 0.268 symbols. It is still notable, however, that there is a bias to-
wards the new method producing larger models. Further experiments would be necessary to discover
whether this is in fact linked to the decreased probability of arriving at a more optimal node given a
different ordering of candidate constituents, a failure mode in the approximationmethod used which
may be addressed, or simply the inability of the algorithm to explore the lattice in a sufficiently optimal
manner.
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9.6 Summary

This chapter presented the investigation of a novelmethod of lattice traversal, which reduces the num-
ber of MGPs required during grammar construction by dynamically approximating the gain each
candidate constituent might offer to the current iteration’s solution, before selecting the first from
a descending list of gain values which produces a reduction in the encoding length of the grammar.
These investigations were designed to empirically determine whether this novel method was able to
construct grammars which were equally or approximately as compact as those produced by ZZ, but
in a significantly reduced run time.

In every experiment conducted, the method was able to generate grammars in a fraction of the
time required by ZZ, due entirely to the replacement of the majority of the expensiveMinimal Gram-
mar Parsing operations with bitmask-based approximations which are computationally simple, and
therefore faster to perform. Where inputs from the DNA corpus were processed, the number of
MGPs was reduced by≥ 94%. For the Canterbury Corpus, this dropped to≥ 90%. Where pieces
from the corpus of musical scores were compressed, this reduction varied from approximately≥ 65%
for small inputs to≥ 75% for larger inputs of around 1500 symbols. Model sizeswerenot exactly equiv-
alent to those produced by ZZ: for inputs from the DNA corpus, twomodels had a smaller encoding
length than their ZZ equivalents, but in every case, the models were smaller than those produced by
IRR-MC. For inputs from the Canterbury Corpus, no models were smaller than those generated by
ZZ, and onemodel was larger than its IRR-MC equivalent. In all cases, model sizes were close to those
produced by ZZ. For inputs from the corpus of musical scores, 52.8% of models were equivalent in
size to those produced by ZZ, whilst 9.2% were more compact, and 38% were larger by an average of
0.924 symbols.

Where the method was employed to generate grammars which allow rule modification, it was
able to do so in < 0.044x the time required by a ZZ-based constructor also allowing rule modifica-
tion, due to the reduction in the number of MGPs required. The sizes of models produced using the
new method were equivalent to those produced by ZZ for 38.6% of inputs, whilst < 8% were more
compact, and 53.4% were larger by an average of 3.58 symbols. Compared to encodings produced by
ZZwith no rulemodification allowed,models generated by the newmethodwere, on average,> 0.04
symbols smaller, with reducedmodel sizes occurring for< 8% of all pieces, and increased model sizes
for 34.9%. This discrepancy might be explained by the greatly increased search space that must be
explored when producing a grammar which includes rule modifications, and represent selection of a
local optimum which is not as compact as that arrived at by ZZ without the addition of rule modifi-
cation.
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Finally, the space of all constituent combinationswhose encoding length |G| cannot be reducedby
adding or removing any constituent was explored for 4,329 pieces from the corpus of musical scores,
and averages of the normalised counts of model sizes existing within this space calculated and plot-
ted. This showed a large proportion of moderately-compact models exist on average, relative to a very
small number of highly-compact or globally optimal models. Although in no way offering a definite
approach to assessing the “compactness” of a given grammar, the experiment’s results highlighted the
likelihood that the increasedmodel sizes observed throughout the chapter didnot represent a failure of
the bitmask-based method of constituent selection to produce models of comparable “compactness”
to their ZZ-based counterparts.

212



A wise man once said that to do a great and important
work, two things are necessary: a definite plan, and not
quite enough time.

R.C. Schafer, 1977

10
Conclusions & Future Work

This chapter summarises the conclusions of all investigations throughout this thesis, and highlights
possibilities for future researchwhich suggest themselves as interesting andpromising given the study’s
outcomes. It is divided into three sections: standard grammars in application tomusic data in Section
10.1, the addition of rule modification to grammars in Section 10.2, and using the approximation of
constituent gain to improve the speed of lattice traversal during grammar construction in Section 10.3.
In each section, the salient features of the outcomes of each experiment are listed, and placed into the
context of the purpose of the investigation, alongwith any inference or important observations it were
possible to make from the results.

Overall, it is shown that grammars can be leveraged to perform some musicological tasks, but are
unable to offer performance as strong as existing methods in every case. The addition of rule modifi-
cation, a simple but versatile framework which allows custom transformations to be included within
a grammar’s encoding, allows the construction ofmoderately smaller models, in particular formusical
data, but at an exponential increase in computational complexity. However, replacing an expensive
parsing operation with a simple bitmask-based approximation of the gain a candidate rule may offer
during grammar construction allows an exponential decrease in computational complexity, in prac-
tice. This improvement in speed is a trade-off which causes slightly larger encodings to be generated,
and cannot counteract the increase in construction time required by the addition of rule modifica-
tions during the creation of a grammar, but it is an aid to making the process practicable and allows
the generation of standard grammars in significantly shorter periods than is currently possible using
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ZZ.

10.1 Standard Grammars in Application to Music Data

Chapter 5 investigated the application of grammar-based compressors to six practical musical appli-
cations, comparing their performance to that achieved by the use of other popular compression al-
gorithms. The responsiveness of each method to errors was examined, and their performance when
applied to locationof errors, classificationof folkmusic by tune family, anddiscovery of expert-defined
musicological patterns was measured.

When tasked with detection of a common transcription error, LZW proved most responsive for
pieces too small to compress by standard grammar, but beyond this margin ZZ provedmost sensitive.
All methods showed a logarithmic response to an increasing number of errors, with GZIP outper-
forming ZZ as input length became significant. ZZ was most successful in correctly identifying the
position of a single error, with an F-measure of 0.22 − 0.35. Strong variation in response was mea-
sured for all methods, showing none can be relied upon to respond correctly in each individual case.
However, every method generated a larger model in the majority of cases.

When grouping pieces from the Meertens Tune Collections by tune family, ZZ was able to per-
formmoderately by comparisonwith existing studies, when the results frommultiple representations
were weighted and used in nearest-neighbour classification. ZZ was also applied to the discovery of
expert-defined patterns from the polyphonicDiscovery of Repeated Themes& Sections task presented
in MIREX 2016, where it bettered all submitted methods for a highly-structured Bach fugue, but
gave unstable results for the other four scores, highlighting the greater flexibility of SIATEC-based
algorithms in discovering inexactly repeating patterns. Finally, the exactly repeating structures identi-
fied bymusicologist Siglind Bruhnwithin eightworks fromBach’sDasWohltemperierte Clavier Book
I were compared to rules within grammar-based models produced by ZZ for each piece. Although re-
sults showedwide variation, strong correlation existed at high levels of the hierarchy, a notable achieve-
ment considering that ZZ possesses no domain knowledge.

In conclusion, the results generally support the link between strength of compression and the
information recovered, as suggested by the Minimum Description Length principle. The outcome
shows that ZZ can outperform several popular compressors when applied to detect degradation in
musical structure and classificationofDutch folk tunes, in the latter casewhenprovidedwith attribute-
rich note data. However, exact grammars cannot rival current techniqueswhen seeking expert-defined
patterns containing variations, and can fail to generate desirable rules where an overlapping explana-
tion, and therefore rule, exists. The findings highlight the significance of intersection in the analysis
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of musical compositions, and support suggestions by existing studies that the ability to abstract musi-
cal features and pattern templates using domain knowledge is important to algorithmic analysis; such
additions are likely to improve the performance of ZZ on these applications. Even without such en-
hancements, the results demonstrated that grammars are a tool that perform at a useful level in the
field of music analysis.

The data that support the findings of Chapter 5 are openly available from Cardiff University via
URL http://doi.org/10.17035/d.2020.0098047203.

10.1.1 Future Work

A number of possibilities exist for further development of this work, and the following directions are
suggested:

• A heuristic could be designed which retains the sensitivity of grammar-based compressors to
errors (degraded musical structure), but does not require exhaustive exploration of the search
space. Such a heuristic might select only patterns which, when altered, allow significantly
increased compression, or use high-level abstraction to structure the search and terminate
branches unlikely to result in improvement on subsequent iterations. This may allow error
detection by grammar to become a practical option.

• Investigation into reduction of the variation observed with increasing number of errors could
be carried out, in an attempt to smooth and enhance error response, and to isolate false-
negative conditions. Potentially, input pre-processing to higher level structures may produce
a more consistent compressor response.

• From the observation that combining representations offers an accuracy gain when classifying
theMTC, grammar-based compressors may be combined with other compression algorithms,
such as those studied here, to produce a weighted output. Leveraging significant properties
of individual compressors in this manner is likely to result in an overall improvement to the
applications presented.

• Grammars may be augmented with parametric structures providing greater potential for mod-
elling sequences that are repeated with variations, potentially using a modifier framework as
presented in Chapter 7, making use of more advanced domain knowledge. The addition of
simple flexible matching, perhaps in a form where encoding overhead does not prohibit its
use, is likely to increase tune family classification success rate. Various matching schemes could
be tested, from advanced alignment- or distance-based transforms to those incorporating spe-
cific domain knowledge, such as motif, rhythm or phrase templates. Existing feature-centred
techniques, such as facets (Stober, 2011), viewpoints (Conklin, 2013a, 2013b; Conklin&Witten,
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1995; Goienetxea et al., 2016), or form definitions such as described by Giraud and Staworko
(2015), might be added to the construction process, and direct comparison made against these
studies. It is reasonable to hypothesise thatmore compact grammars would result in improved
performance for musical applications.

• A large-scale,methodicalmusicological study of the analysis and segmentationof a large corpus
of digital scores would likely be a significant benefit to the research community. Ground truth,
hierarchical definitions from various schools of analysis, including scale annotations, transfor-
mations and transitions might be used to develop more powerful and accurate algorithms for
score compression and processing. This study observed additional notes prefixed to expert-
identified segments in some cases; evaluation of howmusically admissible such extensionsmay
be is possible given expert consensus. Potentially, generalised grammars capable of covering a
given form or style might be programmatically generated and used to optimise compression.

10.2 Grammars allowing Rule Modification

Chapters 6 and 7 investigated a method for constructing grammars which would allow instances of
production rules to produce varying outputs when they were expanded, with the aim of allowing
smaller encodings to be produced. In contrast to the approach of Siyari and Gallé (2017), the manner
in which rule instances may change was not restricted to a single variation, but instead based upon
transformations whose character would be encoded in the grammar.

The response of the scheme to a corpus of musical scores was first investigated, and compressed
models built for 5521 inputs. Toprevent excessive construction times, the number of transformswhich
may be considered was limited to a maximum of 50, the maximum difference between substrings
which may be chosen as an approximate match set to 40%, and a checkpoint of 22 iterations per at-
tempt to generate a grammar for a given rulewas set, beyondwhich constructionwould only continue
if any improvement inmodel sizewere already evident. Smallermodelswere generated for< 25%of in-
puts, which, although aminority, nonetheless represented 1455 pieces. Allowing the algorithm greater
freedom by relaxing the constraints on number of transforms, or allowing construction to continue
for longer before early termination, may potentially increase the count of smaller models, but this was
not tested. Construction times were prohibitive, demonstrating the strong increase in complexity re-
sulting from the inclusion of a second dimension of rule modifiers in the search space. Of the models
which benefitted from the addition of rule modification, an average reduction in encoding size of 5%
was observed, with a maximum reduction of 22% in the best case. The results showed that grammars
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which include rule modification are useful for at least a large minority of musical inputs in generating
more compact models.

Next, grammarswhichmay feature rulemodificationswere constructed for twopieces fromthe Jo-
hannesKeplerUniversity PatternsTestDatabase (JohannesKeplerUniversity, 2013), and the segments
formed by their production rules used as input for the symbolic, polyphonic Discovery of Repeated
Themes & Sections task from MIREX 2016. Despite consideration of all possible transformations
within the bounds defined above, a reduced grammar encoding was only discovered for one piece
from the database. However, a noticable improvement in performance was observed for the chosen
metrics establishment and occurrence, due to the ability of the grammar’s production rules to repre-
sent a greater number of more varied segments within the input. The addition of rule modification
was sufficient to make the method the strongest performer over any of the tested algorithms. Again,
it is possible that relaxation of the constraints may allow smaller grammars to be produced for other
pieces from thedatabase, which in turnmay improve overall performance on theDiscovery of Repeated
Themes & Sections task, but this possibility is left for future work.

When grammars which include rule modification were applied to Classification of the Meertens
Tune Collections by “tune family”, using only chromatic pitch sequences from the collection’s stro-
phes, an improvement in classification performance was observed over grammars whose rules could
not bemodified. Of the 360 pieces in the collection, the addition of rule modification enabled smaller
grammars to be constructed for only 4 inputs, however this was sufficient to produce aminor increase
in classification accuracy from0.858 to 0.875. Where inputswere combined in pairs, 3.69%of all gener-
ated grammarswere smaller than their fixed-rule counterparts, andperformance on the affected inputs
was improved overall with 6 additional correct classifications representing> 4.4% of all inputs, sup-
porting the hypothesis that a smaller model is a more accurate representation of a given score. So few
pieces is, however, not a significant sample which may be considered representative of the population
of scores, and so it is not possible to conclusively cite the experiment as a demonstration of the cor-
rectness of the hypothesis. Nonetheless, it is interesting to note that all models whose encodings were
reduced by the addition of rule modification presented an increased accuracy during classification.

10.2.1 Future Work

The results of these experiments suggest further work would be beneficial in clarifying the role of
transforms and more compact grammars in application to musicological tasks, and would provide an
interesting indication of the possibilities the addition of rulemodification presents to grammars. This
study suggests the following candidates:
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• The space ofmodifications which are explored during grammar construction could be steadily
increased, to observe whether they enable smaller encodings to be produced for a greater pro-
portion of inputs, and potentially for smaller models to be generated overall. A suite of dif-
ferent modification types may be developed, and customised to the content of different kinds
of input data – DNA strings or specific written languages, for example – and the resulting
search space may be explored and evaluated in an attempt to isolate a more effective method
of traversal.

• The combination of modification types may be investigated, to discover whether such com-
pound transforms are beneficial to the compactness of a grammar for a given type of input
string. This study investigated only the use of individual transforms, seeking first to under-
stand the search space involved without the additional worst-case complexity of 2n the consid-
eration of all transform combinations might introduce. It is not impossible that compound
or even overlapping transforms may be useful in minimising |G|, and this possibility could be
explored given the foundational work presented in this thesis.

• Instead of applying a modification to the output of a preceeding rule, thus transforming only
its local indices, transformsmay be designed which operate on global or offset positions, allow-
ing the presence of a modifier, or even a rule, to affect symbols beyond its local boundaries.
Such a scheme may allow an encoding similar to the point-cloud approach of COSIATEC
(Meredith, David, 2013) to be produced, or a hybrid design which is able to sequentially re-
place non-terminals with associated substrings but also able to apply transformations globally
at any given stage of expansion.

• Amethodmight be developedwhich identifies an ideal selection of transforms for a given type
or collection of input data, perhaps by exploration of the reduction they offer a grammar dur-
ing construction, or by extraction of the characteristics of the data based on existing domain
knowledge or statistical significance. This selectionmay itself be taken as a characteristic of the
data, and may be applied exclusively during grammar construction to produce smaller encod-
ings, and potentially strongly reduce grammar construction times.

• A theoretical and empirical exploration of the ramifications of storing the process required to
correctly apply a transform in the expanding programmay be conducted, with respect to prac-
ticality andKolmogorov Complexity. The size of the program required to return the grammar
to the desired form should be considered when evaluating the compactness of themodel it rep-
resents, and this is significant to any scheme which must perform specific operations during
decompression, such as that of Siyari andGallé (2017), or even in selecting to output a terminal
or non-terminal.

• The MIREX 2016 polyphonic Discovery of Repeated Themes & Sections and Classification
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of the Meertens Tune Collections by “tune family” tasks may be repeated, instead choosing
construction parameters which allow more compact models to be generated for each piece in
the respective collection. This might be achieved by selection of a specific group of transforms
which apply strongly to the input data, or by more expensive exploration of a far larger space
of available transforms. It is reasonable to hypothesise that notably more compact grammars
would result in improved performance on these tasks.

• In order to further reduce the construction time of grammars for which rule modifications are
considered during construction, parallel processing may be used to simultaneously explore a
single level of the lattice of all possible transform combinations, in the worst case allowing all
combinations in that level to be evaluated in the time required to consider all constituent com-
binations for a single set of transforms. Use of GPU-based processing using a language such
as CUDA or OpenCL could enable a very large number of transforms to be tested simultane-
ously, potentially as many as the number of threads the particular hardware device allows, and
this may lead to the discovery of smaller models within the search space.

In conclusion, the results demonstrate that more compact grammars are certainly possible when
transforms which leverage natural patterns and processes in the data are considered as part of their
encoding, but comparison between the scheme and existing grammar construction processes is chal-
lenging due to differences in the decompression process. Notably, consideration of different data
transformations adds a new dimension to the construction process itself, introducing further com-
plexity to its computation.

10.3 Improving the Speed of Lattice Traversal by Approximation of Con-
stituent Gain

Chapter 9 investigated a method of reducing the number of nodes in the lattice which must be eval-
uated by MGP, during its traversal when constructing a grammar from a given input. The method
employed bitmasks representing the graph nodes which were currently assigned to a production rule
during consideration of each new candidate constituent, and those which remained free for use by
the candidate’s edges, spreading its possible gain across each relevant node to produce a linear approx-
imation of the overall effect of including it as a production rule. Once approximations are known for
all candidates, they may be tested for effectiveness by MGP, and the first offering any significant gain
added to the encoding.

When applied without rule modifications to standard linguistic and DNA corpora, the method
generatedmodels of comparable size to ZZ, with compression ratios significantly better than those an
IRR scheme could provide. Themajority of models were equal in encoding length to those produced
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by ZZ, and for the purposes of algorithm comparison the bitmask method’s models in this instance
may be considered equivalent. Most significantly, the new method enabled a massive reduction in
the number of MGPs necessary during construction, which in turn resulted in an exponential reduc-
tion in compressor run-time. The experiment confirmed the heuristic was effective when applied
to linguistic and DNA data, and did not provide any evidence suggesting a limitation in relation to
other input contexts. The approximation of candidate constituent gain using bitmasks was able to
greatly improve construction times, even on large data, and the experiment provided evidence that
constituent selection heuristics are useful in building grammars more efficiently.

When applied to 7448 pieces from the corpus ofmusical scores, again without rulemodifications,
themethod continued to exhibit exponentially reduced grammar build times through amassive reduc-
tion in the number of MGPs required. However, on smaller inputs – in particular those for which
no small encoding could be produced – construction times were greater than those of ZZ. Larger in-
puts of several hundred symbols or more gave the strongest results, showing the technique is most
appropriate for sequences of this length. On average, grammar build times were reduced by 46.2%,
with a> 99% reduction in the best case. However, the experiment noted a trade-off in achieving this
performance, with< 38% of models being, on average, 0.8% larger than those generated by ZZ. The
final node chosen by the algorithm from the lattice of candidate constituents was rarely equivalent;
> 68.8% of grammars did not contain the same production rules, however < 31.4% of these were
of equivalent encoding length. Overall, the majority of grammars produced using bitmask-based ap-
proximation of constituent gain were equal or smaller in size than their ZZ equivalents. Despite the
strong decrease in computational complexity the technique allows, it cannot rival algorithms which
operate in near-linear time, such as those of the IRR class, in terms of construction speed.

Rule modification was enabled, and grammars were again constructed using bitmask-based ap-
proximations of constituent gain for 5718 pieces from the corpus of musical scores. An average in-
crease in construction speed of 22x was observed when generating models which included modifiers,
and in 8% of cases smaller encodings were produced than those constructed using a rule modification-
enabled version of ZZ. These models were 1.56 symbols smaller on average, and were generated 19.8x
faster using the bitmask method. Nearly half of all models were less than or equal in encoding size
to equivalent rule modification-enabled models constructed using ZZ, but over 65% were less than or
equal in encoding size to those produced witout the benefit of rule modification. The remaining 35%
were larger by an average of 6.92 symbols. Overall, model sizes were more similar to grammars which
did not allow rule modification, showing the method in its current form is less suitable for producing
smaller grammars which include rule modification, unless a likely increase in encoding size of approxi-
mately 3% is tolerable to the application. However, the technique is more often capable of producing
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smaller models than standard ZZ, showing it has potential for use as a quick constructionmethod for
encodings which include rule transforms.

10.3.1 Future Work

These results suggest a definite relationship between the quality of knowledge of each candidate con-
stituent’s effectiveness, the number of expensive graph parses required, and the computational com-
plexity of the grammar construction algorithm. It is clear that development of a further improved
method of candidate selection may be beneficial in the faster production of smaller, more inclusive
models. The study suggests the following as useful or promising areas of investigation:

• The algorithmmight bemodified to prevent any significant degradation in construction speed
for small inputs, or for those which cannot be compressed because no candidate production
rules exist which would allow a more compact encoding than the length of the original input
sequence to be produced. During the construction process, ZZ must first examine the effect
of adding each candidate constituent to an empty set of production rules, in order to assess
whether any may provide compression. For n candidates, nMGPs are needed. The initial step
when constructing a grammar using bitmask-based approximation of constituent suitability is
to perform n MGPs to calculate the maximum possible gain each constituent could provide.
Where no positive gain is discovered, construction could be abandoned, giving an equivalent
runtime toZZunder the same circumstances. For very small inputs, a simple heuristic could be
designed to prevent the construction process from continuing if insufficient substrings were
first discovered. This would ensure algorithm run-times for the newmethod were always com-
parable or better than those of ZZ.

• Modes of failure which occur when constructing grammars using the bitmask-based method
could be investigated, and a scheme designed which could prevent their occurrence. One spe-
cific mode which might be investigated is bitmask saturation – where so few bits remain unset
that it becomes impossible for the simplistic scheme to provide accurate gain prediction – as
this highlights that the technique is unable to assess gain where strong interactions between ex-
isting and candidate edges occur. In this instance, a metric could be developed to evaluate the
degree of saturation at any stage of construction, and an alternative approximation allowed to
progressively or categorically attain control where measurements show bitmasks are becoming
ineffective. Design of a heuristic which specifically offers a reasonable approximation of edge
interactions is likely to be easier to attain than a general scheme which retains accuracy across
widely changing conditions, and may also provide greater insight into the ideal construction
process through examination of alternative approximation methods.

• Perhaps in concert with the above suggestion, provision might be made within the construc-
tion algorithm to allow a fall back to ZZ if evaluation showed that a less optimal grammarwere
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likely to be generated, as an option to allow for the output of grammars at least as compact as
those generated by ZZ. Currently, the algorithm operates on a “bitmask only” basis, in con-
trast to a “ZZ only” approach. It is possible a parameter could be added which would allow
tuning of construction, such that a desired proportion p of all iterations when adding a new
constituent to themodelwould feature approximation, and 1−pwould employZZ-styleMGP
steps to accurately assess the effect of the new constituent. This parameter might be automat-
ically tuned by heuristic, such as in the above suggestion, so that compact grammars could be
constructedmore quickly than by ZZ alone. Adjustment of the search space explored by the al-
gorithm could be beneficial in allowing a given application the choice between faster or smaller
encodings.

In conclusion, the results demonstrate that it is possible to construct compact grammars with far
lesser complexity than offered by schemes such as ZZ, providing an accurate estimation of constituent
gain at each step can be made. However, the vastly-increased search space created by the addition of
potential rule modifications means it is far more challenging to find an encoding which approaches
that of a global optimum, and although the presented method of gain approximation dramatically
decreases compression time there is a likelihood of creatingmodels which are larger than desired when
also considering rule modifications. However, an improved approximation scheme could potentially
rectify the shortcoming.

10.4 Coda

This study has examined the possibility of applying grammars to a range of musicological tasks, and
discovered that even a standard construction process is capable of reasonable success when seeking er-
ror corrections in musical scores, classifying scores by tune family, or segmenting them into musically-
significant sections, despite having no built-in musical knowledge. This work also presented a power-
ful framework for allowing grammars whose rules are flexible to be generated, and showed it enabled
the production of smaller models overall even with basic transforms, but that the search space of all
possible flexibility represented another dimension which must be explored in addition to that of the
candidate grammar rules. As a step towards practical generation of suchmodels, a heuristic was devel-
oped which vastly reduced grammar construction times, and experiments showed approximation of
constituent gain was a viable technique by which this may be achieved.

However, to keep construction times within practicable limits, it was necessary to constrain the
number of rule modification types which were considered for each model, and to estimate whether a
given construction iteration would fail to yield a reduction in encoding length so that such attempts
may be aborted to improve overall compression times. It appears that a side-effect of such constric-
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tion is, naturally, the production of larger models. Continued investigation may provide a means by
which build times and encoding lengths might be further optimised. However, at the conclusion of
the current research it remains apparent that there is indeed an exponential relationship between the
theoretically smallest grammar and the complexity involved in its discovery – eliminating the final few
symbols in a grammar’s encoding may indeed produce a more accurate representation of the input
data, but it is perhaps attainable only at an impractical cost.

Nonetheless, the possibility of automatically exploring a universe of relevant transformations, re-
sulting in a tremendous interweaving of patterns and permutations in the structured-but-fluid man-
ner of a great composer, is a tantalising thought, and onewhichmight aid the computation and under-
standing of structured creativity. It was the aim of this work to take a step closer to such a possibility,
and alongside providing a useful, extensible contribution, it has been the author’s privilege to have
caught even a glimpse of this potential universe. Although the techniques and results presented here
do not in themselves represent a definitive solution, they do offer considerable promise for the future,
and add force to the assertion that musical sequences, in analysis or in experience, are most certainly a
combination of many fascinating facets.
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A
Grammar Encodings for Bach’s Fugue No.

20 from WTC-II

Lisধng A.1: A human-readable display of the encoding of a grammar without rule modificaধons, constructed using ZZ
from Bach’s Fugue No. 20 from Das Wohltemperierte Clavier Book II. The encoding length is 583. The label TERM is
used to represent unique terminaধon symbols, and r<integer> is used to denote a producধon rule. Terminal symbols
are chromaধc pitch values. The grammar’s start rule, S, is here represented as the first rule (r1). Rule lengths are
specified at the end of each sequence.

r 1 : 7 6 , 7 2 , 7 7 , 6 8 , 7 4 , 7 1 , 7 6 , 7 2 , 6 9 , 6 6 , 7 4 , 7 1 , r 2 , 7 2 , r 3 , 7 2 , r4 , r 5 , r 2 5 , 8 4 ,
8 3 , 8 1 , 7 9 , 7 7 , 8 1 , r 26 , r 5 , r 2 5 , r4 , r6 , r7 , r 3 , 7 1 , r 3 , 7 2 , r2 , 6 9 , 6 6 , r 3 8 ,
r 3 7 , 7 9 , 8 4 , 7 5 , 8 1 , 7 8 , 8 3 , 7 9 , 7 6 , 7 3 , 8 1 , r8 , r 5 , r 26 , 7 2 , r 5 , 7 9 , 8 1 , 8 2 ,
8 1 , r 26 , r6 , r6 , r 27 , 6 2 , 6 0 , r6 , 6 4 , 6 9 , 5 7 , 6 2 , 7 7 , 7 1 , 7 4 , 6 8 , 7 1 , r 2 5 , 6 9 ,
7 3 , 7 6 , 7 9 , r8 , r6 , r4 , 6 7 , 7 7 , 7 6 , 8 1 , 7 7 , 8 2 , 7 3 , 7 9 , 7 6 , 8 1 , r8 , r8 , 7 9 , 7 6 ,
7 2 , 6 9 , r8 , 7 1 , 6 8 , 7 6 , r6 , r 3 7 , 8 3 , 8 1 , 8 0 , 7 8 , r 2 5 , r 2 5 , r 27 , r 34 , r 1 7 , 6 5 ,
64 , r 3 8 , 6 4 , 6 8 , 6 9 , 1 2 8 , r7 , 7 2 , 6 3 , 6 9 , 6 6 , 7 1 , r 2 , 6 1 , 6 9 , 6 5 , r9 , r2 , 6 9 ,
6 8 , 5 7 , r 34 , r 28 , r 1 0 , r 3 5 , 5 7 , 5 9 , r 30 , 5 4 , 5 6 , 5 6 , 5 4 , 5 6 , 5 7 , r 1 8 , r 29 , 5 5 ,
5 5 , r 1 8 , r 3 1 , 6 5 , 6 5 , r 1 9 , r 34 , 6 2 , r 1 9 , r 28 , 5 5 , 6 0 , 6 5 , r 3 2 , 6 2 , 6 5 , 6 2 , 6 7 ,
6 0 , 5 7 , r9 , 5 9 , 6 1 , r20 , 6 2 , r6 , 7 8 , 7 1 , r 2 5 , 6 9 , r6 , r7 , 6 6 , 6 7 , r7 , 6 6 , 6 4 ,
6 3 , 6 4 , 6 6 , 6 4 , 6 3 , r20 , 6 3 , 6 3 , 6 1 , 6 3 , 6 4 , r9 , r2 , r 1 9 , r 34 , 6 5 , 5 9 , 6 2 , r 3 9 ,
r 34 , 6 6 , 6 9 , r6 , 6 7 , 6 5 , r 1 9 , 6 0 , 7 0 , r 3 , 7 3 , 7 4 , r4 , 7 0 , 6 4 , 6 7 , 6 1 , 7 6 , 6 9 ,
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r 3 2 , 7 4 , 6 7 , r9 , 6 8 , r 3 , r 34 , 6 0 , r9 , 5 7 , 5 6 , 5 7 , 6 4 , r 3 5 , 5 4 , r 3 5 , r 1 1 , 5 1 ,
5 2 , r 1 0 , 6 2 , r20 , 6 2 , 6 5 , 5 6 , r 1 0 , 6 4 , 1 2 9 , 6 4 , r 3 9 , 5 7 , 5 4 , 6 3 , 5 2 , 6 4 , r 29 ,
r 1 7 , 5 5 , r 1 3 , r 1 2 , r 1 1 , 5 1 , 5 2 , r 1 1 , 5 1 , r 2 1 , 5 1 , 5 1 , 4 9 , 5 1 , 5 2 , r 2 2 , r 1 2 ,
r 2 3 , 5 0 , r 2 2 , r 2 3 , 4 8 , r 1 4 , r 2 3 , 5 2 , 5 3 , 5 3 , 4 7 , 5 0 , 4 4 , 4 7 , 5 2 , 4 5 , r 1 3 , r 2 2 ,
r 1 2 , 5 3 , 5 0 , 5 5 , 5 3 , 5 2 , 5 7 , 4 7 , 5 3 , 5 0 , 5 5 , 5 2 , 5 2 , 5 4 , r 1 1 , r 1 3 , 5 2 , 5 7 , r 36 ,
4 2 , 5 1 , 4 0 , 6 0 , 5 4 , 5 7 , 5 1 , 5 4 , 5 9 , 5 2 , 4 0 , 4 1 , 4 3 , 4 5 , 4 3 , r24 , 5 7 , 5 3 , 6 2 , 5 6 ,
5 2 , 5 7 , r 1 8 , r 3 5 , r 30 , r 3 3 , r 1 2 , r 2 3 , r40 , 4 4 , 4 5 , r 1 5 , 4 4 , 4 2 , 4 0 , 4 2 , 4 4 ,
4 4 , 4 2 , 4 4 , 4 5 , r 1 6 , r 2 1 , r 1 4 , 5 3 , r 1 1 , r 1 3 , 5 7 , 5 9 , 5 9 , r 1 8 , 6 2 , 6 4 , 6 4 , 6 2 ,
r 1 9 , 6 9 , r7 , 6 9 , 7 0 , 5 8 , 6 0 , 6 2 , 6 0 , r 3 1 , 5 5 , 5 7 , r 3 1 , r 2 2 , r 2 3 , 4 9 , r 1 4 , 5 0 ,
49 , r 1 5 , 4 7 , 4 9 , r 2 1 , r 1 4 , r40 , 4 3 , 4 5 , 4 7 , r 1 5 , r 1 6 , 6 0 , 6 2 , 6 4 , r 28 , 5 9 ,
r 1 6 , r 1 4 , r 3 3 , r 1 6 , r 1 4 , 5 4 , 5 6 , r 30 , 5 0 , 4 8 , 5 3 , 4 4 , r 36 , 4 0 , 4 3 , r24 , 4 0 ,
r24 , 4 0 , 3 3 , 4 5 ,TERM ( l e n =429 )

r 2 : 6 7 , 64 ,TERM ( l e n =3 )
r 3 : 6 9 , 7 1 ,TERM ( l e n =3 )
r 4 : 7 2 , 7 4 ,TERM ( l e n =3 )
r 5 : 7 6 , 7 7 ,TERM ( l e n =3 )
r 6 : 7 2 , 7 1 ,TERM ( l e n =3 )
r 7 : 6 9 , 6 7 ,TERM ( l e n =3 )
r 8 : 7 7 , 7 4 ,TERM ( l e n =3 )
r 9 : 6 2 , 5 9 ,TERM ( l e n =3 )
r 1 0 : 5 9 , 6 0 ,TERM ( l e n =3 )
r 1 1 : 5 4 , 5 2 ,TERM ( l e n =3 )
r 1 2 : 5 7 , 5 5 ,TERM ( l e n =3 )
r 1 3 : 5 4 , 5 5 ,TERM ( l e n =3 )
r 1 4 : 5 0 , 5 2 ,TERM ( l e n =3 )
r 1 5 : 4 7 , 4 5 ,TERM ( l e n =3 )
r 1 6 : 4 7 , 4 8 ,TERM ( l e n =3 )
r 1 7 : 6 0 , 5 9 , 5 7 ,TERM ( l e n =4)
r 1 8 : 5 7 , r 1 0 ,TERM ( l e n =3 )
r 1 9 : 6 4 , 6 5 , 6 7 ,TERM ( l e n =4)
r 20 : 6 1 , 5 9 , 6 1 ,TERM ( l e n =4)
r 2 1 : 4 9 , 4 7 , 4 9 ,TERM ( l e n =4)
r 2 2 : 5 2 , 5 3 , 5 5 ,TERM ( l e n =4)
r 2 3 : 5 3 , 5 2 , 5 0 ,TERM ( l e n =4)
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r 2 4 : 4 1 , 4 0 , 3 8 ,TERM ( l e n =4)
r 2 5 : 7 6 , 7 4 , r6 ,TERM ( l e n =4)
r 2 6 : 7 9 , 7 7 , 7 6 , 7 4 ,TERM ( l e n = 5 )
r 2 7 : 6 9 , 6 8 , 6 6 , 6 4 ,TERM ( l e n = 5 )
r 2 8 : 6 5 , 6 4 , 6 2 , 6 0 ,TERM ( l e n = 5 )
r 2 9 : 6 2 , r 1 7 ,TERM ( l e n =3 )
r 3 0 : 5 7 , 5 6 , r 1 1 ,TERM ( l e n =4)
r 3 1 : 5 8 , r 1 2 , 5 3 ,TERM ( l e n =4)
r 3 2 : 6 9 , 6 2 , 6 5 , 5 9 ,TERM ( l e n = 5 )
r 3 3 : 5 0 , 4 8 , r 1 5 ,TERM ( l e n =4)
r 3 4 : r7 , 6 5 , 6 4 , 6 2 ,TERM ( l e n = 5 )
r 3 5 : r 29 , 5 6 ,TERM ( l e n =3 )
r 3 6 : 5 0 , 4 7 , 5 2 , 4 8 , 4 5 ,TERM ( l e n =6)
r 3 7 : r4 , 7 6 , 7 8 , 8 0 , 8 1 ,TERM ( l e n =6)
r 3 8 : 6 6 , 6 8 , 6 8 , 6 6 , 6 8 , r 3 ,TERM ( l e n =7)
r 3 9 : 6 0 , 6 5 , 5 6 , r9 , 6 4 , 6 0 ,TERM ( l e n =7)
r40 : r 2 3 , 4 8 , r 1 6 , r 3 3 ,TERM ( l e n = 5 )

Grammar s i z e : 5 8 3

Lisধng A.2: A human-readable display of the encoding of a grammar including rule modificaধons, constructed us-
ing ZZ from Bach’s Fugue No. 20 from Das Wohltemperierte Clavier Book II. The encoding length is 411; 172 sym-
bols less than the encoding shown above. The label TERM is again used to represent unique terminaধon symbols,
r<integer> is used to denote a producধon rule, and m<integer> is used to denote a modifier. Where a modifier
should be applied to a given rule, its index follows the prime symbol as a suffix to the rule, and expansion of the
rule should occur before the transform is applied. For instance, ”r13‘2” states that the expansion of rule 13 should be
transformed by modifier 2. Within a modifier’s encoding, ”TRANS,x” means ”translate the rule by x”, ”DEL,x” means
”delete the symbol at posiধon x”, and ”REV” means ”reverse the enধre sequence”. Terminal symbols are chromaধc
pitch values. The grammar’s start rule, S, is here represented as the first rule (r1). Rule and modifier lengths are spec-
ified at the end of each sequence. Within the encoding, a single special symbol separates the rule and modifier se-
quences.

r 1 : 76 , r 29 , r 1 3 ‘ 2 , 7 1 , 7 2 , r 28 ‘ 8 , 8 4 , 8 3 , 8 1 , 7 9 , 7 7 , r 1 4 ‘ 8 , 7 6 , r 30 , r 1 9 ,
r 34 ‘ 6 , r20 , r 29 ‘ 6 , 7 7 , 7 4 , r 1 7 ‘ 4 , 7 2 , 7 6 , r 28 ‘ 4 , 7 4 , r2 , r2 , 6 9 , r 1 6 ‘ 8 , r2 ,
6 4 , 6 9 , 5 7 , 6 2 , r 1 2 , r 1 4 ‘ 6 , 7 3 , 7 6 , 7 9 , 7 7 , r24 ‘ 6 , 8 1 , r 2 5 ‘ 4 , 7 7 , 7 4 , 7 9 ,
r 1 3 , 7 1 , 6 8 , 7 6 , 7 2 , r20 , 8 3 , r20 ‘ 9 , r 1 4 ‘ 6 , 6 8 , 6 6 , 6 4 , r 1 4 , r 5 , r 3 , r 1 8 ‘ 6 ,
7 1 , 6 4 , 6 8 , 6 9 , 1 2 8 , 6 9 , r 29 ‘ 2 , 6 5 , r4 , 6 7 , 6 4 , 6 9 , r 3 1 , r 3 2 , r 3 3 , r 27 ‘ 6 , 5 5 ,
r 5 ‘ 9 , 5 8 , r7 , 6 5 , 6 5 , r26 ‘ 8 , r 27 ‘ 8 , 5 5 , 6 0 , 6 5 , r9 , 6 2 , 6 5 , 6 2 , 6 7 , r 34 , r2 ,
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7 8 , 7 1 , r 1 4 ‘ 6 , r2 , 6 9 , r 3 2 ‘ 6 , r 3 3 ‘ 6 , r4 , 6 7 , 6 4 , r26 ‘ 8 , 6 5 , 5 9 , 6 2 , r 2 5 ‘ 7 ,
r 1 4 , 6 6 , 6 9 , r2 , r24 , 7 1 , 7 3 , 7 4 , 7 2 , 7 4 , 7 0 , 6 4 , 6 7 , 6 1 , 7 6 , 6 9 , r9 , 7 4 , 6 7 ,
r4 , 6 8 , 6 9 , 7 1 , r 1 4 , 6 0 , r4 , 5 7 , 5 6 , 5 7 , r 1 4 ‘ 2 , 5 6 , 5 4 , 6 2 , r 5 , r6 , 5 1 , 5 2 , 5 9 ,
6 0 , 6 2 , r 1 0 , 6 5 , 5 6 , 5 9 , 6 0 , 6 4 , 1 2 9 , 6 4 , r 2 5 , 5 4 , r 3 1 ‘ 2 , r 3 2 ‘ 2 , r 3 3 ‘ 2 , r 26 ,
r 27 , r8 , 5 2 , r8 , r 2 1 , 5 4 , 5 5 , 5 2 , 5 3 , 5 5 , r7 , 5 0 , 5 5 , 5 3 , 5 2 , 5 7 , 4 7 , 5 3 ,
r 34 ‘ 3 , 5 2 , 5 7 , r 1 5 , 4 2 , 5 1 , 4 0 , r 2 1 ‘ 6 , 4 0 , r 2 2 , 5 7 , 5 3 , 6 2 , 5 6 , 5 2 , 5 7 , 5 7 ,
r 1 7 , 5 6 , 5 7 , r 1 6 , 4 7 , 4 5 , r7 , 5 2 , 5 0 , r 30 ‘ 1 , 4 4 , 4 5 , 4 7 , 4 5 , r 36 ‘ 2 , 4 8 , 4 9 ,
4 7 , 4 9 , r8 , r 3 5 , 6 2 , 6 4 , r 3 5 ‘ 5 , r 2 2 ‘ 4 , r 2 3 , r 3 2 ‘ 3 , 5 0 , r 36 , r 30 ‘ 1 , r 1 9 ‘ 1 ,
r 28 , r26 ‘ 2 , r20 ‘ 1 , r 1 6 , 5 3 , 4 4 , r 1 5 , 4 0 , 4 3 , r 1 1 , r 1 1 , 3 3 , 4 5 ,TERM
( l e n =284 )

r 2 : 7 2 , 7 1 ,TERM ( l e n =3 )
r 3 : 6 5 , 6 4 ,TERM ( l e n =3 )
r 4 : 6 2 , 5 9 ,TERM ( l e n =3 )
r 5 : 6 0 , 5 9 , 5 7 ,TERM ( l e n =4)
r 6 : 5 6 , 5 4 , 5 2 ,TERM ( l e n =4)
r 7 : 5 7 , 5 5 , 5 3 ,TERM ( l e n =4)
r 8 : 5 0 , 5 2 , 5 3 ,TERM ( l e n =4)
r 9 : 6 9 , 6 2 , 6 5 , 5 9 ,TERM ( l e n = 5 )
r 1 0 : 6 1 , 5 9 , 6 1 , 6 2 ,TERM ( l e n = 5 )
r 1 1 : 4 1 , 4 0 , 3 8 , 4 0 ,TERM ( l e n = 5 )
r 1 2 : 7 7 , 7 1 , 7 4 , 6 8 , 7 1 ,TERM ( l e n =6)
r 1 3 : 7 6 , 7 2 , 6 9 , 7 7 , 7 4 ,TERM ( l e n =6)
r 1 4 : 6 9 , 6 7 , r 3 , 6 2 ,TERM ( l e n = 5 )
r 1 5 : 5 0 , 4 7 , 5 2 , 4 8 , 4 5 ,TERM ( l e n =6)
r 1 6 : r6 , 5 0 , 4 8 ,TERM ( l e n =4)
r 1 7 : 5 9 , 6 0 , 6 2 , r 5 ,TERM ( l e n = 5 )
r 1 8 : 5 9 , 6 1 , r 1 0 ,TERM ( l e n =4)
r 1 9 : 67 , r 1 8 ‘ 5 ,TERM ( l e n =4)
r 20 : 7 1 , 7 2 , 7 4 , 7 6 , 7 8 , 8 0 , 8 1 ,TERM ( l e n =8)
r 2 1 : r 1 2 ‘ 1 , 5 2 , 4 5 ,TERM ( l e n = 5 )
r 2 2 : 4 1 , 4 3 , r 1 4 ‘ 1 ,TERM ( l e n = 5 )
r 2 3 : r7 ‘ 9 , 5 8 , r7 ,TERM ( l e n = 5 )
r 2 4 : 67 , r 3 , 6 5 , 6 7 , 6 0 , 7 0 , 6 9 ,TERM ( l e n =8)
r 2 5 : 6 0 , 6 5 , 5 6 , r 1 5 ‘ 8 ,TERM ( l e n =6)
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r 2 6 : 5 2 , r 2 2 ‘ 8 ,TERM ( l e n =4)
r 2 7 : r8 , 5 5 , r8 ‘ 9 , 4 8 ,TERM ( l e n =6)
r 2 8 : r 2 3 ‘ 6 , 5 9 ,TERM ( l e n =4)
r 2 9 : r 2 5 ‘ 8 , 6 6 , 7 4 ,TERM ( l e n = 5 )
r 3 0 : 7 7 , 7 6 , 7 4 , 7 2 , r 1 7 ‘ 8 ,TERM ( l e n =7)
r 3 1 : 6 8 , 5 7 , r 1 4 , r 3 , 6 2 ,TERM ( l e n =6)
r 3 2 : 60 , r 1 7 , 5 6 , 5 7 , 5 9 ,TERM ( l e n =6)
r 3 3 : 5 7 , r6 , r 1 8 ‘ 2 ,TERM ( l e n = 5 )
r 3 4 : 6 0 , 5 7 , r4 , r 1 8 ,TERM ( l e n = 5 )
r 3 5 : 5 4 , 5 2 , 5 4 , 5 5 , 5 7 , 5 9 , 5 9 , r 5 ‘ 9 ,TERM ( l e n = 1 0 )
r 3 6 : r 3 3 ‘ 3 , 5 2 ,TERM ( l e n =4)

Mo d i f i e r s i n u s e :
m 1 : TRANS,−24 ,TERM ( l e n =3 )
m 2 : TRANS,− 5 ,TERM ( l e n =3 )
m 3 : TRANS,−7 ,DEL , 1 ,TERM ( l e n = 5 )
m 4 : TRANS, 1 7 ,TERM ( l e n =3 )
m 5 : TRANS, 1 0 ,TERM ( l e n =3 )
m 6 : TRANS, 7 ,TERM ( l e n =3 )
m 7 : DEL , 8 ,TERM ( l e n =3 )
m 8 : TRANS, 1 2 ,TERM ( l e n =3 )
m 9 : REV ,TERM ( l e n =2)

Grammar s i z e : 4 1 1
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B
A worked example of constructing a

Transform-enabled Grammar

The following description is a real-world example of the construction process for a transform-enabled
grammar, showing how repeating terms and their associated transforms may be selected, and how
a choice may be made between constituents for inclusion in the encoding. For the sake of clarity,
only specific constituents and transforms are considered in this example, but the resulting grammar is
consistent with that produced when all possible elements are considered. Where a transition is being
discussed, such as the addition of a constituent to an existing set, the notation Ccurrent and Cnext are
used to differentiate between states. Where a single state only is relevant, it is simply notated asC, but
may refer to the current state or a changed state, as indicated by the description. A node within the
lattice of all possible constituents is represented as C = {c1, c2, . . . , cn}, and a node within the lattice
of all possible transforms is represented asM = {T1,T2, . . . ,Tn}. Where encodings are specified, all
termination symbols $ should be considered unique, e.g. $1, $2, . . . , $n.

To begin, the grammar is initialised by setting S to the input sequence, in this case the chromatic
pitch values of “NLB073516_01” from the Meertens Tune Collections (Meertens Instituut, 2018).The
tunemay be seen in Figure B.1, as it appears in theMTC-ANN v2.0.1 archive. This piece is 41 symbols
long, and an additional termination symbol, $, is appended to S:
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Figure B.1: Music notaধon for the tune Daar was er een meisje al op het land, piece “NLB073516_01” from the
Meertens Tune Collecধons (Meertens Insধtuut, 2018), as it appears in theMTC-ANN v2.0.1 archive.

G := 74, 74, 76, 78, 79, 78, 76, 76, 74, 74, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67,
71, 74, 79, 79, 81, 81, 83, 84, 83, 81, 79, 79, 79, 78, 76, 78, 79, $

A search is performed over all substrings within S, using Algorithm 8, with the set of
all possible transforms including Reverse and Translate, the latter with a range which covers
−127 : 127. It is most sensible to choose the set of translations to consider based on all pairwise
intervals in S, or to compute them individually for each combination a, b during the search, but
for the purposes of this example “all transforms” may be taken as {[reverse], [translate,−127],
[translate,−126] . . . [translate,−1], [translate, 1] . . . [translate, 126], [translate, 127], none}. Algo-
rithm 8 combines Reverse with all other transforms; in practice, a combination of all possible
transform types and parameters may be more appropriate where the properties of any patterns
embedded in the data are unknown, to prevent the exclusion of potentially useful transforms.

Performing the search with minLength = 2,maxLength = 10,maxDistance = 3 results in se-
lection of 114 candidate terms of lengths 2 ≤ l ≤ 10, with 405 occurrences throughout S. Table B.1
shows a tiny subset of these matches.

Once all candidate constituents for the current encoding of G have been chosen, combinations
of these may be selected andMinimal Grammar Parsing used to obtain the smallest possible encoding
given each combination, and the model minimising |G| retained; the constituent search may then be
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Algorithm 8 Find all exact and flexible repeats, with associated transforms. Assumes T[ 1 ] =
reverse
Require: S,minLength,maxLength, allTransforms,maxDistance
Ensure: D, (dictionary of all exact and approximate repeats)

1: for l← minLength tomaxLength do
2: for i← 1 to length(S)− l do
3: a← S[i : i+ l]
4: for m← minLength tomaxLength do
5: for j← 1 to length(S)−m do
6: b← S[j : j+m]
7: for r← 0 to 1 do ▷Test a normally (r← 0) and reversed (r← 1)
8: if r = 1 then
9: c← f(T[1], a ▷Apply the reverse transform to a
10: else
11: c← a ▷Do not apply the reverse transform to a
12: end if
13: for k← 2 to length(allTransforms) do

▷ Step through all other transforms
14: c, d← f(T[k], c
15: if d ≤ maxDistanceAND a = c then ▷Record all matches

occurringwithin the chosendistance
16: if doesn’t existD[a] then
17: D[a][1] = [i, l]
18: end if
19: D[a][ end ] = [j,m,T[k]
20: end if
21: end for
22: end for
23: end for
24: end for
25: end for
26: end for
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Constituent Term a Index i Term b Index j Transform T Distance d
1 [74, 74] 1 [74, 74] 1 none 0

[74, 74] 9 none 0
[74, 74] 12 none 0
[74, 74] 17 none 0

2 [74, 76] 2 [74, 76] 2 none 0
[74, 76] 10 none 0
[74, 76] 18 none 0

3

[74, 74, 76,
78, 79, 78,
76, 76, 74,

74]

1

[74, 74, 76,
78, 79, 78,
76, 76, 74,

74]

1 none 0

[79, 79, 81,
81, 83, 84,
83, 81, 79,

79]

27 T = [reverse,
translate, 5] 3

4

[74, 76, 74,
74, 79, 78,
79, 74, 74,

76]

10

[74, 76, 74,
74, 79, 78,
79, 74, 74,

76]

10 none 0

[76, 74, 74,
79, 78, 79,
74, 74, 76,

74]

11 T = [reverse] 1

5

[79, 79, 81,
81, 83, 84,
83, 81, 79,

79]

27

[79, 79, 81,
81, 83, 84,
83, 81, 79,

79]

27 none 0

[74, 74, 76,
78, 79, 78,
76, 76, 74,

74]

1 T = [reverse,
translate,−5] 3

Table B.1: A small subset of string pairs a, b found in NLB073516_01 during a flexible substring search
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Figure B.2: Parse graph for S, with C = ∅,M = ∅. Taking a blue edge between any two circular nodes adds the
upper symbol to the encoding ofG, and costs the value shown beneath the edge in brackets. Units are in symbols.
Since C = ∅, there are no consধtuent sub-graphs to parse, only that of the input, S.

repeated for the new encoding of G if required. During parsing, graphs for both the existing G and
any constituents being newly considered are parsed, so that thosewhich form sub-constituentsmay be
leveraged to generate a smaller, hierarchical encoding. ZZ activates or deactivates exactly one element
from the current combination at each iteration, thus exploring the lattice of all possible combinations
as described in Section 4.7, and the node producing the greatest reduction in |G| is moved to when
the iteration ends, in preparation for the next.

The process can begin with any C andM, although Carrascosa et al. (2010; 2011; 2012) show that
choosing > 1/3n constituents, where n is the number of all possible candidate constituents, cannot
provide a minimal |G|. The choice of initial state, and exact order of candidate selection, determines
the local minimawhich will be reached. For this example, the initial state will be set toC = ∅,M = ∅.

For each change Ccurrent ̸= Cnext or Mcurrent ̸= Mnext, graphs are generated for the current en-
coding of G and constituents in C, including the candidate which is to be evaluated. The graph for
C = ∅,M = ∅may be seen in Figure B.2.

Since at most only one arriving and one departing edge exists for each node in the graph, there are
no alternative paths. Traversal from start to end nodes requires 42 steps, thus |G| = 42, and results in
encodingG = S as shown above, and initial |Gmin| = 42. ZZ begins in the top-down phase, exploring
C nodes connected with the current one, within the level immediately beneath it.
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Figure B.3: Parse graph for S, with C = {c1},M = ∅. Addiধonal edges, marked in green, are created from the
inclusion of consধtuent 1.
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Figure B.4: Parse graph for consধtuent 1, with C = {c1},M = ∅.

For simplicity, constituents not listed in Table B.1 are omitted from this example, but the results
are unchanged. Each constituent is added in turn to the empty set Ccurrent to produce Cnext, graphs
are generated given the temporarily changed C, and a minimal parse is made over each graph and
constituent sub-graph. The total number of nodes visited during parsing is equal to the minimal
encoding size |G| for that temporary combination ofC. The graphs constructed forC = {c1},M = ∅
are shown in Figures B.3 – B.4. All b terms for constituent 1 may be used even with M = ∅, as no
transforms are required.

The shortest route through the graph for S now uses each edge added by the inclusion of con-
stituent 1. A minimal parse from start to end nodes for both the graph for S and that for constituent
1 results in |G| = 38 + 3 = 41, and the following concatenated encoding:

G := r1, 76, 78, 79, 78, 76, 76, r1, 76, r1, 79, 78, 79, r1, 76, 74, 72, 71, 67, 67, 71, 74, 79, 79, 81, 81,
83, 84, 83, 81, 79, 79, 79, 78, 76, 78, 79, $, 74, 74, $

This process is repeated for C = {c2}, resulting in |G| = 42 since its edges allow for a gain of 3
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Figure B.5: Parse graph for S, with C = {c3},M = ∅. Only one edge, marked in green, is created from the inclusion
of consধtuent 3.
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Figure B.6: Parse graph for consধtuent 3, with C = {c3},M = ∅.

symbols, but the constituent requires 3 symbols to be added to the encodingG.
WhenC = {c3},M = ∅ is evaluated, the second edge cannot be used since it relies on a transform

T /∈M. Wherever an edgehas anunsatisfied transformdependency, it is omitted from theparse graph,
thus “de-activating” it during theMGP. In this instance, the graphs in Figures B.5 – B.6 are generated:

Taking the shortest path through these graphs results in the following encoding:

G := r1, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67, 71, 74, 79, 79, 81, 81, 83, 84, 83, 81,
79, 79, 79, 78, 76, 78, 79, $, 74, 74, 76, 78, 79, 78, 76, 76, 74, 74, $

The same is true for C = {c4} and C = {c5}, which both require a transform T /∈M to provide
any gain. Table B.2 shows the results of considering the addition of exactly one constituent to C = ∅,
thus exploring every connected node in the C lattice on the level immediately beneath node C = ∅.
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C |G|
Gmin 42
{c1} 41
{c2} 42
{c3} 44
{c4} 44
{c5} 44

Table B.2: Encoding sizes resulধng from adding a single consধtuent to C = ∅ withM = ∅
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Figure B.7: Parse graph for S, with C = {c1, c3},M = ∅. Edges for consধtuent 1 are marked in green, and edges for
consধtuent 3 in red.

The result of this ZZ step is selection of C = {c1}, since |GC={c1},M=∅| < |Gmin| where
GC={c1},M=∅ indicates the grammar resulting from the addition of constituent 1 to C, and no change
toM. Thus, the new smallest model becomes GC={c1},M=∅ with |Gmin| = 41. Traversal through the
constituent lattice may now continue from the node C = {c1}.

Oncemore, the addition of each candidate constituent toCwhich is not already present in itmust
be evaluated. The first new evaluation is for constituent 2, with C = {c1, c2}, producing the graphs
shown in Figures B.7 – B.9.

The shortest path through the graph for S makes use of all constituent 1 edges and excludes all
constituent 2 edges. There are no options for a shorter parse of the sub-graphs for the individual
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Figure B.8: Parse graph for consধtuent 1, with C = {c1, c3},M = ∅.
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Figure B.9: Parse graph for consধtuent 3, with C = {c1, c3},M = ∅.

constituents, and so the following encoding results, with |G| = 44, identical to that forC = {c1} but
with constituent 2 appended:

G := r1, 76, 78, 79, 78, 76, 76, r1, 76, r1, 79, 78, 79, r1, 76, 74, 72, 71, 67, 67, 71, 74, 79, 79, 81, 81,
83, 84, 83, 81, 79, 79, 79, 78, 76, 78, 79, $, 74, 74, $, 74, 76, $

Once again, since M = ∅, constituents 3 – 5 cannot offer any gain, and are simply appended to
the encoding at additional cost. Table B.3 shows the results of exploring all nodes connectedwith, and
belonging to the level immediately beneath, the node C = {c1}.

Satisfying |GC={c1,c},M=∅| < |Gmin| has been impossible for any new candidate c considered dur-
ing this step, and so removal of a constituent fromC is tested instead, to discover whether a reduction
in |G| occurs as part of ZZ’s bottom-up phase. The only possibility is C = ∅ giving |G| = 42, which
also cannot satisfy |GC={c1}\{c},M=∅| < |Gmin|. ZZ has reached a node in theC lattice fromwhich |G|
cannot improve, and the final encoding forM = ∅ is generated fromC = {c1}. Where no transforms
are available, the mimimum encoding possible is |Gmin| = 41.

All nodes in the M lattice immediately below M = ∅ can now be explored. In this exam-
ple, the set of all usable transforms consists of T1 = [reverse, translate, 5],T2 = [reverse],T3 =

[reverse, translate,−5]. ZZ moves to the nodeM = {T1}, and traversal of the C lattice begins again,

C |G|
Gmin 41
{c1, c2} 44
{c1, c3} 52
{c1, c4} 52
{c1, c5} 52

Table B.3: Encoding sizes resulধng from adding a single consধtuent to C = {c1} withM = ∅
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Figure B.10: Parse graph for S, with C = {c3},M = {T1}. Note the addiধonal edge between nodes 26 and 36,
with cost 2, made possible by the inclusion of T1
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Figure B.11: Parse graph for consধtuent 3, with C = {c3},M = {T1}.

but this time without evaluating C = ∅, because inclusion of any Tn ∈ M in the original encoding
cannot by definition result in |GC=∅,M ̸=∅| < |GC=∅,M=∅|.

The first evaluations are made for C = {c1} and C = {c2}. Grammar sizes for both are already
known, since constituents from the set {c1, c2} are not associated with any T. The next evaluation is
for C = {c3}, where constituent 3 does have T ∈ M, and the edge using T can be included in the
parse graphs, shown in Figures B.10 – B.11.

Aminimal parse of these graphs results in |G| = 40, withT1 appended in the encoding ofG, and
symbol ! added to separate the production rules from the transforms:

G := r1, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67, 71, 74, r1, t1, 79, 78, 76, 78, 79, $,
74, 74, 76, 78, 79, 78, 76, 76, 74, 74, !, reverse, translate, 5, $
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C |G|
Gmin 41
{c1} 45
{c2} 48
{c3} 40
{c4} 56
{c5} 56

Table B.4: Encoding sizes resulধng from adding a single consধtuent to C = ∅ withM = {T1}
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Figure B.12: Parse graph for S, with C = {c1, c3},M = {T1}. Edges for consধtuent 1 are marked in green, and
edges for consধtuent 3 in red.

Grammar size for C = {c4} and C = {c5} is also known, since both require T /∈ M to activate
any new graph edges and offer a potential reduction of |G|. Table B.4 shows the results of exploring
all nodes in the constituent lattice immediately beneath C = ∅ forM = {T1}.

The result of this ZZ step is selection of C = {c3}, since |GC={c3},M={T1}| < |Gmin|. Thus the
grammarGC={c3},M={T1} is obtained,with |Gmin| = 40. Traversal through the constituent latticemay
now continue from the node C = {c3}. The first addition to C is constituent 1, giving C = {c1, c3},
producing the graphs shown in Figures B.12 – B.14.

Minimally parsing these graphs requires the use of all edges in S belonging to constituent 3 and
some belonging to constituent 1, and both edges in the graph for constituent 3 belonging to con-
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Figure B.13: Parse graph for consধtuent 1, with C = {c1, c3},M = {T1}.
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Figure B.14: Parse graph for consধtuent 3, with C = {c1, c3},M = {T1}. Note the addiধonal consধtuent 4 edges
which may now be used during parsing, which exist due to the inclusion of consধtuent 1 inG.

stituent 1. The second edge belonging to constituent 3 requires T1, and so its weight is 2, representing
the inclusion of two non-terminals, one referencing the rule generated by constituent 3, the other ref-
erencing the transform T1 which must be applied to it. This parse produces the following encoding,
with |G| = 39:

G := r2, 76, r1, 79, 78, 79, r1, 76, 74, 72, 71, 67, 67, 71, 74, r1, t1, 79, 78, 76, 78, 79, $, 74, 74, $,
r1, 76, 78, 79, 78, 76, 76, r1, !, reverse, translate, 5, $

The next evaluation is for C = {c2, c3}. An edge from constituent 2 can be used to minimise the
parsing of constituent 3, but only once, and constituent 2 has fewer edge instances within the graph
for S. As such, it cannot improve the current |Gmin|. Constituents 4 and 5 require a T /∈ M to offer
any gain, and so also cannot improve |Gmin|. Table B.5 shows the results for this ZZ step.

The result of this ZZ step is selection of C = {c1, c3}, with the new |Gmin| = 39. Traversal
through the C lattice may again continue from this node. Since T /∈ M would be required to allow

C |G|
Gmin 40
{c1, c3} 39
{c2, c3} 41
{c3, c4} 51
{c3, c5} 51

Table B.5: Encoding sizes resulধng from adding a single consধtuent to C = {c3} withM = {T1}
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Figure B.15: Parse graph for S, with C = {c4},M = {T2}, including a second edge belonging to consধtuent 4
which is enabled by the presence of T2 ∈M.
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Figure B.16: Parse graph for consধtuent 4, with C = {c4},M = {T2}.

constituents 4 and 5 to reduce |G|, and all edges from constituent 2 overlap with more useful edged
from constituent 1 and do not contribute to the shortest path, no further reduction in |G| can occur.
This is also true when constituents are removed from C in the upwards ZZ step. As such, the new
model isGC={c1,c3},M={T1}, giving |Gmin| = 39.

Next, theM lattice node forM = {T2} is evaluated. Since only constituent 4makes use ofT2, the
resulting encoding size for all other constituentswithM = {T2} is known, as |GC={c},M=∅]|+|T2|+1
where c ∈ {c1, c2, c3, c5}. The parse graphs for C = {c4} are shown in Figures B.15 – B.16.

The shortest path through these graphs makes use only of the edge from constituent 4 which
does not require a transform, as both its edges overlap and there is an additional symbol of overhead
for choosing the second edge. The following encoding results, with T2 remaining unused:

G := 74, 74, 76, 78, 79, 78, 76, 76, 74, r1, 74, 72, 71, 67, 67, 71, 74, 79, 79, 81, 81, 83, 84, 83, 81,
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C |G|
Gmin 39
{c1} 43
{c2} 44
{c3} 46
{c4} 46
{c5} 46

Table B.6: Encoding sizes resulধng from adding a single consধtuent to C = ∅ withM = {T2}
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Figure B.17: Parse graph for S, with C = {c5},M = {T3}. Note the strong similarity with Figure B.11; idenধcal
edges exist, but here it is the first edge which carries the addiধonal cost required by the use of a transform.

79, 79, 79, 78, 76, 78, 79, $, 74, 76, 74, 74, 79, 78, 79, 74, 74, 76, !, reverse, $
Table B.6 shows the results for this final ZZ step forM = {T2}, andGmin remains unchanged:
SinceT3 is leveraged only by constituent 5, which has an inverse relationship to constituent 3 with

respect to transformation, the same results are found during the next ZZ traversal of the M lattice
with M = {T3}, when a single constituent is added to C = ∅. The parse graphs for C = {c5} are
shown in Figures B.17 – B.18.

The resulting encoding is very similar to that seen forC = {c3},M = {T1}, butwith the negative
translation applied to the first instance of the offset rule:

G := r1, t1, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67, 71, 74, r1, 79, 78, 76, 78, 79, $,
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Figure B.18: Parse graph for consধtuent 5, with C = {c5},M = {T3}.

C |G|
Gmin 39
{c1} 45
{c2} 46
{c3} 48
{c4} 48
{c5} 40

Table B.7: Encoding sizes resulধng from adding a single consধtuent to C = ∅ withM = {T3}

79, 79, 81, 81, 83, 84, 83, 81, 79, 79, !, reverse, translate,−5, $

Table B.7 shows the results for this ZZ step.
However, only two instances of the sequence [79, 79] exist in the input S, and only two instances

of the term [74, 74] fromconstituent 1 are nowpresent in the encoding, reducing its ability tominimise
|G|. As such, the subsequent ZZ step adding constituent 1 to C = {c5},M = {T3} cannot produce
the same minimisation as C = {c3},M = {T1}. Instead, an encoding of length 41 symbols is gen-
erated, and |G| cannot be reduced. ZZ traversal for M = {T3} ends, and Gmin remains unchanged.
Table B.8 shows the results for this final ZZ step forM = {T3}, andGmin remains unchanged:

Having evaluated all M lattice nodes immediately beneath the node for M = ∅, M = {T1} is
chosen as offering the smallest value for |G| during a ZZ C lattice traversal. The traversal of the M

C |G|
Gmin 39
{c1, c5} 41
{c2, c5} 42
{c3, c5} 51
{c4, c5} 51

Table B.8: Encoding sizes resulধng from adding a single consধtuent to C = {c5} withM = {T3}
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C |G|
Gmin 39
{c1} 47
{c2} 48
{c3} 42
{c4} 50
{c5} 50

Table B.9: Encoding sizes resulধng from adding a single consধtuent to C = ∅ withM = {T1,T2}

C |G|
Gmin 39
{c1, c3} 41
{c2, c3} 43
{c3, c4} 44
{c3, c5} 53

Table B.10: Encoding sizes resulধng from adding a single consধtuent to C = {c3} withM = {T1,T2}

lattice may now continue, with a single unused transform added toM = {T1} as each node immedi-
ately below is evaluated, beginning with C = ∅,M = {T1,T2}. Table B.9 shows the known results
for the first ZZ step withM = {T1,T2}, which is |GC={c},M={T1}|+ |T2|+ 1 where c ∈ {c1, c2, c3, c5}.
Since both edges from constituent 4 cannot be used together, it is already known thatT2 cannot offer
any reduction in |G| for C = {c4} and its use would simply add to the encoding length.

The C lattice node presenting a smallest |G| is chosen in conclusion to this ZZ step, result-
ing in C = {c3}, and traversal continues with the evaluation of all nodes immediately below it.
Since no transforms apply to constituents 1 and 2, and T3 /∈ M, encoding sizes here are simply
|GC={c3,c},M={T1}| + |T2| + 1 for c ∈ {c1, c2, c4, c5}. Transforms applying to constituents 3 and 4,
however, are available. Although the first edge of constituent 4 overlaps with a more optimal edge
from constituent 3 and therefore is unused, its second edge, which requires T2, can be used, since this
edge is included in the graph given T2 ∈M. The associated parse graphs are shown in Figures B.19 –
B.21.

A minimal parse results in |G| = 44, as shown in the encoding:

G := r1, r2, 72, 71, 67, 67, 71, 74, r1, t1, 79, 78, 76, 78, 79, $, 74, 74, 76, 78, 79, 78, 76, 76, 74, 74, $,
74, 76, 74, 74, 79, 78, 79, 74, 74, 76, !, reverse, translate, 5, $, reverse, $

The results for this ZZ step are shown in Table B.10.
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Figure B.19: Parse graph for S, with C = {c3, c4},M = {T1,T2}. Edges for consধtuent 1 are marked in green, and
edges for consধtuent 3 in red.
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Figure B.20: Parse graph for consধtuent 3, with C = {c3, c4},M = {T1,T2}.
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Figure B.21: Parse graph for consধtuent 4, with C = {c3, c4},M = {T1,T2}.
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C |G|
Gmin 39
{c1} 45
{c2} 46
{c3} 44
{c4} 48
{c5} 44

Table B.11: Encoding sizes resulধng from adding a single consধtuent to C = ∅ withM = {T1,T3}

For the sake of brevity, it can be stated that no further improvements to |G| are possible forM =

{T1,T2}, either by adding or removing constituents againstC. As such, the minimumG for thisM is
C = {c1, c3}with |G| = 41, and so the minimal grammarGC={c1,c3},M={T1} remains unchanged.

The next step in traversal of the M lattice is to add T3 to M. Doing so simply adds ad-
ditional encoding overhead to all known |G| where T3 offers no benefit, resulting generally in
|GC={c},M={T1,T3}| > |Gmin| where c ∈ c1, c2, c3, c4. Inclusion of T3 allows constituent 5 to offer
some reduction in encoding length; parse graphs for C = {c5} with M = {T1,T3} are the same as
for M = {T3}, as shown in Figures B.17 – B.18, due to the fact that transform encodings are not
parsed. The shortest path through these graphsmakes use of all constituent 5 edges, and produces the
following encoding with |G| = 44:

G := r1, t1, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67, 71, 74, r1, 79, 78, 76, 78, 79, $,
79, 79, 81, 81, 83, 84, 83, 81, 79, 79, !, reverse, translate, 5, $, reverse, translate,−5, $

Table B.11 shows the results for this ZZ step.
Since |GC={c3},M={T1,T3}| and |GC={c5},M={T1,T3}]| < |GC=∅,M=∅|, the C lattice node for C =

{c3} or C = {c5} may be chosen as producing the smallest |G|; for this example, the first is selected.
Traversal continues to the nodes immediately beneath it, C = {c3, c} where c ∈ {c1, c2, c4, c5}. Mini-
mal graph parsing results in the following encodings for c ∈ {c1, c2, c4}:

Constituent 1: G := r2, 76, r3, 79, 78, 79, r1, 76, 74, 72, 71, 67, 67, 71, 74, r2, t1, 79, 78, 76, 78, 79,
$, 74, 74, $, r1, 76, 78, 79, 78, 76, 76, r1, !, reverse, translate, 5, $, reverse, translate,−5, $

Constituent 2: G := r2, 76, 74, 74, 79, 78, 79, 74, r1, 74, 72, 71, 67, 67, 71, 74, r2, t1, 79, 78, 76, 78,
79, $, 74, 76, $, 74, r1, 78, 79, 78, 76, 76, 74, 74, !, reverse, translate, 5, $, reverse, translate,−5, $

Constituent 4: G := r1, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67, 71, 74, r1, t1, 79, 78, 76,
78, 79, $, 74, 74, 76, 78, 79, 78, 76, 76, 74, 74, $, 74, 76, 74, 74, 79, 78, 79, 74, 74, 76, !, reverse,
translate, 5, $, reverse, translate,−5, $
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Figure B.22: Parse graph for S, with C = {c3, c5},M = {T1,T3}. Edges for consধtuent 3 are marked in green, and
edges for consধtuent 5 in red.
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Figure B.23: Parse graph for consধtuent 3, with C = {c3, c5},M = {T1,T3}. Note that it is possible to take the
edge offered by consধtuent 5 using T3 to traverse the enধre graph at a total cost of 3 symbols.

However, an interesting phenomenon occurs when adding constituent 5 toC = {c3}. Since both
constituents share an inverse relationship, it is possible to parse the graph for either constituent using
the other’s term combined with a transform, resulting in neither containing an encoding by which
the other may be resolved. This problem of term cancellation may be solved relatively easily: during
parsing, a record is kept of the constituents cchild whose fully-spanning edge has been used during
the parsing of seen constituents cparent, and all cparent edges are disabled when cchild constituents are
parsed, thus preserving at least one copy of each constituent term which may be converted entirely
into another using an available transform.

To illustrate this, consider the parse graphs for C = {c3, c5}, shown in Figures B.22 – B.24.
The shortest path through the graph for constituent 3 takes the edge from node 0 to node 10, at
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Figure B.24: Parse graph for consধtuent 5, with C = {c3, c5},M = {T1,T3}. Note that it is again possible
to traverse the enধre graph using the edge from consধtuent 3 and T1; however, this is invalid if consধtuent 5 has
already been used to traverse consধtuent 3.

C |G|
Gmin 39
{c1, c3} 43
{c2, c3} 45
{c3, c4} 55
{c3, c5} 47

Table B.12: Encoding sizes resulধng from adding a single consধtuent to C = {c3} withM = {T1,T3}.

a cost of 2 symbols; the alternative would be to take all nodes ni to ni+1 until node 10, at a cost of 10
symbols. When constituent 5 is parsed, the same situation occurs, and the following invalid encoding
is produced with |G| = 43:

G := r1, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67, 71, 74, r1, t1, 79, 78, 76, 78, 79, $,
r2, t2, $, r1, t1, !, reverse, translate, 5, $, reverse, translate,−5, $

Instead, using the technique described above to prevent term cancellation, a record is made that
constituent 3makes use of a fully spanning edge from constituent 5, andwhen the parse of constituent
5’s graph is made the edge belonging to constituent 3 is disabled, either by its removal or by setting an
edge cost which cannot be optimal (so that it will not be chosen when the shortest path is sought).
The graphs parsed during this process will be as shown in Figures B.25 – B.27.

This time, the following valid encoding will result, with |G| = 47:

G := r1, 76, 74, 74, 79, 78, 79, 74, 74, 76, 74, 72, 71, 67, 67, 71, 74, r1, t1, 79, 78, 76, 78, 79, $,
r2, t2, $, 79, 79, 81, 81, 83, 84, 83, 81, 79, 79, !, reverse, translate, 5, $, reverse, translate,−5, $

It can be seen that selecting two constituents with such a relationship is not optimal, and the
smallest encoding is instead produced forM = {T1,T3} byC = {c1, c3}. Table B.12 shows the results
for this ZZ step.

Since the existing minimum |G| cannot be improved on this step, or by removal of any single
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Figure B.25: Parse graph for S, with C = {c3, c5},M = {T1,T3}. Prevenধon of term cancellaࣅon does not change
the edges available in this graph.
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Figure B.26: Parse graph for consধtuent 3, with C = {c3, c5},M = {T1,T3}. Note that it is sধll possible to take the
edge offered by consধtuent 5 using T3 to traverse the enধre graph.
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Figure B.27: Parse graph for consধtuent 5, with C = {c3, c5},M = {T1,T3}. Since a consধtuent 5 edge has been
used during the parsing of consধtuent 3, it is disabled for this graph to prevent term cancellaࣅon.
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constituent from C, the ZZ traversal of C completes. Traversal of theM lattice also completes, since
additionof a second transform toM = {T1}does not yield a smaller value for |G|. Thus, localminimi-
sation of |G| given C,M has been achieved, and the final ZZ-optimised grammar C = {c1, c3},M =

{T1}with |G| = 39 is the compact model returned.
Providing term cancellation is avoided, real-world strings of moderate length may be parsed in a

practical length of time. It is important to note that a combination of the possibilitiesC andM repre-
sents a very large search space, and as such further optimisation is necessary to enable fast generation
of a smallest grammar or modelling of an input string Swhere |S| ≫ 1.
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