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Identifyinghigh-impact variants andgenes in
exomes of Ashkenazi Jewish inflammatory
bowel disease patients
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Inflammatory bowel disease (IBD) is a group of chronic digestive tract
inflammatory conditions whose genetic etiology is still poorly understood.
The incidence of IBD is particularly high among Ashkenazi Jews. Here, we
identify 8 novel and plausible IBD-causing genes from the exomes of 4453
genetically identified Ashkenazi Jewish IBD cases (1734) and controls (2719).
Various biological pathway analyses are performed, alongwith bulk and single-
cell RNA sequencing, todemonstrate the likely physiological relatedness of the
novel genes to IBD. Importantly, wedemonstrate that the rare and high impact
genetic architecture of Ashkenazi Jewish adult IBD displays significant overlap
with very early onset-IBD genetics. Moreover, by performing biobank
phenome-wide analyses, we find that IBD genes have pleiotropic effects that
involve other immune responses. Finally, we show that polygenic risk score
analyses based on genome-wide high impact variants have high power to
predict IBD susceptibility.

Inflammatory bowel disease (IBD) is a group of chronic diseases where
sections of the gastrointestinal tract become inflamed due to an
aberrant immune response to intestinal bacteria and microbiota in
genetically susceptible individuals. The bulk of IBD cases comprise
Crohn’s disease (CD) and ulcerative colitis (UC). Genome-wide asso-
ciation studies (GWAS) have identified more than 200 IBD risk loci to
date, mostly in Europeans1–4. The Ashkenazi Jewish (AJ) population has
a high IBD susceptibility,with a 2- to4-fold increased riskofdeveloping
IBD due to an AJ founder effect and long-term genetic isolation5–7. A
recent study indicated that 34%of rare protein-coding variants present
in the AJ population are significantly enriched by comparison with

other reference populations8. Therefore, rare and high-impact genetic
variants in AJ may address and complement the missing heritability in
current IBD GWAS studies of common genetic variants9.

In this study, we genetically identified 4453QC-passed AJs of 1734
cases and 2719 controls from whole exome sequencing (WES) data of
the NIDDK IBD Genetics Consortium (IBDGC). We employed several
cutting-edge approaches to select highly plausible rare variants pre-
dicted to have high phenotypic impact, and then performed a SNP-set
Kernel Association Test (SKAT) on gene-level aggregations of these
variants. In addition, we performed meta- and pathway enrichment
analyses to identify novel plausible IBD-causing candidate genes
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whose biological plausibility was further assessed by bulk RNA
sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq)
analyses. Additionally, we performed gene-level phenome-wide asso-
ciation study (PheWAS) analyses to explore shared risk genes asso-
ciated with other diseases in Mount Sinai Hospital’s BioMe BioBank.
Finally, we tested the polygenic risk score (PRS) classification perfor-
mance of predicted high-impact variants in IBD cases and unaffected
controls by using machine learning and a deep learning classifier.

Results
To generate a homogeneous and genetically matched dataset of cases
and controls, we first genetically identified 4453 samples of AJ ancestry
across 9076 QC-passed IBDGC WES samples, comprising 1734 IBD AJ
cases (1138 CD, 458 UC, and 138 IBD) and 2719 AJ controls, the largest
genetically identifiedAJWES cohort to date.We then performed a SNP-
set Kernel Association Test (SKAT)10 on gene-level aggregations of fil-
tered high-impact variants, obtained by integrating effective com-
plementary variant- and gene-level approaches to select highly
credible deleterious variants (Fig. 1a, b, Supplementary Fig. 1 and
Fig. 2).Weperformed anAJ IBD case-control optimized SKAT (SKAT-O)

analysis on 13,628 genes harboring 63,864 high impact rare variants
(Fig. 1c), and then performed SKAT-O analyses of IBD, CD andUC cases
versus unaffected controls. We identified one gene, the well-
characterized CD gene NOD2, that displayed genome-wide sig-
nificance (Bonferroni-corrected P = 3.76 × 10−6 (= 0.05/13,268), Fig. 1d,
Supplementary Figs. 3, 4 andSupplementaryData 1–3). To examine the
contribution of variants within the significant genes, we performed a
logistic regression association analysis on all high-impact variants
comparing AJ IBD cases to AJ unaffected controls (Supplementary
Data 4, Supplementary Fig. 5) for variants with P <0.05 and their
host genes.

Since biologically-relevant genes might not display genome-wide
significance at the gene level due to genetic heterogeneity, we addi-
tionally applied pathway enrichment and biological relatedness
approaches to identify biologically plausible IBD-associated genes that
we obtained from the SKAT-O results. The significance cut-off in the AJ
IBD SKAT-O test was relaxed to P <0.01 in order to capture other
possible IBD-associated candidates (127 genes, of which 3 are already
known IBD-associated genes: LRRK2, NOD2, and VDR)4, from which a
subset of genes was prioritized by 4 complementary pathway

Fig. 1 | Ashkenazi Jewish population-specific case-control study using high-
impact variants revealed IBD-associated genes. A Flowchart of present work.
Firstly, AJ samples from all WES participants that passed quality control were
genetically identified. Then, high impact rare variants from exomes were filtered
using cutting-edge mutation filtering approaches; high impact rare variants were
aggregated into gene sets to perform SKAT-O gene burden analyses on IBD cases
and controls of AJs. IBD associations were validated and prioritized at the pathway
level, gene level, and variant level using multiple methods. Next, we replicated the
top candidate genes in an independent cohort and identified their relatedness to
diseases other than IBD using gene-level PheWAS. Then, gene expression was tes-
ted in both bulk RNA-seq and single-cell RNA-seq. Lastly, we built polygenic risk
scoremodels to predict IBD patients using high-impact variants. BWe filtered a set

of LD-pruned independent sites to perform a fastSTRUCTURE admixture analysis
by comparing individual samples with 36 known AJ reference samples. The lowest
AJ fraction (0.645) in the AJ reference panel was used as the threshold, abovewhich
a WES sample was deemed to be genetically AJ and retained for further analyses.
Genetically identified Ashkenazi Jewish samples are displayed on a PCA plot com-
pared to the Jewish and European reference panels. The genetically identified AJs
constitute an independent cluster, which overlapped with the AJ reference panel
but was distinct from the European cluster. C Distributions of filtered high impact
rare variants by molecular function. D SKAT-O analysis on 1734 AJ IBD cases and
2719 AJ controls. The red dashed line indicates the Bonferroni-adjusted P values of
genome-wide significance. All dots represent negative log unadjusted P values.
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enrichment and biological relatedness methods: Ingenuity Pathway
Analysis (IPA), ToppGene, Genome-Scale Integrated Analysis of Net-
works in Tissues (GIANT), and Human Gene Connectome (HGC)
(Fig. 2a, “Methods”). To estimate the functional relevance of the can-
didate genes to IBD, we calculated their average HGC biological
proximity to 157 known IBD-causing genes (SupplementaryData 5) and
compared it to equivalent sets of randomly sampled genes in 10,000
resampling iterations, obtaining P =0.0072 (Fig. 3b, c and Supple-
mentary Fig. 6), thereby demonstrating a significant functional asso-
ciation of the SKAT-O list of candidate genes to IBD. In addition, we
applied functional genomic alignment (FGA)11 to cluster all candidate
genes with known IBD genes by their biological distance (Fig. 3a). The
candidate genes were evenly intermixed with the known IBD genes.
These results indicate that the candidate IBD genes are indeed likely to
be associated with the IBD phenotype (Supplementary Data 6, 7).

We identified a final list of 11 genes (EGR2, ICAM1, IL33, INPP5D, ITK,
LRRK2, NOD2, PDGFD, RGS1, TLR4, and VDR) that occurred within the
top-ranking results across all 4 pathway enrichment and biological
relatedness approaches (IPA, ToppGene, GIANT andHGC). All of these
genes have been reported as having pathogenic mutations in non-IBD
diseases (ICAM1, ITK, LRRK2, NOD2, and INPP5D in primary immuno-
deficiency; EGR2 in systemic lupus erythematosus; PDGFD, IL33, and

RGS1 in autism spectrum disorder; TLR4 in type 2 diabetes, gastritis
and susceptibility to infectious diseases; VDR in Vitamin D-resistant
rickets) in the Human Gene Mutation Database (HGMD) Professional
version12. In summary, three genes, NOD2, LRRK2, and VDR are known
IBD genes (Supplementary Data 7), whereas the other 8 are novel, and
not yet formally implicated in IBD (Fig. 2, Supplementary Results).

We then investigated the likely physiological relatedness of the 8
novel prioritized genes to IBD. Variants in ICAM1 and INPP5D are
reported to be associated with primary immunodeficiencies in HGMD.
ICAM1 is involved in mediating adhesive interaction between lym-
phocytes and endothelial cells, and has been recognized as a potential
therapeutic target in IBD13,14. Since ICAM1 is located within 100 kb of
TYK2 (a gene known to be associated with IBD pathogenesis15, we
sought to determine whether the ICAM1 lead variant (rs142682313,
OR =0.4, P = 7.16 × 10−4) was conditionally independent of IBD-
associated sites in TYK2. To this end, we performed Genome-wide
Complex Trait joint and conditional analyses (GCTA-COJO)16 with the
ICAM1 lead SNP and three IBD-associated sites in TYK2, both of which
suggested that the ICAM1 IBD variants act independently of the TYK2
variants. Oneof theTYK2 IBD variants, rs12720356, remained as an IBD-
associated variant in the AJ cohort based on joint association analysis
(Supplementary Data 8 and 9). INPP5D encodes SHIP1 protein, whose

Fig. 2 | Pathway approaches prioritized IBD-associated genes derived from
case-control studies, anddifferential expressionof IBD-associatedgenes inCD,
UC vs. controls. A A Circos plot summarizes the process of identifying IBD-
associated genes and variants. The outer layer includes all 127 SKAT-O-derived IBD
candidate geneswith P <0.01. The intermediate four layers represent the top genes
identifiedby four different pathwayenrichment andbiological relatedness analyses
(green: ToppGene; purple: Human Gene Connectome; blue: GIANT; yellow: Inge-
nuity Pathway Analysis). The 11 genes listed between the intermediate layers and
the inner green layer are significant gene loci identified in common by all four
pathway approaches (the three known IBD genes are in green, the 8 novel genes in
orange). The inner layer displays all 46 high-impact rare variants in the 11 orange
genes. Of the 46 variants, 14 variants (highlighted in red inside the inner green

layer) are associated with IBD (P <0.05). We also prioritized the candidate IBD
genes resulting from the SKATO test by combining all pathway and functional
module analysis results (“Methods”, Supplementary Data 6 and Supplementary
Fig. 7). EGR2, ICAM1, IL33, INPP5D, ITK, LRRK2,NOD2, TLR4, VDR aremore significant
as they remained among the top 10% IBD-associated genes for both the SKATO test
and biological function prioritization. B Log-fold changes of the top 50 genes
derived from IBD SKAT-O analysis in CD, UC vs. controls bulk RNA-seq analyses
(*P <0.05; **P <0.01; ***P <0.001, same levels for C). C Log-fold changes of the top
51–100 genes derived from IBD SKAT-O analysis in CD, UC vs. controls bulk RNA-
seq analyses. All statistical tests are two-sided. Exact P values are provided in
Supplementary Data 12.
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Fig. 3 | IBD candidate genes are biologically proximate to IBD known genes.
Gene level PheWAS replicated IBD-associated genes in an independent cohort
and demonstrated that IBD genes are also related to other immune responses.
A Clustering IBD candidate genes (blue) and IBD known genes (orange) according
to biological relatedness by Functional Genomic Alignment function using the
HGC. The 11 pathway identified genes (Fig. 2A) are indicated in violet. The candidate
genes didnot formdistinct clusters; rather, theyweremixedwith IBDknowngenes.
B A dot plot representing the average distance from a randomly selected gene set
(127genes) to known IBDgenes. The gray dashed line represents the cutoff in terms
of the average biological distance between IBD-associated genes and IBD known
genes.With genes randomly resampled 1000 times, 6 randomgene sets have lower
average distances; hence, the empirical P value of our candidate genes being
empirically associated with IBD as a group is 0.006. P value is unadjusted and the
statistical test is two-sided.CAdensity plot for all average distances in a resampling
test; the percentiles at 2.5% and 97.5% are 14.27 and 14.48, respectively. The vertical

dashed line denotes the cutoff in plot (B). D Gene level PheWAS analysis on the 11
candidate genes using 40 K whole exome sequencing samples from the Mount
Sinai BioMe Biobank. The top 50 associations are displayed, the red dashed line
denotes two-sided unadjusted P =0.01 in the gene level PheWAS. EComparisons of
prediction results on IBD individuals using polygenic risk scores derived from
different variant sets. Receiver Operating Characteristic (ROC) curves of PRS
derived from different variant sets (solid lines), and the 95%CI (bands). Names in
brackets indicating GWAS summary statistics used: Hui, AJ IBD GWAS from Hui’s
study38; Half, AJ IBD GWAS using half of our IBDGC samples; Euro, European IBD
GWAS from Liu’s study2. Values indicate the estimated AUCs and their 95% con-
fidence intervals (in square brackets). F RNA-seq log2 fold change of the 11 IBD-
associated genes identified by all four pathway analyses in CD, UC, and IBD versus
controls, respectively (*P <0.05). P values are unadjusted and statistical tests are
two-sided. Exact P values are provided in Supplementary Data 12.
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expression level is significantly associated with IBD17,18. INPP5D resides
in close proximity on chromosome 2q37.1 to another IBD gene,
ATG16L119. We therefore performed linkage disequilibrium (LD) ana-
lysis on the most significant variant in INPP5D, rs574989226, and
demonstrated that there were no strong LD pairs identified between
ATG16L1 and INPP5D (Supplementary Data 10). Additionally, we per-
formed a conditional analysis on the well-described IBD variant
rs224188020 in ATG16L1 to check the independence of rs574989226.
The significance of rs574989226 only slightly changed after the GCTA-
COJO conditional test using our AJ cohort (conditioned,
Pcon = 1.29 × 10−2; unconditioned, Puncon = 1.04 × 10−2 from GCTA-
COJO), which indicates that rs574989226 is independent from
rs2241880.

Variants in EGR2 are associated with the autoimmune diseases,
systemic lupus erythematosus, and celiac disease. As a member of a
zinc finger transcription factor family, EGR2 is known to display sup-
pressive activity with regard to CD4+ T cells, and control the produc-
tion of inhibitory cytokines suchas IL-10 andTGF-β121. A previous study
also revealed that the expression of EGR2 is upregulated in inflamed
colonic biopsies when compared to healthy colon22, suggesting that
EGR2 is likely to be an IBD-associated gene. IL33 has long been con-
sidered to play an important role in intestinal immunity. IL33 and its
membrane receptor ST2 act as critical regulators of inflammation23,24.
TLR4plays a key role as thehubof the immune response tomicrobes in
the gut in IBDpathogenesis25.PDGFD, a differentially expressedgene in
crypt-associated fibroblasts, has been reported to be significantly
downregulated in the colonic mucosa of Crohn’s disease patients26.
Moreover, single-cell analyses of Crohn’s disease tissues revealed that
γδ T cells selectively expressed PDGFD27, indicating that PDGFDmight
play a role in IBD. Although there are no records of IBD for RGS1 in
HGMD, RGS1 is a member of the regulators of G-protein signaling
(RGS) family, which is considered to be a promising target for the
treatment of gastrointestinal inflammation28. Gibbons et al. have
shown that RGS1 expression is significantly higher in human gut T cells
compared to T cells derived fromperipheral blood and this difference
can further increase with intestinal inflammation. More specifically,
RGS1mRNA is significantly elevated in T cells obtained from intestinal
samples of CD and UC patients when compared with healthy controls.
They have also demonstrated that RGS1 is a dominant regulator of T
cell trafficking in the gut, and therefore it could be involved in the
pathology of IBD29.

IL-2-inducible tyrosine kinase (ITK) is primarily expressed in
T cells, and is essential for proximal T cell receptor (TCR) signaling.
Studies have shown that ITK is involved in the pathogenesis of auto-
immune diseases, including rheumatoid arthritis, systemic lupus ery-
thematosus, multiple sclerosis, and IBD30. ITK harbors a variant
(rs753847568, p.Val264Ile) associated with very early onset inflam-
matorybowel disease (VEO-IBD) according to theHGMD31. Sincefiveof
the identified IBD-associated genes have been implicated in primary
immunodeficiency, which is closely linked with VEO-IBD, we used HGC
to check the biological association of candidate genes with the list of
known VEO-IBD-causing genes32. The analysis of known VEO-IBD-
causing genes versus random gene sets yielded a P =0.023 in 10,000
resampling iterations. Interestingly, these analyses indicated that the
genetic basis of AJ IBD resembles that of IBD in young children under
the model built using rare high-impact mutations. Taken together,
these findings demonstrated the strength of population-specific ana-
lyses in AJ. Therefore, all 8 novel genes described in this study are likely
to have functional relevance to IBD.

Investigating the two well-known IBD genes prioritized in our
analyses, NOD2 had higher significance in the CD-specific SKAT-O
analysis (P = 9.51 × 10−14

, Supplementary Fig. 3 and Supplementary
Data 2) but was insignificant in the UC-specific analysis (P =0.85)
(Supplementary Fig. 4 and Supplementary Data 3) as expected, since
NOD233 is not known to cause UC. The significance of LRRK2

demonstrated the same trend: LRRK2 was more significant in the CD-
specific test (P = 9.68 × 10−4) and the IBD-specific test (P = 2.53 × 10−4),
but showed no significance in the UC-specific test (P =0.07). However,
LRRK2 showed lower significance compared to NOD2, due to the
number of nominal significant LRRK2 variants that were used in the
SKAT-O test (LRRK2 has only one significant site among 14 high-impact
variants, whereasNOD2 has five significant sites among 14 high impact
variants, see Supplementary Data 11). The NOD2 rs104895438 and
LRRK2 rs34637584 variants have been shown to be enriched in the AJ
population and their independence has been confirmed by a previous
study8 via conditional analyses, whereas the other variants have not
previously been implicated in IBD.

These 11 plausible IBD candidate genes harbor a total of 46 high-
impact variants (Supplementary Data 11). To test the burden of the
significant SNPs (P <0.05) located within the IBD candidate genes, we
aggregated all significant SNPs from each IBD candidate gene into a
single SNP set; the mutation carrier frequency in cases was 15.74%
compared to 9.26% in controls, with an odds ratio (OR) of 1.83
(P = 8.78 × 10−11 by chi-squared test) despite two protective sites that
are included in the analyses.

We then performed bulk RNA-seq analyses in IBD (CD and UC)
patients vs. unaffected controls34, and found that 7 (ICAM1,NOD2, IL33,
RGS1, LRRK2, EGR2, and TLR4) of the 11 candidate genes are sig-
nificantly over- or under-expressed in either CD or UC (“Methods”,
Figs. 2b, c and Fig. 3f, Supplementary Data 12). With the exceptions of
INPP5D, ITK, VDR, and PDGFD, which have lower expression levels in
both CD and UC cases, all genes exhibiting increased expression dis-
played higher expression levels in CD or UC. We performed pathway
analysis for the 127 significant genes (P < 0.01) identified by SKAT-O
and weighing the significant genes based on their log fold change and
p values obtained from bulk RNA-seq analyses. Among the results of
related ‘Disease andDisorder’ analysis by IPA, the ‘Cancer’, ‘Organismal
Injury and Abnormalities’, and ‘Gastrointestinal Disease’were the top 3
mostly related disorders. Additionally, we tested gene expression data
from scRNA-seq analyses of CD samples35, where the clustering of
70,226 cells from 11 paired samples (inflamed and uninflamed biopsies
obtained from surgically resected ileal tissues) resulted in 36 clusters
that could be annotated broadly into 31 cell types based on the
expression of specific cell type markers (Fig. 4a). We examined the
expression of the 11 IBD candidate genes in the 31 different cell types in
the ileum. Generally, each of the 11 genes displayed over-expression in
at least one cell type. PDGFD and IL33 were mostly expressed
in endothelial cells, whereas the other 9 genes showed expression in
different immune system cells (Fig. 4b and Supplementary Data 12). In
total, the upregulated genes (TLR4, EGR2, LRRK2, NOD2, and ICAM1)
identified from bulk-RNA-seq also displayed over-expression in mac-
rophages and dendritic cells (DC1) (Supplementary Fig. 8), suggesting
that these genes are likely to be involved in immune activation and
response.

We also tested IBD associations by performing a meta-analysis on
two IBDGC datasets. Single variant associations were analyzed by rar-
emetalworker, which provided summary statistics for the gene-level
meta-analysis in RAREMETAL (“Methods”, Supplementary Data 13 and
14). Of the 13,289 genes that were investigated, only two genes,
ZSCAN5B and NOD2, passed the Bonferroni-corrected threshold of
P < 3.76 × 10−6 in IBD case-control meta-analysis (Supplementary
Data 15). However, the function of ZSCAN5B in IBD has yet to be
investigated in future studies. Following NOD2, although not passing
Bonferroni-adjusted significance, BIN3 and DAGLA have relatively
strong association with IBD. BIN3 is a tumor suppressor gene which,
interestingly, has been found to be upregulated in the healed mucosa
of UC patients when compared with non-healed inflamed mucosa36.
DAGLA was suggested as a potential druggable target based on its
increased expression in ulcerative pancolitis compared to healthy
human colonic tissue37. ICAM1, LRRK2, NOD2, PDGF, and RGS1 were
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again identified as IBD-associated genes at the same significance level
(P < 0.01) in the meta-analysis.

To investigate whether the 11 candidate genes can be replicated in
an independent cohort and to explore their involvement in other
traits, we conducted gene-level phenome-wide association studies
(PheWAS) utilizing genotype and phenotype data compiled in Mount
Sinai’s EMR-linked BioMe BioBank. As a result, the IBD association of
NOD2 and ICAM1 was replicated in gene-level PheWAS. Moreover,
these genes likely have pleiotropic effects across other phenotypes
(Supplementary Results, Methods, Fig. 3d and Supplementary
Data 16). Lastly, we evaluated the performance of rare and high-impact
variants in identifying individuals at risk for IBD using PRS with a
Random Forest machine learning classification algorithm. We first
used LD-pred to calculate the polygenic risk score for each individual,
then employed risk scores as features to predict the IBD status of
individuals with a Random Forest machine learning algorithm. We
compared models based on the risk score results from six combina-
tions of two GWAS summary statistics (a previous GWAS on AJ IBD
samples from Hui et al.38; the other GWAS on half of our AJ IBD sam-
ples) and three sets of variants (high impact rare sites, common var-
iants and both sets combined). As shown in Fig. 3e, the combinations
of GWAS summary statistics and SNP sets displayed comparable pre-
dictive power, which result in areas under the curve (AUC) ranging
from 0.71 to 0.75, whilst high impact rare variants displayed slightly
better predictive power compared to common variants under both
GWAS statistic sets. TheAUCof rare variantswere0.75 and0.72 forHui
et al. and our GWAS statistics, respectively, whereas the AUC of com-
mon variants were 0.72 and 0.71, respectively. The integrated dis-
crimination improvement (IDI) calculated by PredictABEL39 was used
to evaluate risk predictions from themodel with common variants and
the model with both common and rare variants. Using both common
and rare variants in the model improved reclassification with an IDI of
1.00% for Hui’s GWAS summary statistic, but decreased the reclassifi-
cation with an IDI of 2.69% for the GWAS summary statistics generated
by half of our dataset, which indicate that the effects of rare variants
may require accurate assessment in risk prediction. As an alternative
PRSmethod for comparison, we built a deep learningmodel to predict
high-risk individuals using the same high impact rare sites as the above
model. We trained a 7-layer convolutional neural network (CNN)
model, which yielded an AUC of 0.69 in 5-fold cross-validation. The
power of the deep learning approach was likely restricted by the
available sample size, and our sample size may be better suited for
machine learning approaches such as Random Forest. The results

indicate that high impact rare variants can provide predictive power
that is equivalent to or better than common variants in identifying
individuals at high risk for IBD, though common and rare variants may
have different impacts on susceptibility to IBD. To further evaluate
whether the population-specific PRS is more suitable for identifying
risk of IBD among AJs, we adopted a non-AJ European-derived IBD
GWAS statistics to generate PRS for the samehalf of our AJ samples. As
a result, the AUC decreased from 0.73 to 0.66, indicating that the
population-specific GWAS summary wasmore powerful for predicting
the IBD risk.

In conclusion, we have conducted the first large-scale study of
rare andhigh-impact genetic architecture in AJ IBDpatients. The SKAT-
O analyses yielded 127 significant IBD genes, thatwe further prioritized
with pathway enrichment and biological relevance approaches, iden-
tifying 11 plausible IBD candidate genes, of which 8 are novel and two
are well-established IBD genes. We further validated these candidate
genes by RNA-seq and scRNA-seq analyses. Fourteen high-impact
variants within these genes were identified as significant novel and
plausible IBD-causing variants. We found that adult IBD under the rare
and high impact genetic architecture displays similar genetic signals as
VEO-IBD. PheWAS analyses on Mount Sinai Hospital’s BioMe BioBank
samples revealed potential relatedness to IBD and other complex
traits. Moreover, we employed high impact rare variant-derived PRS
analyses to differentiate IBD cases from healthy controls, which dis-
played promising power to identify individuals at risk of IBD. These
findings provide new insights into the etiology of rare and high-impact
mutations underlying inflammatory bowel disease in the Ashkenazi
Jewish population.

Methods
Sample collections
The NIDDK IBD Genetics Consortium (IBDGC) recruited samples
through the following research centers: Cedars Sinai Medical Center,
Icahn School of Medicine at Mount Sinai, Montréal-Boston Collabora-
tive IBD Genetic Research Center, Johns Hopkins Genetic Research
Center, University of Pittsburgh, University of Toronto and University
College London, and a subset of Jewish controls from Cedars-Sinai
Medical Center were obtained from The National Laboratory for the
Genetics of Israeli Populations at Tel-Aviv University. Samples were
collectively sequenced at the Broad Institute. We received a total of
9076 samples across two dataset releases (3822 and 5254, respec-
tively), 54.3% of samples are male. Samples consisted of mixed popu-
lations, but the majority were broadly of European descent.

Fig. 4 | Single-cell RNA-seq analyses indicate that the nine IBD genes identified
in this study are expressed in ileum fromCrohn’s disease cases. AUMAP plot of
clustered scRNA-seq cells from ileal CD inflamed and uninflamed samples which
can be annotated broadly into 31 cell types. B scRNA-seq average expression of the

11 genes identified from pathway analyses across the 31 cell types. For each gene,
the non-zero expressed cells were utilized to calculate the average expression in
each cell type. The average expression levels in all cell types were scaled for
comparison.
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Reads mapping and genotype calling
The raw sequence reads (Fastq files) were mapped to the reference
genome by the Burrows-Wheeler Alignment (BWA) tool40. Mapped
reads were passed to GATK to mark duplicated reads and were sorted
in BAM format41. Next, local realignment was conducted around indels
to clean up ‘SNP-like’ artifacts caused by mismatching bases intro-
duced by alignments on the edge of indels. Lastly, the base quality
score quality recalibration (BQSR) was performed to recalibrate inac-
curate/biased quality estimates provided by the sequencing machine.
The recalibratedbamfileswerepassed to the variant discoveryprocess
to obtain highly credible variants stored in VCF files. During this pro-
cedure, any potential variants were called by HaplotypeCaller in GATK
with GVCF model and gVCFs of single samples were merged into a
single gVCF to perform GATK joint calling, which generates a raw VCF
including all variants and indels. Finally, the variant quality score
recalibration (VQSR) was applied to raw VCF to generate a new VCF
containing high-quality variants calls. VQSR has two main steps; the
first uses machine-learning to assign a well-calibrated probability to
each variant in raw VCF. This score is then used as cutoff to extract
high-quality variants. This process is run in two iterations with the SNP
model and indel model, respectively. The final VCF is used for down-
stream analyses.

Quality control
Several quality control processes were employed to ensure high-
quality genotypes, and samples were used in the SKAT-O analysis.
Specifically, at the variant level, variant sites were considered
high-quality if they met the following criteria: (1) variants with a
PASS filter status by Variant Quality Score Recalibration (VQSR).
(2) variants with an average depth (DP) ≥10 and a genotype
quality (GQ) ≥20 in all samples. (3) variants with an alternate
allele that had a DP ≥10 and a GQ ≥20 in at least one individual.
(4) variants with a ‘PASS’ value in the FILTER column of the
gnomAD v2.1 VCF file. At the sample level, we further excluded
any samples falling outside of 4 median absolute deviations
(MAD) from the median for any of the given metrics42: (1) the ratio
of the number of heterozygous genotypes to the number of
homozygous alternate genotypes; (2) the transition/transversion
ratio of the passing bi-allelic SNP calls made at dbSNP sites. (3)
The insertion/deletion ratio of the indel calls made at dbSNP
sites. This sample-level filtration step removed 101 outlier sam-
ples from the dataset. Samples were also excluded under the
following criteria: greater than 3% missing genotypes; dis-
cordance between inferred gender based on genotype and self-
reported gender; duplicated samples as identified by KING43;
proportion of samples identical by descent >0.185. In addition,
principal components were calculated (PLINK1.944) and samples
were removed if they were found to be statistically lower than the
specific Ashkenazi Jewish proportion (details are described in
‘PCA and STRUCTURE analyses’ section). Variants were removed
on the basis of the following criteria for the association tests:
MAF > 1%, only rare variants were retained for high impact var-
iants aggregating burden analysis; significant difference between
missingness in cases compared with controls (P < 1.0 × 10−5);
genotype rate <95% across samples, low average depth, extreme
deviation from Hardy–Weinberg equilibrium (P < 1 × 10−6). Sample-
level QC metrics including the percentage of aligned reads pas-
sing Illumina’s filter and the mean target coverage were obtained
using Picard tools (https://broadinstitute.github.io/picard/),
which revealed similar results for these measures in the two
datasets (Supplementary Data 17). Finally, we checked the aver-
age depth of the samples for the overlapping variants in the two
datasets to further evaluate if there was a remaining batch effect.
There was no significant difference between the two datasets in
terms of the average depth of samples (two-samples t test,

P = 0.72). All quality control filtering was performed using
PLINK1.944 and R.

RNA-seq data analyses
Full biopsies from the terminal ileum were collected from 302 newly
diagnosed individuals under the age of 17 from the RISK cohort (GEO
accession GSE57945)45. Samples were barcoded up to 12 per lane and
sequenced using the Illumina HiSeq 2000. RNA-seq reads were map-
ped using TopHat246 (to the human reference genome version 19).
Approximately 20 million reads were successfully mapped for each
individual. Following RNA-seq mapping, expression levels at the gene
and isoform levels were determined and expression quantified using
Cufflinks47 to generate FPKM estimates and HTseq48 to provide raw
read counts. We used the R package DESeq249 to determine the sig-
nificance of differential expression in RNA-seq samples collected from
the terminal ileum biopsies of 213 CD cases, 50 UC cases, and 35
controls of European descent from the RISK cohort.

scRNA-seq data analyses
The details of library preparation and sequencing process have been
described in a previously published work35. In total, we analyzed
70,226 cells from paired inflamed and uninflamed ileum from 11 CD
patients. We aligned to the GRCh38 reference using the Cell Ranger
v.2.1.0 Single-Cell Software Suite from 10X Genomics. The unfiltered
raw matrices were then imported into R Studio as a Seurat object50.
Genes expressed in fewer than three cells in a samplewereexcluded, as
were cells that expressed fewer than 500 genes and with a UMI count
less than 500 or greater than 60k. We normalized by dividing the UMI
count per gene by the total UMI count in the corresponding cell and
log-transforming. The Seurat integratedmodel was used to generate a
combined CD model with cells from both inflamed and uninflamed
samples retaining their group identity. We performed unsupervised
clustering and differential gene expression analyses in the Seurat R
package v.3.0.1. In particular, we used shared nearest neighbor graph-
based clustering, in which the graph was constructed using from 1 to
30principal components asdeterminedby dataset variability shown in
principal component analysis (PCA); the resolution parameter to
determine the resulting number of clusters was also tuned accord-
ingly. UMAP visualizations were produced using Seurat functions in
conjunction with the ggplot2. Here, we extracted the average log
expression of the 11 concerned genes across 31 annotated cell clusters.

Ashkenazi Jewish sample identification
The Jewish HapMap dataset6,51 and 112 Europeans in the HapMap52

dataset were used to identify 100% Ashkenazi Jews among IBDGC
samples. Jewish samples in Eastern Europe and the Middle East and
Europeans were used as a reference panel to perform PCA, aiming to
validate the distribution of genetically identified AJs compared to the
AJ referencepanel. Population structure analyses used 36AJ references
in Jewish HapMap datasets with all IBDGC candidates. PCA and
population structure analysis were based on the same set of variants
filtered bymeans of the following process: merging all IBDGC samples
with all referencepanels by Plink, then reducing linkage disequilibrium
(LD) between markers (–indep-pairwise 50 5 0.2) by removing all
markers with r2 > 0.2 (window size 50, step size 5)53, as well as markers
in known high LD regions. Variants with MAF>0.0254 and genotyping
rate >95% across the dataset (excluding A/T, C/G mutations) and pas-
sing the above conditions were employed in PCA and STRUCTURE
analyses. In population structure analyses, we removed Africans and
Asians from IBDGC samples. Only ‘White’ samples, which include self-
reporting AJ, self-reporting mixed AJs, and European were used as
candidates (Supplementary Fig. 1). Accordingly, K was set to 2 to
represent AJs, mixed-AJs, and Europeans to run fastSTRUCTURE55. The
lowest AJ proportion (0.625) in the Ashkenazi reference panel was
taken as AJ cutoff, and any IBDGC candidates passing this threshold
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were labeled as genetically identified AJs. To obtain a more precise
cohort of AJ individuals, all genetically identified AJs were combined to
perform a second round of population structure analysis compared to
CEU and AJ reference panel using admixture where k = 2 gave the
lowest cross-validation error and increased the lowest AJ fraction to
0.69 (Supplementary Fig. 9 and Supplementary Fig. 10). Therefore,
427 samples were removed from the dataset due to lowAJ fraction.We
validated the genetically identified AJs from fine-scale PCA plots
without non-European populations. An independent AJ cluster can be
seen from the validation PCA plots, which overlapped with the AJ
reference panel (Supplementary Fig. 2). All genetically identified AJs
were plotted as sky-blue points in PCA plots. Another PCA compared
all of the genetically identified AJs without any reference panels.
Samples were color coded based on either source of dataset or case-
control status, indicating that there are no confounding factors due to
data sources or phenotypes (Supplementary Fig. 11). We included the
first 10 principal components as covariates in the variant- and gene-
level association tests to overcome the impact of any remaining
population stratification on the results.

Variant annotation
Multiallelic sites were split into single variants using bcftools before
annotation. Variant Effect Predictor (VEP, v90)56 and SnpEff (v4.2)57

were employed for annotation. We used a Python script to manage a
parallel running of two annotation methods and merging of results at
variant level by removing redundant annotation results. CADD scores
(v1.3) were added into the final results. All annotation processes were
conducted based on GRCh37 genome coordinates.

High impact rare variant filtration
We retained rare and high-impact genetic variants using the following
criteria: (1) Maintained variants with DP > 10, MQ> 40 in VCF file to
control the base quality. (2) Utilized Variant Effect Predictor (VEP) to
determine the effect of all variants. Variants were filtered by ‘con-
sequence’ of VEP annotations, high impact variants were retained by
virtue of their impact on genome functions: ‘missense variants’, ‘start
lost’, ‘stop lost’, ‘stop gained’, ‘splice_acceptor_variant’, ‘splice_do-
nor_variant’, ‘inframe_insertion’, ‘inframe_deletion’, ‘protein_alter-
ing_variant’, ‘start_retained_variant’, ‘stop_retained_variant’ and
‘frameshift_variant’. (3) Removed variants with MAF >0.01 according
to gnomAD AJ allele frequency. When gnomAD AJ allele frequencywas
missing for a given variant, we used its allele frequency from our AJ
cohort. (4) Employed Mutation Significance Cutoff (MSC)58 to control
the false-negative rate of predicted deleterious mutations by well-
established predictors, like CADD, SIFT, and Polyphen-2. Here we
retained all variants with CADD59 scores larger than the lower bound-
ary of the 95% confidence interval of the corresponding gene’s
pathogenic mutation’s CADD score. (5) Genes that are highly mutated
in healthy individuals are unlikely to be disease-causing. Therefore, an
estimate of accumulated mutational damage of each human gene can
be particularly helpful in filtering out genes that are irrelevant to dis-
ease or phenotype. The Gene damage index (GDI)60 is an indicator of
genes that are highly polymorphic in the general healthy population,
and hence are unlikely to be disease-causing. Only variants in genes
with a GDI < 13.34 (the cutoff proposed for human diseases under the
generalized model) were retained for further analyses. (6) Variants
frequent in a given exome cohort, but absent or rare in public data-
bases, have also been reported and treated as non-pathogenic variants
(NPV)61. We removed all variants that were described in the pre-
calculated ‘blacklist’. The remaining variants were used for further
analyses.

Association analyses
We performed SKAT-O analyses on aggregations of high-impact var-
iants to test associations between genes and IBD (CD/UC) disease

status. We filtered variants using gnomAD AJ MAF <0.01. However, a
few sites exceeded a MAF of 0.01 among our AJ cohort, which added
extra power to their corresponding genes in the SKAT association
tests. Therefore, we conservatively filtered out these variants from
SKAT-O analysis by adding a ‘maf <0.01’ parameter in SKAT functions.
A model-based association test was conducted by Plink in validating
pathway-derived high-impact variants; odds ratio and P-values were
obtained from logistic regression running in Plink1.90. We performed
a collapsing analysis that considered only synonymous variation as a
neutral model to estimate the degree of inflation due to population
substructure or possible technical artifact. We also performed a col-
lapsing analysis of controls-vs.-controls using high-impact rare variants
to check the possible heterogeneities in controls between two data-
sets. Neither analysis indicated a significant level of inflation in the
results (Supplementary Figs. 12 and 13).

Meta-analyses
Meta-analyses were conducted using Raremetal62 to validate the SKAT-
O gene burden significant genes (P value <0.01). Significant genes in
Raremetal analyses were comparedwith SKAT analyses to checkwhich
genes were replicated in meta-analyses. The IBDGC exomes were
divided into two datasets according to the sources of recruitment.
Dataset 1 comprised 1058 IBD cases and 436 unaffected controls,
whilst dataset 2 comprised 676 IBD cases and 2283 unaffected con-
trols. Raremetalworker was used to calculate a single variants’ statis-
tical summary for our datasets 1 and 2, respectively. As with the SKAT-
O analysis, only high-impact variants in each dataset were investigated.
Next, we ran Raremetal to collect statistical results on independent
datasets from Raremetalworker with SKAT meta function. The aggre-
gations of high-impact variants were supplied in this process to per-
form gene level metal analyses. SKAT function was used as the
association test method in running Raremetal.

Phenome-wide association analysis
To evaluate the potential pleiotropic effects of the candidate genes
from SKAT-O analysis and pathway analyses, we performed gene-level
PheWAS using the whole exome sequencing dataset and diagnostic
information from 30,845 patients from the Mount Sinai BioMe Bio-
bank. The cases were collected according to the ICD-10-CM codes,
phenotypes having at least 100 cases being kept for PheWAS. To
minimize the bias from controls which could include similar or rele-
vant phenotypes with cases, we collected samples with ‘Z00.00’
(Encounter for general adult medical examination without abnormal
findings) as a pool of controls. Meanwhile, given that the number of
cases was relatively small compared to the control set, to minimize an
inflation due to the extremely unbalanced numbers of cases versus
controls, for each phenotype we randomly selected a subset from the
pool of controls to keep the ratio of cases to controls as 1:10. The
overlapping individuals were removed from the controls set. A prin-
cipal component analysis (PCA) was applied to all BioMe 30,845
exomes prior to the PheWAS analyses, with the first two components
being used to adjust the population structure in the association tests.
An R script was written to conduct the gene-level PheWAS by com-
bining the ‘PheWAS’ package and the ‘SKAT’ package. For each can-
didate gene, the high impact rare variants from the Ashkenazi Jewish
IBD cohort were used to repeat SKAT-O tests to identify associations
with eachBioMephenotype. To assesswhether the signals of collapsed
rare variants in PheWAS were independent of the nearby common
variant association signals, we performed conditional SKAT-O for the
significant associations (Supplementary Results, Supplementary
Data 18).

Polygenic risk score and machine-learning prediction
Polygenic risk scores (PRS) generate quantitativemetrics of individuals
based on the cumulative effects of risk alleles. It can simply be a
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summation of the number of risk alleles across associated genes or an
accumulation of risk variants weighted by effect size. Traditionally,
genome-wide significant sites have been employed to generate PRS.
Here, we aimed to keep all selected variants in PRS derivation. We
calculated PRS for each individual based on selected high-impact
variants by using the LDpred algorithm63. Unlike variant pruning
approaches, LDpred infers the posterior mean effect size of each var-
iant by using a prior on effect sizes and LD information from an
external reference panel. We used three different external panels to
compare the consequences for classification models; one was the AJ
IBDGWAS summary fromHui et al.38, the secondwas the European IBD
GWAS summary from Liu’s study2, the third was the GWAS statistics on
half of our IBD cases and controls; the remaining set of IBD cases and
controls was used as a validation dataset. Variants with ambiguous
strands (A/T, C/G) were removed from all high-impact sites in the
validation dataset. There were seven PRS generated because of the
fraction p of non-zero effects in the prior (1, 0.3, 0.1, 0.03, 0.01, 0.003,
0.001). All seven PRS were used as features in a Random Forest clas-
sificationmodel,whilst the averageAUCof 10-fold cross-validationwas
used to compare prediction performance.

We then applied a multi-layer feedforward artificial neural net-
work, also known as convolutional neural network (CNN), to build the
prediction model using all the rare high-impact variants as described
above. Grid search was performed to determine the best parameter
settings including numbers of hidden layers, number of neurons in
each layer, activation functions of the layers, dropout ratio as well as
parameters for L1 and L2 regularization. 10-fold cross-validation was
performed to estimate the AUC of the tuned model (7-layer CNN
model with dropout ratio of 0.19, L1 of 0.002, and L2 of 0.009).

Pathway and enrichment analyses
We used several independent pathway and enrichment methods to
obtain an IBD candidate gene list using known IBD genes as a refer-
ence. The final highly credible gene list was finalized by extracting
intersection genes across IBD gene sets resulting from each pathway
and enrichment analyses. The candidate genes were defined as genes
which passed the relaxed threshold P <0.01 in a SKAT-O IBD case-
control study. 127 geneswere obtained from IBD-specific SKAT-O case-
control association studies. The IBD known genes were collected from
studies summarizing IBD, CD, and UC genes and fine mapping efforts
of identified IBD loci harboring associations mapped to single variants
with greater than 95% certainty3,4, which comprised a list of 157 IBD-
associated genes (Supplementary Data 5).

Ingenuity pathway analysis. First, we ran ingenuity pathway analysis
(IPA) on the IBD candidate genes64, where ‘Cancer’, ‘Organismal Injury
and Abnormalities’ and ‘Gastrointestinal Disease’ ranked as the top
three most correlated diseases for the input genes. To select genes
most relevant to IBD, we used the ‘Gastrointestinal Disease’ panel to
extract genes belonging to its sub-phenotypes: ‘inflammation of gas-
trointestinal tract’, ‘inflammation of small intestine’, and ‘colitis’. We
repeated the process on CD-specific and UC-specific genes.

ToppGene. We used ToppGene to select candidate genes from SKAT-
O significant genes65. ToppGene can prioritize candidate genes based
on functional similarity to a training gene list. Here we used known IBD
genes for training; therefore, all IBD candidate genes were ranked by
training model. Each gene was assigned scores and P values repre-
senting functional similarities with known genes in relation to GO
terms, disease phenotypes, pathways, etc. We retained those genes
with P values <0.05 from candidate genes as the IBD gene list.

GIANT. Gene function module contains clusters of genes which have
similar biological functions or a shorter biological distance with each
other. We used GIANT function to obtain function modules from our

candidate genes66. GIANT applies community detection to find cohe-
sive gene clusters from a provided gene list and a selected relevant
tissue. The most IBD-relevant module was selected according to its
immunological function with global tissue condition. The non-
redundant genes within these identified function modules form the
IBD gene list from GIANT.

The human gene connectome (HGC). The HGC is the set of all bio-
logically plausible routes, distances, and degrees of separation
between all pairs of human genes11. A gene-specific connectome con-
tains the set of all available human genes sorted on the basis of their
predicted biological proximity to the specific gene of interest. Here,
the known IBD genes are the genes of interest; for each known IBD
gene, we calculated the distances to every other known IBD gene Dij,
assuming that we have a SKAT-O significant gene set A
A= a1,a2, . . . ,am

� �
and IBD known gene set B B= b1,b2, . . . ,bn

� �
, the

biological distance derived from HGC between genes from two gene
sets is be represented as

Dij =Distance ai,bj

� �
ð1Þ

For each candidate gene ai in set A, its average distance to all
known IBD genes was denoted as:

Dcandidate =D
A
i =

avg
j2 1, . . . ,nf g Dij

� �
ð2Þ

Then the overall average distance between A and B was used to
represent the biological distance of candidate gene set to the known
IBD gene set B:

avg
i, j

Dij

� �
=

avg
i2 1, . . . ,mf g

avg
j2 1, . . . ,nf g Dij

� �� �
ð3Þ

Therefore, for the known IBD gene set, we calculated the average
distance within IBD genes (DIBD) by checking the overall average dis-
tance from gene set B to itself. For each candidate gene, if itsDcandidate

was shorter than DIBD, it was retained as a plausible IBD gene to con-
tribute to the HGC IBD gene list.

At the gene set level, randomly resampling tests were conducted
to demonstrate that SKAT significant genes having a shorter average
biological distance to known IBD genes than random genes was not
due to chance alone. For each resampling iteration, a set of genes
having equal sizewith SKAT-O significant geneswas randomly sampled
from the gene pool (all genes in SKAT-O inputs) and the average dis-
tances of random sets (Drandom) were calculated following Eq. (3).
Similarly, the distance of SKAT-O significant genes was obtained
(DSKAT) as a cutoff. The resampling tests were conducted for 1000,
5000, and 10000 iterations, the P-value representing the number of
iterations in which random sets had a shorter biological distance
compared to the SKAT-O significant gene set (Drandom <DSKAT) among
all iterations in each resampling process.

Gene prioritization based on pathway analyses results
The SKAT-O significant IBD genes (P < 0.01) were prioritized by their
biological importance in IBD pathways. One gene may be involved in
multiple pathways or IBD gene function modules where other IBD
genes also exist. Biological importance was measured by counting the
total number of IBD known genes in significant pathways or function
modules, resulting from each enrichment analysis. The biological
importance scores were added up as the final score to prioritize genes.
Specifically, we collected gene sets for pathways and gene function
modules from the following pathway/function analyses: (1) InnateDB67

pathway analysis: pathways with P value <0.05. (2) InnateDB gene
ontology analysis: gene list with P value <0.05. (3) Networkanalyst68:
first degree genes to each candidate genes were interrogated for
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counting IBD known genes. (4) IPA: canonical pathways with P value
<0.01were employed. (5)HumanGeneConnectome:P values <0.01 for
biological distance were collected in order to calculate the number of
IBD genes.

Ethics statement
In all cases, informed consent was obtained using protocols approved
by the local institutional review board in all participating institutions.
All patients and controls gave informed consent, and the study was
approved by the ethics review committees of each participating hos-
pital. Informed consent was obtained using protocols approved by
each local institutional review board.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single-cell RNA-seq raw data used in this study are available at the
NCBI GEO database under accession code GSE134809. The RNA data
used in this study is available in dbGaP Study Accession:
phs001642.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001642.v1.p1). The DNA data used in this study
is available in Gene Expression Omnibus (GEO) Series GSE57945. The
Mutation Significance Cutoff database for selecting high-impact var-
iants is available at https://lab.rockefeller.edu/casanova/MSC. The
gene- and variant-level association data generated in this study are
provided in the supplementary data. The raw sequencing data and raw
bulk RNA-seq data are protected and are not available due to data
privacy laws, which can be available based on reasonable request to
IBDGC consortium (https://www.ibdgc.org/).

Code availability
The python code for prioritizing candidate genes can be found at
https://lab.rockefeller.edu/casanova/HGC. The in-house script for
running gene level PheWAS can be found at https://gitlab.com/
wym0072003/multi-phewas. Standard software guidelines were fol-
lowed for other scripts used in this study.
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