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This article derives an optimal (i.e., unbiased, minimum variance) estimator for the pseudodetector
strain for a pair of colocated gravitational wave interferometers (such as the pair of LIGO interfer-
ometers at its Hanford Observatory), allowing for possible instrumental correlations between the two
detectors. The technique is robust and does not involve any assumptions or approximations regarding
the relative strength of gravitational wave signals in the Hanford pair with respect to other sources of
correlated instrumental or environmental noise. An expression is given for the effective power spectral
density of the combined noise in the pseudodetector. This can then be introduced into the standard
optimal Wiener filter used to cross-correlate detector data streams in order to obtain an optimal
estimate of the stochastic gravitational wave background. In addition, a dual to the optimal estimate of
strain is derived. This dual is constructed to contain no gravitational wave signature and can thus be
used as an ‘‘off-source’’ measurement to test algorithms used in the ‘‘on-source’’ observation.
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I. INTRODUCTION

Over the past few years a number of long-baseline
interferometric gravitational wave detectors have begun
operation. These include the Laser Interferometer
Gravitational Wave Observatory (LIGO) detectors lo-
cated in Hanford, WA, and Livingston, LA [1]; the
GEO-600 detector near Hannover, Germany [2]; the
VIRGO detector near Pisa, Italy [3]; and the Japanese
TAMA-300 detector in Tokyo [4]. For the foreseeable
future all these instruments will be looking for gravita-
tional wave signals that are expected to be at the very
limits of their sensitivities. All the collaborations
have been developing data analysis techniques designed
to extract weak signals from the detector noise.
Coincidences among multiple detectors will be critical
in establishing the first detections.

In particular, LIGO Laboratory operates two colocated
detectors sharing a common vacuum envelope at its
Hanford, WA, observatory (LHO). One of the two detec-
tors has 4 km long arms and is denoted H1; the other,
with 2 km long arms, is denoted H2. This pair is unique
among all the other kilometer-scale interferometers in the
world because their colocation guarantees simultaneous
and essentially identical responses to gravitational waves.
This fact can provide a powerful discrimination tool for
sifting true signals from detector noise. At the same time,
however, the colocation of the detectors can allow for a
greater level of correlated instrumental noise, complicat-
ing the analysis for gravitational waves.
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Indeed, it may not be feasible to ever detect a stochastic
gravitational wave background, or even establish a
significant upper limit, via cross correlation of H1 and
H2, due to the potential of instrumental correlations.
However, even though it may not be profitable to correlate
these colocated detectors, the data from H1 and H2
should be optimally combined for a correlation analysis
with a geographically separated third detector (such as
L1, the LIGO Livingston detector).

For the H1-H2 detector pair, properly combining the
two data streams will always result in a pseudostrain
channel that is quieter than the less noisy detector. In
the limit of completely correlated noise, this combination
could, in principle, lead to a noiseless estimate of gravi-
tational wave strain. In the other limit where the detector
noise is completely uncorrelated, the two detector outputs
can of course be treated independently and combined at
the end of the analysis to produce a more precise mea-
surement than either separately, as done in Sec. V.C. of
Ref. [5]. It is the more general intermediate case, where
there is partial correlation of the detector noise, that is the
subject of this paper.

We show that it is possible to derive an optimal—i.e.,
unbiased, minimum variance —strain estimator by com-
bining the two colocated interferometer outputs into a
single, pseudodetector estimate of the gravitational wave
strain from the observatory. An expression is given for
the effective power spectral density of the combined
noise in the pseudodetector. This is then introduced into
the standard optimal Wiener filter used to cross correlate
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detector data streams in order to obtain an estimate of the
stochastic gravitational wave background.

Once the optimal estimator is found, one can subtract
this quantity from the individual interferometer strain
channels, producing a pair of null residual channels for
the gravitational wave signature. The covariance matrix
for these two null channels is Hermitian; it thus possesses
two real eigenvalues and can be diagonalized by a unitary
transformation (rotation). Because the covariance matrix
is generated from a single vector, only one of the eigen-
values is nonzero. The corresponding eigenvector gives a
single null channel that can be used as an ‘‘off-source’’
channel, which can be processed in the same manner as
the optimal estimator of gravitational wave strain.

The technique described here is possible for the pair of
Hanford detectors because, to high accuracy, the gravita-
tional wave signature is guaranteed to be identical in both
instruments, and because we can identify specific corre-
lations as being of instrumental origin. Coherent, time-
domain mixing of the two interferometer strain channels
can thus be used to optimal advantage to provide the best
possible estimate of the gravitational wave strain, and to
provide a null channel with which any gravitational wave
analysis can be calibrated for backgrounds.

The focus of this paper is the development of this
technique and its application to the search for stochastic
gravitational waves. However, it appears that any other
search can exploit this approach.

In Sec. II we discuss the experimental findings during
recent LIGO science runs which motivated this work to
extend the optimal filter formalism in the case where
instrumental or environmental backgrounds are corre-
lated among detectors. In Sec. III we introduce the opti-
mal estimate of strain for the pair of colocated Hanford
interferometers. In Sec. IV we then introduce the dual
null channel. Then in Sec.V we apply these formalisms to
measurement of a stochastic background and consider
limiting cases that provide insight to understanding the
concept. Finally in Sec. VI we discuss the implications of
these results and estimate the effects of imperfect knowl-
edge of calibrations on the technique. Appendices A and
B contain derivations of formulas used in Sec. V.
II. INSTRUMENTAL CORRELATIONS

Early operation at LIGO’s Hanford observatory has
revealed that the two LHO detectors can exhibit instru-
mental cross correlations of both narrowband and broad-
band nature. Narrowband correlations are found, e.g., at
the 60 Hz power mains line frequency and harmonics,
and at frequencies corresponding to clocks or timing
signals common in the two detectors; these discrete fre-
quencies can be identified and removed from the broad-
band analysis of a stochastic background search, as
described in Ref. [6]. Broadband instrumental correla-
tions, on the other hand, are more pernicious to a sto-
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chastic background analysis; the following types of
relatively broadband correlations have been seen at LHO:
(i) L
-2
ow-frequency seismic excitation of the interfer-
ometer components, up to approximately 15 Hz; at
higher frequencies, the seismic vibrations are not
only greatly attenuated by the detectors’ isolation
systems, but they also become uncorrelated over
the distances separating the two interferometers.
These correlations are not directly problematic,
since they are below the detection band’s lower
frequency of 40 Hz.
(ii) A
coustic vibrations of the output beam detection
systems.
(iii) U
pconversion of seismic noise into the detector
band: intermodulation between the power mains
line frequencies and the low-frequency seismic
noise produces sidebands around the {60 Hz,
120 Hz, . . . g lines that are correlated between
the two detectors.
Magnetic field coupling to the detectors is another
potential source of correlated noise, though this has not
yet been seen to be significant.

The analysis of the first LIGO science data (S1) for a
stochastic gravitational wave background [6] showed sub-
stantial cross-correlated noise between the two Hanford
interferometers (H1 and H2), due to the above sources.
This observation led to disregarding the H1-H2 cross-
correlation measurement as an estimate of the stochastic
background signal strength. Two separate upper limits
were obtained for the two transcontinental pairs, L1-H1
and L1-H2 (L1 denotes the 4 km LIGO interferometer in
Livingston, LA). These were not combined because of the
known cross correlation contaminating the H1-H2 pair.

Here, we show how to take into account such local
instrumental correlations in an optimal fashion by first
combining the two local interferometer strain channels
into a single, pseudodetector estimate of the gravitational
wave strain from the Hanford site, and then cross corre-
lating this pseudodetector channel with the single
Livingston detector output. In doing this, we obtain a
self-consistent utilization of the three measurements to
obtain a single estimate of the stochastic background
signal strength �gw. In order for this to be valid, the
reasonable assumption is made that there are no broad-
band transcontinental (i.e., L1-H1, L1-H2) instrumental
or environmental correlations. This has been empirically
observed to be the case for the S1, S2 and S3 science runs
when the L1-H1 and L1-H2 coherences are calculated
over long periods of time (the S1 findings are discussed in
[6]; S2 and S3 analyses are still in progress at the time of
this writing).

It is important to point out that the technique presented
here is robust and does not involve any assumptions or
approximations regarding the relative strength of gravi-
tational wave signals in the H1-H2 pair with respect to
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other sources of correlated instrumental or environmental
noise. Since S1, the sources of environmental correlation
between the Hanford pair have been largely reduced or
eliminated. However, as the overall detector noise is also
reduced, smaller cross correlations become significant, so
it remains important to be able to optimally exploit the
potential sensitivity provided by this unique pair of co-
located detectors.

III. OPTIMAL ESTIMATE OF STRAIN FOR THE
TWO HANFORD DETECTORS

Assume that the detectors H1 and H2 produce data
streams

sH1
�t� :� h�t� � nH1

�t�; (3.1)

sH2
�t� :� h�t� � nH2

�t�; (3.2)

respectively, where h�t� is the gravitational wave strain
common to both the detectors. In the Fourier domain,

~s H1
�f� � ~h�f� � ~nH1

�f�; (3.3)

~s H2
�f� � ~h�f� � ~nH2

�f�; (3.4)

where we defined the Fourier transform of a time-domain
function, a�t�, as ~a�f� :�

R
1
�1 dt e�i2
fta�t�. Also assume

that the processes generating h, nH1
, nH2

are stochastic
with the following statistical properties:

h~nHi
�f�i � h~h�f�i � 0; (3.5)

h~n
Hi
�f�~h�f�i � 0; (3.6)

h~n
Hi
�f�~nHj

�f0�i � Pn
HiHj

�f���f� f0�; (3.7)

h~h
�f�~h�f0�i � P��f���f� f0�; (3.8)

h~s
Hi
�f�~sHj

�f0�i :� PHiHj
�f���f� f0� (3.9)

� �Pn
HiHj

�f� � P��f�
 (3.10)

���f� f0� (3.11)

Pn
HiHi

�f� :� Pn
Hi
�f�; (3.12)

PHiHi
�f� :� PHi

�f�; (3.13)

�HiHj
�f� :�

PHiHj
�f�����������������������������

PHi
�f�PHj

�f�
q ; (3.14)


HiHj
�f� :� j�HiHj

�f�j2; (3.15)

P��f� � PHi
�f�; (3.16)
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where i � 1; 2 and the angular brackets h� � �i denote
ensemble or statistical averages of random processes.
Note that Eqs. (3.9) and (3.13) signify the measurable
cross power and power spectra while Eqs. (3.7) and (3.12)
refer to intrinsic noise quantities that cannot, in principle,
be isolated in a measurement. Often, Eq. (3.16) is as-
sumed in order to identify instrument noise power with
the measured quantity. Note also that the coherence
�HiHj

�f� is a complex quantity of magnitude less than or
equal to unity, and that PHjHi

�f� � P

HiHj

�f�.
Now construct an unbiased linear combination of

~sHi
�f�:

~s H�f� :� ~��f�~sH1
�f� � �1� ~��f�
~sH2

�f�: (3.17)

If ~sH�f� is also to be a minimum variance estimator,
where

Var�sH� :� h~s
H�f�~sH�f
0�i � PH�f���f� f0�; (3.18)

with

PH�f� � j~��f�j2Pn
H1
�f� � j1� ~��f�j2Pn

H2
�f�

� ~�
�f��1� ~��f�
Pn
H1H2

�f�

� ~��f��1� ~�
�f�
Pn

H1H2

�f� � P��f�; (3.19)

then ~��f� must have the following form:

~��f� �
PH2

�f� � PH1H2
�f�

PH1
�f� � PH2

�f� � �PH1H2
�f� � P


H1H2
�f�


:

(3.20)

The corresponding power of the pseudodetector signal is

PH�f� �
PH1

�f�PH2
�f��1� 
H1H2

�f�


PH1
�f� � PH2

�f� � �PH1H2
�f� � P


H1H2
�f�


:

(3.21)
It is important to note that the above expressions for

~��f� and PH�f� do not require any assumption on the
relative strength of the cross-correlated stochastic signal-
to the instrumental or environmental cross-correlated
noise. In particular, the stochastic signal power P� enters
PH1

, PH2
, and PH1H2

in exactly the same way, canceling
out in Eq. (3.20), implying that the above solution for ~� is
independent of the relative strength of the stochastic
signal to other sources of cross-correlated noise. In addi-
tion, Eqs. (3.20) and (3.21) involve only experimentally
measurable power spectra and cross spectra (and not the
intrinsic noise spectra), indicating that this procedure
can be carried out in practice.

Figure 1 shows plots of the strain spectral densities for
~sH�f�, ~sH1

�f�, and ~sH2
�f�, representative of the S1 data.

The strain spectral density j~sH�f�j is calculated from
Eqs. (3.17) and (3.20) for both 
H1H2

�f� � 0 (i.e., an
artificial case that assumes no coherence), and for the
coherence 
H1H2

�f� that was actually measured over the
whole S1 data run (see Fig. 2). The plots in Fig. 1 suggest
-3



FIG. 1. Strain spectral densities (i.e., absolute value) of ~sH�f� (gray or dotted line), ~sH1
�f� (black line), and ~sH2

�f� (dashed line),
representative of the S1 data. Top panel: Overlay of the individual spectral densities with that of the strain spectral density j~sH�f�j
calculated with the S1 run-averaged coherence, 
H1H2

�f�, and with 
H1H2
�f� � 0. On this scale, the left-hand panel shows no

discernible difference between the spectra for 
H1H2
�f�, and with 
H1H2

�f� � 0, suggesting that even the level of coherence seen
during the S1 run might be sufficiently low to allow one to simply combine the L1-H1 and L2-H2 cross-correlation measurements
under the assumption of zero cross-correlated noise. The optimality of the estimate ~sH�f� is visible here because it is always less
than the smaller of ~sH1

�f� or ~sH2
�f�. The inset shows a blowup of the region near one of the spectral features. On this scale the

individual spectra can be discerned. Bottom panel: Plot of the ratio of amplitude spectra for j~sH�f�j calculated with 
H1H2
�f� as

measured during S1 and 
H1H2
�f� � 0 (i.e., assuming no coherence). The difference between the two is very small except for the

very lowest frequencies and at narrow line features.

ALBERT LAZZARINI et al. PHYSICAL REVIEW D 70 062001
that the observed level of coherence during the S1 run,

� 10�5, might be sufficiently low that one can simply
combine the L1-H1, L1-H2 cross-correlation measure-
ments under the assumption of zero cross-correlated noise
[cf. Eq. (5.20)]. The formalism developed in this paper
allows a quantitative assessment of the effect of instru-
mental or environmental correlations on combining inde-
pendently analyzed results ex post facto.

A. Limiting cases

I. If �H1H2
�f� � 0, then

~��f� �
PH2

�f�

PH1
�f� � PH2

�f�
; (3.22)
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~s H�f� �
PH2

�f�~sH1
�f� � PH1

�f�~sH2
�f�

PH1
�f� � PH2

�f�
; (3.23)
PH�f� �
PH1

�f�PH2
�f�

PH1
�f� � PH2

�f�
: (3.24)

II. If PH1
�f� � PH2

�f�, then

~��f� �
1� �H1H2

�f�

2� ��H1H2
�f� � �


H1H2
�f�


: (3.25)
-4



FIG. 2. H1-H2 coherence averaged over the whole S1 data run. Note the substantial broadband coherence throughout the band.
Low-frequency seismic noise and acoustic coupling between the input electro-optics systems are considered to be the prime sources
of this cross-correlated noise [6,7].
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III. If �H1H2
�f� � 1 and PH1

�f� � PH2
�f�, then

PH�f� � lim

�f�!1

PH1
�f�

2

1� 
�f�

1�
����������

�f�

p � PH1
�f�: (3.26)

IV. If PH2
�f� � 4PH1

�f� (which is the limiting design
performance for H1 and H2 due to the 2:1 arm length
ratio), then

~��f� �
2�2� �H1H2

�f�


5� 2��H1H2
�f� � �


H1H2
�f�


: (3.27)

Note for this case that if the noise were either completely
correlated [�H1H2

�f� � 1 ) ~��f� � 2] or anticorrelated
[�H1H2

�f� � �1 ) ~��f� � 2=3], then one could exactly
cancel the noise from the signals ~sHi

. If the noise is
uncorrelated [�H1H2

�f� � 0 ) ~��f� � 4=5], then the
weighting of the signals from the two interferometers is
in the ratio 4:1, as expected.
IV. A DUAL TO THE OPTIMAL ESTIMATE OF
STRAIN THAT CANCELS THE GRAVITATIONAL

WAVE SIGNATURE

In the previous section, an optimal estimator of the
gravitational wave strain h was derived by appropriately
combining the outputs of the two Hanford detectors. It is
also possible to form a dual to this optimal estimate
[denoted ~zH�f�] that explicitly cancels the gravitational
wave signature.

Starting with Eqs. (3.3) and (3.4), and the optimal
estimate ~sH�f�, we construct the h-subtracted residuals:

~z H1
�f� :� ~sH1

�f� � ~sH�f�; (4.1)
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~z H2
�f� :� ~sH2

�f� � ~sH�f�: (4.2)

Both ~zH1
�f�, ~zH2

�f� are proportional to ~nH1
�f� � ~nH2

�f�,
although with different frequency-dependent weighting
functions:

~z H1
�f� � �1� ~��f�
�~nH1

�f� � ~nH2
�f�
; (4.3)

~z H2
�f� � �~��f��~nH1

�f� � ~nH2
�f�
: (4.4)

Figure 3 shows schematically the geometrical relation-
ships of the signal vectors ~sHi

�f� and ~zHi
�f�. Once the best

estimate ~sH�f� is subtracted from the signals, the resid-
uals lie in the n̂H1

-n̂H2
plane. (Here n̂H1

and n̂H2
are unit

vectors pointing in directions corresponding to uncorre-
lated detector noise.) Their covariance matrix can then be
diagonalized without affecting the gravitational wave
signature h contained in ~sH�f�.

Now consider the covariance matrix

k~Cz�f�kij��f� f0� :� h~z
Hi
�f�~zHj

�f0�i: (4.5)

Then one can show that

k~Cz�f�k��f� f0� �
h~z
H1

�f�~zH1
�f0�i h~z
H1

�f�~zH2
�f0�i

h~z
H2
�f�~zH1

�f0�i h~z
H2
�f�~zH2

�f0�i

" #
(4.6)

�
j1� ~��f�j2 �~��f� � j~��f�j2

�~�
�f� � j~��f�j2 j~��f�j2

� �
h�~n
H1

�f�

� ~n
H2
�f�
�~nH1

�f0� � ~nH2
�f0�
i

(4.7)
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FIG. 3 (color online). Schematic showing how the H1 and H2
signals may be represented in a three-dimensional space of
noise components for the two detectors and the common
gravitational wave strain: fn̂H1

; n̂H2
; ĥg. The signals ~sH1

�f�
and ~sH2

�f� are not, in general, orthogonal if the coherence
between the noise, ~nH1

�f� and ~nH2
�f�, is nonzero. ~sH�f� is the

minimum variance estimate of ~h�f� derived from ~sH1
�f� and

~sH2
�f�. Using ~sH�f� as the best estimate of ~h�f�, this signal can

be subtracted from ~sH1
�f� and ~sH2

�f� to produce the vectors
~zH1

�f�, ~zH2
�f� that lie in the n̂H1

-n̂H2
plane. These vectors give

rise to the covariance matrix k~Cz�f�k. ~zH1
�f� and ~zH2

�f� are
collinear and thus one of the eigenvectors of k~Cz�f�k will be
zero. The other corresponds to the dual of ~sH�f�, denoted ~zH�f�,
which is orthogonal to ~sH�f�, as shown in the figure. Note that
it is necessary to first subtract the contribution of ~h�f� from the
signals before forming the covariance matrix.
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�
j1� ~��f�j2 �~��f� � j~��f�j2

�~�
�f� � j~��f�j2 j~��f�j2

" #
h�~s
H1

�f�

� ~s
H2
�f�
�~sH1

�f0� � ~sH2
�f0�
i (4.8)

�
j1� ~��f�j2 �~��f� � j~��f�j2

�~�
�f� � j~��f�j2 j~��f�j2

� �
fPH1

�f�

� PH2
�f� � �PH1H2

�f� � P

H1H2

�f�
g��f� f0�:

(4.9)

Diagonalization of k~Cz�f�k gives the eigenvalues:

�1 � 0; (4.10)

�2 � fPH1
�f� � PH2

�f� � �PH1H2
�f� � P


H1H2
�f�
g

� �1� ~��f� � ~�
�f� � 2j~��f�j2
: (4.11)

The nontrivial solution corresponds to the desired ‘‘zero’’
pseudodetector channel:
062001
~z H�f� � ��~sH1
�f� � ~sH2

�f�


�
�������������������������������������������������������������
1� ~��f� � ~�
�f� � 2j~��f�j2

q
; (4.12)

where ~��f� is given as before [cf. Eq. (3.20)]. The power
spectrum Pz�f� of ~zH�f� is given by the eigenvalue �2

above.
Figure 4 shows plots of the strain spectral densities for

~zH�f�, ~sH1
�f�, and ~sH2

�f�, representative of the S1 data,
similar to Fig. 1.

A. Limiting case for zero cross-correlated noise

In the limit that the two detectors are uncorrelated [i.e.,
�H1H2

�f� � 0], the expression for ~��f� simplifies consid-
erably [cf. Eq. (3.22)]. In this limit, ~zH�f� and Pz�f�
become

~z H�f� � ��~sH1
�f� � ~sH2

�f�


�����������������������������������
P2
H1
�f� � P2

H2
�f�

q
PH1

�f� � PH2
�f�

; (4.13)

Pz�f� �
P2
H1
�f� � P2

H2
�f�

PH1
�f� � PH2

�f�
: (4.14)

In particular, note that Pz�f� satisfies the inequality

maxfPH1
�f�; PH2

�f�g �minfPH1
�f�; PH2

�f�g � Pz�f�

� maxfPH1
�f�; PH2

�f�g:

(4.15)

This last equation shows that the null channel ~zH�f�
contains less noise power than the difference of ~nH1

�f�,
~nH2

�f�. The filtering produced by ~��f� results in a less
noisy null estimator than the quantity ~nH1

�f� � ~nH2
�f�. In

the limit that either signal dominates the noise power
[e.g., PH1

�f� � PH2
�f�],

Pz�f� ! maxfPH1
�f�; PH2

�f�g �minfPH1
�f�; PH2

�f�g:

(4.16)

In addition, one can form the quantity:

t�f� :�
~zH�f�������������
Pz�f�

p �
��~sH1

�f� � ~sH2
�f�
�����������������������������������

PH1
�f� � PH2

�f�
q (4.17)

As suggested by the label t, this quantity is identical to the
Student’s t statistic, which is used to assess the statistical
significance of two quantities having different means and
variances.
V. CROSS-CORRELATION STATISTICS USING
COMPOSITE PSEUDODETECTOR CHANNELS

Since the instrumental transcontinental (L1-H1, L1-
H2) cross correlations are assumed to be negligible, the
derivation of the optimal filter when using the pseudode-
tector channels for Hanford proceeds exactly as has been
-6



FIG. 4. Same as Fig. 1, but for the null signal ~zH�f� instead of the optimal estimate ~sH�f�. Strain spectral densities (i.e., absolute
value) of ~zH�f� (gray or dotted lines), ~sH1

�f� (black line), and ~sH2
�f� (dashed line), representative of the S1 data. Top panel: Overlay

of the individual amplitude spectral densities with that of the strain spectral density j~zH�f�j is calculated with the S1 run-averaged
coherence, 
H1H2

�f�. On this scale, the left-hand panel shows no discernible difference between the spectra for 
H1H2
�f�, and with


H1H2
� 0, suggesting that even the level of coherence seen during the S1 run might be sufficiently low to allow one to simply

combine the L1-H1 and L2-H2 cross-correlation measurements under the assumption of zero cross-correlated noise. The optimality
of the estimate ~zH�f� is visible here because it is always less than the larger of ~sH1

�f� or ~sH2
�f�. Bottom panel: Overlay of individual

amplitude spectra with that for j~zH�f�j calculated with 
H1H2
�f� � 0 (i.e., assuming no coherence). The difference between the two

is very small except for the very lowest frequencies and at narrow line features.
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presented in the literature [5,8,9] with PH1
�f�, PH2

�f�
replaced by PH�f�, Pz�f� for the optimal estimate and
the null signal, respectively.

A. Cross-correlation statistic for the optimal estimate
of the gravitational wave strain

The cross-correlation statistic is given by

YL1H
:�

Z T=2

�T=2
dt1

Z T=2

�T=2
dt2 sL1

�t1�QL1H�t1 � t2�sH�t2�;

(5.1)

where T is the observation time and QL1H�t� is the optimal
filter, which is chosen to maximize the signal-to-noise
062001
ratio of YL1H. The corresponding frequency domain ex-
pression is

YL1H /
Z 1

�1
df~s
L1

�f� ~QL1
�f�~sH�f�: (5.2)

Specializing to the case �gw�f� � �0 � const, the opti-
mal filter becomes

~QL1H�f� � N L1H
��jfj�

jfj3PL1
�f�PH�f�

; (5.3)

where N L1H is a (real) overall normalization constant. In
practice, we choose N L1H so that the expected value of
the cross correlation is �0h2100T, where h100 is the Hubble
-7
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expansion rate H0 in units of H100 :� 100 kms�1 Mpc�1.
For such a choice,

N L1H �
20
2

3H2
100

�Z 1

�1
df

�2�jfj�

f6PL1
�f�PH�f�

�
�1
: (5.4)

Moreover, one can show that the normalization factor
N L1H and theoretical variance, �2

YL1H
, of YL1H are related

by a simple numerical factor:

N L1H �
1

T



3H2

100

5
2

�
�2

YL1H
: (5.5)

1. Limiting case for white coherence
and PH1

�f� / PH2
�f�

If the coherence is white [i.e., �H1H2
�f� � const] and

the power spectra PH1
�f�, PH2

�f� are proportional to one
another, then one can show that the value of the cross-
correlation statistic YL1H reduces to a linear combination
of the cross-correlation statistics YL1H1

and YL1H2
calcu-
062001
lated separately for L1-H1 and L1-H2, if we allow for
instrumental correlations between H1 and H2. Thus, for
this case, combining the point estimates of �0 made
separately for L1-H1 and L1-H2 gives the same result
as performing the coherent pseudodetector channel
analysis using the single optimal estimator ~sH�f�.

To show that this is indeed the case, note that
�H1H2

�f� � const implies


H1H2
�f� :� j�H1H2

�f�j2 � const: (5.6)

We will drop subscripts for constant quantities. If we
further assume that PH2

�f� � �PH1
�f�, then

PH1H2
�f�

PH2
�f�

�
�����
�

p ;
P

H1H2

�f�

PH1
�f�

� �
 ����
�

p
: (5.7)

Thus, the integrand of the cross-correlation statistic,

YL1H�f�: � ~s
L1
�f� ~QL1H�f�~sH�f�; (5.8)

becomes
YL1H�f�

N L1H
�

��f�~s
L1
�f�f~sH1

�f��PH2
�f� � PH1H2

�f�
 � ~sH2
�f��PH1

�f� � P

H1H2

�f�
g

jfj3PL1
�f�PH1

�f�PH2
�f��1� 
H1H2

�f�

(5.9)

�
1

1� 


�

1�

�����
�

p

�YL1H1
�f�

N L1H1

� �1� �
 ����
�

p
�
YL1H2

�f�

N L1H2

�
; (5.10)

where the normalization factor Eq. (5.4) is

N L1H �
20
2

3H2
100

�Z 1

�1
df

�2�jfj�fPH1
�f� � PH2

�f� � �PH1H2
�f� � P


H1H2
�f�
g

f6PL1
�f�PH1

�f�PH2
�f��1� 
H1H2

�f�


�
�1

(5.11)

� �1� 
�
�


1�
�����
�

p

�
N �1

L1H1
� �1� �
 ����

�
p

�N �1
L1H2

�
�1
: (5.12)
Equivalently,

�2
YL1H

� �1� 
�
�


1�
�����
�

p

�
��2

YL1H1
� �1

� �
 ����
�

p
���2

YL1H2

�
�1

(5.13)
� �1� 
�
�2

YL1H1
�2

YL1H2

�2
YL1H1

�1� �
 ����
�

p
� � �2

YL1H2
�1� ����

�
p �;

(5.14)

where we used Eq. (5.5) and similar equations to relate
N L1H1

, N L1H2
to �2

L1H1
, �2

L1H2
.

Substituting the above results for the normalization
factors and variances into Eq. (5.10) and integrating
over frequency, we find
YL1H �
�2

YL1H

�1� 
�

�

1�

�����
�

p

� YL1H1

�2
YL1H1

� �1� �
 ����
�

p
�
YL1H2

�2
YL1H2

�
(5.15)

�
�2

YL1H1
�2

YL1H2

�2
YL1H1

�1� �
 ����
�

p
� � �2

YL1H2
�1� ����

�
p �

�

1�

�����
�

p

� YL1H1

�2
YL1H1

� �1� �
 ����
�

p
�
YL1H2

�2
YL1H2

�
(5.16)

�
�2

YL1H2
�1� ����

�
p �YL1H1

� �2
YL1H1

�1� �
 ����
�

p
�YL1H2

�2
YL1H1

�1� �
 ����
�

p
� � �2

YL1H2
�1� ����

�
p �

:

(5.17)

Or in the notation of Appendix A:
-8
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YL1H �
�C22 � C12�Y1 � �C11 � C21�Y2

C11 � C22 � C12 � C21
; (5.18)

where Y1 :� YL1H1
, Y2 :� YL1H2

, and where we used
Eqs. (B1) and (B3) from Appendix B to equate �2

YL1H1
,

�2
YL1H2

with C11, C22, and PH1H2
=PH2

� �=
����
�

p
,

P

H1H2

=PH1
� �
 ����

�
p

with C12=C22, C21=C11. Thus, we
see that, for the limiting case of white coherence and
proportional power spectra, the pseudodetector optimal
estimator analysis reduces to a relatively simple combi-
nation of the separate cross-correlation statistic
measurements.

Finally, note that in the case of zero cross-correlated
noise [i.e., for �H1H2

�f� � 0] we get

YL1H �
�2

YL1H2
YL1H1

� �2
YL1H1

YL1H2

�2
YL1H1

� �2
YL1H2

(5.19)

�
��2

YL1H1
YL1H1

� ��2
YL1H2

YL1H2

��2
YL1H1

� ��2
YL1H2

; (5.20)

which is the standard method of combining results of
measurements in the absence of correlations [6].

B. Cross-correlation statistic for the null signal

Once again, the cross-correlation statistic in the fre-
quency domain is given by

YL1z /
Z 1

�1
df~s
L1

�f� ~QL1z�f�~zH�f�: (5.21)

OPTIMAL COMBINATION OF SIGNALS FROM CO-. . .
062001
As before, the optimal filter for �gw�f� � �0 � const is

~QL1z�f� � N L1z
��jfj�

jfj3PL1
�f�Pz�f�

; (5.22)

where N L1z is chosen to be

N L1z �
20
2

3H2
100

�Z 1

�1
df

�2�jfj�

f6PL1
�f�Pz�f�

�
�1

(5.23)

and is related to the theoretical variance �2
YL1z

via

N L1z �
1

T



3H2

100

5
2

�
�2

YL1z
: (5.24)
1. Limiting case for white coherence and PH1
�f� /

PH2
�f�

We start again with the same assumptions that the
coherence is white and the power spectra PH1

�f�, PH2
�f�

are proportional to one another [cf. Eqs. (5.6), (5.7)]. Then
it is possible to show that the value of the cross-
correlation statistic YL1z reduces to a linear combination
of the cross-correlation statistics YL1H1

and YL1H2
calcu-

lated separately for L1-H1 and L1-H2, if we allow for
instrumental correlations between H1 and H2. After
much algebra similar to that presented earlier in
Sec. VA 1 we obtain:
YL1z

�2
YL1z

�

��������������������������
���3=2 � ��

q
��

YL1H2

�2
YL1H2

�
YL1H1

�2
YL1H1

����������������������������������������������������������������������������������������������������������������
��3=2 � �
���� �3 � 2j�j2 � �

����
�

p
� �3=2���� �
�


q ; (5.25)

or, equivalently,

YL1z

�YL1z

�

���������������������������������������������������������������������������
�3=2 � �

��3=2 � �
���� �2 �
����
�

p
��� �
�


vuut 

�

YL1H2

�YL1H2

�
����
�

p YL1H1

�YL1H1

�
(5.26)

�

�����������������������������������������������������
�3=2 � �

��3=2 � �
��1�
���
�

p
����
�

���2 �

vuuut 
 YL1H2
� YL1H1��������������������������������

�2
YL1H2

� �2
YL1H1

q �
: (5.27)
2. Limiting case for zero cross-correlated noise

If also �H1H2
�f� � 0, then the two interferometer noise

floors are uncorrelated, and the cross-correlation statistic
YL1z for the null channel simplifies further:

YL1z

�L1z
�

YL1H2
� YL1H1��������������������������������

�2
YL1H1

� �2
YL1H2

q : (5.28)

Equation (5.28) shows that in this limit the quantity
YL1z=�L1z follows the Student’s t distribution. This
distribution provides a measure to assess the significance
of the difference between two experimental quantities
having different means and variances. Here it provides a
measure of consistency of the two independent measure-
ments, YL1H1

and YL1H2
: Their difference should be con-

sistent with zero within the combined experimental
errors.
-9
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C. Combining triple and double coincident
measurements

In order to make use of this method for the analysis of
future science data, we will need to partition the data into
three nonoverlapping (hence statistically independent)
sets: the H1-H2-L1 triple coincident data set, and the
two L1-H1 and L1-H2 double coincident data sets. The
triple coincidence data would be analyzed in the manner
described in this paper, while the double coincidence data
(corresponding to measurements from different epochs or
from different science runs) can be simply combined
under the assumption of statistical independence
[cf. Eq. (5.20)].

VI. CONCLUSION

The approach presented above is fundamentally differ-
ent from how the analysis of S1 data was conducted and
represents a manner to maximally exploit the feature of
LIGO that has two colocated interferometers. This tech-
nique is possible for the Hanford pair of detectors be-
cause, to high accuracy, the gravitational wave signature
is guaranteed to be identically imprinted on both data
streams. Coherent, time-domain mixing of the two inter-
ferometer strain channels can thus be used to optimal
advantage to provide the best possible estimate of the
gravitational wave strain, and to provide a null channel
with which any gravitational wave analysis can be cali-
brated for backgrounds.

An analogous technique of ‘‘time-delay interferome-
try’’ (TDI) has been proposed in the context of the Laser
Interferometer Space Array (LISA) concept [10,11].
However, in that case the data analysis is very different
from what is explored in our paper. TDI involves time
shifting the six data streams of LISA (2 per arm) appro-
priately before combining them so as to cancel (exactly)
the laser-frequency noise that dominates other LISA noise
sources. Even after implementing TDI, the resulting data
combinations (with the laser-frequency noise eliminated)
are not all independent, and may have cross-correlated
noises from other, nongravitational-wave, sources. One,
therefore, seeks in LISA data analysis an optimal strategy
for detecting a given signal in these TDI data combina-
tions. On the other hand, the method presented in this
paper is not about canceling specific noise components
from data; rather, it is about deducing the optimal detec-
tion strategy in the presence of cross-correlated noise.

The usefulness of ~zH�f� is that it may be used to
analyze cross correlations for nongravitational-wave sig-
nals between the Livingston and Hanford sites. This
would enable a null measurement to be made —i.e., one
in which gravitational radiation had been effectively
‘‘turned off.’’ In this sense, using ~zH�f� would be analo-
gous to analyzing the ALLEGRO-L1 correlation when
the orientation of the cryogenic resonant bar detector
ALLEGRO is at 45� with respect to the interferometer
062001
arms [12,13]. Under suitable analysis, the cross-
correlation statistic YL1z could be used to establish an
‘‘off-source’’ background measurement for the stochastic
gravitational wave background.

Ultimately, the usefulness of such a null test will be
related to how well the relative calibrations between H1
and H2 are known. If the contributions of ~h�f� to ~sH1

�f�
and ~sH2

�f� are not equal due to calibration uncertainties,
then this error will propagate into the generation of ~sH�f�,
~zH�f�. It is possible to estimate this effect as follows.
Because of the intended use of ~zH�f� in a null measure-
ment, the leakage of ~h�f� into this channel is the greater
concern. Considering the structure of Eqs. (3.17), (4.3),
and (4.4), it is clear that effects of differential calibration
errors in ~sH�f� will tend to average out, whereas such
errors will be amplified in ~zH�f�. Assume a differential
calibration error of �~��f�. Then ~zH�f� will contain a
gravitational wave signature

�~h�f� � 2~��f�~h�f�; (6.1)

with corresponding power

�Ph�f� � 4j~��f�j2Ph�f�: (6.2)

The amplitude leakage affects single-interferometer
based analyses; the power leakage affects multiple inter-
ferometer correlations (such as the stochastic background
search). Assuming reasonably small values for �~��f�, if a
search sets a threshold �
 on putative gravitational wave
events detected in channel ~sH�f�, then the corresponding
contribution in ~zH�f� would be approximately 2j�j�
,
where j�j denotes the magnitude of the frequency inte-
grated differential calibration errors. For any reasonable
threshold (e.g., �
 � 10) above which one would claim a
detection, and for typical differential calibration uncer-
tainties of 2j�j & 20%, then the same event would have a
signal-to-noise level of �
 � 2 in the null channel, well
below what one would consider meaningful. A more
careful analysis is needed to quantify these results, since
calibration uncertainties also propagate into ~��f�.

While the focus of this paper is the application of this
technique to the search for stochastic gravitational waves,
it appears that any analysis can exploit this approach. It
should be straightforward to tune pipeline filters and cull
spurious events by using the null channel to veto events
seen in the ~sH�f� channel.
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APPENDIX A: GENERAL METHOD OF
COMBINING MEASUREMENTS ALLOWING

FOR CROSS CORRELATIONS

In this appendix, we present a general method of com-
bining measurements, allowing for possible correlations
between them. In the following appendix (Appendix A),
this method is applied to the case of the L1-H1 and L1-H2
cross-correlation statistic measurements, which are taken
over the same observation period and which may contain
significant instrumental H1-H2 correlations.

It is important to emphasize that the method discussed
in this appendix is not the same as the pseudodetector
optimal estimator method discussed in the main text; the
pseudodetector method combines the data at the level of
data streams ~sH1

�f�, ~sH2
�f� before optimal filtering, while

the method discussed here combines the data at the level
of the cross-correlation statistic measurements YL1H1

and
YL1H2

—i.e., after optimal filtering of the individual data
streams. As such, the method described here is not opti-
mal, in general, since it does not take advantage of the
common gravitational wave strain component h present in
H1 and H2. However, as shown in the main text, when the
cross correlation �H1H2

�f� is white and the power spectra
PH1

�f�, PH2
�f� are proportional to one another, the pseu-

dodetector optimal estimator method reduces to the
method described here.

Consider then a pair of (real-valued) random variables
Y1, Y2 with the same theoretical mean

� :� hY1i � hY2i; (A1)

and covariance matrix

kCk :�
C11 C12

C21 C22

� �
; (A2)

where

Cij: � h�Yi ����Yj ���i � hYiYji ��2: (A3)

Note that C12 � C21 since the Yi are real. The absence of
cross correlations corresponds to C12 � C21 � 0.
062001
Now form the weighted average

Yopt :�

P
i
�iYiP
j
�j

: (A4)

It is straightforward to show that Yopt has theoretical
mean �opt � �, and theoretical variance

�2
opt �

1

�
P
k
�k�

2

X
i

X
j

�iCij�j: (A5)

Now find the weighting factors �i that minimize the
variance of Yopt. The result is

�i �
X
j

kCk�1
ij ; (A6)

or, explicitly,

�1 �
C22 � C12

detkCk
; �2 �

C11 � C21

detkCk
; (A7)

where detkCk :� C11C22 � C12C21.
One can prove the above result by defining an inner

product

�A;B� :�
X
i

X
j

AikCk�1
ij Bj; (A8)

and rewriting the variance as

�2
opt �

�C � �;C � ��
�C � �; 1�2

: (A9)

Then �2
opt is minimized by choosing �i such that

C � �:�
X
j

Cij�j � 1 (A10)

for all i.
For such a choice,

��2
opt �

X
i

�i �
C11 � C22 � C12 � C21

detkCk
; (A11)

Yopt

�2
opt

�
�C22 � C12�Y1 � �C11 � C21�Y2

detkCk
; (A12)

so

Yopt �
�C22 � C12�Y1 � �C11 � C21�Y2

C11 � C22 � C12 � C21
: (A13)

This is the desired combination.
APPENDIX B: APPLICATION OF THE GENERAL
METHOD TO THE L1-H1, L1-H2 CROSS-

CORRELATION STATISTIC MEASUREMENTS

Here we apply the results of the previous appendix to
the L1-H1 and L1-H2 cross-correlation measurements.
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We let Y1 denote the cross-correlation statistic YL1H1
for

the L1-H1 detector pair, and Y2 denote the cross-
correlation statistic YL1H2

for L1-H2, and assume that
the measurements are taken over the same observation
period of duration T. (If the observations were over differ-
ent times, then there would be no cross-correlation terms
and a simple weighted average by ��2

i would suffice.) We
need only calculate the components of the covariance
matrix to apply the method described in the previous
appendix.

To calculate the Cij, we assume (as in the main text)
that the cross-correlated stochastic signal power P��f� is
small compared to the autocorrelated noise in the
individual detectors, and that there are no broadband
transcontinental instrumental or environmental correla-
tions—i.e., jPn

L1Hi
�f�j is small compared to the autocor-

related noise, the cross-correlated stochastic signal
power, and the H1-H2 cross correlation jPH1H2

�f�j. Then
it is fairly straightforward to show that

C11 � �2
L1H1

; C22 � �2
L1H2

; (B1)
062001
and

C12

C11C22
�

C21

C11C22

�
1

T



3H2

100

10
2

�
2 Z 1

�1
df

�2�jfj�PH1H2
�f�

f6PL1
�f�PH1

�f�PH2
�f�

:

(B2)

Note that the above integral is real since PH1H2
��f� �

P

H1H2

�f� and the integration is over all frequencies (both
positive and negative).

If we further consider the limiting case defined
by white coherence [i.e., �H1H2

�f� � const] and propor-
tional power spectra [i.e., PH1

�f� / PH2
�f�], then

PH1H2
�f�=PH1

�f� and P

H1H2

�f�=PH2
�f� are both constant

with values

PH1H2

PH2

�
C12

C22
;

P

H1H2

PH1

�
C21

C11
: (B3)
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