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Abstract

Quasicrystalline phononic crystals structures have attracted intensive attention due to their out-

standing capability in manipulating acoustic and elastic waves. They are rationally designed com-

posites made of tailored building blocks, which are composed of one or more constituent bulk

materials. As a main contribution to the research field, the concept of canonical configuration is

here introduced as a novel tool to design quasicrystalline-generated structures.

A periodic one-dimensional quasicrystalline-generated rod can be used to minimise system noise

and vibration acting as a wave filter. It can be composed of repeated elementary cells devised by

adopting generalised Fibonacci substitution rules. We apply the concept of canonical configuration

into it, for which the orbits predicted by the trace map at the specific frequencies, which we call

canonical frequencies, are periodic. This theory reveals that (i): the frequency spectrum is periodic

and symmetric, (ii): a set of multiple periodic orbits exist at frequencies, and (iii): scaling exists

in the frequency spectra that can be explained rigorously.

Negative refraction effect can be used for wave focusing as a perfect lens. This effect in qua-

sicrystalline laminate is governed by three particular frequencies. Canonical configurations for

laminates and canonical frequencies can be used as a rule to investigate the effect of variation of

those frequencies with different phases of the laminate. Three main conclusions can be drawn:

(i): the effects of pure negative refraction following variation of canonical ratio and two-phase

material are analysed, (ii): the three mentioned frequencies show some local peaks that can be

analysed, in some cases analytically, (iii): under certain conditions, the expression of the Poynting

vector can be simplified to calculate explicitly the transmission angle and to formulate an ‘inverse

problem’ to design the laminate to achieve a particular pair of frequency and wavenumber.

The interface state in periodic structures is formed in the interfacial region at two one-dimensional

structures with different surface impedance, which can be determined by the symmetric properties

of band-edge mode on lower or upper bandgap or, otherwise, properties of the Zak phase. It can be

used as an amplifier leading an increasing of sensitivity at the target frequency. Three results are

obtained: (i): the surface impedance of band-edge mode is periodically associated with canonical

frequencies with canonical configuration, (ii): the representation based on the universal torus can

be used as a new tool for designing quasicrystalline waveguides with the sign of surface impedance

determined without Zak phase integral, (iii): the frequency of interface state is determined under

two particular configurations.
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Chapter 1- Introduction

1.1 Motivation and Background

Walser (2001) used the term ’metamaterial’ for the first time in a publication (the prefix meta-

is the ancient Greek word for beyond), but there is not yet a definition of metamaterial that is

consistently used by all. The majority of scholars concur with the following rough definition:

metamaterials are tailor-made composites comprised of one or more bulk component material pos-

sessing properties that are not usually found in nature. Metamaterials are macroscopic composites

of periodic or non-periodic structures (even though the vast majority of metamaterials created to

date are periodic), whose function is attributable to both the underlying cell architecture and the

chemical composition (Cui et al. 2010; Milton 1995; Kenneth et al. 2012). Rational design of

metamaterials with the help of both theoretical and numerical approaches is a long-held goal of

applied physics to avoid trial-and-error procedures and excessive experimentation. Reasonable de-

sign enables metamaterial properties to go beyond those of the ingredient materials, qualitatively

or quantitatively, or to what was previously believed to be impossible in nature. Metamaterials can

be used in electromagnetism, acoustic or elastic dynamic applications (Kadic et al. 2019). Typical

metamaterials and elementary cells are depicted in Figure 1.1.

For elastic solids, unlike air or water, the shear mod-
ulus G is generally not zero. In auxetic elastic metamat
erials, the effective shear modulus G* can even be made
larger than the effective bulk modulus B*. Equivalently, 
the effective Poisson ratio ν* is negative. Such materi-
als contract laterally when pushed on (Fig. 1d). For 3D 
isotropic dilational metamaterials, in the limit ≫G B* *,  
the Poisson ratio tends to −1, which means that the

softest mode of material deformation is a change in vol-
ume without a change in shape of the material109. Thus, 
applications in shock protection by stress distribution
are envisioned109.

The opposite limit of ≪G B* * is that of pentamode 
metamaterials110 (Fig. 3c), which behave approximately 
as liquids with G = 0; hence, ν = 0.5. 3D pentamodes111

and anisotropic versions thereof112 have been realized 

2 cm 10 µm 10 µm2 cm

5 cm 100 µm 300 µm6 cm

(a)

Fig. 3 | Gallery of designed 3D acoustical and mechanical metamaterial unit cells and corresponding experimental
realizations. a | Unit cell with internal mass–spring resonance that leads to negative effective mass density. b | 3D labyrinthine
channel system that leads to an isotropic slowing down of sound propagation. c | Pentamode cell that gives rise to a small 
shear modulus (compared with the auxetic cell in Fig. 1d, which leads to a small bulk modulus). d | 3D chiral mechanical
metamaterial. e | Buckling elements that lead to multistable and programmable behaviour. f | Truss lattices with a large 
coordination number leading to strong ultralight behaviour. g | Unit cell for a programmable mechanical metamaterial. 
When the top of the resulting structure, which is composed of many different cells, is pressed, a programmed smiley face
appears. h | Two-component cell supporting sign reversal of thermal expansion. Panels a–g show unit cells used in 
mechanical and acoustic metamaterials; panel h shows a unit cell used for stimuli-responsive behaviour. The lower part of
panel a is adapted with permission from ref.92, AAAS. Panel b is adapted from ref.101, Frenzel, T. et al. Three-dimensional 
labyrinthine acoustic metamaterials. Appl. Phys. Lett. 103, 061907 (2013), with the permission of AIP Publishing. Panel c is 
adapted from ref.111, Kadic, M. et al. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 
19101 (2012), with the permission of AIP Publishing. Panel d is adapted with permission from ref.121, AAAS. Panel e is adapted
with permission from ref.194, Emerald Publishing Limited. Panel f is adapted with permission from ref.151, AAAS. Panel g is 
adapted from ref.142, Springer Nature Limited. Panel h is adapted with permission from ref.195, APS.

NAtuRe RevIews | Physics

R e v i e w s

 volume 1 | MARCH 2019 | 203

(b) (c) (d)

Figure 1.1. Some 3D acoustical and mechanical metamaterial unit cells (upper) and correspond-
ing experimental realizations (lower). (a). Unit cells with internal mass-spring resonance that
leads to negative mass density. (b). Labyrinthine channel system that leads to an isotropic slowing
down of sound propagation. (c). Pentamode cell that gives rise to a small shear modulus. (d).
Chiral mechanical metamaterials that give rise to small bulk modulus. Figure reproduced from
Kadic et al. (2019)
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The idea in Figure 1.1 (a) states that a strong periodic modulation in density and sound velocity

can create spectral gaps (bandgap) that forbid wave propagation. By varying the size and geometry

of the structural unit, the frequency ranges for bandgaps can be tuned (Liu et al. 2000). Extension

to lower and higher frequency elastic wave systems may lead to applications in seismic wave

reflection. Frenzel et al. (2013) find positive phase and group velocities of sound slower than in

air by a factor of about eight over a large range of relevant acoustic frequencies. The losses are very

significant though, making these labyrinthine structures an interesting option for sub-wavelength

broadband all-angle acoustic absorbers for acoustic-noise suppression as shown in Figure 1.1 (b).

Pushing on an ordinary linearly elastic bar can cause it to be deformed in many ways. However,

within Cauchy continuum mechanics, a twist is strictly zero and the stiffness constant as shown

in Figure 1.1 (d), which could be used to steer force or mechanical waves around obstacles using

static or dynamic cloaking structures, respectively (Frenzel et al. 2017).

Controlling waves with mechanical metamaterials is a well-established topic of study that has at-

tained a certain level of maturity. Two methods are mainly followed to achieve this aim: the first

one is based on the investigation of dispersion properties of periodic structures that compose spe-

cially designed units or elementary cells (Kushwaha et al. 1993; Lin 1962; Sigalas and Economou

1992); the second relies on mathematical transformations dictating local features of the metama-

terial, such as guiding waves along predetermined paths (Brun et al. 2009; Colquitt et al. 2014;

Colquitt et al. 2017; Farhat et al. 2009; Maldovan 2013; Milton et al. 2006; Norris 2008; Parnell et

al. 2012). Thus, mechanical metamaterials possess a large capacity to influence waves and energy

being able to filter waves, induce negative refraction and exploit topological interface properties. A

metamaterial can block frequency ranges corresponding to wave propagation (bandgap structure),

create a state with only evanescent wave propagation, and might be utilised to minimise system

noise and vibration acting as a wave filter. Veselago pioneered the concept of negative refraction

(1964). As depicted in Figure 1.2, Veselago (1964) utilised negative permittivity and permeability

to create a "left-handed structure" in which a negative group velocity with positive phase velocity

existed, allowing a perfect flat lens for an optical wave to be obtained for focusing energy from

point source radiation. This is not a lens in the conventional sense, as it does not focus on a single

point, but rather a jumble of rays emanating from infinity. As for real lenses, Figure 1.3 depicts the

beam propagation paths of left-handed lens materials. Convex and concave lenses are inherently

opposed because the convex lens has a diverging ray effect and the concave lens has a converging

ray impact.

Although 3D microstructures and nanostructures have more potential applications for metamate-
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Figure 1.2. Propagation of rays of light through the flat lens with negative refraction, the wave
will be focusing on another side of the lens, A - a source of radiation; B - detector of radiation,
figure reproduced from Veselogo (1964)

Figure 1.3. Paths of rays through lenses made of left-handed material, figure reproduced from
Veselogo (1964)

rials, the 1D model is easier to fabricate and design complexity is limited such that closed-form

solutions can be found. Thus, in this research thesis, 1D periodic structures will be considered.

Periodic phononic crystals/materials are a subclass of metamaterials (Srivastava and Willis, 2017)

with bandgaps in the dispersion diagram. This notable feature can be attributed to Bragg scatter-

ing (Kushwaha et al. 1993), local resonance (Liu 2000), and inertial amplification (Yilmaz et al.

2007), as the unit cell operates as an insulator or filter for waves while permitting other frequen-

cies to pass through. Quasiperiodic sequences may be used to conceptualise the unit cell. The

sequences are generated by the combination of two homogeneous pieces to create non-periodic

patterns, which may be described in general terms by deterministic laws (commonly known as

generation or substitution rules detailed in Chapter 2). Two separate groups of quasiperiodic

structured media may be recognised based on the features of these laws: quasicrystalline struc-

tures (Levine and Steinhardt 1984) and non-quasicrystalline deterministic systems (Huang et al.

1992). Kolar (1993) developed a precise categorization for one dimension quasiperiodic structural

patterns. The aperiodic deterministic structures of quasicrystalline media are midway between

those of crystalline and amorphous substances (Poddubny and Ivchenko 2010). Figure 1.4 is a typ-
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propagation forbidden
propagation 
allowed

Figure 1.4. Fibonacci quasicrystalline rod as a wave filter

Figure 1.5. Penrose tiling, figure reproduced from Penrose (1974)

ical example of a one-dimensional quasicrystalline structure represented by the Fibonacci golden

mean sequence. Figure 1.5 depicts the Penrose tiling (Penrose, 1974) with rotational symmetry

and quasicrystalline tessellation in two dimensions.

Dispersion spectra of quasicrystalline generated waveguides display self-similarity that can be

explained through a scaling factor. It is an exciting phenomenon because the range of passband

and bandgap layout can be scaled (predicted) with different Fibonacci order in acoustic, elastic

and optical waves. This phenomenon could be related to the properties of a certain nonlinear

map that can be defined on the trace of the transfer matrix (Poddubny et al. 2009; Kohmoto

1987). In general periodic media, scaling and self-similarity in the dispersion spectrum cannot be

detected (Steurer 2004; Steurer and Deloudi 2008; Fan and Huang 2021). Typical self-similar and

scaling effects are shown in Figure 1.6 (Gei 2010). Morini and Gei (2018) investigated traces of

the transfer matrix associated with the precious mean sequence at increasing of Fibonacci order.

The trace of consecutive elements of the sequence follows a nonlinear recursive relationships.

An invariant is obtained through an algebraic technique, that can be mapped as a surface in a

three-dimensional space with a Cartesian system. This surface was first introduced by Kohmoto

and Oono (1984) while investigating the spectrum of Schrödinger’s equations in quasicrystalline

potential wells. Thus, the surface and invariant are called Kohmoto’s surface and Kohmoto’s

invariant, respectively. The nonlinear map defines points that describe a discrete orbit on the

Kohmoto’s surface. Periodic orbits can be detected. Kohmoto’s invariant is introduced in Chapter

2.

Scaling and self-similarity phenomena can be studied as perturbations of periodic orbits through

a linearisation of the nonlinear map introduced previously. The ‘direction’ of the perturbation
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Figure 1.6. Typical scaling effect and self-similarity properties in dispersion layout for rods gener-
ated by sequence 𝐹0 to 𝐹6. The �𝑄𝜔𝑙𝐿 is dimensionless frequency. Red band represents passband
and interval bandgap. Figure reproduced from Gei (2010)

is almost coincident with the eigenvector. The unique properties of quasicrystalline-based meta-

materials can be obtained from investigating perturbations of periodic orbits. In addition, novel

analytical tools can be further assessed for manipulating the bandgap properties of quasicrystalline

structures.

Several investigators have studied the influence of periodic multilayer structures on the propaga-

tion of elastic waves during the past fifty years (Sun et al. 1968; Hegemier and Nayfeh 1973;

Morvan et al. 1972; Nemat-Nasser et al. 1975; Rudykn and Boyce 2014). Advancements in fo-

cussing of elastic waves (Guenneau et al. 2007; Yang et al. 2004) and negative refraction have

influenced the design of composites based on continuous and discrete periodic structures (Chen

et al. 2017; Morvan et al. 2010; Morini and Gei 2018; Zhang and Liu 2004; Zhu et al. 2014).

Several researchers have previously studied the unique problem for anti-plane shear waves, also

known as shear horizontal (SH) waves, incident at the interface between a homogeneous substrate

and a periodic bilayer laminate: Nemat-Nesser (2015a); Srivastava and Willis (2017); Morini and

Gei (2018). Figure 1.7 demonstrates that, when the layering direction is perpendicular to the

interface, it is possible to use a periodic laminate to achieve negative refraction, a phenomenon

typically observed when elastic waves strike a custom-designed micro-architected interface (Brun

et al. 2010; Jones et al. 2011; Sukhovich et al. 2008). However, only a positive refraction

wave was detected when the stacking direction was perpendicular to the interface (Srivastava and

Nemat-Nasser 2014). Negative refraction can occur in both instances, but with in-plane wave

which coupled P and SV waves (Lustig et al. 2019; Mokhtari et al. 2020). Under specific hy-
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L S

Figure 1.7. SH wave incident from an elastic homogenous substrate into Fibonacci laminate 𝐹4,
figure reproduced from Morini et al. (2019)

potheses, the results reported by Willis (2016) demonstrated the existence of both positive and

negative refraction waves in a transmitted signal. According to Srivastava (2016), to create single

negative refraction wave, it is essential to couple the incident wave number with the wave mode

satisfied particular conditions. Thus, one component of the wave group velocity, which represents

direction of energy propagation, becomes negative, which confirms the idea of Veselago (1964).

It is believed that some or all of these results may apply to electromagnetic (EM) waves in a layered

periodic dielectric due to the similarities between SH and EM waves (Srivastava 2016). Figure 1.8

depicts the results of the FEM simulation by the commercial programme COMSOL Multiphysics

of the negative SH wave refraction between the substrate and laminates. It is fascinating to explore

negative refraction in quasicrystalline generated laminates, in which the two-phase material 𝐴 or 𝐵

are arranged using Fibonacci substitution rule, such that the effect or condition for negative refrac-

tion might be guided by Kohmoto’s invariant. As they are essential for engineering applications,

the negative transmission angle and energy associated with it require more research.

In wave physics, impedance is the characteristic that regulates scattered or reflected waves at

material interfaces (waveguides). Bandgap in mechanical or acoustic phononic crystals is caused

by an impedance mismatch in the phase material, which also defines how a material interacts

with incoming waves. In addition, the bandgap structures result from the propagation of waves

inside a periodic system. Therefore, there is a relationship between these quantities. Based on

the analogy between these systems and quantum systems, the Zak phase may be described in

photonic crystals (Xiao et al. 2014) or phononic crystals (Kane and Lubensky, 2013) for acoustic

and mechanical waves (Haldane and Raghu 2008; Raghu and Haldane 2008; Raman and Fan 2010;

Tan et al. 2014). Xiao and colleagues (2014) created periodic one-dimensional photonic crystals.
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Figure 1.8. FEM simulation. Incident wave from below to enter laminates above with (a) negative
refraction in laminates part, and (b) positive refraction laminates part, figure reproduced from
Srivastava (2016)

Geometric topological phase of photonic crystals dictates the occurrence of interface states. As the

topological phase of two semi-infinite systems on either side of an interface is distinct, interface

states can arise in quantum systems (Hatsugai 1993; Hatsugai et al. 2006; Rudner et al. 2013;

Regnault and Bernevig 2011).

Figure 1.9. Geometry of the SSH model. Grey and white circles are sites on sublattice, each
hosting a single state. The left and right edge regions shaded with blue and red. Figure reproduced
from Asboth et al. (2015)

Figure 1.9 illustrates the Su-Schrieffer-Heeger (SSH) model for polyacetylene (Su et al. 1979;

Su et al. 1980; Heeger et al. 1988). This model demonstrated the existence of an interface state

when the Zak phase of the occupied passband on one side of the chain differs from that on the

other side, which may be derived via gap inversion (Hasan and Kane 2010; Bernevig et al. 2006;

Pankratov et al. 1987). Several articles on the topological interface state in phononic systems

(Xiao et al. 2015; Yin et al. 2018; Meng et al. 2018; Li et al. 2018; Muhammad et al. 2019;

Chen et al. 2021) are concerning the elementary cell holding inversion symmetry (Zak 1989). A

common elastic interface condition exists when the sum of two surface impedances is zero at the

interface of two finite (or infinite) periodic rods (Xiao et al. 2014). At the interface, the local

wave field is amplified, resulting in improved sensitivity of the device at the desired frequency

(Xiao et al. 2015). The wave field distribution is confined at the interface between two structures

and phenomenon in spectra is similar to the occurrence of a small passband in bandgap, as seen

in Figure 1.10. Applications such as sound detection (Buckingham et al. 1992) and biomedical

7



PhD Thesis, Zhijiang Chen, 2022

Figure 1.10. Forced response of the finite system comprised of two phononic crystals 𝐿𝐶1 and 𝐿𝐶3
with different topological properties obtained from measurements in comparison with numerical
simulations using FEM. (a) Frequency response function of whole system where the structure is
excited at the right end and velocity response picked up at the other end (the dashed blue lines
represent simulated results using FEM and the solid red lines are measured results). A transmis-
sion peak at 33100Hz is observed within band gap region (colored area) indicating the existence
of the interface mode. (b) the longitudinal normalised velocity field obtained from simulations and
(c) the longitudinal normalised velocity field obtained from measurements at the peak frequency,
respectively. Figure reproduced from Yin et al. (2018)

imaging (Fatemi 1998) demanded high wave intensities, and a system with an interface state can

be in close proximity to a sensor/receiver. In this system, the canonical configuration can also be

used to determine the effect, as the exact frequency for the interface state is not yet determined by

the theoretical method.

Quasicrystalline structure to be investigated will reveal innovative features that are currently only

partially known in mechanics and are useful specially for cutting frequencies in a vibrating system,

for example, Micro-electromechanical system (MEMS) to devices able to suppress vibrations in

mechanical engineering. The principles of quasicrystalline structures can be applied to beams,

rods, plates and composite (layered) materials, depending on the type or scale of application. Pure

negative refraction effect in the coupled substrate and quasicrystalline laminate can be used for

energy focusing (Figure 1.2) or divergence as a perfect lens. The interface state effect in periodic

rods can be used as an amplifier to place in close proximately to a sensor or receiver leading to an

increasing of sensitivity at the target frequency.

1.2 Thesis Objectives

As mentioned above, there appears to be a lack of further understanding of the characteristics con-

cerning dynamic spectra, self-similar patterns and scaling features in one-dimensional Fibonacci

quasicrystalline generated structures (rods or laminates). The research presented in the thesis fo-

cuses on the Fibonacci sequences as the substitutional rule and the dispersion layout variations

8
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with increasing of Fibonacci order. The dispersion spectra are obtained from the transfer matrix

method using the Floquet-Bloch technique. A new geometric configuration (i.e., the canonical

configuration) can let spectra be periodic in all Fibonacci sequence, which comes from investi-

gation of saddle-points on Kohmoto’s surface (Morini and Gei 2018). The role of the canonical

configurations in the dispersion layouts of Fibonacci quasicrystalline generated rods is investi-

gated thoroughly, especially with reference to the scaling properties. This thesis provides new

design guidelines for their utilisation in 1D quasicrystalline rods whose passband topology can be

adjusted and manipulated easily.

Moreover, even if many researchers have already investigated SH (anti-plane) wave propagating

in periodic laminates, refraction angles and transmitted energy where pure negative refraction oc-

curs have not been investigated thoroughly. The concept of canonical configuration is applied to

quasicrystalline laminates generated by the Fibonacci sequence. The conditions for pure negative

refraction are obtained. As such, the variation of pure negative refraction with different canoni-

cal ratio and two-phase material selected for maximising (or minimising) the possibility for pure

negative refraction should be studied. In addition, it is possible to find a relationship among fre-

quency, incident and transmission wave angles from eigenvector analyses with condition of zero

Kohmoto’s invariant. Also, the maximum transmission wave energy is studied.

Additionally, many researchers have already investigated the topological interface state by tuning

material parameters to let the bandgap close and reopen (band inversion), which leads to chang-

ing the sign of surface impedance (topological phase) and Zak phase. However, the Zak phase is

calculated by the complex Berry connection integral, and the frequency for the interface state is

not determined. In this thesis, the concept of canonical configuration is applied on two periodic

rods to create an interface state avoiding the Zak phase calculation. The symmetric properties of

edge mode are used because they provide a clear connection when the structure holds an inversion

symmetry. Furthermore, the surface impedance of finite and infinite periodic structures are anal-

ysed theoretically and combined to predict frequency for the interface state. Thus, it is possible

to obtain the formula for frequency controlled by structure material and geometric parameters for

real engineering applications.

Therefore, the main objectives are as follows:

1. Review the literature concerning quasicrystalline rods and laminates generated by Fibonacci

sequence, especially with a focus on self-similar patterns and scaling factors. Kohmoto’s invariant

and universal torus are reviewed carefully which are the main tools for spectra analysis. Negative
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refraction in the periodic laminates includes a method for calculating dispersion relation, trans-

mission wave angle and energy, in particular, pure negative refraction. Moreover, the topological

interface state in periodic structures covers the Zak phase integral, surface impedance, transmis-

sion and reflection coefficients and the bandgap inversion phenomenon.

2. Theoretical investigations regarding the application of the concept of canonical configuration to

1D quasicrystalline generated rods and laminates with regard to dispersion layouts, periodic orbits

in the spectra, and Kohmoto’s surface are included. Then, different scaling factors, explaining self-

similarity properties of passband layout are investigated. The approaches for canonical structure

are fully clarified in 1D quasicrystalline generated structure. Moreover, the differences between

canonical structure and non-canonical are emphasised. Numerical codes are implemented to verify

our theoretical analyses.

3. The condition for pure negative refraction when a SH wave approaches a quasicrytalline gen-

erated laminates from a homogeneous substrate is investigated. Then, the concept of canonical

configuration is applied to laminates to optimise the possibility of pure negative refraction. Two

components of the acoustic Poynting vector can be simplified in some conditions by employing

eigenvector analyses and giving rise to ‘inverse problems’ possibly. The transmission wave en-

ergy is studied and the local maximum value is found under pure negative refraction conditions.

Additionally, It is possible to use the linear approximation prediction technique in this problem.

4. Propose a novel analysis approach for topological interface state observed in two periodic finite

or infinite elementary cells rods and determine the exact frequency for the interface state. The

effect of canonical configuration on the sign of surface impedance and the Zak phase are analysed

theoretically. The numerical results verify the frequency for the interface state and show the en-

gineering application (the maximum displacement and force field are localised at the geometric

interface of two structures). Indeed, this approach can be extended to other 1D periodic structures

(laminates).

5. Identify any possible extension to multi-dimensional structures (beams, plates, etc.) where to

apply the idea of new configuration in this thesis. The necessary numerical approaches are also

explained.

1.3 Thesis Overview

This thesis is divided into seven chapters. The first three chapters cover introduction, literature

review and methodology, respectively. The fourth, fifth and sixth chapters show novel research
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works. The seventh chapter includes conclusions and possible future research.

Chapter 2 reviews the literature concerning elastic wave propagating in 1D quasiperiodic rods and

laminates. First, the Fibonacci substitution rule is introduced, including precious mean structures

and metal mean structures associated with the limit ratio. This thesis focuses on the golden ratio

structure. The primary analysis tools in this thesis, the Floquet-Bloch and transfer matrix tech-

niques, are introduced. The passband structures are introduced due to the impedance mismatch

of the two phases. Nonlinear mapping and Kohmoto’s invariant present the canonical ratio and

frequencies (canonical configuration) associated with the periodic orbits. Secondly, the anti-plane

(SH) wave propagating into laminates are introduced. This covers dispersion relations, acous-

tic Poynting vector, group velocity and transmission wave angle, all of which come from the

conditions of continuity at the interface. Theoretical deduction concerning mode shape orthogo-

nality and the relationship between Poynting vector and group velocity are demonstrated. Thirdly,

the topological interface state is incorporated and the basic definition for surface impedance, the

conditions for interface state and the process for Zak phase integration and band inversion are

presented. Finally, some conclusions are shown. For instance, the Zak phase takes two particular

values when the structure holds inversion symmetry, and the Zak phase is changed according to

two symmetric of band-edge mode on isolated passband.

Chapter 3 presents the methodology which is implemented in this thesis. The important tool

such as universal torus is shown due to its traces of the transfer matrix. The universal torus is

convenient for analysing band inversion in interface state problems. The numerical method for

calculating wave number 𝐾𝑦 (or frequency when dimensionless wave number 𝐾𝐿𝑖 is known), the

Newton method and matrix inverse iteration are shown. In addition, the approach for numerical

calculations of integral of two components of the Poynting vector and the transmission angle are

clarified, which originated from mode shape each phase can integrate 𝑤. The method to calculate

scattering coefficients and energy: normal mode decomposition, is introduced. The numerical

methods for calculating the Zak phase for each passband are presented. The transmission and

reflection coefficients in finite periodic rods and wave field evaluation are shown. This chapter

does not show the full code in software, but it is not difficult to program with this procedure.

Chapter 4 introduces the properties of the canonical rod. The conditions for canonical structure

(it covers three different families) are easily obtained by resorting to the three initial traces. The

full expressions for canonical frequencies are presented. As well as six saddle periodic orbits

(canonical frequencies), other periodic orbits are analysed on Kohmoto’s invariant. The scaling

effects on passband, bandgap are investigated theoretically and numerically. Especially some
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scaling factor is the square root of the maximum eigenvalue from linear approximation. Moreover,

the conditions for Kohmoto’s invariant being zero are analysed also which are helpful for the

Chapter 5.

Chapter 5 shows the complete conditions for pure negative refraction when SH wave incident

from the homogenous substrate to Fibonacci laminates. The concept of canonical configuration is

applied to laminate to optimise the effect of pure negative refraction. Some local extremum values

for three frequencies (condition) are obtained using the representation of the universal torus and

flow line. These three edge frequencies are obtained using a linear approximation with derivatives

of trace. One acoustic Poynting vector is simplified and explained in two extreme situations:

incident angle equal to 0 and 𝜋/2. There exists a particular pair of frequencies and longitudinal

wave numbers so that the Poynting vector is simplified and not associated with frequency. Then,

a unique surface in space with coordinates covered frequencies, incident and transmission wave

angles are presented. It corresponds to a straight line in the dispersion spectra associated with

Kohmoto’s invariant which is always zero. The energy in pure negative refraction is analysed. It

is fascinating that there exist unusual maximum peaks when the wave number enters the second

Brillouin zone, which means the negative refraction has enough energy. This phenomenon needs

further investigation.

Chapter 6 presents the topological interface states in canonical rods. Using the symmetric condi-

tion in passband edge mode, the Zak phase for each band is obtained without evaluating complex

numerical integrals and signs of surface impedance arisen. Two cases are analysed theoretically

and numerically, which are: (i) one rod with canonical ratio and the other one with inverse canon-

ical ratio under the condition two phase materials are same. The interface state is found when

the value of traces is larger than 2, (ii) the other rod with swapping two phase materials while

keeping canonical ratio the same, the interface state is found in each bandgap. In the first case,

the frequency for interface state is obtained through explicit expression in both finite and infinite

elementary cells. In the second case, an implicit expression of finite or infinite elementary cells is

sought. This is beneficial as the conclusion can be extended to non-canonical rods. Moreover, it

has more engineering applications because the target frequency is determined.

Chapter 7 is the concluding chapter, which describes the outcomes of this thesis in terms of analy-

ses, modelling and coding. This investigation manifests the feasibility and potential for designing

guidelines for quasicrystalline generated structures by applying the concept of canonical configu-

rations. It can be generalised to waveguide consistent periodic beams, plates, and microarchitected

materials. Finally, some suggestions and improvements for future works are presented.
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1.4 Publication List

One journal paper has been already published based on the canonical configuration on quasicrys-

talline rods generated by Fibonacci sequence described in Chapter 4 of the thesis.

1. Gei, M. Chen, Z. Bosi, F. Morini, L. 2020. Phononic canonical quasicrystalline waveg-

uides. Applied Physics Letters 116(24), p. 241903. doi: 10.1063/5.0013528

A further two journal papers have been accepted. The first one is based on the canonical configura-

tion on laminates for optimising the condition of pure negative refraction and second is concerning

theoretical solution of threshold frequency, simplifying Poynting vector and energy peak described

in Chapter 5 of the thesis.

2. Chen, Z. Morini, L. Gei, M. 2022. Negative refraction for anti-plane elastic waves in

canonical quasicrystalline laminates. European Journal of Mechanics A-solids. doi: 10.1016/

j.euromechsol.2022.104577

3. Chen, Z. Morini, L. Gei, M. 2022. On the adoption of canonical quasicrystalline laminates

to achieve pure negative refraction of elastic waves. Philosophical Transactions A 380(2237),

p. 20210401. doi: 10.1098/rsta.2021.0401

Another paper is in preparation and is based on the topological interface state on two canonical

rods described in Chapter 6 of the thesis.

4. Chen, Z. Morini, L. Gei, M. 2022. Topological interface state in canonical rods. In

preparation.

Moreover, two conference papers have been presented, arising from Chapters 5 and 6.

1. Morini, L. Chen, Z. Gei, M. 2020. Canonical quasicrystalline multilayered metamaterials.

Milano, 25th International congress of theoretical and applied mechanics.

2. Chen, Z. Morini, L. Gei, M. 2022. Design of topological interface states using canonical

rod configurations. Galway, 11th European solid mechanics conference.

In addition, three conference papers have been presented in cooperation with colleagues.
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3. Farhat, A.K.M. Chen, Z. Morini, L. and Gei, M. 2021. On generalised canonical axial

waveguides. Modena, EM4SS21 - Engineering Materials for Sustainable Structures.

4. Farhat, A.K.M. Chen, Z. Morini, L. and Gei, M. 2021. Frequency spectra and stop-

band optimisation of generalised canonical quasicrystalline phononic waveguides. Keele,

Euromech Colloquium 626 Mechanics of High-Contrast Elastic Composites.

5. Farhat, A.K.M. Chen, Z. Morini, L. and Gei, M. 2021. Generalised canonical quasicrys-

talline phononic waveguides. London, Metamaterials2021.
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Chapter 2 - Literature Review

2.1 Introduction

This chapter contains a literature review of earlier researchers’ findings on Fibonacci sequences,

one-dimensional quasicrystalline generated structures, negative refraction in laminates, and topo-

logical interface states in rods. In addition, some mathematical deductions are presented to com-

plete the states for easy to explain previous research works. Thus, this chapter is a mixture of

theory and traditional literature review. From the examination of the relevant literature, it is ev-

ident that there are several aspects to clarify, such as the scaling effects of dispersion diagram,

the complete analysis of pure negative refraction, and the exact frequency for the interface state

between two finite and semi-infinite periodic rods. Consequently, this thesis investigates and at-

tempts to resolve these issues.

2.2 Fibonacci Sequence

A one dimensional infinite periodic binary quasicrystalline structure is presented with periodic

element cells consisting of two individual elements called 𝐿 and 𝑆 in rod’s problem. They could

be springs, rods, supported beams, or multilayers permutated in series (Poddubny and Ivchenko

2010). Kolar and Ali (1989b) define a one-dimensional quasiperiodic chain generated according

to the generic substitution rule:

𝐿 → 𝒮(𝐿) = ℳ𝛼𝜁(𝐿, 𝑆), 𝑆 → 𝒮(𝑆) = 𝒩𝑜𝜄(𝐿, 𝑆) (2.1)

where ℳ𝛼𝜁(𝐿, 𝑆) and 𝒩𝑜𝜄(𝐿, 𝑆) are two building blocks consisting of certain permutations of

𝛼 + 𝜁 and 𝑜 + 𝜄 elements, respectively. Parameters 𝛼 and 𝜁 denote the number of elements 𝐿 and 𝑆

in 𝒮(𝐿), respectively, whilst 𝑜 and 𝜄 are their counterparts in 𝒮(𝑆). There is a structure parameter

that controls conditions for existing quasicrystalline systems, which is 𝜛 = 𝜁𝑜 − 𝛼𝜄 = ±1. The

generalised binary component Fibonacci sequence obeys the following deterministic rules, which

is also a particular combination of equation (2.1):

𝐿 → 𝒮(𝐿) = 𝐿m𝑆l, 𝑆 → 𝒮(𝑆) = 𝐿, with m, l ≥ 1 (2.2)

where the exponents m and l point out the times the base is duplicated, for instance, 𝑆l = 𝑆𝑆𝑆...

(l times). According to general definition (2.1), four parameters in the deterministic rules (2.2)

can be chosen with 𝛼 = m, 𝜁 = l, 𝑜 = 1, 𝜄 = 0 so that 𝜛 = l which is satisfied quasicrystalline
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Figure 2.1. Quasicrystalline rod generated by Fibonacci golden mean chains 𝐹3 (𝐿𝑆𝐿) and 𝐹4
(𝐿𝑆𝐿𝐿𝑆), figure reproduced from Morini and Gei (2018)

condition (𝜛 = 𝜁𝑜 − 𝛼𝜄 = ±1). The periodic elementary cell associated with finite generalised

Fibonacci sequence of the ith order (𝑖 = 0, 1, 2,...), here denoted by 𝐹𝑖, obeys the recursive rule:

𝐹𝑖 = 𝐹m
𝑖−1𝐹

l
𝑖−2 (2.3)

where the initial conditions are 𝐹0 = 𝑆 and 𝐹1 = 𝐿. The total number of elements of 𝐹𝑖 corresponds

to the generalised Fibonacci number 𝑛̃𝑖 given by the recursive rule:

𝑛̃𝑖 = m𝑛̃𝑖−1 + l𝑛̃𝑖−2, with 𝑖 ≥ 2 (2.4)

with condition 𝑛̃0 = 𝑛̃1 = 1. The limit 𝜙 of the ratio 𝑛̃𝑖+1/𝑛̃𝑖 for 𝑖 → ∞ is:

𝜙 = lim
𝑖→∞

𝑛̃𝑖+1

𝑛̃𝑖
=

m + √m2 + 4l
2

(2.5)

The procedure for equation (2.5) is the following: divided 𝑛̃𝑖−1 in equation (2.4) and achieved:

𝑛̃𝑖

𝑛̃𝑖−1
= m + l

𝑛̃𝑖−2

𝑛̃𝑖−1

If the limit existed, the solution 𝜙 would be obtained:

𝜙 = m +
l
𝜙

One basic Fibonacci sequence is obtained from the deterministic rule (2.2) setting m = l =

1, for which 𝜙 equals to the golden mean (GM) 𝜙 = 𝜙𝑔 = (1 + √5)/2 ≅ 1.618, and total

elements recursive rule (2.4) becomes the expression for the standard Fibonacci number 𝑛𝑖 =

𝑛𝑖−1 + 𝑛𝑖−2(𝑖 ≥ 2). Elementary cells for element 𝐹3 and 𝐹4 of the GM sequence are shown

in Figure 2.1. The structures generated with parameters m = 2 and l = 1 are the silver mean

(SM) sequence, whose limit equals to the silver mean 𝜙 = 𝜙𝑠 = 1 + √2 ≅ 2.414. The SM

sequence 𝐹3 is shown in Figure 2.2. Whereas for m = 3 and l = 1 the bronze mean (BM)

deterministic rule is obtained with 𝜙 = 𝜙𝑏 = (3 + √13)/2 ≅ 3.303. Moreover, parameters

with m = 1, l = 2 and m = 1, l = 3 are usually called copper (𝜙 = 𝜙𝑐 = 2) and nickel mean

sequence (𝜙 = 𝜙𝑛 = (1 + √13)/2 ≅ 2.302), respectively, in generalised Fibonacci structure
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Figure 2.2. Quasicrystalline rod generated by Fibonacci silver mean chains 𝐹3 (𝐿𝐿𝑆𝐿𝐿𝑆𝐿)

configuration. Their applications are concerning the modelling of the quasiperiodic electronic and

magnetic systems which has also been investigated (Gumbs and Ali 1988; Kolar and Ali 1989a).

Ratios 𝜙𝑔, 𝜙𝑠 and 𝜙𝑏 are associated with GM, SM and BM whose parametric representation can

be defined by setting l = 1 in equation (2.5). According to the nomenclature proposed by Holzer

(1988a) and Holzer (1988b), these values are called precious means and associated structures

precious mean structures in the text. Conversely, 𝜙𝑐, 𝜙𝑛 are ratios that correspond to l ≥ 1 referred

to as metal means, and the associated structures are called metal mean structures. In conclusion,

all precious mean structure have 𝜛 = l = 1 and other 𝜛 = l > 1 (Kolar 1993). Thus, the former

is quasicrystalline, while the latter are deterministic non-quasicrystalline, quasiperiodic systems.

The Fibonacci sequence can also be equivalently defined by the cut-and-project method (Valsaku-

mar and Kumar 1986). In this method, the Fibonacci chain is generated by projecting a stripe in

the auxiliary 2D space under an irrational slope. For instance, the GM chains from 2D periodic

lattice as shown in Figure 2.3, the angle tangent value of it is 𝜙𝑔.

Figure 2.3. Illustration of the cut-and-project method, figure reproduced from Poddubny and
Ivchenko (2010)
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Figure 2.4. Force equilibrium in rod structure, figure reproduced from Timoshenko (1970)

2.3 One Dimensional Qusicrystalline Generated Structure

2.3.1 Axial wave problem in bars

In this research, the Fibonacci GM chain is investigated in rods or laminates, so that the substi-

tution rule for the Fibonacci golden ratio is introduced. From now on we simply speak about

Fibonacci sequence for the sake of simplicity. Equation (2.2) with m = 1 and l = 1 becomes:

𝐿 → 𝐿𝑆 and 𝑆 → 𝐿 (2.6)

The material and geometric parameters of elements with phases 𝐿 and 𝑆 are introduced. The

lengths of the two phases are indicated with 𝑙𝐿 and 𝑙𝑆, while 𝐴𝑋, 𝐸𝑋 and 𝜌𝑋 (𝑋 ∈ 𝐿, 𝑆) express

cross-section area, Young’s modulus and mass density per unit volume of the two elements, re-

spectively. For each element, the governing equation for axial wave propagation is:

𝜕𝑁̄(𝑧, 𝑡)

𝜕𝑧
= 𝜌𝐴

𝜕2𝑈̄(𝑧, 𝑡)

𝜕𝑡2
(2.7)

This equation is derived from considering force equilibrium as shown in Figure 2.4. Following an

established method in dynamics, dependency on space and time can be separated when investigat-

ing harmonic waves, so that 𝑈̄ (𝑧, 𝑡) = 𝑢(𝑧)𝑒i𝜔𝑡(𝜔 is the circular frequency, the space variable is

here 𝑧-𝑥 in the Figure plays the same role-) and axial force 𝑁̄(𝑧, 𝑡) = 𝑁(𝑧)𝑒i𝜔𝑡. By substituting

this displacement function into equation (2.7) and considering each elements:

𝑢″𝑋(𝑧) +
𝜌𝑋

𝐸𝑋
𝜔2𝑢𝑋(𝑧) = 0 (2.8)

The equation (2.8) is the one dimensional Helmholtz equation that governs several dynamics prob-

lems in solid mechanics such as shear waves in anti-plane elasticity and plane dynamic compres-

sion and shear waves in two-dimensional elasticity (Ewing et al. 1956; Graff 1975). This equation
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(2.8) can be solved by test function method 𝑢 (𝑧) = 𝑒𝜆̄𝑧. The solution can be presented in two

different forms:

𝑢𝑋(𝑧) = 𝑎exp(i�
𝜌𝑋

𝐸𝑋
𝜔𝑧) + 𝑏exp(−i�

𝜌𝑋

𝐸𝑋
𝜔𝑧) (2.9)

𝑢𝑋(𝑧) = 𝐶1sin(�
𝜌𝑋

𝐸𝑋
𝜔𝑧) + 𝐶2cos(�

𝜌𝑋

𝐸𝑋
𝜔𝑧) (2.10)

The solutions (2.9) and (2.10) can be replaced by each other through Euler’s formula: cos(𝑥) +

i sin(𝑥) = 𝑒i𝑥, in here, the constants 𝐶1, 𝐶2, 𝑎 and 𝑏 being complex number. However, the

amplitude for left and right propagation waves can be found in equation (2.9) directly, equation

(2.9) will be more useful in Chapter 6 for transmission and reflection coefficients calculation.

Moreover, if the solution in equation (2.7) is assumed as 𝑈̄ = 𝑢̄𝑒i(𝜔𝑡−𝐾𝑥), the special solution

𝑢̄ = 𝑢𝑒i𝐾𝑥 would be obtained. It is called Bloch periodic part (Xiao et al. 2015) for calculation of

the Zak phase. A counterpart problem involving laminates is introduced in next section.

To obtain the dispersion relation of periodic rods, the transfer matrix approach combined with the

Floquet-Bloch technique is applied. Displacement and axial force at the right-hand boundary of

the elementary cell, respectively 𝑢𝑟 and 𝑁𝑟, have to be given in terms of those at the left-hand

boundary, 𝑢𝑙 and 𝑁𝑙, as:

U𝑟 = 𝑇𝑖U𝑙 (2.11)

where U𝑗 = [𝑢𝑗 𝑁𝑗]
𝑇 (𝑗 = 𝑟, 𝑙) is called the state vector and 𝑇𝑖 is a transfer (or transmission)

matrix of the cell 𝐹𝑖. This matrix is the result of the product 𝑇𝑖 = ∏
𝑛𝑖
𝑝=1[𝑇𝑋]𝑝, (𝑋 ∈ 𝐿, 𝑆), where

𝑇𝑋 is the transfer matrix relating quantities across a single element. The transfer matrix method

is usually performed to analyse the optical, acoustic and mechanical wave propagation through

a 1D stratified or multilayer medium. As the fact that waves at different interfaces composed of

multilayer material are partially transmitted and reflected in single layers, the reflection and trans-

mission coefficients in the overall structure can be obtained from the transfer matrix combined

with Chebyshev’s identity, which will be introduced later. The principle for the transfer matrix

is based on the continuity condition in different layer interfaces. The coefficients at the interface

can represent the wave properties in one single layer, in our case, the displacement and axial force

or amplitude for waves propagating right and left. Moreover, there exist other methods to ob-

tain dispersion relation in different type of periodic structures, for instance, plane wave expansion

(Kushwaha and Halevi 1996; Hsu and Wu 2006; Hou and Assouar 2008; Zhou et al. 2009; Zhao

et al. 2008), multiple-scattering theory (Korringa 1947; Chen and Ye 2001; Mei et al. 2003),

finite difference time domain (García-Pablos et al. 2000) and finite element method (Srivastava
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2016; Meng et al. 2018; Muhammad et al. 2019). As the constraints in one-dimensional qua-

sicrystalline rods or laminates, the transfer matrix is most straight and convenient method. Thus,

the transfer matrix method is the main technique used in the thesis. As it is not hard to find that

𝐶1 = 𝑁𝑙/(𝐸𝐴�𝜌𝑋/𝐸𝑋𝜔), 𝐶2 = 𝑢𝑙 from Equation (2.10), the transfer matrix for single phase is

given by:

𝑇𝑋 = �

cos(�
𝜌𝑋

𝐸𝑋
𝜔𝑙𝑋)

sin(�𝜌𝑋/𝐸𝑋𝜔𝑙)

𝐸𝑋𝐴𝑋�𝜌𝑋/𝐸𝑋𝜔

−𝐸𝑋𝐴𝑋�
𝜌𝑋

𝐸𝑋
𝜔sin(�

𝜌𝑋

𝐸𝑋
𝜔𝑙𝑋) cos(�

𝜌𝑋

𝐸𝑋
𝜔𝑙𝑋)

� (2.12)

Matrices (2.12) have some important properties that can be exploited (1): they are unimodular, i.e.

det𝑇𝑖 = 1, (2): follow the recursion rule:

𝑇𝑖+1 = 𝑇𝑖−1𝑇𝑖 (2.13)

with 𝑇0 = 𝑇𝑆 and 𝑇1 = 𝑇𝐿. Equation (2.13) be easily extended to other precious mean chains.

Thus, the transfer matrix connect the initial and final state vector :

�
𝑢(𝐿𝑖)

𝑁(𝐿𝑖)
� = 𝑇𝑖 �

𝑢(0)

𝑁(0)
� (2.14)

As a final remark we recall that the total length of one rod generated by Fibonacci GM sequence

𝐹𝑖 is:

𝐿𝑖 = 𝑛
(𝐿)
𝑖 𝑙𝐿 + 𝑛

(𝑆)
𝑖 𝑙𝑆 (2.15)

where the 𝑛(𝐿)𝑖 and 𝑛(𝑆)𝑖 are the number of elements 𝐿 and 𝑆 included in the cell.

2.3.2 Floquet-Bloch technique

Floquet theory is a more than a century old has been adopted for the solution of linear differential

equations with periodic coefficients (Floquet 1883). These types of equations are highly present

in several fields of science and technology, and as a result, the application of Floquet theory range

from quantum (Shirley 1965; Moskalets and Büttiker 2002) to classical physics (Gammaitoni

et al. 1998; Schneider 1985), chemistry (Boland et al. 2009), electronics (Demir et al. 2000;

Traversa and Bonani 2011), dynamic systems (Guckenheimer et al. 1984) and more. It is also a

formidable tool to investigate nonlinear perturbations, noise, and stability of systems depending

instantaneously on variables and admitting periodic steady states.

The 1D classical Bloch theorem (Bloch 1929) can be derived as a simple corollary of the Flo-
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quet theorem applied to space-dependent periodic potentials, which has been initially presented

to describe the motion of the electrons in crystals from quantum mechanics. Bloch states play a

fundamental role in defining the concepts of allowed and forbidden energy bands in crystalline

solids under the crystal dispersion relation.

The Floquet-Bloch technique relates the time-harmonic response at a given point in a unit cell to

the corresponding point in an adjacent unit cell, namely:

�
𝑢(𝑧 + 𝐿𝑖)

𝑁(𝑧 + 𝐿𝑖)
� = 𝑒i𝐾𝐿𝑖 �

𝑢(𝑧)

𝑁(𝑧)
� (2.16)

where 𝐾 is called the Bloch wave number which means the global effective wave field across the

periodic medium. The term 𝑒i𝐾𝐿𝑖 is also called the Floquet multiplier (Traversa and Bonani 2011).

Because the system is periodic, the variables 𝑧 could be 0 and equation (2.16) and transfer matrix

(2.14) can provide an eigenvalue problem which is:

det(𝑇𝑖 − 𝑒i𝐾𝐿𝑖E) = 0 (2.17)

where E is the identity matrix. If we try to solve the equation (2.17):

�
𝑇11 − 𝑒i𝐾𝐿𝑖 𝑇12

𝑇21 𝑇22 − 𝑒i𝐾𝐿𝑖
� = �𝑇11 − 𝑒i𝐾𝐿𝑖� �𝑇22 − 𝑒i𝐾𝐿𝑖� − 𝑇12𝑇21

the transfer matrix is unimodular, which means 𝑇11𝑇22 − 𝑇12𝑇21 = 1 and 𝑇11 + 𝑇22 is the trace of

global transfer matrix 𝑡𝑟𝑇𝑖. The final expression is, therefore:

𝑒i𝐾𝐿𝑖 − 𝑡𝑟𝑇𝑖 + 𝑒−i𝐾𝐿𝑖 = 0 → 2cos(𝐾𝐿𝑖) = 𝑡𝑟𝑇𝑖 (2.18)

Equation (2.18) provides dispersion relation (plots of 𝑓 or 𝜔 versus Bloch wavenumber 𝐾), which

is rewritten as below:

𝐾𝐿𝑖 = arccos(
𝑡𝑟𝑇𝑖

2
) (2.19)

Actually, for a real number 𝐾𝐿𝑖, the absolute value of trace |𝑡𝑟𝑇𝑖| must be smaller than 2. The

dispersion relation does not change whether the Floquet multiplier is 𝑒i𝐾𝐿𝑖 or 𝑒−i𝐾𝐿𝑖. In addition,

the typical passband layouts have been shown in Figure 1.6 already:

|𝑡𝑟𝑇𝑖| ≤ 2 → Pass band, |𝑡𝑟𝑇𝑖| > 2 → Band gap, |𝑡𝑟𝑇𝑖| = 2 → Standing wave (2.20)
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Conditions (2.20) are very similar to Floquet discrimination for Floquet system stability analysis.

All information about wave propagation in a structure whose unit cell is an arrangement by Fi-

bonacci sequence 𝐹𝑖 is only contained in the trace 𝑡𝑟𝑇𝑖 in the irreducible first Brillouin zone

0 ≤ 𝐾𝐿𝑖 ≤ 𝜋 (Farzbod and Leamy 2011). The trace 𝑡𝑟𝑇𝑖 becomes very complex with increasing

of index 𝑖 because the global transfer matrix is obtained from matrix multiplication. Therefore, the

numerical computation is helpful for us to find some characteristics. The dispersion relation (2.19)

can also be studied for laminate problems because they share the same mathematically meaning,

which will be explained in the next section.

Bloch wave numbers calculated from equation (2.19) are real and positive or zero in certain fre-

quencies (passband) and complex at other frequencies (bandgap). In general, the dimensionless

Bloch wavenumber can be rewritten as:

𝐾𝐿𝑖 = Re(𝐾𝐿𝑖) ± i Im(𝐾𝐿𝑖) (2.21)

where Im(𝐾𝐿𝑖) in equation (2.21) is positive. It is not hard to find that when frequency is in a pass

band, the imaginary part of wavenumber Im(𝐾𝐿𝑖) = 0. According to equation (2.16):

�
𝑢(𝑧 + 𝐿𝑖)

𝑁(𝑧 + 𝐿𝑖)
� = 𝑒i Re(𝐾𝐿𝑖) �

𝑢(𝑧)

𝑁(𝑧)
� (2.22)

This means that displacement and axial force at positions 𝑧 and 𝑧 + 𝐿𝑖 differ only by a phase

factor 𝑒i Re(𝐾𝐿𝑖), this indicates the Bloch wave is effectively a propagating one in this structure

and forming the passband because it represents the rotation in complex plane. However, when

frequency is in a bandgap, real part is Re(𝐾𝐿𝑖) = 𝑛𝜋, 𝑛 ∈ ℤ ( 𝑛 depending on edge or centre of

Brillouin zone). If the sign of imaginary part Im(𝐾𝐿𝑖) is positive, equation (2.16) would becomes:

�
𝑢(𝑧 + 𝐿𝑖)

𝑁(𝑧 + 𝐿𝑖)
� = 𝑒−Im(𝐾𝐿𝑖) �

𝑢(𝑧)

𝑁(𝑧)
� (2.23)

which means that the displacement and axial force at positions 𝑧 and 𝑧 + 𝐿𝑖 do not have a phase

difference, and this is a spatial exponent attenuation in the magnitude of strength proportional to

Im(𝐾𝐿𝑖). This system represents an evanescent wave, which means waves in these frequency

ranges are effectively forbidden, forming a bandgap. However, if the sign of imaginary part

Im(𝐾𝐿𝑖) is negative, the equation (2.16) would become:
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�
𝑢(𝑧 + 𝐿𝑖)

𝑁(𝑧 + 𝐿𝑖)
� = 𝑒Im(𝐾𝐿𝑖) �

𝑢(𝑧)

𝑁(𝑧)
� (2.24)

Equation (2.24) means that the displacement and axial force at positions 𝑧 and 𝑧 + 𝐿𝑖 do not

have a phase difference, and there is a spatial exponent amplification in the magnitude of strength

proportional to Im(𝐾𝐿𝑖), which is not our research case since we consider wave propagation along

positive direction. Thus, in this system, a wave is in the range frequency of bandgap, the imaginary

part of the Bloch wave number is +Im(𝐾𝐿𝑖) > 0. However, if the variables is increasing in minus

sign, for instance, 𝑧 < 0, the imaginary part of Bloch wave number should be −Im(𝐾𝐿𝑖) < 0.

2.3.3 Kohmoto’s Invariant and Manifold

Because the dispersion relation of the quasicrystalline rods (laminates) is governed by the trace of

global transfer matrix 𝑇𝑖, the properties of 𝑡𝑟𝑇𝑖 associated with GM chain and characteristics that

affect waves in structure are analysed and discussed. Nonlinear recursive rules with traces and

succession sequences are deduced.

Kolar and Ali (1989) deduced recursive rule for the trace of unimodular 2 × 2 transfer matrix of

generalised Fibonacci sequences according to Chebyshev’s polynomials of the first and second

kind. Setting these expressions to the case of GM sequence (m = l = 1 in equation (2.4)) we

obtain:

𝑥𝑖+1 = 𝑥𝑖−1𝑥𝑖 − 𝑥𝑖−2, with 𝑖 ≥ 2 (2.25)

where the notation 𝑥𝑖 = 𝑡𝑟𝑇𝑖 is introduced and the initial three conditions are given by: 1

𝑥0 = 2cos(�
𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆)

𝑥1 = 2cos(�
𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿) (2.26)

𝑥2 = 2cos(�
𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆)cos(�

𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿) − 𝛽sin(�

𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆)sin(�

𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿)

𝛽 is:

𝛽 =
𝐴2𝐿𝐸𝐿𝜌𝐿 + 𝐴2𝑆𝐸𝑆𝜌𝑆

𝐴𝐿�𝐸𝐿𝜌𝐿𝐴𝑆�𝐸𝑆𝜌𝑆
(2.27)

The significant term 𝐴𝑋�𝐸𝑋𝜌𝑋 is called mechanical impedance. When a wave is incident on

1There exists another way to prove equation (2.25), which will be shown in Appendix B.
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a discontinuity, the impedance of the discontinuity compared to the impedance of the structure

governs how the wave is reflected and transmitted (Junior and Savi 2016). The detailed method

for determining the impedance of a rod is that considering the semi-infinite rod is excited by the

dynamic force 𝑁(𝑧)𝑒i𝜔𝑡 at the end of the rod, which generates a one-way wave:

𝑈̄(𝑧, 𝑡) = 𝑎exp(i�
𝜌

𝐸
𝜔𝑧)𝑒i𝜔𝑡

taking derivatives with respect to space and time, we obtain, respectively:

𝜕𝑈̄(𝑧, 𝑡)

𝜕𝑧
= i�

𝜌

𝐸
𝜔𝑈̄(𝑧, 𝑡)

𝜕𝑈̄(𝑧, 𝑡)

𝜕𝑡
= i𝜔𝑈̄(𝑧, 𝑡)

The definition of mechanical impedance is the ratio of the applied force to the resulting velocity

at the point leading to:

𝑁̄(0, 𝑡)

𝑉(0, 𝑡)
=

𝐸𝐴i�
𝜌

𝐸
𝜔𝑈(0, 𝑡)

i𝜔𝑈(0, 𝑡)
= 𝐴�𝐸𝜌

Therefore, 𝛽 can be viewed as:

𝛽 =
𝑍𝐿

𝑍𝑆
+
𝑍𝑆

𝑍𝐿
(2.28)

where 𝑍𝐿 = 𝐴𝐿�𝐸𝐿𝜌𝐿 and 𝑍𝑆 = 𝐴𝑆�𝐸𝑆𝜌𝑆
2. The impedance in the acoustic wave is similar one.

Additionally, impedance is the ratio of permeability and permittivity in an electromagnetic wave.

With the goal of introducing Kohmoto’s invariant and saddle points on Kohmoto’s surface, a new

set of variables are introduced for the current nonlinear map:

𝑥̃𝑖 = 𝑡𝑖+2, 𝑦̃𝑖 = 𝑥𝑖+1, 𝑧̃𝑖 = 𝑥𝑖 (2.29)

𝑡𝑖 = 𝑡𝑟(𝑇𝑖−2𝑇𝑖−1) (2.30)

It is important to recall that for GM sequence, 𝑡𝑖+2 = 𝑡𝑟(𝑇𝑖𝑇𝑖+1) = 𝑡𝑟𝑇𝑖+2 = 𝑥𝑖+2. By substituting

coordinates (2.29) into expression (2.25), the nonlinear map determining the evolution of 𝑥𝑖 for

GM sequence is obtained:

𝒯𝑔( �𝑥𝑖, �𝑦𝑖, �𝑧𝑖) = (�𝑥
𝑖+1

, �𝑦𝑖+1, �𝑧𝑖+1) = (�𝑥𝑖 �𝑦𝑖 − �𝑧𝑖, �𝑥𝑖, �𝑦𝑖) (2.31)

2The impedance for the laminate problem is √𝜌𝜇, which is proved in Appendix B.
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Jacobian is:

J =
𝜕(�𝑥𝑖+1, �𝑦𝑖+1, �𝑧𝑖+1)

𝜕( �𝑥𝑖, �𝑦𝑖, �𝑧𝑖)
=

⎡
⎢
⎢
⎢
⎣

𝜕�𝑥𝑖+1

𝜕�𝑥𝑖

𝜕�𝑥𝑖+1

𝜕�𝑦𝑖

𝜕�𝑥𝑖+1

𝜕�𝑧𝑖
𝜕�𝑦𝑖+1

𝜕�𝑥𝑖

𝜕�𝑦𝑖+1

𝜕�𝑦𝑖

𝜕�𝑦𝑖+1

𝜕�𝑧𝑖
𝜕�𝑧𝑖+1

𝜕�𝑥𝑖

𝜕�𝑧𝑖+1

𝜕�𝑦𝑖

𝜕�𝑧𝑖+1

𝜕�𝑧𝑖

⎤
⎥
⎥
⎥
⎦

(2.32)

and the Jacobian determinant is detJ = −1 (conserved map). For instance, by substituting (2.31)

into Jacobians (2.32):

J𝑔 =
𝜕(�𝑥𝑖+1, �𝑦𝑖+1, �𝑧𝑖+1)

𝜕( �𝑥𝑖, �𝑦𝑖, �𝑧𝑖)
=

⎡
⎢
⎢
⎢
⎣

�𝑦𝑖 �𝑥𝑖 −1

1 0 0

0 1 0

⎤
⎥
⎥
⎥
⎦

(2.33)

It is not hard to find the detJ𝑔 = −1. An invariant quantity exists whose expression is:

𝐼 = �𝑥2𝑖 + �𝑦2𝑖 + �𝑧2𝑖 − �𝑥𝑖 �𝑦𝑖 �𝑧𝑖 − 4 (2.34)

Substitute ( �𝑥
𝑖
, �𝑦𝑖, �𝑧𝑖) into ( �𝑥

𝑖+1
, �𝑦𝑖+1, �𝑧𝑖+1) in invariant quantity (2.34) according to Fibonacci GM

sequence recursive rule:

𝐼 = (�𝑥𝑖 �𝑦𝑖 − �𝑧𝑖)
2
+ �𝑥2𝑖 + �𝑦2𝑖 − (�𝑥𝑖 �𝑦𝑖 − �𝑧𝑖) �𝑥𝑖 �𝑦𝑖 − 4 = �𝑥2𝑖 + �𝑦2𝑖 + �𝑧2𝑖 − �𝑥𝑖 �𝑦𝑖 �𝑧𝑖 − 4 (2.35)

which expressed 𝐼 as an invariant in the structure arrangement according to Fibonacci sequence 𝐹𝑖.

Also, only initial three traces 𝑡𝑟𝑇0, 𝑡𝑟𝑇1, 𝑡𝑟𝑇2 determine the value of 𝐼 in equation (2.35) which

depends on geometry, material parameters and frequency. Invariant (2.35) can be mapped onto the

three-dimensional space with the orthogonal system 𝑂𝑥̃𝑦̃𝑧̃, as depicted in the Figure 2.5.

Figure 2.5. General Kohmoto’s surface, which can be plot by invariant equation (2.34) with given
value Kohmoto’s invariant 𝐼
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The sets of points generated by evaluation map (2.31) define different orbits which are fully con-

strained on the manifold Figure 2.5, which was first demonstrated by Kohmoto and Oono (1984)

while investigating the spectrum of Schrödinger equations in quasiperiodic potential wells gen-

erated according to GM sequence. In recognition of the contribution to the areas by Kohmoto,

𝐼(𝜔) is called Kohmoto’s invariant and the surface Kohmoto’s surface (manifold). The map (2.31)

can be viewed as ’scale transformations’ by the terminology provided by renormalisation theory

(Kohmoto and Oono 1984). Therefore, 𝐼(𝜔) is a ’scale invariant’ of the structure.

There are six-saddle points 𝑃𝑗 (𝑗 = 1...6) on Kohmoto surface, which are in symmetric positions.

A periodic closed orbit can start from any saddle points according to recursion rule (2.35). For

all saddle points, one coordinate is different from zero whose value is �4 + 𝐼 (𝜔) and the remain-

ing two are zero. Through iteration map, the periodic transformation with six-cycle for the GM

sequence is:

𝑃1 �0, 0, �4 + 𝐼 (𝜔)� → 𝑃2 �−�4 + 𝐼 (𝜔), 0, 0� → 𝑃3 �0,−�4 + 𝐼 (𝜔), 0� →

𝑃4(0, 0, −�4 + 𝐼 (𝜔)) → 𝑃5(�4 + 𝐼 (𝜔), 0, 0) → 𝑃6(0, �4 + 𝐼 (𝜔), 0) → 𝑃1 (2.36)

Therefore, the starting point 𝑃1 can be investigated and can predict coordinates for the other five

saddle points. Because the initial point 𝑃1 = (𝑥2, 𝑥1, 𝑥0) in expressions (2.26) and combining

saddle point condition (2.36):

𝑡𝑟𝑇0 = 𝑡𝑟𝑇1 = 0; 𝑡𝑟𝑇0 = 𝑡𝑟𝑇2 = 0; 𝑡𝑟𝑇1 = 𝑡𝑟𝑇2 = 0 (2.37)

For the initial three traces to satisfy these conditions, the material and geometric parameters of

rods and frequency should be connected with some relations. For the Fibonacci sequence, the

following relationships have been achieved (Morini and Gei 2018), which define here the class of

canonical sequences shown and the corresponding canonical frequencies are given below:

�
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

1 + 2𝑗

1 + 2𝑘
, �

𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=
1 + 2𝑗

2𝑞
, �

𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

2𝑞

1 + 2𝑘
, with 𝑗, 𝑘, 𝑞 ∈ ℕ (2.38)

𝜔𝑐𝑗 = 𝜋
�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1 + 2𝑗𝜔) ; 𝜔𝑐𝑘 = 𝜋

�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘𝜔) , with 𝑗𝜔, 𝑘𝜔 ∈ ℕ (2.39)
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Theoretical analysis of canonical structure and canonical frequencies are shown in Chapter 4. The

investigation of general properties of quasicrystalline rod constructed from canonical sequences

(2.38) generated by Fibonacci GM sequence is the subject of this thesis. Furthermore, the deduced

results can be used in dispersion relation for axial wave propagating in rods and determination of

transition zones in laminates.

2.3.4 Papers by Gei, Morini and co-workers

Gei (2010) introduced in mechanics the concept of Fibonacci substitutional rule. The problems

of harmonic axial wave and flexural wave propagating into a periodic rods and multi-supported

beams were investigated. He introduced the relationship between the number of passbands and

Fibonacci number 𝑛𝑖+1. The Kohmoto’s invariant (Kohmoto et al. 1983; Kohmoto et al. 1987)

was introduced and pointed out the crucial role in self-similarity and scaling properties in these

quasicrystalline rods or beams. Due to the fact that the beam model had only two degrees of

freedom when both ends are simply supported (only rotation angle at ends), the transfer matrix

was still 2 × 2. In addition, the effects of the prestress on spectrum have been studied. If it was

a tensile force, then a passband would shift to a higher frequency (highly impacted) and almost

unchanged bandgaps (weakly influenced). In particular, if the prestress approached to the buckling

load of beam, then the lower branch of dispersion layout would change extensively.

Then, Morini and Gei (2018) introduced the Fibonacci sequence substitution rule with precious

mean sequence and metal mean sequence. A Kohmoto’s invariant has been introduced for precious

mean sequence. Four kinds of orbits existed on Kohmoto’s manifold: (a) periodic orbits; (b)

non-periodic bounded orbits; (c) escaping orbits with lim𝑖→∞ |𝑥𝑖| ≤ 2; (d) fully escaping orbits

with lim𝑖→∞ |𝑥𝑖| > 2, where 𝑥𝑖 represents a generic coordinate 𝑥̃𝑖, 𝑦̃𝑖 or 𝑧̃𝑖. Bandgap area in

the spectrum was increasing monotonically with increasing of order 𝑖. Thus, even points for a

given frequency associated with wave propagation (passband) at low Fibonacci order, after several

evaluations, the same frequency was in bandgap at high order, which presented an escaping or

a fully escaping orbit. The escaping and non-periodic bounded trajectories of coordinates on

Kohmoto’s manifold could be investigated as perturbations of the periodic orbits (saddle points

orbits is one of the periodic orbits) determined by scale transformations. With the investigation of

saddle points on Kohmoto’s manifold, the new quasicrystalline generated structure configuration,

i.e. canonical structures, were proposed by to Morini and Gei (2018). The nonlinear map could be

linearised analysing by employing the Jacobian of the transformation. They found the perturbation

increases almost along the maximum eigenvalue direction. The scaling factor was calculated on
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local (the point is the neighbourhood of periodic point) with enough numerical results, which

shows a new analytical, topological tool for quasicrystalline generated structures. The details of

the approach are shown in Chapter 3.

Morini et al. (2019) analysed the dynamic spectrum of the periodic quasicrystalline-generated rods

through the recently introduced method of universal torus. The general characteristics of universal

structure of the frequency spectrum were introduced and a parametric equation for the flow line in

torus was derived. The bandgap density in a canonical structure depends on the slope of the flow

line and impedance mismatch. Conversely, for non-canonical structures, the bandgap density only

depends on impedance mismatch. Indeed, in terms of the boundary line in bandgap and passband

for 𝐹3, the widest bandgap for a given elementary cell with prescribed physical and geometrical

properties could be identified and the optimisation of lowest band gap could be performed with

the slope of flow line. In addition, the scaling effect of the spectrum was investigated by flow line

intersection with subarea for bandgap on the representation of the universal torus.

Through the representation of the universal torus, bandgap optimization provides a clue for edge

frequency for initial passband and bandgap when pure negative refraction in laminate is analysed,

which is explained in Chapter 5. Moreover, the process for bandgap closure and reopening (band

inversion) can be analysed easily and directly in square identification as shown in Chapter 6.
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2.4 SH Waves and Negative Refraction in Laminates

2.4.1 Dispersion relation in Fibonacci laminates

A set of infinite two-component periodic laminates whose unit cells are generated by adopting

the standard Fibonacci GM sequence 𝐹𝑖 based on the recursion rule 𝐹𝑖 = 𝐹𝑖−1𝐹𝑖−2. The initial

condition for the recursion rule is 𝐹0 = 𝑆 and 𝐹1 = 𝐿, where 𝐿 and 𝑆 are still the two homogeneous

constituents. For each phase, shear modulus 𝜇𝑋 (also called second Lamé constant), mass density

𝜌𝑋 and thickness ℎ𝑋 are defined (here and henceforth, 𝑋 ∈ {𝐿, 𝑆}). Total thickness (for the sake

of same symbolic in rods problem, from now on we simply speak total length) of the laminate is

𝐿𝑖 = 𝑛
(𝐿)
𝑖 ℎ𝐿 + 𝑛

(𝑆)
𝑖 ℎ𝑆 as shown in Figure 2.6 where 𝑛(𝐿)𝑖 and 𝑛

(𝑆)
𝑖 are the number of laminae 𝐿

and 𝑆 included in the cell, the laminates are infinite occupying the half-space 𝑦 > 0 (the 𝑦 < 0

area for substrate). By assuming the coordinate system displayed in Figure 2.6, in which 𝑧 is the

out-of-plane axis, the non-zero displacement of the anti-plane shear wave is denoted by 𝑢𝑧(𝑥, 𝑦, 𝑡)

and satisfies the following wave equation within any of the phases of the elementary cell (the index

𝑋 is dropped to ease the notation):

hL hS hL hL hS hL hL hS

Figure 2.6. Elementary cells generated by Fibonacci sequence 𝐹3 and 𝐹4, figure reproduced from
Morini et al. (2019)

𝜇�
𝜕2𝑢𝑧

𝜕𝑥2
+
𝜕2𝑢𝑧

𝜕𝑦2
� = 𝜌

𝜕2𝑢𝑧

𝜕𝑡2
(2.40)

The harmonic solution to the equation (2.40) has the form:

𝑢𝑧 = 𝑤(𝑥)𝑒i(𝜔𝑡−𝐾𝑥𝑥−𝐾𝑦𝑦) (2.41)

where 𝜔 is the circular frequency, 𝐾𝑥 and 𝐾𝑦 are the wave numbers and the amplitude function

𝑤(𝑥) is periodic, which is indeed the counterpart in last subsection 𝑢̄. Displacement 𝑢𝑧 and shear
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stress 𝜎𝑥𝑧 are continuous across all the interfaces. Substituting of equation (2.41) into (2.40) gives:

𝑑2𝑤

𝑑𝑥2
− 2i𝐾𝑥

𝑑𝑤

𝑑𝑥
− 𝐾2

𝑥𝑤 +
𝜔2

𝑐2
𝑤 − 𝐾2

𝑦𝑤 = 0 (2.42)

where 𝑐 is shear wave phase velocity, which is 𝑐 = �𝜇/𝜌. The auxiliary function is used to solve

the equation (𝑤(𝑥) = 𝑒𝜆̄𝑥) (2.40) and achieve:

𝜆̄2 − 2i𝐾𝑥𝜆̄ − 𝐾2
𝑥 = 𝐾2

𝑦 −
𝜔2

𝑐2𝑋

The solution is 𝜆̄ = i𝐾𝑥 ± 𝑖𝑞𝑋, where 𝑞𝑋 = �𝜔2/𝑐2𝑋 − 𝐾2
𝑦 . Thus, the periodic part is:

𝑤(𝑥) = 𝑒i𝐾𝑥𝑥(𝐶1cos(𝑞𝑋𝑥) + 𝐶2sin(𝑞𝑋𝑥))

Then the displacement and stress are obtained:

𝑢𝑧 = 𝑤(𝑥)𝑒𝑖(𝜔𝑡−𝐾𝑥𝑥−𝐾𝑦𝑦) = (𝐶1cos(𝑞𝑋𝑥) + 𝐶2sin(𝑞𝑋𝑥))𝑒i(𝜔𝑡−𝐾𝑦𝑦)

𝜎𝑥𝑧 = 𝜇𝑋𝑞𝑋(−𝐶1sin(𝑞𝑋𝑥) + 𝐶2cos(𝑞𝑋𝑥))𝑒i(𝜔𝑡−𝐾𝑦𝑦) (2.43)

Still, like in rod problem, the left boundary state vector is 𝑢𝑧(𝑥𝑙) = 𝐶1𝑒
i(𝜔𝑡−𝐾𝑦𝑦) and 𝜎𝑥𝑧(𝑥𝑙) =

𝜇𝑋𝑞𝑋𝐶2𝑒
i(𝜔𝑡−𝐾𝑦𝑦), where the term 𝑒i(𝜔𝑡−𝐾𝑦𝑦) is dropped and the transfer matrix 𝑀𝑋 has the form:

�
𝜎𝑥𝑧(𝑥)

𝑢𝑧(𝑥)
� = �

cos(𝑞𝑋(𝑥 − 𝑥𝑙)) −𝜇𝑋𝑞𝑋sin(𝑞𝑋(𝑥 − 𝑥𝑙))

sin(𝑞𝑋(𝑥−𝑥𝑙))
𝜇𝑋𝑞𝑋

cos(𝑞𝑋(𝑥 − 𝑥𝑙))
� �
𝜎𝑥𝑧(𝑥𝑙)

𝑢𝑧(𝑥𝑙)
� (2.44)

The state vector on the right hand side is evaluated at the left-hand interface of the laminate con-

cerned (𝑥𝑙) while 𝑥𝑙 ≤ 𝑥 ≤ ℎ𝑋 + 𝑥𝑙. Therefore, the global transmission matrix 𝑀𝑖 corresponding

to the cell 𝐹𝑖 is the result of the multiplication:

𝑀𝑖+1 = 𝑀𝑖−1𝑀𝑖 (2.45)

with initial condition 𝑀0 = 𝑀𝐵 and 𝑀1 = 𝑀𝐴. Thus, similarly as before, the initial and final state

vector are connected:

�
𝜎𝑥𝑧(𝐿𝑖)

𝑢𝑧(𝐿𝑖)
� = 𝑀𝑖 �

𝜎𝑥𝑧(0)

𝑢𝑧(0)
� (2.46)
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We recall the dispersion relation (2.17), that is:

𝐾𝑥𝐿𝑖 = arccos(
𝑡𝑟𝑀𝑖(𝑓, 𝐾𝑦)

2
) (2.47)

The dynamic traces have two variables: frequency 𝑓 and wavenumber 𝐾𝑦, which is different from

the axial problem. The plot of the two-component wavenumber with fixed frequency is usually

adopted for analysing the properties in dispersion relation of elastic problems of laminates (Willis

2016; Srivastava 2016; Nemat-Nasser 2015a; Srivastava and Willis 2017; Morini et al. 2019)

with the pure real or imaginary number to observe the propagation wave or evanescent wave.

It is possible to obtain more than one propagation (real) wavenumber 𝐾𝑦 corresponding to one

real solution 𝐾𝑥, which means waves are scattering, and an infinite quantity of evanescent waves.

Then, with the mode shape decomposition and continuity condition at the interface, the acoustic

Poynting vector and scattering coefficients are evaluated to be able to compute transmission angle

and normalised energy.

2.4.2 Continuity at interface

The method for investigating SH waves refraction and reflection at the interface between a ho-

mogenous substrate and a quasicrystalline laminate of SH waves is shown below. The problems

of an elastic substrate with shear modulus 𝜇0 and mass density 𝜌0 occupying the half-space 𝑦 < 0

and connected to a Fibonacci laminate with layering orthogonal to the axis 𝑦 are considered as

shown in Figure 2.6. An SH wave occurs at the interface from the homogenous substrate with

the incident angle 𝜃inc, this wave generates finite number propagation waves and infinite number

evanescent wave modes in transmitted and reflected waves (Srivastava and Willis 2017). How-

ever, if laminates with layering are parallel to the interface between substrate and laminate, there

is only one real and positive refraction mode in transmitted and reflected wave (Srivastava and

Willis 2017). The displacement field for the incident, transmitted and reflected waves, which are

included as SH wave propagation into laminates (occupying 𝑦 > 0) or substrate (𝑦 < 0), are

presented that are satisfied governing equation (2.40) (Morini et al. 2019), respectively:

𝑢inc
𝑧 = 𝐴𝑒i(𝜔𝑡−𝐾inc

𝑥 𝑥−𝐾0cos(𝜃inc)𝑦) (2.48)

𝑢trans
𝑧 =

∞

�

𝑙=0

𝑇𝑙𝑤𝑙(𝑥)𝑒
i(𝜔𝑡−𝐾trans

𝑥 𝑥−𝐾
(𝑙)
𝑦 𝑦) (𝑙 ∈ ℕ) (2.49)

𝑢ref
𝑧 =

∞

�

𝑚=−∞

𝑅𝑚𝑈𝑚(𝑥)𝑒
i(𝜔𝑡−𝐾ref

𝑥 𝑥+𝑘
(𝑚)
𝑦 𝑦) (𝑚 ∈ ℤ) (2.50)
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where 𝐴, 𝑇𝑙 and 𝑅𝑚 are the scattering coefficients and 𝑤𝑙(𝑥) is periodic amplitude function in

solution (2.41) for transmitted wave, 𝑈𝑚(𝑥) = exp(−i2𝑚𝜋𝑥/𝐿𝑖), which are also called mode

shape for reflected wave, and:

𝑘
(𝑚)
𝑦 = �𝐾2

0 − (𝐾0sin(𝜃inc) +
2𝑚𝜋

𝐿𝑖
)

2

(2.51)

Combining what deduced in Subsection 2.3.2. Thus, if 𝑘(𝑚)
𝑦 is pure imaginary, it must be 𝑘(𝑚)

𝑦 =

−i𝑘̄(𝑚)
𝑦 with 𝑘̄(𝑚)

𝑦 > 0 because it represents evanescent reflected wave in substrate (𝑦 < 0). Then,

the mode decomposition method is introduced for solving scattering coefficients. By applying the

continuity condition of displacement 𝑢𝑧 and shear stress 𝜎𝑦𝑧 at the interface (𝑦 = 0), we yield:

2𝑁

�

𝑙=0

𝑇𝑙𝑤𝑙𝑒
i(𝜔𝑡−𝐾trans

𝑥 𝑥) ≈ 𝐴𝑒i(𝜔𝑡−𝐾inc
𝑥 𝑥)+

𝑁

�

𝑚=−𝑁

𝑅𝑚𝑈𝑚𝑒
i(𝜔𝑡−𝐾ref

𝑥 𝑥) (2.52)

2𝑁

�

𝑙=0

𝜇𝐾
(𝑙)
𝑦 𝑇𝑙𝑤𝑙𝑒

i(𝜔𝑡−𝐾trans
𝑥 𝑥) ≈ 𝐴𝜇0𝐾𝑦0𝑒

i(𝜔𝑡−𝐾inc
𝑥 𝑥)−

𝑁

�

𝑚=−𝑁

𝜇0𝑘
(𝑚)
𝑦 𝑅𝑚𝑈𝑚𝑒

i(𝜔𝑡−𝐾ref
𝑥 𝑥) (2.53)

As these two equations must be satisfied at the interface along the 𝑥 axis, the exponent terms

must be equal. Then, 𝐾inc
𝑥 = 𝐾trans

𝑥 = 𝐾ref
𝑥 = 𝐾0sin(𝜃inc). Rigorous equality only exists in the

limit of 𝑁 → ∞. In addition, these two boundary condition (2.52) and (2.53) can lead to mode

decomposition method in Chapter 3 for solving scattering coefficients. Thus, the finite number𝑁 is

used instead of infinite. Orthogonality conditions exist for different mode shape 𝑤𝑙(𝑥) introduced

by Willis (2016), which means:

�
𝐿𝑖

0

𝑤𝜇�𝑤∗𝑑𝑥 = 0

�𝑤∗ is the complex conjugate of �𝑤. �𝑤 and 𝑤 come from the same laminate system with same wave

number 𝐾𝑥 but two different 𝐾𝑦 as in equation (2.47) (𝐾𝑥𝐿𝑖 = arccos(𝑡𝑟𝑀𝑖(𝑓, 𝐾𝑦)/2)). The proof

steps are the following: First, multiply �𝑤∗ to equation (2.42) and integrate over total cell length

𝐿𝑖:

�
𝐿𝑖

0

𝜇�
𝑑2𝑤

𝑑𝑥2
�𝑤∗ − 2i𝐾𝑥

𝑑𝑤

𝑑𝑥
�𝑤∗ − 𝐾2

𝑥𝑤�𝑤
∗�𝑑𝑥 − �

𝐿𝑖

0

𝜇𝐾2
𝑦𝑤�𝑤

∗𝑑𝑥 + �
𝐿𝑖

0

𝜔2𝜌𝑤�𝑤∗𝑑𝑥 = 0 (2.54)

The following equation can be obtained:

�
𝐿𝑖

0

𝜇�
𝑑2�𝑤

𝑑𝑥2
𝑤∗ − 2i𝐾𝑥

𝑑�𝑤

𝑑𝑥
𝑤∗ − 𝐾2

𝑥 �𝑤𝑤
∗�𝑑𝑥 − �

𝐿𝑖

0

𝜇�𝐾2
𝑦 �𝑤𝑤

∗𝑑𝑥 + �
𝐿𝑖

0

𝜔2𝜌�𝑤𝑤∗𝑑𝑥 = 0
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Furthermore, get the conjugate from it:

�
𝐿𝑖

0

𝜇�
𝑑2�𝑤∗

𝑑𝑥2
𝑤 + 2i𝐾𝑥

𝑑�𝑤∗

𝑑𝑥
𝑤 − 𝐾2

𝑥𝑤�𝑤
∗�𝑑𝑥 − �

𝐿𝑖

0

𝜇�𝐾2
𝑦𝑤�𝑤

∗𝑑𝑥 + �
𝐿𝑖

0

𝜔2𝜌𝑤�𝑤∗𝑑𝑥 = 0 (2.55)

Equation (2.54) minus (2.55) provides:

�
𝐿𝑖

0

𝜇
𝑑2𝑤

𝑑𝑥2
�𝑤∗𝑑𝑥 − �

𝐿𝑖

0

𝜇2i𝐾𝑥
𝑑𝑤

𝑑𝑥
�𝑤∗𝑑𝑥 − �

𝐿𝑖

0

𝜇
𝑑2�𝑤∗

𝑑𝑥2
𝑤𝑑𝑥

−�
𝐿𝑖

0

𝜇2i𝐾𝑥
𝑑�𝑤∗

𝑑𝑥
𝑤𝑑𝑥 − �

𝐿𝑖

0

𝜇(𝐾
2

𝑦
− �𝐾2

𝑦 )𝑤�𝑤
∗𝑑𝑥 = 0 (2.56)

that can be integrated by parts, i.e.:

�
𝐿𝑖

0

𝜇
𝑑2𝑤

𝑑𝑥2
�𝑤∗𝑑𝑥 = �

𝐿𝑖

0

𝜇�𝑤∗𝑑
𝑑𝑤

𝑑𝑥
= 𝜇�𝑤∗

𝑑𝑤

𝑑𝑥
�

𝐿𝑖

0

−�
𝐿𝑖

0

𝜇
𝑑𝑤

𝑑𝑥

𝑑�𝑤∗

𝑑𝑥
𝑑𝑥

�
𝐿𝑖

0

𝜇
𝑑2�𝑤∗

𝑑𝑥2
𝑤𝑑𝑥 = �

𝐿𝑖

0

𝜇𝑤𝑑
𝑑�𝑤∗

𝑑𝑥
= 𝜇𝑤

𝑑�𝑤∗

𝑑𝑥
�

𝐿𝑖

0

−�
𝐿𝑖

0

𝜇
𝑑𝑤

𝑑𝑥

𝑑�𝑤∗

𝑑𝑥
𝑑𝑥

�
𝐿𝑖

0

𝜇2i𝐾𝑥
𝑑𝑤

𝑑𝑥
�𝑤∗𝑑𝑥 = �

𝐿𝑖

0

𝜇2i𝐾𝑥�𝑤∗𝑑𝑤 = 𝜇2i𝐾𝑥�𝑤∗𝑤|
𝐿𝑖
0
−�

𝐿𝑖

0

𝜇2i𝐾𝑥
𝑑�𝑤∗

𝑑𝑥
𝑤𝑑𝑥

𝜇, 𝑤 and �𝑤∗ are periodic in the interval [0, 𝐿𝑖]. The differentiation does not affect the periodicity,

thus, 𝑑�𝑤
∗

𝑑𝑥
and 𝑑𝑤

𝑑𝑥
are also periodic in range [0, 𝐿𝑖]. Thus, from equation ∫

𝐿𝑖

0
𝜇(𝐾

2

𝑦
− �𝐾2

𝑦 )𝑤�𝑤
∗𝑑𝑥 =

0, (𝐾2
𝑦 − �𝐾2

𝑦 ≠ 0), we reach:

�
𝐿𝑖

0

𝑤𝜇�𝑤∗𝑑𝑥 = 0 (2.57)

These orthogonality conditions do not exist when considering in-plane wave incidents into lam-

inates (Lustig et al. 2019; Mokhtari et al. 2020). The method for decomposing mode shape to

calculated scattering coefficients are presented in Chapter 3.

The wavenumber 𝐾0𝐿𝑖 features the incident wave associated with the frequency and the wave

phase velocity in the substrate, which is 𝑐0 = �𝜇0/𝜌0. Therefore, the component𝐾𝑥𝐿𝑖 is evaluated

through:

𝐾𝑥𝐿𝑖 = 𝐾0sin(𝜃inc)𝐿𝑖 = 2𝜋𝑓�
𝜌0

𝜇0
sin(𝜃inc)𝐿𝑖 (2.58)

Of course, the incident angle is in the range 0 ≤ 𝜃inc ≤ 𝜋/2. According to Morini et al. (2019),

the normalised wavenumber 𝐾𝑥𝐿𝑖 belongs to the range 0 ≤ 𝐾𝑥𝐿𝑖 ≤ 2𝜋𝑓�𝜌0/𝜇0𝐿𝑖. This problem

looks like the inverse problem of the axial wave because the dimensionless Bloch wavenumber

𝐾𝑥𝐿𝑖 has been determined to deduce the frequency and wavenumber 𝐾𝑦. Therefore, the Newton
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method and matrix inverse iterations are utilized in the problem concerned shown in Chapter 3.

The real parts of the wavenumber 𝑘(𝑚)
𝑦 for reflected mode wave are also investigated. Corre-

sponding to equation (2.51), the real part is associated with propagation of the reflected wave.

Pure imaginary corresponds to evanescent wave because it can not exist both a real and a imagi-

nary part in equation (2.51) simultaneously. The number of propagating reflected modes increases

with increasing order of the cell at fixed value of the frequency (Morini et al. 2019). Alternatively,

at a given elementary cell 𝐹𝑖, a higher number of reflected modes with higher incident frequencies

are found. Moreover, at least one propagation mode exists for any Fibonacci order, which is one

with index 𝑚 = 0. Thus, if we are interested to a reflectionless negative refraction, there must be

only the wave with 𝑚 = 0 and the scattering coefficients 𝑅0 (or 𝑅̄0) is zero. Then, Morini et al.

(2019) suggested a condition for reflected wave only with propagation mode 𝑚 = 0:

0 < 𝑓𝐿𝑖�
𝜌0

𝜇0
(1 − sin(𝜃inc)) < 1 (2.59)

Actually, equation (2.59) is not entirely sufficient and the complete condition will be proposed on

Chapter 5.

2.4.3 Acoustic Poynting vector and transmission angle

The acoustic Poynting vector in Willis (2016) is considering complex harmonic plane waves with

a 𝑒i𝜔𝑡 dependence which gives an equation:

𝒫 = −
1

2
Re[𝜎𝑈̇∗] (2.60)

This equation (2.60) means acoustic Poynting vector is in fact the time average energy flow (stress

𝜎 times speed 𝑈̇). Again, the proof to reach equation (2.60) is described in Appendix B, which is

very similar to the counterpart in electromagnetic fields (Yariv and Yeh 2003). Then, the stresses

𝜎𝑥𝑧, 𝜎𝑦𝑧 and 𝑢̇∗𝑧 are:

𝜎𝑥𝑧 = 𝜇(
𝑑𝑤

𝑑𝑥
− i𝐾𝑥𝑤)𝑒i(𝜔𝑡−𝐾𝑥𝑥−𝐾𝑦𝑦)

𝜎𝑦𝑧 = −𝜇i𝐾𝑦𝑤𝑒i(𝜔𝑡−𝐾𝑥𝑥−𝐾𝑦𝑦)

𝑢̇∗𝑧 = −i𝜔𝑤∗𝑒−i(𝜔𝑡−𝐾𝑥𝑥−𝐾𝑦𝑦)
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Figure 2.7. Propagation of a wave group, figure reproduced from Achenbach (2012).

Thus, the Poynting vector components can be calculated:

𝒫𝑥 =
1

2
Re(𝜔𝜇(i

𝑑𝑤

𝑑𝑥
𝑤∗ + 𝐾𝑥𝑤𝑤

∗)), and 𝒫𝑦 =
1

2
Re(𝜔𝜇𝐾𝑦𝑤𝑤∗) (2.61)

Then, the relationship between the Poynting vector and wave group velocity is investigated. The

group velocity is initially introduced employing a kinematic argument. The first definition and

derivation of the group velocity are apparently due to Stokes (Achenbach 2012). In his theory,

the group velocity appears when two plane waves move forward in the positive 𝑥 direction, with

the same amplitude but slightly different wavenumber and hence slight different frequency. These

two waves can be combined to obtain a new function, which looks like they become a new wave

with an amplitude factor. It represents a modulation impressed on the carrier as shown in Figure

2.7. The group or wavelet with an amplitude propagation along with wave phase speed 𝑐𝑔 in here

is called group velocity in modulation. The original wave speed is called phase velocity 𝑐. The

group velocity is:

𝑐𝑔 =
𝑑𝜔

𝑑𝑘
(2.62)

This is just the same as the velocity of energy transport of a monochromatic wave (ibid), and

the phase velocity depends on the material wave propagation. The wave group velocity is the

frequency change rate corresponding to the wavenumber. Because the material is a composite

with two different phases, the group velocity must be used to consider the energy propagation.

Willis (2016) deduced the relation with more general condition with mean energy flux over the

time and space. The process for SH wave propagating into laminates is shown below, which is a

case of that tackled by Willis (2016). However, the conclusion is as the same as that reached by

Srivastava (2016):

𝛿 ��
𝐿𝑖

0

𝜎𝑥𝑧𝜀
∗
𝑥𝑧𝑑𝑥 + �

𝐿𝑖

0

𝜎𝑦𝑧𝜀
∗
𝑦𝑧𝑑𝑥 − 𝜔2�

𝐿𝑖

0

𝜌𝑤𝑤∗𝑑𝑥� = 0 (2.63)

where 𝜎 is stress and 𝜀 strain, 𝜌 is density and𝜔 circular frequency. Equation (2.63) is conservation

of energy (Hamilton’s principle) and with variation with respect to 𝑤 (𝑤 is the term 𝑤𝑙 in equation

(2.49), in here, we can delete subscript 𝑙 for the sake of simplicity) with 𝐾𝑥, 𝐾𝑦 and 𝜔 fixed, and
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the stationary value is zero. In terms of mode shape 𝑤, imposing stationarity gives:

�
𝐿𝑖

0

�
𝑑𝑤∗

𝑑𝑥
+ i𝐾𝑥𝑤∗�𝜇�

𝑑𝑤

𝑑𝑥
− i𝐾𝑥𝑤�𝑑𝑥 + �

𝐿𝑖

0

𝜇𝐾2
𝑦𝑤𝑤

∗𝑑𝑥 = 𝜔2�
𝐿𝑖

0

𝜌𝑤𝑤∗𝑑𝑥 (2.64)

Now suppose that the set 𝜔 + 𝛿𝜔, 𝐾 + 𝛿𝐾, 𝑤 + 𝛿𝑤 satisfy the equation, too, i.e.:

�
𝐿𝑖

0

�
𝑑(𝑤

∗
+ 𝛿𝑤∗)

𝑑𝑥
+ i(𝐾

𝑥
+ 𝛿𝐾𝑥)(𝑤

∗
+ 𝛿𝑤∗)� 𝜇 �

𝑑(𝑤 + 𝛿𝑤)

𝑑𝑥
− i(𝐾

𝑥
+ 𝛿𝐾𝑥)(𝑤 + 𝛿𝑤)�𝑑𝑥

+�
𝐿𝑖

0

𝜇(𝐾
𝑦
+ 𝛿𝐾𝑦)

2
(𝑤 + 𝛿𝑤)(𝑤

∗
+ 𝛿𝑤∗)𝑑𝑥 = (𝜔 + 𝛿𝜔)

2
�
𝐿𝑖

0

𝜌(𝑤 + 𝛿𝑤)(𝑤
∗
+ 𝛿𝑤∗)𝑑𝑥

(2.65)

by neglecting the second-order terms we get:

𝛿𝐾𝑥�
𝐿𝑖

0

𝜇(i𝑤∗
𝑑𝑤

𝑑𝑥
+ 2𝐾𝑥𝑤𝑤

∗ − i𝑤
𝑑𝑤∗

𝑑𝑥
)𝑑𝑥 + 2𝛿𝐾𝑦�

𝐿𝑖

0

𝜇𝐾𝑦𝑤𝑤
∗𝑑𝑥 = 2𝜔𝛿𝜔�

𝐿𝑖

0

𝜌𝑤𝑤∗𝑑𝑥

(2.66)

Now, by using the definition of group velocity (2.62), the wave group velocity is obtained:

𝑣
𝑔
𝑥 =

𝛿𝜔

𝛿𝐾𝑥
=
∫
𝐿𝑖

0
𝜇/4(i𝑤∗ 𝑑𝑤

𝑑𝑥
+ 2𝐾𝑥𝑤𝑤

∗ − i𝑤𝑑𝑤∗

𝑑𝑥
)𝑑𝑥

𝜔/2∫
𝐿𝑖

0
𝜌𝑤𝑤∗𝑑𝑥

; 𝑣
𝑔
𝑦 =

𝛿𝜔

𝛿𝐾𝑦
=
1/2∫

𝐿𝑖

0
𝜇𝐾𝑦𝑤𝑤

∗𝑑𝑥

𝜔/2∫
𝐿𝑖

0
𝜌𝑤𝑤∗𝑑𝑥

(2.67)

The denominator 𝜔/2∫
𝐿𝑖

0
𝜌𝑤𝑤∗𝑑𝑥 is associated with the total mean energy density:

𝐸 =
1

4𝐿𝑖
�
𝐿𝑖

0

�
𝑑𝑤∗

𝑑𝑥
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1
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0

𝜇𝐾2
𝑦𝑤𝑤

∗𝑑𝑥+
1
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𝜔2�
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=
1

2𝐿𝑖
𝜔2�

𝐿𝑖

0

𝜌𝑤𝑤∗𝑑𝑥 (2.68)

If group velocity (2.67) is multiplied by total mean energy (2.68), the results are the same as Willis

(2016):

⟨𝒫𝑥⟩ = 𝐸𝑣
𝑔
𝑥 =

1

4
𝜔
1

𝐿𝑖
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𝑑𝑤
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𝑑𝑤∗

𝑑𝑥
)𝑑𝑥

=
1

2
Re(𝜔

1

𝐿𝑖
�
𝐿𝑖

0

𝜇(i
𝑑𝑤

𝑑𝑥
𝑤∗ + 𝐾𝑥𝑤𝑤

∗)𝑑𝑥) (2.69)

⟨𝒫𝑦⟩ = 𝐸𝑣
𝑔
𝑦 =

1

2
𝜔2
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𝐿𝑖
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𝜌𝑤𝑤∗𝑑𝑥
2∫

𝐿𝑖

0
𝜇𝐾𝑦𝑤𝑤

∗𝑑𝑥

2𝜔 ∫
𝐿𝑖
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𝜌𝑤𝑤∗𝑑𝑥

=
1

2
Re(𝜔

1

𝐿𝑖
�
𝐿𝑖

0

𝜇𝐾𝑦𝑤𝑤
∗𝑑𝑥) (2.70)

where ⟨⋅⟩ represents the space mean utilizing the whole unit cell of laminate. Thus, angles for all

transmitted propagation modes (even evanescent wave) can be estimated using the ratio of the two
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components of the Poynting vector:

tan(𝜃trans) =
𝑣
𝑔
𝑥

𝑣
𝑔
𝑦

=
⟨𝒫𝑥⟩

⟨𝒫𝑦⟩
. (2.71)

The mode shape 𝑤𝑙 can affect transmission wave angle 𝜃trans but the scattering coefficients 𝑇̄𝑙

cannot. In addition, by observing the equation of the Poynting vector, it is significant to notice

that (a): the component 𝒫𝑦 is positive if wavenumber 𝐾𝑦 is positive. Hence, only the component

⟨𝒫𝑥⟩ could be negative and then negative refraction. (b): the component 𝒫𝑦 corresponding to a

pure imaginary values of 𝐾𝑦 is zero. As a result, the transmitted angle for evanescent wave could

not be taken into consideration (It always 90 degree because the tan(𝜃trans) = ∞). Of course, the

transmission wave angle when SH wave is incident between two homogenous media is written

here for comparison, which is Snell’s Law (Achenbach 2012):

sin(𝜃trans)

sin(𝜃inc)
=
𝑐2

𝑐1
(2.72)

where 𝑐2 and 𝑐1 are the phase velocities for the media beyond and before the interface, respectively.

2.4.4 Papers by Willis, Srivastava and Nemat-Nasser

Nemat-Nasser (2015a) investigated the SH wave incident into a laminate with variation formula-

tion instead of transfer matrix method in two- or three- phase laminates. In addition, combined

with contour two-component wavenumber and different frequencies, the negative refraction was

found when the layering was orthogonal to the interface but can not be found when the layering

was parallel. He pointed out the occurrence of negative group velocity with positive phase velocity

in each phase which also equals the negative energy refraction with positive phase refraction.

Willis (2016) found that when SH wave propagated into the periodic laminates, one of the group

velocities was negative under some conditions. He represented the basic governing equation and

transfer matrix approach combined with the Floquet-Bloch technique to analyse the dispersion

relation. He found also the group velocity for the lower branch of 𝐾𝑥𝐿𝑖 against 𝐾𝑦𝐿𝑖 plot being

negative. With variation principle, the exact relationship between acoustic Poynting vector and

group velocity was clarified. The mode shape orthogonal condition was introduced through three

displacements field for the incident, transmitted and reflected. A simple approach for calculating

scattering coefficients was proposed in mode decomposition method. Reasonable experimental

observation as evaluation energy metrics for each wave field was obtained. The research case of

this thesis is one remarkable conclusion from his works.
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Srivastava (2016) noticed the similarity between SH wave and EM wave so that he believed some

or all of these results from analysing SH wave could be performed in the layered periodic di-

electrics. Through the plot of the two-component wavenumber, the relationship between two

wavenumbers was further investigated. Srivastava (2016) introduced methodology and shown the

numerical results for normalised energy metrics and transmission angel through transfer matrix

method and finite element software COMSOL. Two real propagation wave with 13 evanescent

waves were used in the mode decomposition method. The total dimensionless energy was almost

1, which means that the accuracy for numerical calculation was reasonable. However, the energy

in the transmission wave decreased monotonically when the transmission angle was negative with

increasing of incident angle. The pure negative refraction could occur when wave number 𝐾𝑥𝐿𝑖

enters the second Brillouin zone, but not the first. According to Srivastava (2016), periodic lam-

inates could be used as a highpass frequency filter when the layer direction was parallel to the

interface.

The method for solving scattering coefficients was the approximate approach. Srivastava and

Willis (2017) proposed a novel approach for calculating scattering coefficients by imposing dis-

placement and stress continuity at the geometric interface. As mentioned before, increasing the

number of evanescent waves involved made the stress continuity more challenging to satisfy than

the displacement one. Actually, if the difference between two shear modulus (𝜇𝐴 and 𝜇𝐵) for

each phase were more significant, the stress continuity should be harder to satisfied. Thus, a new

method only considering propagation wave with Lagrange multiplier was introduced and com-

pared with decomposition through numerical results. Then, the method for calculating scattering

coefficients and normalised energy concerning interface parallel to layers was also reported.

The theoretical and numerical approaches developed by the previous authors could be applied to

laminate generated by Fibonacci GM sequences. From the results by Srivastava (2016), a question

is naturally raised: can we obtain significant pure negative refraction with enough energy? which

is solved partly in this thesis. In addition, it is hard to distinguish whether it is negative refraction

or not on a plot of energy against incident angle. If wavenumber 𝐾𝑥𝐿𝑖 is used as variables to

replace the incident wave angle, the negative refraction could easily differ from the first Brillouin

zone boundary 𝜋. Indeed, this configuration for plot energy and wavenumber method has already

been performed in Mokhtari et al. (2020) for analysing in-plane wave propagation in laminates.
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2.4.5 Papers by Morini, Gei and co-workers

Morini et al. (2019) summarised the previous publications concerning SH wave propagating into

the periodic laminates to observe negative refraction. Quasicrystalline laminates generated by

Fibonacci GM sequence with same material paraments (phase L-PMMA, phase S-steel) with pre-

vious publications (Nemat-Nasser 2015a; Nemat-Nasser 2015b; Srivastava 2016; Srivastava and

Nemat-Nasser 2014; Willis 2016) has been investigated. The Kohmoto’s invariant was introduced

similar to the axial wave problem. With the same procedure proposed by Srivastava (2016), the

dispersion relation between two components of the wavenumber 𝐾𝑥𝐿𝑖 and 𝐾𝑦𝐿𝑖 could be obtained.

According to Morini et al. (2019), there existed a threshold for wavenumber 𝐾𝑦 such that 𝐾𝑥 was

pure imaginary which means the wave propagated along 𝑦 direction and was evanescent along 𝑥.

In conclusion, with increasing of Fibonacci order, the limit value for 𝐾𝑦𝐿𝑖 and the number of the

real solutions 𝐾𝑦 at fixed frequency were increased. This is actually from the scaling and self-

similarity effect of quasicrystalline structure (The passband layouts would be denser in the same

range frequency with higher order 𝐹𝑖).

Moreover, Morini et al. (2019) proposed the concept of transition zone, that was associated with

a particular range of frequencies. The frequency inside transition zone could lead to a determined

number of real solutions𝐾𝑦. The transition zone had a relationship with the initial value𝐾𝑥𝐿𝑖 when

𝐾𝑦 = 0, which was very similar to equation (2.12). Under some conditions, a transition zone was

equivalent to a passband when considering SH wave perpendicular propagating into the Fibonacci

laminates. Thus, the self-similarity and scaling effect could also be applied to the transition zone,

as highlighted in Gei (2010) and Morini and Gei (2018) for quasicrystalline generated rods. Still,

the self-similarity was governed by a local scaling whose factor could be obtained by analysing the

specialised Kohmoto’s invariant. Morini et al. (2019) used this principle to analyse the transition

zone, and numerical results were in good agrement with the theory. However, there is a crucial

thing that the two meaningful scalings may change significantly depending on the properties of

the two components of the composite. Therefore, a question is naturally raised: Can we use the

canonical configuration to laminates to obtain more precise results in scaling so that the transition

zone can be controlled in a more reasonable way when this composite material is designed? This

is novel work of Chapter 5.

For an aluminium substrate (Willis 2016; Srivastava 2016; Morini et al. 2019) and four Fibonacci

elementary cells (𝐹2 to 𝐹5), 𝐾𝑥𝐿𝑖 was plotted as functions of the incident angle for different values

of 𝑓 to enter different Brillouin zone boundary, each spanning a range of width 𝜋 along the vertical

axis. With increasing of generation index of the cell, the values of 𝐾𝑥𝐿𝑖 related to the same
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frequency increased as well, which was due to the increasing of 𝐿𝑖. This means that for a given

frequency, if two laminates were compared according to two different indices 𝑖, the higher-order

one should access to the second (or third) Brillouin zone for a broader range of angles of incidences

(Morini et al. 2019). This was an exciting phenomenon, the angle of transmission changed the sign

when 𝐾𝑥𝐿𝑖 enters the second Brillouin zone. The limit incident angle could be obtained from the

dimensionless wavenumber 𝐾𝑥𝐿𝑖 at the edge of the Brillouin zone. Also, higher-order Fibonacci

laminates allowed negative refraction of a broader range of the incident angles.

In addition, ’pure’ negative refraction, was investigated. Pure means that there is only one real

solution in the laminates dispersion layouts, because in this configuration, the laminates could be

used as a perfect acoustic lens for wave focusing. Combined with results by Willis (2016) and

Srivastava (2016), Morini et al. (2019) proposed a minimum frequency to let the 𝐾𝑥𝐿𝑖 entering the

second Brillouin zone:

𝑓min
𝑖 =

√𝜇0

2𝐿𝑖√𝜌0
(2.73)

If the frequency was lesser than 𝑓min
𝑖 , the dimensionless wavenumber 𝐾𝑥𝐿𝑖 would be located in

the first Brillouin zone, and the transmitted propagation pattern consisted of either a positively

refracted mode or a pair of positively and negatively refracted waves. In order to have only one

mode of propagation in laminates with negative refraction, the frequency could not be larger than

the upper edge 𝑓̃𝑖 for the second transition zone due to the second transition zone meaning just one

or two transmitted modes. As a consequence, if a single negatively refracted mode was transmit-

ted, the frequency of the incident wave must belong to the interval 𝑓min
𝑖 < 𝑓 < 𝑓̃𝑖. The scaling

effect could analyse the value of 𝑓̃𝑖 in Fibonacci laminates. Morini et al. (2019) used the upper

edge for the second Brillouin zone from laminates with phases PMMA and steel compared with

𝑓min
𝑖 from the different substrate (iron, copper, nylon, polyethylene). They found that only nylon

and polyethylene could produce pure negative refraction. The reason was that the wave phase

velocity for these two materials was slower than other materials so that the 𝐾𝑥𝐿𝑖 was large enough

at relatively low frequency. However, it can lead to another problem in this research: transmitted

energy is too small. In addition, if the 𝐾𝑥𝐿𝑖 was entered the third Brillouin zone, the refracted an-

gle should be positive again (change sign). There are still many aspects of pure negative refraction

in Fibonacci laminates that are not clear and deserves to be deepened.
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2.5 Topological Interface State in Periodic Rods

2.5.1 Surface impedance and condition for interface state

Xiao et al. (2014) proposed a topological interface state in periodic two-phase dielectric for EM

wave with theory and numerical results. As there is a symmetry between 1D acoustic or mechani-

cal waves and EM waves, that theory can be adopted here to both acoustic waves (Xiao et al. 2015;

Meng et al. 2018; Li et al. 2018) and elastic waves (Yin et al. 2018; Muhammad et al. 2019; Chen

et al. 2021).

According to Xiao et al. (2014), the surface impedance 𝑍𝑠 and the electric field reflection coeffi-

cient 𝑟 is related by:

𝑍𝑠 =
1 + 𝑟

1 − 𝑟
𝑍0 (2.74)

where 𝑍0 is the reference surface impedance. Equation (2.74) is coming from results from the

problem where an EM wave incident from the material with surface impedance 𝑍0 to a structure

with 𝑍𝑠 by the continuity condition at the reflection interface as shown in Figure 2.8 (Xiao et al.

2014). However, for an elastic wave, the axial force 𝑁 equivalent to electric field and velocity 𝑉

to the magnetic field. Thus, if equation (2.74) is used for elastic wave, the axial force reflection

coefficient must be used instead of displacement. If displacement reflection coefficient is used,

equation (2.74) would become:

𝑍0 =
1 + 𝑟

1 − 𝑟
𝑍𝑠

𝑍𝑠 is a pure imaginary number, that can be written 𝑍𝑠/𝑍0 ≡ 𝑖𝜍, when frequency is in a bandgap,

where 𝜍 is a purely real number. 𝜑 = 𝜋 − 2arctan(𝜍) is reflection phase in this problem which

can be experimentally measured for predicting Zak phase (Xiao et al. 2015). Then, other periodic

structures are connected, which can be both sides. The surface impedances, reflection coefficients

and reflection phases are denoted as 𝑍rhs, 𝑍lhs, 𝑟rhs, 𝑟lhs and 𝜑rhs, 𝜑lhs, respectively, where rhs

Figure 2.8. Wave incident from material with impedance 𝑍0 to periodic structure with surface
impedance 𝑍𝑠. The wave could be optical, acoustic or elastic. The structure could be a rod or
laminate.
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Figure 2.9. Two 1D quasiperiodic rods with 𝒩 (and ℳ) unit cells in the right connections at the
interface, 𝑎0, 𝑏0 and 𝑎′ℳ are incident, reflected and transmitted wave amplitude. 𝑙ℎ𝑠 and 𝑟ℎ𝑠

denote the left and right side quasiperiodic rod. Figure reproduced from Chen et al. (2021)

and lhs means the right hand side or left hand side as shown in Figure 2.9. The condition for the

existence of an interface state is that the sum of two surface impedance is zero:

𝑍rhs + 𝑍lhs = 0 (2.75)

this condition implies that (1 + 𝑟rhs)/(1 − 𝑟rhs) + (1 + 𝑟lhs)/(1 − 𝑟lhs) = 0, which is equivalent

to 𝑟rhs𝑟lhs = 1 or 𝜑rhs + 𝜑lhs = 2𝑚𝜋(𝑚 ∈ ℕ). Since surface impedance is hard to measure, a

concise way to achieve an interface state is to establish a system as frequency is inside a bandgap

that has two periodic structures with the surface impedance opposite in sign. The sign of surface

impedance for frequency inside bandgaps is decided by the geometrical phase of the bulk bands

(passband), which is the sum of the Zak phases previous passbands. The dispersion relation can

be obtained by the transfer matrix method (Xiao et al. 2014). Thus, the introduction of Berry

connection in 1D systems, the Zak phase, is proposed.

2.5.2 Geometric topological phase-Zak phase

Moreover, there exists a relationship between the sign of surface impedance (also reflection phase

and coefficients) and the Zak phase. A Zak phase only takes a value 0 or 𝜋 if the origin of unit cell

is chosen to be one of the inversion centres (Zak 1989), which is also proved by Xiao et al. (2015).

The structures that hold inversion symmetry in rods generated by Fibonacci sequences only are

𝐹2 and 𝐹3 as shown in Figure 2.9. In fact, the 𝐹3 is special case of 𝐹2 (in Figure 2.9, obtained by

changing 𝑙𝐿/2 into 𝑙𝐿). For each passband 𝑛, the Zak phase is calculated as (Xiao et al. 2015;

Yin et al. 2018; Meng et al. 2018; Li et al. 2018; Muhammad et al. 2019; Chen et al. 2021) for

acoustic and elastic waves:

𝜃Zak
𝑛 = �

𝜋/𝐿𝑖

−𝜋/𝐿𝑖

�i�
unit cell

1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾(𝑧, r)𝜕𝐾𝒲𝑛,𝐾(𝑧, r)� 𝑑𝐾 (2.76)
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where 𝐾 is Bloch wavenumber, factor 1/(2𝜌𝑐2) is the weight function for the acoustic or elastic

structure. The term 𝒲𝑛,𝐾 represents the periodic part of the normalized force (elastic) or pres-

sure (acoustic) in the 𝑛th passband with Bloch wavenumber 𝐾, which is 𝒲𝑛,𝐾 = 𝑁(𝑛, 𝐾)𝑒i𝐾𝑧.

The term �i∫unit cell
1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾(𝑧, r)𝜕𝐾𝒲𝑛,𝐾(𝑧, r)� is called Berry connection. In addition, the

relationship between Zak phase (topological properties of bulk dispersion) and sign of surface

impedance sgn(𝜍𝑛) for 𝑛th bandgap (surface scattering properties) takes the following simple ex-

pression (Xiao et al. 2014; Xiao et al. 2015; Yin et al. 2018; Meng et al. 2018; Li et al. 2018;

Muhammad et al. 2019; Chen et al. 2021):

sgn[𝜍𝑛] = (−1)𝑛(−1)𝑔𝑒(i∑
𝑛−1
𝑚=0 𝜃

Zak
𝑚 ) (2.77)

where integer 𝑔 is the number of crossing points for passband under the 𝑛th gap, the Zak phase of

the lowest 0th passband is determined by a formula, which is introduced in Chapter 6. Then, it is

easy to determine whether there exists an interface state, for instance, two structures with opposite

sgn[𝜍] in a range of frequencies which are in a bandgap. Of course, if the exact frequency for the

interface state is solved, the equation (2.75) should be used. The details for performance in the

program for integral (2.76) are discussed in Chapter 3.

2.5.3 Papers by Xiao and co-workers

As mentioned before, there was a way to have an interface state, which was tuning the geometrical

or material coefficients to let the bandgap across a topological transitional point (Xiao et al. 2014;

Xiao et al. 2015). Xiao et al. (2014) slightly changed the parameter in one photonic laminate

and calculated the Zak phase for each passband and the sign of surface impedance. Then, a

bandgap changed the sign of surface impedance and the Zak phase near this bandgap, representing

a topological phase transition. This happens when two passbands cross each other. They believed

this topological phase transition was analogue to the SSH model in electronic systems (Su et al.

1979; Su et al. 1980), even the concept of impedance was not usually considered in electrons. This

method could also be explained in another way: bandgap closure and reopening. Moreover, the

condition for passband crossing was already explained by Xiao et al. (2014) with rigorous proof,

which is the ratio of two wave paths, a rational number, namely:

𝛼̄ =
𝜉𝐿

𝜉𝑆
=
𝑚1

𝑚2

(𝑚1, 𝑚2 ∈ ℕ+) (2.78)

then passbands 𝑚1 +𝑚2 and 𝑚1 +𝑚2 − 1 cross at the frequency:
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𝜔(𝑚1+𝑚2)
=
(𝑚1 +𝑚2)𝜋𝑐

(𝜉𝐿 + 𝜉𝑆)
(2.79)

This also means (𝑚1 + 𝑚2)th bandgap closes at this frequency at the centre or edge of the first

Brillouin zone. If the (𝑚1 + 𝑚2)th bandgap was closed, all other closed bandgaps would be

integer multiples of 𝑚1+𝑚2. In this thesis, the representation based on the universal torus is used

to investigate the condition of bandgap closure. Xiao et al. (2014) also deduced that the Zak phase

of this band must be 𝜋 (non-trivial topological phase) with sin(𝜉𝑆) = 0 existed in an isolated

passband. Otherwise, it is zero (trivial topological phase) within a structure holding inversion

symmetry. This rule applied to all passbands except the 0th passband, because this point could be

a discontinuity point in the passband. Berry connection was an odd function corresponding to 𝐾𝐿𝑖

in full 1st Brillouin zone. Without this discontinuity point, equation (2.76) must be zero due to the

symmetry of the periodic part. If this point exists in an isolated passband, the integration should

be 𝜋.

The relationship between the Zak phase or surface impedance with symmetry properties of the

edge mode is beneficial in the development of this thesis, because only the edge mode needs

to be investigated without evaluating complex integral for the Zak phase. Of course, the term

sin(𝜉𝑆) also follows this rule. Edge mode means the displacement or force field at the frequency

corresponding to dimensionless wavenumber 𝐾𝐿𝑖 is either equal to 0 or 𝜋 (−𝜋). Xiao et al. (2014)

used the conclusion from Zak (1984) and Kohn (1959), which explained that Zak phase of the

𝑛th passband is 0 or 𝜋. Obviously, it had the relationship with terms sin(𝜉𝑆) = 0. The analogue

phenomenon has been explained in the electronic system (Hasan and Kane 2010; Bernevig et al.

2006; Pankratov et al. 1987). Then, Xiao et al. (2014) called axial force with vanish amplitude

at the origin as A (antisymmetric) state and the other as S (symmetric) state (in fact, it should be

maximise (Liboff 1992)). It was exciting to see that the electric field was zero at the edge for the

A state, which was analogue to a perfect electric conductor edge condition, whereas the electric

field was maximum at the edge for the S state, which leads a perfect magnetic conductor.

In this thesis, axial force and displacement are subject to a similar phenomenon, since the edge

mode across the bandgap is orthogonal (different symmetric). For A state, the reflection coeffi-

cients must be 𝑟 = −1, associated with a reflection phase 𝜑 = 𝜋. If the S state is surveyed, 𝑟 = 1

and 𝜑 = 0 or 2𝜋 should be obtained. In terms of relation 𝜑 = 𝜋 − 2arctan(𝜍), for a bandgap with

A state at the lower edge, the function 𝜍 takes a value 0 at the lower edge and decrease monoton-

ically to −∞ as the upper edge is approached. For a bandgap with state S at the lower edge, the

function 𝜍 decreases monotonically from ∞ to 0 as the upper edge is entered. It can be proved by
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the edge mode with the term sin(𝜉𝑆) = 0 connected to Zak phase via the equation (2.76). Thus,

the sign of 𝜍 can be determined by the type of state at the lower edge (or upper edge because they

are different). In our cases, the axial force 𝑁 is used to replace electric field. Combined with

symmetric properties of edge mode and topological transition point, the Dirac cone was plotted in

many research publications (Xiao et al. 2015; Li et al. 2018; Yin et al. 2018; Muhammad et al.

2019).

Xiao et al. (2014) also explained that this process could be performed on other 1D structures in an

acoustic or elastic wave. They also performed acoustic systems by considering the reflection phase

for the Zak phase (Xiao et al. 2015). The determined geometrical phase has already been deduced

theoretical and experimental in the cold atom (Atala et al. 2013). By measuring the reflection

phase of two bandgap, which were sandwiching of choose passband, the results were agreed with

the theoretical prediction. In addition, the results from the pressure field as the frequency for the

topological interface state were investigated with point by point measurement and the conclusion

was wave field localised at the geometric interface of two different structures.

2.5.4 Papers by Meng, Li and co-workers

Meng et al. (2018) used the periodic acoustic system for analysing the interface state. They used

different two material parameters which were 𝛿𝑟 and 𝛿𝑑 controlling the radius of two element

(area) and length differences of unit cells, respectively (in Figure 2.9, (𝑙𝐿 − 𝐿𝑆)/2 = 𝛿𝑑). They

derived a full phase diagram for the initial four bandgaps based on the transfer matrix method.

Thus, this material could be designed following the diagram, which could supply complete geo-

metric and material information with single or multiple arbitrary bandgaps for having an interface

state. In addition, the numerical results from COMSOL and experiments were performed to verify

theoretical analysis (Meng et al. 2018). In this thesis, the extended torus can be performed and

easier for observing interface state than the full phase diagram because it needs 𝑛 number of fig-

ures if an interface state at 𝑛th bandgap is designed. In addition, the pressure fields were surveyed

and results like before. The reason for the difference in results between transfer matrix and COM-

SOL also were clarified due to the impact from cross-section area in periodic tubes. The impact

from the number of unit cells on interface state also was studied with results whose number of unit

cell was larger than 3, the frequency error was smaller than 5%.

Li et al. (2018) performed experiments on periodic acoustic structures with a different radius on

tube junctions similar to intercell hopping and intracell in the SSH model. The Zak phase and

edge mode relationship were analysed again, same with Xiao et al. (2015). However, in this
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case, the difference between radius injunction could be tuned to lead to the topological phase

inversion (bandgap inversion). The topological interface state was measured by setting periodic

holes in the structure. In addition, topological edge states were numerical simulation and verified

by theoretical solution, which existed when structure held non-trivial topological phase 𝜋 but

not contrary. The robustness of the interface state against local perturbations (defects) also was

verified. The wave field and transmission spectrum at interface state were impacted by thermal

and acoustic leakage heavily. Moreover, the edge state in this acoustic system was topological

protected, proved by numerical simulation.

2.5.5 Papers by Yin, Muhammad, Chen and co-workers

Because of investigation in this area being extremely new, there are only several publications about

elastic wave systems. Some general results, for instance, the Zak phase and the sign of surface

impedance or symmetric properties of edge mode, are identical in previous papers. Only differ-

ences are introduced in here. Yin et al. (2018) introduced axial wave and flexural wave with Tim-

oshenko beam theory to investigate the effect on Zak phase and topological interface state through

finite element methods and experiments. With the variation of parameters, the Dirac cone plot

was symmetric in the axial wave but not symmetric in the flexural wave problem, resulting from

the non-linear dispersion relation in the elastic beam model. Thus, this investigation extended the

concept in topological interface state from optical and acoustic waves to elastic waves. However,

they noticed the interface state only happens in a range of frequency as bandgap inversion.

Muhammad et al. (2019) also introduced interface states for axial and flexural wave problems

but with Euler beam theory. The relationship between slenderness ratio and shear effect were

analysed so that the error could be allowed Euler beam theory utilised (because only bending

effect in Euler theory). The dispersion relation was obtained from the transfer matrix method and

the modified matrix method. The Von-Mises equivalent stress was used to substitute pressure or

force for checking the wave field effect at the interface state. The wave energy with Q-factor was

demonstrated to further show their localisation at the geometrical interface between two different

structures and the robustness effect to defend material damping and material loss. It was presented

that the large damping ratio decreases extremely the effect of energy localisation at the geometric

interface.

The complete process for evaluating reflection coefficient, transmission spectrum and wave field

on the finite periodic rods were introduced by Chen et al. (2021), especially on the junction of

two structures with different topological phases. Moreover, the numerical Zak phase process was
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proved comparing with the general form in the elastic wave system. They investigated the non-

linear material with incremental theory. The soft material with the large-deformation ability and

strain stiffening effect were studied to change the topological interface state. They summarised the

effect of prestressing and non-linear material on the frequency for interface state with theoretical

and numerical analysis. The bandgap inversion process was changed by prestressing and initial

geometric coefficients. The prestress could decrease the frequency for interface state monotoni-

cally under the neo-Hookean theory but the variation with prestressing in a non-monotones way

under Gent theory.

2.6 Conclusion and Remarks

The literature review concerning 1D structure generated by Fibonacci GM sequences is estab-

lished. Fibonacci GM sequence generated by substitution rule is derived and compared other

precious mean sequence, which is the topic of this thesis. Moreover, governing differential equa-

tion for axial wave propagation into rod and shear horizontal (called SH or anti-plane shear wave)

wave propagating in laminate are explained in detail. The transfer matrix is introduced for dis-

persion spectrum analyses. Then the Floquet-Bloch technique is introduced that is combined with

the transfer matrix to derive the dispersion relation of quasicrystalline generated structure from

a standard eigenvalue problem. Then, Kohmoto’s invariant and multi-variables Jacobian are in-

troduced, which govern the scaling and self-similar properties of the frequency spectra. With the

investigation in the saddle point on Kohmoto’s surface, a novel configuration for the quasicrys-

talline structure is proposed, called canonical structure. These configurations let two of the initial

three traces to become zero. The works by Gei and Morini is completed by pointing out that they

analyse quasicrystalline rods generated by Fibonacci GM sequence with Kohmoto’s invariant and

universal torus. According to Kohmoto’s manifold and principle for the universal torus, the details

for local scaling are introduced in Chapter 3. The configuration for canonical structure has already

been derived, but the exact relationship with canonical frequencies and canonical ratio still need to

be clarified, for example, the relationship between parameters 𝑗, 𝑘, 𝑞 in equation (2.38) and 𝜔𝑐𝑗,

𝜔𝑐𝑘. Moreover, the scaling effect with canonical configuration should be verified theoretically and

numerically.

In addition, negative refraction when a SH wave incident from a homogenous substrate to qua-

sicrystalline laminates is explained with three wave fields and mode decomposition using the

condition of mode shape orthogonality and continuity at the interface. Furthermore, the acous-

tic two-component Poynting vector is evaluated to compute the transmission angle in laminates.
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Willis, Srivastava and Nemat-Nasser show the basic theory about dispersion relationship, evanes-

cent wave and negative refraction under some conditions. The methodology concerning scatter-

ing coefficients and normalised energy are shown in Chapter 3. However, Willis, Srivastava and

Nemat-Nasser investigate the phenomenon of periodic laminates, which is especially the case in

quasicrystalline GM sequences (𝐹2 or 𝐹3). Thus, the findings of Morini and Gei are also intro-

duced as our one of our topic is quasicrystalline generated laminates. They find that the negative

refraction governing by two frequencies. One is the minimum frequency (threshold) to render

wave number 𝐾𝑥𝐿𝑖 entering second Brillouin zone (𝐾𝑥𝐿𝑖 > 𝜋). The other one is the upper edge

for the second transition zone, which is equivalent to the passband layouts in the 1D rod problem.

Thus, Kohmoto’s invariant can be utilised for scaling the transition zone. In their papers, there are

also listed some interesting phenomena but without full explanation. For instance, the transmis-

sion angle that is equal to zero when wavenumber is at the edge of Brillouin zone, the reflectless,

total reflection phenomena and relationship between the number of propagation wave with higher

Fibonacci order. Furthermore, a way to control the transmission angle and enough energy for pure

negative refraction should be studied. It is possible to obtain the closed-form expression for trans-

mission angle instead of Poynting vector formulation, and energy extreme value as pure negative

transmission happened can be observed.

Finally, the topological interface state is introduced, which exists in two periodic structures with

different topological phases evaluated by the Zak phase. The exact condition for interface state is

the vanishing sum of surface impedances from two structures. Then, the approach for calculating

reflection and transmission coefficients and wave field (force) of finite rods are demonstrated in

Chapter 3. According to Xiao’s work, several significant theoretical derivation were introduced,

including the fundamental principle for Zak phase calculating, relationship with symmetric edge

mode, topological phase inversion. The sign of surface impedance is changed with bandgap close

and reopen (band inversion) and numerical results verify the existence of the interface state. The

works by Meng and Li demonstrated the same principle but in the acoustic system with further

numerical results and experiments. Finally, the works by Yin, Muhammad and Chen showed the

interface state in the elastic system, which is similar to our problem in both axial and flexural

waves. The investigation in this part is still growing. A very significant inference is that the sym-

metric edge mode at the lower or upper of a bandgap determine the sign of impedance with a

structure that holds inversion symmetry. The frequency for the interface state should be checked

whether it can be determined with phases that have the unique combination of material and ge-

ometric parameters because the engineer can design this material better when they know how to

control the frequency for the interface state.
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Chapter 3 - Methodology

Methods and processes to lead to the codes implemented are described in this chapter, including

the dispersion spectrum tool for quasicrystalline generated structures (Kohmoto’s invariant and

universal torus), shear horizontal wave reflection and refraction in laminates (numerical integra-

tion and Newton iteration), and the topological interface state problem (transmission, reflection

coefficients and wave field). Thus, the theoretical analysis concerning problems above can be

verified by numerical results in this chapter. Complete codes are shown in Appendix A.

3.1 Dispersion Relation in Quasicrystalline-Generated Structures

The trace of global transfer matrix for one element unit cell can be obtained by utilizing the

vector which manages the different elementary cells in any order of sequence. For the problem

of axial rod, only manipulating circular frequency 𝜔 and obtaining the trace of global transfer

matrix is enough. It means the eigenvalue problem does not need to be solved. Thus, two vectors

for frequency and trace 𝑡𝑟𝑇𝑖 are created. The passband layouts are plotted with the definition

from Equation (2.20). Moreover, the universal torus with two dimensionless frequencies are also

plotted using this method. However, for SH wave propagating into the laminate problem is slightly

different, because this problem has two wavenumbers 𝐾𝑦 (or dimensionless 𝐾𝑦𝐿𝑖) and 𝐾𝑥𝐿𝑖 =

𝐾0sin(𝜃inc)𝐿𝑖. As the trace of transfer matrix 𝑀𝑖 is associated with 𝐾𝑥𝐿𝑖, the wavenumber 𝐾𝑦 can

be obtained with fixed frequency from dispersion relation (2.47). The frequency can also be solved

as the same process with fixed 𝐾𝑦. If the complete passband layout for SH wave propagation into

laminate is needed, the principle must be identical to plotting universal torus because this problem

also takes two variables (𝑓 and 𝐾𝑦) but with passband being a real number, the bandgap being a

complex number. The computational process is shown in Figure 3.1.

3.2 Tools for Analysing Spectrum-Universal Torus

The dispersion relation analysed through the representation of the universal torus takes advantage

of the introduction of the following dimensionless frequencies (Morini et al. 2019; Shmuel and

Band 2016; Lustig and Shmuel 2018; Barra and Gaspard 2000; Berkolaiko and Winn 2010; Band

and Berkolaiko 2013):

𝜉𝑋 = �
𝜌𝑋

𝐸𝑋
𝜔𝑙𝑋 (𝑋 ∈ (𝐿, 𝑆)) (3.1)
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Initial analysis 

Setting material coefficients 𝐸𝐿, 𝐸𝑆, 𝑙𝐿, 𝑙𝑆, 𝜌𝐿, 𝜌𝑆  

Initial frequency 𝜔(0) = 0  

According to frequency 𝜔(𝑛) and material coefficients,  

Fibonacci order 𝐹𝑖, transfer matrix 𝑇𝑖 obtained. 

Dispersion relation 2cos (𝐾(𝑛)) = 𝑡𝑟𝑇𝑖(𝜔(𝑛)) 

Is 𝜔(𝑛) achieve  

frequency limit? 

𝜔(𝑛+1) = 𝜔(𝑛) + ∆𝜔 

No 

Complete analysis 

Yes 

Figure 3.1. Computational process for dispersion layout.

For GM sequence, the recursive rule for trace whose governing the dynamic spectrum properties

has already deduced from equation (2.25), which indicates the following recursive relation (2.25)

for the half trace:
𝑥𝑖+1

2
= 2

𝑥𝑖−1

2

𝑥𝑖

2
−
𝑥𝑖−2

2
(3.2)

where the initial conditions are:

𝑥0

2
= cos(𝜉𝑆),

𝑥1

2
= cos(𝜉𝐿),

𝑥2

2
= cos(𝜉𝐿)cos(𝜉𝑆) −

𝛽

2
sin(𝜉𝐿)sin(𝜉𝑆) (3.3)

where 𝛽 is impedance mismatch 𝛽 =
𝑍𝐿

𝑍𝑆
+

𝑍𝑆

𝑍𝐿
. When the impedance mismatch is 𝛽 = 2, there is

no difference between phases, and the structure resembles a homogeneous one in wave problem,

since the impedance for 𝑍𝐿 = 𝑍𝑆 (The material in 𝐿 may different with material in 𝑆 with the

same impedance value). Equation (3.3) demonstrates that for every given amount of mismatch

impedance 𝛽, the half trace is determined by sums and multiplications of periodic functions with

the same period. This demonstrates that the half trace 𝑥𝑖/2 is a function of the 2D torus with edge

length 2𝜋 and toroidal and poloidal coordinates 𝜉𝑆 and 𝜉𝐿. According to inequality (2.20), the

area of the toroidal is consistent with two components corresponding to passband and bandgap.
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This approach involving standing waves split these two locations. Impedance mismatch uniquely

determines the section of the bandgap. Therefore, a topological torus may regulate these structures,

as the dynamic characteristics are identical if the mismatch impedance is identical, regardless of

the two-phase material or geometric factors (Shmuel and Band 2016).

According to Morini et al. (2019), a sketch of the toroidal domains for the Fibonacci order 𝐹2

is displayed in Figure 3.2, where the half of impedance mismatch is almost 𝛽/2 ≈ 2.125. The

pink zone is associated with the passband area in plots, while the bandgap one is plotted in grey.

Equation (2.19) is invariant under the transformation:

𝜉𝑆 → 𝜉𝑆 + 𝑆̄𝜋 and 𝜉𝐿 → 𝜉𝐿 + 𝐿̄𝜋 (𝑆̄, 𝐿̄ ∈ ℕ) (3.4)

Shmuel and Band (2016) mentioned that the map on the torus could be equivalently demonstrated

on a reduced 𝜋 edge length torus, which can be effectively represented by the so-called square

identification (Arnold et al. 2013). It means that the curved area is flatted and transformed to a

square whose edges coordinates are still 𝜉𝑆 and 𝜉𝐿, both ranging from 0 to 𝜋. In the new square

representation, the bandgap subarea is represented by 𝔻𝑖(𝛽), which are implied with torus 𝕋𝑖. At

the same time, this reduced torus for the Fibonacci order 𝐹𝑖 can be extended into 𝑆̄𝜋 and 𝐿̄𝜋 range

(extended torus), which is helpful in particular problems (how the sign of surface impedance is

changed with variables 𝜉𝑆 and 𝜉𝐿 changing).

In Figure 3.2, the reduced torus 𝕋2 is reported. The plot’s light blue, red and brown areas present

the subareas determined for different 𝛽/2. Therefore, the dispersion spectrum of any Fibonacci

order can be investigated by analysing the dynamic flow line on the toroidal areas, where the fre-

quency 𝜔 plays a role of a time-like parameter. This flow line is the image on 𝕋𝑖 whose trajectories

on the original torus are angles between 𝜉𝑆 and 𝜉𝐿. One example of the flow line is the blue line

sketched in Figure 3.2. In order to represent these lines on 𝕋𝑖, equation (3.1) can be translated into

a rectilinear trajectory on the square. For any Fibonacci unit cell 𝐹𝑖 for which a specific indication

for the length 𝑙𝐿 and 𝑙𝑆 is given, equation (3.1) can be plotted on 𝕋𝑖. If we consider values of the

frequency such that 𝜉𝑋 > 𝜋, by recalling the invariance of 𝕋𝑖 and of its subarea 𝔻𝑖(𝛽) with respect

to transformations (3.4), expression (3.1) can be written in the transformed form as:

𝜉𝑆 = �
𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆 − 𝑆̄𝜋 and 𝜉𝐿 = �

𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿 − 𝐿̄𝜋 (𝑆̄, 𝐿̄ ∈ ℕ) (3.5)

Therefore, the flow line plotted on 𝕋𝑖 looks like a set of the parallel lines which is reported in

blue in Figure 3.2. The flow line with rational number as tangent angle must be closed in torus.
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Figure 3.2. (a). Toroidal domains of edge length 2𝜋 for Fibonacci cells 𝐹2. The passbands regions
are depicted in pink. The bandgap are highlighted in grey. An example of a periodic, close flow
line is reported in blue. (b). Square identification of the 𝜋 period torus for cell 𝐹2; light blue, red
and brown regions associated with the subarea for bandgap with decreasing mismatch impedance
𝛽, figure reproduced from Morini et al. (2019).

Thus, it is not surprising the frequency at the flow line intersecting the boundary with subarea

𝔻𝑖(𝛽) coincides with the edge of the bandgaps. A parametric equation for the flow lines on the

representation of the universal torus or square torus is deduced in equation (3.6):

𝜉𝐿 = 𝜋(
𝑆̄

𝐶
− 𝐿̄) +

𝜉𝑆

𝐶
(3.6)

which defines the direction (angle) of the flow. The flow line, in particular, is emerging from the

𝜔 = 0+ (𝑆̄ = 𝐿̄ = 0) with the equation 𝜉𝐿 = 𝜉𝑆/𝐶 also the flow line in the extended torus.

This analysis method of analysis dispersion relation benefits from a technique developed for the

investigation of Schrödinger operators on metric graphs (Barra and Gaspard 2000; Berkolaiko and

Winn 2010; Band and Berkolaiko 2013) and can be extended to laminate structure (Shmuel and

Band 2016).

3.3 Numerical Approach in Wave Propagation in Laminate

3.3.1 Newton method and inverse iterations

As the acoustic Poynting vector is calculated from mode shape 𝑤 and the trace 𝑀𝑖 becomes too

complicated with increasing of Fibonacci order 𝑖 to solve eigenvalues, so that the eigenvector in

equation (2.46) should be obtained numerically. The Newton method can be used here. First, a

vector for 𝐾𝑦𝐿𝑖 with fixed frequency 𝑓 is substituted into the transfer matrix (2.47) to evaluate

𝐾𝑥𝐿𝑖, then compared with 𝐾0sin(𝜃inc)𝐿𝑖 to determine a small interval of 𝐾𝑦. Thus, the mission is
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to solve the eigenvalue problem:

(𝑀𝑖(𝐾𝑦) − 𝑒i𝐾𝑥𝐿𝑖E) �
𝜎𝑥𝑧(0)

𝑢𝑧(0)
� = �

0

0
� (3.7)

where E is the identity matrix. It must have a non-trivial solution, so that the wavenumber 𝐾𝑦

can be seen as a non-linear general eigenvalue of matrix 𝑀𝑖 − 𝑒i𝐾𝑥𝐿𝑖E. 𝐾∗
𝑦 is the approximation

solution of exact 𝐾̂𝑦 and using Taylor expansion for matrix 𝑀̄𝑖 (for simplicity 𝑀̄𝑖 = 𝑀𝑖−𝑒i𝐾𝑥𝐿𝑖E):

𝑀̄𝑖(𝐾̂𝑦) = 𝑀̄𝑖(𝐾
∗
𝑦) + (𝐾̂𝑦 − 𝐾∗

𝑦)
𝑑𝑀̄𝑖(𝐾

∗
𝑦)

𝑑𝐾𝑦
+
(𝐾̂𝑦 − 𝐾∗

𝑦)
2

2

𝑑2𝑀̄𝑖(𝐾
∗
𝑦)

𝑑𝐾2
𝑦

+ 𝑜((𝐾∗
𝑦 − 𝐾̂𝑦)

3) (3.8)

Multiplying the exact eigenvector [𝜎𝑥𝑧(0), 𝑢𝑧(0)]𝑇 in equation (3.8) and ignore the second and

higher order:

𝑀̄𝑖(𝐾̂𝑦)[𝜎𝑥𝑧(0), 𝑢𝑧(0)]
𝑇 ≈ 𝑀̄𝑖(𝐾

∗
𝑦)[𝜎𝑥𝑧(0), 𝑢𝑧(0)]

𝑇+(𝐾̂𝑦−𝐾
∗
𝑦)
𝑑𝑀̄𝑖(𝐾

∗
𝑦)

𝑑𝐾𝑦
[𝜎𝑥𝑧(0), 𝑢𝑧(0)]

𝑇 (3.9)

because 𝑀̄𝑖(𝐾̂𝑦)[𝜎𝑥𝑧(0), 𝑢𝑧(0)]
𝑇 ≡ 0. Thus:

𝑀̄𝑖(𝐾
∗
𝑦)[𝜎𝑥𝑧(0), 𝑢𝑧(0)]

𝑇 ≈ −(𝐾̂𝑦 − 𝐾∗
𝑦)
𝑑𝑀̄𝑖(𝐾

∗
𝑦)

𝑑𝐾𝑦
[𝜎𝑥𝑧(0), 𝑢𝑧(0)]

𝑇 (3.10)

Equation (3.10) expresses that for a approximation eigenvalue, if 𝑀̄𝑖(𝐾
∗
𝑦) and 𝑑𝑀̄𝑖(𝐾

∗
𝑦)/𝑑𝐾𝑦 are

already known, the more exact eigenvalue and eigenvector could be solved from general linear

eigenvalue problem:

𝑀̄𝑖(𝐾
∗
𝑦)[𝜎𝑥𝑧(0), 𝑢𝑧(0)]

𝑇 ≈ 𝜂(𝐾𝑦𝑢 − 𝐾𝑦𝑙)
𝑑𝑀̄𝑖(𝐾

∗
𝑦)

𝑑𝐾𝑦
[𝜎𝑥𝑧(0), 𝑢𝑧(0)]

𝑇 (3.11)

where 𝐾𝑦𝑢 and 𝐾𝑦𝑙 are associated with upper and lower eigenvalue when corresponding 𝐾𝑥𝐿𝑖

across target wavenumber 𝐾0sin(𝜃inc)𝐿𝑖 (details shown in Figure 3.3). Because the dispersion

relation 𝐾𝑥𝐿𝑖 and 𝐾𝑦𝐿𝑖 creates two vectors for two components wavenumber within a determined

small interval, the exact 𝐾̂𝑦 must belong to the range (𝐾𝑦𝑙, 𝐾𝑦𝑢) and also let the Newton method

must be convergence. Then:

𝜂 =
𝐾∗
𝑦 − 𝐾̂𝑦

𝐾𝑦𝑢 − 𝐾𝑦𝑙
(3.12)

There are many methods for solving general linear eigenvalues, such as inverse matrix iteration,

subspace iterations and Lanczos method. In this thesis, the derivative of a matrix is obtained using
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the central difference method:

𝑑𝑀̄𝑖(𝐾
∗
𝑦)

𝑑𝐾𝑦
=
𝑀̄𝑖(𝐾𝑦𝑢) − 𝑀̄𝑖(𝐾𝑦𝑙)

(𝐾𝑦𝑢 − 𝐾𝑦𝑙)
(3.13)

Thus, the problem converts into a linear eigenvalue problem:

𝑀̄𝑖(𝐾
∗
𝑦)[𝜎𝑥𝑧(0), 𝑢𝑧(0)]

𝑇 = 𝜂(𝑀̄𝑖(𝐾𝑦𝑢) − 𝑀̄𝑖(𝐾𝑦𝑙))[𝜎𝑥𝑧(0), 𝑢𝑧(0)]
𝑇 (3.14)

Because of equation (3.12), the |𝜂| < 1/2 is a convergence standard for numerical results. Also,

an approximate value 𝐾𝑦𝜂 can be obtained with second-order exact (Yuan et al. 2004):

𝐾𝑦𝜂 =
(𝐾𝑦𝑙 + 𝐾𝑦𝑢)

2
− 𝜂((𝐾𝑦𝑢 − 𝐾𝑦𝑙)) (3.15)

This method can be used to solve some other non-linear general eigenvalues, such as the natural

frequency of structure using the Wittrick-Williams algorithm (Yuan et al. 2004). The steps for

inverse matrix iteration are following:

𝐷̄(𝑛+1) = 𝑀̄−1
𝑖 ((𝐾𝑦𝑙 + 𝐾𝑦𝑢)/2)(𝑀̄𝑖(𝐾𝑦𝑢) − 𝑀̄𝑖(𝐾𝑦𝑙))𝐷

(𝑛) with 𝐷(0) = random vector

𝐷(𝑛+1) =
𝐷̄(𝑛+1)

max|𝐷̄(𝑛+1)|

𝜂(𝑛+1) = Re(
1

max|𝐷̄(𝑛+1)|
)

which is terminated when:

max(|𝐷(𝑛+1) − 𝐷(𝑛)|) < Tol or 𝑛 = 𝑛max

where 𝐷(𝑛) is the 𝑛th iteration results, which is also the numerical eigenvector results, Tol is error

tolerance defined by users, and 𝑛max is the maximum iteration amount allowed. Notice that 𝐷(0) is

a vector composed of random complex numbers in the range of (0, 1). This method can also solve

the frequency at the passband edge in the first Brillouin zone 𝐾𝐿𝑡 = 0 or 𝜋. The computational

process for obtaining 𝐾∗
𝑦 and associated eigenvector [𝜎𝑥𝑧(0), 𝑢𝑧(0)]𝑇 is shown in Figure 3.3.

54



Chapter 3 - Methodology

Zhijiang Chen 

Cardiff University 

14 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Complete analysis 

Initial analysis 

Setting material coefficients 𝜇𝐿, 𝜇𝑆, ℎ𝐿, ℎ𝑆, 𝜌𝐿, 𝜌𝑆, 𝜇0, 𝜌0.  

The frequency 𝜔 and incident angle 𝜃inc for incoming wave  

Computing 𝑥-component wave number  

𝐾𝑥𝐿𝑖 =
2𝜋𝑓

𝑐0
sin (𝜃inc)𝐿𝑖 and aim trace cos(𝐾𝑥𝐿𝑖) = 2𝑡𝑟𝑀𝑖(𝐾෡𝑦) 

Initial 𝑦-component wave number  𝐾𝑦
(0)

= 0  

According to 𝐾𝑦
(𝑛) and material coefficients,  

Fibonacci order 𝐹𝑖, transfer matrix 𝑀𝑖(𝐾𝑦
(𝑛)

) obtained. 

Find upper and lower value 𝐾𝑦
(𝑛−1), 𝐾𝑦

(𝑛). So that,  

𝑡𝑟𝑀𝑖 ቀ𝐾𝑦
(𝑛−1)

ቁ < 𝑡𝑟𝑀𝑖൫𝐾෡𝑦൯ < 𝑡𝑟𝑀𝑖 ቀ𝐾𝑦
(𝑛)

ቁ or  

𝑡𝑟𝑀𝑖 ቀ𝐾𝑦
(𝑛−1)

ቁ > 𝑡𝑟𝑀𝑖൫𝐾෡𝑦൯ > 𝑡𝑟𝑀𝑖 ቀ𝐾𝑦
(𝑛)

ቁ 

Newton method and inverse iteration to find 

approximate 𝐾𝑦
∗ and corresponding [𝜎𝑥𝑧(0), 𝑢𝑧(0)]𝑇 

Is 𝐾𝑦
(𝑛)

 

achieve limit? 

𝐾𝑦
(𝑛+1)

= 𝐾𝑦
(𝑛+1)

+ ∆𝐾𝑦 

Yes 

No 

Figure 3.3. Computational process for 𝐾∗
𝑦 and associated eigenvector [𝜎𝑥𝑧(0), 𝑢𝑧(0)]𝑇.
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3.3.2 Integrate mode shape 𝑤 by each phase

The transmission wave angle and energy as SH wave incidents into laminates formulated from the

mode shape 𝑤, which is obtained from displacement 𝑢𝑧 (neglect the time and 𝐾𝑦 from the equation

(2.41)):

𝑤 = 𝑢𝑧𝑒
i𝐾𝑥𝑥 (3.16)

From the results deduced before, the initial value for [𝜎𝑥𝑧(0), 𝑢𝑧(0)]𝑇 is obtained by the Newton

method and inverse matrix iterations. Therefore, the mode shape should be normalised (Willis

2016; Willis and Srivastava 2017):

�
𝐿𝑖

0

𝑤𝜇𝑤∗𝑑𝑥 = 𝜇𝐿𝑖 (3.17)

where 𝜇 is the mean shear modulus across the elementary unit cells 𝜇 = (𝑛
(𝐿)
𝑖 𝜇𝐿ℎ𝐿+𝑛

(𝑆)
𝑖 𝜇𝑆ℎ𝑆)/𝐿𝑖

which is determined by Fibonacci order and two-phase material. The formulation of Poynting

vector and mode decomposition comes from integral terms with 𝜇 varying within the integral

interval. Thus, these integrals must be evaluated by parts, for ease of illustration of the computing

principle, the part in integrand setting as 𝑓(𝑥) except 𝜇:

�
𝐿𝑖

0

𝜇𝑓(𝑥)𝑑𝑥 =

𝑚=𝑛𝑖

�

𝑚=1

�
𝑥𝑙+ℎ𝑋

𝑥𝑙

𝜇𝑋𝑓(𝑥)𝑑𝑥

where 𝑛𝑖 is still the total number of two phases in an elementary unit cells, i.e. 𝑥𝑙 means the

interface between this phase and the last left phase, varying with different phases. Still 𝑋 ∈ {𝐿, 𝑆}.

Assuming 𝑥 = 𝑥̄ + 𝑥𝑙, the following equation is obtained:

�
𝐿𝑖

0

𝜇𝑓(𝑥)𝑑𝑥 =

𝑚=𝑛𝑖

�

𝑚=1

�
ℎ𝑋

0

𝜇𝑋𝑓(𝑥̄ + 𝑥𝑙)𝑑𝑥̄ (3.18)

As transfer matrix (2.44), the variable is (𝑥 − 𝑥𝑙) = 𝑥̄. Thus, the transfer matrix can be changed

into another expression:

�
𝜎𝑥𝑧(𝑥̄ + 𝑥𝑙)

𝑢𝑧(𝑥̄ + 𝑥𝑙)
� = �

cos(𝑞𝑋(𝑥̄)) −𝜇𝑋𝑞𝑋sin(𝑞𝑋(𝑥̄))
sin(𝑞𝑋(𝑥̄))
𝜇𝑋𝑞𝑋

cos(𝑞𝑋(𝑥̄))
� �
𝜎𝑥𝑧(𝑥𝑙)

𝑢𝑧(𝑥𝑙)
� (3.19)

Then, as 𝑤 = 𝑢𝑧(𝑥̄ + 𝑥𝑙)𝑒
i𝐾𝑥(𝑥̄+𝑥𝑙), it can be rewritten as:

𝑤(𝑥̄ + 𝑥𝑙) = �
sin(𝑞𝑋(𝑥̄))
𝜇𝑋𝑞𝑋

𝜎𝑥𝑧(𝑥𝑙) + cos(𝑞𝑋(𝑥̄))𝑢𝑧(𝑥𝑙)� 𝑒i𝐾𝑥(𝑥̄+𝑥𝑙) (3.20)

56



Chapter 3 - Methodology

Therefore, equation (3.20) can be used for calculating integral with a variable of integration 𝑥̄,

which is performed for each phase with fixed 𝜇𝑋. The displacement 𝑢𝑧 and stress 𝜎𝑥𝑧 are com-

puted for each phase. This method can be performed to all integrals in Poynting vector, scattering

coefficients calculation and next numerical Zak phase. Equation (3.20) will be simplified more

in Chapter 5. The computational process for obtaining mode shape 𝑤 by each phase and then

transmission angle 𝜃trans is shown in Figure 3.4.
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1
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න 𝜇(𝑖

𝑑𝑤

𝑑𝑥
𝑤∗ + 𝐾𝑥𝑤𝑤∗)𝑑𝑥

𝐿𝑖

0

) 

⟨𝒫𝑦⟩ =
1

2
Re(𝜔

1

𝐿𝑖
ධ 𝜇𝐾𝑦𝑤𝑤∗𝑑𝑥

𝐿𝑖

0
), then tan(𝜃trans) =
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Is 𝑥𝑙 + ℎ𝑋 
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No 

𝑥𝑙 = 𝑥𝑙 + ℎ𝑋 

Complete analysis 

Figure 3.4. Computational process for mode shape 𝑤 and then transmission angle 𝜃trans.

3.3.3 Scattering coefficients from mode shape decomposition

As mentioned before, the scattering coefficients are based on the continuity of displacements and

stress (2.52) and (2.53) as below.

2𝑁

�

𝑙=0

𝑇𝑙𝑤𝑙𝑒
i(𝜔𝑡−𝐾trans

𝑥 𝑥) ≈ 𝐴𝑒i(𝜔𝑡−𝐾inc
𝑥 𝑥)+

𝑁

�

𝑚=−𝑁

𝑅𝑚𝑈𝑚𝑒
i(𝜔𝑡−𝐾ref

𝑥 𝑥) (3.21)

2𝑁

�

𝑙=0

𝜇𝐾
(𝑙)
𝑦 𝑇𝑙𝑤𝑙𝑒

i(𝜔𝑡−𝐾trans
𝑥 𝑥) ≈ 𝐴𝜇0𝐾𝑦0𝑒

i(𝜔𝑡−𝐾inc
𝑥 𝑥)−

𝑁

�

𝑚=−𝑁

𝜇0𝑘
(𝑚)
𝑦 𝑅𝑚𝑈𝑚𝑒

i(𝜔𝑡−𝐾ref
𝑥 𝑥) (3.22)
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This are continuity conditions can be transformed into a system of 2(2𝑁 + 1) equations by im-

posing the orthogonality of mode shape 𝑤. As a consequence, this yields:

�
[𝑀1] [𝑀2]

[𝑀3] [𝑀4]
� [c] = [d] (3.23)

where c is a column vector of size 2(2𝑁 + 1) with elements 𝑇̄0...𝑇̄2𝑁 and 𝑅̄−𝑁...𝑅̄𝑁 which are

normalised scattering coefficients with 𝑇̄𝑙 = 𝑇𝑙/𝐴 and 𝑅̄𝑚 = 𝑅𝑚/𝐴, where 𝑇𝑙, 𝐴 and 𝑅𝑚 are

scattering coefficients in continuity conditions (3.21) and (3.22). Submatrices [𝑀𝑖] are square

matrices of size (2𝑁 + 1) × (2𝑁 + 1) with the following values:

[𝑀1]𝑖𝑖 = �
𝐿𝑖

0

𝑤𝑖𝜇𝑤
∗
𝑖 𝑑𝑥, [𝑀2]𝑖𝑗 = −�

𝐿𝑖

0

𝑈𝑗−𝑁𝜇𝑤
∗
𝑖 𝑑𝑥.

[𝑀3]𝑖𝑖 = 𝐾
(𝑖)
𝑦 �

𝐿𝑖

0

𝑤𝑖𝜇𝑤
∗
𝑖 𝑑𝑥, [𝑀4]𝑖𝑗 = 𝜇0𝑘

(𝑗−𝑁)
𝑦 �

𝐿𝑖

0

𝑈𝑗−𝑁𝑤
∗
𝑖 𝑑𝑥 (3.24)

where 𝑖, 𝑗 = 0..., 2𝑁 and d is a column vector of size 2(2𝑁 + 1) with values:

d𝑖 = �
𝐿𝑖

0

𝜇𝑤∗
𝑖 𝑑𝑥, 0 ≤ 𝑖 ≤ 2𝑁; d𝑖 = 𝜇0𝐾0cos(𝜃inc)�

𝐿𝑖

0

𝑤∗
𝑖−2𝑁−1𝑑𝑥, 𝑖 ≥ 2𝑁 (3.25)

The scattering coefficients are achieved with the matrix calculation:

[c] = �
[𝑀1] [𝑀2]

[𝑀3] [𝑀4]
�

−1

[d]

However, according to Srivastava and Willis (2017), because there is no strict equality in equations

(3.21) and (3.22) even though this method already included all propagation waves, the evanescent

waves still affect the scattering coefficients solution. They noticed that the displacement continuity

condition can be satisfied more easily than the stress continuity condition with enough evanescent

number waves. Thus, they used the propagation wave with Lagrange multiplier whose objective

function is the displacement continuity, and the constraint is the conservation of energy. This

system is solved through a gradient descent algorithm which is usually used in optimisation for

minimising objective function (loss function). However, since it is tough to control the step size

(learning rate) in the gradient descent algorithm, we do not use it in this thesis.
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3.3.4 Wave normalised energy metrics

The normalised energy metrics can be obtained with scattering coefficients and one component of

Poynting vector ⟨𝒫𝑦⟩. Neglecting any dissipating mechanisms from total energy incident into the

laminates should be balanced the energy transmitted and reflected. The mean energy entering is

the mean energy flux over time and space:

𝐸 = ⟨𝒫𝑦⟩ =
1

2
|𝐴|2𝜔𝜇0𝐾0cos(𝜃inc) (3.26)

Therefore, the entering energy is consists of two parts: refracted or transmitted energy and re-

flected one, which are:

trans energy: �
1

2
|𝑇𝑙|

2
(𝜔

1

𝐿𝑖
�
𝐿𝑖

0

𝜇𝐾𝑙
𝑦𝑤𝑤

∗𝑑𝑥), ref energy: �
1

2
|𝑅𝑚|

2
𝜔𝜇0𝑘

(𝑚)
𝑦 (3.27)

where ∑ means summation over all propagation energy from transmitted, plus energy from re-

flected should equal to energy that is entering, which is energy conserving:

𝐸 = ⟨𝒫𝑦⟩ =
1

2
|𝐴|2𝜔𝜇0𝐾0cos(𝜃inc) =�

1

2
|𝑇𝑙|

2
(𝜔

1

𝐿𝑖
�
𝐿𝑖

0

𝜇𝐾𝑙
𝑦𝑤𝑤

∗𝑑𝑥) +�
1

2
|𝑅𝑚|

2
𝜔𝜇0𝑘

(𝑚)
𝑦

The energy metrics can also be normalised, which means the total dimensionless energy equal to

1 (Srivastava 2016; Srivastava and Willis 2017):

𝐸̄ =��𝑇̄𝑙�
2 (1/𝐿𝑖 ∫

𝐿𝑖

0
𝜇𝐾𝑙

𝑦𝑤𝑤
∗𝑑𝑥)

𝐾0cos(𝜃inc) 𝜇0
+��𝑅̄𝑚�

2 𝑘
(𝑚)
𝑦

𝐾0cos(𝜃inc)
= 1 (3.28)

The evanescent waves in 𝑦 direction are still with energy in 𝑥 direction because 𝐾𝑥𝐿𝑖 cannot be

pure imaginary. Equation (3.28) can be used to check scattering coefficients calculations because

they come from an approximate method (mode decomposition). Also, it is the constraint when

using the Lagrange multiplier method.

3.4 Numerical Techniques for The Analysis of Interface States

3.4.1 Numerical method for the Zak phase

The Zak phase is very significant in the topological interface state topic, which determines the

topological phase in a 1D periodic structure (surface impedance). The theoretically equation (2.76)
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will be shown here again

𝜃Zak
𝑛 = �

𝜋/𝐿𝑖

−𝜋/𝐿𝑖

�i�
unit cell

1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾(𝑧, r)𝜕𝐾𝒲𝑛,𝐾(𝑧, r)� 𝑑𝐾 (3.29)

Equation (3.29) can be transformed into discretized (numerical) type:

𝜃Zak
𝑛 = −Im

𝑁

�

𝑖=1

ln ��
unitcell

1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾𝑖
𝒲𝑛,𝐾𝑖+1

� (3.30)

where 𝑛, 𝜌, 𝑐 are the same with equation (3.29) which is proved by Xiao et al. (2015) and Chen

et al. (2021). Still, the force periodic field 𝒲𝑛,𝐾 = 𝑁(𝑛, 𝐾)𝑒i𝐾𝑧 needs to be normalised with the

relationship:

�
unitcell

1

2𝜌𝑐2
𝑑r𝑑𝑧|𝒲𝑛,𝐾|

2 = 1 (3.31)

𝑝 points are used to equally divide the complete first Brillouin zone from 𝐾 = −𝜋/𝐿𝑖 to 𝐾 = 𝜋/𝐿𝑖.

In the limit of 𝑝 → ∞, Δ𝐾 = 𝐾𝑖+1 − 𝐾𝑖 → 0, which leads to 𝜕𝐾𝒲𝑛,𝐾 = (𝒲𝑛,𝐾+Δ𝐾 −𝒲𝑛,𝐾)/Δ𝐾.

Thus, equation (3.29) for the Zak phase can be equivalently expressed as (notice equation (3.31)):

𝜃Zak
𝑛 = �

𝜋/𝐿𝑖

−𝜋/𝐿𝑖

�
i
Δ𝐾

��
unitcell

1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾𝒲𝑛,𝐾+Δ𝐾 − 1�� 𝑑𝐾 (3.32)

Because 𝒲𝑛,𝐾+Δ𝐾 ≈ 𝒲𝑛,𝐾 and equation (3.31), we can obtain:

�
unitcell

1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾𝒲𝑛,𝐾+Δ𝐾 → 1

By discretizing 𝐾 and noting the relation ln(𝑥) ≈ 𝑥−1 in the limit of 𝑥 → 1, equation (3.32) with

Δ𝐾 → 0 can be rewritten in a discretized form as:

𝜃Zak
𝑛 = i

𝑝

�

𝑖=1

�ln��
unitcell

1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾𝑖
𝒲𝑛,𝐾𝑖+Δ𝐾

�� (3.33)

It is obvious that term ∫unitcell
1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾𝒲𝑛,𝐾+Δ𝐾 is a complex number, so that complex log-

arithm returns logarithm of absolute value of this complex (real part) plus complex angle of it

(imaginary part) which is also shown in equation (3.34):

ln(𝑥 + 𝑖𝑦) = ln(�𝑥2 + 𝑦2) + iarctan(𝑦/𝑥), (𝑥, 𝑦) ∈ ℝ (3.34)
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Then, the term ∫unitcell
1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾𝒲𝑛,𝐾+Δ𝐾 → 1 lead absolute value in equation (3.33) approx-

imate to 1 and ln(1) = 0. Hence, only negative imaginary part should be counted.

The numerical integral (3.30) can be integrated by each phase similar to the method in the Subsec-

tion 3.3.2, because the radius, density and wave phase speed are changed within different phase

materials. The frequency at first Brillouin zone edge 0 and 𝜋 can be solved from the Newton

method and inverse iterations. The complete steps for the Zak phase are evaluated as follows:

(1). As the dispersion relation, the frequency vector, trace for different Fibonacci order and pass-

band layouts have been obtained, a vector for wavenumber in the first Brillouin zone 𝐾𝐿𝑖 ∈(0, 𝜋)

can be obtained according to dispersion relation.

(2). The Zak phase should be integrated along the complete first Brillouin zone 𝐾𝐿𝑖 ∈(−𝜋, 𝜋).

Thus, obtaining eigenvector for each 𝐾𝐿𝑖 and 𝑓 in (0, 𝜋), taking conjugate of each eigenvector,

which are the eigenvector from wavenumber 𝐾𝐿𝑖 in (−𝜋, 0). This is because a real matrix with

complex eigenvalue and eigenvector must be conjugated with each other (Strang 2021). Therefore,

the eigenvector at Brillouin edge (0 or 𝜋) is a real number.

(3). Using equation (3.31) to normalise eigenvector.

(4). Using equation (3.30) to calculate the numerical Zak phase, because it is sum of negative

complex angle of term ∫unitcell
1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲∗

𝑛,𝐾𝑖
𝒲𝑛,𝐾𝑖+1

.

The computational process for obtaining numerical Zak phase is shown in Figure 3.5.

However, this method cannot calculate the Zak phase for passbands crossing each other (bandgap

closed). Thus, the approaches for checking whether passbands cross each other can be coded.

The topological phase and sign of surface impedance or reflection phase can be calculated. The

numerical Zak phase can verify the correctness for the results from symmetric of band edge mode.
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Initial analysis 

Setting material coefficients 𝐸𝐿, 𝐸𝑆, 𝑙𝐿, 𝑙𝑆, 𝜌𝐿, 𝜌𝑆  

Initial frequency 𝜔(0) = 0 and 𝐾  

According to frequency 𝜔(𝑖+1), 𝜔(𝑖) and material 

coefficients, transfer matrix 𝑇2 obtained. 

Dispersion relation 2cos (𝐾) = 𝑡𝑟𝑇2(𝜔(𝑖)), 

2cos (𝐾 + Δ𝐾) = 𝑡𝑟𝑇2(𝜔(𝑖+1)) 

𝒲𝑛,𝐾 = 𝑁(𝑛, 𝐾)𝑒i𝐾𝑧, 𝒲𝑛,𝐾−Δ𝐾 = 𝑁(𝑛, 𝐾 + Δ𝐾)𝑒i(𝐾+Δ𝐾)𝑧 

𝜃𝑛
Zak = −Im ෎[ln(න

1

2𝜌𝑐2
𝑑r𝑑𝑧𝒲𝑛,𝐾

∗ 𝒲𝑛,𝐾+Δ𝐾
unitcell

)]

𝑝

𝑖=1

 

Is 𝜔(𝑖+1) achieve  

frequency limit? 

𝜔(𝑖+2) = 𝜔(𝑖+1) + ∆𝜔 

Complete analysis 

Yes 

No 

Figure 3.5. Computational process for numerical Zak phase.
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3.4.2 Transmission and reflection coefficients

Equation (2.74) has reflection coefficient 𝑟 and surface impedance 𝑍0. For homogenous material,

surface impedance 𝑍0 is impedance for this material. Thus, the reflection coefficient 𝑟 will be

evaluated numerically to verify the theoretical solution in Chapter 6. In this thesis, the problem

is constrained in a one-dimensional rod, and it has two different type displacement solutions (2.9)

and (2.10). However, usually first type (2.9) is used for computing reflection and transmission

coefficients because this equation naturally decomposes the wave forward and backwards. Ac-

cording to Chen et al. (2021), the axial displacement in subelement 𝑝 of 𝒩th unit cell 𝐹2 (see

Figure 2.9) can be written as:

𝑢
𝑝
𝒩(𝑧) = 𝑎

𝑝
𝒩exp(i�

𝜌𝑋

𝐸𝑋
𝜔(𝑧 −𝒩𝐿2)) + 𝑏

𝑝
𝒩exp(−i�

𝜌𝑋

𝐸𝑋
𝜔(𝑧 −𝒩𝐿2)) (3.35)

It is another present type for equation (2.9), where 𝑎
𝑝
𝒩 and 𝑏

𝑝
𝒩 are the undetermined complex

coefficients denoting the amplitude of incident and reflected waves, respectively. Then axial force

in subelement 𝑝 presents as:

𝑁
𝑝
𝒩(𝑧) = i𝜔𝑍𝑝(𝑎

𝑝
𝒩exp(i�

𝜌𝑋

𝐸𝑋
𝜔(𝑧 −𝒩𝐿2)) − 𝑏

𝑝
𝒩exp(−i�

𝜌𝑋

𝐸𝑋
𝜔(𝑧 −𝒩𝐿2))) (3.36)

where 𝑍𝑝 is the impedance for phase 𝑝, for simplicity, the state vector in phase 𝑝 of the 𝒩th unit

cell as shown in Figure 3.7 is defined as:

𝑆
(𝑝)
𝒩 = [𝑎

𝑝
𝒩, 𝑏

𝑝
𝒩]

𝑇 (3.37)

This state vector is different from before U𝑗 = [𝑢𝑗, 𝑁𝑗]
𝑇 but they have the same mathematical

meanings due to the axial wave field solution only have two unknown variables. The state vectors

(3.37) in unit cell are not independent of each other and can be connected through the continuity

condition by displacement 𝑢 and axial force 𝑁. We recalling Figure 2.9 in here as 3.7 and plus a

Figure 3.6.
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(n+1) unit cell

Sn(1) Sn(2) Sn(3)Sn-1(3)

Figure 3.6. One dimension quasiperiodic rod with (𝑛 + 1) unit cell, 𝑎0, 𝑏0 and 𝑎𝑛 are incident,
reflected and transmitted wave amplitude. 𝑢0,𝑛 and 𝑁0,𝑛 are displacements and the axial force on
the boundary of the elementary cell. Figure reproduced from Chen et al. (2021)

Figure 3.7. Two 1D quasiperiodic rods with 𝒩 (and ℳ) unit cells in the right connections at the
interface, 𝑎0, 𝑏0 and 𝑎′ℳ are incident, reflected and transmitted wave amplitude. 𝑙ℎ𝑠 and 𝑟ℎ𝑠

denote the left and right side quasiperiodic rod. Figure reproduced from Chen et al. (2021)

The continuity condition between 𝑆(3)𝑛−1 and 𝑆(1)𝑛 is expressed as if we take Figure 3.6 as a reference:

𝑢3𝑛−1 = 𝑢1𝑛, 𝑁
3
𝑛−1 = 𝑁1

𝑛 , at 𝑧 = (𝑛 − 1)𝐿2; (3.38)

By substituting equation (3.35) and (3.36) into (3.38), we obtain:

�
1 1

1 −1
� 𝑆

(3)
𝑛−1 = �

𝑒−i�𝜌𝐿/𝐸𝐿𝜔𝐿2 𝑒i�𝜌𝐿/𝐸𝐿𝜔𝐿2

𝑒−i�𝜌𝐿/𝐸𝐿𝜔𝐿2 −𝑒i�𝜌𝐿/𝐸𝐿𝜔𝐿2
� 𝑆

(1)
𝑛 (3.39)

The continuity condition between 𝑆(1)𝑛 and 𝑆(2)𝑛 is expressed:

𝑢1𝑛 = 𝑢2𝑛, 𝑁
1
𝑛 = 𝑁2

𝑛 , at 𝑧 = (𝑛 − 1)𝐿2 + 𝑙𝐿/2; (3.40)

By substituting equation (3.35) and (3.36) into (3.40), we obtain:
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�
𝑒−i�𝜌𝐿/𝐸𝐿𝜔(𝑙𝐿/2+𝑙𝑆) 𝑒i�𝜌𝐿/𝐸𝐿𝜔(𝑙𝐿/2+𝑙𝑆)

𝑒−i�𝜌𝐿/𝐸𝐿𝜔(𝑙𝐿/2+𝑙𝑆) −𝑒i�𝜌𝐿/𝐸𝐿𝜔(𝑙𝐿/2+𝑙𝑆)
� 𝑆

(1)
𝑛 =

�
𝑒−i�𝜌𝑆/𝐸𝑆𝜔(𝑙𝐿/2+𝑙𝑆) 𝑒i�𝜌𝑆/𝐸𝑆𝜔(𝑙𝐿/2+𝑙𝑆)

𝑍𝑆

𝑍𝐿
𝑒−i�𝜌𝑆/𝐸𝑆𝜔(𝑙𝐿/2+𝑙𝑆) −

𝑍𝑆

𝑍𝐿
𝑒i�𝜌𝑆/𝐸𝑆𝜔(𝑙𝐿/2+𝑙𝑆)

� 𝑆
(2)
𝑛 (3.41)

Then, the continuity condition between 𝑆(2)𝑛 and 𝑆(3)𝑛 is expressed:

𝑢2𝑛 = 𝑢3𝑛, 𝑁
2
𝑛 = 𝑁3

𝑛 , at 𝑧 = 𝑛𝐿2 − 𝑙𝐿/2 = (𝑛 − 1)𝐿2 + 𝑙𝐿/2 + 𝐿𝑆 (3.42)

By substituting equation (3.35) and (3.36) into (3.42), we obtain:

�
𝑒−i�𝜌𝑆/𝐸𝑆𝜔𝑙𝐿/2 𝑒i�𝜌𝑆/𝐸𝑆𝜔𝑙𝐿/2

𝑒−i�𝜌𝑆/𝐸𝑆𝜔𝑙𝐿/2 −𝑒i�𝜌𝑆/𝐸𝑆𝜔𝑙𝐿/2
� 𝑆

(2)
𝑛 = �

𝑒−i�𝜌𝐿/𝐸𝐿𝜔𝑙𝐿/2 𝑒i�𝜌𝐿/𝐸𝐿𝜔𝑙𝐿/2

𝑍𝐿

𝑍𝑆
𝑒−i�𝜌𝐿/𝐸𝐿𝜔𝑙𝐿/2 −

𝑍𝐿

𝑍𝑆
𝑒i�𝜌𝐿/𝐸𝐿𝜔𝐿2

� 𝑆
(3)
𝑛 (3.43)

Through some mathematical manipulations, the transfer matrix can be expressed as:

𝑆
(3)
𝒩 = �

f11 f12

f21 f22
� 𝑆

(3)
𝒩−1 (3.44)

Formulating this transfer matrix is more challenging than before due to the continuity conditions

in different phases are displacement and force. It is easy to show the components, the variables in

the universal torus (𝜉𝑋 = �𝜌𝑋/𝐸𝑋𝜔𝑙𝑋) are used:

f11 = 𝑒(i𝜉𝐿)[cos(𝜉𝑆) +
i
2
(
𝑍𝑆

𝑍𝐿
+
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆)]

f12 = −f21 =
i
2
(
𝑍𝑆

𝑍𝐿
−
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆) (3.45)

f22 = 𝑒(−i𝜉𝐿)[cos(𝜉𝑆) −
i
2
(
𝑍𝑆

𝑍𝐿
+
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆)]

This transfer matrix is unimodular, and the Floquet-Bloch technique can be performed on it. The

dispersion relation is the same with equation obtained from transfer matrix considering displace-

ment and axial force, because the same physical problem is considered. Now consider a finite

periodic rods with 𝒩 identical unit cells arranged in the axial direction as shown in Figure 3.7, a

expression can be obtained:

�
𝑎
(3)
𝒩

𝑏
(3)
𝒩

� = �
f11 f12

f21 f22
�

𝒩

�
𝑎
(3)
0

𝑏
(3)
0

� ≡ F𝑡 �
𝑎
(3)
0

𝑏
(3)
0

� , �
f11 f12

f21 f22
�

𝒩

= F𝑡 (3.46)
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where 𝑎(3)0 and 𝑏
(3)
0 are the amplitude coefficients of the incident and reflected waves at the in-

cident side, respectively. To calculate transmission and reflection coefficients, usually setting the

reflection coefficient at the output side is zero (𝑏(3)𝒩 = 0). As a result:

𝑟𝒩 =
𝑏
(3)
0

𝑎
(3)
0

= −
F𝑡(2, 1)
F𝑡(2, 2)

; (3.47)

𝑡𝒩 = �
𝑎
(3)
𝑛

𝑎
(3)
0

�

2

= �F𝑡(1, 1) −
F𝑡(1, 2)F𝑡(2, 1)

F𝑡(2, 2)
�

2

(3.48)

where F𝑡(𝑖, 𝑗) is corresponding term with 𝑖th row and 𝑗th column in matrix F𝑡. Then, if another

periodic rods are added with ℳ unit cells (in Figure 3.7) to the right hand side of the previous rod,

the transmission and reflection coefficients would be still evaluated with small changes.

Notice that for the right hand side structure, wave field (3.35) and (3.36) still can be used. To

easily distinguish the state vector, transfer matrix and material parameters, the upper bar is used

when these coefficients are for the right hand side rods. Then, the state vector is:

𝑆̄
(𝑝)
ℳ = [𝑎̄

𝑝
ℳ, 𝑏̄

𝑝
ℳ]𝑇 (3.49)

�
𝑎̄
(3)
ℳ

𝑏̄
(3)
ℳ

� = �
f̄11 f̄12

f̄21 f̄22
�

ℳ

�
𝑎̄
(3)
0

𝑏̄
(3)
0

� ≡ F̄𝑡 �
𝑎̄
(3)
0

𝑏̄
(3)
0

� �
f̄11 f̄12

f̄21 f̄22
�

ℳ

= F̄𝑡 (3.50)

Furthermore, the continuity at the interface of two different periodic rods is written as:

𝑢3𝒩 = 𝑢̄10 , 𝑁
3
𝒩 = 𝑁̄1

0 , at 𝑧 = (𝒩 + 1)𝐿2;

Thus, a matrix expression is obtained:

�
1 1

1 −1
� 𝑆

(3)
𝒩 = �

𝑒−i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2 𝑒i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2

𝑍̄𝐿

𝑍𝐿
𝑒−i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2 −

𝑍̄𝐿

𝑍𝐿
𝑒i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2

� 𝑆̄
(1)
0

Through some mathematical manipulations, a matrix to transfer two state vectors Fint can be ar-

rived:

Fint = �

𝑍̄𝐿+𝑍𝐿

2𝑍̄𝐿
𝑒i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2

𝑍̄𝐿−𝑍𝐿

2𝑍̄𝐿
𝑒i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2

𝑍̄𝐿−𝑍𝐿

2𝑍̄𝐿
𝑒−i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2

𝑍̄𝐿+𝑍𝐿

2𝑍̄𝐿
𝑒−i� ̄𝜌𝐿/ ̄𝐸𝐿𝜔 ̄𝐿2

� (3.51)

Thus, the final matrix connect initial and final state vector is:

F𝑔 = F̄𝑡FintF𝑡 (3.52)
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Thus, the transmission coefficients for these systems are: (stili assume 𝑏̄(3)ℳ = 0)

𝑡𝒩+ℳ = �
𝑎̄
(3)
ℳ

𝑎
(3)
0

�

2

= �F𝑔(1, 1) −
F𝑔(1, 2)F𝑔(2, 1)

F𝑔(2, 2)
�

2

(3.53)

where F𝑔(𝑖, 𝑗) is the corresponding term with 𝑖th row and 𝑗th column in matrix F𝑔.

3.4.3 Wave field for a finite waveguide

Displacement and force, which are included in the wave field for a finite deformed rod consisting

of 𝒩 unit cells type in the left hand side and ℳ unit cells in the right-hand side are derived

according to Chen et al. (2021). Furthermore, unit cells with only single type rod can be derived

with the same technique. In view of the equation (3.52) which connect the initial state vector

𝑆
(3)
0 and 𝑆̄

(3)
ℳ , still assuming 𝑏̄

(3)
ℳ = 0 (reflection wave at the output side is zero), the relation is

𝑏
(3)
0 /𝑎

(3)
0 = −F𝑔(2, 1)/F𝑔(2, 2). Without loss of generality, input amplitude is 𝑎(3)0 = 1 and the

state vector composed of the complex amplitude coefficients at the input side:

𝑆
(3)
0 = [1,−F𝑔(2, 1)/F𝑔(2, 2)]𝑇 (3.54)

which combined with transfer relation (3.41) with elementary transfer matrix (3.44). The coeffi-

cients for amplitude 𝑎𝑝𝒩 and 𝑏(𝑝)𝒩 in each phase of each rods can be determined. Then, according

to wave field (3.35) and (3.36), displacement and force in a finite rods are fully determined. Simi-

larly, the state vector of finite rods in right hand side is determined by considering the matrix Fint

(3.51). Then, the wave field of finite rods with one or two types unit cell is calculated through this

method (theoretically, the wave field is obtained no matter how many types of rods are connected).

If displacement function (2.10) is used, the wave field would be obtained with the analogy process,

which does not show here. If the frequency is at interface state, the wave field should be localised

on the geometric interface between two structures as shown in Figure 1.10.

3.5 Conclusion and Remarks

In this Chapter methodology, several methods which includes dispersion relation both in qua-

sicrystalline generated rods (𝑓, 𝐾𝐿𝑖) or laminates (𝐾𝑥𝐿𝑖, 𝐾𝑦𝐿𝑖) are shown. The tool for analysing

spectrum: universal torus is represented with enough mathematical support. In the next three

Chapters, several new conclusions concerning universal torus are investigated. Scattering coef-

ficients are calculated from the continuity condition of stress and displacement in mode shape
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orthogonality. However, it is an approximate calculation because the evanescent wave can influ-

ence the strict continuity condition.

Moreover, scattering coefficients and 𝑦 component Poynting vector can give the normalised en-

ergy. Thus, two crucial aspects, transmitted angle and energy, are evaluated in laminate problem

with detail numerical calculation steps. Newton method and inverse iteration as approaches to

calculate eigenvalue problems for terms 𝐾𝑦 or 𝑓 in transfer matrix with wavenumber 𝐾𝑥𝐿𝑖 or 𝐾𝐿𝑖

are clarified. The full process for numerical evaluated Zak phase is shown. The reflection, trans-

mission coefficients, and wave field in finite rods are obtained no matter one or more type rods,

which is very useful for calculating of surface impedance and verifying interface state existing.

These methods have been performed in software with the steps introduced here. The complete

MATLAB codes are shown in Appendix A, divided into three parts for axial wave propagation in

Fibonacci rods, anti-plane shear wave (SH) in Fibonacci laminates and the interface state of peri-

odic rods. Because there must be some numerical error in these techniques, the results are checked

by duplicating works in some previous publications with enough minor errors (for example, papers

in Chapter 2). Codes for plotting Kohmoto’s manifold are presented in Appendix C.
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Chapter 4 - Wave Propagation in Canonical Rods

Quasicrystalline generated rods are useful specially for cutting frequencies in a vibrating system,

for example, Micro-electromechanical system (MEMS) to devices able to suppress vibrations in

mechanical engineering. Therefore, the bandgap in dispersion spectra for these structure should be

investigated. A strong relationship exists between the dispersion spectra during wave propagation

in quasicrystalline generated rods and the trace of the global dynamic transfer matrix. In addition,

there are three different canonical ratios 𝐶(1,2,3) (2.38) which are also connected to different initial

saddle points on Kohmoto’s manifold with Fibonacci GM sequence. Thus, in this chapter, three

traces under different canonical configurations are investigated. Furthermore, the relationship

between two canonical frequencies𝜔𝑐𝑗 and𝜔𝑐𝑘 and three canonical ratios is established in Section

4.1. The period of canonical frequency, dynamic traces and Kohmoto’s invariant are obtained.

The principle for scaling is demonstrated with the required theoretical support in Section 4.2. The

scaling factor is associated with the maximum eigenvalue of the linearized map corresponding

to periodic orbits on Kohmoto’s manifold. The numerical results with three families and scaling

on periodic orbits with passband (or bandgap) length and traces verify the theoretical analysis in

Section 4.3. Furthermore, the reason for the scaling factor is the square root of the general scaling

factor is analysed in Section 4.5. It shows the canonical configuration and scaling effect can be

used as a new tool to design quasiperiodic generated rods more rationally.

4.1 Theoretical Analysis for Three Canonical Families

We have investigated a set of infinite two-phase structured rod (Figure 4.1 only shows 𝐹3 and 𝐹4)

whose elementary cells are generated by Fibonacci GM sequence, which is a particular case of the

class of generalised Fibonacci sequences that follow the recursion rule 𝐹𝑖 = 𝐹𝑖−1𝐹𝑖−2 with 𝐹0 = 𝑆;

𝐹1 = 𝐿 setting the initial conditions in terms of the two basic constituents 𝐿 and 𝑆. The lengths

of the two segments 𝐿 and 𝑆 are indicated with 𝑙𝐿 and 𝑙𝑆, while 𝐸𝑋 and 𝜌𝑋 (𝑋 ∈ (𝐿, 𝑆) denote

Young’s modulus and mass density per unit length of each element, respectively. The Floquet-

Bloch dispersion diagram for axial waves is governed uniquely by the trace of the transmission

matrix 𝑡𝑟𝑇𝑖, which is explained in Chapter 2. We recall equation for canonical ratios (2.38),

canonical frequencies (2.39) and initial three traces (2.26) in here:

�
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

1 + 2𝑗

1 + 2𝑘
, �

𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=
1 + 2𝑗

2𝑞
, �

𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

2𝑞

1 + 2𝑘
, with 𝑗, 𝑘, 𝑞 ∈ ℕ (4.1)
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Figure 4.1. Quasicrystalline rod generated by Fibonacci golden mean chains 𝐹3 and 𝐹4, figure
reproduced from Morini and Gei (2018)

𝜔𝑐𝑗 = 𝜋
�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1 + 2𝑗𝜔) ; 𝜔𝑐𝑘 = 𝜋

�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘𝜔) , with 𝑗𝜔, 𝑘𝜔 ∈ ℕ (4.2)

𝑥0 = 2cos(�
𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆)

𝑥1 = 2cos(�
𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿) (4.3)

𝑥2 = 2cos(�
𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆)cos(�

𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿) − 𝛽sin(�

𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆)sin(�

𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿)

Thus, we have enough material to analyse the properties of canonical configuration on dispersion

spectrum and trace for transfer matrix leading an adjustable and predictable bandgap and passband

dispersion layouts.

4.1.1 Canonical family no. one

Canonical family no. one is associated with the canonical ratio is:

𝐶(1) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

1 + 2𝑗

1 + 2𝑘
, 𝑗, 𝑘 ∈ ℕ (4.4)

Because the coordinates for saddle points is (𝑥2, 𝑥1, 𝑥0), the initial saddle points are (±√4 + 𝐼, 0, 0),

which means 𝑥0 and 𝑥1 are equal to zero at canonical frequency. By substituting canonical fre-

quency 𝜔𝑐𝑗 into the initial three traces (4.3) we obtain:

𝑥0 = 2cos(
𝜋

2
(1 + 2𝑗𝜔)) = 0; 𝑥1 = 2cos(

𝜋

2
(1 + 2𝑗𝜔)

1 + 2𝑘

1 + 2𝑗
) = 0 (4.5)

Because the relationship between parameters 𝑗𝜔 (𝑘𝜔) in canonical frequency and 𝑗 (𝑘) in canonical

ratio is not clear (they are equal or not), it is hard to determine if trace 𝑥1 = 0 in equation

(4.5). Therefore, considering that canonical ratio is an irreducible fraction and the lowest terms in

denominator and numerator and terms of the definition of (4.4) 𝐶(1) must be odd/odd, the odd term

(1+2𝑚) can be multiplied into canonical ratio to keep ratio and family (because odd×odd=odd):
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𝐶(1) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

1 + 2𝑗

1 + 2𝑘
=

(1 + 2𝑗)(1 + 2𝑚)

(1 + 2𝑘)(1 + 2𝑚)
, 𝑚 ∈ ℕ (4.6)

Next, assuming the relationship between canonical ratio and frequency (𝑗𝜔 and 𝑗 or 𝑘𝜔 and 𝑘) is:

1 + 2𝑗𝜔 = (1 + 2𝑗)(1 + 2𝑚); 1 + 2𝑘𝜔 = (1 + 2𝑘)(1 + 2𝑚) (4.7)

Now, by substituting canonical frequencies (4.7) into (4.2) with canonical family no. one, we

obtain:

𝜔𝑐𝑗 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1 + 2𝑗)(1 + 2𝑚) =

𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘)(1 + 2𝑚) = 𝜔𝑐𝑘 (4.8)

Then, the traces 𝑥0 = 𝑥1 = 0 and 𝑥2 = −𝛽 = −√4 + 𝐼. Hence, initial assumption (4.6)

satisfies properties of canonical frequency and saddle point on Kohmoto’s manifold. A numerical

example is shown here and verifies our theoretical analysis with simplified material and geometric

parameters 𝑙𝐿 = 2𝑙𝑆 = 1, 𝐸𝐿 = 𝐸𝑆 = 1 and 𝜌𝐿 = 1 and 𝜌𝑆 = 4𝐶2 which lead to a canonical ratio

of 𝐶(1) = 5/9, meaning 𝑗 = 2 and 𝑘 = 4. The initial three dynamic traces are shown in Figure 4.2

with 𝜔𝑐𝑗 and 𝑗𝜔 = 0, 1, 2, 3. Dimensionless frequency �𝜌𝐿/𝐸𝐿𝜔𝑙𝐿 can be used similar to work

from Morini and Gei (2018) and the variable in universal torus (3.1) (�𝜌𝐿/𝐸𝐿𝜔𝑙𝐿 = 𝜉𝐿). The red

Figure 4.2. The plot for initial dynamic trace 𝑥0 (black solid line), 𝑥1 (magenta dotted line) and
𝑥2 (blue dashed line) for cantorial ratio 5/9. Canonical frequency 𝜔𝑐𝑗 with different 𝑗𝜔 (vertical
black line satisfied canonical condition, vertical red lines not).

lines are associated with frequencies 𝜔𝑐𝑗 with 𝑗𝜔 = 0, 1, 3 and black vertical line represents 𝑗𝜔 =

2. Through the definition of canonical frequency and saddle points (±√4 + 𝐼, 0, 0), only 𝑗𝜔 = 2

satisfies the condition for canonical frequency because 𝑥0 and 𝑥1 should vanish at this frequency

but not 𝑥2. It also means that the parameter 𝑗𝜔 cannot be an arbitrary value. To further understand

the principle behind the relationship between 𝑗, 𝑘 and 𝑗𝜔, 𝑘𝜔, the dimensionless frequency limit is

increased to 45 in Figure 4.3 (a) and with other figure (b) but count with 𝑘𝜔. In terms of numerical

results, the frequency at 𝑗𝜔 = 2 is the same with 𝑘𝜔 = 4 simultaneously satisfied definition of

canonical frequency. It is, in particular, the parameters 𝑗 and 𝑘 in canonical ratio (4.4). In addition,

the frequency at 𝑗𝜔 = 7 is same with 𝑘𝜔 = 13 and also being canonical frequency, because the
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Figure 4.3. The plot for initial dynamic trace 𝑥0 (black solid line), 𝑥1 (magenta dotted line) and 𝑥2
(blue dashed line) for cantorial ratio 5/9. (a) canonical frequency 𝜔𝑐𝑗 with different 𝑗𝜔 (vertical
black lines satisfied canonical condition, vertical red lines not). (b) canonical frequency 𝜔𝑐𝑘 with
different 𝑘𝜔 (vertical black lines satisfied canonical condition, vertical cyan lines not).

canonical ratio (1 + 2 ∗ 7)/(1 + 2 ∗ 13) = 5/9 = (1 + 2 ∗ 2)(1 + 2 ∗ 1)/(1 + 2 ∗ 4)(1 + 2 ∗ 1)

do not change. According our assumption (4.7), the 𝑚 = 1 is this case so that equation (4.7) in

fact explains the relationship between parameters 𝑗𝜔, 𝑘𝜔 and 𝑗, 𝑘. Thus, the relationship between

the two parameters in canonical frequency and canonical ratio is exactly equation (4.8) for family

no. one.

Because 𝑚 can be an arbitrary natural number, the example in Figure 4.3 and equation (4.8) for

canonical family no. one demonstrates an infinite number of canonical frequencies in the disper-

sion spectra. The periodic canonical structure can be found. Therefore, the canonical frequency

associated with canonical family no. one have been derived from the initial dynamic trace and

saddle point successfully.

4.1.2 Canonical family no. two

Canonical family no. two is associated with the canonical ratio is:

𝐶(2) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=
1 + 2𝑗

2𝑞
, 𝑗, 𝑞 ∈ ℕ (4.9)

Because the coordinates for saddle points is (𝑥2, 𝑥1, 𝑥0), the initial saddle point is (0, ±√4 + 𝐼, 0),

which means 𝑥0 and 𝑥2 equal to zero, 𝑥1 is not at canonical frequency. Similar to family no.
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Figure 4.4. The plot for initial dynamic trace 𝑥0 (black solid line), 𝑥1 (magenta dotted line) and
𝑥2 (blue dashed line) for cantorial ratio 1/4. Canonical frequency 𝜔𝑐𝑗 with different 𝑗𝜔 (vertical
black lines all satisfied canonical condition).

one, considering 1 + 2𝑗 and 2𝑞 do not have common factors and equation (4.9) is already in the

lowest terms. Furthermore, as definition for a family no. two, 𝐶(2) must be odd/even, the odd term

(1 + 2𝑚) still can be used to multiply into numerator and denominator simultaneously (because

odd×even=even):

𝐶(2) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=
1 + 2𝑗

2𝑞
=
(1 + 2𝑗)(1 + 2𝑚)

2𝑞(1 + 2𝑚)
, 𝑚 ∈ ℕ (4.10)

In family no. two, the canonical frequency 𝜔𝑐𝑘 is not the canonical frequency now because 𝑥1 =

2cos(𝜋
2
(1 + 2𝑘𝜔)) = 0, which is contrary to the definition of initial saddle point. In addition,

taking same assumption similar to equation (4.7) by substituting 𝜔𝑐𝑗 into dynamic traces (4.3), we

obtain:

𝑥0 = 2cos(
𝜋

2
(1 + 2𝑗)(1 + 2𝑚)) = 0; 𝑥1 = 2cos(

𝜋

2
2𝑞(1 + 2𝑚)) = ±2

𝑥2 = 2sin(
𝜋

2
2𝑞(1 + 2𝑚)) = 0 (4.11)

which is fully satisfied the definition of family no. two. Still, a numerical example is given to

verify our theoretical analysis with 𝐶(2) = 1/4, which means 𝑗 = 0 and 𝑞 = 2 with dimensionless

frequency limit 45 as depicted in Figure 4.4.

Through the assumption (4.7), 1 + 2𝑗𝜔 = (1 + 2𝑗)(1 + 2𝑚) and in this case 𝑗 = 0 ⇒ 𝑗𝜔 = 𝑚.

Therefore, the parameters 𝑗𝜔 can be any natural number and, as expected, four 𝑗𝜔 in Figure 4.4

are the canonical frequencies with checked the definition of an initial saddle point. Moreover, as

the canonical ratio (4.9), there is another canonical frequency that can be deduced, which is called

𝜔𝑐𝑞:

𝜔𝑐𝑞 =
𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(2𝑞)(1 + 2𝑚) = 𝜔𝑐𝑗 (4.12)

Therefore, the canonical frequency associated with canonical family no. two has been derived

73



PhD Thesis, Zhijiang Chen, 2022

from the initial dynamic trace and saddle point successfully.

4.1.3 Canonical family no. three

In terms of canonical family no. three, the steps for canonical frequency derivation are similar to

family no. two and start from the associated canonical ratio:

𝐶(3) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

2𝑞

1 + 2𝑘
, 𝑘, 𝑞 ∈ ℕ (4.13)

Because the coordinates for saddle points is (𝑥2, 𝑥1, 𝑥0), the initial saddle point on Kohmoto’s

manifold is (0, 0, ±√4 + 𝐼), which represented dynamic traces 𝑥1 and 𝑥2 are zero but 𝑥0 =

±√4 + 𝐼 at canonical frequency. Still, two terms 1 + 2𝑘 and 2𝑞 are in lowest terms and times

(1 + 2𝑚) simultaneously on numerator and denominator to keep the form 𝐶(3) =even/odd:

𝐶(3) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

2𝑞

1 + 2𝑘
=

2𝑞(1 + 2𝑚)

(1 + 2𝑘)(1 + 2𝑚)
, 𝑚 ∈ ℕ (4.14)

As for family no. three, the canonical frequency 𝜔𝑐𝑗 is definitely not the solution here because

of 𝑥0 = 2cos(𝜋
2
(1 + 2𝑗𝜔)) = 0 which in contrast of family no. three definition. Moreover,

taking same assumption similar to equation (4.7) and substitution 𝜔𝑐𝑘 into dynamic traces (4.3),

we obtain:

𝑥1 = 2cos(
𝜋

2
(1 + 2𝑘)(1 + 2𝑚)) = 0, 𝑥2 = 2sin(

𝜋

2
2𝑞(1 + 2𝑚)) = 0 (4.15)

Through the canonical ratio (4.14), there is another canonical frequency 𝜔𝑐𝑞 that can be deduced

like family no. two:

𝜔𝑐𝑞 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(2𝑞)(1 + 2𝑚) = 𝜔𝑐𝑘 (4.16)

There is a numerical example for family no. three with 𝐶(3) = 4/3 corresponding to 𝑞 = 2 and

𝑘 = 1 with dimensionless frequency limit 16 as shown in Figure 4.5. As expected, frequencies

with 𝑘𝜔 = 1, 4 are canonical frequency and satisfied definition of initial saddle points (because

1 + 2 × 4 = (1 + 2 × 1)(1 + 2 × 1)). Thus, the assumption meets theory again. The canonical

frequency associated with canonical family no. three have been derived from the initial dynamic

trace and saddle point successfully.
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Figure 4.5. The plot for initial dynamic trace 𝑥0 (black solid line), 𝑥1 (magenta dotted line) and
𝑥2 (blue dashed line) for cantorial ratio 4/3. Canonical frequency 𝜔𝑐𝑘 with different 𝑘𝜔 (vertical
black lines satisfied canonical condition, vertical cyan lines not).

4.1.4 The period for canonical frequency and dynamic trace

Indeed, there are infinite number of canonical frequencies in dispersion relation. It is not hard to

find the period of canonical frequency. First, by substituting 𝑚 + 1 into equation (4.8), subscript

𝑚 + 1 means (1 + 2(𝑚 + 1)):

𝜔𝑐𝑗,𝑚+1 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1 + 2𝑗)(3 + 2𝑚) =

𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘)(3 + 2𝑚) = 𝜔𝑐𝑘,𝑚+1 (4.17)

Using equation (4.17) minus (4.8) to obtain the canonical frequency period:

𝜔𝑐𝑗,𝑚+1 − 𝜔𝑐𝑗,𝑚 = 𝜔𝑐𝑘,𝑚+1 − 𝜔𝑐𝑘,𝑚 =
𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(1 + 2𝑗) =

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(1 + 2𝑘) (4.18)

Equation (4.18) is period for canonical family no. one, which is determined material and geomet-

rical parameters and 𝑗 and 𝑘 in canonical ratio. The period for canonical family no. two and three

can be obtained with the same process as the following equations:

𝜔𝑐𝑗,𝑚+1 − 𝜔𝑐𝑗,𝑚 = 𝜔𝑐𝑞,𝑚+1 − 𝜔𝑐𝑞,𝑚 =
𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(1 + 2𝑗) =

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(2𝑞) (4.19)

𝜔𝑐𝑘,𝑚+1 − 𝜔𝑐𝑘,𝑚 = 𝜔𝑐𝑞,𝑚+1 − 𝜔𝑐𝑞,𝑚 =
𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(2𝑞) =

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(1 + 2𝑘) (4.20)

Equations (4.18), (4.19) and (4.20) are period for canonical frequency. The period for the initial

three dynamic traces is significant. As the fact that Fibonacci sequence is composed of elementary

phase 𝐿 and 𝑆, the period for the initial three traces is just the lowest common period for 𝑥0 and

𝑥1. Then:

�
𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆 = 𝑆2𝜋 = 𝐿2𝜋 = �

𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿, (𝑆, 𝐿 ∈ ℕ) (4.21)
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where parameters 𝑆 and 𝐿 do not have common factors and by substituting canonical ratio (4.4)

into (4.21):
1 + 2𝑗

1 + 2𝑘
=
𝑆

𝐿
(4.22)

Both sides of equation (4.22) are in lowest terms so that 𝑆 = 1 + 2𝑗 and 𝐿 = 1 + 2𝑘 and period

for trace in the canonical family no. one is:

period
1
= 2

𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(1 + 2𝑗) = 2

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(1 + 2𝑘) (4.23)

The period for the other two families can also be derived with the same process:

period
2
= 2

𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(1 + 2𝑗) = 2

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(2𝑞) (4.24)

period
3
= 2

𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(2𝑞) = 2

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(1 + 2𝑘) (4.25)

It is interesting to find the relationship between canonical frequency and period of dynamic trace.

The period of canonical frequency is half of period of the trace. Thus, there must be two canonical

frequencies in one period. From canonical frequency (4.8), by substituting 𝑚 = 0, 1 into it and

deviated by period of traces (4.23):

𝜔𝑐𝑘,0

period
1

=
1

4
,

𝜔𝑐𝑘,1

period
1

=
3

4
(4.26)

There are precisely two canonical frequencies at the quarter and three-quarters of one trace period.

Hence, the investigation method is usually in one period of trace and obtaining canonical fre-

quencies to improve the computation speed in software. With the same process, the relationship

between canonical frequencies and period of the trace for other families are the same as family no.

one.

4.1.5 Period of Kohmoto’s invariant

Next, according to simplified Kohmoto’s invariant (4.27):

𝐼 = (𝛽2 − 4)sin2(�
𝜌𝐿

𝐸𝐿
𝜔𝑙𝐿)sin2(�

𝜌𝑆

𝐸𝑆
𝜔𝑙𝑆) (4.27)

Half of period in equations (4.23), (4.24) and (4.25) when the concept of canonical is applied to
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structure is the period or Kohmoto’s invariant, because of period of trigonometric function sin(𝜔)

is 2𝜋 and sin2(𝜔) is 𝜋. It also means canonical frequency and Kohmoto’s invariant share same

period. By substituting canonical frequency (4.8) into (4.27), the Kohmoto’s invariant becomes:

sin(�
𝜌𝑆

𝐸𝑆

𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1 + 2𝑗)(1 + 2𝑚)𝑙𝑆) = 1; sin(�

𝜌𝐿

𝐸𝐿

𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘)(1 + 2𝑚)𝑙𝐿) = 1

𝐼 = 𝛽2 − 4 (4.28)

Therefore, Kohmoto’s invariant reaches the maximum value as the canonical frequency for family

no. one because of the properties of sine function. When canonical configuration belongs family

no. two or three, as expressions (4.12) and (4.16), one of two sin(�𝜌𝑋/𝐸𝑋𝜔𝑙𝑋) terms must be

zero and then invariant is zero. This also helps us to distinguish whether family no. two or three.

Kohmoto’s invariant is a crucial invariant governing the scaling factor at canonical frequency dur-

ing eigenvalue of Jacobian analysis and self-similarity of passband layouts. In addition, this is also

a key clue when investigating negative refraction in Fibonacci laminates, significantly as 𝐼 = 0,

which is also implied other periodic orbits existed in Kohmoto’s manifold except for saddle points.

More results concerning Kohmoto’s invariant are shown in the following few sections.

4.1.6 Table for three canonical families

The characteristics from three canonical family structures (canonical frequency, ratio and period

of trace) are shown in Table 4.1.
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Table 4.1. The characteristics of three canonical families

Ratio 𝐶(1) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

1+2𝑗

1+2𝑘

Family no. 1 𝜔𝑐 𝜔𝑐𝑗 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1 + 2𝑗)(1 + 2𝑚) =

𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘)(1 + 2𝑚) = 𝜔𝑐𝑘

Period 𝜔𝑡 = 2
𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(1 + 2𝑗) = 2

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(1 + 2𝑘)

Ratio 𝐶(2) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

1+2𝑗

2𝑞

Family no. 2 𝜔𝑐 𝜔𝑐𝑗 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1 + 2𝑗)(1 + 2𝑚) =

𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(2𝑞)(1 + 2𝑚) = 𝜔𝑐𝑞

Period 𝜔𝑡 = 2
𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(1 + 2𝑗) = 2

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(2𝑞)

Ratio 𝐶(3) = �
𝜌𝑆𝐸𝐿

𝜌𝐿𝐸𝑆

𝑙𝑆

𝑙𝐿
=

2𝑞

1+2𝑘

Family no. 3 𝜔𝑐 𝜔𝑐𝑞 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(2𝑞)(1 + 2𝑚) =

𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘)(1 + 2𝑚) = 𝜔𝑐𝑘

Period 𝜔𝑡 = 2
𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(2𝑞) = 2

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(1 + 2𝑘)
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4.2 Theory of Scaling of the Spectrum

The passbands layout in the neighbourhood of a frequency at which a 𝑝-point periodic orbit takes

place displays a self-similar pattern controlled by a scaling factor which is revealed by perturbing

the corresponding periodic orbit and linearising map (4.29) (Kohmoto and Oono 1984):

𝒯𝑔( �𝑥𝑖, �𝑦𝑖, �𝑧𝑖) = (�𝑥
𝑖+1

, �𝑦𝑖+1, �𝑧𝑖+1) = (�𝑥𝑖 �𝑦𝑖 − �𝑧𝑖, �𝑥𝑖, �𝑦𝑖) (4.29)

In particular, by denoting 𝑅𝑖 = 𝑃𝑖(𝜔 + 𝛿𝜔), where 𝛿𝜔 is the perturbation in frequency and:

𝛿r𝑖 = 𝑅𝑖 − 𝑃𝑖 (4.30)

where 𝛿r𝑖 is perturbation in points on Kohmoto’s manifold, it turns out that after 𝑝 applications of

map (4.29) the position of 𝑅𝑖+𝑝 can be approximated by the linear relationship:

𝑅𝑖+𝑝 = 𝒯𝑔
𝑝 (𝑅𝑖) → 𝛿r𝑖 = A𝛿r𝑖 (4.31)

where 3 × 3 matrix A is given by A = J𝑔(𝑃𝑖+𝑝)...J𝑔(𝑃𝑖), and J𝑔 is a Jacobian (2.33) calculated in

the periodic point concerned. As detJ = −1, detA can be either 1 or −1 depending on whether

𝑝 is even or odd, respectively. One eigenvalue for matrix A is 𝜗0 = 1 corresponding the eigen-

vector 𝜓0 with the additional two eigenvalues, 𝜗+ and 𝜗− (𝜗+ = 1/𝜗−), and the corresponding

eigenvectors are 𝜓±. For GM sequence, if 𝑃1 is assumed as first saddle point, the A would be:

A =

⎡
⎢
⎢
⎢
⎣

𝐼(𝜔)2 + 7𝐼(𝜔) + 13 (𝐼(𝜔) + 4)3/2 0

(𝐼(𝜔) + 4)3/2 𝐼(𝜔) + 5 0

0 0 1

⎤
⎥
⎥
⎥
⎦

and then, the eigenvalues except 𝜗0 are:

𝜗±(𝜔) =
1

4
(�4 + (4 + 𝐼 (𝜔))

2
± (4 + 𝐼 (𝜔)))2

Thus, 𝛿r𝑖 can be expressed as linear combination of three eigenvectors 𝜓0, 𝜓+, 𝜓−; 𝐶(+,−,0) are

the general coefficients in linear space associated with eigenvectors:

𝛿r𝑖 = 𝐶+𝜓+ + 𝐶−𝜓− + 𝐶0𝜓0 (4.32)

and, we obtain:
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plan with ψ+, ψ-

Figure 4.6. Part of Kohmotos surface, figure reproduced from Morini and Gei (2018).

𝛿r𝑖+𝑝 = A𝛿r𝑖 = 𝐶+𝜗+𝜓+ + 𝐶−𝜗−𝜓− + 𝐶0𝜗0𝜓0 (4.33)

The A with the eigenvector 𝜓0 for 𝜗0 = 1 must be orthogonal to another two eigenvectors 𝜓±

(Strang 2021). As 𝜗+ (𝜔) ≫ 𝜗0 = 1 ≫ 𝜗− (𝜔), if the 𝑘̄ times are applied to maps, the result

would be:

𝛿r𝑖+𝑝𝑘̄ = 𝐶+(𝜗+)
𝑘̄
𝜓+ + 𝐶−(𝜗−)

𝑘̄
𝜓− + 𝐶0𝜗0 ≈ 𝐶+(𝜗+)

𝑘̄
𝜓+ (4.34)

It can be derived that from every complete iteration for the Fibonacci sequence, the evolution of 𝛿r𝑖

can be approximated expressed only by the term along eigenvectors 𝜓+ respectively. It is called

unstable eigendirections (Arnold et al. 2013). As a consequence, equation (4.34) is approximately

by:

𝛿r𝑖+𝑝𝑘̄ ≈ (𝜗+)
𝑘̄
𝛿r̂𝑖 (4.35)

where 𝛿r̂𝑖 = 𝐶+𝜓+. Based on the principles of renormalisation theory, equation (4.35) provides

the approximate prediction of the position of 𝑅𝑖 from the periodic point 𝑃𝑖. Thus, the scaling

properties of non-periodic bounded orbits about periodic points of the linear transformations are

determined by the maximum eigenvalues 𝜗+ and the associated eigenvector.

Scaling is illustrated by a case having a narrow stop band for which it is shown the role of the eigen-

value 𝜗+. For instance, considering the stop band (𝜔𝐴∗ − 𝜔𝐵∗) centred at frequency for sequence

𝐹8 which is saddle point 𝑃1 as shown in Figure 4.6. Points 𝑅8(𝜔𝐴∗) and 𝑅8(𝜔𝐵∗) are therefore on

the boundary of the all passband region on Kohmoto’s manifold. In the neighbourhood of point 𝑃1,

the positions of the two points with respect to 𝑃1 can be approximated by two vectors, respectively

𝛿r8(𝜔𝐴∗) and 𝛿r8(𝜔𝐵∗) on the tangent plane of 𝑃1 whose equation is 𝑧̃ = �4 + 𝐼(𝜔), then, two

equations yield:

𝛿r̂2(𝜔𝐴∗) =
𝛿r8(𝜔𝐴∗)

𝜗+
and 𝛿r̂2(𝜔𝐵∗) =

𝛿r8(𝜔𝐵∗)
𝜗+

(4.36)
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Eigenvector 𝜓0 must be orthogonal to the tangent plane of this saddle point and another two

eigenvectors 𝜓±, these two new eigenvectors are much shorter than the parent vectors 𝛿r8(𝜔𝐴∗)

and 𝛿r8(𝜔𝐵∗). Moreover, 𝛿r̂2(𝜔𝐴∗) and 𝛿r̂2(𝜔𝐵∗) projections to the Kohmoto’s surface identify

are approximated with points 𝑅2(𝜔𝐴∗) and 𝑅2(𝜔𝐵∗), respectively, whose coordinates 𝑧̃2(𝜔𝐴∗) and

𝑧̃2(𝜔𝐵∗) are greater than 2, therefore the two frequencies are within a band gap for 𝐹2. Now,

rewrite 𝛿r̂2(𝜔𝐴∗) as:

𝐶+𝜔𝐴∗𝜓
+ = 𝛿r̂2(𝜔𝐴∗) = Δ𝑟𝐴2 (𝜔)|𝜔=𝜔𝐴∗g𝐴 (4.37)

g
𝐴

is a elementary vector with same direction of 𝜓+, then Δ𝑟𝐴2 (𝜔)|𝜔=𝜔𝐴∗g𝐴 = 𝐶+𝜔𝐴∗, which can be

expanded in Taylor series and 𝛿r̂2 �𝜔𝑃𝑖� = 0 about 𝜔𝑃𝑖, retaining only the first order:

Δ𝑟𝐴2 (𝜔𝐴∗) = 𝐶+𝜔𝐴∗ ≈ 𝐷(𝜔𝐴∗ − 𝜔𝑃𝑖) (4.38)

Then, the approximate frequency 𝜔̃𝐴 at the edge of a passband for the sequence 𝐹2 is such that

Δ𝑟𝐴2 (𝜔̃𝐴) matches the norm of vector 𝛿r8(𝜔𝐴∗):

Δ𝑟𝐴2 (𝜔̃𝐴) = ‖𝛿r8(𝜔𝐴∗)‖ (4.39)

With the same process, the Δ𝑟𝐴2 (𝜔̃𝐴) = 𝐶+𝜔̃𝐴 ≈ 𝐷(𝜔̃𝐴 − 𝜔𝑃𝑖). Using equations (4.38) and (4.39)

yields:

𝐷(𝜔̃𝐴 − 𝜔𝑃𝑖) = 𝜗+𝐷(𝜔𝐴∗ − 𝜔𝑃𝑖) (4.40)

Therefore, the following final results can be recorded:

(𝜔̃𝐴 − 𝜔𝑃𝑖) = 𝜗+(𝜔𝐴∗ − 𝜔𝑃𝑖) (4.41)

For 𝛿r8(𝜔𝐵∗) and 𝛿r̂2(𝜔𝐵∗) with same procedure, obtaining (𝜔̃𝐵 − 𝜔𝑃𝑖) = 𝜗+(𝜔𝐵∗ − 𝜔𝑃𝑖).

Consequences, the analytical scaling process is deduced:

𝜔𝐴∗ − 𝜔𝐵∗ =
�𝜔𝐴 − �𝜔𝐵

𝜗+
(4.42)

With the proposed case, the scaling occurring between parts of the diagrams of order 𝐹𝑖 and 𝐹𝑖+𝑝

is governed by equation (4.42), coherently with the linearisation of the complete-cycle transfor-

mation 𝒯𝑔. In addition, if we only considering half period of complete-cycle transformation 𝒯𝑔 (𝐹𝑖

and 𝐹𝑖+𝑝/2, if 𝑝 can be divisible by 2), which means (𝜔𝐴∗ − 𝜔𝐵∗) and the bandgap (𝜔𝐴′ − 𝜔𝐵′)

can be scaled without fully theory support but numerical proved by Morini and Gei (2018), which

are:
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𝜔𝐴∗ − 𝜔𝐵∗ =
�𝜔𝐴′ − �𝜔𝐵′

𝜆+
(4.43)

where �𝜔𝐴′ and �𝜔𝐵′ are the two approximate frequencies at the edge of the bandgap. According to

Morini and Gei (2018), the scaling factor is 𝜆+ ≈ √𝜗+. Indeed, this is not surprising because 𝜆+

dominates the scaling of the initial bandgap of the case after the application of the half of complete

iterations.

4.3 Numerical Results for Dispersion Relation and Local Scaling About

Periodic Point

4.3.1 Results for canonical family no. one

By substituting 𝑗 = 0 and 𝑘 = 0 into canonical ratio (4.4) yields the value 𝐶 = 1, which belongs

to family no. one. The passband layouts, initial three traces and Kohmoto’s invariant are plotted to

facilitate the analysis of their relationship. The Fibonacci sequence reachs 𝐹11 for a better analysis

of the scaling effect. In Figure 4.7 (a), the blue segments are the passband of dynamic traces as-

sociated with a dimensionless frequency corresponding to the Fibonacci sequence order 𝐹𝑖. Being

𝐹0,1 waveguides composed of a single material, the wave with any frequency can propagate with-

out bandgap. In addition, the passband, dynamic trace and Kohmoto invariant are periodic and

symmetric with respect to the canonical frequencies. The canonical frequencies are also located at

a quarter and three quarters in one period of traces, which verified our theoretical findings. Initial

three traces satisfy condition 𝑥0 = 𝑥1 = 0, 𝑥2 = ±𝛽 at canonical frequency for family no. one.

Then, the effects for scaling are checked with compared the bandgap frequency length and associ-

ated dynamic traces centred at the first canonical frequency for 𝐹2, 𝐹5, 𝐹8 and 𝐹11. The Kohmoto’s

invariant at canonical frequency is equation (4.28) 𝐼 = 2.25 with the maximum eigenvalue of

Jacobian (4.33) 𝜗+6 ≈ 41.038. the subscript 6 means the number of complete periodic points. It

is more larger than other two eigenvalues 𝜗06 = 1 and 𝜗−6 ≈ 0.0243. The numerical results are

shown in Table 4.2.

Table 4.2. Numerical results for bandgap length at first canonical frequency for Fiboancci se-
quence 𝐹2, 𝐹5, 𝐹8 and 𝐹11 with ratio 𝐶 = 1, scaled factors are 𝜗+6 = 41.038, 𝜆+6 = �𝜗+6 ≈ 6.406

𝐹2 bandgap 𝐹5 bandgap 𝐹8 bandgap 𝐹11 bandgap

0.679 0.135 0.0210 0.00327

𝐹2/𝐹8 𝐹5/𝐹11 𝐹5/𝐹8 𝐹8/𝐹11

32.436 41.183 6.429 6.423
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Figure 4.7. Three plots of canonical ratio 1 with dimensionless frequency 𝜉𝐿 in one dynamic trace
period, (a) the passband layout for a Fibonacci sequence 𝐹0 to 𝐹11. (b) initial three dynamic traces
𝑥0, 𝑥1 and 𝑥2. (c) Kohmoto’s invariant with periodic points. Red vertical lines are canonical
frequencies.

Even numerical result 𝐹2/𝐹8 ≈ 32.436 is not perfectly equal to the maximum eigenvalue 𝜗+6 =

41.038. However, after three iterations, the result 𝐹5/𝐹11 ≈ 41.183 almost matchs eigenvalue due

to the equation (4.34) with 𝑘̄ increasing. Moreover, the links between 𝐹𝑖 and 𝐹𝑖+3 are verified with

results 𝐹5/𝐹8 ≈ 6.429 and 𝐹8/𝐹11 ≈ 6.423, which almost approximate square root of eigenvalue

𝜆+6 = �𝜗+6 ≈ 6.406.

From Figure 4.8 (a), the effects for local scaling passband layouts and traces are described in detail.

The length of bandgap of scaled 𝑥5(𝜔), 𝑥8(𝜔𝜆+6 ) and 𝑥11(𝜔𝜗
+
6 ) are almost the same with little

different scaled 𝑥2(𝜔/𝜆
+
6 ). These results agree with theoretical analysis (4.34), which implies

the increasing direction of perturbation approximating to eigenvector 𝜓+ with 6𝑘̄ times iterations.

The sign of trace with 6 iterations is same but opposite with 3 iterations, for instance, scaled 𝑥2

and 𝑥8 or 𝑥5 and 𝑥11. This is because the saddle point with complete 6 iterations goes back to

initial point but opposite saddle point with half 3 iterations on Kohmoto’s manifold as shown in

Figure 4.8 (b). The Kohmoto’s manifold with red area demonstrated at least one of three traces

are in bandgap |𝑥̃| > 2, |𝑦̃| > 2 or |𝑧̃| > 2 and yellow represented all three traces in passband
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Figure 4.8. Canonical GM rod with 𝐶 = 1 (a) Plot of traces 𝑥2(𝜔/𝜆+6 ), 𝑥5(𝜔), 𝑥8(𝜔𝜆
+
6 ) and

𝑥11(𝜔𝜗
+
6 ) in the neighbourhood of canonical frequency (red dash vertical line). (b) Plot of

Kohmoto’s manifold at canonical frequency with periodic saddle point.

(|𝑥̃|, |𝑦̃|, |𝑧̃|) ≤ 2, which is used to illustrate local scaling principle by Morini and Gei (2018).

There are other periodic orbits associated with 𝐼 = 0 in Figure 4.7 (c). They are frequency

at complete period 𝜔𝑡 (𝜔 = 0 is also period point) and half period 𝜔𝑡/2 which are associated

with fixed points (2, 2, 2)𝑇 (𝑅𝑖+1 = 𝑅𝑖) and 3-periodic points with initial traces (2, −2,−2)𝑇

(𝑅𝑖+3 = 𝑅𝑖). According to principle for local scaling, the Jacobian is analysed similar to saddle

points but only with 1 iteration or 3 iterations. The maximum eigenvalue 𝜗+𝑖 can be obtained (𝑖 is

the number of iteration) which are 𝜗+1 = (√5 + 3)/2 = 𝜙2 and 𝜗+3 = 𝜙6. Then, the scaling can

be performed on passband length with same procedures similar to before but changed frequency

𝜔𝑐 into 𝜔𝑡 and 𝜔𝑡/2.

Table 4.3. Numerical results for passband length for Fiboancci sequence 𝐹2 to 𝐹11 with ratio
𝐶 = 1 at 𝜔 = 0, scaled factor is 𝜙𝑔 ≈ 1.618

𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8 𝐹9 𝐹10 𝐹11

1.231 0.841 0.547 0.358 0.225 0.141 0.0872 0.0539 0.0334 0.0206

𝐹2/𝐹3 𝐹3/𝐹4 𝐹4/𝐹5 𝐹5/𝐹6 𝐹6/𝐹7 𝐹7/𝐹8 𝐹8/𝐹9 𝐹9/𝐹10 𝐹10/𝐹11

1.464 1.536 1.531 1.589 1.600 1.613 1.615 1.617 1.618

From Table 4.3, it is very strange that the scaling factor does not approximate the maximum

eigenvalue 𝜗+1 = 𝜙2 ≈ 2.618 but the square root of it 𝜙 ≈ 1.618. The reason will be explained

in the next subsection.

From Table 4.4, the scaling factor is still the square root of the maximum eigenvalues �𝜗+3 =

𝜙3 ≈ 4.236. In addition, the passband length at frequency 𝜔𝑡/2 is double times compared with at
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frequency 𝜔𝑡. This is due to the symmetric properties of passband layouts in canonical structures

and can be applied to other canonical ratios, which can be seen from Figure 4.7 (a). In addition,

the scaled traces and Kohmoto’s invariant are plotted for the explanation as depicted in Figure

4.9. The scaling factor is the square root of the maximum eigenvalue according to the results.

(b)

fixed point R1

R2R3

Scaled pass
band
(√ϑ+=ϕ3)

ξL

Figure 4.9. Canonical GM rod with 𝐶 = 1 (a) Plot of traces 𝑥2(𝜔/𝜙3), 𝑥5(𝜔), 𝑥8(𝜔𝜙3) and
𝑥11(𝜔𝜙

6) in the neighbourhood of half period frequency (red dash vertical line). (b) Plot of
Kohmoto’s manifold with fixed point (black) and 3-periodic points (cyan).

The effect becomes more precise with the increasing of Fibonacci order 𝑖 similar to canonical

frequencies.

Let us introduce another case in family no. one obtained from substitution 𝑗 = 1, 𝑘 = 0 and

ratio 𝐶 = 3, with the same process in case 𝐶 = 1, the passband layouts, traces, and Kohmoto

invariant are plotted. From Figure 4.10, the passband area associated with 𝐹2 to 𝐹11 with a large

portion that looks corresponding to Kohmoto’s invariant is zero. Still, the effects of local scaling

are checked with bandgap length similar to case ratio 𝐶 = 1 at the first canonical frequency for

𝐹2,5,8,11. The Kohmoto’s invariant is 𝐼 ≈ 34.028 and the maximum eigenvalue is 𝜗+6 ≈ 1448.111

which is much larger than other two eigenvalues 𝜗06 = 1 and 𝜗−6 ≈ 0.000691. Thus, the same

procedure can be duplicated to check local scaling. Moreover, the traces 𝑥0,1,2 still satisfy the

Table 4.4. Numerical results for bandgap length for Fiboancci sequence 𝐹2, 𝐹5, 𝐹8 and 𝐹11 with
ratio 𝐶 = 1 at 𝜔 = 𝜔𝑡/2, scaled factor is �𝜗+3 = 𝜙3 ≈ 4.236

𝐹2 passband 𝐹5 passband 𝐹8 passband 𝐹11 passband

2.462 0.715 0.174 0.0413

𝐹2/𝐹5 𝐹5/𝐹8 𝐹8/𝐹11

3.442 4.102 4.226
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Figure 4.10. Three plots of canonical ratio 3 with dimensionless frequency 𝜉𝐿 in one dynamic
trace period, (a) the passband layout for a Fibonacci sequence 𝐹0 to 𝐹11. (b) initial three dynamic
traces 𝑥0, 𝑥1 and 𝑥2. (c) Kohmoto’s invariant. Red vertical lines are canonical frequencies.

condition 𝑅1 = (±𝛽, 0, 0) at canonical frequency for family no. one.

From Table 4.5, the initial numerical result 𝐹2/𝐹8 ≈ 305.921 is far away from the maximum

eigenvalue 𝜗+6 ≈ 1448.111. Converse, after three iterations the results 𝐹5/𝐹11 ≈ 1450.000

almost matching the value 𝜗+6 . The reason is same with case ratio 𝐶 = 1. In addition, the ratio

between 𝐹𝑖 and 𝐹𝑖+3 also verified with results 𝐹5/𝐹8 ≈ 38.443 and 𝐹8/𝐹11 ≈ 37.807, which almost

approximate square root of eigenvalue 𝜆+6 = �𝜗+6 ≈ 38.054.

Table 4.5. Numerical results for bandgap length at first canonical frequency for Fiboancci se-
quence 𝐹2, 𝐹5, 𝐹8 and 𝐹11 with ratio 𝐶 = 3, scaled factors are 𝜗+6 ≈ 1448.111, 𝜆+6 = �𝜗+6 ≈

38.054

𝐹2 bandgap 𝐹5 bandgap 𝐹8 bandgap 𝐹11 bandgap

0.730 0.0911 0.00239 6.283e-5

𝐹2/𝐹8 𝐹5/𝐹11 𝐹5/𝐹8 𝐹8/𝐹11

305.921 1450.000 38.443 37.807

From Figure 4.11, the effect of local scaling is perfect performed with 𝐹5,8,11 except 𝐹2. The
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ξL

F11
F8
F5
F2

R1

R3

R5

Bandgap
Scaled Pass-
band
(ϑ+=1448.11)
(λ+=38.054)

(a) (b)

Figure 4.11. Canonical GM rod with 𝐶 = 3 (a) Plot of traces 𝑥2(𝜔/𝜆
+
6 ), 𝑥5(𝜔), 𝑥8(𝜔𝜆

+
6 )

and 𝑥11(𝜔𝜗
+
6 ) in the neighbourhood of canonical frequency (red dash vertical line). (b) Plot of

Kohmoto’s manifold at canonical frequency with periodic saddle point.

reason for the big gap between scaled trace 𝑥2 and the other three scaled traces may be because

of the Kohmoto’s invariant being too large. Moreover, the scaling effects of other periodic points

are analysed. Since the fixed point and 3-periodic points are explained in detail before, the 12-

(𝑅12+𝑖 = 𝑅𝑖) and 4- (𝑅4+𝑖 = 𝑅𝑖) periodic points are analysed. The maximum eigenvalues are

𝜗+12 ≈ −321.997 and 𝜗+4 ≈ −6.854. It is fascinating that the length of the passband of 12-

periodic points is the same as 4-periodic points. This phenomenon will be explained later as the

periodic properties of the trigonometric function. Thus, only 4-periodic points orbit should be

investigated.

Table 4.6. Numerical results for passband length for Fiboancci sequence 𝐹2,6,10,14 with ratio
𝐶 = 3 at dimensionless frequency 𝜉𝐿 = 2𝜋/3, scaled factor is 𝜗+4 = −𝜙4 ≈ −6.854

𝐹2 passband 𝐹6 passband 𝐹10 passband 𝐹14 passband

0.218 0.0477 0.00813 0.00123

𝐹2/𝐹6 𝐹6/𝐹10 𝐹10/𝐹14

4.566 5.875 6.582

From the results of scaling passbands (Table 4.6) and scaled dynamic traces (Figure 4.12), the

numerical results 𝐹2/𝐹6, 𝐹6/𝑓10 and 𝐹10/𝐹14 confirm theoretical analysis (with increasing of Fi-

bonacci order, results would be closer to 𝜗+4 ). Interestingly, the scaled passbands (inside magenta

area) are not symmetric, comparing to the frequency associated with canonical frequency. The

maximum eigenvalue 𝜗+4 = −𝜙4 ≈ −6.854 being negative one, so that increasing direction of

perturbation follows the opposite of eigenvector 𝜓+. Nevertheless, the length of passband scaled

follow the same method as before.
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scaled x10
scaled x14

R1
R3

R4

Figure 4.12. Canonical GM rod with 𝐶 = 3 (a) Plot of traces 𝑥2(𝜔/𝜗+4 ), 𝑥6(𝜔), 𝑥10(𝜔𝜗
+
4 )

and 𝑥14(𝜔(𝜗+4 )2) in the neighbourhood of dimensionless frequency 𝜉𝐿 = 2𝜋/3 (red dash vertical
line). (b) Plot of Kohmoto’s manifold with 4-periodic points orbits.

4.3.2 Results for canonical family no. two

By substituting 𝑗 = 1 and 𝑞 = 1 into canonical ratio (4.9) 𝐶 =
1+2×1

2×1
=

3

2
belongs family no. two.

The passband layouts, initial dynamic traces and Kohmoto’s invariant are plotted in one period.

Unlike canonical family no. one, there are always passbands at the canonical frequency with any

Fibonacci order in family no. two because of 𝑥2 = 0, 𝑅1 = (0,±2, 0) and Kohmoto’s invariant is

𝐼 = 0 at 𝜔𝑐, which is verified in numerical results Figure 4.13.

The local scaling can be performed on passband length, not just bandgap. Since 𝐼 = 0, the scaling

factor also the maximum eigenvalue is 𝜗+6 = 9 + 4√5 = 𝜙6 ≈ 17.944. Thus, the scaling

effect can be checked with the same procedures as before. The passband length of 𝐹2,5,8,11 can

be chosen. Actually, the passband in any Fibonacci order can also be selected in canonical family

one. Nevertheless, the bandgap in family no. one should be checked so that 𝐹2,5,8,11 are picked.

Table 4.7. Numerical results for passband length at first canonical frequency for Fiboancci
sequence 𝐹2, 𝐹5, 𝐹8 and 𝐹11 with ratio 𝐶 = 3/2, scaled factors are 𝜗+6 = 𝜙6 ≈ 17.944,
𝜆+6 = 𝜙3 ≈ 4.236

𝐹2 passband 𝐹5 passband 𝐹8 passband 𝐹11 passband

0.736 0.216 0.0559 0.0135

𝐹2/𝐹8 𝐹5/𝐹11 𝐹5/𝐹8 𝐹8/𝐹11

13.177 15.958 3.414 4.1348

Comparing with results 𝐹2/𝐹8 and 𝐹5/𝐹11, the latter is closer to the maximum eigenvalue, and the

reason is similar to two cases in family no. one. The results for half periodic transformation is
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Figure 4.13. Three plots of canonical ratio 3/2 with dimensionless frequency 𝜉𝐿 in one dynamic
trace period, (a) the passband layout for a Fibonacci sequence 𝐹0 to 𝐹11. (b) initial three dynamic
traces 𝑥0, 𝑥1 and 𝑥2. (c) Kohmoto’s invariant. Red vertical lines are canonical frequencies.

good enough comparing with theoretical value 𝜆+6 = 𝜙3 ≈ 4.236. It is believed that the local

scaling for complete or half periodic transformation is more precise with increasing of Fibonacci

order (also 𝑘̄). Still, the scaled dynamic trace and corresponding Kohmoto’s manifold are plotted

in detail for the scaled effects to see the periodic orbits as shown in Figure 4.14. With Figure

4.14, the local scaling effect is verified once again but with passband length and traces. The local

scaling effect is strongest concerning the canonical frequency and slacked with frequency away

because the middle scaled passband in 𝐹5,8,11 is almost identical. Moreover, the other passbands

are also, which similarity with the increasing of Fibonacci order.

There exist 12- and 4-periodic points orbits that are similar to cases in 𝐶 = 3 so that we do not

study them again. They follow the same periodic orbits on Kohmoto’s manifold with different

initial points 𝑅0 compared with cases in 𝐶 = 3.

4.3.3 Results for canonical family no. three

In last case, family no. three, the ratio 𝐶 = 2/5 is used to 𝑘 = 2 and 𝑞 = 1. Still, like previous

cases, the passband layouts, initial three traces and Kohmoto’s invariant in one trace period are
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Figure 4.14. Canonical GM rod with 𝐶 = 3/2 (a) Plot of traces 𝑥2(𝜔/𝜆+6 ), 𝑥5(𝜔), 𝑥8(𝜔𝜆
+
6 )

and 𝑥11(𝜔𝜗
+
6 ) in the neighbourhood of canonical frequency (red dash vertical line). (b) Plot of

Kohmoto’s manifold at canonical frequency with periodic saddle point.

obtained with traces 𝑥0 = ±2, 𝑥1 = 0 and 𝑥2 = 0 at canonical frequency as shown in Figure

4.15. As canonical family no. two or three actually means one of two sine terms sin(𝜉𝑆) or sin(𝜉𝐿)

equal to zero, that is reason for 𝐼 = 0 at canonical frequency, the maximum eigenvalue is still

𝜗+6 = 9 + 4√5 ≈ 17.944 and square root 𝜆+6 = �𝜗+6 ≈ 4.236, which are same with the case

in family no. two. The table for passband scaling is given below in Table 4.8 with results from

𝐹2,5,8,11.

Table 4.8. Numerical results for passband length at first canonical frequency for Fiboancci
sequence 𝐹2, 𝐹5, 𝐹8 and 𝐹11 with ratio 𝐶 = 2/5, scaled factors are 𝜗+6 = 𝜙6 ≈ 17.944,
𝜆+6 = 𝜙3 ≈ 4.236

𝐹2 passband 𝐹5 passband 𝐹8 passband 𝐹11 passband

2.101 0.492 0.119 0.0281

𝐹2/𝐹8 𝐹5/𝐹11 𝐹5/𝐹8 𝐹8/𝐹11

17.7070 17.502 4.2662 4.2169

The results perfectly match the theoretical analysis. Then, the scaled dynamic traces around the

canonical frequency and periodic orbits on Kohmoto’s manifold are plotted for scaled effect in

detail. From Figure 4.16, the local scaling effects are verified with length of passband and traces.

In this case, the scaling effect is dramatic, the scaled passband 𝑥2 is also coincide with scaled

𝑥5,8,11. The Figure 4.16 (b) is not same with Figure 4.14 (b) due to the initial saddle point 𝑅1 is

different, which locates the opposite surface of 𝑅4.

In addition, 30- (𝑅30+𝑖 = 𝑅𝑖) and 10- (𝑅10+𝑖 = 𝑅𝑖) periodic points orbits are existed on the

Kohmoto’s manifold. The maximum eigenvalues are 𝜗+30 = −𝜙30 and 𝜗+10 = −𝜙10, respectively.
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Figure 4.15. Three plots of canonical ratio 2/5 with dimensionless frequency 𝜉𝐿 in one dynamic
trace period, (a) the passband layout for a Fibonacci sequence 𝐹0 to 𝐹11. (b) initial three dynamic
traces 𝑥0, 𝑥1 and 𝑥2. (c) Kohmoto’s invariant. Red vertical lines are canonical frequencies.

For the same reason in 12- and 4-periodic points, only 10-periodic points orbit is investigated with

initial points (−𝜙, 2, −𝜙)𝑇, because 30-periodic points share the same passband length and shape

with 10-periodic points orbits.

Table 4.9. Numerical results for passband length for Fiboancci sequence 𝐹2, 𝐹7 and 𝐹12 with ratio
𝐶 = 2/5 at dimensionless frequency 𝜉𝐿 = 2𝜋, scaled factors are 𝜗+10 = −𝜙10 ≈ −122.992,
𝜆+10 = 𝜙5 ≈ 11.090

𝐹2 passband 𝐹7 passband 𝐹12 passband

2.021 0.188 0.0171

𝐹2/𝐹7 𝐹7/𝐹12 𝐹2/𝐹12

10.774 10.956 118.042

From Table 4.9, the scaling results are perfectly matching absolute value of the maximum eigen-

value 𝜗+10 ≈ −122.992 and square root of it 𝜆+10 ≈ 11.090 (just simply 𝜆+10 = �|𝜗+10|). The

scaled dynamic traces are plotted to show results. From Figure 4.17, the length of scaled pass-

bands inside magenta area are almost same in 𝐹2,7,12 but with opposite direction between 𝑥2,12.
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The reason is that the maximum eigenvalue 𝜗+10 being a negative number.

The results from three canonical families show that the bandgap and passband or dynamic traces

can be scaled with the maximum eigenvalue 𝜗+ or square root 𝜆+ = √𝜗+ with good matching

around frequency with other periodic orbits on Kohmoto’s manifold. The frequency with other

periodic orbits correspond to 𝐼 = 0 are noticed except canonical frequency. Thus, the complete

investigation about periodic orbits on Kohmoto’s manifold and the reason for scaled factor is not

the maximum eigenvalue should be made, which is shown in next section.

Scaled pass-
band
(ϑ+=17.944)
(λ+=4.236)

(b)
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Figure 4.16. Canonical GM rod with 𝐶 = 2/5 (a) Plot of traces 𝑥2(𝜔/𝜆+6 ), 𝑥5(𝜔), 𝑥8(𝜔𝜆
+
6 )

and 𝑥11(𝜔𝜗
+
6 ) in the neighbourhood of canonical frequency (red dash vertical line). (b) Plot of

Kohmoto’s manifold at canonical frequency with periodic saddle point.
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Figure 4.17. Canonical GM rod with 𝐶 = 2/5 (a) Plot of traces 𝑥2(𝜔/𝜙5), 𝑥7(𝜔) and 𝑥12(𝜔𝜙5)

in the neighbourhood of dimensionless frequency 𝜉𝐿 = 2𝜋 (red dash vertical line). (b) Plot of
Kohmoto’s manifold with 10-periodic saddle point.
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4.4 Experimental Results on Wave Transmission

The finite canonical rods were CNC machined from Nylon cylinders to produce phases 𝐿 and 𝑆

with a cross-section of diameter 40mm and 20mm, respectively. Four canonical configurations,

namely three-cell 𝐹2, three-cell 𝐹3 and two-cell 𝐹5, were fabricated with a phase length of 70mm to

characterize the response up to the first period 2𝜔𝑐, while a two-cell 𝐹𝑙2 structure was manufactured

with a phase length of 140mm to investigate the wave propagation in the first two periods, in the

frequency range 𝜔 = [0, 4𝜔𝑙
𝑐]. The specimens are shown in Figure 4.18 (a).

manufactured with a phase length of 140 mm to investigate the wave propagation in the first
two periods, in the frequency range ω =[0,4ωlc]. The specimens are shown in Fig. S3(a).

The fabricated structures were mounted on a V20 SignalForce shaker (Data Physics), con-
nected with a PA100E power amplifier (Data Physics) and a USB 4431 DAQ (National Instru-
ments). A DC uniform white noise signal was generated through a LabVIEW script to excite
the canonical waveguide. Two 352C22 miniaturised uniaxial accelerometers (PCB Piezotronics)
were installed at the sample edges and interfaced with the DAQ to measure the acceleration.
From the recorded accelerometer signals, the magnitude, phase and coherence were calculated.
The transmissibility was obtained as

T = 20 log10

(
ar
al

)
, (S27)

where ar and al represent the magnitude of the acceleration of the excited and free ends of the
specimen, respectively. The experimental setup is reported in Fig. S3(b).

(a) (b)

10 cm

Figure S3: (a) Finite canonical rods employed in the experiments and constituted of phases L and S arranged
in configurations F l

2, F2, F3 and F5, where the repeated unit cell is highlighted in red. (b) Experimental setup
for the propagation of axial waves in finite canonical waveguides: a three-cell F3 rod is longitudinally excited
through a shaker while the accelerations of the end surfaces are recorded via the miniaturized accelerometers
shown in the insets.

S4.2 Finite Element Analysis

The fabricated finite canonical waveguides were generated with SolidWorks 2018 (Dassault
Systèmes) and imported in the finite element software Abaqus 2018 (Dassault Systèmes). The
quasicrystalline-generated rods were discretized with beam elements with Young’s modulus E =
3.4 GPa, Poisson’s ratio ν = 0.4 and density ρ = 1145 kg/m3. During the simulation, a natural
frequency step preceded a direct steady-state dynamic analysis performed in the frequency

7

Figure 4.18. (𝑎) Finite canonical rods employed in the experiments and constituted of phases 𝐿
and 𝑆 arranged in configurations 𝐹𝑙2 , 𝐹2, 𝐹3 and 𝐹5, where the repeated unit cell is highlighted in
red. (b) Experimental setup for the propagation of axial waves in finite canonical waveguides:
a three-cell 𝐹3 rod is longitudinally excited through a shaker while the accelerations of the end
surfaces are recorded via the miniaturized accelerometers shown in the insets.

The fabricated structures were mounted on a V20 SignalForce shaker (Data Physics), connected

with a PA100E power amplifier (Data Physics) and a USB 4431 DAQ (National Instruments). A

DC uniform white noise signal was generated through a LabVIEW script to excite the canonical

waveguide. Two 352C22 miniaturised uniaxial accelerometers (PCB Piezotronics) were installed

at the sample edges and interfaced with the DAQ to measure the acceleration. From the recorded

accelerometer signals, the magnitude, phase and coherence were calculated. The transmissibility

was obtained as:

𝑇𝑟 = 20log
10
(
𝑎𝑟

𝑎𝑙
) (4.44)

where 𝑎𝑟 and 𝑎𝑙 represent the magnitude of the acceleration of the excited and free ends of the

specimen, respectively. The experimental setup is reported in Figure 4.18 (b).

Figure 4.19 shows the measured transmissibility 𝑇𝑟 of four finite canonical waveguides in excellent

agreement with analytical predictions for both the natural frequencies and the regions where wave

propagation is significantly attenuated. Three configurations, namely, three-cell 𝐹2 (a), three-cell
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𝐹3 (c), and two-cell 𝐹5 (d), present a phase length of 70mm and their dynamic spectra, plotted

over the first period, result symmetric with respect to the canonical frequency 𝜔𝑐. The three-cell

𝐹𝑙2 canonical rod (b), designed with a 140mm phase length, shows the periodic response of the

frequency spectrum with a period 2𝜔𝑙
𝑐 and the symmetry of the graph of 𝑇𝑟 with respect to the

first two canonical frequencies 𝜔𝑙
𝑐 and 3𝜔𝑙

𝑐. It should be noted that 𝜔𝑐 = 2𝜔𝑙
𝑐 as the length of

each phase for 𝐹2; 𝐹3, and 𝐹5 is half of that of 𝐹𝑙2 . On each plot, the stop bands characterizing the

infinite periodic waveguides are shown as shaded areas, thus well approximating the regions of

negligible wave propagation even for a small number of cells 𝒩. Exceptions are represented by

limited extension stop bands, Figure 4.19 (d), which can be detected only with a greater number of

unit cells. Finally, the mismatch between the measured and predicted response at high frequencies

for 𝐹5 is attributed to the large number of interfaces and the viscoelastic behavior of the constituent

material, also testified by the decrease in the height of the spikes as the frequency increases.

(a) (b)

(c) (d)

r r
rr

Figure 4.19. Comparison between experimental measurements (red line) and analytical predic-
tions (black line) for the transmissibility 𝑇𝑟 of finite canonical waveguides. The response of (𝑎)
three-cell 𝐹2, (b) three-cell 𝐹𝑙2 , (c) three-cell 𝐹3 and (d) two-cell 𝐹5 configurations for 𝐶 = 1 is
reported as a function of the frequency 𝜔𝑐. The stop bands characterizing the infinite periodic
waveguides are represented by the underlaid shaded areas. The insets show the geometry of the
finite rods, where the red assemblies represent the elementary cells 𝐹𝑖.

4.5 Periodic Orbits on Kohmoto’s Manifold

Other periodic orbits exist on Kohmoto’s manifold is addition to those involving saddle points,

which are already shown in the Section 4.2 associated with Kohmoto’s invariant 𝐼 = 0. Thus, the
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expression for Kohmoto’s invariant (4.27) should be investigated. It could be rewritten in here for

introducing the variables 𝜉𝑋 = �𝜌𝑋/𝐸𝑋𝜔𝑙𝑋, 𝑋 ∈ (𝐿, 𝑆):

𝐼(𝜔) = (𝛽2 − 4)sin2(𝜉𝐿)sin2(𝜉𝑆) (4.45)

If impedance mismatch is 𝛽 = 2, the quasicrystalline rods must be similar to homogenous waveg-

uide because 𝑥2 is:

𝑥2 = 2cos(𝜉𝐿)cos(𝜉𝑆) − 2sin(𝜉𝐿)sin(𝜉𝑆) = 2cos(𝜉𝐿 + 𝜉𝑆)

Thus, the absolute value of 𝑥2 cannot be larger than 2 and wave can propagate with any frequency.

In addition, with trace iterations expression (4.29), the trace |𝑥𝑖| ≤ 2 with any Fibonacci order 𝑖

can be obtained under condition 𝛽 = 2. Therefore, in bandgap structure with 𝛽 > 2, only one or

all of two terms sin(𝜉𝐿) or sin(𝜉𝑆) are zero to let 𝐼 = 0.

4.5.1 Initial three dynamic traces of periodic orbits

According to the properties of the trigonometric function, the solution of equation (4.45) can be

written:

𝜉𝑆 = 𝑆̄𝜋 or 𝜉𝐿 = 𝐿̄𝜋 (𝑆̄, 𝐿̄) ∈ ℕ (4.46)

According to the definition of canonical ratio, 𝐶 and variable 𝜉𝑆 and 𝜉𝐿:

𝐶 =
𝜉𝑆

𝜉𝐿

From canonical family no. one ratio (4.4) 𝐶(1) = (1+2𝑗)/(1+2𝑘) and trace period in Table 4.1,

variable 𝜉𝐿 and 𝜉𝑆 are increased from 0 to 2(1 + 2𝑘)𝜋 and 2(1 + 2𝑗)𝜋, respectively. Thus, two

conclusions are achieved. (1): If 𝜉𝑆 = 𝑆̄𝜋, the initial three traces would become:

𝑥0 = (−1)𝑆̄2, 𝑥1 = 2cos�
𝑆̄𝜋

𝐶(1)
� , 𝑥2 = (−1)𝑆̄2cos�

𝑆̄𝜋

𝐶(1)
� ; 𝑆̄ = 0, 1...2(1 + 2𝑗) (4.47)

(2): If 𝜉𝐿 = 𝐿̄𝜋, the initial three traces would become:

𝑥0 = 2cos(𝐿̄𝜋𝐶(1)), 𝑥1 = (−1)𝐿̄2, 𝑥2 = (−1)𝐿̄2cos(𝐿̄𝜋𝐶(1)); 𝐿̄ = 0, 1...2(1 + 2𝑘) (4.48)

Expressions (4.47) and (4.48) demonstrate that the solution for Kohmoto’s invariant 𝐼 = 0 is also

periodic orbits except for saddle points in family no. one. If equations (4.46) are substituted into
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canonical ratio for family no. two and three, the initial three traces would keep the same, but

except 𝐿̄ = 𝑞𝜋 and 𝑆̄ = 𝑞𝜋 for family no. two and three, the values also changed 𝐿̄ = 0, 1...4𝑞 and

𝑆̄ = 0, 1...4𝑞, respectively. Moreover, the relative locations between frequency associated with

𝐼 = 0 and trace period 𝑤𝑡 are:

𝑆̄

2(1 + 2𝑗)
;
𝑆̄

4𝑞
and

𝐿̄

2(1 + 2𝑘)
;
𝐿̄

4𝑞
(4.49)

For instance, the canonical structure associated with ratio 𝐶(3) = 2/5 (𝑞 = 1, 𝑘 = 2), in terms

of theory (4.49), the periodic points are 𝑆̄ = 0, 2, 4 ⇒ 0/4, 2/4, 4/4 associated with fixed points,

3-periodic points, fixed points (𝑆̄ = 1, 3 corresponding to canonical frequencies). In addition,

𝐿̄ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 0/10, 5/10 and 10/10 are associated with fixed, 3-periodic

and fixed point. 1/10, 4/10, 6/10 and 9/10 are associated with 30-periodic points. 2/10, 3/10,

7/10 and 8/10 are associated with 10-periodic points. Thus, any periodic orbits concerning

Kohmoto’s invariant 𝐼 = 0 locate in one canonical period determined by equation (4.49).

In terms of powerful symbolic calculation tool, the general term formula for any Fibonacci order 𝑖

with periodic orbits on Kohmoto’s manifold can be obtained, which are (mod is modulo operation

function):

𝑥𝑖 = 2(−1)(mod(𝑖,3)+1)𝑆̄cos�
𝑛̃𝑖𝑆̄𝜋

𝐶
� ; 𝑆̄ = 0, 1...2(1 + 2𝑗) or 0, 1...4𝑞 (4.50)

𝑥𝑖 = 2(−1)(mod(𝑖+1,3)+1)𝐿̄cos �𝑛̃𝑖−1𝐿̄𝐶𝜋� ; 𝐿̄ = 0, 1...2(1 + 2𝑘) or 0, 1...4𝑞 (4.51)

However, only using equations (4.50) and (4.51) cannot predict the number of iterations (or num-

ber of periodic points), which should be a topic of future investigations.

4.5.2 The reason why the scaling factor is the square root of the maximum eigen-

value

According to numerical results in Section 4.2, only fixed and 3-periodic points are associated with

scaled factor which is approximating to square root of the maximum eigenvalue �𝜗+1 = 𝜙 and

�𝜗+3 = 𝜙3. This subsection will explain why.

Reconsider equation (4.30), we decompose it by Taylor series and retained first linear order term

at frequency 𝜔𝑅𝑖. As a result, the following expression can be obtained:

𝛿r𝑖 = 𝑅𝑖𝐴∗(𝜔𝐴∗) − 𝑅𝑖(𝜔𝑅𝑖) ≈ D𝑖(𝜔𝑅𝑖)𝑑(𝜔𝑅𝑖)(𝜔𝐴∗ − 𝜔𝑅𝑖) (4.52)
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where 𝑅𝑖𝐴∗(𝜔𝐴∗) is perturbation point on Kohmoto’s manifold with frequency 𝜔𝐴∗ and 𝑅𝑖(𝜔𝑅𝑖)

is one of periodic points with frequency at 𝜔𝑅𝑖. According to multivariables first order deriva-

tives, the D𝑖 matrix is composed of Jacobian (2.32) and 𝑑 vector are initial three variables taking

differential to frequency 𝜔 as follows:

D𝑖(𝜔𝑅𝑖) =

⎡
⎢
⎢
⎢
⎣

𝜕�𝑥𝑖

𝜕�𝑥𝑖−1

𝜕�𝑥𝑖

𝜕�𝑦𝑖−1

𝜕�𝑥𝑖

𝜕�𝑧𝑖−1
𝜕�𝑦𝑖

𝜕�𝑥𝑖−1

𝜕�𝑦𝑖

𝜕�𝑦𝑖−1

𝜕�𝑦𝑖

𝜕�𝑧𝑖−1
𝜕�𝑧𝑖

𝜕�𝑥𝑖−1

𝜕�𝑧𝑖

𝜕�𝑦𝑖−1

𝜕�𝑧𝑖

𝜕�𝑧𝑖−1

⎤
⎥
⎥
⎥
⎦

...

⎡
⎢
⎢
⎢
⎣

𝜕�𝑥1

𝜕�𝑥0

𝜕�𝑥1

𝜕�𝑦0

𝜕�𝑥1

𝜕�𝑧0
𝜕�𝑦1

𝜕�𝑥0

𝜕�𝑦1

𝜕�𝑦0

𝜕�𝑦1

𝜕�𝑧0
𝜕�𝑧1

𝜕�𝑥0

𝜕�𝑧1

𝜕�𝑦0

𝜕�𝑧1

𝜕�𝑧0

⎤
⎥
⎥
⎥
⎦

�

�

𝜔=𝜔𝑅𝑖

; 𝑑(𝜔𝑅𝑖) =

⎡
⎢
⎢
⎢
⎣

𝜕�𝑥0

𝜕𝜔
𝜕�𝑦0

𝜕𝜔
𝜕�𝑧0

𝜕𝜔

⎤
⎥
⎥
⎥
⎦

�
�

𝜔=𝜔𝑅𝑖

(4.53)

In fact, vector D𝑖𝑑 is the explicit expression for function 𝐷 in equation (4.38). The determinant

of matrix D𝑖 cannot be zero, which has already been proved before (conserved map), where three

terms in 𝑑(𝜔𝑅𝑖) are:

𝜕�𝑥0

𝜕𝜔
= −(2𝑙𝐿�

𝜌𝐿

𝐸𝐿
+ 𝛽𝑙𝑆�

𝜌𝑆

𝐸𝑆
)cos(𝜉𝑆)sin(𝜉𝐿) − (2𝑙𝑆�

𝜌𝑆

𝐸𝑆
+ 𝛽𝑙𝐿�

𝜌𝐿

𝐸𝐿
)cos(𝜉𝐿)sin(𝜉𝑆)

𝜕 �𝑦0

𝜕𝜔
= −2𝑙𝐿�

𝜌𝐿

𝐸𝐿
sin(𝜉𝐿);

𝜕�𝑧0

𝜕𝜔
= −2𝑙𝑆�

𝜌𝑆

𝐸𝑆
sin(𝜉𝑆) (4.54)

By substituting 𝜔 = 𝜔𝑡 or 𝜔 = 𝜔𝑡/2 (𝜔𝑡 = 2
𝜋�𝐸𝑆

𝑙𝑆√𝜌𝑆
(1 + 2𝑗) = 2

𝜋�𝐸𝐿

𝑙𝐿√𝜌𝐿
(1 + 2𝑘) (family no. one,

we can also use 𝜔𝑡 in family no. two or three)) into 𝜉𝐿 and 𝜉𝑆 then all three terms in 𝑑(𝜔) are

vanish. It is indicated that the first-order Taylor series are zero. Thus, the Taylor series must be

expanded in the second order for this approximation analysis. The expression (4.52) becomes:

𝛿r𝑖 = 𝑅𝑖𝐴∗(𝜔𝐴∗) − 𝑅𝑖(𝜔𝑅𝑖) ≈ G𝑖(𝜔𝑅𝑖)
(𝜔𝐴∗ − 𝜔𝑅𝑖)

2

2
(4.55)

where vector G𝑖 is the counterpart of D𝑖𝑑 but with second-order derivatives corresponding to the

frequency. Combined with expression (4.40):

G𝑖(𝜔̃𝐴 − 𝜔𝑅𝑖)
2 = 𝜗+G𝑖(𝜔𝐴∗ − 𝜔𝑅𝑖)

2 (4.56)

That is the reason for scaling factor at 𝜔 = 𝜔𝑡 or 𝜔 = 𝜔𝑡/2 which is square root of the maximum

eigenvalue √𝜗+. Other periodic points cannot lead all terms in vector 𝑑 to null, because in fact the

𝜉𝐿 and 𝜉𝑆 cannot be an integer multiple for 𝜋 simultaneously except at frequency 𝜔𝑡 or 𝜔𝑡/2.
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4.6 Conclusion and Remarks

The effects of axial wave propagation into quasicrystalline generated canonical rods have been

investigated in detail. With the definition of canonical ratio and value of initial three dynamic

traces 𝑥0,1,2, the relationships between coefficients in canonical ratio 𝐶, which must be rational

number, and canonical frequencies 𝜔𝑐 established for all three families. The numerical results

for traces 𝑥0,1,2 with dimensionless frequency �𝜌𝐿/𝐸𝐿𝜔𝑙𝐿 = 𝜉𝐿 proved the theoretical analysis.

Several examples show that two canonical frequency 𝜔𝑐𝑗 = 𝜔𝑐𝑗 in family no. one, 𝜔𝑐𝑗 = 𝜔𝑐𝑞 in

family no. two and 𝜔𝑐𝑘 = 𝜔𝑐𝑞 in family no. three. The periodicity for canonical frequency and

Kohmoto’s invariant are analysed, which is half of the period for traces. Finally, a compact Table

for the formula of three canonical families is given.

The passband layouts, dynamic traces and Kohmoto’s manifold have been analysed theoretically

in one canonical period 𝜔𝑡. The three plots are symmetric and periodic according to the canonical

configuration in all three families. In addition, the different periodic orbits with the associated

number of the cycles are shown in the associated Figures. The scaling effects in the length of

bandgap (family no. one) and passbands (family no. two and three or other periodic orbits)

have been studied in detail with good agreements of approach supplied by Morini and Gei (2018)

in several numerical results. Even there are significant mismatches between the ratio of length

and scaling factor, the result is good enough with increasing of Fibonacci order 𝑖. These effects

exist in canonical frequencies (saddle points) and frequency for other periodic points. The scaled

passband and trace are symmetric about the frequency with the positive maximum eigenvalue 𝜗+

and are not symmetric as the maximum eigenvalue 𝜗+ is negative one which means the increasing

perturbation direction is the opposite comparing with initial direction.

The most special cases are frequency at period 𝜔𝑡 and half 𝜔𝑡/2. The scaling factor is not the

maximum eigenvalue but the square root of it. According to the principle of linear approximation,

the coefficient of the Taylor series first-order term becoming null is found. Thus, if this approx-

imation approach is used, the Taylor series must be expanded into second order and then theory

meet numerical results. In addition, the initial three traces for periodic orbits are also investigated

in detail except for saddle points. The frequency at periodic orbits and location in one period

𝜔𝑡 have been obtained. Moreover, the general formula for traces 𝑥𝑖 are solved associated with

periodic orbits in any Fibonacci order 𝑖.

In principle, the canonical configuration takes advantage of the periodic properties of the trigono-

metric function, cosine and sine, leading to periodic trace and dispersion layouts, which is the
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particular solution of these systems. This is first time to show how the canonical configuration on

rods to influence the effects for dispersion layout. In addition, the scaling effects concern periodic

points are investigated in both positive, negative or square roots of eigenvalue comparing with

previous research works.

A new mechanics methodology concerning one-dimensional quasicrystalline rods generated by

Fibonacci GM sequence can be obtained from the results and investigations from this chapter. In

addition, a necessary guideline for their possible exploitation in the design of novel construction

metamaterials whose bandgap and passband topology can be easily modulated and controlled

according to canonical ratio and scaling factor can be provided.

For design dispersion spectrum in quasicrystalline-generated rods is following steps:

(1): The frequency at bandgap can be computed by canonical frequency 𝜔𝑐𝑗 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1+2𝑗)(1+

2𝑚) =
𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘)(1 + 2𝑚) = 𝜔𝑐𝑘 as structure belongs familiy no .1 at Fibonacci order 𝐹2,

𝐹5, 𝐹8 (𝐹2+3𝑛, 𝑛 ∈ ℕ). Thus, engineer can design this system to forbidden desire frequency wave

𝜔 = 𝜔𝑐.

(2): The bandgap length at Fibonacci order 𝐹2, 𝐹5, 𝐹8 (𝐹2+3𝑛, 𝑛 ∈ ℕ) can be predicted by scaling

technique with scaling factor 𝜗+ by using 𝜔𝐴∗−𝜔𝐵∗ =
�𝜔𝐴−�𝜔𝐵

𝜗+
( 𝜔𝐴∗−𝜔𝐵∗ assuming as bandgap

length for 𝐹𝑖, 𝜔𝐴∗−𝜔𝐵∗ is bandgap length for 𝐹𝑖+6) or with scaling factor 𝜆+ by using 𝜔𝐴∗−𝜔𝐵∗ =
�𝜔𝐴′−�𝜔𝐵′

𝜆+
(�𝜔𝐴′ − �𝜔𝐵′ assuming as bandgap length for 𝐹𝑖, 𝜔𝐴∗ − 𝜔𝐵∗ is bandgap length for 𝐹𝑖+3).

Therefore, engineer can design a structure with very narrow bandgap at desire frequency.
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Chapter 5 - Wave Propagation in Quasicrystalline and

Canonical Laminates

The fundamental principles of pure negative refraction when SH waves propagate into a quasicrys-

talline generated laminate are presented in this Chapter. It means that only one real solution 𝐾𝑦

of the 𝐾𝑥𝐿𝑖 = arccos(𝑡𝑟𝑀𝑖(𝑓, 𝐾𝑦)/2) exists in this system and demonstrates the incoming wave

frequency should satisfy some conditions in Section 5.1. According to Morini et al. (2019), the

transition zones govern the number of several real solutions. Then, the concept of canonical con-

figuration in Chapter 4 can be also applied to laminates to obtain periodic passband layouts in

Section 5.2. The effects of impedance mismatch and canonical ratio to negative refraction are

investigated. Moreover, in terms of the linear approximation approach, the edge frequency of the

transition zone is predicted to a certain extent in Section 5.3. Through boundary line on the repre-

sentation of the universal torus, several extreme values for edge frequency of transition zones are

obtained with the closed-form expression in Section 5.4. In addition, when Kohmoto’s invariant

vanishes, a particular pair of longitudinal wavenumber and frequency can be taken into consider-

ation, so that the components of the acoustic Poynting vector and the transmission angle can be

simplified. It is fascinating that the transmission wave angle does not depend on frequency under

this condition, which rises to an ‘inverse problem’ in Section 5.5. Finally, the number of reflected

modes can be deeply understood with the more precise equation. The pure negative refraction

with enough transmission energy is investigated for engineering application in Section 5.6.

5.1 The Condition of Pure Negative Refraction

SH wave transmission across the interface between a homogenous elastic substrate and a periodic

laminate as shown in Figure 5.1 is a coupled problem. On the one hand, the possible number of real

transmitted modes depends on the frequency of the incoming wave and the dynamic properties of

laminates 𝑡𝑟𝑀𝑖(𝑓, 𝐾𝑦 = 0). On the other hand, the function cos(𝐾𝑥𝐿𝑖) depends on the substrate,

frequency and angle of incidence 𝜃inc in terms of expression (2.57) with some changes:

𝐾𝑥𝐿𝑖 = 𝐾0sin(𝜃inc)𝐿𝑖 = 2𝜋𝑓/𝑐0sin(𝜃inc)𝐿𝑖 (5.1)

where 𝑐0 is wave phase speed of substrate �𝜇0/𝜌0. It demonstrates that as the trace of trans-

fer matrix 𝑀𝑖 has been already known, the quantity 𝐾𝑦 should be solved from expression (3.7)

(2cos(𝐾𝑥𝐿𝑖) = 𝑡𝑟𝑀𝑖(𝐾𝑦, 𝑓)) using Newton method as introduced in Chapter 3. Numerous aca-

demics in the past have examined this issue by plotting the real solutions of the dispersion relation

100



Chapter 5 - Wave Propagation in Quasicrystalline and Canonical Laminates

hL hS hL hShL

θinc

Figure 5.1. Substrate-periodic laminate system where the represented unit cell of the laminate
is 𝐹4. Coordinate 𝑥0𝑙 is the left-hand boundary of the generic cell whereas 𝑥𝑙 is the left-hand
boundary of a generic layer.

with 𝐾𝑥𝐿𝑖 versus 𝐾𝑦𝐿𝑖, as seen in Figure 5.2 (Nemat-Nasser 2015; Srivastava 2016; Willis 2016;

Srivastava and Willis 2017; Morini et al. 2019a).

The plots in Figure 5.2 are for the laminate which combines PMMA (polymethyl methacrylate)

which is material L with shear modulus 𝜇𝐿 = 3GPa, density per volume 𝜌𝐿 = 1180kg/m3 and

thickness ℎ𝐿 = 3mm and steel which is material S with 𝜇𝑆 = 80GPa, 𝜌𝑆 = 8000kg/m3 and

ℎ𝑆 = 1.3mm. This analysis allows us to understand how to achieve pure negative refraction in

quasicrystalline-generated GM periodic laminates in 𝐹2. In addition, the trace of transfer matrix

𝑥2 is sketched to show the limit frequency (edge frequency) for the number of transmission wave

modes (transition zone).

Particularly, the frequency range corresponding to the second Brillouin zone, such as 𝜋 < Re(𝐾𝑥𝐿𝑖) <

2𝜋, is examined. As the incoming wave frequency is less than 93.24 kHz (grey line in Figure

5.2(a)), there may be either no or one solution in terms of 𝐾𝑥𝐿𝑖. One solution is confirmed for

frequencies between 𝑓 = 93.24 and 261.34 kHz and there may be one or two actual solutions

for frequencies between 𝑓 = 261.34 and 296.63 kHz; if frequency is 𝑓 > 296.63 kHz, there

must be two real solutions. In Figure 5.2 (c), the trace is shown and color-coded to correspond to

frequencies of 93.24 kHz, 261.34 kHz, and 296.63 kHz.

The transmission angle in laminates is determined by the two components of the Poynting vector

𝒫𝑥 and 𝒫𝑦, which have the same direction of the group velocity 𝑣𝑔𝑥 and 𝑣𝑔𝑦 , respectively. In Figure

5.2 (a), it is straightforward to determine that the true solution lies in the first Brillouin zone, the
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group velocity 𝑣
𝑔
𝑥 and 𝑣

𝑔
𝑦 , are both positive. On the other hand, the true solution in the second

Brillouin zone and 𝑣𝑔𝑥 is negative, but 𝑣𝑔𝑦 is positive, then the transmission wave angle is negative,

which is the desired result. In Figure 5.2 (b), it is evident that both positive and negative refraction

waves coexist (beam splitting). Therefore, pure negative refraction is only conceivable up to a

well-defined frequency (𝑓 = 296.63 kHz in this example) for the task at hand; otherwise, many

waves are transmitted and the uniqueness is lost.

According to the definition introduced by Morini et al. (2019a), the two intervals [0, 93.24]kHz

and [261.34, 296.63]kHz are transition zones for the laminates 𝐹2, where the number of real

solutions of the dispersion equation depends on the frequency with increasing of unity as frequency

reaching the upper limit of the zone (from 0 to 1 in the former interval, from 1 to 2 in the latter).

If a frequency is not located in a transition zone, the number of solutions must be fixed at 𝐾𝑥𝐿𝑖

or 𝐾𝑦𝐿𝑖. It goes without saying that a threshold 𝐾̄𝑥𝐿𝑖 does exist for each frequency belonging

to a transition zone and the number of possible transmission modes depends on the comparison

between 𝐾𝑥𝐿𝑖 = 𝐾0sin(𝜃inc)𝐿𝑖 and 𝐾̄𝑥𝐿𝑖 (in dimensionless form, of course 𝐿𝑖 is irrelevant).

As 𝐾̄𝑥𝐿𝑖 values are read from the abscissa of the graph, where 𝐾𝑦 = 0, the limits of the transition

zone can be derived from the analysis of the uniaxial problem in which the SH wave propagates or-

thogonally to the laminates, a condition mathematically governed by function 𝑥𝑖(𝑓, 0) in equation

2cos(𝐾̄𝑥𝐿𝑖)) = 𝑥𝑖(𝑓, 0). In the particular case of the laminate 𝐹2, the function 𝑥2(𝑓, 0) is depicted

in Figure 5.2 (c), from which it is easy to draw the following conclusion: since the transition zone

coincides with the passband, its boundaries may be computed with relative ease. These three lo-

cations restrict the first two passbands and correspond to 93.24kHz, 261.34kHz, and 296.63kHz,

respectively. From Morini et al (2019a), these three frequencies are 𝑓1st
𝑖 (upper boundary of the

first transition zone), 𝑓1bg
𝑖 (upper boundary of the first bandgap), and 𝑓̃𝑖 (upper boundary of the

second passband).

Thus, pure negative refraction can be obtained if the normalised wavenumber of the incident wave

𝐾𝑥𝐿𝑖 enters the second Brillouin zone. The minimum frequency for wavenumber 𝐾𝑥𝐿𝑖 ≥ 𝜋 (if

𝑓 = 𝑓min
𝑖 , 𝐾𝑥𝐿𝑖 = 𝜋):

𝑓min
𝑖 = 𝑐0/(2𝐿𝑖) (5.2)

Therefore, the conditions that must be simultaneously fulfilled to achieve pure negative refraction

are:

(1): the frequency 𝑓 of incoming wave should satisfy 𝑓min
𝑖 < 𝑓 < 𝑓̃𝑖;

(2): if 𝑓 < 𝑓1st
𝑖 , 𝐾0sin(𝜃inc)𝐿𝑖 > 2𝜋 − 𝐾̄𝑥𝐿𝑖; if 𝑓1st

𝑖 ≤ 𝑓 ≤ 𝑓
1bg
𝑖 , 𝐾𝑥𝐿𝑖 > 𝜋 should be satisfied; if
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𝑓
1bg
𝑖 < 𝑓 < 𝑓̃𝑖, it still should be 𝐾𝑥𝐿𝑖 > 2𝜋 − 𝐾̄𝑥𝐿𝑖.

From Figure 5.2, it can be deduced that entire reflection also occurs only in 𝑓 < 𝑓1st
𝑖 and if

2𝜋 − 𝐾̄𝑥𝐿𝑖 > 𝐾𝑥𝐿𝑖 > 𝐾̄𝑥𝐿𝑖. It indicates that there is no real solution 𝐾𝑦, simply an evanescent

wave. Due to the absence of energy in evanescent waves (which is discussed later), all incident

energy is now converted into reflected energy.

As the number of transmitted modes across the interface depends on the comparison between 𝐾𝑥𝐿𝑖

and 𝐾̄𝑥𝐿𝑖, the former is determined by the frequency, wave speed in the substrate, angle of incident

and total length of the cell. The latter is determined by function 𝑥𝑖(𝑓, 0); Thus, the propagation of

waves orthogonally to the laminates should be investigated further.

5.2 Canonical Laminate: Configurations and Properties

5.2.1 Transfer matrix corresponding to 𝐾𝑦 = 0 and canonical configuration

In this subsection, the transfer matrix for SH wave propagating orthogonal to the expected direc-

tion of interfaces (𝐾𝑦 = 0) along with the quasicrystalline generated laminates is investigated

to extend the concept of canonical configuration and associated canonical frequency proposed in

Chapter 4 in axial wave propagation in periodic standard Fibonacci GM rods to the current type

of microstructure.

We recalling wave governing equation (2.40) and transfer matrix (2.44) below:

𝜇�
𝜕2𝑢𝑧

𝜕𝑥2
+
𝜕2𝑢𝑧

𝜕𝑦2
� = 𝜌

𝜕2𝑢𝑧

𝜕𝑡2
(5.3)

�
𝜎𝑥𝑧(𝑥)

𝑢𝑧(𝑥)
� = �

cos(𝑞𝑋(𝑥 − 𝑥𝑙)) −𝜇𝑋𝑞𝑋sin(𝑞𝑋(𝑥 − 𝑥𝑙))

sin(𝑞𝑋(𝑥−𝑥𝑙))
𝜇𝑋𝑞𝑋

cos(𝑞𝑋(𝑥 − 𝑥𝑙))
� �
𝜎𝑥𝑧(𝑥𝑙)

𝑢𝑧(𝑥𝑙)
� (5.4)

If 𝐾𝑦 = 0, it means wave field should eliminate 𝑦−component in equation (5.3) and becomes:

𝜇
𝜕2𝑢𝑧

𝜕𝑥2
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2
(5.5)

The elementary transfer matrix is obtained by just substituting 𝐾𝑦 = 0 into matrix (5.4). The prop-

erties of traces from the global transfer matrix 𝑥𝑖 are satisfied the recursive rule in rod problem:

𝑥𝑖+1 = 𝑥𝑖−1𝑥𝑖 − 𝑥𝑖−2, (𝑖 ≥ 2) (5.6)
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Figure 5.2. Plots of 𝐾𝑥𝐿2 versus 𝐾𝑦𝐿2 at several fixed frequencies with the trace of the transfer
matrix. (a) For the number of transmission modes 0 or 1. Frequency range (𝑓 = 20−261.34kHz);
(b) For the number of transmission mode 1 or 2, frequency range 𝑓 = 270 − 296.63kHz. (c) The
situation for the trace of transfer matrix with 𝐾𝑦 = 0. The grey point corresponds to the upper
edge of the first passband, red to the first bandgap and green to the second passband.
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where the initial three traces are:

𝑡0 = 2cos(2𝜋𝑓ℎ𝑆/𝑐𝑆), 𝑡1 = 2cos(2𝜋𝑓ℎ𝐿/𝑐𝐿),

𝑡2 = 2cos(2𝜋𝑓ℎ𝑆/𝑐𝑆)cos(2𝜋𝑓ℎ𝐿/𝑐𝐿) − 𝛽sin(2𝜋𝑓ℎ𝑆/𝑐𝑆)sin(2𝜋𝑓ℎ𝐿/𝑐𝐿) (5.7)

where 𝛽 in here is still the impedance mismatch (𝛽 = (𝜇𝑆𝑐𝐿)/(𝜇𝐿𝑐𝑆) + (𝜇𝐿𝑐𝑆)/(𝜇𝑆𝑐𝐿)). The

Kohmoto’s invariant is a function of frequency:

𝐼(𝑓) = 𝑥̃2𝑖 + 𝑦̃2𝑖 + 𝑧̃2𝑖 − 𝑥̃𝑖𝑦̃𝑖𝑧̃𝑖 − 4 = (𝛽2 − 4)sin2(2𝜋𝑓ℎ𝐿/𝑐𝐿)sin2(2𝜋𝑓ℎ𝑆/𝑐𝑆) (5.8)

which is independent of Fibonacci order 𝑖. According to what we derived in Chapter 4, in the 3D

space described by the orthogonal cartesian system 𝑂𝑥̃𝑦̃𝑧̃. 𝐼(𝑓) is the surface or manifold. Points

𝑅𝑖 = (𝑥̃𝑖, 𝑦̃𝑖, 𝑧̃𝑖) is a triplet whose entries are traces of three consecutive GM orders like before

and 𝑝−point periodic orbits or non-periodic orbits on Kohmoto’s manifold. Thus, the concept of

canonical configuration in a laminate is similar to the situation in a rod with the initial three traces

condition:

𝑥0 = 𝑥1 = 0; 𝑥0 = 𝑥2 = 0; 𝑥1 = 𝑥2 = 0 (5.9)

The material and geometric characteristics of quasicrystalline and frequency should be based on

the same criterion as before for the initial three traces, with three established family ratios:

𝐶(1) =
1 + 2𝑗

1 + 2𝑘
; 𝐶(2) =

1 + 2𝑗

2𝑞
; 𝐶(3) =

2𝑞

1 + 2𝑘
(𝑗, 𝑘, 𝑞 ∈ ℕ) (5.10)

where 𝐶 = (𝑐𝐿ℎ𝑆)/(𝑐𝐿ℎ𝑆) is the canonical ratio. The frequency 𝑓 in this problem is engineering

frequency 𝑓 = 𝜔/2𝜋. The canonical frequencies for each family can be written as 𝑓(𝑟)𝑐𝑛 = 𝑓
(𝑟)
𝑐 (1+

2𝑛), (𝑛 ∈ ℕ) (𝑟 represents which family is associated), where:

𝑓
(1)
𝑐 =

𝑐𝐿

4ℎ𝐿
(1 + 2𝑘) =

𝑐𝑆

4ℎ𝑆
(1 + 2𝑗) , 𝑓

(2)
𝑐 =

𝑐𝐿

4ℎ𝐿
2𝑞 =

𝑐𝑆

4ℎ𝑆
(1 + 2𝑗) ,

𝑓
(3)
𝑐 =

𝑐𝐿

4ℎ𝐿
(1 + 2𝑘) =

𝑐𝑆

4ℎ𝑆
2𝑞. (5.11)

The requirements (5.9) and (5.10) compel the traces 𝑥𝑖 of canonical laminates to be periodic and

symmetric with respect to their canonical frequency, resulting in periodic bandgap and passband

layouts. As the features of traces, the period of both the frequency spectra and the invariant 𝐼(𝑓)

is 2𝑓𝑐, whereas the period of periodic traces is 4𝑓𝑐. Figure 5.3 depicts examples of the different

sequences of passbands (transition zone) and bandgaps for 𝐹0 to 𝐹8 assuming different materials
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L and S (mentioned in the caption). For simplicity, 𝐶(1) = 1 (Family No. 1) in all graphs with

total thickness for 𝐿2 = 0.0043m; Consequently, ℎ𝐿 and ℎ𝑆 rely on the canonical ratio and phase

speed in the two materials. For example, ℎ𝐿 ≈ 0.0014 m and ℎ𝑆 ≈ 0.0029 m from Table 5.1 for

the combination of PMMA (L) and steel (S).

Table 5.1. Properties of the materials adopted in the case studies.

Steel Iron Copper Aluminium Nylon PMMA Polyethylene

𝜇 (GPa) 80 52.5 44.7 26 4 3 0.117

𝜌 (kg/m3) 8000 7860 8940 2700 1150 1180 930

Figure 5.3. Bandgap and Passband (transition zone) layout for canonical Fibonacci laminates 𝐹0
to 𝐹8 with four different impedance mismatches and same ratio 𝐶(1) = 1 in one canonical traces
period 4𝑓𝑐. (a) Material L: iron, material S: copper, 𝛽 = 2.0002; (b) L: steel, S: aluminium,
𝛽 = 3.351; (c) L: PMMA, S: steel, 𝛽 = 13.520; (d) L: steel, S: polyethylene, 𝛽 = 76.706.

The domain illustrated is 𝑓 ∈ [0, 4𝑓𝑐] for all possible combinations. There are two axes of sym-

metry corresponding to canonical frequencies at 1/4 and 3/4 in the domain, which have been

explained in Chapter 4. Clearly, the impedance mismatch 𝛽 affects the density of bandgaps: if

𝛽 = 2, the laminate behaves as a homogeneous waveguide and the whole frequency range is in a

passband, as shown in Figure 5.3 (a), since 𝛽 is extremely near to 2. These outcomes are compara-
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ble to those obtained by analysing bandgap density using the representation of the universal torus

(Morini et al. 2019b). The bandgap density is directly proportional to the mismatch impedance

value. Other traits can also be discovered, as discussed in the next section. Finally, it is important

to note that comparable considerations will be offered for other families’ canonical ratios.

The Figure 5.3 have same implication with dispersion layout in Chapter 4 for rods problem. We

put it here again for easy to check the effect from mismatch impedance to effect of pure nega-

tive refraction. Therefore, aims should be to focus on the first two passbands at relatively low

frequencies, as these correspond with the first two transition zones for the periodic laminates.

5.2.2 Scaling of traces (transition zone) at low frequencies

Similar to the quasicrystalline generated rods problem, the transition zone, bandgap, and traces

for the global transfer matrix of Fibonacci quasicrystalline laminates have scaling effects. The

effects of negative refraction are governed by the second transition zone’s upper edge frequency

(also passband). The fixed point whose Kohmoto’s invariant with frequency 𝑓 = 0kHz, scaling

factor is the golden ratio 𝜙𝑔 = (√5 + 1)/2, corresponds to the closest periodic orbit with the

second and first upper edge of the transition zone. Figure 5.4 depicts the scenario for a canonical

structure 𝐶 = 1/5 with the materials L: PMMA and S: steel, since it is close to the ratio derived

from the thicknesses ℎ𝐿 = 3mm and ℎ𝑆 = 1.3mm. The traces 𝑥6(𝑓) with scaled traces 𝑥5(𝑓/𝜙𝑔),

𝑥7(𝜙𝑔𝑓), and 𝑥8(𝜙
2
𝑔𝑓) are compared and the scaled trace and transition zone layouts are nearly

identical. When 𝑥𝑖 ≈ −2, the theory captures the upper limit of the first passband (i.e., frequency

𝑓1st
𝑖 ) and the lower limit of the second passband (i.e., frequency 𝑓

1bg
𝑖 ) quite well. A little poorer

match is produced for the top limit of the second passband (i.e., frequency 𝑓̃𝑖), but this can be well

explained by the fact that the relevant frequencies are very away from the origin and the scaling is

significantly more effective at relatively high index 𝑖. In portions (b) and (d) of the same figure, the

first two passbands for each traces shown beside are depicted together with red marks showing a

forecast of their limits produced by scaling up or down the precise values for 𝐹6. (black markers).

Again, the two graphs illustrate that scaling is an excellent method for controlling the width of

the first two passbands. From the perspective of the laminate as an elastic device, a quantitative

calculation of the scaling of the self-similar pattern of transition zone at low frequencies may aid

in selecting the index of the elementary cell most suited to produce pure negative refraction when

connected to an isotropic substrate.

Furthermore, due to the existence of periodic orbits in transition zone layouts that are previously

inferred in Chapter 4, the number of transmission modes can be accurately predicted in compari-
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Figure 5.4. Scaling of trace at low frequencies in the vicinity of 𝑓 = 0. Plot of traces for (a)
𝐶 = 1/5, 𝛽 = 13.520 and (c) 𝐶 = 1, 𝛽 = 3.351; in both plots, the adopted scaling factor is 𝜙𝑔.
(b) and (d) Plot of the first two passbands with prediction of their limits by red markers obtained
using the scaling factor 𝜙𝑔 starting from the exact limits of the passbands for 𝑥6 (black markers)

son to non-canonical ones. Therefore, if the number of transition zones at one canonical frequency

is identified, the number of transmission modes at any frequency must be determined. In addition,

𝐾̄𝑥𝐿𝑖’s value can be anticipated. For instance, the periodic orbits at canonical frequency are de-

noted as six-periodic points with two of three traces are zero and other is ±𝛽 or ±2. 𝐾̄𝑥𝐿𝑖 = 𝜋/2

as trace equals to 0, and 𝐾̄𝑥𝐿𝑖 = 0 and 𝜋 if the absolute value of traces |(𝑡𝑟𝑀𝑖)| ≥ 2, respec-

tively. Therefore, if the frequency at periodic orbits (including orbits except saddle points) and

the position for 𝐾̄𝑥𝐿𝑖 is determined, the incidence angle and substrate can be modified for wave

transmission in laminates with a known number of transmission modes.
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5.2.3 The effects from swapping material for phases L and S

The concept of canonical configuration influences the whole spectra, but only the initial two pass-

bands are useful for pure negative refraction. Canonical frequency might be utilised as a tool to

determine the possibility of having pure negative refraction. Using different materials L and S

with the same canonical ratio to increase the �𝑓𝑖 with a fixed 𝐿2, the canonical frequency may be

utilised as a criteria to evaluate the frequency changes with varying impedance mismatch.

From the initial three traces (5.7) and Figure 5.3, an increase in the impedance mismatch 𝛽 favours

the occurrence of bandgaps over passbands. As the periodic and symmetric features of traces, the

number of transition zones inside the interval [0, 𝑓𝑐] for the same canonical ratio and is independent

of 𝛽, or the two materials that make up the elementary cell, which is related to the dispersion

relation mathematical principle. Consequently, the ratios between each of the three frequencies

and the canonical frequency (𝑓1st
𝑖 /𝑓𝑐, 𝑓

1bg
𝑖 /𝑓𝑐 and �𝑓𝑖/𝑓𝑐) may be used to evaluate the effects of 𝛽 on

the edge of the first two transition zones. In this regard, Figure 5.5 depicts the pertinent plots for

𝐶(1) = 1, which can be shown that as the 𝛽 increases, 𝑓1st
𝑖 and �𝑓𝑖 drop monotonically in relation to

𝑓𝑐; In contrast, 𝑓1bg/𝑓𝑐 grows for 𝐹2 and 𝐹3, reaching 2𝑓𝑐 and 𝑓𝑐 in the limit of infinite impedance,

but the ratio decreases for higher sequence indices, respectively. Similar phenomena occur when

�𝑓3/𝑓𝑐 reaches the value 1 for 𝛽 → ∞ for 𝐹3. In addition, due to the existence of the transition point

frequency 𝑓 = 2𝑓𝑐 in 𝐹2, �𝑓2/𝑓𝑐 is always 2 under 𝐶 = 1. In addition, what if phases L and S are

Figure 5.5. Plot of frequency ratio (a) 𝑓1st
𝑖 /𝑓𝑐; (b) 𝑓1bg

𝑖 /𝑓𝑐; (c) �𝑓𝑖/𝑓𝑐 as a function of impedance
mismatch 𝛽 with canonical ratio 𝐶(1) = 1

swapped? Since the immutability of 𝛽, the dispersion spectra take the same form with different

frequency range. In canonical structure, all three edge frequencies occupy the same percentage in

the canonical frequency with the same 𝐶 and 𝛽 (ℎ𝐿 and ℎ𝑆 are connected with 𝐶). Therefore, the

different canonical frequencies are compared for this problem. For 𝑓min
𝑖 = 𝑐0/(2𝐿𝑖) (Morini et

al. 2019a), where 𝑐0 is the wave speed in the substrate, which cannot vary, while 𝐿𝑖 is the entire

length of the cell, can change as a result of material variation (only 𝐿2 is fixed). Thus, 𝐿𝑖𝑓𝑐 should

be explored to determine the maximum value for 𝐿𝑖 �𝑓𝑖 that governs the possibility of pure negative
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refraction.

The total length of cell is 𝐿𝑖 = 𝑛
(𝐿)
𝑖 ℎ𝐿 + 𝑛

(𝑆)
𝑖 ℎ𝑆 and the ℎ𝑆 can be solved from canonical ratio

(5.10), yielding ℎ𝑆 = 𝐶(𝑐𝑆)/(𝑐𝐿)ℎ𝐿. Thus, the 𝐿𝑖𝑓𝑐 should be obtained within three families of

canonical laminates as follows:

𝐿𝑖𝑓
(1)
𝑐 = (𝑐𝐿(1 + 2𝑘)𝑛

(𝐿)
𝑖 + 𝑐𝑆(1 + 2𝑗)𝑛

(𝑆)
𝑖 )/4,

𝐿𝑖𝑓
(2)
𝑐 = (𝑐𝐿2𝑞𝑛

(𝐿)
𝑖 + 𝑐𝑆(1 + 2𝑗)𝑛

(𝑆)
𝑖 )/4,

𝐿𝑖𝑓
(3)
𝑐 = (𝑐𝐿(1 + 2𝑘)𝑛

(𝐿)
𝑖 + 𝑐𝑆2𝑞𝑛

(𝑆)
𝑖 )/4 (5.12)

Thus, the two materials should be chosen to maximise the value derived from expression (5.12),

for example, 𝐿3𝑓1st
3 , 𝐿3𝑓

1bg
3 and 𝐿3 �𝑓3 are greater for the combination (L: steel, S: PMMA) than

the opposite combination (L: PMMA, S: steel) with the same canonical ratio. Consequently, the

canonical frequency can be used as a criteria to determine the effect of impedance mismatch and

swapping of the two-phase material on possibility for pure negative refraction. It is more practical

than non-canonical laminates, which lacks a periodic spectrum.

5.3 Prediction of All Three Edge Frequencies by Linear Approxima-

tion

From the findings above, the three edge frequencies 𝑓1st
𝑖 , 𝑓1bg

𝑖 and �𝑓𝑖 are significant as �𝑓𝑖 governs

the possibility of pure negative refraction and the first two frequencies modify the condition for the

phenomenon to occur. All three frequencies can be easily predicted using a linear approximation

for sequences 𝐹2 and 𝐹3 (note that 𝐹3 can be seen as a special case of 𝐹2 with ℎ3𝐿 = 2ℎ2𝐿, therefore

𝐶𝐹3 = 𝐶𝐹2/2).

This method comes from the initial three dynamic traces (5.7) and trace 𝑥2 can be differentiated

with respect to the frequency 𝑓:

𝑑𝑡2

𝑑𝑓
= −2𝜋((2

ℎ𝐿

𝑐𝐿
+ 𝛽

ℎ𝑆

𝑐𝑆
)sin(

ℎ𝐿

𝑐𝐿
2𝜋𝑓)cos(

ℎ𝑆

𝑐𝑆
2𝜋𝑓) + (2

ℎ𝑆

𝑐𝑆
+ 𝛽

ℎ𝐿

𝑐𝐿
)sin(

ℎ𝑆

𝑐𝑆
2𝜋𝑓)cos(

ℎ𝐿

𝑐𝐿
2𝜋𝑓)).

(5.13)

Equation (5.13) is relatively complex, but it is composed of trigonometric functions. If those

functions can be evaluated at certain frequencies for which they are assumed values either of

0 or ±1, the equation must be simplified, and then this slope can be used to predict all three
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frequencies. Because the canonical frequency is usually larger than the upper edge for the second

transition zone (𝑓𝑐 > �𝑓𝑖), other frequencies at periodic orbits are used for linear approximation.

Chapter 4 has shown that other frequencies exist rather than canonical ones at which periodic orbits

are taken place, for instance when ℎ𝐿/𝑐𝐿2𝜋𝑓 = 𝐿̄𝜋 or ℎ𝑆/𝑐𝑆2𝜋𝑓 = 𝑆̄𝜋, (𝐿̄, 𝑆̄ ∈ ℝ+). Only 𝐿̄ = 1

or 𝑆̄ = 1 can be selected, 𝑓𝐿 = 𝑐𝐿/(2ℎ𝐿) or 𝑓𝑆 = 𝑐𝑆/(2ℎ𝑆), respectively. In this configuration,

the lowest frequency between 𝑓𝐿 and 𝑓𝑆 is lower than �𝑓𝑖. It is easy to distinguish among them: if

𝐶 > 1 (𝐶 < 1), 𝑓𝑆 (𝑓𝐿) is the lowest. Because of this condition, the initial three traces and 𝑑𝑥2

𝑑𝑓
can

be simplified. For 𝑓𝐿 = 𝑐𝐿/(2ℎ𝐿) (𝐶 < 1):

𝑥0 = 2cos(𝐶𝜋), 𝑥1 = −2, 𝑥2 = −2cos(𝐶𝜋),
𝑑𝑥2

𝑑𝑓
(𝑓𝐿) = 2𝜋(2

ℎ𝑆

𝑐𝑆
+ 𝛽

ℎ𝐿

𝑐𝐿
)sin(𝐶𝜋). (5.14)

Alternatively, 𝑓𝑆 = 𝑐𝑆/(2ℎ𝑆) (𝐶 > 1):

𝑥0 = −2, 𝑥1 = 2cos(𝜋/𝐶), 𝑥2 = −2cos(𝜋/𝐶),
𝑑𝑥2

𝑑𝑓
(𝑓𝑆) = 2𝜋(2

ℎ𝐿

𝑐𝐿
+ 𝛽

ℎ𝑆

𝑐𝑆
)sin(𝜋/𝐶).

(5.15)

In both cases, trace 𝑥2 is inside a passband (−2 < 𝑥2 < 2). The slope at this frequency is obtained

by 𝑑𝑥2

𝑑𝑓
. Then two edge frequencies 𝑓1bg

2 and �𝑓2 can be estimated via the linear approximations:

𝑓
1bg
2 ≈ 𝑓 −

2 + 𝑥2
𝑑𝑥2

𝑑𝑓

, �𝑓2 ≈ 𝑓 +
2 − 𝑥2
𝑑𝑥2

𝑑𝑓

. (5.16)

According to equation (5.16), the 𝑥2 ≈ 2 as 𝐶𝜋 ≈ 𝜋 for 𝑓𝐿 or 𝜋

𝐶
≈ 𝜋 for 𝑓𝑆 are depending which

frequency is chosen. In this condition, the �𝑓2 is approximated better than 𝑓
1bg
2 due to 𝑥2 = 2

associates with �𝑓2. On the contrary 𝑓
1bg
2 is better. Here are 6 examples with different canonical

ratio to show approximation results with material L PMMA and S steel, fixed the total length

𝐿2 = 4.3mm as depicted in Figure 5.6. For easy to show the results, the half canonical periodic

which means 𝑓𝑡/2 = 2𝑓𝑐, are plotted.

The results perfectly satisfy the condition above. Only one of 𝑓1bg
2 or �𝑓2 can be approximated

better. However, if the canonical ratio is 𝐶 = 2 (𝐶 = 1/2 also), the linear approximation should

be perfect fitted with both 𝑓1bg
2 and �𝑓2, due to the 𝑓𝐿 (𝑓𝑆) is canonical frequency currently and the

trace for 𝑥2 = 0.
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Figure 5.6. Half canonical periodic with linear approximation in different canonical ratio. (a).
𝐶 = 0.5. (b). 𝐶 = 0.25. (c). 𝐶 = 0.75. (d). 𝐶 = 2. (e). 𝐶 = 1.5. (f). 𝐶 = 2.5.
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Moreover, the 𝑓1st
2 can also be predicted using linear approximation. In this condition, the ℎ𝐿/𝑐𝐿2𝜋𝑓

or ℎ𝑆/𝑐𝑆2𝜋𝑓 = 𝜋/2 should be used with the smallest one chosen the same with before between

𝑓𝐿 = 𝑐𝐿/(4ℎ𝐿) and 𝑓𝑆 = 𝑐𝑆/(4ℎ𝑆). In this configuration, the approach to distinguish the smallest

one is still by canonical ratio 𝐶. Then, the initial three traces are simplified and then derivative

trace 𝑥2. For 𝑓𝐿 = 𝑐𝐿/(4ℎ𝐿) (𝐶 < 1):

𝑥0 = 2cos(
𝜋

2
𝐶); 𝑥1 = 0; 𝑥2 = −𝛽sin(

𝜋

2
𝐶);

𝑑𝑥2

𝑑𝑓
(𝑓𝐿) = −2𝜋(2

ℎ𝐿

𝑐𝐿
+ 𝛽

ℎ𝑆

𝑐𝑆
)cos(

𝜋

2
𝐶); (5.17)

or 𝑓𝑆 = 𝑐𝑆/(4ℎ𝑆) (𝐶 > 1):

𝑥0 = 0; 𝑥1 = 2cos(
𝜋

2𝐶
); 𝑥2 = −𝛽sin(

𝜋

2𝐶
);

𝑑𝑡2

𝑑𝑓
(𝑓𝑆) = −2𝜋(2

ℎ𝑆

𝑐𝑆
+ 𝛽

ℎ𝐿

𝑐𝐿
)cos(

𝜋

2𝐶
); (5.18)

With the same procedure, the linear approximation can be made to predict the 𝑓1st
2 :

𝑓1st
2 ≈ 𝑓 +

−2 − 𝑥2
𝑑𝑥2

𝑑𝑓

(5.19)

If the 𝑥2 is approached −2, the linear approximation would work better. Comparing with equa-

tions (5.17) and (5.18). the value for 𝑥2 depends on 𝛽 and the canonical ratio 𝐶. If impedance

mismatch is low (𝛽 close to 2), 𝐶 should be close to 1 for a better prediction. On the contrary, if

𝛽 is large, 𝐶 should be remarkably different than unity (in other words: 𝐶 >> 1 or 𝐶 << 1) for a

reliable prediction.

In Figure 5.7, six examples are displayed. The three different two-phase materials are chosen,

(1). material L PMMA, S steel (𝛽 ≈ 13.5202); (2) material L Iron, S copper (𝛽 ≈ 2.0002); (3)

material L steel, S polyethylene (𝛽 ≈ 76.7060) with total length of cell 𝐿2 = 4.3 mm. For ease of

representation, the frequency range are 2𝑓𝐿 or 2𝑓𝑆. For the same two phases material combination,

the canonical ratios in two plots are inverse of each other, for instance, 1/8.5 ≈ 0.118 as shown

in Figure 5.7 (a) and (b). It is also very interesting that for inverse canonical ratio, the dynamic

trace 𝐹2 does not change and 𝑥0 and 𝑥1 are substituting into each other (𝑥0 → 𝑥1 and 𝑥1 → 𝑥0)

in different frequency range. This conclusion is beneficial for the topological interface state in the

next chapter.
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f1st

f1stapproxi
f1st

f1stapproxi

Figure 5.7. Linear approximation for 𝑓1𝑠𝑡2 in different canonical ratio with different material
combination. (a). L PMMA and S steel (𝛽 ≈ 13.5202) with 𝐶 = 0.118. (b). L PMMA and S steel
(𝛽 ≈ 13.5202) with 𝐶 = 8.5. (c). L Iron and S copper (𝛽 ≈ 2.0002) with 𝐶 = 0.909. (d). L
Iron and S copper (𝛽 ≈ 2.0002) with 𝐶 = 1.1. (e). L steel and S polyethylene (𝛽 ≈ 76.7060)
𝐶 = 0.023. (f). L steel and S polyethylene (𝛽 ≈ 76.7060) 𝐶 = 42.667.
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Figure 5.8. Variation of upper edge within fixed total length of cell 𝐿𝑖 with L PMMA S Steel. (a)
first transition zone. (b) first bandgap. (c). second transition zone.

Therefore, the linear approximation method and results for 𝑓1st
2 , 𝑓1bg

2 and �𝑓2 are obtained. If the

canonical ratio are 𝐶 = 2 or 𝐶 = 1/2, then both 𝑓1bg
2 and �𝑓2 can be predicted with good accuracy.

Otherwise, only one of them can be predicted well with different 𝐶 range. Moreover, the better

approximation for 𝑓1st
2 depends on impedance mismatch 𝛽 and canonical ratio 𝐶. If 𝛽 >> 2,

better prediction with the 𝐶 ≈ 1 can be obtained. If 𝛽 ≈ 2, better prediction with the 𝐶 << 1 or

𝐶 >> 1 can be obtained.

5.4 Optimisation of the Three Frequencies Using Universal Torus

The theory reported in Section 5.1 recognizes that the three frequencies 𝑓1st, 𝑓1bg and �𝑓 play

an important role in defining the possibility of pure negative refraction in the substrate-laminate

problem. Based on the notion of canonical laminate, our goal is now to investigate how we can

exploit the ratio 𝐶 in order to maximize (or minimize), with the same phases 𝐿 and 𝑆, the values

of 𝑓1st, 𝑓1bg and �𝑓.

It is not hard to find that the following limits exist:

lim
𝐶→∞

𝑓1st
𝑖 = lim

𝐶→∞
𝑓

1bg
𝑖 = 𝑐𝑆/(2𝐿𝑖), lim

𝐶→∞
�𝑓𝑖 = 𝑐𝑆/𝐿𝑖

lim
𝐶→0

𝑓1st
𝑖 = lim

𝐶→0
𝑓

1bg
𝑖 = 𝑐𝐿/(2𝐿𝑖), lim

𝐶→0
�𝑓𝑖 = 𝑐𝐿/𝐿𝑖

To this end, we propose an analysis to reveal what is the influence of 𝐶 for cells with the same two

phases and maintaining the length 𝐿𝑖 fixed when analysing the same cell. We study the combina-

tion 𝐿: PMMA, 𝑆: steel, and vary the thickness ratio ℎ𝐿/ℎ𝑆 (recall canonical ratio). In particular,

we assume preliminarily ℎ𝐿 = 3mm and ℎ𝑆 = 1.3mm, and calculate the length 𝐿𝑖 = 𝑛𝐿𝑖 ℎ𝐿+𝑛
𝑆
𝑖 ℎ𝑆;

then the thicknesses of the two phases are varied to scan all possible values of 𝐶 as shown in Figure

5.8. In the plots of Figure 5.8, the three quantities 𝑓1st, 𝑓1bg and �𝑓 are reported for cells 𝐹2 to 𝐹8

as a function of canonical ratio 𝐶. It is evident that, for the adopted phases, in all functions, there
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exists at least one stationary point; in addition, cusps exist for frequency �𝑓 in the graphs for both 𝐹2

and 𝐹3. The knowledge of the values of 𝐶 at which maxima/minima occur would be very helpful

for design purposes. To accomplish the goal, we take advantage of the universal representation of

the frequency spectrum proposed for elastic waveguides in Chapter 3, and effective to represent in

a compact fashion pass and stop bands.

ξS

(a) (b)

ξLξξL

ξS

Upper line

Lower line
 Lower line

Upper line

Figure 5.9. Torus for (a) 𝐹2 and (b) 𝐹3. The black lines are boundary lines. The red line is the
corresponding flow line pass through the transitional point. The purple lines correspond to local
extreme points except for transitional points

In Figure 5.9, the cases 𝐹2 and 𝐹3 are reported. It is interesting to note that along the two cartesian

axes, a pass band is always met except in a set of isolated points placed at regular intervals where

either |𝑡𝑖(𝜉𝑆, 0)| = 2 or |𝑡𝑖(0, 𝜉𝐿)| = 2 (𝑖 ≥ 2). At the upper limit of the first pass band, the

boundary lines for 𝐹2 and 𝐹3 that is the one which corresponds to 𝑓1st
𝑖 have equations:

𝐹2 ∶ 𝜉𝐿 = 2arctan(
Γ−

tan(𝜉𝑆/2)
); 𝐹3 ∶ 𝜉𝐿 = arctan(

Γ−

tan(𝜉𝑆/2)
)

where Γ±:

Γ± = 𝛽/2 ± �(𝛽/2)2 − 1

The boundary lines for 𝐹2 and 𝐹3 associated with 𝑓1bg are represented by the same equations, but

with Γ+ in place of Γ−:

𝐹2 ∶ 𝜉𝐿 = 2arctan(
Γ+

tan(𝜉𝑆/2)
); 𝐹3 ∶ 𝜉𝐿 = arctan(

Γ+

tan(𝜉𝑆/2)
)

The union of the two lines is the boundary of the first pass-band (blue) region encountered by a

flow line at low frequencies. The boundary line which sets the upper limit of the second transition

zone is composed of two branches whose parametric equations are:
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𝐹2 ∶ 𝜉𝐿 = 2arctan�
Γ−

tan�𝜉𝑆
2
�
� + 𝜋, 𝜉𝐿 = 2arctan�

Γ+

tan�𝜉𝑆
2
�
� + 𝜋

𝐹3 ∶ 𝜉𝐿 = arctan�
Γ−

tan�𝜉𝑆
2
�
� +

𝜋

2
, 𝜉𝐿 = arctan�

Γ+

tan�𝜉𝑆
2
�
� +

𝜋

2

They are represented in Figure 5.9 (a) and (b) by the black curves bounding from below the two

blue domains encountered by a flow line satisfying 2𝜋 > max{𝜉𝐿, 𝜉𝑆} > 𝜋 for 𝐹2, 2𝜋 > max{𝜉𝑆} >

𝜋 and 𝜋 > max{𝜉𝐿} for 𝐹3. As length of laminate cell 𝐿𝑖 is fixed, then the frequency expression

could be obtained in terms of 𝜉𝐿 and 𝜉𝑆, respectively:

𝑓 = 𝜉𝐿
(𝑛

(𝐿)
𝑖 𝑐𝐿 + 𝑛

(𝑆)
𝑖 𝑐𝑆𝐶)

2𝜋𝐿𝑖
; 𝑓 = 𝜉𝑆

(𝑛
(𝐿)
𝑖 𝑐𝐿/𝐶 + 𝑛

(𝑆)
𝑖 𝑐𝑆)

2𝜋𝐿𝑖
(5.20)

First, the extreme value for 𝑓1st
𝑖 is studied. The rest 𝑓1bg

𝑖 and �𝑓𝑖 are analysed in same way. Because

of the right hand side term in equation (5.20), the point (𝜉𝐿, 𝜉𝑆) must be on the boundary line for

the reason 𝑓1st
𝑖 is the boundary point. Thus, the 𝐶 = 𝜉𝑆/𝜉𝐿:

1/𝐶 =
2

𝜉𝑆
arctan�

Γ−

tan�𝜉𝑆
2
�
� (5.21)

By substituting equation (5.21) into (5.20) and 𝑛
(𝐿)
2 = 1, 𝑛

(𝑆)
2 = 1. The following expression is

obtained:

𝑓1st
2 = 𝜉𝑆

(𝑐𝐿
2

𝜉𝑆
arctan� Γ−

tan�
𝜉𝑆
2
�
� + 𝑐𝑆)

2𝜋𝐿2
(5.22)

Then, the equation (5.22) can be differentiated with respect to 𝐶 using the chain rule, namely:

𝑑𝑓1st
2

𝑑𝐶
=
𝑑𝑓1st

2

𝑑𝜉𝑆

𝑑𝜉𝑆

𝑑𝐶
= 0

The term 𝑑𝜉𝑆/𝑑𝐶 is hard to solve from equation (5.21), but it is easy to observe from Figure

5.9 that its value is negative as 𝐶 ∈ ℝ+. Thus, equation 𝑑𝑓1st
2 /𝑑𝐶 = 0 can be replaced by

𝑑𝑓1st
2 /𝑑𝜉𝑆 = 0 whose solution is:

𝜉𝑆 = 2arccot(𝜖1) (5.23)

𝜖1 = �
𝜌𝐿𝜌𝑆(𝑐𝐿 − 𝑐𝑆Γ

+)2

(𝜇𝐿 − 𝜇𝑆)(𝜌𝐿 − 𝜌𝑆)
(5.24)
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Then, the local minimum value for the upper edge first transition zone is:

𝑓1st
2 =

1

2𝜋𝐿2
(2𝑐𝑆arccot(𝜖1) + 2𝑐𝐿arctan(𝜖1Γ−)) (5.25)

Thus, the frequency at extreme value for 𝑓1st
2 is found. The same procedure can be performed with

the Fibonacci sequence 𝐹3:

𝑓1st
3 =

1

2𝜋𝐿3
(2𝑐𝑆arccot(𝜖1) + 2𝑐𝐿arctan(𝜖1Γ−)) (5.26)

Expressions (5.25) and (5.26) are very similar except total length of cell 𝐿𝑖, this is because the 𝐹3

structure can be seen as special 𝐹2 ones with double ℎ𝐿 so that only the general form is written in

the latter. The Fibonacci order 𝑖 can be 2 and 3. With the same procedure, the answer for 𝑓1bg
𝑖 can

be obtained:

𝑓
1bg
𝑖 =

1

2𝜋𝐿𝑖
(2𝑐𝑆arccot(𝜖2) + 2𝑐𝐿arctan(𝜖2Γ+)) (5.27)

where:

𝜖2 = �
𝜌𝐿𝜌𝑆(𝑐𝐿 − 𝑐𝑆Γ

−)2

(𝜇𝐿 − 𝜇𝑆)(𝜌𝐿 − 𝜌𝑆)
(5.28)

The local maximum and minimum values for upper edge of second transition zone �𝑓𝑖 for 𝐹2 and 𝐹3

are:

�𝑓𝑖𝑢 =
1

2𝜋𝐿𝑖
(2𝑐𝑆arccot(𝜖1) + 𝑐𝐿 (𝜋 + 2arctan(𝜖1Γ−))) (5.29)

�𝑓𝑖𝑙 =
1

2𝜋𝐿𝑖
((𝑐𝐿 + 2𝑐𝑆) 𝜋 − 2𝑐𝑆arccot(𝜖2) − 2𝑐𝐿arctan(𝜖2Γ+)) (5.30)

where 𝑢 and 𝑙 associate with upper boundary line and lower one, respectively, and 𝑖 can be 2 and

3. These four extreme values (upper edge first transition zone and first bandgap, second transition

zone) are shown in the Figure 5.9 with purple lines. The associated material ratio is obtained due

to the 𝜉𝑆/𝜉𝐿 and Equation (5.21). Moreover, the intersection for two boundary lines when 𝐶 = 1,

�𝑓2 = (𝑐𝐿+𝑐𝑆)/(2𝐿2) and 𝐶 = 2, �𝑓3 = (𝑐𝐿+𝑐𝑆)/(2𝐿3) are not shown in these explicit expressions

(5.25), (5.26), (5.27), (5.29) and (5.30) (red line shown in Figure. 5.9), this is perfectly consistent

as case 𝐹3 can be traced back to that for 𝐹2 by rearranging the unit cell between the periodic layout

of layers. From the point of view of one willing to maximize the range of frequencies for which

pure negative refraction may occur, the performed analysis shows that, for cell 𝐹2, the canonical

ratio 𝐶 to be selected should be equal to 1, as this value maximizes 𝑓min
2 .

It is worth noting that a close inspection of functions 𝜖1 and 𝜖2 reveals that these expressions are

only valid if either 𝜌𝐿 > 𝜌𝑆, 𝜇𝐿 > 𝜇𝑆 or 𝜌𝐿 < 𝜌𝑆, 𝜇𝐿 < 𝜇𝑆, as those are the only requirements
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Figure 5.10. Variation of upper edge within fixed total length of cell 𝐿𝑖 with L Iron and S Copper.
(a) first transition zone. (b) first bandgap. (c). second transition zone.

which ensure that functions 𝜖1 and 𝜖2 are real. If densities and shear modules do not satisfy the

given inequalities, local stationary values for the investigated frequencies do not exist as shown in

Figure 5.10 (material 𝐿 is Iron (𝜇𝐿 = 52.5GPa, 𝜌𝐿 = 7860kg/m3) and 𝑆 Copper (𝜇𝑆 = 44.7GPa,

𝜌𝑆 = 8940kg/m3).

In addition, the smallest frequency 𝑓min
𝑖 leads to dimensionless transverse wave number 𝐾𝑥𝐿𝑖

entering the second Brillouin zone. It can be plotted by different Fibonacci order 𝑖 with selected

substrate materials comparing the Figure 5.8 and 5.11 to check whether pure negative refraction

happened. The substrate material can be chosen as steel, Aluminium, copper, Iron, PMMA, Nylon,

polyethylene as shown in Table 5.1

Figure 5.11. Plot of the minimum frequency 𝑓𝑚𝑖𝑛
𝑖 to enter the second Brillouin zone for different

substrate-laminate systems.
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5.5 Poynting Vector Simplification and Investigation on ‘Inverse Prob-

lem’

5.5.1 Further simple format for two components of Poynting vector

The angle of refraction of a transmitted wave across the interface between a substrate and a trans-

verse quasicrystalline generated laminate can be determined through the relationship (2.70) and

rewritten here:

tan(𝜃trans) =
𝑣
𝑔
𝑥

𝑣
𝑔
𝑦

=
⟨𝒫𝑥⟩

⟨𝒫𝑦⟩
. (5.31)

where 𝑣𝑔𝑥 = (𝜕𝜔)/(𝜕𝐾𝑥) and 𝑣𝑔𝑦 = (𝜕𝜔)/(𝜕𝐾𝑦) are the components of the group velocity parallel

and perpendicular to the interface, respectively, 𝒫𝑥 and 𝒫𝑦 are analogous to the time-averaged real

part components of the Poynting vector, the brackets ⟨⟩ denote the space average over the unit cell

𝐹𝑖. According to Willis (2016), the real part of the time-averaged acoustic Poynting vector is given

by the components 𝒫𝑗 averaged over the unit cell given in Chapter 2 (equations (2.68) and (2.69))

and rewritten here:

⟨𝒫𝑥⟩ =
1

2
Re[

1

𝐿𝑖
�
𝐿𝑖

0

i𝜔𝜎𝑥𝑧𝑢∗𝑧𝑑𝑥] =
1

2
Re �

1

𝐿𝑖
𝜔�

𝐿𝑖

0

𝜇(i
𝑑𝑤

𝑑𝑥
𝑤∗ + 𝐾𝑥𝑤𝑤

∗)𝑑𝑥� ; (5.32)

⟨𝒫𝑦⟩ =
1

2
Re[

1

𝐿𝑖
�
𝐿𝑖

0

i𝜔𝜎𝑦𝑧𝑢∗𝑧𝑑𝑥] =
1

2
Re �

1

𝐿𝑖
𝜔�

𝐿𝑖

0

𝜇𝐾𝑦𝑤𝑤
∗𝑑𝑥�

The function 𝑤(𝑥) in equations (5.32) is the mode shape defined in equation displacement field

for incident wave (5.34) (for a generic mode), and corresponding to the real solution 𝐾𝑦 of the

dispersion relation of the laminate at a given 𝐾𝑥 as introduced in Chapter 2. The displacement

fields for incident, transmitted and reflected will be rewritten here for easy to recalling:

𝑢inc
𝑧 = 𝐴𝑒i(𝜔𝑡−𝐾inc

𝑥 𝑥−𝐾0cos(𝜃inc)𝑦) (5.33)

𝑢trans
𝑧 =

∞

�

𝑙=0

𝑇𝑙𝑤𝑙(𝑥)𝑒
i(𝜔𝑡−𝐾trans

𝑥 𝑥−𝐾
(𝑙)
𝑦 𝑦) (𝑙 ∈ ℕ) (5.34)

𝑢ref
𝑧 =

∞

�

𝑚=−∞

𝑅𝑚𝑈𝑚(𝑥)𝑒
i(𝜔𝑡−𝐾ref

𝑥 𝑥+𝑘
(𝑚)
𝑦 𝑦) (𝑚 ∈ ℤ) (5.35)

We now focus on the derivation of simplified expressions for ⟨𝒫𝑥⟩ and ⟨𝒫𝑦⟩ in order to obtain an

explicit formula for tan(𝜃trans). By using the definition of transmission matrix (5.4), in one phase,

the stress 𝜎𝑥𝑧 and displacement 𝑢∗𝑧 can be written as:

𝜎𝑥𝑧(𝑥 + 𝑥𝑙) = cos(𝑞𝑋𝑥)𝜎𝑥𝑧 (𝑥𝑙) − 𝜇𝑋𝑞𝑋sin(𝑞𝑋𝑥)𝑢𝑧 (𝑥𝑙) , (5.36)

120



Chapter 5 - Wave Propagation in Quasicrystalline and Canonical Laminates

𝑢∗𝑧 (𝑥 + 𝑥𝑙) =
sin(𝑞𝑋𝑥)
𝜇𝑋𝑞𝑋

𝜎∗𝑥𝑧 (𝑥𝑙) + cos(𝑞𝑋𝑥)𝑢∗𝑧 (𝑥𝑙) , (5.37)

where 𝑥 is the relative coordinate, and 𝑥𝑙 is the coordinate of the left boundary for this phase

(layers). Thus we can do an integral in one phase material (The principle for whole elementary

cell integral is the sum of each phase introduced in Chapter 3):

1

2
Re �

1

𝐿𝑖
�
ℎ𝑋

0

i𝜔(𝜎𝑥𝑧𝑢
∗
𝑧) 𝑑𝑥� =

𝜔

2𝐿𝑖
(Re ��

ℎ𝑋

0

i�
cos(𝑞𝑋𝑥)sin(𝑞𝑋𝑥)

𝜇𝑋𝑞𝑋
|𝜎∗𝑥𝑧 (𝑥𝑙) |

2�𝑑𝑥�

−Re ��
ℎ𝑋

0

i �cos(𝑞𝑋𝑥)sin(𝑞𝑋𝑥)𝜇𝑋𝑞𝑋|𝑢∗𝑧 (𝑥𝑙) |2� 𝑑𝑥�+

Re ��
ℎ𝑋

0

i �cos2(𝑞𝑋𝑥)𝜎𝑥𝑧(𝑥𝑙)𝑢∗𝑧 (𝑥𝑙)� 𝑑𝑥� + Re ��
ℎ𝑋

0

i �sin2(𝑞𝑋𝑥)𝜎∗𝑥𝑧(𝑥𝑙)𝑢𝑧 (𝑥𝑙)� 𝑑𝑥�) (5.38)

If 𝑞𝑋 is pure real, the three terms must be pure real, and if 𝑞𝑋 = i𝑞̄𝑋 is pure imaginary (𝑞̄𝑋 is

pure real), three terms cos(𝑞𝑋𝑥), 𝑞𝑋sin(𝑞𝑋𝑥) and sin(𝑞𝑋𝑥)/𝑞𝑋 must be pure real also. This can

be proved by Euler Formula:

cos(i𝑞̄𝑋𝑥) =
𝑒−𝑞̄𝑋𝑥 + 𝑒𝑞̄𝑋𝑥

2
; i𝑞̄𝑋sin(i𝑞̄𝑋𝑥) = 𝑞̄𝑋

𝑒−𝑞̄𝑋𝑥 − 𝑒𝑞̄𝑋𝑥

2
;

sin(i𝑞̄𝑋𝑥)
i𝑞̄𝑋

=
𝑒−𝑞̄𝑋𝑥 − 𝑒𝑞̄𝑋𝑥

−2𝑞̄𝑋
;

Thus, the initial two terms in equation (5.38) are purely real, and times imaginary unit i is pure

imaginary number so that real part of integral is zero. Finally, equation (5.38) becomes:

1

2
Re �

1

𝐿𝑖
�
ℎ𝑋

0

i𝜔(𝜎𝑥𝑧𝑢
∗
𝑧) 𝑑𝑥� =

ℎ𝑋𝜔

2𝐿𝑖
Im[𝜎∗𝑥𝑧 (𝑥𝑙) 𝑢𝑧 (𝑥𝑙)] (5.39)

By observing the properties of the eigenvalue problem, it is clear that the stress displacement

vector at the left-hand boundary of the cell is an eigenvector of the same problem that can be

written as:

𝑀𝑖 − 𝑒−i𝐾𝑥𝐿𝑖E = �
𝑀11 − 𝑒−i𝐾𝑥𝐿𝑖 𝑀12

𝑀21 𝑀22 − 𝑒−i𝐾𝑥𝐿𝑖
� ⇒ �

𝜚

−𝜚
𝑀11−𝑒

−i𝐾𝑥𝐿𝑖

𝑀12

� (5.40)

The rightmost one is the eigenvector associated with eigenvalue 𝑒−i𝐾𝑥𝐿𝑖 which is also initial bound-

ary [𝜎𝑥𝑧(0), 𝑢𝑧(0)]. The 𝜚 is constant value in eigenvector solution. As 𝑀11 and 𝑀12 are real

numbers, this leads to Im[𝜎∗𝑥𝑧(𝑥0𝑙)𝑢𝑧(𝑥0𝑙)] = −|𝜚|2sin(𝐾𝑥𝐿𝑖)/𝑀12. Note that equation (5.4) is

valid within each layer and that the four elements of each local matrix 𝑀𝑋 are real numbers, there-

fore it can be shown that Im[𝜎∗𝑥𝑧(𝑥0𝑙)𝑢𝑧(𝑥0𝑙)] = Im[𝜎∗𝑥𝑧(𝑥𝑙)𝑢𝑧(𝑥𝑙)] for each layer. Actually, from

the expressions (5.36), (5.37) and (5.39), the material parameters do not have influence on integral
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in each phase. Thus, the Poynting vector becomes:

⟨𝒫𝑥⟩ = −|𝜚|2
𝜔sin(𝐾𝑥𝐿𝑖)

2𝑀12

(5.41)

Equation (5.41) shows that the transmission angle is null when the value of 𝐾𝑥𝐿𝑖 is at the boundary

of a Brillouin zone (i.e. . . . 0, 𝜋, 2𝜋, . . . ). In order to obtain an explicit expression of 𝒫𝑦, the

integral ∫
𝐿𝑖

0
𝑤𝜇𝑤∗𝑑𝑥 must be calculated, namely:

�
ℎ𝑋

0

𝑤𝜇𝑤∗𝑑𝑥 =
|𝜎𝑥𝑧 (𝑥𝑙)|

2

𝜇𝑋𝑞
2
𝑋

�
ℎ𝑋

2
−

sin(2𝑞𝑋ℎ𝑋)
4𝑞𝑋

�+

𝜎∗𝑥𝑧 (𝑥𝑙) 𝑢𝑧 (𝑥𝑙)
sin2(𝑞𝑋ℎ𝑋)

2𝑞2𝑋
+ 𝜎𝑥𝑧 (𝑥𝑙) 𝑢

∗
𝑧 (𝑥𝑙)

sin2(𝑞𝑋ℎ𝑋)

2𝑞2𝑋
+ 𝜇𝑋 |𝑢𝑧 (𝑥𝑙)|

2
(
ℎ𝑋

2
+

sin(2𝑞𝑋ℎ𝑋)
4𝑞𝑋

)

(5.42)

Equation (5.42) can be simplified under some assumptions concerning Kohmotos invariant. For

𝐾𝑦 ≠ 0, the invariant, that is a generalization of 𝐼(𝑓). The initial three traces with 𝐾𝑦 ≠ 0 are:

𝑥0 = 2cos(𝑞𝑆ℎ𝑆); 𝑥1 = 2cos(𝑞𝐿ℎ𝐿)

𝑥2 = 2cos(𝑞𝑆ℎ𝑆)cos(𝑞𝐿ℎ𝐿) − (
𝜇𝑆𝑞𝑆

𝜇𝐿𝑞𝐿
+
𝜇𝐿𝑞𝐿

𝜇𝑆𝑞𝑆
)sin(𝑞𝑆ℎ𝑆)sin(𝑞𝐿ℎ𝐿) (5.43)

Thus, Kohmoto’s invariant 𝐼(𝑓, 𝐾𝑦) is obtained (𝐾𝑦 inside 𝐼 means it does not vanish):

𝐼 = �
𝜇2𝑆𝑞

2
𝑆 − 𝜇2𝐿𝑞

2
𝐿

𝜇𝐿𝑞𝐿𝜇𝑆𝑞𝑆
�

2

sin2(𝑞𝑆ℎ𝑆) sin2(𝑞𝐿ℎ𝐿) (5.44)

The case where expression (5.44) is null independently of the values of sinusoidal functions

provides a special configuration of laminates for which the sought-after simplification can be

achieved. In particular, this leads to 𝑞𝐿𝜇𝐿 = 𝑞𝑆𝜇𝑆 = 𝑍, a real quantity, which results in the

following relationship between 𝑓 and 𝐾𝑦:

𝐾𝑦 = 𝜅𝜔. (5.45)

where 𝜅 is �(𝜇𝐿𝜌𝐿 − 𝜇𝑆𝜌𝑆)/(𝜇
2
𝐿 − 𝜇2𝑆). The 𝜅 can be real positive or pure imaginary which is

associated with propagation and evanescent wave. In this thesis, the propagation wave should be

considered so that 𝜅 > 0. Hence, the two elementary transfer matrices are:

𝑀𝐿 = �
cos(𝑞𝐿ℎ𝐿) −𝑍sin(𝑞𝐿ℎ𝐿)

sin(𝑞𝐿ℎ𝐿)
𝑍

cos(𝑞𝐿ℎ𝐿)
� , 𝑀𝑆 = �

cos(𝑞𝑆ℎ𝑆) −𝑍sin(𝑞𝑆ℎ𝑆)
sin(𝑞𝑆ℎ𝑆)

𝑍
cos(𝑞𝑆ℎ𝑆)

� , (5.46)
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Figure 5.12. Plot of the laminate passbands with frequency 𝑓 and wavenumber 𝐾𝑦. (a) 𝐹2. (b)
𝐹5. (c) 𝐹8. The black straight line is the function of (5.45). The dispersion relation will be all
passbands along with this line.

Actually, equation (5.45) represents a straight line in passband layouts for laminates when consid-

ering frequency 𝑓 and wavenumber 𝐾𝑦 as shown in Figure 5.12 with Fibonacci order 𝐹2, 𝐹5 and

𝐹8. Whereas the global transfer matrix 𝑀𝑖 assumes the form:

𝑀𝑖 = �
cos(𝜈𝜔𝐿𝑖) −𝑍sin(𝜈𝜔𝐿𝑖)

sin(𝜈𝜔𝐿𝑖)
𝑍

cos(𝜈𝜔𝐿𝑖)
� . (5.47)

𝜈𝜔𝐿𝑖 = 𝑛
(𝐿)
𝑖 𝑞𝐿ℎ𝐿 + 𝑛

(𝑆)
𝑖 𝑞𝑆ℎ𝑆 (5.48)

where:

𝜈 =
𝑛𝐿𝑖 𝑐𝐿𝑄𝐿 + 𝐶𝑛𝑆𝑖 𝑐𝑆𝑄𝑆

𝑐𝐿𝑛
𝐿
𝑖 + 𝐶𝑐𝑆𝑛

𝑆
𝑖

; 𝑄𝐿 = �1/𝑐2𝐿 − 𝜅2; 𝑄𝑆 = �1/𝑐2𝑆 − 𝜅2. (5.49)

The term 𝜅 is a purely real number and conditions are derived: terms 𝜇𝐿𝜌𝐿 − 𝜇𝑆𝜌𝑆 and 𝜇2𝐿 − 𝜇2𝑆

must share the same sign. Two terms 𝑄𝐿 and 𝑄𝑆 actually demonstrate the 𝑞𝐿 and 𝑞𝑆 respectively

(if times circular frequency 𝜔). The terms 1/𝑐2𝐿 can be slightly decreased:

1

𝑐2𝐿
=
𝜌𝐿

𝜇𝐿
>
𝜌𝐿𝜇𝐿 − 𝜌𝑆𝜇𝑆

𝜇2𝐿
>
𝜇𝐿𝜌𝐿 − 𝜇𝑆𝜌𝑆

𝜇2𝐿 − 𝜇2𝑆

so that 𝑄𝐿 > 0 and with the same reason term 𝑄𝑆 > 0. The dispersion equation (5.50) provides

the relationships:

𝐾𝑥𝐿𝑖 = arccos(
𝑡𝑟𝑀𝑖(𝑓, 𝐾𝑦)

2
). (5.50)

cos(𝐾𝑥𝐿𝑖) = cos(𝜈𝜔𝐿𝑖), sin(𝐾𝑥𝐿𝑖) = ±sin(𝜈𝜔𝐿𝑖). (5.51)

and the eigenvector (5.40) becomes, in this case, [𝜚, ±𝜚i/𝑍]𝑇. The criterion for the selection

of the sign in equation (5.51) will be clarified later, however we anticipate that +(−) is for a

positive (negative) refracted wave. Then, for an arbitrary layer, the left-hand boundary conditions

at 𝑥 = 𝑥𝑙 of each layer can be calculated by repeated applications of matrices equation (5.46) to

the eigenvector, namely:
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�
𝜎𝑥𝑧(𝑥𝑙)

𝑢𝑧(𝑥𝑙)
� = �

𝜚cos(𝑛̂) ∓ 𝜚isin(𝑛̂)
𝜚sin(𝑛̂)

𝑍
± i𝜚cos(𝑛̂)

𝑍

� (5.52)

where 𝑛̂ = 𝑛(𝐿)𝑞𝐿ℎ𝐿 + 𝑛(𝑆)𝑞𝑆ℎ𝑆, In this expression, the 𝑛(𝐿) and 𝑛(𝑆) are the number of layers L

and S before the left boundary condition 𝑥 = 𝑥𝑙 and 𝑥 = 𝑥0, respectively (the two integer values

run from 0 to 𝑛
(𝐿)
𝑖 or 𝑛(𝑆)𝑖 , respectively). By substituting state vector (5.52) into equation (5.42),

note that 𝜎∗𝑥𝑧 (𝑥𝑙) 𝑢𝑧 (𝑥𝑙) + 𝜎𝑥𝑧 (𝑥𝑙) 𝑢
∗
𝑧 (𝑥𝑙) = 0, |𝜎𝑥𝑧 (𝑥𝑙)|

2
= |𝜚|2 and |𝑢𝑧 (𝑥𝑙)|

2
= |𝜚|2/𝑍2.

Thus, integral (5.42) becomes:

1

|𝜚|2
�
𝑥𝑙+ℎ𝑋

𝑥𝑙

𝑤𝜇𝑤∗𝑑𝑥 =
1

𝑍𝑞𝑋
�
ℎ𝑋

2
−

sin(2𝑞𝑋ℎ𝑋)
4𝑞𝑋

� +
(cos(𝑛̂) ± isin(𝑛̂))(sin(𝑛̂) ± icos(𝑛̂))

𝑍

sin2(𝑞𝑋ℎ𝑋)
2𝑞2𝑋

+
(cos(𝑛̂) ∓ isin(𝑛̂))(sin(𝑛̂) ∓ icos(𝑛̂))

𝑍

sin2(𝑞𝑋ℎ𝑋)
2𝑞2𝑋

+
1

𝑍𝑞𝑋
�
ℎ𝑋

2
+

sin(2𝑞𝑋ℎ𝑋)
4𝑞𝑋

� ,

And then simplified to yield significant part in 𝑦-component Poynting vector:

�
𝑥𝑙+ℎ𝑋

𝑥𝑙

𝑤𝜇𝑤∗𝑑𝑥 =
|𝜚|2

𝑍
(
ℎ𝑋

𝑞𝑋
) (5.53)

Through equation (5.47) and (5.51), equation (5.41) can be simplified so that the components of

the averaged Poynting vector for the assumption (5.45) finally become:

⟨𝒫𝑥⟩ = ±
|𝜚|2𝜔

2𝑍
, ⟨𝒫𝑦⟩ =

|𝜚|2𝜔𝐾𝑦

2𝐿𝑖𝑍
�𝑛

(𝐿)
𝑖

ℎ𝐿

𝑞𝐿
+ 𝑛

(𝑆)
𝑖

ℎ𝑆

𝑞𝑆
� (5.54)

Using these expressions in (5.54), from Equation (5.31), we finally obtain:

tan(𝜃trans) = ±
𝐿𝑖

𝐾𝑦(𝑛
(𝐿)
𝑖

ℎ𝐿

𝑞𝐿
+ 𝑛

(𝑆)
𝑖

ℎ𝑆

𝑞𝑆
)
. (5.55)

Note that equation (5.54) and (5.55) hold true for a Fibonacci laminate of any index 𝑖. Equation

(5.55) can be further manipulated by taking advantage of the definition of 𝑞𝑋, of equation (5.45)

and the fact that ℎ𝐿 = 𝐿𝑖/(𝑛
(𝐿)
𝑖 + 𝑛

(𝑆)
𝑖

𝐶𝑐𝑆

𝑐𝐿
) and ℎ𝑆 = 𝐿𝑖/(𝑛

(𝐿)
𝑖

𝑐𝐿

𝐶𝑐𝑆
+ 𝑛

(𝑆)
𝑖 ), to yield:

tan(𝜃trans) = ±

𝑄𝐿𝑄𝑆 �𝑛
𝐿
𝑖 + 𝑛𝑆𝑖

𝐶𝑐𝑆

𝑐𝐿
� �𝑛𝐿𝑖

𝑐𝐿

𝐶𝑐𝑆
+ 𝑛𝑆𝑖 �

𝜅 �𝑛𝐿𝑖 �𝑛
𝐿
𝑖

𝑐𝐿

𝐶𝑐𝑆
+ 𝑛𝑆𝑖 �𝑄𝑆 + 𝑛𝑆𝑖 �𝑛

𝐿
𝑖 + 𝑛𝑆𝑖

𝐶𝑐𝑆

𝑐𝐿
�𝑄𝐿�

, (5.56)

In both (5.55) and (5.56), the fraction in the right hand side is a positive real number, therefore

it becomes clear now that the sign + and − also determine the sign of the angle 𝜃trans. Equation

(5.56) shows that 𝜃trans does not depend explicitly on 𝑓, nor the angle 𝜃inc, nor the properties of
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Figure 5.13. The transmission wave angle with the canonical ratio for different Fibonacci lam-
inates. (a). L PMMA and S steel (𝜅 ≈ 0.316 × 10−4s/m). (b). L Iron and S Copper
(𝜅 ≈ 1.311 × 10−4s/m). (c). L Steel and S Polyethylene (𝜅 ≈ 3.162 × 10−4s/m).

the substrate. Thus, it is interesting to investigate its relationship with the materials of the two

phases and the canonical ratio 𝐶.

5.5.2 ‘Inverse problem’ investigation

This subsection is devoted to the presentation of the ‘inverse problem’ consisting of the determi-

nation of the properties of laminate and substrate to obtain a particular value of the transmission

angle 𝜃trans. As suggested in closing the previous part, the first aspect to consider is how 𝜃trans

depends on 𝐶 in Equation (5.56). To illustrate this, three different laminates are considered in

Figure 5.13 for unit cells 𝐹2 to 𝐹8, where the sign + in the equation is assumed: (a) L: PMMA,

S: steel, (b) L: iron, S: copper and (c) L: steel, S: polyethylene. The derivative of tan 𝜃trans with

respect to 𝐶 may help in the discussion; this yields:

𝜕tan(𝜃trans)

𝜕𝐶
= ±(𝑄𝑆 − 𝑄𝐿)

𝑐𝐿𝑐𝑆𝑛
𝐿
𝑖 𝑛

𝑆
𝑖 𝑄𝐿𝑄𝑆

𝜅(𝑐𝐿𝑛
𝐿
𝑖𝑄𝑆 + 𝐶𝑐𝑆𝑛

𝑆
𝑖 𝑄𝐿)

2
. (5.57)

The term ±(𝑄𝑆 − 𝑄𝐿) governs the sign of the derivative. If (𝑄𝑆 − 𝑄𝐿) > 0, with the positive

(negative) sign, tangent and angle increase (decrease) with 𝐶 increasing.

As (𝑄𝑆 − 𝑄𝐿) = −5.2166 × 10−4s/m in Figure 5.13 (a), the curves are monotonic decreasing,

whereas functions in Figure 5.13 (b), (c) display an opposite behaviour as (𝑄𝑆 −𝑄𝐿) = 6.3524 ×

10−5s/m and (𝑄𝑆 − 𝑄𝐿) = 2.7975 × 10−3s/m, respectively. Through a representation akin to

Figure 5.13, the canonical ratio corresponding to a required transmission angle could be selected.

Figure 5.13 also demonstrates that the range of possible angle 𝜃trans for a given laminate is, in

general, limited, an issue that should be taken into account.

The procedure for the ‘inverse problem’ is the following: first, from the target value of 𝜃trans

the associated canonical ratio can be determined from Equation (5.56) with selected materials for
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phases L and S. Second, the corresponding value of 𝜈 can be obtained from Equation (5.49). Then,

Equation (5.51) can be used to determine the connection between 𝐾𝑥𝐿𝑖 and 𝜈𝜔𝐿𝑖 which provides,

through Equation (5.1), the relationship between frequency 𝑓 of the incoming wave, wave speed

of the substrate 𝑐0 and angle of incidence 𝜃inc.

First, the situation for 𝜈𝜔𝐿𝑖 > 2𝜋 is proved with the frequency is 𝑓 = 1/(𝜈𝐿𝑖) as 𝜈𝜔𝐿𝑖 = 2𝜋 and

the two extremes of function 1/(𝜈𝐿𝑖)(𝐶) and �𝑓𝑖(𝐶) are:

lim
𝐶→0

1

𝜈𝐿𝑖
= lim

𝐶→0

𝑐𝐿𝑛
(𝐿)
𝑖 + 𝐶𝑐𝑆𝑛

(𝑆)
𝑖

(𝑛
(𝐿)
𝑖 𝑐𝐿𝑄𝐿 + 𝐶𝑛

(𝑆)
𝑖 𝑐𝑆𝑄𝑆)𝐿𝑖

=
1

𝐿𝑖𝑄𝐿
>
𝑐𝐿

𝐿𝑖
(5.58)

lim
𝐶→∞

1

𝜈𝐿𝑖
= lim

𝐶→∞

𝑐𝐿𝑛
(𝐿)
𝑖 + 𝐶𝑐𝑆𝑛

(𝑆)
𝑖

(𝑛
(𝐿)
𝑖 𝑐𝐿𝑄𝐿 + 𝐶𝑛

(𝑆)
𝑖 𝑐𝑆𝑄𝑆)𝐿𝑖

=
1

𝐿𝑖𝑄𝑆
>
𝑐𝑆

𝐿𝑖

The results from Section 5.4 tell that the 𝑓̃𝑖 is convex function except 𝐹2 and 𝐹3. In addition, the

monotonic properties of frequency 1/(𝜈𝐿𝑖)(𝐶) is:

𝜕1/(𝜈𝐿𝑖)

𝜕𝐶
=

𝑐𝐿𝑐𝑆𝑛
𝐿
𝑖 𝑛

𝑆
𝑖 (𝑄𝐿 − 𝑄𝑆)

𝐿𝑖(𝑐𝐿𝑛
𝐿
𝑖𝑄𝐿 + 𝐶𝑐𝑆𝑛

𝑆
𝑖 𝑄𝑆)

2

Which means frequency 𝑓 = 1/(𝜈𝐿𝑖) keep same monotonic properties in all canonical ratio range.

In addition, the local maximum value for �𝑓𝑖 can also be verified smaller than 1/(𝜈𝐿𝑖). For example,

𝐶 = 1 for Fibonacci order 2:

1

𝜈𝐿2
(𝐶 = 1) =

𝑐𝐿 + 𝑐𝑆

(𝑐𝐿𝑄𝐿 + 𝑐𝑆𝑄𝑆)𝐿2
>
𝑐𝐿 + 𝑐𝑆

2𝐿2
(5.59)

With the same procedure, the Fibonacci order 3 with 𝐶 = 2 can also be verified. Thus, frequency

always 1/(𝜈𝐿𝑖) > �𝑓𝑖 also means the term 𝜈𝜔𝐿𝑖 < 2𝜋 must satisfied under pure negative refraction

condition. Recalling Equation (5.51), now with sign −, negative refraction occurs provided the

following conditions are satisfied:

cos(𝐾𝑥𝐿𝑖) = cos(𝜈𝜔𝐿𝑖), sin(𝐾𝑥𝐿𝑖) = −sin(𝜈𝜔𝐿𝑖). (5.60)

These condition is very interesting and the complete solution steps in Chapter 6, whose solution

is:

𝐾𝑥𝐿𝑖 =
𝜔

𝑐0
sin(𝜃inc)𝐿𝑖 = 2𝑔𝜋 − 𝜈𝜔𝐿𝑖. (𝑔 ∈ ℕ∗).

We restrict the analysis to the case 𝑔 = 1, which means that 𝐾𝑥𝐿𝑖 should lie in the second Brillouin

zone. For this to occur, it is necessary that 𝜈𝜔𝐿𝑖 < 𝜋 or, alternatively, 𝑓 < 1/(2𝜈𝐿𝑖). Equation
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(5.1) provides the required connection between 𝜃inc, 𝑐0 and frequency as:

(
1

𝑓𝐿𝑖
− 𝜈)𝑐0 = sin(𝜃inc) (5.61)

in which the term in brackets is positive as a consequence of the inequality 𝑓 < 1/(2𝜈𝐿𝑖), whereas

the whole left hand should be less than one for a real angle of incidence (𝜃inc = 𝜋/2). As a

conclusion, under the condition set by Equation (5.45), pure negative refraction must satisfy the

conditions listed at the end of Section 5.1, with:

𝑓 ∈ [𝑓min
𝑖 ,min(1/(2𝜈𝐿𝑖), 𝑓̃𝑖))] (5.62)

and 𝜈𝜔𝐿𝑖 < 𝐾𝑥𝐿𝑖. The substrate must be chosen so that the speed 𝑐0 is such that the left hand side

of Equation (5.61) is less than one; the same equation determines the angle of incidence 𝜃inc.

To illustrate the proposed analytical procedure, an application based on a prototype example is

proposed for a laminate with the usual combination (𝐿: PMMA, 𝑆: steel). We start by choosing

the transmission angle in Figure 5.13 (a) (pertinent to our case). For simplicity, assume 𝜃trans =

−5.431 that corresponds to 𝐶 = 1. Then, the frequency f of the incoming wave can be decided and

the value of 𝐾𝑥𝐿2 selected from Figure 5.14 that is for this canonical ratio. In this figure, triangles

mark the pairs (𝑓, 𝐾𝑦𝐿2) which satisfy Equation (5.45) for negative refraction. For instance, for

𝑓 = 460kHz, the data deduced from the figure used in Equation (5.61) provide an angle of

incidence of 𝜃inc = 74.4 for a substrate made of aluminium and 𝜃inc = 35.4 for a substrate made

of nylon.

KxLi KxLi

(a)

K y
L i

K y
L i

(b)

20
93.74

300

200

400
460

500
520

480

550

Figure 5.14. Laminate 𝐹2 with material combination (L: PMMA, S: steel) with 𝐶 = 1. Plots of real
solutions of the dispersion equation in graph 𝐾𝑦𝐿2 versus 𝐾𝑥𝐿2 for several given frequencies; in
particular, (a) selected frequencies in the range 𝑓 ∈ [20, 460]kHz, (b) selected frequencies in the
range 𝑓 ∈ [480, 550]kHz. The black and red triangles mark points that satisfy Equation (5.45)
and are relevant for negative refraction.
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θtrans(degree)

Figure 5.15. The incident wave angle (degree) corresponding to transmission angle (degree) and
frequency (kHz) with the different substrates under 𝐹2. (a). The substrate is Aluminium. (b). Iron.
(c). Copper. (d). Nylon. (e). Polyethylene.

To complete the investigation, Figure 5.15 reports five plots for the adopted laminate coupled with

the different substrates, where all possible admissible combinations between angle of incidence

𝜃inc, frequency 𝑓 and angle of refraction 𝜃trans are displayed which satisfy Equation (5.61). As the

value of 𝑓min
𝑖 in (5.62) depends linearly on 𝑐0 (see Equation (5.2)), the softer material, for instance,

nylon, which has a value of 𝑐0 that is approximately 60 percent that of aluminium, ensures a wider

range of the involved parameters (𝑓, 𝜃inc, 𝜃trans) for negative refraction as becomes evident by

comparing part (d) to part (a) of Figure 5.15. Therefore, a substrate with a relatively low shear

wave speed should be preferred to maximize the combinations between the involved parameters.
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5.6 Pure Negative Refraction Energy

Up to this point, it has been shown how to control negative refraction through an accurate selection

of mechanical and geometrical properties of both substrate and layers of the laminate. However,

the transmission problem has an additional aspect that is related to the fraction of the energy of the

incoming wave that is transmitted across the laminate. In order to effectively exploit a negative

refracted wave, a sufficient amount of energy should be conveyed across the laminate. We address

this point in this section by highlighting the fact that some substrate laminate combinations show

a peak in the transmitted energy carried by the negative refracted wave.

5.6.1 Reflected mode

To calculate energy fluxes, the method traditionally adopted restricts the number of both reflected

and transmitted modes to arrange a finite-size linear system where the unknowns are the scattering

coefficients (see Equations (5.34) and (5.35)). For the former, the selected range of modes is

0 ≤ 𝑙 ≤ 2𝑁, for the latter the involved indices are −𝑁 ≤ 𝑚 ≤ 𝑁; in both cases, real solutions and

evanescent waves are included.

The mode shape for reflected wave is 𝑈𝑚 = exp(− i2𝑚𝜋𝑥

𝐿𝑖
) = cos(2𝑚𝜋𝑥

𝐿𝑖
) − isin(2𝑚𝜋𝑥

𝐿𝑖
). The

boundary continuity conditions (3.21) and (3.22), are actually Fourier series expansions and 𝑅̄𝑚

are Fourier coefficients. Hence, if the number of Fourier series is big enough, the continuity condi-

tion must be satisfied. However, due to the difficult expression for mode shape 𝑤𝑙 for transmission

wave which is changed at the boundary of two phase, it is hard to obtain the expression for 𝑤𝑙.

Then, the real reflected mode problem can be investigated. It should be started with the equa-

tion (2.51) (𝑘(𝑚)
𝑦 = �𝐾2

0 − (𝐾0sin(𝜃inc) + 2𝑚𝜋/𝐿𝑖)
2). 𝐾2

0 − �𝐾0sin�𝜃inc� + 2𝑚𝜋/𝐿𝑖�
2
≥ 0 is

associated with real propagation wave. On the contrary, 𝐾2
0 − �𝐾0sin�𝜃inc� + 2𝑚𝜋/𝐿𝑖�

2
< 0,

corresponds to evanescent wave. Then:

𝐾2
0 − �𝐾0sin�𝜃inc� +

2𝑚𝜋

𝐿𝑖
�

2

= (𝐾0 +𝐾0sin�𝜃inc� +
2𝑚𝜋

𝐿𝑖
)(𝐾0 −𝐾0sin�𝜃inc� −

2𝑚𝜋

𝐿𝑖
) (5.63)

For now the problem becomes simple. First, the situation for �𝐾0 + 𝐾0sin�𝜃inc� + 2𝑚𝜋/𝐿𝑖� ≥ 0

and �𝐾0 − 𝐾0sin�𝜃inc� − 2𝑚𝜋/𝐿𝑖� ≥ 0 should be analysed, so that the two conditions should be

satisfied simultaneously:

𝐾0 + 𝐾0sin�𝜃inc� ≥ −
2𝑚𝜋

𝐿𝑖
; 𝐾0 − 𝐾0sin�𝜃inc� ≥

2𝑚𝜋

𝐿𝑖
(5.64)
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If 𝑚 ≥ 0,𝐾0 + 𝐾0sin�𝜃inc� ≥ −
2𝑚𝜋

𝐿𝑖
condition should be satisfied automatically. then:

𝐾0 − 𝐾0sin�𝜃inc� ≥
2𝑚𝜋

𝐿𝑖
⇒ 𝑚 ≤

𝐾0 − 𝐾0sin�𝜃inc�

2𝜋
𝐿𝑖 (5.65)

On the contrary, If 𝑚 < 0,𝐾0 − 𝐾0sin�𝜃inc� ≥
2𝑚𝜋

𝐿𝑖
condition should be satisfied automatically.

Then:

𝐾0 + 𝐾0sin�𝜃inc� ≥ −
2𝑚𝜋

𝐿𝑖
⇒ −

𝐾0 + 𝐾0sin�𝜃inc�

2𝜋
𝐿𝑖 ≤ 𝑚 (5.66)

If �𝐾0 + 𝐾0sin�𝜃inc� + 2𝑚𝜋/𝐿𝑖� < 0 and �𝐾0 − 𝐾0sin�𝜃inc� − 2𝑚𝜋/𝐿𝑖� < 0, they cannot be

satisfied no matter 𝑚 ≥ 0 or 𝑚 < 0. Therefore, the condition for propagation real reflected mode

𝑚 is obtained below:

−
𝐾0 + 𝐾0sin�𝜃inc�

2𝜋
𝐿𝑖 ≤ 𝑚 ≤

𝐾0 − 𝐾0sin�𝜃inc�

2𝜋
𝐿𝑖 (5.67)

Since the incident wave angle 𝜃inc increases from 0 to 90 degrees, the maximum range of 𝑚 is

obtained, which is:

−
2𝑓

𝑐0
𝐿𝑖 ≤ 𝑚 ≤

𝑓

𝑐0
𝐿𝑖 (5.68)

Therefore, the maximum number for different 𝑚 is int (2𝑓/𝑐0𝐿𝑖) + int (𝑓/𝑐0𝐿𝑖) + 1, so that 𝑚

changes with the frequency 𝑓 = 𝑛𝑐0/2𝐿𝑖 = 𝑛𝑓min
𝑖 , 𝑛 ∈ ℕ. It also can lead a better condition for

only 𝑚 = 0 existed, which is 𝑓 < 𝑓min
𝑖 . Because the pure negative refraction only happens when

𝑓 > 𝑓min
𝑖 , the reflection wave 𝑚 = 0 with 𝑚 = −1 must appear as propagation waves during the

pure negative refraction.

5.6.2 The unusual energy peak with pure negative refraction

The scattering coefficients have been obtained from matrix calculation in Chapter 3. Then, the

normalised energy flux balance (3.28) is based on the scattering coefficients:

𝐸 =

𝑚𝑡

�

𝑖=0

�𝑇̄𝑖�
2 𝐾

(𝑖)
𝑦 𝜇̄

𝐾0cos(𝜃inc) 𝜇0
+

𝑛𝑟

�

𝑚

�𝑅̄𝑚�
2 𝑘

(𝑚)
𝑦

𝐾0cos(𝜃inc)
= 1

in which the two summations represent the normalized transmitted and reflected energies, respec-

tively:

trans ∶ �𝑇̄𝑖�
2 𝐾

(𝑖)
𝑦 𝜇̄

𝐾0cos(𝜃inc) 𝜇0
, ref ∶ �𝑅̄𝑚�

2 𝑘
(𝑚)
𝑦

𝐾0cos(𝜃inc)

The values of the energy associated with each real mode can be plotted versus the angle of in-

cidence 𝜃inc to appreciate the behaviour of the functions or, alternatively, versus the transverse
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wavenumber 𝐾𝑥𝐿𝑖. With the latter choice (preferred in the plots of Figure 5.16), it is easier to

assess the behaviour of the energy flows when entering in the second Brillouin zone, for instance,

𝜋 < 𝐾𝑥𝐿𝑖 < 2𝜋.

Plots in Figure 5.16 display the energy landscape of all real transmitted and reflected modes avail-

able for the considered problem. In all cases, the scattering coefficients are calculated by assuming

𝑁 = 6 in system (12 evanescent and one transmitted modes; 11 or 12 depending on the case

evanescent reflected waves). The number of real transmitted modes is always equal to one (𝑇̄0),

while the reflected ones can be either one (i.e. 𝑅̄0) or two (i.e. 𝑅̄0 and 𝑅̄−1).

From the Figure 5.16, the pure negative refraction can be easily distinguished with the transverse

wave number 𝐾𝑥𝐿𝑖 > 𝜋 instead of plot 𝜃inc. There exists a unusually peak of transmitted energy

𝑇0 in Figure 5.16. (a) within pure negative refraction range, which means the transmission angle

is negative with energy almost 0.52 of total energy, which is good enough for applications. The

transmitted energy is decreased with the remaining 5 plots without peak. From Figure 5.17, the

energy peak actually shows in a frequency range not only fixed frequency value. However, it

disappears as another transmitted mode propagation as shown in Figure 5.17 (c). Moreover, as an

additional note, in all plots of Figure 5.16, 5.17 and 5.18, the energy associated with the reflected

mode 𝑅−1 is symmetric with respect to 𝐾𝑥𝐿𝑖 = 𝜋 at which the function is stationary. The observed

symmetry is related to properties of Equation (5.63), with 𝑚 = −1, as can be demonstrated quite

easily:

𝐾0𝐿𝑖 + 𝐾0sin(𝜃inc)𝐿𝑖 = 2𝜋 (5.69)

In addition, the initial positive transmitted energy is changed with the different substrates. It

looks like the substrate material is more softer, the transmitted energy would be smaller with a

minor incident wave angle. Moreover, the other three combinations with different substrate show

unusually peaks in Figure 5.18. If the quasiperiodic generated laminates are used as a perfect

acoustic lens for wave focusing, the pure negative transmitted wave must have enough energy.

Thus, the unusually peak in Figure 5.16 (a) deserves to be further analysed in the future, specially

in view of the assessment of the optimal performance of a particular choice of materials of the

system.
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Figure 5.16. Normalised energy metrics for the transmitted and reflected propagation modes with
material L PMMA and S steel, 𝐿2 = 4.3mm, canonical ratio 𝐶 = 1, frequency 𝑓 = 𝑓

1bg
2 =

459.364kHz. Black dash line associated with Brillouin zone edge 𝐾𝑥𝐿𝑖 = 𝜋. (a) with substrate
Steel. (b). with substrate Iron. (c). with substrate Copper. (d). with substrate Aluminium. (e).
with substrate Nylon. (f). with substrate PMMA.

Figure 5.17. Normalised energy metrics for the transmitted and reflected propagation modes with
material L PMMA and S steel with substrate Steel, 𝐿2 = 4.3mm, canonical ratio 𝐶 = 1. (a)
𝑓 = 420kHz. (b) 𝑓 = 440kHz. (c) 𝑓 = 480kHz.

Figure 5.18. Normalised energy metrics for the transmitted and reflected propagation modes with
different materials, 𝐿2 = 4.3mm, canonical ratio 𝐶 = 1. (a) 𝑓 = 420.98kHz, material L Iron, S
Aluminium, substrate Steel. (b) 𝑓 = 351.94kHz, material L Aluminium, S Polyethylene, substrate
Iron. (c) 𝑓 = 314.19kHz, material L Iron, S Polyethylene, substrate Copper.
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5.7 Conclusion and Remarks

A method to accomplish pure negative refraction for harmonic elastic anti-plane shear dynamics

is wave transmission across an interface between a substrate and a composite laminate whose

lamination direction is orthogonal to the interface. Previous studies have shown that the goal is

achievable if the frequency of the impinging wave is compatible with propagation of the refracted

wave within the second Brillouin zone of the laminate (this has been reviewed in Chapter 2).

Therefore, the study of the dispersion properties of the composite is a fundamental task to be

carried out in detail. The control of those properties is particularly easy for a special class of

laminates, called canonical, that can be studied by considering sets of elementary cells generated

by a quasicrystalline sequence (the Fibonacci GM sequence in this case). For waves propagating

orthogonally to the lamination direction, canonical laminates display a periodic stop- and pass-

band layout, the periodicity being governed by a special frequency called canonical frequency.

The key features leading to the definition of such special configurations are (i): the recursive

relationship (5.6) existing between three consecutive traces of transmission matrices; (ii): the

existence of an invariant function (Kohmoto’s invariant) and (iii): the nonlinear trace map (2.31)

that can be written from the recursive rule: the canonical configurations correspond to periodic

orbits of the trace map and this takes place at well-defined frequencies, namely, the canonical

frequencies, which is shown in Chapter 4. The theory shows that there are three families of

canonical laminates. In this Chapter, all results and conclusions are first found.

For the problem of pure negative refraction, the focus is on the first two pass bands of the spectrum

that possess the same limits of the first two transition zones at low frequencies for the laminate

if we consider wave propagation in any direction. The self-similar pattern displayed by them at

increasing index of the sequence can be quantitatively described through a scaling factor that can

be estimated by square root of the maximum eigenvalue from fixed point on Kohmoto’s manifold,

which is the golden ratio explained in Chapter 4. Through this parameter, the breadths of the two

transition zones can be predicted by scaling backward and/or forward the corresponding values of

a given configuration taken as a reference. It is also shown how the impedance mismatch 𝛽 of the

laminate affects the limits of the transition zones at constant canonical ratio and how to modify

the dispersive properties of the elementary cell by changing its total length 𝐿𝑖.

In addition, the relevant frequencies can be predicted with linear approximation under specified

conditions. This method comes from the periodic cycle points in the canonical structure. The

numerical results are shown that for better prediction 𝑓1bg
𝑖 and �𝑓𝑖 at same time, the canonical ratio

2 or 1/2 can be chosen. The canonical ratio range for only predicting one of 𝑓1bg
𝑖 and �𝑓𝑖 already is

133



PhD Thesis, Zhijiang Chen, 2022

shown in detailed. For better prediction 𝑓1st
𝑖 , it depends on impedance mismatch 𝛽 and canonical

ratio 𝐶. If 𝛽 is far away from 2, the better prediction with 𝐶 should be approximation to 1. On the

contrary, if 𝛽 is close to 2, the better prediction with 𝐶 should be far away from 1.

Moreover, the universal representation of the frequency spectrum based on the reduced torus al-

lows us to study effectively how a change in canonical ratio affects the change in the frequencies

relevant for negative refraction, namely, those at the limits of the first two transition zone. This

representation provides a tool that can be exploited for optimization of the performance of the

substrate-laminate system. To demonstrate it, we study analytically the cases 𝐹2 and 𝐹3 with the

condition: 𝜌𝐿 > 𝜌𝑆, 𝜇𝐿 > 𝜇𝑆 or 𝜌𝐿 < 𝜌𝑆, 𝜇𝐿 < 𝜇𝑆.

For a linear relationship between longitudinal wavenumber and frequency, the Poynting vector

indicating the direction of energy flow and then the transmission angle, can be calculated explicitly.

With this closed-form solution, the properties of laminate and substrate, and the angle of incidence

can be easily selected to achieve a particular direction of the negative refracted wave without

solving numerically the whole coupled problem. Thus, the transmission angle can be controlled

before considering frequency, substrate and incident wave angle. Moreover, if a vast transmission

wave angle or small incident wave angle for pure negative refraction is needed, the substrate with

small wave speed should be selected.

While, on the one hand, the possibility to achieve negative refraction can be analysed through an

accurate selection of both materials and layouts of the unit cell, on the other, the amount of trans-

mitted energy is an additional factor that should be duly considered as it may vary considerably

at a change of the angle of incidence. We show here that, for a combination of materials of the

substrate-laminate system, a peak in the energy of the only transmitted mode is found, whereas

this feature is not present for several other configurations. This aspect must be taken into account

in practical applications when the investigated prototype system is adopted.

For design system, which is composed by two phase quaiscrystalline laminate and homogenous

substrate with fixed total length 𝐿𝑖, for having SH wave pure negative refraction is following steps:

(1): For having relative large incident wave angle’s range for pure negative refraction, the material

for substrate with slower phase speed 𝑐0 should be chosen so that 𝑓min
𝑖 is relative lower.

(2): For increasing three edge frequencies 𝑓1st
𝑖 , 𝑓1bg

𝑖 and �𝑓𝑖 (upper edge for pure negative refrac-

tion), the material with higher wave phase speed should be chosen as material 𝐴, the material with

lower wave phase speed should be chosen as material 𝐵.

(3): If Fibonacci order for laminate is 𝐹2 or 𝐹3 and satisfied the condition 𝜌𝐿 > 𝜌𝑆, 𝜇𝐿 > 𝜇𝑆 or
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𝜌𝐿 < 𝜌𝑆, 𝜇𝐿 < 𝜇𝑆, the canonical ratio can be chosen as 𝐶 = 1 or 𝐶 = 2 for having local maximum

value �𝑓𝑖 (upper edge for pure negative refraction), respectively.

(4): Three frequencies 𝑓1st
𝑖 , 𝑓1bg

𝑖 and �𝑓𝑖 can be predicted with linear approximation (lower Fi-

bonacci order) 𝑓1bg
2 ≈ 𝑓 − (2 + 𝑥2)

𝑑𝑥2

𝑑𝑓
, �𝑓2 ≈ 𝑓 + (2 − 𝑥2)/

𝑑𝑥2

𝑑𝑓
, 𝑓1st

2 ≈ 𝑓 + (−2 − 𝑥2)/
𝑑𝑥2

𝑑𝑓
or

with transition zone scaling (higher Fibonacci order) using coefficients 𝜙𝑔.

(5): The incident wave angle 𝜃inc, pure negative refraction angle 𝜃trans and incoming wave fre-

quency 𝑓 can be plotted on Figure analogy with 5.15 according equation ( 1

𝑓𝐿𝑖
− 𝜈)𝑐0 = sin(𝜃inc)

to determine the relationship among them. Engineer can pick up two of these three terms to obtain

another one.
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Chapter 6 - Topological Interface State on Rods

Localized modes occurring at the interface between two quasicrystalline-generated rods are inves-

tigated in this Chapter. The general condition for the existence of the interface mode, based on

the mismatch between the surface mechanical impedance of the two semi-infinite rods composing

the system and related to the symmetry properties of the edge modes characterizing these rods, is

introduced in Section 6.1. This explicit condition is exploited together with the concept of canon-

ical configuration and the universal toroidal representation of the spectrum illustrated in previous

Chapters in order to predict the presence of an interface mode avoiding the commonly performed

calculation of the Zak phase and the associated complex numerical computations in Section 6.2.

An explicit formula for the frequency of the interface mode is obtained considering the case of

a system composed of one rod by canonical ratio and another by inverse of that canonical ratio

in Section 6.3. Very good agreement is found between the analytical predictions provided by the

newly developed approach and the numerical results and then this study provides new insights into

rational design of systems providing an interface localized mode at a determined frequency.

6.1 Symmetric Properties of Band Edge-Mode

6.1.1 Dispersion relation of two phase quasiperiodic rod

A 1D quasiperiodic generated rod is composed of the two-phase material rods as shown in Figure

6.1. The fundamental cell is generated according to generalized Fibonacci GM sequence 𝐹2 but

we assume the centre of phase 𝑆 as the centre of the whole elementary cell, where the length of

the two segments 𝐿 and 𝑆 are indicated with 𝑙𝐿 and 𝑙𝑆, while 𝐴𝑗, 𝐸𝑗 and 𝜌𝑗, (𝑗 ∈ 𝐿, 𝑆) denote the

cross-section area of each rod as in Chapter 4, Young’s modulus and mass density per unit volume

respectively. The governing equation of harmonic axial waves has two solutions (2.9) and (2.10)

and rewritten here.

𝑢𝑋(𝑧) = 𝑎exp(i�
𝜌𝑋

𝐸𝑋
𝜔𝑧) + 𝑏exp(−i�

𝜌𝑋

𝐸𝑋
𝜔𝑧) (6.1)

𝑢𝑋(𝑧) = 𝐶1sin(�
𝜌𝑋

𝐸𝑋
𝜔𝑧) + 𝐶2cos(�

𝜌𝑋

𝐸𝑋
𝜔𝑧) (6.2)

In order to exploit also in this Chapter the universal structure of the frequency spectrum, the

normalized variable 𝜉𝑋 on the universal torus and the impedance of the phase 𝑍𝑋 are reported
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(n+1) unit cell

Sn(1) Sn(2) Sn(3)Sn-1(3)

Figure 6.1. One dimension quasiperiodic rod with (𝑛) unit cell, 𝑎0, 𝑏0 and 𝑎𝑛 are incident,
reflected and transmitted wave amplitude. 𝑢0,𝑛 and 𝑁0,𝑛 are displacements and the axial force on
the boundary of the elementary cell, respectively

again below (Shmuel and Band 2016):

𝜉𝑋 = �
𝜌𝑋

𝐸𝑋
𝜔𝑙𝑋; 𝑍𝑋 = 𝐴𝑋�𝐸𝑋𝜌𝑋 (𝑋 ∈ 𝐿, 𝑆)

The global transfer matrix referred to the general deduced from displacement solution (6.2) is

denoted by 𝑇:

𝑇 = �
𝑇11 𝑇12

𝑇21 𝑇22

� . (6.3)

The transfer matrix is unimodular and relates the state vector in one unit cell to the adjacent one.

The displacement and axial force terms [𝑢, 𝑁]𝑇, and components are:

𝑇11 = 𝑇22 = cos(𝜉𝐿)cos(𝜉𝑆) −
(𝑍2𝐿 + 𝑍2𝑆 )sin(𝜉𝐿)sin(𝜉𝑆)

2𝑍𝑆𝑍𝐿

𝑇12 =
2𝑍𝑆𝑍𝐿cos(𝜉𝑆)sin(𝜉𝐿) + (𝑍2𝐿 − 𝑍2𝑆 + (𝑍2𝐿 + 𝑍2𝑆 )cos(𝜉𝐿))sin(𝜉𝑆)

2𝑍2𝐿𝑍𝑆𝜔

𝑇21 = −𝜔
2𝑍𝑆𝑍𝐿cos(𝜉𝑆)sin(𝜉𝐿) + (𝑍2𝑆 − 𝑍2𝐿 + (𝑍2𝐿 + 𝑍2𝑆 )cos(𝜉𝐿))sin(𝜉𝑆)

2𝑍𝑆
(6.4)

The Floquet-Bloch theorem implies that transfer matrix has eigenvalues exp(i𝐾𝐿𝑡), where 𝐿𝑡 is

the total length of the elementary cell which is 𝐿𝑡 = 𝑙𝐿 + 𝑙𝑆. Therefore, the dispersion equation is

obtained:

det[𝑇 − exp(i𝐾𝐿𝑡)E] = 0 (6.5)

The solution of equation (6.5) provides the Floquet-Bloch dispersion relation, which has the form

reported in equation (2.26):

2cos(𝜉𝐿)cos(𝜉𝑆) − 𝛽sin(𝜉𝐿)sin(𝜉𝑆) = 2cos(𝐾𝐿𝑡), 𝛽 = (𝑍2𝐿 + 𝑍2𝑆 )/(𝑍𝑆𝑍𝐿) (6.6)
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The wave propagates when 𝐾𝐿𝑡 is a real number, whereas band gaps correspond to the ranges of

frequencies where 𝐾𝐿𝑡 have imaginary parts (it is an evanescent wave). Combining the compo-

nents in transfer matrix (6.4) together with the dispersion relation (6.6), we obtain 𝑇11 = 𝑇22 =

cos(𝐾𝐿𝑡), so that the transfer matrix (6.3) can be rewritten as:

𝑇 = �
cos(𝐾𝐿𝑡) 𝑇12

𝑇21 cos(𝐾𝐿𝑡)
� (6.7)

The normalised Bloch wave number 𝐾𝐿𝑡 is 0 or 𝜋 for frequencies at band edge. Thus, the eigen-

values are 𝑒i0 = 1 = cos(0) or 𝑒i𝜋 = −1 = cos(𝜋). Since the transfer matrix is unimodular,

evaluating the determinant we obtain:

det[𝑇] = cos2(𝐾𝐿𝑡) − 𝑇12𝑇21 = 1 ⇒ 𝑇12𝑇21 = 0 (6.8)

The global transfer matrix F referred to the solution of the wave equation in the form (6.1), the

amplitude of incident and reflected waves [𝑎, 𝑏]𝑇 at the beginning with those at the end of the cell.

The matrix is given in the form:

F = �
f11 f12

f21 f22
�

f11 = 𝑒(i𝜉𝐿)[cos(𝜉𝑆) +
i
2
(
𝑍𝑆

𝑍𝐿
+
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆)]

f12 = −f21 =
i
2
(
𝑍𝑆

𝑍𝐿
−
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆).

f22 = 𝑒(−i𝜉𝐿)[cos(𝜉𝑆) −
i
2
(
𝑍𝑆

𝑍𝐿
+
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆)] (6.9)

The axial force at 𝑧 = 0 is |𝑁0| = 𝜔𝑍𝐿|i(𝑎0 − 𝑏0)|, where 𝑎0 and 𝑏0 are the amplitudes of the

incident and reflected wave at 𝑧 = 0, respectively. These quantities can be evaluated by using the

components of the matrix (6.9) together with the dispersion relation (6.6):

𝑎0(𝑧 = 0) = f12 =
i
2
(
𝑍𝑆

𝑍𝐿
−
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆)

𝑏0(𝑧 = 0) = 𝑒i𝐾𝐿𝑡 − f11 = 𝑒i𝐾𝐿𝑡 − 𝑒(i𝜉𝐿)[cos(𝜉𝑆) +
i
2
(
𝑍𝑆

𝑍𝐿
+
𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆)] (6.10)

Then, the axial force and displacement also at 𝑧 = 0 become:

𝑁0 = i𝜔𝑍𝐿(𝑎0 − 𝑏0) = −𝜔
2𝑍𝑆𝑍𝐿cos(𝜉𝑆)sin(𝜉𝐿) + (𝑍2𝑆 − 𝑍2𝐿 + (𝑍2𝐿 + 𝑍2𝑆 )cos(𝜉𝐿))sin(𝜉𝑆)

2𝑍𝑆
(6.11)
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Figure 6.2. Two 1D quasiperiodic rods with 𝒩 unit cells in the left and ℳ unit cells in the right
connections at the interface, 𝑎0, 𝑏0 and 𝑎′ℳ are incident, reflected and transmitted wave amplitude.
𝑙ℎ𝑠 and 𝑟ℎ𝑠 denote the left and right side quasiperiodic rod. Figure reproduced from Chen et al.
(2021)

𝑢0 = 𝑎0 + 𝑏0 = −
2i𝑍𝑆𝑍𝐿cos(𝜉𝑆)sin(𝜉𝐿) + i(𝑍2𝐿 − 𝑍2𝑆 + (𝑍2𝐿 + 𝑍2𝑆 )cos(𝜉𝐿))sin(𝜉𝑆)

2𝑍𝑆𝑍𝐿
(6.12)

Remembering the expressions for the terms 𝑇12 and 𝑇21 in equation (6.4) and using them into

(6.11) and (6.12), we obtain:

𝑁0 = 𝑇21; 𝑢0 = −i𝜔𝑍𝐿𝑇12. (6.13)

6.1.2 Equivalence property in symmetric of band edge-mode

Let us consider a system composed of two dissimilar quasiperiodic rods whose elementary cell is

generated according to 𝐹2 GM Fibonacci sequence as illustrated in Figure 6.2. The condition for

the presence of an interface mode is 𝑍rhs+𝑍lhs = 0, where 𝑍rhs and 𝑍lhs are surface impedance cor-

responding to the right hand side and the left hand side rod, respectively. The surface impedance

𝑍𝑗 and the reflection coefficient 𝑟𝑗 are related by: (Xiao et al. 2014) (2.73)

𝑍𝑗 =
1 + 𝑟𝑗

1 − 𝑟𝑗
𝑍0, (𝑗 ∈ lhs, rhs)

where 𝑍0 is reference impedance. The equation for having interface state can be written as:

𝑍rhs + 𝑍lhs = Re(𝑍rhs) + Re(𝑍lhs) + i(Im(𝑍rhs) + Im(𝑍lhs)) = 0 (6.14)

Considering a frequency inside a band gap for both the right and the left hand side rod, only the

imaginary part of surface impedance is non zero, and then the relationship (6.14) becomes:

𝑍rhs + 𝑍lhs = i(Im(𝑍rhs) + Im(𝑍lhs)) = 0 ⇒ Im(𝑍rhs) = −Im(𝑍lhs) (6.15)

Thus, the sign of the imaginary part of surface impedance 𝜍𝑗 = Im(𝑍𝑗) is crucial to predict the

presence of an interface mode at a bandgap. A simple way to obtain an interface state is to design

a system in which the sign of the imaginary part of the surface impedance (sign[𝜍𝑗]) from two

139



PhD Thesis, Zhijiang Chen, 2022

quasicrystalline rods is opposite. Several studies have shown that the symmetric property of band-

edge mode is related to sgn[𝜍] and band Zak phase (Xiao et al. 2014; Xiao et al. 2015; Meng et

al. 2018; Chen et al. 2021; Muhammad et al. 2019). The band edge mode is the displacement 𝑢

and axial force 𝑁 solution for one periodic elementary cell at the normalised Bloch wave number

𝐾𝐿𝑡 = 0, 𝜋, because they are the edge between passband and stop band frequency. An antisym-

metric (A) edge mode is associated with 𝑁0 = 0, whereas a symmetric mode (S) corresponds to

𝑁0 ≠ 0 (the symmetric and antisymmetry is associated with wave field at the beginning of ele-

mentary cell). An illustrative example of the concept of symmetric and antisymmetric edge modes

is shown in Figure 6.3 with 𝐸𝐿 = 𝐸𝑆 = 70GPa; 𝜌𝐿 = 𝜌𝑠 = 2700kgm−3; 𝐴𝐿 = 2𝐴𝑆 = 2×10−4m2

total length 𝐿𝑡 = 0.15m, 𝑙𝑆 = 0.05m and 𝑙𝐿 = 0.1m (it represents the canonical ratio 1/2). Some

Figure 6.3. The value of the force field of initial 𝑅, 𝑄, 𝑃 and 𝑂 band edge mode with the symmetric
properties 𝐴, 𝑆, 𝑆, 𝐴 and associated dispersion relation, the cyan and magenta shows the sign of
𝜍 negative or positive.

conditions are proved from the displacement function (6.1) and transfer matrix (6.3) (Xiao et al.

2010), and can be checked in Figure 6.3.

(1): The symmetric state must change from (S) to (A) or from (A) to (S) when the frequency

passes through a bandgap.

(2): If the (A) state is at the lower edge and (S) state at the upper edge, then 𝜍 < 0; otherwise,

𝜍 > 0.

From equations (6.8) and (6.13), we can easily find the conditions for the vanishing of the axial

force, which means only one of two terms 𝑇12 or 𝑇21 equal to 0. They cannot vanish simultane-

ously in that case the edge mode becomes undeterminable:

𝑇12 = 0 ⇒ [𝑢0, 𝑁0]
𝑇 = [0, 1]𝑇, type (S); 𝑇21 = 0 ⇒ [𝑢0, 𝑁0]

𝑇 = [1, 0]𝑇, type (A) (6.16)

In the next Sections, the condition (6.16) is used together with the notion of canonical structure

introduced in Chapter 4 to predict the presence of an interface rods in systems as the one illustrated
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in Figure 6.1.

6.2 Interface Modes in Systems Composed of Canonical Rods

6.2.1 The relationship between the sign of surface impedance and canonical period

The symmetry of edge mode determines the sign of surface impedance as frequency is inside a

band gap. As anticipated in the previous Section, we will now use these symmetry properties

together with the periodicity of the spectrum in order to study the presence of interface modes in a

system composed of two canonical quasicrystalline rods. Two different cases are here considered

of the two structures: (1): the system is composed of two structures one characterised by canonical

ratio 𝐶 and the other by the inverse 1/𝐶. (2): the canonical ratio the same but the two phases are

swapped. The elementary cells for both case (1) and (2) are shown in Figure 6.4. Let us start

by investigating case (1). Using the expressions (6.11) and (6.12) for the axial force and the

displacement at 𝑧 = 0 together with the definition of symmetric and antisymmetric mode, for a

canonical rod which fundamental cell designed according to 𝐹2 GM sequence and characterized

by canonical ratio 𝐶, we obtain the conditions:

2𝑍𝑆𝑍𝐿cos(𝜉𝑆)sin(𝜉𝐿) + (𝑍2𝐿 − 𝑍2𝑆 + (𝑍2𝐿 + 𝑍2𝑆 )cos(𝜉𝐿))sin(𝜉𝑆) = 𝐻1, if 𝐻1 = 0 ∶ type (S)

2𝑍𝑆𝑍𝐿cos(𝜉𝑆)sin(𝜉𝐿)+(𝑍2𝑆 −𝑍
2
𝐿 +(𝑍

2
𝐿 +𝑍

2
𝑆 )cos(𝜉𝐿))sin(𝜉𝑆) = 𝐻2, if 𝐻2 = 0 ∶ type (A) (6.17)

where 𝐻1 and 𝐻2 have relationship with 𝑇12 and 𝑇21:

𝐻1 = 2𝑍2𝐿𝑍𝑆𝜔𝑇12; 𝐻2 = −2𝑍𝑆𝑇21/𝜔.

Considering a canonical structure which fundamental cell is also designed according to GM 𝐹2 but

with inverse canonical ratio 1/𝐶 we swap the position of 𝜉𝑆 and 𝜉𝐿 to derive symmetry conditions

𝑊1 and 𝑊2, which are counterparts of 𝐻1 and 𝐻2. This is possible as the two variables 𝜉𝑆 and 𝜉𝐿

are dimensionless and bandgap area is symmetric concerning diagonal on the representation of the

universal torus for 𝐹2 as shown in Figure 3.2. The conditions 𝑊1 and 𝑊2 are then:

2𝑍𝑆𝑍𝐿cos(𝜉𝐿)sin(𝜉𝑆) + (𝑍2𝐿 − 𝑍2𝑆 + (𝑍2𝐿 + 𝑍2𝑆 )cos(𝜉𝑆))sin(𝜉𝐿) = 𝑊1, if 𝑊1 = 0 ∶ type (S)

2𝑍𝑆𝑍𝐿cos(𝜉𝐿)sin(𝜉𝑆)+(𝑍2𝑆−𝑍
2
𝐿+(𝑍

2
𝐿+𝑍

2
𝑆 )cos(𝜉𝑆))sin(𝜉𝐿) = 𝑊2, if 𝑊2 = 0 ∶ type (A) (6.18)
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In order to factorize the conditions (6.17) and (6.18), the following expressions are introduced:

𝑌1 = 𝑍𝑆sin(
𝜉𝐿

2
)cos(

𝜉𝑆

2
) + 𝑍𝐿cos(

𝜉𝐿

2
)sin(

𝜉𝑆

2
); 𝑌2 = 𝑍𝑆cos(

𝜉𝐿

2
)cos(

𝜉𝑆

2
) − 𝑍𝐿sin(

𝜉𝐿

2
)sin(

𝜉𝑆

2
)

𝑌3 = 𝑍𝐿sin(
𝜉𝐿

2
)cos(

𝜉𝑆

2
) + 𝑍𝑆cos(

𝜉𝐿

2
)sin(

𝜉𝑆

2
); 𝑌4 = 𝑍𝐿cos(

𝜉𝐿

2
)cos(

𝜉𝑆

2
) − 𝑍𝑆sin(

𝜉𝐿

2
)sin(

𝜉𝑆

2
)

(6.19)

and then 𝐻1, 𝐻2, 𝑊1 and 𝑊2 become:

4𝑌1𝑌4 = 𝐻1; 4𝑌2𝑌3 = 𝐻2; 4𝑌1𝑌2 = 𝑊2; 4𝑌3𝑌4 = 𝑊1.

The following relationship is also obtained by dispersion relation (6.6):

4𝑌1𝑌3/(𝑍𝐿𝑍𝑆) = 2 − 2cos(𝐾𝐿𝑡); 4𝑌2𝑌4/(𝑍𝐿𝑍𝑆) = 2cos(𝐾𝐿𝑡) + 2 (6.20)

Considering the band edge at the centre of Brillouin zone (𝐾𝐿𝑡 = 0), we have 𝑌1𝑌3 = 0, 𝑌2𝑌4 ≠ 0,

as 𝐻1 and 𝐻2 cannot equal zero simultaneously. This condition is satisfied in two cases: (1). 𝑌1 =

0, 𝑌3 ≠ 0, and then 𝐻1 = 𝑊2 = 0. (2). 𝑌3 = 0, 𝑌1 ≠ 0, and then 𝐻2 = 𝑊1 = 0. Remembering the

properties of the edge modes introduced in Section 6.1.2, the condition 𝐻1 = 𝑊2 = 0 corresponds

to a symmetric mode at the lower edge of the considered band gap and an antisymmetric one at

the upper edge for the structure with canonical ratio 𝐶 (𝜍 > 0 ), whereas for the rod with ratio

1/𝐶 we have an antisymmetric mode at the lower edge and a symmetric one at the upper edge

(𝜍 < 0). Similarly, 𝐻2 = 𝑊1 = 0 is associated with to an antisymmetric mode at the lower edge

of the considered band gap and a symmetric one at the upper edge for the structure with canonical

ratio 𝐶 (𝜍 < 0), whereas for the rod with ratio 1/𝐶 we have a symmetric mode at the lower edge

and an antisymmetric one at the upper edge (𝜍 > 0). Thus, the sign of 𝜍 is different in the two

structures when band edge is the centre of Brillouin zone; The case where the band edge at the

boundary of Brillouin zone (𝐾𝐿𝑡 = 𝜋) corresponds to 𝑌1𝑌3 ≠ 0 and then 𝑌2𝑌4 = 0. So there are

two possibilities: (1). if 𝑌2 = 0, 𝑌4 ≠ 0, then 𝐻2 = 𝑊2 = 0. (2). if 𝑌4 = 0, 𝑌2 ≠ 0, and then

𝐻1 = 𝑊1 = 0. Both the conditions 𝐻2 = 𝑊2 = 0 and 𝐻1 = 𝑊2 = 0 are associated with cases

where the symmetry properties of the modes at the lower and upper edge of the considered band

gap are the same the structures with canonical ratio 𝐶 and 1/𝐶. Thus, the sign of 𝜍 is the same in

these two structures when band edge is the boundary of Brillouin zone. Consequently, if the two

rods with canonical ration 𝐶 and 1/𝐶 are connected, an interface mode can occur only inside the

band gaps limited by edge mode at the centre of the Brillouin zone.

Let us investigate now the case where the two-phase are swapped, which the position of 𝑍𝐿 and
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𝑍𝑆 are changed because these two variables are symmetric concerning geometric formulation of

elementary cell. It is easy to deduce that if the symmetry of band edge mode is fully inverse, then

the condition for type(𝐴) in the original structure is the type(𝑆) in the swapped two-phase material

structure. As a consequence, the sgn(𝜍) is inverse in every bandgap. If these two quasicrystalline

rods are connected, the interface mode is found in every bandgap. Notice that the two conditions do

not affect the dispersion relation, so that the shape for the dispersion spectra are the same. The two

structures with one canonical ratio and another with inverse canonical ratio or two-phase material

swapping shown in Figure 6.4 are considered and used together with the periodic properties of the

spectrum to predict the presence of an interface mode inside an arbitrary band gap.

Figure 6.4. Elementary cell changing in this chapter. (a) original elementary cell. (b) inverse
canonical ratio. (c) swapping two phases material. Notice that total length 𝐿𝑡 is fixed, and for
easy illustration, the density and Young’s modulus in the two phases are the same.

6.2.2 The periodic property for the sign of surface impedance in canonical family

no. 1

The variation of the symmetric properties of edge modes within a canonical period is now analysed

using the explicit conditions (6.17) and (6.18), 𝑓𝑡 and 𝑓𝑐 are the period of the trace and the canonical

frequency, respectively and 𝑓𝑡 = 4𝑓𝑐. Within a canonical period, two variables 𝜉𝑆 and 𝜉𝐿 changes

simultaneously according to the values reported in the following table:

Table 6.1. 𝜉𝑆 and 𝜉𝐿 are changing with frequency increasing in family no. 1.

𝑓 0 𝑓𝑐 2𝑓𝑐 𝑓𝑡

𝜉𝑆 0
𝜋

2
(1 + 2𝑗) 𝜋(1 + 2𝑗) 2𝜋(1 + 2𝑗)

𝜉𝐿 0
𝜋

2
(1 + 2𝑘) 𝜋(1 + 2𝑘) 2𝜋(1 + 2𝑘)

Due to the periodicity of the symmetry conditions (6.17) and (6.18), it is easy to deduce that for

𝜉′𝑆 = 𝜉𝑆+2𝜋(1+2𝑗) and 𝜉′𝐿 = 𝜉𝐿+2𝜋(1+2𝑘) substituting into symmetric conditions (6.17) and

(6.18), the values of 𝐻1, 𝐻2, 𝑊1 and 𝑊2 do not change and neither does the symmetry of modes on
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the upper or lower edge of the band gap. The sign of 𝜍 keeps the same for band gaps translated by

one canonical period. This property is detected for canonical structures of all the three families.

Assuming 𝜉′𝑆 = 2𝜋(1+2𝑗)−𝜉𝑆, 𝜉′𝐿 = 2𝜋(1+2𝑘)−𝜉𝐿 and substituting into symmetry conditions

(6.17) and (6.18) the values still do not change. However, as we can observe in Figure 6.5 (a) and

(b), where the edge points associated with this values of 𝜉𝐿 and 𝜉𝑆 are reported, the dispersion

spectrum is symmetric with respect to the frequency value 𝑓𝑡/2(2𝑓𝑐). This means that if 𝜉𝑆 and 𝜉𝐿

are associated with an edge at the bottom of a band gap, then 𝜉′𝐿 and 𝜉′𝑆 correspond to an edge on

the top, and vice versa, and similarly the symmetry properties of the edge modes do not change.

As a consequence, the band gap corresponding to 𝜉𝑆, 𝜉𝐿 and 𝜉′𝐿 and 𝜉′𝑆 have opposite sign of

imaginary part of the impedance.

Substituting 𝜉′𝑆 = 𝜋(1 + 2𝑗) − 𝜉𝑆 and 𝜉′𝐿 = 𝜋(1 + 2𝑘) − 𝜉𝐿 into symmetry conditions (6.17)

and (6.18) we detect that if an antisymmetric edge mode is associated with 𝜉𝑆 and 𝜉𝐿, it becomes

symmetric for 𝜉′𝑆 and 𝜉′𝐿 and vice versa. However, due to the antisymmetry with respect to the

canonical frequency observed in Figure 6.5, the symmetry properties of the modes of the band gap

corresponding to 𝜉𝐿, 𝜉𝑆 and 𝜉′𝐿, 𝜉′𝑆 are the different, and consequently also same the sign of 𝜍.

The results are illustrated in Figure 6.5, assuming material parameters 𝐸𝐿 = 𝐸𝑆 = 70GPa; 𝜌𝐿 =

𝜌𝑠 = 2700kgm−3; 𝐴𝐿 = 2𝐴𝑆 = 2 × 10−4m2 total length 𝐿𝑡 = 0.15m with canonical ratios

3 (𝑗 = 1, 𝑘 = 0) and 1/3, (𝑗 = 0, 𝑘 = 1). The Zak phase has been calculated by means of

the method in Chapter 3 for verifying the predictions obtained through analysis of edge mode

symmetries.
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(a)

(b)

ξS; ξL

ξ'S=2π(1+2j)-ξS; ξ'L=2π(1+2k)-ξL

ξS; ξL

ξ'S=2π(1+2j)-ξS; ξ'L=2π(1+2k)-ξL

Figure 6.5. The dispersion spectrum (solid black line) of the quasiperiodic rod with canonical
ratio 1/3 (a) and 3 (b). The material parameters are 𝐸𝐿 = 𝐸𝑆 = 70GPa; 𝜌𝐿 = 𝜌𝑠 = 2700kgm−3;
𝐴𝐿 = 2𝐴𝑆 = 2 × 10−4m2 Total length 𝐿𝑡 = 0.15m. The light magenta represents the gap with
𝜍 > 0, while the cyan strip represents the gap 𝜍 < 0. The Zak phase of each individual band is
labeled in green. The solid purple circle is the 𝐴 state at the band edge, and the yellow one is the
𝑆 state, the black arrows target same symmetric properties for edge mode.
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Observing Figure 6.5, we can conclude that for family no. 1, the symmetry properties of band edge

mode within a canonical period are symmetric with respect to the frequency 𝑓 = 2𝑓𝑐, while if we

analyse an half-canonical period they are antisymmetric with respect to the canonical frequency

𝑓𝑐. It is also important to note that the structure with inverse canonical ratio possesses the same

symmetry properties and then the same sign of the imaginary impedance for band gaps limited

by points at the edge of the Brillouin zone, while opposite symmetry properties and then opposite

sign[𝜍] for those limited by points at the centre of the Brillouin zone. This means that, according

the condition (6.15), for a system composed of two canonical rods of family 1 corresponding to

canonical ratios 𝐶 and 1/𝐶, an interface mode can be found inside band gaps limited by points at

the centre of Brillouin zone.

6.2.3 The periodic property for the sign of surface impedance in canonical families

no. 2 and 3

Let us consider now a canonical rod of family no. two within a canonical period 𝑓𝑡, the two

variables 𝜉𝑆 and 𝜉𝐿 change according to the values reported in the following table:

Table 6.2. 𝜉𝑆 and 𝜉𝐿 are changing with frequency increasing in family no. 2.

𝑓 0 𝑓𝑐 2𝑓𝑐 𝑓𝑡

𝜉𝑆 0
𝜋

2
(1 + 2𝑗) 𝜋(1 + 2𝑗) 2𝜋(1 + 2𝑗)

𝜉𝐿 0 𝜋(𝑞) 𝜋(2𝑞) 2𝜋(2𝑞)

Substituting 𝜉′𝑆 = 2𝜋(1 + 2𝑗) − 𝜉𝑆 and 𝜉′𝐿 = 2𝜋(2𝑞) − 𝜉𝐿 into symmetry conditions (6.17)

and (6.18) the values of 𝐻1, 𝐻2, 𝑊1 and 𝑊2 do not change. However, similarly to what we have

observed in Figure 6.5 for canonical family no. 1 the dispersion spectrum is symmetric with

respect to the frequency value 𝑓 = 2𝑓𝑐. This means that if 𝜉𝑆 and 𝜉𝐿 are associated with an edge

at the bottom of a band gap, then 𝜉′𝐿 and 𝜉′𝑆 correspond to and edge on the top, and vice versa, and

similarly the symmetry properties of the edge modes do not change. As a consequence, the band

gap corresponding to 𝜉𝐿, 𝜉𝑆 and 𝜉′𝐿 and 𝜉′𝑆 have opposite sign of imaginary part of the impedance.

Assuming 𝜉′𝑆 = 𝜋(1 + 2𝑗) − 𝜉𝑆 and 𝜉′𝐿 = 𝜋(2𝑞) − 𝜉𝐿 the values of the symmetric conditions

(6.17) and (6.18) still do not change. However, as it is observed in Figure 6.6, also in this case if

𝜉𝑆 and 𝜉𝐿 are associated with an edge at the bottom of a band gap, then 𝜉′𝐿 and 𝜉′𝑆 correspond to

and edge on the top, and vice versa, and similarly the symmetry properties of the edge modes do
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not change, and sign[𝜍] is changed.

In family no. three, 𝜉𝑆 and 𝜉𝐿 evolve within a canonical period as follows:

Table 6.3. 𝜉𝑆 and 𝜉𝐿 are changing with frequency increasing in family no. 3.

𝑓 0 𝑓𝑐 2𝑓𝑐 𝑓𝑡

𝜉𝑆 0 𝜋(𝑞) 𝜋(2𝑞) 2𝜋(2𝑞)

𝜉𝐿 0
𝜋

2
(1 + 2𝑘) 𝜋(1 + 2𝑘) 2𝜋(1 + 2𝑘)

f=ft; ξS=2π(1+2j); ξL=2π(2q)
same

same

same

same

f=0; ξS=0; ξL=0

f=fc; ξS=π/2(1+2j); ξL=πq

f=2fc; ξS=π(1+2j); ξL=2πq

f=0; ξS=0; ξL=0

f=fc; ξS=πq; ξL=π/2(1+2k)

f=2fc; ξS=2πq; ξL=π(1+2k)

f=ft; ξS=4πq; ξL=2π(1+2k)

ξ'S=4πq-ξS; 
ξ'L=2π(1+2k)-ξL

ξS; ξL

ξ'S=  2π(1+2j)-ξS; 
ξ'L=2π(2q)-ξL

ξS; ξL

Figure 6.6. The dispersion spectrum (solid black line) of the quasiperiodic rod with canonical
ratio 1/2 (a) and 2 (b). The material parameters are 𝐸𝐿 = 𝐸𝑆 = 70GPa; 𝜌𝐿 = 𝜌𝑠 = 2700kgm−3;
𝐴𝐿 = 2𝐴𝑆 = 2 × 10−4m2 Total length 𝐿𝑡 = 0.15m. The light magenta represents the gap with
𝜍 > 0, while the cyan strip represents the gap 𝜍 < 0. The Zak phase of each individual band is
labeled in green. The solid purple circle is the 𝐴 state at the band edge, and the yellow one is the
𝑆 state, the black arrows target same symmetric properties for edge mode.

For family no. 3, the properties of the band edge modes possesses the same symmetry properties

with respect 𝑓𝑐 detected for family no. 2, and consequently also the sign of the imaginary part of

the impedance changes similarly from a band gap to another one. In Figure 6.6 the spectra for two

rods with the same geometrical and physical parameter of Figure 6.5 and canonical ratio 1/2 and
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2 are shown (family no. 2 and 3).

Observing Figure 6.6, we can conclude that for families no. 2 and 3, the symmetry properties of

band edge mode within a canonical period are symmetric with respect to the frequency 𝑓 = 2𝑓𝑐,

while if we analyse an half-canonical period (2𝑓𝑐) they are symmetric with respect to the canonical

frequency 𝑓𝑐 for family no. 2 and antisymmetric for family no. 3, respectively. It is also important

to note that the structure with inverse canonical ratio possesses the same symmetry properties and

then the same sign of the imaginary impedance for band gaps limited by points at the edge of the

Brillouin zone (𝐾𝐿𝑡 = 𝜋), while opposite symmetry properties and then opposite sign[𝜍] for those

limited by points at the centre of the Brillouin zone (𝐾𝐿𝑡 = 0). This means that, according the

condition (6.15), for a system composed of two canonical rods of family 2 and 3 corresponding

to canonical ratios 𝐶 and 1/𝐶, an interface mode can be found inside band gaps as Bloch wave

number is 𝐾𝐿𝑡 = 0.

The results of three canonical families are reported in the following table where the relationship

between sign of 𝜍 detected in any band gap within the first canonical frequency (𝑓 ∈ [0, 𝑓𝑐])

compared with the cases in other bandgaps:

Table 6.4. The sign of 𝜍 in first canonical frequency 𝑓 ∈ [0, 𝑓𝑐] changing with different frequencies

𝑓 = 𝑓 + 𝑓𝑐 𝑓 = 𝑓 + 2𝑓𝑐 𝑓 = 𝑓 + 𝑓𝑡

Family no. 1 𝜍 same 𝜍 opposite 𝜍 same

Family no. 2 𝜍 opposite 𝜍 same 𝜍 same

Family no. 3 𝜍 same 𝜍 opposite 𝜍 same

6.2.4 Predicting the sign of impedance using the extended toroidal representation

The general representation of the spectrum on an universal toroidal surface illustrated in recent

works (Shmuel and Band 2016, Morini et al. 2019b) is now used to predict the sign of the imagi-

nary part of the impedance within a canonical period.

Assuming this general representation, for a canonical rod generated by Fibonacci 𝐹2 cell, the

boundary of the band gap subdomain on the reduced torus is given by the expression introduced

for canonical laminates in Chapter 3:

tan(
𝜉𝐿

2
) = (

𝛽

2
− �

𝛽2

4
− 1)cot(

𝜉𝑆

2
) (6.21)
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where 𝛽 is:

𝛽 = (𝑍2𝐿 + 𝑍2𝑆 )/(𝑍𝑆𝑍𝐿)

If a point (𝜉𝑆, 𝜉𝐿) lies on the curve (6.21), it is associated with the edge of a band gap on the

frequency spectrum. Using equation (6.21) together with the symmetry conditions (6.17), the

following alternative expressions are obtained:

𝑍𝐿cos(
𝜉𝐿

2
)cos(

𝜉𝑆

2
) − 𝑍𝑆sin(

𝜉𝐿

2
)sin(

𝜉𝑆

2
) = 𝑌2 = 0, (𝑍𝑆 > 𝑍𝐿);

𝑍𝑆cos(
𝜉𝐿

2
)cos(

𝜉𝑆

2
) − 𝑍𝐿sin(

𝜉𝐿

2
)sin(

𝜉𝑆

2
) = 𝑌4 = 0, (𝑍𝐿 > 𝑍𝑆) (6.22)

Due to the properties of the trigonometric functions, the first band gap is associated with cos(𝐾𝐿𝑡) <

−1. This means that, remembering the relationships 𝐻1 = 4𝑌1𝑌4 and 𝐻2 = 4𝑌2𝑌3 (see equation

(6.20)), the condition (6.22) becomes:

(𝑍𝐿 > 𝑍𝑆) ⇒ 𝐻2 = 0, type (A); (𝑍𝑆 > 𝑍𝐿) ⇒ 𝐻1 = 0, type (S) (6.23)

Consequently, in cases where 𝑍𝐿 > 𝑍𝑆, the lower band edge mode of the first bandgap is asym-

metric, and then the sign of 𝜍 is always negative (cyan in the figure) inside the first bandgap. This

result is in agreement with Xiao et al. (2014) (sgn(𝜍) = −sgn(1 − 𝑍𝑆/𝑍𝐿)). By using the peri-

odicity of the spectrum the variables 𝜉𝐿 and 𝜉𝑆 are modulated by adding integer multiples of 𝜋,

𝜉′𝐿 = 𝜉𝐿+𝑚𝜋 and 𝜉′𝑆 = 𝜉𝑆+𝑛𝜋 (𝑚, 𝑛 ∈ ℕ), the 𝑚 and 𝑛 can be odd or even numbers. The values

of the conditions (6.17) are analyzed for all possible combinations of odd and even numbers 𝑚

and 𝑛, and then related to the symmetry of the band edge modes and the changes of sign[𝜍]. The

results of this study are reported in the following table where the sign of 𝜍 detected in any band

gap of the canonical period is compared with the first one:

Table 6.5. The sign of 𝜍 changing with different 𝑚 and 𝑛

n: odd; m: odd n: odd; m: even n: even; m: odd n: even; m: even

𝜍 opposite 𝜍 same 𝜍 opposite 𝜍 same
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n=3

m
=
4

Figure 6.7. Extension torus with range of 𝜉𝑆 and 𝜉𝐿 are both 6𝜋. The color domain represents the
band gap, which light magenta is 𝜍 > 0 while the cyan 𝜍 < 0. There are four different flow lines,
which are green (representing the 𝐶 = 1/3), deep blue (𝐶 = 3), brown (𝐶 = 1/2), grey (𝐶 = 2).
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The band gaps on the two-dimensional toroidal domain can be represented by different colours

associated with 𝜍 > 0 and 𝜍 < 0. The ranges for 𝜉𝐿 and 𝜉𝑆 do not need to be reduced into 𝜋

currently. For illustration, the 𝜉𝐿 and 𝜉𝑆 are increased to 6𝜋 as shown in Figure 6.7, which is

called extension torus in this thesis. Magenta band gaps are associated with 𝜍 > 0 while cyan

correspond to 𝜍 < 0. The slope of the flow line is the inverse of the canonical ratio.

The different slope flow lines in Figure 6.7 correspond to the dispersion spectra shown in Figures

6.5 and 6.6. Moreover, in case where the flow line pass through the transitional point the sign of 𝜍

can change. This is the so-called bandgap closeing and reopening process (band inversion). The

plot in Figure 6.7 can help engineers to design topological interface states by varying the slope

of the flow line in order to pass through the topological point in an arbitrary bandgap. Then, an

interface state within the band gap for a particular combination of two quasicrystalline rods can

be predicted. A plot similar to the one illustrated in Figure 6.7 can be used for non-canonical

structures, associated with slope of flow line given by number.

The band crossing points can be determined quantitatively by means of the extended toroidal

representation. The transitional point is associated with (𝜉𝑆, 𝜉𝐿) = (𝑛𝜋,𝑚𝜋), so that the frequency

at the band crossing point is:

𝑓 =
ℳ(𝑛 +𝑚)

2(𝑙𝐿�𝜌𝐿/𝐸𝐿 + 𝑙𝑆�𝜌𝑆/𝐸𝑆)
(ℳ ∈ ℕ+) (6.24)

If the flow line passes through the band crossing point, then the structure is a canonical one,

because in this case 𝜉𝑆/𝜉𝐿 = 𝑛/𝑚 is a rational number. The number of the bandgaps in the

canonical period for Fibonacci order 𝐹2 can be determined by means of the extended torus. it is

given by:

𝐶(1) ∶ 4(𝑗 + 𝑘) + 2; 𝐶(2) ∶ 4(𝑗 + 𝑞); 𝐶(3) ∶ 4(𝑘 + 𝑞) (6.25)

where 𝐶(1), 𝐶(2), 𝐶(3) indicates canonical family no. 1, 2 and 3, respectively. The sign of imagi-

nary part of impedance of arbitrary bandgap can be predicted by means of the extended torus and

then this approach can be applied to create a system with two different structures to have a inter-

face state as frequency is in bandgap. An exact formula for the frequency of the interface state is

derived for a particular combination of two canonical rods in Section 6.3.
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6.2.5 Condition for coincident dispersion in two quasicrystalline rods

In this section same two combinations of quasicrystalline rods introduced in Subsection 6.2.1

are considered: (1) a system composed of one rod with canonical ratio and other with inverse

canonical ratios (2) another composed of two rods with the same canonical ratio and swapped

two-phase materials. The condition for having identical dispersion spectrum for both combination

(1) and (2) is now derived. First, the expressions for two variables of left hand side quasicrystalline

rods (without inverse canonical ratio and without exchange two-phase material) are rewritten into:

𝜉
(𝑜)
𝐿 =

𝑙
(𝑜)
𝐿 𝜔(𝑜)

𝑐𝐿
; 𝜉

(𝑜)
𝑆 =

𝑙
(𝑜)
𝑆 𝜔(𝑜)

𝑐𝑆
(6.26)

Superscript (𝑜) denotes the original quasicrystalline rod expression. Remembering the total length

of the fundamental cell is 𝑙(𝑜)𝐿 + 𝑙
(𝑜)
𝑆 = 𝐿

(𝑜)
𝑡 , and using the canonical ratio, the frequency 𝜔(𝑜)

corresponding to (𝜉(𝑜)𝐿 , 𝜉(𝑜)𝑆 ) can be obtained:

𝜔(𝑜) =
𝜉
(𝑜)
𝐿 (𝑐𝐿 + 𝐶𝑐𝑆)

𝐿
(𝑜)
𝑡

=
𝜉
(𝑜)
𝑆 (𝑐𝐿 + 𝐶𝑐𝑆)

𝐶𝐿
(𝑜)
𝑡

(6.27)

where 𝐶 is canonical ratio. Similarly, for the right (other) quasicrystalline rod with inverse canon-

ical ratio by the same two-phase material (case(1)), the two variables 𝜉(𝑖)𝐿 , 𝜉(𝑖)𝑆 and frequency 𝜔(𝑖)

can be defined:

𝜉
(𝑖)
𝐿 =

𝑙
(𝑖)
𝐿 𝜔(𝑖)

𝑐𝐿
; 𝜉

(𝑖)
𝑆 =

𝑙
(𝑖)
𝑆 𝜔(𝑖)

𝑐𝑆
(6.28)

𝜔(𝑖) =
𝜉
(𝑖)
𝐿 (𝐶𝑐𝐿 + 𝑐𝑆)

𝐶𝐿
(𝑖)
𝑡

=
𝜉
(𝑖)
𝑆 (𝐶𝑐𝐿 + 𝑐𝑆)

𝐿
(𝑖)
𝑡

(6.29)

Superscript (𝑖) denote the condition for the right quasicrystalline rod with inverse canonical ratio

compared with the left (original) one. Moreover, duplicating the process into the right quasicrys-

talline rods with exchanging two phases material with fixed the same canonical ratio (case (2)),

the two variables 𝜉(𝑒)𝐿 , 𝜉(𝑒)𝑆 and frequency 𝜔(𝑒) are introduced:

𝜉
(𝑒)
𝐿 =

𝑙
(𝑒)
𝐿 𝜔(𝑒)

𝑐𝑆
; 𝜉

(𝑒)
𝑆 =

𝑙
(𝑒)
𝑆 𝜔(𝑒)

𝑐𝐿
(6.30)

𝜔(𝑒) =
𝜉
(𝑒)
𝐿 (𝐶𝑐𝐿 + 𝑐𝑆)

𝐿
(𝑒)
𝑡

=
𝜉
(𝑒)
𝑆 (𝐶𝑐𝐿 + 𝑐𝑆)

𝐶𝐿
(𝑒)
𝑡

(6.31)

For the case of inverse canonical ratio, we have 𝜉(𝑖)𝐿 = 𝜉
(𝑜)
𝑆 and 𝜉

(𝑖)
𝑆 = 𝜉

(𝑜)
𝐿 . If the two phases

material are swapped, then the 𝜉
(𝑒)
𝐿 = 𝜉

(𝑜)
𝐿 and 𝜉

(𝑒)
𝑆 = 𝜉

(𝑜)
𝑆 . Finally, conditions for frequency
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𝜔(𝑜) = 𝜔(𝑖) and 𝜔(𝑜) = 𝜔(𝑒) are:

𝜔(𝑜) = 𝜔(𝑖) ⇌
𝐿
(𝑖)
𝑡

𝐿
(𝑜)
𝑡

=
𝐶𝑐𝐿 + 𝑐𝑆

𝑐𝐿 + 𝐶𝑐𝑆
; 𝜔(𝑜) = 𝜔(𝑒) ⇌

𝐿
(𝑒)
𝑡

𝐿
(𝑜)
𝑡

=
𝐶𝑐𝐿 + 𝑐𝑆

𝑐𝐿 + 𝐶𝑐𝑆
; (6.32)

Wave phase speed 𝑐𝐿, 𝑐𝑆 and canonical ratio 𝐶 are associated with the left quasicrystalline rods

(original one). If conditions (6.32) are satisfied, then the dispersion spectra of left-hand side

and right-hand side rod are identical. Therefore, the total length for the right quasicrystalline

rods could be changed according to the expression (6.32). However, for the numerical examples

considered in this thesis, because 𝑐𝐿 = 𝑐𝑆, the frequency in dispersion relation is the same without

changing total length.

6.3 Surface Impedance and Reflection Coefficients in Finite Rods

An exact formula for the frequency of the interface state mode is derived in this Section for the

case of a system composed of two periodic rods with canonical ratio 𝐶 and 1/𝐶. We consider two

finite rods which elementary cell is generated according to Fibonacci 𝐹2 cell, both composed of 𝒩

unit cells and satisfying the condition for having the same dispersion spectrum (6.32).

6.3.1 Exact formula for frequency at the interface state

According to surface impedance expression (6.15), the explicit condition for interface state is:

Im(
1 + 𝑟lhs

1 − 𝑟lhs
) + Im(

1 + 𝑟rhs

1 − 𝑟rhs
) = 0 (6.33)

Therefore, we need to evaluate the reflection coefficients for both left hand side and right hand

side structure in order to determine the frequency for the interface state. Let us consider the finite

quasicrystalline rods with 𝒩 unit cell all information concerning the wave propagation are given

by the transfer matrix is already shown in Chapter 3:

�
𝑎𝒩

𝑏𝒩

� = �
f11 f12

f21 f22
�

𝒩

�
𝑎0

𝑏0

� ≡ F𝑡 �
𝑎0

𝑏0

� (6.34)

where 𝑎0 and 𝑏0 are the amplitude coefficients of incident and reflected waves at the incident

side of structure whereas 𝑎𝒩 and 𝑏𝒩 are the counterparts at the output side. F𝑡 is the global

transfer matrix previously introduced. In order to calculate the transmission coefficients for the

finite quasicrystalline rods, the amplitude of the reflected wave at the output side is assumed to be
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( 𝑏𝒩 = 0). As a result, the wave reflection coefficient and transmission coefficient are:

𝑟 = −
𝑏0

𝑎0
=

F𝑡(2, 1)
F𝑡(2, 2)

, 𝑡𝒩 = �
𝑎𝒩

𝑎0
�

2

= �F𝑡(1, 1) −
F𝑡(1, 2)F𝑡(2, 1)

F𝑡(2, 2)
�

2

(6.35)

where F𝑡(𝑖, 𝑗) are the components of the global transfer matrix. Since the F matrix is unimodular,

the 𝒩th power of this matrix can be expressed by Chebyshev’s identity (Yeh et al. 1977):

�
f11 f12

f21 f22
�

𝒩

= �
f11𝑈𝒩−1 − 𝑈𝒩−2 f12𝑈𝒩−1

f21𝑈𝒩−1 f22𝑈𝒩−1 − 𝑈𝒩−2

� (6.36)

where 𝑈𝒩 = sin((𝒩+1)𝐾𝐿𝑡)/sin(𝐾𝐿𝑡) and the 𝐾𝐿𝑡 is the normalised Floquet-Bloch wavenum-

ber coming from dispersion relation (6.4). Then, the reflection coefficient becomes:

𝑟 = −
𝑏0

𝑎0
= −

i
2
(
𝑍𝑆

𝑍𝐿
−

𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆)sin(𝒩𝐾𝐿𝑡)

𝑒(−i𝜉𝐿)(cos(𝜉𝑆) −
i
2
(
𝑍𝑆

𝑍𝐿
+

𝑍𝐿

𝑍𝑆
)sin(𝜉𝑆))sin(𝒩𝐾𝐿𝑡) − sin((𝒩 − 1)𝐾𝐿𝑡)

(6.37)

The imaginary part of the ratio of the relative impedance 𝑍/𝑍0 can be derived by using equation

(6.37). Substituting expression (6.37) in equation (6.33) and remembering that since we are con-

sidering a frequency inside a band gap the impedance 𝑍0 is 𝑍𝐿, and sin(𝒩𝐾𝐿𝑡) are pure imaginary

numbers and 𝐻1𝐻2 = 4𝑍2𝐿𝑍
2
𝑆 sin2(𝐾𝐿𝑡) is a real number. Im(𝑍/𝑍0) can be simplified as:

Im(
𝑍

𝑍0
) = Im(

1 + 𝑟

1 − 𝑟
) =

4𝑍𝐿𝑍𝑆sin(𝒩𝐾𝐿𝑡)cos(𝒩𝐾𝐿𝑡)sin(𝐾𝐿𝑡)(𝑍2𝐿 − 𝑍2𝑆 )sin(𝜉𝑆)
𝐻2
1 + 2sin(𝜉𝑆)𝐻1(𝑍2𝑆 − 𝑍2𝐿 )cos2(𝒩𝐾𝐿𝑡)

(6.38)

and:

Re(
𝑍

𝑍0
) = Re(

1 + 𝑟

1 − 𝑟
) =

4𝑍2𝐿𝑍
2
𝑆 sin2(𝐾𝐿𝑡)

𝐻2
1 + 2sin(𝜉𝑆)𝐻1(𝑍2𝑆 − 𝑍2𝐿 )cos2(𝒩𝐾𝐿𝑡)

. (6.39)

Let us consider 𝐾𝐿𝑡 corresponding to frequency inside a band gap:

𝐾𝐿𝑡 = 𝑛𝜋 + 𝑖𝐾 (6.40)

where 𝐾 > 0 and describe the decay length inside the band gap (Xiao et al. 2014). Thus, the term

cos2(𝒩𝐾𝐿𝑡) = cosh2(𝒩𝐾). As the number of unit cells 𝒩 increases, the term cosh2(𝒩𝐾) ≈

∞ due to the properties of hyperbolic cosine function leading to Re( 𝑍

𝑍0
) ≈ 0 and term 𝐻1 is

independent of number 𝒩, in agreement with the definition of Re( 𝑍

𝑍0
) = 0 in semi-infinity rod

theory for the case of a frequency inside a bandgap.

The same material parameters considered for the numerical examples shown Section 6.1 are cho-

sen and the canonical ratio 1/3 and 3 are assumed. The frequency range is canonical period as
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shown in Figure 6.8. From the Figure 6.8, with the increasing number of unit cells 𝒩, the abso-

Figure 6.8. The real part and imaginary part of 𝑍

𝑍0
in the bandgap, The brown and light blue

represents the real and imaginary part of the quasiperiodic rod with canonical ratio 1/3 (𝑎) and
3 (𝑏), respectively.

lute value for the imaginary part of 𝑍/𝑍0 is decreased inside the bandgap, in agreement with the

predictions of the monotonic decreasing from ∞ to 0 or 0 to −∞ predicted by semi-infinite theory

(Xiao et al. 2014). The real part keeps stable and close to 0, which is also consistent to what

expected by the theory when the frequency is in a bandgap.

As we anticipated, the left-hand side and right-hand side rods satisfy the condition (6.32) for

having the same the dispersion relation layouts, and consequently the normalised Bloch wave

number 𝐾𝐿𝑡 is the same. Also the number of unit cells 𝒩 in these two structures is same, then

sin(𝒩𝐾𝐿𝑡), sin((𝒩 − 1)𝐾𝐿𝑡) and cos(𝐾𝐿𝑡) have the same value for these two configurations.

Assuming that the equation (6.38) is associated with the left-hand side rod with canonical ratio

𝐶, we introduce another particular expression corresponding to the right hand side with ratio 1/𝐶

exchanging the position of 𝜉𝑆 and 𝜉𝐿 (𝐻1 ⇒ 𝑊1):

Im(
𝑍

𝑍0
) = Im(

1 + 𝑟

1 − 𝑟
) =

4𝑍𝐿𝑍𝑆sin(𝒩𝐾𝐿𝑡)cos(𝒩𝐾𝐿𝑡)sin(𝐾𝐿𝑡)(𝑍2𝐿 − 𝑍2𝑆 )sin(𝜉𝐿)
𝑊2
1 + 2sin(𝜉𝐿)𝑊1(𝑍

2
𝑆 − 𝑍2𝐿 )cos2(𝒩𝐾𝐿𝑡)

(6.41)

By summing up (6.38) and (6.41), we obtain:

𝐻2
1 sin(𝜉𝐿) +𝑊2

1 sin(𝜉𝑆) + (𝐻1 +𝑊1)(2sin(𝜉𝐿)sin(𝜉𝑆)(𝑍2𝑆 − 𝑍2𝐿 )cos2(𝒩𝐾𝐿𝑡)) = 0 (6.42)

The frequency satisfying equation (6.42) is associated with the interface mode inside the band

gap. From the results derived by (Xiao et al. 2014), if an interface state exists in these structure

combination, equation (6.42) has only one solution. We can deduce that the unique solution is
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given by the pair of values (𝜉𝑆, 𝜉𝐿) satisfying:

sin(𝜉𝑆) = −sin(𝜉𝐿) ≠ 0; cos(𝜉𝑆) = cos(𝜉𝐿) (6.43)

Canonical frequency 

Figure 6.9. (a): The transmission spectrum of the system with canonical ratio 1/3 and 3 (left and
right) with 6 unit cells, respectively. The interface state are coincident with canonical frequency.
(b): The imaginary part of relative surface impedance of canonical rod of ratio 1/3 (𝑍1, solid
cyan line) and 3 (𝑍2, solid brown line), and the sum of the two (solid black line) inside the band
gap region. (c): The plot of cos(𝜉𝑆), cos(𝜉𝐿), sin(𝜉𝑆), sin(𝜉𝐿) and half trace. The canonical ratio
is 1/3.
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Figure 6.10. Numerical calculation of absolute value of the force field at the interface state as-
sociated with the system with canonical ratio 1/3 and 3 (left and right). The material parameters
are same with Figure 6.9 (𝑎): 𝑓 = 33.945kHz (interface state). (𝑏): 𝑓 = 101.835kHz (interface
state). (𝑐): 𝑓 = 40kHz (passband). (𝑑): 𝑓 = 33kHz (bandgap).

By means of trigonometric formulas, the equation (6.43) can be transformed in the coupled system:

sin(𝜉𝑆) + sin(𝜉𝐿) = 0 ⇒ 2sin(
𝜉𝑆 + 𝜉𝐿

2
)cos(

𝜉𝐿 − 𝜉𝑆

2
) = 0 (6.44)

cos(𝜉𝑆) − cos(𝜉𝐿) = 0 ⇒ 2sin(
𝜉𝑆 + 𝜉𝐿

2
)sin(

𝜉𝐿 − 𝜉𝑆

2
) = 0 (6.45)

The solution of coupled equations (6.44) and (6.45) is given by the values of 𝜉𝑆 and 𝜉𝐿 satisfying

sin((𝜉𝑆 + 𝜉𝐿)/2) = 0 and the corresponding frequency is:

𝑓 =
𝑛1

(1 + 𝐶)𝑙𝐿
�
𝐸𝐿

𝜌𝐿
=

𝐶𝑛1

(1 + 𝐶)𝑙𝑆
�
𝐸𝑆

𝜌𝑆
, 𝑛1 ∈ ℕ (6.46)

Notice that 2𝑛1/(1+𝐶) and 2𝐶𝑛1/(1+𝐶) are not solutions of it because the sin(𝜉𝐿) = sin(𝜉𝑆) =

0 corresponds to passband. Also, the total length 𝐿𝑡 of these two different rods must be adjusted

in order to satisfy the condition for identical dispersion spectrum (equation (6.32)).

The exact formula (6.46) is valid under two conditions, (1). the two-phase material cannot be

157



PhD Thesis, Zhijiang Chen, 2022

changed. (2), the number of unit cells 𝒩 must be identical in both left and right hand side rods.

Figure 6.9 concerns a left quasicrystalline rods with canonical ratio with 𝐶 = 1/3 and a right hand

side 𝐶 = 3. In the figure we report in part (𝑎) the transmission coefficient for this whole system,

in part (𝑏) the imaginary part of impedance for these two different structures and whole system

as frequency in bandgap and in part (𝑐) the plot of cos(𝜉𝑆), cos(𝜉𝐿), sin(𝜉𝑆), sin(𝜉𝐿). The results

from Figure 6.9 tell us that the frequency of interface state corresponds to transmission peak in

transmission coefficients, zero value of summation of impedance for two structure (𝑍1 + 𝑍2) and

the numerical value of the frequency of the interface mode is the one evaluated by formula (6.46).

Figure 6.11 shows case for the combination of canonical ratio 𝐶 = 1/2 and 𝐶 = 2.

The axial force fields reported in Figure 6.10, calculated numerically for the values of the canon-

ical ratios 𝐶 = 3 and 𝐶 = 1/3, are in good agreement with the theoretical predictions. The

absolute value of the force field is localized at the interface between two quasicrystalline rods,

and it decays dramatically towards the ends of mixed waveguides. This is an evident sign of the

interface states due to the topological conflict of the distinct states. Moreover, the wave field for

frequency which is in passband and bandgap are shown here for comparison, the axial force am-

plitude at the interface is 60 more times than the input signals. For the case for system combined

with canonical ratio 𝐶 = 1/2 and 𝐶 = 2 we detected similar results with the force amplitude at

the interface being 35 more times than the input signals.

6.3.2 The method to place the interface state at the centre of the bandgap

The frequency of an interface state for a system composed of two rods with canonical ratio 𝐶 and

1/𝐶 is given by equation (6.43). We now determine the condition for having the interface state at

the centre of bandgap. Let us assume that the 𝜉𝐿 − 𝛿 and 𝜉𝑆 − 𝐶𝛿 correspond to the frequency at

the edge of the bandgap. Remembering the dispersion relation (6.6): (Note: 𝜉𝑆 = 𝐶𝜉𝐿)

cos(𝜉𝐿 − 𝛿)cos(𝐶(𝜉𝐿 − 𝛿)) −
𝛽

2
sin(𝜉𝐿 − 𝛿)sin(𝐶(𝜉𝐿 − 𝛿)) = ±1 (6.47)

If the interface state is at the bandgap centre, the following additional dispersion relation should

be satisfied:

cos(𝜉𝐿 + 𝛿)cos(𝐶(𝜉𝐿 + 𝛿)) −
𝛽

2
sin(𝜉𝐿 + 𝛿)sin(𝐶(𝜉𝐿 + 𝛿)) = ±1 (6.48)
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Canonical frequency 

Figure 6.11. (𝑎): The transmission spectrum of the system with canonical ratio 1/2 and 2 (left
and right) with 6 unit cells, respectively. (𝑏): The imaginary part of relative surface impedance
of canonical rod of ratio 1/2 (𝑍1, solid cyan line) and 2 (𝑍2, solid brown line), and the sum of
the two (solid black line) inside the band gap region. (𝑐): The plot of cos(𝜉𝑆), cos(𝜉𝐿), sin(𝜉𝑆),
sin(𝜉𝐿) and half trace. The canonical ratio is 1/2.

Subtracting equations (6.47) from (6.48) and using the interface state conditions sin(𝜉𝐿) = −sin(𝐶𝜉𝐿)

and cos(𝜉𝐿) = cos(𝐶𝜉𝐿), the following equation is obtained:

2(
𝛽

2
− 1)sin((𝐶 − 1)𝛿)sin(𝜉𝐿)cos(𝜉𝐿) = 0 (6.49)

If 𝛽

2
= 1, the waveguide becomes homogenous. If 𝛽 is close to 2, the interface state would be

close to the centre of band gap. If the canonical ratio 𝐶 is close to 1, the frequency of interface

state would be close to the centre of band gap also. If the sin(𝜉𝐿) = 0, the frequency is at

the passband. Consequently, only for cos(𝜉𝐿) = 0 equation (6.49) is satisfied and the interface

state is at the centre of band gap. Note that from equation (6.43), cos(𝜉𝐿) = cos(𝜉𝑆) = 0 ⇒

sin(𝜉𝐿) = −sin(𝜉𝑆) = ±1. It represents the canonical frequency for family no. one, which is

𝜉𝐿 = 𝜋(1 + 2𝑘)/2 and 𝜉𝑆 = 𝜋(1 + 2𝑗)/2. Since the sign of sin(𝜉𝐿) is different from the sign of

sin(𝜉𝑆), the 𝑗 + 𝑘 must be an odd number, which let the cos(𝐾𝐿𝑡) = 𝛽/2 > 1 at the canonical
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Figure 6.12. Numerical calculation of absolute value of the force field at the interface state with
the system with canonical ratio 1/2 and 2 (left and right). The material parameters are same with
Figure 6.11. (𝑎): 𝑓 = 33.945kHz (interface state). (𝑏): 𝑓 = 67.89kHz (interface state).

frequency according to dispersion relation (6.6). Thus, the canonical frequency is associated with

the frequency of an interface state for family no. one when 𝑗 + 𝑘 is odd number.

6.3.3 Determination of interface state frequency in system with swapped two-phases

of the rods

Let us determine the frequency for the interface state in a system where the structure on the left

and on the right have the same canonical ratio but the two phases composing the fundamental

cells are swapped. This means that 𝑍𝐿 ⇒ 𝑍𝑆 and 𝑍𝑆 ⇒ 𝑍𝐿. The different topological phase of

these two structures dose not come from the flow line passing through the topological transition

point (bandgap close and reopen). In addition, the solution for the imaginary part of the surface

impedance is more complicated than equation (6.46). Similar to equation (6.38), the right hand

side structure with swapped two-phases of the rods is:

Im(
𝑍

𝑍0
) = Im(

1 + 𝑟

1 − 𝑟
) =

4𝑍𝐿𝑍𝑆sin(𝒩𝐾𝐿𝑡)cos(𝒩𝐾𝐿𝑡)sin(𝐾𝐿𝑡)(𝑍2𝑆 − 𝑍2𝐿 )sin(𝜉𝑆)
𝐻2
2 + 2sin(𝜉𝑆)𝐻2(𝑍2𝐿 − 𝑍2𝑆 )cos2(𝒩𝐾𝐿𝑡)

(6.50)

If the interface state exists, the corresponding frequency should satisfy the following equation

given by the sum of equations (6.38) and (6.50):

𝐻2
1𝑍𝑆 − 𝐻2

2𝑍𝐿 + 2(𝑍2𝑆 − 𝑍2𝐿 )cos2(𝒩𝐾𝐿𝑡)(𝐻1𝑍𝑆 + 𝐻2𝑍𝐿) = 0 (6.51)
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Canonical frequency 

Figure 6.13. (a): The transmission spectrum of the system with canonical ratio 1/2 connected
with rod changing the two-phase material (left and right) with 6 unit cells respectively. (b): The
imaginary part of the relative surface impedance and the sum of the two (solid black line) inside
the bandgap region. The solid grey line represents the solution from solution (6.51).

z z

z z

(a) (b)

(c) (d)

|N| |N|

|N||N|

Figure 6.14. Numerical calculation of absolute value of the force field at the interface state.
Material parameters same with case in Figure 6.13 (𝑎): 𝑓 = 15.481kHz (interface state). (𝑏):
𝑓 = 35.436kHz (interface state). (𝑐): 𝑓 = 66.399kHz (interface state). (𝑑): 𝑓 = 86.354kHz
(interface state).
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where 𝐻1 and 𝐻2 are the same terms of equation (6.17). Equation (6.43) is an implicit function

which reveal the frequency at interface state within this configuration. The transmission coefficient

and corresponding imaginary part of impedance are depicted in Figure 6.13 considering a system

composed of two different periodic rods swapping the two-phase material with fixed canonical

ratio 𝐶 = 1/2. The grey line in Figure 6.13 (b) is the analytical solution (6.51), which is associated

with zero value of summation of imaginary part of impedance 𝑍1 + 𝑍2 and the corresponding

transmission peak in Figure 6.13 (a).

Observing Figure 6.14, it is easy to note that the absolute value of the force field is localized at

the interface between two quasicrystalline rods, and it decays dramatically towards the ends of

mixed waveguides. The results obtained in the section can also be extended to the non-canonical

structure.

6.4 The Solution from Semi-Infinite Theory

The solution for a semi-infinite structure is now used to verify the analytical results obtained for

a finite structure. Let us consider an axial wave 𝑢 = (𝑎𝑒i𝑘0𝑧 + 𝑏𝑒−i𝑘0𝑧)𝑒i𝜔𝑡 coming from a

homogenous waveguide with impedance 𝑍0 incident into our semi-infinite rods. The velocity field

and force field are:

𝑉− = i𝜔(𝑎𝑒i𝑘0𝑧 + 𝑏𝑒−i𝑘0𝑧) (6.52)

𝑁− = i𝜔𝑍0(𝑎𝑒i𝑘0𝑧 − 𝑏𝑒−i𝑘0𝑧) (6.53)

The two fields inside the bandgap at 𝑧 = 0+ are given by equation (6.11):

𝑉+ = 𝜔(−sin(𝐾𝐿𝑡) +
𝐻1

2𝑍𝐿𝑍𝑆
) (6.54)

𝑁+ = 𝑍𝐿𝜔(sin(𝐾𝐿𝑡) −
𝐻2

2𝑍𝐿𝑍𝑆
) (6.55)

The mechanical impedance is defined as the ratio between the applied force and the resulting

velocity at the point of excitation (𝑧 = 0). Thus, it is given by:

𝑍 =
𝑁

𝑉
= 𝑍0

𝑎 − 𝑏

𝑎 + 𝑏
= 𝑍𝐿

(sin(𝐾𝐿𝑡) −
𝐻2

2𝑍𝐿𝑍𝑆
)

(−sin(𝐾𝐿𝑡) +
𝐻1

2𝑍𝐿𝑍𝑆
)

(6.56)

Force reflection coefficient is 𝑟 = −𝑏/𝑎, so that the equation (6.56) becomes:
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𝑍 = 𝑍0
1 + 𝑟

1 − 𝑟
(6.57)

Equation (6.56) is identical to equation (2.73). Then, equation (6.57) can be simplified further:

𝑍

𝑍0
=
2𝑍2𝐿𝑍𝑆sin(𝐾𝐿𝑡)

𝐻1
(6.58)

The frequency solution at interface state is investigated for the same two conditions considered in

previous Sections: (1) inverse canonical ratio, the equation (6.58) becomes:

𝑍

𝑍0
=
2𝑍2𝐿𝑍𝑆sin(𝐾𝐿𝑡)

𝑊1

(6.59)

(2) swapping of two-phase material, the equation (6.58) becomes:

𝑍

𝑍0
=
2𝑍2𝑆𝑍𝐿sin(𝐾𝐿𝑡)

𝐻2
(6.60)

It is easy to find the solution for case (1) is given by the condition given by the sum of equations

(6.58) and (6.59):

𝐻1 +𝑊1 = 0 (6.61)

Equation (6.61) is identical to equation (6.43). For case (2), the solution is determined by the sum

of equations (6.58) and (6.60):

(𝐻1𝑍𝑆 + 𝐻2𝑍𝐿) = 0 (6.62)

Equation (6.62) is due to the fact that term cos2(𝒩𝐾𝐿𝑡) is dominated by the expression (6.51) and

(𝑍2𝑆 −𝑍2𝐿 ) cannot be zero with increasing of 𝒩. The solution for the finite unit cell is in agreement

with the results of semi-infinite theory solution and then our results are benchmarked.

6.5 Conclusion and Remarks

This chapter is concerning the study of interface state in a system composed of two periodic rods

which fundamental cells are designed according to Fibonacci 𝐹2 cell. In cases where the frequency

is inside a bandgap, the localised mode occurs if the sign of imaginary part of surface impedance is

opposite in the two rods composing the system. The sign of imaginary part of surface impedance

is linked by symmetric properties of lower or upper band edge mode, for instance, the sign of

impedance is negative as asymmetric band mode at lower band gap edge or vice versa. Thus, it

provides a simple way to calculate the sign of imaginary part of impedance, which is easier than
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Zak phase which is usually calculated through complex numerical integral.

Due to the fact that a canonical structure owns periodic and symmetric dynamic properties, the sign

of the imaginary part of surface impedance has also these properties so that we can predict sign

of surface impedance for all band gaps inside a canonical period. The sign of the imaginary part

of surface impedance keeps the same if we translate a band gap of a canonical period, different

in cases where we translate by half canonical period. Combining the condition of band edge

symmetry with the extended toroidal representation of the sign of imaginary part of impedance

in any bandgap can be predicted starting from the analysis of the first band gap. Thus, the new

extended torus can be used to design the topological transition properties in quasicrystalline rods

by studying the flow line passing through the topological transition point first time. The proposed

novelty method can be used to design a system composed of two rods with different signs of

imaginary part of impedance in the same bandgap region.

We derived an exact formula for the frequency of the interface state valid for the case where both

the finite rods composing the systems have the same materials for the two phases and the same

number of unitary cells, which is first time compare with previous research works. Two particular

cases are considered: different structures with the inverse canonical ratio or swapping two-phase

materials while fixed canonical ratio. The formula is derived by evaluating analytical expressions

for the reflection coefficient and the imaginary part of surface impedance for the two rods, and

using these expressions in the general condition for having a localised mode at the interface. The

exact formula is benchmarked with numerical results. Moreover, a condition to let the interface

state at the bandgap’s centre is also obtained. If the structure belong to canonical family no. 1 and

satisfied 𝑗 + 𝑘 = odd number, the canonical frequency must be identical with frequency for the

interface state and in the centre of the bandgap. In addition, the theoretical results obtained through

the analysis of the semi-infinite rods are verified by a comparison with semi-infinite theory. The

developed approach can be extended to the case of an interface between non-canonical structure.

The interface state and sign of the imaginary part of surface impedance are usually predicted by

evaluating the Zak phase (Zak 1989) through a complicated integral introduced in Chapter 3. The

results obtained in this chapter using symmetric properties of edge mode to analyse the sign of

imaginary part of impedance for having interface state have been verified by a comparison with

numerically calculated Zak phase in dispersion spectra.

For design system, which has two quasicrystalline-generated rods, for having interface state is

following steps:
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(1): Two structures with one canonical ratio 𝐶 and another with inverse canonical ratio 1/𝐶 can

be chosen. The interface state will happen only as wave number 𝐾𝐿𝑡 = 0. The frequency at

interface state is 𝑓 =
𝑛1

(1+𝐶)𝑙𝐿
�
𝐸𝐿

𝜌𝐿
=

𝐶𝑛1

(1+𝐶)𝑙𝑆
�
𝐸𝑆

𝜌𝑆
, 𝑛1 ∈ ℕ. Thus, engineer can adjust material or

length coefficients to obtain desire or target frequency. If this frequency coincide with canonical

frequency, the interface state will be at the centre of bandgap.

(2): Two structures with two-phase material swapping each other can be chosen. The interface

state will happen in every bnandgap. The frequency at interface state is 𝐻2
1𝑍𝑆 − 𝐻2

2𝑍𝐿 + 2(𝑍2𝑆 −

𝑍2𝐿 )cos2(𝒩𝐾𝐿𝑡)(𝐻1𝑍𝑆 + 𝐻2𝑍𝐿) = 0. Thus, engineer can adjust material or length coefficients to

obtain desire or target frequency.

(3): If two wave speed in two phase material are different (𝑐𝐿 ≠ 𝑐𝑆), the total unit cell length 𝐿(𝑖)𝑡

with canonical ratio 1/𝐶 or 𝐿(𝑒)𝑡 with two phase swapping should be adjusted according 𝐿(𝑖)𝑡 = (or

𝐿
(𝑒)
𝑡 ) 𝐿(𝑜)𝑡

𝐶𝑐𝐿+𝑐𝑆

𝑐𝐿+𝐶𝑐𝑆
, 𝐿(𝑜)𝑡 is original unit cell total length.
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Chapter 7 - Conclusions and Further Work

7.1 Conclusions

In this thesis, we investigate the dynamical properties of a class of quasicrystalline-generated

phononic structures whose elementary cells are designed using the Fibonacci golden mean sub-

stitution rules. We analyze in details several aspects concerning the propagation of harmonic

axial waves in quasicrystalline rods and anti-plane shear waves in Fibonacci-generated laminates.

Closed form exact solutions for the two one-dimensional problems allowed us to study and under-

stand the following extraordinary properties of this class of structures: (i). self-similar layout of

the dispersion spectra governed by analytically evaluated scaling factors; (ii). periodic stop/pass

diagrams characterizing a sub-family of quasicrystalline-generated structures (the so-called canon-

ical structures); (iii). pure negative refraction induced at an interface between an elastic substrate

and a quasicrystalline laminate; (iv) topological localized modes obtained at the interface between

two canonical quasicrystalline rods. The main results about these non-standard dynamical fea-

tures, their physical interpretation and their possible technological applications are summarized in

the next three sections.

7.1.1 Wave propagation in canonical rods

The dispersion relation for axial wave propagating in two-phase Fibonacci-generated periodic

rods is obtained as a function of the trace of the transfer matrix corresponding to fundamental

cells of any arbitrary order. Trace of transfer matrices of Fibonacci consecutive cells are related

by recursive relationships so that the propagation properties of consecutive cells at any given

frequency can be studied by means of nonlinear recursive maps. An invariant for these maps,

i.e. Kohmoto’s invariant and the relevant manifold, is investigated. For any arbitrary frequency,

the traces of the transfer matrix corresponding to consecutive Fibonacci cells are associated with

points on the Kohmoto’s surface. Analyzing the trajectories of these points allow us to obtain

a rigorous interpretation of the scaling effects and self-similarity observed in the stop/passband

diagrams. Moreover, we have shown that there are six-saddle point closed orbits on Kohmoto’s

manifold corresponding to the so-called canonical frequencies. In order to have this phenomenon,

the geometrical and physical properties of the two phases composing the rods must statisfy three

alternative conditions associated with three families of canonical structures. If the structure is

a canonical waveguide, the Floquet Bloch spectra, dynamic traces and Kohmoto’s invariant are

periodic with well defined special frequencies which are canonical frequencies. The relationships

between canonical ratio and associated canonical frequencies are explained by several numerical
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examples from initial three traces with dimensionless frequency. By using these relationships, the

dynamic properties of canonical structure can be controlled modulating the material parameters of

the two phases.

In addition, a close inspection of the associated trace map has revealed that there could be multiple

periodic orbits at frequencies that differ from the canonical ones. The effect of scaling on the

length of the bandgap (family no. one) and passbands (families no. two and three or other periodic

orbits) have been examined in details with good accuracy. The validity of scaling increases with

increasing index of Fibonacci order. The scaled passband and trace are symmetric between 𝐹𝑖 and

𝐹(𝑖+𝑝) (𝑝 is number of periodic points) associated with the frequency with the positive maximum

eigenvalue of Jacobian and are not symmetric as the maximum eigenvalue is negative one which

means the increasing perturbation direction is the opposite comparing with initial direction through

linearisation.

We studied scaling in linearizing nonlinear maps around periodic orbit and the eigenvalues of the

linearized transformation are the scaling factors. Frequencies at half canonical period are the most

exceptional examples. The maximum eigenvalue is not the scaling factor but the square root of

it. According to the concept of linear approximation, the coefficients of the first-order term of

the Taylor series becomes zero. Therefore, if we wish to employ the approximation method, the

Taylor series must be extended to the second order, and then theory matchs numerical results.

In addition, the generic formula for any traces 𝑥𝑖 connected with periodic orbits and position in

one canonical period are solved. The canonical configuration exploits the periodic features of

the trigonometric functions (cosine and sine), resulting in a periodic trace and dispersion pattern,

which is a particular solution of these systems. This approach can be used as a guideline for their

potential use in the design of innovative construction metamaterials whose bandgap and passband

topology may be easily regulated and controlled.

In principle, the canonical configuration takes advantage of the periodic properties of the trigono-

metric function, cosine and sine, leading to periodic trace and dispersion layouts, which is the

particular solution of these systems. This is first time to show how the canonical configuration on

rods to influence the effects for dispersion layout. In addition, the scaling effects concern periodic

points are investigated in both positive, negative or square roots of eigenvalue comparing with

previous research works.

For design dispersion spectrum in quasicrystalline-generated rods is following steps:

(1): The frequency at bandgap can be computed by canonical frequency 𝜔𝑐𝑗 =
𝜋�𝐸𝑆

2𝑙𝑆√𝜌𝑆
(1+2𝑗)(1+
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2𝑚) =
𝜋�𝐸𝐿

2𝑙𝐿√𝜌𝐿
(1 + 2𝑘)(1 + 2𝑚) = 𝜔𝑐𝑘 as structure belongs familiy no .1 at Fibonacci order 𝐹2,

𝐹5, 𝐹8 (𝐹2+3𝑛, 𝑛 ∈ ℕ). Thus, engineer can design this system to forbidden desire frequency wave

𝜔 = 𝜔𝑐.

(2): The bandgap length at Fibonacci order 𝐹2, 𝐹5, 𝐹8 (𝐹2+3𝑛, 𝑛 ∈ ℕ) can be predicted by scaling

technique with scaling factor 𝜗+ by using 𝜔𝐴∗−𝜔𝐵∗ =
�𝜔𝐴−�𝜔𝐵

𝜗+
( 𝜔𝐴∗−𝜔𝐵∗ assuming as bandgap

length for 𝐹𝑖, 𝜔𝐴∗−𝜔𝐵∗ is bandgap length for 𝐹𝑖+6) or with scaling factor 𝜆+ by using 𝜔𝐴∗−𝜔𝐵∗ =
�𝜔𝐴′−�𝜔𝐵′

𝜆+
(�𝜔𝐴′ − �𝜔𝐵′ assuming as bandgap length for 𝐹𝑖, 𝜔𝐴∗ − 𝜔𝐵∗ is bandgap length for 𝐹𝑖+3).

Therefore, engineer can design a structure with very narrow bandgap at desire frequency.

7.1.2 Wave propagation in quasicrystalline and canonical laminates

A method to obtain pure negative refraction for harmonic elastic anti-plane shear (SH) dynamics

is wave transmission across an interface between a substrate and a composite laminate whose

lamination direction is orthogonal to the interface. The concept of transition zone is associated

with a particular range of frequencies and the frequency inside transition zone could lead to a

determined number of propagating waves transmitted from the substrate to the laminate. For

instance, zero or one transmitted modes will be found in first transition zone, one or two in second

transition zone, etc. Consequently, in order to have only one single negatively refracted mode

transmitted at the interface (the so-called ‘pure’ negative refraction phenomenon), the frequency

of the source should be lower than the upper limit of the second transition zone of the harmonic

spectrum of the laminate. The rigorous conditions for pure negative refraction are derived by

obtaining exact expressions with three edge frequencies, which are upper edge for first transition

zone, lower and upper edge for second transition zone. In addition, an exact condition for total

reflection is also obtained.

The rest conclusions in quasicrystalline laminates are novelty works comparing previous research

papers. Canonical laminates are particularly suitable to tune the values of these three edge fre-

quencies and then obtain pure negative refraction in a given range of frequencies. Canonical

laminates display a periodic stop- and pass-band layout, the periodicity being governed by canon-

ical frequency, which is similar to the rod problem in Chapter 4. For the problem of pure negative

refraction, the focus is on the first two passbands of the spectrum that possess the same limits of

the first two transition zones at low frequencies for the laminate if we consider wave propagation

in any direction. The self-similar pattern displayed by them at increasing index of the sequence

can be quantitatively described through a scaling factor that can be estimated by square root of the

maximum eigenvalue from fixed point on Kohmoto’s manifold, which is golden ratio. Through

this parameter, the breadths of the first two transition zones can be predicted first time by scaling
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backward and/or forward the corresponding values of a given configuration taken as a reference.

It is also shown how the impedance mismatch inside dispersion relation of the laminate affect

the limits of the transition zones at constant canonical ratio and how to modify the dispersive

properties of the elementary cell by changing cell’s total length.

Furthermore, the universal representation of the frequency spectrum based on the reduced torus

enables us to properly investigate how a change in canonical ratio impacts the change in the fre-

quencies relevant for negative refraction, specifically those at the boundaries of the first two tran-

sition zones. This depiction provides a tool that may be used to optimise the substrate-laminate

system’s performance. To demonstrate it, we study analytically the cases 𝐹2 and 𝐹3 whose have

evident extreme value for edge frequencies concerning pure negative refraction.

Using a linear relationship between longitudinal wavenumber and frequency, it is possible to di-

rectly calculate the Poynting vector for a specific direction of energy flow and the transmission

angle. With this closed-form solution, the parameters of the laminate and substrate, as well as the

incidence angle, may be easily chosen to produce a certain direction of the negatively refracted

wave without numerically solving the entire coupled problem. Therefore, the transmission an-

gle can be selected on the basis of frequency, substrate, and incident wave angle considerations.

If a large transmission wave angle or a small incident wave angle is required for pure negative

refraction, a substrate with a relatively low wave speed should be chosen.

The possibility of achieving negative refraction can be analysed through the careful selection of

both materials and layouts of the unit cell, the amount of transmitted energy is an additional factor

that must be taken into account because it varies significantly with the angle of incidence. Here,

we demonstrate that, for a particular combination of substrate and laminate materials, a peak in the

energy of the only negative transmitted mode is found. When adopting the examined prototype

system in practical applications, this factor must be considered. Pure negative refraction is an

intriguing phenomena, but it is ineffective if the transmitted energy is relatively low.

For design system, which is composed by two phase quaiscrystalline laminate and homogenous

substrate with fixed total length 𝐿𝑖, for having SH wave pure negative refraction is following steps:

(1): For having relative large incident wave angle’s range for pure negative refraction, the material

for substrate with slower phase speed 𝑐0 should be chosen so that 𝑓min
𝑖 is relative lower.

(2): For increasing three edge frequencies 𝑓1st
𝑖 , 𝑓1bg

𝑖 and �𝑓𝑖 (upper edge for pure negative refrac-

tion), the material with higher wave phase speed should be chosen as material 𝐴, the material with

lower wave phase speed should be chosen as material 𝐵.
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(3): If Fibonacci order for laminate is 𝐹2 or 𝐹3 and satisfied the condition 𝜌𝐿 > 𝜌𝑆, 𝜇𝐿 > 𝜇𝑆 or

𝜌𝐿 < 𝜌𝑆, 𝜇𝐿 < 𝜇𝑆, the canonical ratio can be chosen as 𝐶 = 1 or 𝐶 = 2 for having local maximum

value �𝑓𝑖 (upper edge for pure negative refraction), respectively.

(4): Three frequencies 𝑓1st
𝑖 , 𝑓1bg

𝑖 and �𝑓𝑖 can be predicted with linear approximation (lower Fi-

bonacci order) 𝑓1bg
2 ≈ 𝑓 − (2 + 𝑥2)

𝑑𝑥2

𝑑𝑓
, �𝑓2 ≈ 𝑓 + (2 − 𝑥2)/

𝑑𝑥2

𝑑𝑓
, 𝑓1st

2 ≈ 𝑓 + (−2 − 𝑥2)/
𝑑𝑥2

𝑑𝑓
or

with transition zone scaling (higher Fibonacci order) using coefficients 𝜙𝑔.

(5): The incident wave angle 𝜃inc, pure negative refraction angle 𝜃trans and incoming wave fre-

quency 𝑓 can be plotted on Figure analogy with 5.15 according equation ( 1

𝑓𝐿𝑖
− 𝜈)𝑐0 = sin(𝜃inc)

to determine the relationship among them. Engineer can pick up two of these three terms to obtain

another one.

7.1.3 Topological interface state in periodic rods

The system considered to study interface modes is composed of two periodic rods which funda-

mental cells are designed according to Fibonacci 𝐹2 cell. We considered harmonic axial wave prop-

agation through this system. The localised mode occurs as an opposite sign of surface impedance

when frequency is in bandgap of each two structures combined. The sign of surface impedance

can be obtained by the geometric topological phase-Zak phase for each passband, which is cal-

culated through complex numerical integrals. However, since the periodic cell of rods is 1D and

holds inversion symmetry, the sign of surface impedance can be linked by symmetric properties

of lower or upper band edge mode, for instance, the sign of impedance is negative as asymmetric

band mode at lower band edge or vice versa.

The case of an interface between two canonical 𝐹2 rods is considered. Due to the fact that a

canonical structure owns periodic and symmetric properties, the sign of surface impedance has

also these properties so that we can predict sign of surface impedance if the cases in first canonical

frequency range are obtained. In addition, the representation of extended torus can be used in the

bandgap domain with the different sign of surface impedance only depending on the boundary line

of the first bandgap. Thus, with an easy analytical derivation, the novel extended torus can be used

to construct the periodic rods with topological phase transitions and we can first predict sign of

surface impedance in an arbitrary bandgap. These two predicting tools can be easily used to create

a system with two rods in the same bandgap area that have opposite signs of surface impedance

for interface state formulation.

Moreover, we derived an exact frequency formula for the interface state under conditions with

same two-phase material and number of unit cell under two combinations, which are two different
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structures with the inverse canonical ratio or swapping two-phase materials while fixed canonical

ratio, which is first time because previous study do not mention exact frequency solution. The

solution is based on the reflection coefficient and the imaginary part of surface impedance for

these two rods, respectively. The numerical calculations confirm the exact formula validity as it is

shown in plots of the transmission spectra, trace plots and wave fields at interface state. We finally

propose a method to generate an interface mode at the centre of the bandgap, whose frequency

coincides with canonical frequency. The theoretical investigations of the periodic semi-infinite

rods validated the solution of finite unit cell. In addition, all results can be extended to non-

canonical structures.

For design system, which has two quasicrystalline-generated rods, for having interface state is

following steps:

(1): Two structures with one canonical ratio 𝐶 and another with inverse canonical ratio 1/𝐶 can

be chosen. The interface state will happen only as wave number 𝐾𝐿𝑡 = 0. The frequency at

interface state is 𝑓 =
𝑛1

(1+𝐶)𝑙𝐿
�
𝐸𝐿

𝜌𝐿
=

𝐶𝑛1

(1+𝐶)𝑙𝑆
�
𝐸𝑆

𝜌𝑆
, 𝑛1 ∈ ℕ. Thus, engineer can adjust material or

length coefficients to obtain desire or target frequency. If this frequency coincide with canonical

frequency, the interface state will be at the centre of bandgap.

(2): Two structures with two-phase material swapping each other can be chosen. The interface

state will happen in every bnandgap. The frequency at interface state is 𝐻2
1𝑍𝑆 − 𝐻2

2𝑍𝐿 + 2(𝑍2𝑆 −

𝑍2𝐿 )cos2(𝒩𝐾𝐿𝑡)(𝐻1𝑍𝑆 + 𝐻2𝑍𝐿) = 0. Thus, engineer can adjust material or length coefficients to

obtain desire or target frequency.

(3): If two wave speed in two phase material are different (𝑐𝐿 ≠ 𝑐𝑆), the total unit cell length 𝐿(𝑖)𝑡

with canonical ratio 1/𝐶 or 𝐿(𝑒)𝑡 with two phase swapping should be adjusted according 𝐿(𝑖)𝑡 = (or

𝐿
(𝑒)
𝑡 ) 𝐿(𝑜)𝑡

𝐶𝑐𝐿+𝑐𝑆

𝑐𝐿+𝐶𝑐𝑆
, 𝐿(𝑜)𝑡 is original unit cell total length.

7.2 Further Developments

We found a new class of waveguides, the so-called canonical structures, that are associated with

periodic dynamical spectrum. The possibility of realizing a period spectrum is connected to

the purely harmonic solution of the Helmholtz-type equation describing the propagation of ax-

ial waves in these type of structures. In Euler-Bernoulli beam theory (which might be generalised

to other beam theories, e.g. Timoshenko beam), with or without prestress, the displacement so-

lution for each phase may contain the non-periodic hyperbolic functions cosh and sinh. In order

to apply the concept of canonical configuration to flexural beams and 2D and 3D lattices more
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research is needed as a theory for the extension to the new problems is still lacking.

As SH waves propagate through laminates, the unusual normalised energy peak for pure negative

refraction can be explored in further detail. As illustrated in Figure 5.16, it appears that the unusual

energy peaks are related to the substrate properties and incoming wave frequency. However, it

is difficult to develop a theoretical solution from normalised energy because of the scattering

coefficients obtained through the approximated equation set (3.23), regardless of whether the mode

decomposition method or the Lagrange multiplier technique is used. Negative refraction requires

the transmission of a relevant sufficient amount of energy, so for potential future research, the

principle underlying an unusual energy peak can be investigated using other methods, such as

machine learning (neural networks) that can find the potential law of this phenomenon based on

a large number of numerical results. In future, negative refraction with damping in viscoelastic

multilayered composites may also be investigated.

The exact frequency for the interface state in a 1D system is derived in Chapter 6. Evaluating

the topological invariant determining the existence of localized modes in 2D systems implies very

challenging numerical computations. Similarly to the method presented in this thesis also in 2D

systems, the state of the topological interface can be induced by two distinct systems with the

same dispersion relation. This could be an innovative method for tackling 2D system issues. In

addition, the results and conclusions of this thesis can be applied to acoustic and electromagnetic

wave guides and structures with minor modifications.
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Appendix A Main MATLAB code

Change Font Size and Style in MATLAB Plot

If we required a unique plot font size and style, these codes would be helpful in each figure code.

figure_FontSize=16; % change font size
set(get(gca,’XLabel’),’FontSize’,figure_FontSize,’Vertical’,’top’);
set(get(gca,’YLabel’),’FontSize’,figure_FontSize,’Vertical’,’middle’);
set(findobj(’FontSize’,10),’FontSize’,figure_FontSize);
set(gca,’FontName’,’Cambria Math’); % change font
set(gca,’FontAngle’,’Italic’); % change font style
set(gcf, ’color’, [1 1 1]);% setting edge of figure white axis tight% axis will be tight with vectors

One-Dimensional Quasicrystalline Canonical Rods

The main programme for trace and passband layouts

El=152943.700000000; Es=152943.700000000;pl=1.3; ps=1.3;% change here according material
Ll1=0.03*2; Ls1=0.08; As=0.000530929158456675; Al=0.00090792027688745; % change here
according material
j=2; k=0; q=0; % change here according canonical parameters
calcustep=1E0; % calculation accuracy
[rtio,period1,fam]=ratios(j,k,q);[Ll,Ls]=keepthicnesssame(Ll1,Ls1,2,cl,cs,rtio);
Ql=(pl/El); Qs=(ps/Es); cl=sqrt(El/pl); cs=sqrt(Es/ps);
[n,n2]=periodforf(r,fam,1/sqrt(Ql),1/sqrt(Qs),Ll,Ls,j,k,q);
[trans,bandg,fl,trM,Koho,trT3,trB3]=bandgapforaxially(n,El,Es,Ll,Ls,Al,As,pl,ps,rtio,calcustep);
limitKoho=max(Koho); limittracemax=max(trM(3,:)); limittracemin=min(trM(3,:)); % setting limit
for Kohmoto invariant and trace plot
figure(1)
for jc=3:9

plot(fl,trans(jc,:),’Color’,[0 0 1],’LineWidth’,20),grid; % passband layoutshold on;
end
hold on;fck0=(n)/4*1e-3; fck1=(n*3)/4*1e-3;
plot([fck0,fck0],[-18,-2],’r’,’LineWidth’,2),grid on; % canonical frequencyhold on;
plot([fck1,fck1],[-18,-2],’r’,’LineWidth’,2),grid on; % canonical frequencytitle(’Passband’);
figure(2); % dispersion for traces
plot(fl,trM(1,:),’k’,’LineWidth’,3),grid; % change here for different order tracehold on;
plot(fl,trM(2,:),’m–’,’LineWidth’,3),grid; hold on;
plot(fl,trM(3,:),’b-.’,’LineWidth’,3),grid; hold on;
plot([fck0,fck0],[limittracemin,limittracemax],’r’,’LineWidth’,2.5),grid on; hold on;
plot([fck1,fck1],[limittracemin,limittracemax],’r’,’LineWidth’,2.5),grid on;title(’trace diagram’);
figure(3); % plot of Kohmoto’s invariant
plot(fl,Koho,’k’,’LineWidth’,3),grid on;hold on;
plot([fck0,fck0],[-1,limitKoho],’b’,’LineWidth’,2.5),grid on; hold on;
plot([fck1,fck1],[-1,limitKoho],’b’,’LineWidth’,2.5),grid on;title(’Kohomoto invariant’);

%%
fck2=17.5; % change here which is point in small frequency range
deltl=3; % change here the intervalfll=fck2-deltl; fu=fck2+deltl;
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calcustep1=1E-2; % change here the calculation accuracy
[transsmal,bandgsmal,flsmal,trMlimt,Kohosmal]=bandgapforaxiallysmall(n,El,Es,Ll,Ls,Al,As,pl,
ps,r,calcustep1,fll,fu);
[passglbandg]=passglengthsaxalliymall(fll,fu,trMlimt,fck2,calcustep1);
figure(4) % plot small frequency range passband layouts
for jc=3:12

plot(flsmal,transsmal(jc,:),’Color’,[0 0 1],’LineWidth’,20),grid;hold on;
end
plot([fck2,fck2],[-24,2],’r’,’LineWidth’,2.5),grid on;title(’Passband diagram small interval’);
figure(5); % plot small frequency range traces
plot(flsmal,trMlimt(1,:),’k’,’LineWidth’,3),grid;hold on;
plot(flsmal,trMlimt(2,:),’m–’,’LineWidth’,3),grid;hold on;
plot(flsmal,trMlimt(3,:),’b-.’,’LineWidth’,3),grid;title(’trace diagram’);
figure(6); % plot small frequency Kohmoto’s invariant
plot(flsmal,Kohosmal,’k’,’LineWidth’,3),grid on;title(’Kohomoto invariant’);

Subprogramme for trace and passband layouts

function [rtio,period,fam]=ratios(j,k,q)%canonical ratio and percoid, family
if q==0

l=gcd(1+2*j,1+2*k);rtio=(1+2*j)/(1+2*k);k1=((1+2*k)/l-1)/2;period=2*(1+2*k1);fam=1;
else if k==0

l=gcd(1+2*j,2*q);rtio=(1+2*j)/(2*q);q1=(2*q)/(2*l);period=4*q1;fam=2;
else rtio=(2*q)/(1+2*k);

l=gcd(1+2*j,2*q);k1=((1+2*k)/l-1)/2;period=2*(1+2*k1);fam=3;
end

end

function [hA,hB,Li,nA,nB]=keepthicnesssame(hA1,hB1,fii,cA,cB,r)%keep total length or thick-
ness same
[Li, ,nA,nB]=LFibonacci(fii,hA1,hB1);hA=(Li/(nA+nB*r*cB/cA));hB=hA*r*cB/cA;

function [n1,n2]=periodforf(r,fam,cA,cB,hA,hB,j,k,q)
if fam==1

n1=(cA/hA*(1+2*k));n2=(cB/hB*(1+2*j));
end
if fam==2

n1=(cA/hA*(2*q));n2=(cB/hB*(1+2*j));
end
if fam==3

n1=(cA/hA*(1+2*k));n2=(cB/hB*(2*q));
end

function [trans,bandg,fl,trM,Koho]=bandgapforaxially(n,El,Es,Ll,Ls,Al,As,pl,ps,r,
calcustep)%passband layout
F=0:calcustep:n;fl=F.*1e-3;
Koho(1:1:length(F))=0;trM(1:9,1:length(F))=0;trans(1:9,1:length(F))=0;bandg(1:9,1:length(F))=0;
for ic=1:length(F)

f=F(ic);
if F(ic)==0

trM(1,ic)=2;trM(2,ic)=2;trM(3,ic)=2;trM(4,ic)=trM(4-2,ic)*trM(4-1,ic)-trM(4-3,ic);
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trM(5,ic)=trM(5-2,ic)*trM(5-1,ic)-trM(5-3,ic);trM(6,ic)=trM(6-2,ic)*trM(6-1,ic)-trM(6-3,ic);
trM(7,ic)=trM(7-2,ic)*trM(7-1,ic)-trM(7-3,ic);trM(8,ic)=trM(8-2,ic)*trM(8-1,ic)-trM(8-3,ic);
trM(9,ic)=trM(9-2,ic)*trM(9-1,ic)-trM(9-3,ic);Koho(ic)=0;

else
[MB]=axiallmatrix(ps,Es,As,f*2*pi,Ls);[MA]=axiallmatrix(pl,El,Al,f*2*pi,Ll);
[Kinv,kgp,kgm]=Kohmotoinvaxially(pl,El,Al,Ll,ps,Es,As,Ls,f*2*pi);Koho(ic)=Kinv;
trM(1,ic)=trace(M0);trM(2,ic)=trace(M1);trM(3,ic)=trace(M2);
trM(4,ic)=trM(4-2,ic)*trM(4-1,ic)-trM(4-3,ic);trM(5,ic)=trM(5-2,ic)*trM(5-1,ic)-trM(5-3,ic);
trM(6,ic)=trM(6-2,ic)*trM(6-1,ic)-trM(6-3,ic);trM(7,ic)=trM(7-2,ic)*trM(7-1,ic)-trM(7-3,ic);
trM(8,ic)=trM(8-2,ic)*trM(8-1,ic)-trM(8-3,ic);trM(9,ic)=trM(9-2,ic)*trM(9-1,ic)-trM(9-3,ic);

end
for jc=1:12

[trans(jc,ic),bandg(jc,ic)]= transtionf(trM(jc,ic),jc);
end

end

function [T]=axiallmatrix(p,E,A,w,L)%transfer matrix
T(1:2,1:2)=0;EA=E*A;Q=p/E;
T(1,1)=cos(sqrt(Q)*w*L);T(1,2)=sin(sqrt(Q)*w*L)/(EA*sqrt(Q)*w);
T(2,1)=-sin(sqrt(Q)*w*L)*(EA*sqrt(Q)*w);T(2,2)=cos(sqrt(Q)*w*L);

function [Kinv,kgp,kgm]=Kohmotoinvaxially(pl,El,Al,Ll,ps,Es,As,Ls,w)%Kohmoto
Qs=ps/Es;Ql=pl/El;
peita=(Al*El/(As*Es)*sqrt(pl*Es/(ps*El))+As*Es/(Al*El)*sqrt(ps*El/(pl*Es)));
Kinv=(peitaˆ2-4)*sin(sqrt(Qs)*w*Ls)ˆ2*sin(sqrt(Ql)*w*Ll)ˆ2;
kgp=0.25*(sqrt(4+(4+Kinv)ˆ2)+4+Kinv)ˆ2;
kgm=0.25*(sqrt(4+(4+Kinv)ˆ2)-4-Kinv)ˆ2;

function [trans,bandg]= transtionf(trM,jc)
if abs(trM)-2<=0

trans=-(jc-1)*2;bandg=nan;
else

bandg=-(jc-1)*2;trans=nan;
end

Function bandgapforaxiallysmall is very similar to function bandgapforaxially so we do not show
here.

function [passglbandg]=passglengthsaxalliymall(fll,fu,trM,fck1,calcustep1)%detect bandgap
fll1=floor(fll*1e3/calcustep1);fu1=floor(fu*1e3/calcustep1);
nwc1=floor(fck1*1e3/calcustep1)+1-fll1;
for m=3:9

for iln=nwc1:-1:2
if (abs(trM(m,iln-1))-2)*(abs(trM(m,iln))-2)<=0

break;
end

end
for iun=nwc1:fu1-fll1-1

if (abs(trM(m,iun+1))-2)*(abs(trM(m,iun))-2)<=0
iu=iu+1;

else
break;
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end
end
passglbandg(m)=(iun-iln+1)*calcustep1*1e-3;

end

Wave Transmission and Reflection in Laminate

The method for plotting transition zone is similar to passband layout in axially wave propagation
in rods problem. However, for simplicity, we do not show it here.

The main programme for analysis angle and energy

u0=80e9; p0=8000; % material parameters for substrate
uA=3e9; uB=80e9; pA=1180; pB=8000; % material parameters for two phase
hA1=0.003; hB1=0.0013; %original thicknessj=0; k=0; q=0; %canonical ratio coefficients
[rtio,period1,fam]=ratios(j,k,q); r=rtio; Fi=2; %Fibonacci order
KyLi=45; %calculation limit for wavenumber KyLi
stepforwave=1e-4; %calculation accuracy for KyLi
ewaven=13; %number of evanescent taking into consideration
lenstep=1e-6; %calculation accuracy for modeshape 𝑤
c0=(sqrt(u0/p0)); cA=(sqrt(uA/pA)); cB=(sqrt(uB/pB));
[Li,ni,nA,nB]=LFibonacci(Fi,hA1,hB1);[hA,hB, ]=keepthicnesssame(hA1,hB1,Fi,cA,cB,r);
[n1, ]=periodforf(r,fam,cA,cB,hA,hB,j,k,q);f=200; %frequency (kHz)
w=(2*pi*f*1000); %circular frequencyK0=w/c0; %wavenumber in substrate
inciang=60; %incident angle (degree)realKxLi=K0*sind(inciang)*Li; %wavenumber KxLi
Kx=realKxLi/Li;uaverage=(uA*nA*hA+uB*nB*hB)/Li; %average shear modules
[aimKxLi]=waveinfirst(realKxLi);
[rKxLi,solution,iKxLi,fix,p,isolution,ifix]=generKxLiparfo(w,uA,cA,hA,uB,cB,hB,KyLi,
stepforwave,Fi,Li,realKxLi);
[suresolu,countnum,co,co2,suresolu2,countnum2,bounddis,u,usuresolu,isuresolu2,ibounddis,
iusuresolu,ico2,iu,wanumbangle,n360,error,ierror]=smallfindKyLi(solution,fix,realKxLi,w,uA,cA,
hA,uB,cB,hB,Fi,Li,stepforwave,isolution,ifix,realKxLi);
[N]=ensureN(co2,ewaven);
[wvampn,lengn,bouncodi,n,C,loc,iwvampn,uvamp,duvamp,bounddis,ibounddis,normalized,
intgdispla,intgdisplanew,uwvamp,iuvamp]=waveamptde(Li,Fi,w,uA,cA,hA,uB,cB,hB,lenstep,
usuresolu,realKxLi,bounddis,iusuresolu,ibounddis,ckn,uaverage,realKyLi);
[rflewvam, kyn,propkyn,evankyn]=waveamfrel(c0,w,Li,lenstep,N,inciang);
[cvecinte,qmatrixintenew,dvecintenew,conditinum]=matrixcalcintenew(usuresolu,iusuresolu,C,loc,
Fi,uA,uB,w,c0,inciang,hA,hB,N,u0,Li,nbounddis,nibounddis,realKxLi,cA,cB,ewaven,co2,
normalized,uaverage);
[poyntintex,poyntinteynew,tranangintenew]=poyntvectorinte(C,loc,Fi,uA,uB,w,usuresolu,hA,hB,
Li,cA,cB,bounddis); %transmission angle
[energyme,e,et,er,energratio,evantotal]=energemetrix(usuresolu,iusuresolu,C,loc,Fi,uA,uB,w,c0,
inciang,hA,hB,N,u0,Li,bounddis,cA,cB,cvecinte,ewaven,co2,ibounddis,qmatrixintenew);
%energy
figure(1) %dispersion relation with two wavenumber
plot(rKxLi,p,’b–’,’LineWidth’,2.5),grid on;hold on
plot(irKxLi,p,’m–’,’LineWidth’,2.5),grid on;hold on
plot([aimKxLi,aimKxLi],[0,KyLi],’k–’,’LineWidth’,2.5),grid on;hold on
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xlabel(’KxLi’);ylabel(’KyLi’)
figure(2) %modeshape for real Ky
plot(leng(1:length(leng)-2),real(wvamp(1,(1:length(leng)-2))),’k’,’LineWidth’,2.5),grid on;
%change number in wvamp hold on
plot(leng(1:length(leng)-2),imag(wvamp(1,(1:length(leng)-2))),’k–’,’LineWidth’,2.5),grid on;
xlabel(’x’);ylabel(’w(x) for Ky’);
figure(3) %modeshape for evanescent iKy
plot(leng(1:length(leng)-2),real(iwvamp(1,(1:length(leng)-2))),’k–’,’LineWidth’,2.5),grid on;
%change number in iwvamp xlabel(’x’);ylabel(’w(x) for iKy’);

Subprogramme for angle and energy

function [aimKxLi,ckn]=waveinfirst(realKxLi) %translate KxLi into first Brillouin zone
n2pi=floor(realKxLi/2/pi);
if (realKxLi-n2pi*2*pi-pi)*(realKxLi-n2pi*2*pi)==0

aimKxLi=0;ckn=2;
else

if (realKxLi-n2pi*2*pi-pi)*(realKxLi-n2pi*2*pi)>0
aimKxLi=2*pi-realKxLi+n2pi*2*pi;ckn=1;

else
aimKxLi=realKxLi-n2pi*2*pi;ckn=2;

end
end

function [rKxLi,irKxLi,solution,fix,p,isolution,ifix]=generKxLiparfo(w,uA,cA,
hA,uB,cB,hB,KyLi,stepforwave,Fi,Li,aimKxLi)%generated KxLi and KyLi
fix=0;ifix=0;numco=floor(KyLi/stepforwave)+1;
rKxLi(1:numco+1)=0;irKxLi(1:numco+1)=0;p(1,1:numco+1)=0;
parfor j1=1:numco+1

Ky=(j1-1)/Li*stepforwave;iKy=i*(j1-1)/Li*stepforwave;
[MA,]=shearmatrix(w,uA,cA,Ky,hA);[MB]=shearmatrix(w,uB,cB,Ky,hB);
[˜,trMi]=MFibonacci(MA,MB,Fi);
[iMA,]=shearmatrix(w,uA,cA,iKy,hA);[iMB]=shearmatrix(w,uB,cB,iKy,hB);
[˜,triMi]=MFibonacci(iMA,iMB,Fi);
rKxLi(j1)=real(acos(trMi/2));irKxLi(j1)=real(acos(triMi/2));p(j1)=(j1-1)*stepforwave;

end
for i1=1:numco+1

if abs(trMin(i1)-2*cos(aimKxLi))<=1e-1
fix=fix+1;solution(1,fix)=(i1-1)*stepforwave;solution(2,fix)=rKxLi(i1);

end
if abs(triMin(i1)-2*cos(aimKxLi))<=1e-1

ifix=ifix+1;isolution(1,ifix)=(i1-1)*stepforwave;isolution(2,ifix)=irKxLi(i1);
end

end

function [suresolu,countnum,co,co2,suresolu2,countnum2,bounddis,u,usuresolu,isuresolu2,
ibounddis,iusuresolu,ico2,iu,wanumbangle,n2pi,error,ierror]=smallfindKyLi(solution,fix,aimKxLi,
w,uA,cA,hA,uB,cB,hB,Fi,Li,stepforwave,isolution,ifix,realKxLi);%Newton method and inverse it-
eration
i1=0; ij1=0; fix2=0; ifix2=0;[suresolu,countnum,co]=smallfind2KyLinew(solution,fix,aimKxLi);
[isuresolu, ,ico]=smallfind2KyLinew(isolution,ifix,aimKxLi);
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for k=1:co
for j1=suresolu(k,1):stepforwave*1e-4:suresolu(k,2)

i1=i1+1;Ky=j1/Li;
[MA]=shearmatrix(w,uA,cA,Ky,hA);[MB]=shearmatrix(w,uB,cB,Ky,hB);
[˜,trMi]=MFibonacci(MA,MB,Fi);trMin(i1)=trMi;rKxLi(i1)=real(acos(trMi/2));
if abs(trMi-2*cos(aimKxLi))<=1e-4

fix2=fix2+1;solution2(1,fix2)=j1;solution2(2,fix2)=rKxLi(i1);solution2(3,fix2)=trMin(i1);
end

end
end
for ik=1:ico

for ij=isuresolu(ik,1):stepforwave*1e-4:isuresolu(ik,2)
ij1=ij1+1;iKy=ij*i/Li;
[iMA]=shearmatrix(w,uA,cA,iKy,hA);[iMB]=shearmatrix(w,uB,cB,iKy,hB);
[˜,triMi]=MFibonacci(iMA,iMB,Fi);triMin(ij1)=triMi;irKxLi(ij1)=real(acos(triMi/2));
if abs(triMi-2*cos(aimKxLi))<=1e-4

ifix2=ifix2+1;isolution2(1,ifix2)=ij;isolution2(2,ifix2)=irKxLi(ij1);
isolution2(3,ifix2)=triMin(ij1);

end
end

end
[suresolu2,countnum2,co2]=smallfind2KyLinew(solution2,fix2,aimKxLi);
[isuresolu2,˜,ico2]=smallfind2KyLinew(isolution2,ifix2,aimKxLi);
[bounddis,u,usuresolu,error]=inverseitertionlamina(suresolu2,co2,w,uA,cA,hA,uB,cB,hB,Fi,Li,
realKxLi);
[ibounddis,iu,iusuresolu,ierror]=inverseitertionlaminaiky(isuresolu2,ico2,w,uA,cA,hA,uB,cB,hB,
Fi,Li,aimKxLi);wanumbangle(1:length(usuresolu))=0;
for j1=1:length(usuresolu)

wanumbangle(j1)=atand(realKxLi/usuresolu(j1));n2pi=floor(wanumbangle(j1)/360);
wanumbangle(j1)=wanumbangle(j1)-n2pi*360;

end

function [suresolu,countnum,co]=smallfind2KyLinew(solution,fix,aimKxLi);
suresolu(1:30,1:2)=0;%The number of row can be changedcountnum(1:30,1:2)=0;
cosKxLi=2*cos(aimKxLi);j1=0;
for i1=2:fix

if abs(solution(1,i1)-solution(1,i1-1))<=1e-2
if (solution(3,i1)-cosKxLi)*(solution(3,i1-1)-cosKxLi)<=0

j1=j1+1;suresolu(j1,1)=solution(1,i1-1);suresolu(j1,2)=solution(1,i1);
countnum(j1,1)=solution(2,i1-1);countnum(j1,2)=solution(2,i1);

end
end

end
co=j1;

function [M,q]=shearmatrix(w,u,c,Ky,h);
q=(sqrt((w/c)ˆ2-Kyˆ2))
if w==0

M(1,1)=1;M(1,2)=0;M(2,1)=h/u;M(2,2)=1;
else

M(1,1)=(cos(q*h));M(1,2)=(-u*q*sin(q*h));M(2,1)=(sin(q*h)/(u*q));M(2,2)=M(1,1);
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end

function [Mi,trMi,Mc]=MFibonacci(MA,MB,Fi);
Mc=eye(2);trM(1:Fi+1)=0;trM(1)=trace(MB);trM(2)=trace(MA);trM(3)=trace(MB*MA);
[C,loc]=vectorFibon(Fi);
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
Mc=MA*Mc;

else
Mc=MB*Mc;

end
end
M(1:2,1:(Fi+1)*2)=0;M(1:2,1:2)=MB;M(1:2,3:4)=MA;
for i=2:Fi

M(1:2,2*i+1:2*i+2)=M(1:2,2*(i-2)+1:2*(i-2)+2)*M(1:2,2*(i-1)+1:2*(i-1)+2);
end
Mi=M(1:2,Fi*2+1:Fi*2+2);trMi=trace(Mi);

function [bounddis,u,usuresolu,error]=inverseitertionlamina(suresolu2,co2,w,uA,cA,hA,uB,cB,
hB,Fi,Li,aimKxLi)
eim(1,1)=exp(-i*aimKxLi);eim(1,2)=0;eim(2,1)=0;eim(2,2)=eim(1,1);
bounddis(1:2,1:co2)=0;u(1:co2)=0;usuresolu(1:co2)=0;
for i1=1:co2

Kyl=suresolu2(i1,1)/Li;Kyu=suresolu2(i1,2)/Li;Kym=(Kyl+Kyu)/2;
[MAl,qAl]=shearmatrix(w,uA,cA,Kyl,hA);[MBl,qBl]=shearmatrix(w,uB,cB,Kyl,hB);
[Mil,trMil]=MFibonacci(MAl,MBl,Fi);
[MAu,qAl]=shearmatrix(w,uA,cA,Kyu,hA);[MBu,qBl]=shearmatrix(w,uB,cB,Kyu,hB);
[Miu,trMil]=MFibonacci(MAu,MBu,Fi);
[MAm,qAl]=shearmatrix(w,uA,cA,Kym,hA); [MBm,qBl]=shearmatrix(w,uB,cB,Kym,hB);
[Mim,trMil]=MFibonacci(MAm,MBm,Fi);
Mm=Mim-eim;Mu=Miu-eim;Ml=Mil-eim;inver=(Mm)\(Mu-Ml);
j1(1:2,1:1000)=0;lamda(1:1000)=0;j1(1:2,1)=rand(2,1);
for k=2:1e7

j1(1:2,k)=inver*j1(1:2,k-1);[mx,id]=max(abs(j1(1:2,k)));lamda(k)=j1(id,k);
j1(1:2,k)=j1(1:2,k)/j1(id,k);
if abs(j1(id,k)-j1(id,k-1))<=1e-40

break
end

end
error(i1,1)=abs(j1(id,k)-j1(id,k-1));bounddis(1:2,i1)=((j1(1:2,k)));
u(i1)=real(1/lamda(k));usuresolu(i1)=((Kym-u(i1)*(Kyu-Kyl)))*Li;

end

function [N]=ensureN(co2,ewaven)
if mod(co2(1,1)+ewaven-1,2)==0

N=(co2(1,1)+ewaven-1)/2;
else

N=(co2(1,1)+ewaven-2)/2;
end

function [C,loc]=vectorFibon(Fi) % vectorising Fibonacci sequence
C(1,1:Fi+1)=0;C(1,1:2)=1;
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for jp=2:Fi
C(1,jp+1)=C(1,jp)+C(1,jp-1);

end
loc(1:C(1,Fi+1),1:Fi+1)=0;loc(1,1)=2;loc(1,2)=1;
for j1=2:Fi

loc(:,j1+1)=loc(:,j1);putjl=find(loc(:,j1)==0);putjm=find(loc(:,j1-1)==0);
loc(putjl(1):putjl(1)+putjm(1)-2,j1+1)=loc(1:putjm(1)-1,j1-1);

end

function [wvampn,lengn,bouncodi,n,C,loc,iwvampn,uvamp,duvamp,bounddis,ibounddis,
normalized,intgdispla,intgdisplanew,uwvamp,iuvamp]=waveamptde(Li,Fi,w,uA,cA,hA,uB,cB,hB,
lenstep,usuresolu,aimKxLi,bounddis,iusuresolu,ibounddis,ckn,uaverage,realKyLi);
[C,loc]=vectorFibon(Fi);intgdispla(1:length(usuresolu)+length(iusuresolu))=0;
intgdisplanew(1:length(usuresolu)+length(iusuresolu))=0;intgdis(1:4,1)=0;Kx=aimKxLi/Li;
leng=0:lenstep:Li;
wvamp(1:length(usuresolu),1:length(leng))=0;iwvamp(1:length(iusuresolu),1:length(leng))=0;
uvamp(1:length(usuresolu),1:length(leng))=0;iuvamp(1:length(iusuresolu),1:length(leng))=0;
duvamp(1:length(usuresolu),1:length(leng))=0;uwvamp(1:length(usuresolu),1:length(leng))=0;
bouncodi(1:2,1:length(usuresolu))=0;ibouncodi(1:2,1:length(iusuresolu))=0;
nbounddis(1:2,1:length(usuresolu))=0;nibounddis(1:2,1:length(usuresolu))=0;
bound(1:2,1:length(leng))=0;ibound(1:2,1:length(leng))=0;
for ic=1:length(usuresolu)

Ky=usuresolu(ic)/Li;
[MA,qA]=shearmatrix(w,uA,cA,Ky,hA);[MB,qB]=shearmatrix(w,uB,cB,Ky,hB);
bouncodi(1:2,ic)=bounddis(1:2,ic);start=0;k=1;wvamp(ic,1)=(bouncodi(2,ic));
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
for x=lenstep:lenstep:hA

k=k+1; [MAs]=shearmatrix(w,uA,cA,Ky,x);bound(1:2,k)=MAs*bouncodi(1:2,ic);
wvamp(ic,k)=bound(2,k)*exp(i*Kx*(x+start));uwvamp(ic,k)=uA*wvamp(ic,k);
uvamp(ic,k)=(bound(2,k));
duvamp(ic,k)=real(cos(qA*x)/uA*bouncodi(1,ic)-qA*sin(qA*x)*bouncodi(2,ic));

end
intgdis(1)=abs(bouncodi(1,ic))ˆ2/(uA*qAˆ3)*(qA*hA/2-sin(2*qA*hA)/4);
intgdis(2)=conj(bouncodi(2,ic))*bouncodi(1,ic)/(qAˆ2)/2*sin(qA*hA)ˆ2;
intgdis(3)=conj(bouncodi(1,ic))*bouncodi(2,ic)/(qAˆ2)/2*sin(qA*hA)ˆ2;
intgdis(4)=uA/qA*abs(bouncodi(2,ic))ˆ2*(qA*hA/2+sin(2*qA*hA)/4);
intgdisplanew(ic)=intgdisplanew(ic)+sum(intgdis);start=start+hA;
bouncodi(1:2,ic)=MA*bouncodi(1:2,ic);

else
for x=lenstep:lenstep:hB

k=k+1;[MBs, ]=shearmatrix(w,uB,cB,Ky,x);bound(1:2,k)=MBs*bouncodi(1:2,ic);
wvamp(ic,k)=bound(2,k)*exp(i*Kx*(x+start));uwvamp(ic,k)=uB*wvamp(ic,k);
uvamp(ic,k)=(bound(2,k));
duvamp(ic,k)=real(cos(qB*x)/uB*bouncodi(1,ic)-qB*sin(qB*x)*bouncodi(2,ic));

end
intgdis(1)=abs(bouncodi(1,ic))ˆ2/(uB*qBˆ3)*(qB*hB/2-sin(2*qB*hB)/4);
intgdis(2)=conj(bouncodi(2,ic))*bouncodi(1,ic)/(qBˆ2)/2*sin(qB*hB)ˆ2;
intgdis(3)=conj(bouncodi(1,ic))*bouncodi(2,ic)/(qBˆ2)/2*sin(qB*hB)ˆ2;
intgdis(4)=uB/qB*abs(bouncodi(2,ic))ˆ2*(qB*hB/2+sin(2*qB*hB)/4);
intgdisplanew(ic)=intgdisplanew(ic)+sum(intgdis);start=start+hB;
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bouncodi(1:2,ic)=MB*bouncodi(1:2,ic);
end

end
end
for ii=1:length(iusuresolu)

iKy=iusuresolu(ii)/Li;
[iMA,iqA]=shearmatrix(w,uA,cA,iKy,hA);[iMB,iqB]=shearmatrix(w,uB,cB,iKy,hB);
ibouncodi(1:2,ii)=ibounddis(1:2,ii);start=0;ik=1;iwvamp(ii,1)=(ibouncodi(2,ii));
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
for x=lenstep:lenstep:hA

ik=ik+1;[iMAs]=shearmatrix(w,uA,cA,iKy,x);ibound(1:2,ik)=iMAs*ibouncodi(1:2,ii);
iwvamp(ii,ik)=(ibound(2,ik)*exp(i*Kx*(x+start)));iuvamp(ii,ik)=(ibound(2,ik));

end
intgdis(1)=abs(ibouncodi(1,ii))ˆ2/(uA*iqAˆ3)*(iqA*hA/2-sin(2*iqA*hA)/4);
intgdis(2)=conj(ibouncodi(2,ii))*ibouncodi(1,ii)/(iqAˆ2)/2*sin(iqA*hA)ˆ2;
intgdis(3)=conj(ibouncodi(1,ii))*ibouncodi(2,ii)/(iqAˆ2)/2*sin(iqA*hA)ˆ2;
intgdis(4)=uA/iqA*abs(ibouncodi(2,ii))ˆ2*(iqA*hA/2+sin(2*iqA*hA)/4);
intgdisplanew(ii+length(usuresolu))=intgdisplanew(ii+length(usuresolu))+sum(intgdis);
start=start+hA;ibouncodi(1:2,ii)=iMA*ibouncodi(1:2,ii);

else
for x=lenstep:lenstep:hB

ik=ik+1;[iMBs, ]=shearmatrix(w,uB,cB,iKy,x);ibound(1:2,ik)=iMBs*ibouncodi(1:2,ii);
iwvamp(ii,ik)=(ibound(2,ik)*exp(i*Kx*(x+start)));iuvamp(ii,ik)=(ibound(2,ik));

end
intgdis(1)=abs(ibouncodi(1,ii))ˆ2/(uB*iqBˆ3)*(iqB*hB/2-sin(2*iqB*hB)/4);
intgdis(2)=conj(ibouncodi(2,ii))*ibouncodi(1,ii)/(iqBˆ2)/2*sin(iqB*hB)ˆ2;
intgdis(3)=conj(ibouncodi(1,ii))*ibouncodi(2,ii)/(iqBˆ2)/2*sin(iqB*hB)ˆ2;
intgdis(4)=uB/iqB*abs(ibouncodi(2,ii))ˆ2*(iqB*hB/2+sin(2*iqB*hB)/4);
intgdisplanew(ii+length(usuresolu))=intgdisplanew(ii+length(usuresolu))+sum(intgdis);
start=start+hB;ibouncodi(1:2,ii)=iMB*ibouncodi(1:2,ii);

end
end

end
normalized=sqrt(intgdisplanew/(uaverage*Li));
for i1=1:length(usuresolu)

wvamp(i1,:)=(wvamp(i1,:)/normalized(i1));uvamp(i1,:)=(uvamp(i1,:)/normalized(i1));
uwvamp(i1,:)=uwvamp(i1,:)/normalized(i1);bounddis(:,i1)=(bounddis(:,i1)/normalized(i1));

end
for j1=1:length(iusuresolu)

iwvamp(j1,:)=(iwvamp(j1,:)/normalized(j1+length(usuresolu)));
ibounddis(:,j1)=(ibounddis(:,j1)/normalized(j1+length(usuresolu)));
iuvamp(j1,:)=(iuvamp(j1,:)/normalized(j1+length(usuresolu)));

end

function [rflewvam, kyn,propkyn,evankyn]=waveamfrel(c0,w,Li,lenstep,N,inciang);
kyn(1:2*N+1,1)=0;leng=0:lenstep:Li;rflewvam(1:2*N+1,1:length(leng))=0;
K0=w/c0;ic=0;j1=0;
for i1=-N:1:N

kyn(i1+N+1)=sqrt(K0ˆ2-(K0*sind(inciang)+2*i1*pi/Li)ˆ2);
if imag(kyn(i1+N+1))==0

181



PhD Thesis, Zhijiang Chen, 2022

ckn=0;ic=ic+1;propkyn(ic,1)=i1;propkyn(ic,2)=kyn(i1+N+1);
else

ckn=1;j1=j1+1;evankyn(j1,1)=i1;evankyn(j1,2)=kyn(i1+N+1)*(-1)ˆckn;
end
kyn(i1+N+1)=kyn(i1+N+1)*(-1)ˆckn;
for jc=1:length(leng)

rflewvam(i1+N+1,jc)=exp(i*2*i1*pi*(jc-1)*lenstep/Li);
end

end

function [cvecinte,qmatrixintenew,dvecintenew,conditinum]=matrixcalcintenew(usuresolu,
iusuresolu,C,loc,Fi,uA,uB,w,c0,inciang,hA,hB,N,u0,Li,bounddis,ibounddis,realKxLi,cA,cB,
ewaven,co2,normalized,uaverage)%scattering coefficients
usuresolu(co2+1:co2+ewaven)=iusuresolu(1,1:ewaven);Kx=realKxLi/Li;K0=w/c0;
bounddis(1:2,co2+1:co2+ewaven)=ibounddis(1:2,1:ewaven);
boundcodij(1:2,1:co2+ewaven)=0;cboundcodij(1:2,1:co2+ewaven)=0;
dvecintenew(1:4*N+2,1)=0;qmatrixintenew(1:4*N+2,1:4*N+2)=0;
for ic=1:2*N+1

iKy=(usuresolu(ic)/Li);qmatrixintenew(ic,ic)=uaverage*Li;
[iMA,iqA]=shearmatrix(w,uA,cA,iKy,hA);[iMB,iqB]=shearmatrix(w,uB,cB,iKy,hB);
qmatrixintenew(ic+2*N+1,ic)=qmatrixintenew(ic,ic)*iKy;
for jc=1:2*N+1

start=0;boundcodij(1:2,ic)=bounddis(1:2,ic);cboundcodij(1:2,ic)=conj(boundcodij(1:2,ic));
m=(jc-N-1);xigma=1/(-i*(Kx+2*m*pi/Li));
if real(sqrt(K0.ˆ2-(K0.*sind(inciang)+2.*(jc-N-1).*pi./Li).ˆ2))==0

ckn=1;
else

ckn=0;
end
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
M22(1)=((xigma*sin(iqA*hA)/uA/iqA*exp(-i*(Kx+2*m*pi/Li)*(hA+start))-xigmaˆ2/
uA*cos(iqA*hA)*exp(-i*(Kx+2*m*pi/Li)*(hA+start))+xigmaˆ2/uA*exp(-i*(Kx+2*m*
pi/Li)*(start)))*cboundcodij(1,ic)/(1+xigmaˆ2*iqAˆ2));
M22(2)=((xigma*cos(iqA*hA)*exp(-i*(Kx+2*m*pi/Li)*(hA+start))-xigma*exp(-i*(
Kx+2*m*pi/Li)*start)+xigmaˆ2*iqA*sin(iqA*hA)*exp(-i*(Kx+2*m*pi/Li)*
(hA+start)))*cboundcodij(2,ic)/(1+xigmaˆ2*iqAˆ2));
qmatrixintenew(ic,jc+2*N+1)=qmatrixintenew(ic,jc+2*N+1)-uA*(sum(M22));
qmatrixintenew(ic+2*N+1,jc+2*N+1)=qmatrixintenew(ic+2*N+1,jc+2*N+1)+u0*(-1)ˆ
ckn*sqrt(K0ˆ2-(K0*sind(inciang)+2*m*pi/Li)ˆ2)*(sum(M22));start=start+hA;
boundcodij(1:2,ic)=iMA*boundcodij(1:2,ic);cboundcodij(1:2,ic)=conj(boundcodij(1:2,ic));

else
M22(1)=((xigma*sin(iqB*hB)/uB/iqB*exp(-i*(Kx+2*m*pi/Li)*(hB+start))-xigmaˆ2/
uB*cos(iqB*hB)*exp(-i*(Kx+2*m*pi/Li)*(hB+start))+xigmaˆ2/uB*exp(-i*(Kx+2*m*
pi/Li)*(start)))*cboundcodij(1,ic)/(1+xigmaˆ2*iqBˆ2));
M22(2)=((xigma*cos(iqB*hB)*exp(-i*(Kx+2*m*pi/Li)*(hB+start))-xigma*exp(-i*(
Kx+2*m*pi/Li)*start)+xigmaˆ2*iqB*sin(iqB*hB)*exp(-i*(Kx+2*m*pi/Li)*
(hB+start)))*cboundcodij(2,ic)/(1+xigmaˆ2*iqBˆ2));
qmatrixintenew(ic,jc+2*N+1)=qmatrixintenew(ic,jc+2*N+1)-uB*(sum(M22));
qmatrixintenew(ic+2*N+1,jc+2*N+1)=qmatrixintenew(ic+2*N+1,jc+2*N+1)+u0*(-1)ˆ
ckn*sqrt(K0ˆ2-(K0*sind(inciang)+2*m*pi/Li)ˆ2)*(sum(M22));start=start+hB;
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boundcodij(1:2,ic)=iMB*boundcodij(1:2,ic);
cboundcodij(1:2,ic)=conj(boundcodij(1:2,ic));

end
end

end
end
dvecintenew(1:2*N+1,1)=-qmatrixintenew(1:2*N+1,3*N+2);
dvecintenew(2*N+2:4*N+2,1)=qmatrixintenew(2*N+2:4*N+2,3*N+2);
cvecinte=qmatrixintenew\dvecintenew;conditinum=cond(qmatrixintenew);

function [poyntintex,poyntinteynew,tranangintenew]=poyntvectorinte(C,loc,Fi,uA,uB,w,usuresolu,
hA,hB,Li,cA,cB,bounddis)%transmission wave angle
poyntintex(1:length(usuresolu))=0;poyntinteynew(1:length(usuresolu))=0;
tranangintenew(1:length(usuresolu))=0;bouncodi(1:2,1:length(usuresolu))=0;
for ic=1:length(usuresolu)

Ky=usuresolu(ic)/Li;poyntinteynew(ic)=1/2*w*Ky*uaverage;
[MA,qA]=shearmatrix(w,uA,cA,Ky,hA);[MB,qB]=shearmatrix(w,uB,cB,Ky,hB);
bouncodi(1:2,ic)=bounddis(1:2,ic);
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
px4=(imag(bouncodi(2,ic)*conj(bouncodi(1,ic)))*hA/2/Li*w);
poyntintex(ic)=poyntintex(ic)+sum(px4);bouncodi(1:2,ic)=MA*bouncodi(1:2,ic);

else
px4=(imag(bouncodi(2,ic)*conj(bouncodi(1,ic)))*hB/2/Li*w);
poyntintex(ic)=poyntintex(ic)+sum(px4);bouncodi(1:2,ic)=MB*bouncodi(1:2,ic);

end
end
tranangintenew(ic)=atand(poyntintex(ic)/poyntinteynew(ic));

end

function [energyme,e,et,er,energratio,evantotal]=energemetrix(usuresolu,iusuresolu,C,loc,Fi,
uA,uB,w,c0,inciang,hA,hB,N,u0,Li,bounddis,cA,cB,cvecinte,ewaven,co2,ibounddis,qmatrixinte)
energyme(1:2*N+1,1:2)=0;K0=w/c0;e=0.5*u0*K0*cosd(inciang)*w*Li;
energratio(1:3,1)=0;er(1:2*N+1)=0;et(1:2*N+1)=0;
if inciang==90

energyme(N+1,2)=1;
else

for ic=1:2*N+1
energyme(ic,2)=(real(sqrt(K0ˆ2-(K0*sind(inciang)+2*pi*(ic-1-N)/Li)ˆ2))*
abs(cvecinte(ic+2*N+1))ˆ2)/(K0*cosd(inciang));
er(ic)=0.5*w*(real(sqrt(K0ˆ2-(K0*sind(inciang)+2*pi*(ic-1-N)/Li)ˆ2))*
abs(cvecinte(ic+2*N+1))ˆ2)*u0*Li;
et(ic)=0.5*w*abs(cvecinte(ic))ˆ2*real(qmatrixinte(ic+2*N+1,ic));
energyme(ic,1)=abs(cvecinte(ic))ˆ2*real(qmatrixinte(ic+2*N+1,ic))/(u0*K0*cosd(inciang)*Li);
energratio(1)=energratio(1)+energyme(ic,1);energratio(2)=energratio(2)+energyme(ic,2);
evantotal=(-imag(sqrt(K0ˆ2-(K0*sind(inciang)+2*pi*(ic-1-N)/Li)ˆ2))*
abs(cvecinte(ic+2*N+1))ˆ2)/(K0*cosd(inciang))+abs(cvecinte(ic))ˆ2
*imag(qmatrixinte(ic+2*N+1,ic))/(u0*K0*cosd(inciang)*Li);

end
end
energratio(3)=energratio(1)/energratio(2);
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Topological Interface State

The main programme for the sign of Impedance and the Zak phase

ps=2700; pl=2700; El=70e9; Es=70e9; b=0.01; hs=0.01; hl=0.02;%material and geometric
As=hs*b; Al=hl*b; Fi=3;N=6;%number of unit cellsKLpi=pi; KLZERO=0;
cl=sqrt(El/pl); cs=sqrt(Es/ps); rl=sqrt(Al/pi); rs=sqrt(As/pi);
Ll1=0.025*2; Ls1=0.1;%original length of rods Lm=Ll1*2+Ls1;
j=1; k=0; q=3;%canonical ratio[rtio,period1,fam]=ratios(j,k,q);
Ltimes=(cs+(1/rtio)*cl)/(cl+(1/rtio)*cs);
[Ll2,Ls]=keepthicnesssame(Ll1*Ltimes,Ls1*Ltimes,2,cl,cs,rtio);
[n,n2]=periodforf(rtio,fam,cl,cs,Ll2,Ls,j,k,q);Ll=Ll2/2;calcustep=5e-3;%calculation accuracy
linstep=1e-6;%calculation accuracy for wave field
expizak=1-Alˆ2*El*pl/Es/ps/Asˆ2;%Zak phase for passband 0
f=calcustep:calcustep:(n/3)*1e-3; trTi(1:3,1:length(f))=0;BlochK(1:length(f))=0;fix=0;Ofix=0;
for ic=1:length(f)

fi=f(ic);[Ts]=axiallmatrix(ps,Es,As,fi*2*pi*1000,Ls);
[Tl]=axiallmatrix(pl,El,Al,fi*2*pi*1000,Ll);[Ti,trTi(3,ic), ]=MFibonacci(Tl,Ts,Fi);
BlochK(ic)=(acos(trTi(3,ic)/2));

end
for j1=1:length(f)

if abs(trTi(3,j1)-2*cos(KLpi))<=1e-1
fix=fix+1;solutionpi(1,fix)=(j1-1)*calcustep;
solutionpi(2,fix)=BlochK(j1);solutionpi(3,fix)=trTi(3,j1);

end
if abs(trTi(3,j1)-2*cos(KLZERO))<=1e-1

Ofix=Ofix+1;solutionzero(1,Ofix)=(j1-1)*calcustep;
solutionzero(2,Ofix)=BlochK(j1);solutionzero(3,Ofix)=trTi(3,j1);

end
end
zvecto(1:length(f))=0; blocksurf=-pi:pi/200:pi;
[suresolupi,countnumpi,copi]=smallfind2KyLinew(solutionpi,fix,KLpi);
[suresoluzero,countnumzero,cozero]=smallfind2KyLinew(solutionzero,Ofix,KLZERO);
[bounddispi,upi,usuresolupi,errorpi]=inverseitertionrod(suresolupi,copi,ps,pl,Ll,As,Al,Ls,El,Es,
Fi,Lm,KLpi);
[bounddiszero,uzero,usuresoluzero,errorzero]=inverseitertionrod(suresoluzero,cozero,ps,pl,Ll,As,
Al,Ls,El,Es,Fi,Lm,KLZERO);
[Blockband,fband]=numericalbandproblem(BlochK,f);
[wzero,Pzero,xcordzero,bounddisnewzero,intePzero,boundnewzero]=displacementrod(
bounddiszero,usuresoluzero,KLZERO,linstep,ps,pl,Ll,As,Al,Ls,El,Es,Fi,Lm,rl,rs);
[wpi,Ppi,xcordpi,bounddisnewpi,intePpi,boundnewpi]=displacementrod(bounddispi,usuresolupi,
KLpi,linstep,ps,pl,Ll,As,Al,Ls,El,Es,Fi,Lm,rl,rs);
[negaimp,postiimp,surfaceimpepi,surfaceimpezero,aspi,aszero]=surfaceimpedanceother(
bounddisnewpi,bounddisnewzero,ps,Es,As,Ls,pl,El,Al,Ll,usuresolupi,usuresoluzero,f,blocksurf,
calcustep);
[eigenu,Blockbandc,fbandc]=eigenfucntionrod(Blockband,fband,ps,Es,As,Ls,pl,El,Al,Ll,Fi,rl,rs,
boundnewzero,usuresoluzero,boundnewpi,usuresolupi);
[thetaZako,thetaZak,Impro]=numericalZakphase(ps,pl,Es,El,rs,rl,As,Al,Ll,Ls,Blockbandc,fbandc,
Fi,eigenu,Lm);
xcord2=(length(xcordpi)+1)/2; xcorf=length(xcordpi); Lmd2=Lm/2;
figure(1);
plot3(real(BlochK),f,zvecto,’k’,’LineWidth’,2),grid on;hold on
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plot3(-real(BlochK),f,zvecto,’k’,’LineWidth’,2),grid on;hold on
surf(blocksurf,f,postiimp,’EdgeColor’,’none’,’FaceColor’,[0.93333 0.5098 0.93333]),grid on;
hold on
surf(blocksurf,f,negaimp,’EdgeColor’,’none’,’FaceColor’,[0.3010 0.7450 0.9330]),grid on;
view([0,0,1]);
figure(2);
plot(xcordpi(1:xcord2),real(wpi(1,1:xcord2)),’k’,’LineWidth’,2.5),grid on;hold on
plot(xcordpi(xcord2:xcorf)-Lm,-real(wpi(1,xcord2:xcorf)),’k’,’LineWidth’,2.5),grid on;
xlabel(’x’);ylabel(’u(x) for band edge pi’);
figure(3);
plot(xcordpi(1:xcord2),real(wzero(1,1:xcord2)),’k’,’LineWidth’,2.5),grid on;hold on
plot(xcordpi(xcord2:xcorf)-Lm,real(wzero(1,xcord2:xcorf)),’k’,’LineWidth’,2.5),grid on;
xlabel(’x’);ylabel(’u(x) for band edge 0’);

Subprogramme for the sign of Impedance and the Zak phase

We do not show inverse iteration and Newton method and wave filed due to similar to method in
obtaining KyLi and modeshape w in SH wave propagation in laminate.

function [Blockband,fband]=numericalbandproblem(BlochK,f)
Blockband(1,1)=0;fband(1,1)=0;countband=1;fstart=0;
for ic=1:length(f)-1

if imag(BlochK(ic))==0
Blockband(countband,ic-fstart)=BlochK(ic);fband(countband,ic-fstart)=f(ic);

else
fstart=ic;

end
if imag(BlochK(ic))==0 && imag(BlochK(ic+1)) =0

countband=countband+1;
end
if imag(BlochK(ic)) =0 && imag(BlochK(ic+1))==0

countband=countband+1;
end

end

function [negaimp,postiimp,surfaceimpepi,surfaceimpezero,aspi,aszero]=surfaceimpedanceother
(bounddisnewpi,bounddisnewzero,ps,Es,As,Ls,pl,El,Al,Ll,usuresolupi,usuresoluzero,f,blocksurf,
calcustep)
totalpiband=floor(length(usuresolupi)/2);totalzeroband=floor(length(usuresoluzero)/2);
aspi(length(usuresolupi))=0;aszero(length(usuresolupi))=0;
negaimp(1:length(f),1:length(blocksurf))=nan;postiimp(1:length(f),1:length(blocksurf))=nan;
surfaceimpepi(1:totalpiband,1)=0;surfaceimpezero(1:totalzeroband,1)=0;
for ic=1:totalpiband

lopf=usuresolupi(2*ic-1);bouncodi=bounddisnewpi(1:2,2*ic-1);
[Tsco]=axiallmatrix(ps,Es,As,lopf*2*pi*1000,Ls/2);
[Tlco]=axiallmatrix(pl,El,Al,lopf*2*pi*1000,Ll);answer=Tsco*Tlco*bouncodi;
if abs(answer(2))>=1.1e-2

locl=floor(usuresolupi(2*ic-1)/calcustep);locu=floor(usuresolupi(2*ic)/calcustep);
surfaceimpepi(ic,1)=-1;negaimp(locl:locu,1:length(blocksurf))=1;
aspi(2*ic-1)=-1;aspi(2*ic)=1;

else
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locl=floor(usuresolupi(2*ic-1)/calcustep);locu=floor(usuresolupi(2*ic)/calcustep);
postiimp(locl:locu,1:length(blocksurf))=1;surfaceimpepi(ic,1)=1;
aspi(2*ic-1)=1;aspi(2*ic)=-1;

end
end
for ic=1:totalzeroband

lopf=usuresoluzero(2*ic-1);bouncodi=bounddisnewzero(1:2,2*ic-1);
[Tsco]=axiallmatrix(ps,Es,As,lopf*2*pi*1000,Ls/2);
[Tlco]=axiallmatrix(pl,El,Al,lopf*2*pi*1000,Ll);answer=Tsco*Tlco*bouncodi;
if abs(answer(2))>=1.1e-2

locl=floor(usuresoluzero(2*ic-1)/calcustep);locu=floor(usuresoluzero(2*ic)/calcustep);
postiimp(locl:locu,1:length(blocksurf))=1;surfaceimpezero(ic,1)=1;
aszero(2*ic-1)=1;aszero(2*ic)=-1;

else
locl=floor(usuresoluzero(2*ic-1)/calcustep);locu=floor(usuresoluzero(2*ic)/calcustep);
negaimp(locl:locu,1:length(blocksurf))=1;surfaceimpezero(ic,1)=-1;
aszero(2*ic-1)=-1;aszero(2*ic)=1;

end
end

function [eigenu,Blockbandc,fbandc]=eigenfucntionrod(Blockband,fband,ps,Es,As,Ls,pl,El,Al,
Ll,Fi,rl,rs,bounddisnewzero,usuresoluzero,bounddisnewpi,usuresolupi)
numbr=mod(length(Blockband(:,1)),2);counttotal=(length(Blockband(:,1))+numbr)/2;
eigenu(1:2*counttotal,1:2*length(Blockband(1,:))+3)=0;
Blockbandc(1:counttotal,1:2*length(Blockband(1,:))+3)=0;
fbandc(1:counttotal,1:2*length(Blockband(1,:))+3)=0;pin=length(usuresolupi);
zeron=length(usuresoluzero);[C,loc]=vectorFibon(Fi);
for count=1:counttotal

for ic=1:length(Blockband(1,:))
if Blockband(2*count-1,ic)>0

[Ts]=axiallmatrix(ps,Es,As,fband(2*count-1,ic)*2*pi*1000,Ls);
[Tl]=axiallmatrix(pl,El,Al,fband(2*count-1,ic)*2*pi*1000,Ll);
[Ti]=MFibonacci(Tl,Ts,Fi);[eigenf,eigenv]=eig(Ti);sum=0;bouncodi(1:2,1)=eigenf(1:2,1);
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
[Tl]=axiallmatrix(pl,El,Al,fband(2*count-1,ic)*2*pi*1000,Ll);
theint=@(x) 1./2./El.*rl.*abs(cos(sqrt(pl./El).*fband(2*count-1,ic).*2.*pi.*1000.*x).*
bouncodi(2,1)-sin(sqrt(pl./El).*fband(2*count-1,ic).*2.*pi.*1000.*x).*El.*Al.*sqrt(
pl./El).*(fband(2*count-1,ic).*2.*pi.*1000).*bouncodi(1,1)).ˆ2;
inttheint=integral(theint,0,Ll);sum=sum+inttheint;bouncodi(1:2,1)=Tl*bouncodi(1:2,1);

else
[Ts]=axiallmatrix(ps,Es,As,fband(2*count-1,ic)*2*pi*1000,Ls);
theint=@(x) 1./2./Es.*rs.*abs(cos(sqrt(ps./Es).*fband(2*count-1,ic).*2.*pi.*1000.*x).*
bouncodi(2,1)-sin(sqrt(ps./Es).*fband(2*count-1,ic).*2.*pi.*1000.*x).*Es.*As.*sqrt(
ps./Es).*(fband(2*count-1,ic).*2.*pi.*1000).*bouncodi(1,1)).ˆ2;
inttheint=integral(theint,0,Ls);sum=sum+inttheint;bouncodi(1:2,1)=Ts*bouncodi(1:2,1);

end
end
eigenf=eigenf/sqrt(sum);
if imag(eigenv(1,1))>=0

if mod(2*count-1,4)==1
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Blockbandc(count,length(Blockband(1,:))+2+ic)=Blockband(2*count-1,ic);
Blockbandc(count,length(Blockband(1,:))+2-ic)=-Blockband(2*count-1,ic);
eigenu(2*count-1:2*count,length(Blockband(1,:))+2+ic)=eigenf(1:2,1);
eigenu(2*count-1:2*count,length(Blockband(1,:))+2-ic)=eigenf(1:2,2);
fbandc(count,length(Blockband(1,:))+2+ic)=fband(2*count-1,ic);
fbandc(count,length(Blockband(1,:))+2-ic)=(fband(2*count-1,ic));

end
if mod(2*count-1,4)==3

ind=find(Blockband(2*count-1,:)==0);differ=ind(length(ind))-ind(1)+1;
Blockbandc(count,2*length(Blockband(1,:))-differ-ic+3)=Blockband(2*count-1,ic);
Blockbandc(count,ic+differ+1)=-Blockband(2*count-1,ic);
eigenu(2*count-1:2*count,2*length(Blockband(1,:))+3-differ-ic)=eigenf(1:2,1);
eigenu(2*count-1:2*count,ic+differ+1)=eigenf(1:2,2);
fbandc(count,2*length(Blockband(1,:))+3-differ-ic)=(fband(2*count-1,ic));
fbandc(count,ic+differ+1)=(fband(2*count-1,ic));

end
else

if mod(2*count-1,4)==1
Blockbandc(count,length(Blockband(1,:))+2+ic)=Blockband(2*count-1,ic);
Blockbandc(count,length(Blockband(1,:))+2-ic)=-Blockband(2*count-1,ic);
eigenu(2*count-1:2*count,length(Blockband(1,:))+2+ic)=eigenf(1:2,2);
eigenu(2*count-1:2*count,length(Blockband(1,:))+2-ic)=eigenf(1:2,1);
fbandc(count,length(Blockband(1,:))+2+ic)=fband(2*count-1,ic);
fbandc(count,length(Blockband(1,:))+2-ic)=(fband(2*count-1,ic));

end
if mod(2*count-1,4)==3

ind=find(Blockband(2*count-1,:)==0);differ=ind(length(ind))-ind(1)+1;
Blockbandc(count,2*length(Blockband(1,:))+3-differ-ic)=Blockband(2*count-1,ic);
Blockbandc(count,ic+1+differ)=-Blockband(2*count-1,ic);
eigenu(2*count-1:2*count,2*length(Blockband(1,:))+3-differ-ic)=eigenf(1:2,2);
eigenu(2*count-1:2*count,ic+1+differ)=eigenf(1:2,1);
fbandc(count,2*length(Blockband(1,:))+3-differ-ic)=(fband(2*count-1,ic));
fbandc(count,ic+1+differ)=fband(2*count-1,ic);

end
end

end
end

end
eigenzerosum=0;
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
eigenzerosum=eigenzerosum+rl*Ll/El/2;

else
eigenzerosum=eigenzerosum+rs*Ls/Es/2;

end
end
eigenzero(1,1)=0;eigenzero(2,1)=0;
eigenu(1:2,(length(eigenu)+1)/2)=eigenzero;Blockbandc(1,length(Blockbandc(1,:)))=pi;
Blockbandc(1,1)=-pi;fbandc(1,length(Blockbandc(1,:)))=(usuresolupi(1));
fbandc(1,1)=((usuresolupi(1)));eigenu(1:2,length(Blockbandc(1,:)))=real(bounddisnewpi(1:2,1));
eigenu(1:2,1)=real(bounddisnewpi(1:2,1));
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for ipi=2:pin
if mod(2*ipi-1,4)==1

ind=find(Blockband(2*ipi-1,:)==0);differ=ind(length(ind))-ind(1)+1;
Blockbandc(ipi,length(Blockbandc(1,:))-differ)=pi;Blockbandc(ipi,differ+1)=-pi;
fbandc(ipi,length(Blockbandc(1,:))-differ)=real(usuresolupi(ipi));
fbandc(ipi,differ+1)=real(usuresolupi(ipi));
eigenu(2*ipi-1:2*ipi,length(Blockbandc(1,:))-differ)=real(bounddisnewpi(1:2,ipi));
eigenu(2*ipi-1:2*ipi,differ+1)=real(bounddisnewpi(1:2,ipi));

end
if mod(2*ipi-1,4)==3

ind=find(Blockband(2*ipi-1,:)==0);differ=ind(length(ind))-ind(1)+1;
Blockbandc(ipi,length(Blockbandc(1,:))-differ)=pi;Blockbandc(ipi,differ+1)=-pi;
fbandc(ipi,length(Blockbandc(1,:))-differ)=real(usuresolupi(ipi));
fbandc(ipi,differ+1)=real(usuresolupi(ipi));
eigenu(2*ipi-1:2*ipi,length(Blockbandc(1,:))-differ)=real(bounddisnewpi(1:2,ipi));
eigenu(2*ipi-1:2*ipi,differ+1)=real(bounddisnewpi(1:2,ipi));

end
end
for izero=1:zeron

Blockbandc(izero+1,(length(Blockbandc(1,:))+1)/2)=0;
fbandc(izero+1,(length(Blockbandc(1,:))+1)/2)=usuresoluzero(izero);
eigenu(2*(izero+1)-1:2*(izero+1),(length(Blockbandc(1,:))+1)/2)=real(bounddisnewzero
(1:2,izero));

end
evennum=floor(length(Blockbandc(:,1))/2);midloc=length(Blockband)+2;
zeroloc1(1:2,1:length(Blockbandc(:,1)))=0;
for chekczero=1:evennum

for jce=1:floor(length(Blockbandc(1,:))/2)
if Blockbandc(2*chekczero,midloc-jce)<0

break;
end

end
for jcb=1:floor(length(Blockbandc(1,:))/2)

if Blockbandc(2*chekczero,jcb)<0
break;

end
end
Blockbandc(2*chekczero,jcb+jce-1:midloc-1)=Blockbandc(2*chekczero,jcb:midloc-jce);
Blockbandc(2*chekczero,midloc+1:2*midloc-jce-jcb)=Blockbandc(2*chekczero,midloc+jce:
length(Blockbandc(1,:))-jcb);Blockbandc(2*chekczero,1:jcb+jce-2)=0;
Blockbandc(2*chekczero,2*midloc-jce-jcb+1:length(Blockbandc(1,:)))=0;
fbandc(2*chekczero,jcb+jce-1:midloc-1)=fbandc(2*chekczero,jcb:midloc-jce);
fbandc(2*chekczero,midloc+1:2*midloc-jce-jcb)=fbandc(2*chekczero,midloc+jce:length(
Blockbandc(1,:))-jcb);fbandc(2*chekczero,1:jcb+jce-2)=0;
fbandc(2*chekczero,2*midloc-jce-jcb+1:length(Blockbandc(1,:)))=0;
eigenu(2*(2*chekczero)-1:2*(2*chekczero),jcb+jce-1:midloc-1)=eigenu(2*(2*chekczero)-1:2*
(2*chekczero),jcb:midloc-jce);
eigenu(2*(2*chekczero)-1:2*(2*chekczero),midloc+1:2*midloc-jce-jcb)=eigenu(2*(2*chekczero)-
1:2*(2*chekczero),midloc+jce:length(Blockbandc(1,:))-jcb);
eigenu(2*(2*chekczero)-1:2*(2*chekczero),1:jcb+jce-2)=0;
eigenu(2*(2*chekczero)-1:2*(2*chekczero),2*midloc-jce-jcb+1:length(Blockbandc(1,:)))=0;
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end

function [thetaZako,thetaZak]=numericalZakphase(ps,pl,Es,El,rs,rl,As,Al,Ll,Ls,Blockbandc,
fbandc,Fi,eigenu,Lm)
thetaZak(1:length(Blockbandc(:,1)),1)=0;thetaZako(1:length(Blockbandc(:,1)),1)=0;
[C,loc]=vectorFibon(Fi);
for count=1:length(fbandc(:,1))

for ic=1:length(fbandc(1,:))-1
bouncodi(1:2,1)=0;bouncodip(1:2,1)=0;
if fbandc(count,ic) =0

if fbandc(count,ic+1) =0
start=0;inttheint(1:C(1,Fi+1))=0;bouncodi(1:2,1)=eigenu(2*count-1:2*count,ic);
bouncodip(1:2,1)=eigenu(2*count-1:2*count,ic+1);
K=Blockbandc(count,ic)/Lm;Kp=Blockbandc(count,ic+1)/Lm;
for i1=1:C(1,Fi+1)

if loc(i1,Fi+1)==1
[Tli]=axiallmatrix(pl,El,Al,fbandc(count,ic)*2*pi*1000,Ll);
[Tlip]=axiallmatrix(pl,El,Al,fbandc(count,ic+1)*2*pi*1000,Ll);
theint=@(x) 1./2./El.*rl.*conj(cos(sqrt(pl./El).*fbandc(count,ic).*2.*pi.*1000.*
x).*bouncodi(2,1)-sin(sqrt(pl./El).*fbandc(count,ic).*2.*pi.*1000.*x).*El.*Al.*
sqrt(pl./El).*(fbandc(count,ic).*2.*pi.*1000).*bouncodi(1,1)).*exp(i.*K.*(x+
start)).*(cos(sqrt(pl./El).*fbandc(count,ic+1).*2.*pi.*1000.*x).*bouncodip(2,1)-
sin(sqrt(pl./El).*fbandc(count,ic+1).*2.*pi.*1000.*x).*El.*Al.*sqrt(pl./El).*(
fbandc(count,ic+1).*2.*pi.*1000).*bouncodip(1,1)).*exp(-i.*Kp.*(x+start));
inttheint(i1)=integral(theint,0,Ll);start=start+Ll;
bouncodi(1:2,1)=Tli*bouncodi(1:2,1);bouncodip(1:2,1)=Tlip*bouncodip(1:2,1);

else
[Tsi]=axiallmatrix(ps,Es,As,fbandc(count,ic)*2*pi*1000,Ls);
[Tsip]=axiallmatrix(ps,Es,As,fbandc(count,ic+1)*2*pi*1000,Ls);
theint=@(x) 1./2./Es.*rs*conj(cos(sqrt(ps./Es).*fbandc(count,ic).*2.*pi.*1000.*
x).*bouncodi(2,1)-sin(sqrt(ps./Es).*fbandc(count,ic).*2.*pi.*1000.*x).*Es.*As.*
sqrt(ps./Es).*(fbandc(count,ic).*2.*pi.*1000).*bouncodi(1,1)).*exp(i.*K.*(x+
start)).*(cos(sqrt(ps./Es).*fbandc(count,ic+1).*2.*pi.*1000.*x).*bouncodip(2,1)-
sin(sqrt(ps./Es).*fbandc(count,ic+1).*2.*pi.*1000.*x).*Es.*As.*sqrt(ps./Es).*(
fbandc(count,ic+1).*2.*pi.*1000).*bouncodip(1,1)).*exp(-i.*Kp.*(x+start));
inttheint(i1)=integral(theint,0,Ls);start=start+Ls;
bouncodi(1:2,1)=Tsi*bouncodi(1:2,1);bouncodip(1:2,1)=Tsip*bouncodip(1:2,1);

end
end
thetaZako(count,1)=thetaZako(count,1)-angle(sum(inttheint));

end
end

end
end
for l1=1:length(thetaZako)

pinum=round(thetaZako(l1)/pi);
if mod(pinum,2)==1

thetaZak(l1)=pi;
else

thetaZak(l1)=0;
end
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end

The main programme for transmission and reflection coefficients

Es1=70e9; El1=70e9; pl1=2700; ps1=2700; %material parameters for rod1
As1=0.01*0.01; Al1=0.01*0.02; Ll1o=0.025*2; Ls1o=0.1; %geometric parameters for rod1
cl1=sqrt(El1/pl1); cs1=sqrt(Es1/ps1); Fi=3;j1=1; k1=0; q1=3; %canonical parameters for rod1
calcustep=5E0; %calculating accuracy for coefficients [rtio1,period11,fam1]=ratios(j1,k1,q1);
[tLl1,Ls1]=keepthicnesssame(Ll1o,Ls1o,2,cl1,cs1,rtio1);Ll1=tLl1/2;
[L31]=LFibonacci(Fi,Ll1,Ls1);N1=6; Linterface=L31*N1; %number of unit cells for rod1
El2=70e9; Es2=70e9; pl2=2700; ps2=2700; %material parameters for rod2
As2=0.01*0.02; Al2=0.01*0.01; Ll2o=0.025*2; Ls2o=0.1; %geometric parameters for rod2
cl2=sqrt(El2/pl2); cs2=sqrt(Es2/ps2);Ltimes=(cs1+(rtio1)*cl1)/(cl1+(rtio1)*cs1);
j2=1; k2=0; q2=3; %canonical parameters for rod2[rtio2,period12,fam2]=ratios(j2,k2,q2);
[tLl2,Ls2]=keepthicnesssame(Ll2o*Ltimes,Ls2o*Ltimes,2,cl2,cs2,rtio2);Ll2=tLl2/2;
[L32]=LFibonacci(Fi,Ll2,Ls2);
N2=6; Linterface2=L32*N2; Ltotal=Linterface+Linterface2;%number of unit cells for rod2
[n1,n2]=periodforf(rtio2,fam2,cl2,cs2,tLl2,Ls2,j2,k2,q2);n=n1/3;%frequency range
[fl,relfec1,relfec2,trans1,trans2,transt,sufaceimpe1,sufaceimpe2]=totaltransmisionfullyaxilly(n,
El2,Es2,Ll2,Ls2,Al2,As2,pl2,ps2,calcustep,N2,El1,Es1,Ll1,Ls1,Al1,As1,pl1,ps1,N1,Fi);
figure(1)
plot(fl,(trans1),’r’,’LineWidth’,2.5),grid on;hold on
plot(fl,(trans2),’–’,’LineWidth’,2.5,’Color’,[0 0 0]),grid on;hold on
xlabel(’Frequency’); ylabel(’tn’);
figure(2)
plot(fl,(transt),’LineWidth’,2.5,’Color’,[0 0.4470 0.7410]),grid on;hold on
plot([n/4/1000,n/4/1000],[0,1],’r–’,’LineWidth’,2.5),grid on;hold on;
plot([n/4/1000*3,n/4/1000*3],[0,1],’r–’,’LineWidth’,2.5),grid on;xlabel(’Frequency’); ylabel(’t’);
figure(3)
plot(fl,imag(sufaceimpe1),’LineWidth’,2,’Color’,[0 0.4470 0.7410]),grid on;hold on
plot(fl,imag(sufaceimpe2),’LineWidth’,2,’Color’,[0.73725 0.56078 0.56078]),grid on;hold on
plot(fl,imag(sufaceimpe1+sufaceimpe2),’LineWidth’,2,’Color’,[0 0 0]),grid on;
xlabel(’Frequency’); ylabel(’rn’);
%%
ftest=47.805*1e3;%wave field at determined frequency Tgnew=eye(2);
[Tinew1]=newaxiallytransfemateriinver(El1,Es1,Ll1,Ls1,Al1,As1,pl1,ps1,ftest*2*pi);
[Tinew2]=newaxiallytransfemateriinver(El2,Es2,Ll2,Ls2,Al2,As2,pl2,ps2,ftest*2*pi);
for k=1:N1

Tgnew=Tinew1*Tgnew;
end
Ticha(1,1)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Ticha(1,2)=sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Ticha(2,1)=sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Ticha(2,2)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Tgnew=(Ticha.*(-1/2))*Tgnew;
for jc=1:N2

Tgnew=Tinew2*Tgnew;
end
[P,inteP,xcord,Lvecol1,Lvecos1,Lvecol2,Lvecos2,w,boun]=interfacedisplacmentnew(lenstep,El2,
Es2,Ll2,Ls2,Al2,As2,pl2,ps2,N2,El1,Es1,Ll1,Ls1,Al1,As1,pl1,ps1,N1,ftest,K,Linterface,Tgnew);
figure(4)
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plot(xcord,abs(P),’k’,’LineWidth’,2.5),grid on;xlabel(’x’); ylabel(’[N]’);

Subprogramme for transmission and reflection coefficients

function [fl,relfec1,relfec2,trans1,trans2,transt,sufaceimpe1,sufaceimpe2]=totaltransmisionfullyax-
illy(n,El2,Es2,Ll2,Ls2,Al2,As2,pl2,ps2,calcustep,N2,El1,Es1,Ll1,Ls1,Al1,As1,pl1,ps1,N1,Fi)
F=calcustep:calcustep:n;fl=F.*1e-3;
relfec1(1:1:length(F))=0;relfec2(1:1:length(F))=0;
sufaceimpe1(1:1:length(F))=nan;sufaceimpe2(1:1:length(F))=nan;
transt(1:1:length(F))=0;trans1(1:1:length(F))=0;trans2(1:1:length(F))=0;
l1=Al1*sqrt(El1*pl1);l2=Al2*sqrt(El2*pl2);s1=As1*sqrt(Es1*ps1);s2=As2*sqrt(Es2*ps2);
for ic=1:length(F)

f=F(ic);[Tinew1]=newaxiallytransfemateriinver(El1,Es1,Ll1,Ls1,Al1,As1,pl1,ps1,f*2*pi);
[Tinew2]=newaxiallytransfemateriinver(El2,Es2,Ll2,Ls2,Al2,As2,pl2,ps2,f*2*pi);
Tgnew=eye(2);Tgnew1=eye(2);Tgnew2=Tinew2;
for k=1:N1

Tgnew1=Tinew1*Tgnew1;Tgnew=Tinew1*Tgnew;
end
Ticha(1,1)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Ticha(1,2)=sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Ticha(2,1)=sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Ticha(2,2)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;Tgnew=Tinew2*(Ticha.*(-1/2))*Tgnew;
for j=2:N2

Tgnew2=Tinew2*Tgnew2;Tgnew=Tinew2*Tgnew;
end
relfec1(ic)=Tgnew1(2,1)/Tgnew1(2,2);relfec2(ic)=Tgnew2(2,1)/Tgnew2(2,2);
trans1(ic)=abs((Tgnew1(1,1)-Tgnew1(1,2)*Tgnew1(2,1)/Tgnew1(2,2)))ˆ2;
trans2(ic)=abs((Tgnew2(1,1)-Tgnew2(1,2)*Tgnew2(2,1)/Tgnew2(2,2)))ˆ2;
transt(ic)=abs((Tgnew(1,1)-Tgnew(1,2)*Tgnew(2,1)/Tgnew(2,2)))ˆ2*l2/l1;
if abs(trace(Tinew1))-2>0

sufaceimpe1(ic)=(1+(relfec1(ic)))/(1-(relfec1(ic)))*l1;
end
if abs(trace(Tinew2))-2>0

sufaceimpe2(ic)=(1+(relfec2(ic)))/(1-(relfec2(ic)))*l2;
end

end

function [P,inteP,xcord,w,bounddis]=interfacedisplacmentnew(lenstep,El2,Es2,Ll2,Ls2,Al2,As2,
pl2,ps2,N2,El1,Es1,Ll1,Ls1,Al1,As1,pl1,ps1,N1,ftest,K,Linterface,Tgnew,Tinew1,Tinew2)
k=1; sum=0;Lm1=2*Ll1+Ls1;Lm2=2*Ll2+Ls2;start=Lm1*N1+Lm2*N2;
xcord(1)=Lm1*N1+Lm2*N2;
rl1=sqrt(Al1/pi);rs1=sqrt(As1/pi);rl2=sqrt(Al2/pi);rs2=sqrt(As2/pi);
bounddis(1,1)=0;bounddis(2,1)=-Tgnew(2,1)*Tgnew(1,2)/Tgnew(1,1)+Tgnew(2,2);
[A1,B1,C1,D1,k11,k21]=trnsmissionmatrixnew(El1,Es1,Ll1,Ls1,Al1,As1,pl1,ps1,ftest*2*pi);
[A2,B2,C2,D2,k12,k22]=trnsmissionmatrixnew(El2,Es2,Ll2,Ls2,Al2,As2,pl2,ps2,ftest*2*pi);
w(k)=bounddis(1)*exp(i*k12*(0))+bounddis(2)*exp(-i*k12*(0));
P(k)=i*Al2*k12*El2*(bounddis(1)*exp(i*k12*(0))-bounddis(2)*exp(-i*k12*(0)));
for ic=1:N2

bouncodi2=B2\A2*bounddis;bouncodi1=C2\D2*bouncodi2;
for x=lenstep:lenstep:Ll2

k=k+1;xcord(k)=start-x;
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w(k)=bounddis(1)*exp(i*k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2))+bounddis(2)*exp(-i*
k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2));
P(k)=i*Al2*k12*El2*(bounddis(1)*exp(i*k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2))-
bounddis(2)*exp(-i*k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2)));

end
theint=@(x) 1./2./El2.*rl2.*abs(bounddis(1).*exp(i.*k12.*(x+start-N1*Lm1-(N2-ic+1)*Lm2))+
bounddis(2).*exp(-i.*k12.*(x+start-N1*Lm1-(N2-ic+1)*Lm2))).ˆ2;
start=start-Ll2;inttheint=integral(theint,0,Ll2);sum=sum+inttheint;
for x=lenstep:lenstep:Ls2

k=k+1;xcord(k)=start-x;
w(k)=bouncodi2(1)*exp(i*k22*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2))+bouncodi2(2)*exp(-i*
k22*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2));
P(k)=i*As2*k22*Es2*(bouncodi2(1)*exp(i*k22*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2))-
bouncodi2(2)*exp(-i*k22*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2)));

end
theint=@(x) 1./2./Es2.*rs2.*abs(bouncodi2(1).*exp(i.*k22.*(x+start-N1*Lm1-(N2-ic+1)*
Lm2))+bouncodi2(2).*exp(-i.*k22.*(x+start-N1*Lm1-(N2-ic+1)*Lm2))).ˆ2;
start=start-Ls2;inttheint=integral(theint,0,Ls2);sum=sum+inttheint;
for x=lenstep:lenstep:Ll2

k=k+1;xcord(k)=start-x;
w(k)=bouncodi1(1)*exp(i*k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2))+bouncodi1(2)*exp(-i*
k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2));
P(k)=i*Al2*k12*El2*(bouncodi1(1)*exp(i*k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2))-
bouncodi1(2)*exp(-i*k12*(xcord(k)-N1*Lm1-(N2-ic+1)*Lm2)));

end
theint=@(x) 1./2./El2.*rl2.*abs(bouncodi1(1).*exp(i.*k12.*(x+start-N1*Lm1-(N2-ic+1)*
Lm2))+bouncodi1(2).*exp(-i.*k12.*(x+start-N1*Lm1-(N2-ic+1)*Lm2))).ˆ2;
inttheint=integral(theint,0,Ll2);start=start-Ll2;sum=sum+inttheint;bounddis=Tinew2\bounddis;

end
Ticha(1,1)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
Ticha(1,2)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)+1;
Ticha(2,1)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)+1;
Ticha(2,2)=-sqrt(El1*pl1)*Al1/(sqrt(El2*pl2)*Al2)-1;
bounddis=Ticha.*(-(sqrt(El2*pl2)*Al2)/(sqrt(El1*pl1)*Al1)/2)*bounddis;
for jc=1:N1

bouncodi2=B1\A1*bounddis;bouncodi1=C1\D1*bouncodi2;
for x=lenstep:lenstep:Ll1

k=k+1;xcord(k)=start-x;
w(k)=bounddis(1)*exp(i*k11*(xcord(k)-(N1-jc+1)*Lm1))+bounddis(2)*exp(-i*k11*(
xcord(k)-(N1-jc+1)*Lm1));
P(k)=i*Al1*k11*El1*(bounddis(1)*exp(i*k11*(xcord(k)-(N1-jc+1)*Lm1))-bounddis(2)*
exp(-i*k11*(xcord(k)-(N1-jc+1)*Lm1)));

end
theint=@(x) 1./2./El1.*rl1.*abs(bounddis(1).*exp(i.*k11.*(x+start-(N1-jc+1)*Lm1))+
bounddis(2).*exp(-i.*k11.*(x+start-(N1-jc+1)*Lm1))).ˆ2;
start=start-Ll1;inttheint=integral(theint,0,Ll1);sum=sum+inttheint;
for x=lenstep:lenstep:Ls1

k=k+1;xcord(k)=start-x;
w(k)=bouncodi2(1)*exp(i*k21*(xcord(k)-(N1-jc+1)*Lm1))+bouncodi2(2)*exp(-i*k21*(
xcord(k)-(N1-jc+1)*Lm1));
P(k)=i*As1*k21*Es1*(bouncodi2(1)*exp(i*k21*(xcord(k)-(N1-jc+1)*Lm1))-bouncodi2(2)*
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exp(-i*k21*(xcord(k)-(N1-jc+1)*Lm1)));
end
theint=@(x) 1./2./Es1.*rs1.*abs(bouncodi2(1).*exp(i.*k21.*(x+start-(N1-jc+1)*Lm1))+
bouncodi2(2).*exp(-i.*k21.*(x+start-(N1-jc+1)*Lm1))).ˆ2;
start=start-Ls1;inttheint=integral(theint,0,Ls1);sum=sum+inttheint;
for x=lenstep:lenstep:Ll1

k=k+1;xcord(k)=start-x;
w(k)=bouncodi1(1)*exp(i*k11*(xcord(k)-(N1-jc+1)*Lm1))+bouncodi1(2)*exp(-i*k11*(
xcord(k)-(N1-jc+1)*Lm1));
P(k)=i*Al1*k11*El1*(bouncodi1(1)*exp(i*k11*(xcord(k)-(N1-jc+1)*Lm1))-bouncodi1(2)*
exp(-i*k11*(xcord(k)-(N1-jc+1)*Lm1)));

end
theint=@(x) 1./2./El1.*rl1.*abs(bouncodi1(1).*exp(i.*k11.*(x+start-(N1-jc+1)*Lm1))+
bouncodi1(2).*exp(-i.*k11.*(x+start-(N1-jc+1)*Lm1))).ˆ2;
inttheint=integral(theint,0,Ll1);start=start-Ll1;sum=sum+inttheint;bounddis=Tinew1\bounddis;

end
inteP(1)=sqrt(sum); P=P/inteP(1);

function [Ti]=newaxiallytransfemateriinver(El,Es,Ll,Ls,Al,As,pl,ps,w)
k1=w/sqrt(El/pl);k2=w/sqrt(Es/ps);Z1=w*sqrt(El*pl)*Al;Z2=w*sqrt(Es*ps)*As;
Ti(1,1)=exp(i*k1*2*Ll)*(cos(k2*Ls)+i/2*(Z2/Z1+Z1/Z2)*sin(k2*Ls));
Ti(1,2)=-i/2*(Z1/Z2-Z2/Z1)*sin(k2*Ls);Ti(2,1)=-Ti(1,2);
Ti(2,2)=exp(-i*k1*2*Ll)*(cos(k2*Ls)-i/2*(Z2/Z1+Z1/Z2)*sin(k2*Ls));

function [A,B,C,D,k1,k2]=trnsmissionmatrixnew(El,Es,Ll,Ls,Al,As,pl,ps,w)
k1=w*sqrt(pl/El);k2=w*sqrt(ps/Es);Z1=w*sqrt(El*pl)*Al;Z2=w*sqrt(Es*ps)*As;
A(1,1)=exp(-i*k1*Ll);A(1,2)=exp(i*k1*Ll);A(2,1)=Z1/Z2*exp(-i*k1*Ll);A(2,2)=-conj(A(2,1))
B(1,1)=exp(-i*k2*Ll);B(1,2)=exp(i*k2*Ll);B(2,1)=exp(-i*k2*Ll);B(2,2)=-exp(i*k2*Ll);
C(1,1)=exp(-i*k1*(Ll+Ls));C(1,2)=conj(C(1,1));C(2,1)=exp(-i*k1*(Ll+Ls));C(2,2)=-conj(C(2,1));
D(1,1)=exp(-i*k2*(Ll+Ls));D(1,2)=exp(i*k2*(Ll+Ls));
D(2,1)=Z2/Z1*exp(-i*k2*(Ll+Ls));D(2,2)=-Z2/Z1*exp(i*k2*(Ll+Ls));
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Appendix B

Another Way to Prove the Recursion Rule Equation (2.25)

The recursive rule (2.25) can be verified by using this way:

𝑡𝑟𝑇𝑖+1 = 𝑡𝑟𝑇𝑖−1𝑡𝑟𝑇𝑖 − 𝑡𝑟𝑇𝑖−2

𝑇𝑖 = 𝑇𝑖−2𝑇𝑖−1, 𝑇𝑖+1 = 𝑇𝑖−1𝑇𝑖 = 𝑇𝑖−1𝑇𝑖−2𝑇𝑖−1

Thus, the original formula become:

𝑡𝑟(𝑇𝑖−1𝑇𝑖−2𝑇𝑖−1) = 𝑡𝑟(𝑇𝑖−1)𝑡𝑟(𝑇𝑖−2𝑇𝑖−1) − 𝑡𝑟(𝑇𝑖−2)

If assumed:

𝑇𝑖−1 = 𝑎 = �
𝐴1 𝐴2
𝐴3 𝐴4

� , 𝑇𝑖−2 = 𝑏 = �
𝐵1 𝐵2
𝐵3 𝐵4

�

Then:

𝑡𝑟 (𝑇𝑖−2𝑇𝑖−1) = 𝐵1𝐴1 + 𝐵2𝐴3 + 𝐵3𝐴2 + 𝐵4𝐴4 = 𝑡𝑟 (𝑇𝑖−1𝑇𝑖−2) ⇔ 𝑡𝑟 (𝑏𝑎) = 𝑡𝑟 (𝑎𝑏)

Thus, this formula should be verified:

𝑡𝑟(𝑎2𝑏) = 𝑡𝑟(𝑎)𝑡𝑟(𝑎𝑏) − 𝑡𝑟(𝑏)

It is not hard to find:

𝑡𝑟 �𝑎2𝑏� = 𝐴21𝐵1 + 𝐴2𝐴3𝐵1 + 𝐴1𝐴2𝐵3 + 𝐴2𝐴4𝐵3 + 𝐴1𝐴3𝐵2 + 𝐴3𝐴4𝐵2 + 𝐴2𝐴3𝐵4 + 𝐴24𝐵4

𝑡𝑟 (𝑎𝑏) = 𝐵1𝐴1 + 𝐵2𝐴3 + 𝐵3𝐴2 + 𝐵4𝐴4; 𝑡𝑟 (𝑎) = 𝐴1 + 𝐴4, 𝑡𝑟 (𝑏) = 𝐵1 + 𝐵4

The determinant for matrix 𝑎 is one, which means 𝐴1𝐴4−𝐴2𝐴3 = 1, the equation (2.25) is proved.

Impedance for Laminate Problem When Antiplane Shear Wave Prop-
agation

Mechanical impedance is the ratio of the applied force to the resulting velocity at the excitation
(𝑥 = 0) point. To determine the impedance of a laminates, consider that the semi-infinite laminate
is excited by the stress 𝜎𝑥𝑧(𝑥, 𝑡) at the end of the laminate:

𝑢𝑧(𝑥, 𝑡) = 𝑎(exp(i�
𝜌

𝜇
𝜔𝑥))𝑒i𝜔𝑡

Differentiating with respect to space and time, respectively, results in:

𝜕𝑢𝑧(𝑥, 𝑡)

𝜕𝑥
= i�

𝜌

𝜇
𝜔𝑢𝑧(𝑥, 𝑡)

𝜕𝑢𝑧(𝑥, 𝑡)

𝜕𝑡
= i𝜔𝑢𝑧(𝑥, 𝑡)

And then, the impedance is:

𝜎𝑥𝑧(0, 𝑡)

𝑉(0, 𝑡)
=

𝜇i�
𝜌

𝜇
𝜔𝑢𝑧(0, 𝑡)

i𝜔𝑢𝑧(0, 𝑡)
= √𝜌𝜇

194



Appendix B

Jacobian for Silver and Bronze Mean Sequence

Defining 𝑡𝑖 = 𝑡𝑟(𝑇𝑖−2𝑇𝑖−1), for silver means sequence (m = 2 and l = 1), the pair of equations
are determined:

𝑥𝑖+1 = 𝑥𝑖𝑡𝑖+1 − 𝑥𝑖−1

𝑡𝑖+1 = 𝑥𝑖𝑥𝑖−1 − 𝑡𝑖, with 𝑖 ≥ 2

Similarly, for bronze mean sequence (m = 3 and l = 1):

𝑥𝑖+1 = (𝑥2𝑖 − 1)𝑡𝑖+1 − 𝑥𝑖𝑥𝑖−1

𝑡𝑖+1 = (𝑥𝑖 − 𝑡𝑖)𝑥𝑖−1 + 𝑥𝑖−2, with 𝑖 ≥ 2

According to these equations, the Jacobian matrix can be derived:

J𝑠 =
𝜕(�𝑥𝑖+1, �𝑦𝑖+1, �𝑧𝑖+1)

𝜕( �𝑥𝑖, �𝑦𝑖, �𝑧𝑖)
= �

�𝑦2𝑖 − 1 2�𝑥𝑖 �𝑦𝑖 − �𝑧𝑖 −�𝑦𝑖
�𝑦𝑖 �𝑥𝑖 −1

0 1 0

�

J𝑏 =
𝜕(�𝑥𝑖+1, �𝑦𝑖+1, �𝑧𝑖+1)

𝜕( �𝑥𝑖, �𝑦𝑖, �𝑧𝑖)
= �

�𝑦3𝑖 − 2�𝑦𝑖 3�𝑥𝑖 �𝑦
2
𝑖 − 2�𝑦𝑖 �𝑧𝑖 − 2�𝑥𝑖 1 − �𝑦2𝑖

�𝑦2𝑖 − 1 2�𝑥𝑖 �𝑦𝑖 − �𝑧𝑖 −�𝑦𝑖
0 1 0

�

They have the same determinant which is det𝐽𝑠,𝑏 = −1 and Kohmoto’s invariant is still the equa-
tion (2.35). In addition, the matrix A𝑠 and A𝑏 which are Jacobian, (For silver mean sequence, the
number of iterations is 4):

A𝑠 = �

2𝐼(𝜔)2 + 12𝐼(𝜔) + 17 2(2 + 𝐼(𝜔))(3 + 𝐼(𝜔))�4 + 𝐼(𝜔) 0

2(3 + 𝐼(𝜔))�4 + 𝐼(𝜔) 2𝐼(𝜔)2 + 12𝐼(𝜔) + 17 0

0 0 1

�

A𝑏 = �

A𝑏11 A𝑏12 0

A𝑏21 A𝑏22 0

0 0 1

�

A𝑏11 = 469 + 𝐼(𝜔)(721 + 𝐼(𝜔)(399 + 94𝐼(𝜔) + 8𝐼(𝜔)2))

A𝑏12 = (4 + 𝐼(𝜔))3/2(9 + 4𝐼(𝜔))(15 + 2𝐼(𝜔)(6 + 𝐼(𝜔)))

A𝑏21 = (4 + 𝐼(𝜔))3/2(5 + 2𝐼(𝜔))(9 + 4𝐼(𝜔))

A𝑏22 = 829 + 𝐼(𝜔)(1079 + 2𝐼(𝜔)(257 + 𝐼(𝜔)(53 + 4𝐼(𝜔))))

Thus, two pair eigenvalues for linearised transformation are obtained, which are (subscript 𝑠, 𝑏
denoted SM and BM chain):

𝜗±𝑠 (𝜔) = (�(3 + 𝐼 (𝜔))
2
− 1 ± (3 + 𝐼 (𝜔)))2

𝜗±𝑏 (𝜔) =
1

4
(�4 + (4 + 𝐼 (𝜔))

2
(9 + 4𝐼(𝜔))2 ± (4 + 𝐼 (𝜔))(9 + 4𝐼(𝜔)))2
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Complex Function Time Average Proof

Made assumption:
𝜎 = (𝑎 + i𝑏)𝑒i𝜔𝑡, 𝑈 = (𝑐 + i𝑑)𝑒i𝜔𝑡

In here, coefficients 𝑎, 𝑏, 𝑐 and 𝑑 are pure real numbers. Thus, 𝑈 differential to time 𝑡 is:

𝑈̇ = i𝜔(𝑐 + i𝑑)𝑒i𝜔𝑡

The conjugate of 𝑈̇∗ is:
𝑈̇∗ = −i𝜔(𝑐 − i𝑑)𝑒−i𝜔𝑡

Therefore:
1

2
Re(𝜎𝑈̇∗) =

1

2
Re(−i𝜔(𝑐 − i𝑑)(𝑎 + i𝑏)) =

1

2
Re(−i𝜔(𝑎𝑐 − i𝑎𝑑 + i𝑏𝑐 + 𝑏𝑑)) =

1

2
(𝑏𝑐 − 𝑎𝑑)𝜔

Then, taking the real part of 𝜎 and 𝑈̇:

Re(𝜎) = 𝑎cos(𝜔𝑡) − 𝑏sin(𝜔𝑡), Re(𝑈̇) = −𝜔(𝑐sin(𝜔𝑡) + 𝑑cos(𝜔𝑡))

With time average:

1

𝑇
�
𝑇

0

Re[𝜎]Re[𝑈̇]𝑑𝑡 = −
1

𝑇
�
𝑇

0

(𝑎cos(𝜔𝑡) − 𝑏sin(𝜔𝑡)𝜔(𝑐sin(𝜔𝑡) + 𝑑cos(𝜔𝑡)))𝑑𝑡

Finally:
1

𝑇
�
𝑇

0

Re[𝜎]Re[𝑈̇]𝑑𝑡 =
1

2
(𝑏𝑐 − 𝑎𝑑)𝜔 =

1

2
Re(𝜎𝑈̇∗)

The Orthogonality of Eigenvectors in Jacobian

When the scaling factor concerning periodic orbit and associated Jacobian matrix analysed, for
instance, A𝑔 for Fibonacci GM sequence, they have the forms similar to the matrix (also in SM
and BM sequence):

A = �

𝑎 𝑏 𝑑

𝑏 𝑐 𝑒

0 0 1

�

It is not hard to find that it has an eigenvalue 𝜗0 = 1 and eigenvector associated with 𝜓0 =

(0, 0, 1)𝑇. The eigenfunction is solved in this way:

A − 𝜗E = �

𝑎 − 𝜗 𝑏 𝑑

𝑏 𝑐 − 𝜗 𝑒

0 0 1 − 𝜗

�

Because of 𝜗 ≠ 1 currently, the elimination on the column can be performed, the matrix becomes
without changing determinant:

�

𝑎 − 𝜗 𝑏 0

𝑏 𝑐 − 𝜗 0

0 0 1 − 𝜗

�

Thus, the other two eigenvalues are that:

𝜗± =
(𝑎 + 𝑐) ± �(𝑎 + 𝑐)2 − 4𝑎𝑐 + 4𝑏2

2

where two associated eigenvectors:

(−
−𝑎 + 𝑐 + √𝑎2 + 4𝑏2 − 2𝑎𝑐 + 𝑐2

2𝑏
, 1, 0)𝑇, (−

−𝑎 + 𝑐 − √𝑎2 + 4𝑏2 − 2𝑎𝑐 + 𝑐2

2𝑏
, 1, 0)𝑇

With little knowledge, these two eigenvectors are orthogonal with 𝜓0.
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Appendix B

Elementary Transfer Matrix for Prestressed Euler-Bernoulli Beam The-
ory

Considering an Euler beam with pressure axially force 𝑁, constant crossing area 𝐴, stiffness for
bending 𝐸𝐼 and density per volume 𝜌, the governing equation of lateral deflection 𝑣 is fourth-order
ordinary differential equations in each elementary beam:

𝐸𝐼
𝑑4𝑣

𝑑𝑥4
+ 𝑁

𝑑2𝑣

𝑑𝑥2
− 𝜌𝐴𝜔2𝑣 = 0

The general solution 𝑣 in trigonometric function is:

𝑣(𝑥) = 𝐶1sin(𝛾𝑥) + 𝐶2cos(𝛾𝑥) + 𝐶3sinh(𝜀𝑥) + 𝐶4cosh(𝜀𝑥)

where 𝛾 = � 𝑁

2𝐸𝐼
+�

𝑁2

4𝐸2𝐼2
+

𝜌𝐴𝜔2

𝐸𝐼
, 𝜀 = �−

𝑁

2𝐸𝐼
+�

𝑁2

4𝐸2𝐼2
+

𝜌𝐴𝜔2

𝐸𝐼
.

With the same process from the quasicrystalline rods (laminates), the general displacements is
deflection 𝑣 and rotation 𝜑, general forces are bending moment 𝑀 and shear force 𝑄. The rela-
tionship among them in Euler beam theory is following:

𝜑 =
𝑑𝑣

𝑑𝑥
; 𝑀 = −𝐸𝐼

𝑑2𝑣

𝑑𝑥2
; 𝑄 = −𝐸𝐼

𝑑3𝑣

𝑑𝑥3

The elementary transfer matrix for prestressed Euler beam is (assuming length of the elementary
beam is 𝐿):

⎡
⎢
⎢
⎣

𝑣(𝐿)

𝜑(𝐿)

𝑀(𝐿)

𝑄(𝐿)

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

𝐵11 𝐵12 𝐵13 𝐵14
𝐵21 𝐵22 𝐵23 𝐵24
𝐵31 𝐵32 𝐵33 𝐵34
𝐵41 𝐵42 𝐵43 𝐵44

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑣(0)

𝜑(0)

𝑀(0)

𝑄(0)

⎤
⎥
⎥
⎦

where terms in elementary transfer matrix are (where 𝛼 = 𝐸𝐼𝜀𝛾(𝜀2 + 𝛾2), 𝛽 = 𝐸𝐼(𝜀2 + 𝛾2)):

𝐵11 = 𝐸𝐼
𝜀2cos(𝛾𝐿) + 𝛾2cosh(𝜀𝐿)

𝛼
; 𝐵12 = 𝐸𝐼

𝜀3sin(𝛾𝐿) + 𝛾3sinh(𝜀𝐿)
𝛽

;

𝐵13 =
cosh(𝜀𝐿) − cos(𝛾𝐿)

𝛼
; 𝐵14 =

𝛾sinh(𝜀𝐿) − 𝜀sin(𝛾𝐿)
𝛽

𝐵21 = 𝐸𝐼
𝛾2𝜀sinh(𝜀𝐿) − 𝜀2𝛾sin(𝛾𝐿)

𝛼
; 𝐵22 = 𝐸𝐼

𝜀3𝛾cos(𝛾𝐿) + 𝛾3𝜀cosh(𝜀𝐿)
𝛽

;

𝐵23 =
𝜀sinh(𝜀𝐿) + 𝛾sin(𝛾𝐿)

𝛼
; 𝐵24 =

𝛾𝜀cosh(𝜀𝐿) − 𝛾𝜀cos(𝛾𝐿)
𝛽

𝐵31 = 𝐸2𝐼2
𝜀2𝛾2cosh(𝜀𝐿) − 𝛾2𝜀2cos(𝛾𝐿)

𝛼
; 𝐵32 = 𝐸2𝐼2

𝜀2𝛾3sinh(𝜀𝐿) − 𝜀3𝛾2sin(𝛾𝐿)
𝛽

;

𝐵33 = 𝐸𝐼
𝜀2cosh(𝜀𝐿) + 𝛾2cos(𝛾𝐿)

𝛼
; 𝐵34 = 𝐸𝐼

𝛾2𝜀sin(𝛾𝐿) + 𝜀2𝛾sinh(𝜀𝐿)
𝛽

𝐵41 = 𝐸2𝐼2
𝛾2𝜀3sinh(𝜀𝐿) − 𝜀2𝛾3sin(𝛾𝐿)

𝛼
; 𝐵42 = 𝐸2𝐼2

𝜀3𝛾3cosh(𝜀𝐿) − 𝜀3𝛾3cos(𝛾𝐿)
𝛽

;

𝐵43 = 𝐸𝐼
𝛾3sin(𝛾𝐿) + 𝜀3sinh(𝜀𝐿)

𝛼
; 𝐵44 = 𝐸𝐼

𝛾3𝜀cos(𝛾𝐿) + 𝛾𝜀3cosh(𝜀𝐿)
𝛽
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Elementary Transfer Matrix for Laminates as In-Plane Wave Problem

Similar to the transfer matrix as SH wave propagation into the laminates, the solutions of dis-
placement 𝑢𝑥 and 𝑢𝑦 in each 𝑛𝑡ℎ layer for in-plane wave problem (coupled P and SV wave) are
investigated using Naiver-Lamé equations:

(𝜆 + 2𝜇)
𝑑2𝑢𝑥

𝑑𝑥2
+ (𝜆 + 𝜇)

𝑑2𝑢𝑦

𝑑𝑥𝑑𝑦
+ 𝜇

𝑑2𝑢𝑥

𝑑𝑦2
= 𝜌𝑢̈𝑥

(𝜆 + 2𝜇)
𝑑2𝑢𝑦

𝑑𝑦2
+ (𝜆 + 𝜇)

𝑑2𝑢𝑥

𝑑𝑥𝑑𝑦
+ 𝜇

𝑑2𝑢𝑦

𝑑𝑥2
= 𝜌𝑢̈𝑦

where 𝜆 is the first Lamé constant and 𝜇 is the shear modulus. The Helmholtz decomposing is
employed into in-plane components of (𝑢𝑥, 𝑢𝑦) in terms of scalar potential 𝜙 and 𝜓, which are:

𝑢𝑥 =
𝑑𝜙

𝑑𝑥
+
𝑑𝜓

𝑑𝑦
, 𝑢𝑦 =

𝑑𝜙

𝑑𝑦
+
𝑑𝜓

𝑑𝑥

Thus, two equations similar to (2.39) should be solved:

�
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
� =

1

𝑐2𝐿

𝜕2𝜙

𝜕𝑡2

�
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
� =

1

𝑐2𝑆

𝜕2𝜓

𝜕𝑡2

where 𝑐𝐿 = �
𝜆+2𝜇

𝜌
longitudinal wave speed and 𝑐𝑆 = �

𝜇

𝜌
shear wave speed. Therefore, the two

solutions are achieved:

𝜙 = 𝑁𝐿1𝑒
i(𝜔𝑡+𝑞𝐿𝑥−𝐾𝑦𝑦) + 𝑁𝐿2𝑒

i(𝜔𝑡−𝑞𝐿𝑥−𝐾𝑦𝑦)

𝜓 = 𝑁𝑆1𝑒
i(𝜔𝑡+𝑞𝑆𝑥−𝐾𝑦𝑦) + 𝑁𝑆2𝑒

i(𝜔𝑡−𝑞𝑆𝑥−𝐾𝑦𝑦)

where coefficients 𝑞2𝐿 = 𝜔2/𝑐2𝐿 −𝐾2
𝑦 and 𝑞2𝑆 = 𝜔2/𝑐2𝑆 −𝐾2

𝑦 . Combined with boundary condition
to eliminate the coefficients 𝑁𝐿,𝑆, the 4 × 4 transfer matrix is obtained: (assuming thickness is for
each phase is ℎ)

⎡
⎢
⎢
⎣

𝑢𝑥(ℎ)

𝑢𝑦(ℎ)

𝜎𝑥𝑥(ℎ)

𝜏𝑥𝑦(ℎ)

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

𝑁11 𝑁12 𝑁13 𝑁14
𝑁21 𝑁22 𝑁23 𝑁24
𝑁31 𝑁32 𝑁33 𝑁34
𝑁41 𝑁42 𝑁43 𝑁44

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑢𝑥(0)

𝑢𝑦(0)

𝜎𝑥𝑥(0)

𝜏𝑥𝑦(0)

⎤
⎥
⎥
⎦

where terms in elementary transfer matrix are:

𝑁11 = 𝐴1𝑞𝐿cos(𝑞𝐿ℎ) − i𝐾𝑦𝐴3cos(𝑞𝑆ℎ); 𝑁12 = −𝐴5𝑞𝐿sin(𝑞𝐿ℎ) − i𝐾𝑦𝐴7sin(𝑞𝑆ℎ);

𝑁13 = −𝐴6𝑞𝐿sin(𝑞𝐿ℎ) − i𝐾𝑦𝐴8sin(𝑞𝑆ℎ); 𝑁14 = 𝐴2𝑞𝐿cos(𝑞𝐿ℎ) − i𝐾𝑦𝐴4cos(𝑞𝑆ℎ);

𝑁21 = 𝐴3𝑞𝑆sin(𝑞𝑆ℎ) − i𝐾𝑦𝐴1sin(𝑞𝐿ℎ); 𝑁22 = −𝐴7𝑞𝑆cos(𝑞𝑆ℎ) − i𝐾𝑦𝐴5cos(𝑞𝐿ℎ);

𝑁23 = −𝐴8𝑞𝑆cos(𝑞𝑆ℎ) − i𝐾𝑦𝐴6cos(𝑞𝐿ℎ); 𝑁24 = 𝐴4𝑞𝑆sin(𝑞𝑆ℎ) − i𝐾𝑦𝐴2sin(𝑞𝐿ℎ);

𝑁31 = −𝐴1((𝜆 + 2𝜇)𝑞2𝐿 + 𝜆𝐾2
𝑦 )sin(𝑞𝐿ℎ) + (2i𝐾𝑦𝑞𝑆𝜇)𝐴3sin(𝑞𝑆ℎ);

𝑁32 = −𝐴5((𝜆 + 2𝜇)𝑞2𝐿 + 𝜆𝐾2
𝑦 )cos(𝑞𝐿ℎ) − (2i𝐾𝑦𝑞𝑆𝜇)𝐴7cos(𝑞𝑆ℎ);

𝑁33 = −𝐴6((𝜆 + 2𝜇)𝑞2𝐿 + 𝜆𝐾2
𝑦 )cos(𝑞𝐿ℎ) − (2i𝐾𝑦𝑞𝑆𝜇)𝐴8cos(𝑞𝑆ℎ);

𝑁34 = −𝐴2((𝜆 + 2𝜇)𝑞2𝐿 + 𝜆𝐾2
𝑦 )sin(𝑞𝐿ℎ) + (2i𝐾𝑦𝑞𝑆𝜇)𝐴4sin(𝑞𝑆ℎ);

𝑁41 = 𝐴3𝜇(𝑞
2
𝑆 − 𝐾2

𝑦 )cos(𝑞𝑆ℎ) − 2i𝐾𝑦𝜇𝐴1𝑞𝐿cos(𝑞𝐿ℎ);
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𝑁42 = 𝐴7𝜇(𝑞
2
𝑆 − 𝐾2

𝑦 )sin(𝑞𝑆ℎ) + 2i𝐾𝑦𝜇𝐴5𝑞𝐿sin(𝑞𝐿ℎ);

𝑁43 = 𝐴8𝜇(𝑞
2
𝑆 − 𝐾2

𝑦 )sin(𝑞𝑆ℎ) + 2i𝐾𝑦𝜇𝐴6𝑞𝐿sin(𝑞𝐿ℎ);

𝑁44 = 𝐴4𝜇(𝑞
2
𝑆 − 𝐾2

𝑦 )cos(𝑞𝑆ℎ) − 2i𝐾𝑦𝜇𝐴2𝑞𝐿cos(𝑞𝐿ℎ);

where coefficients 𝐴𝑖 are:

𝐴1 =
𝜔2𝜌 − 2𝜇𝐾2

𝑦

𝜔2𝜌𝑞𝐿
; 𝐴2 =

i𝐾𝑦
𝜔2𝜌𝑞𝐿

; 𝐴3 =
2i𝐾𝑦𝜇
𝜔2𝜌

; 𝐴4 =
1

𝜔2𝜌

𝐴5 =
2𝜇i𝐾𝑦
𝜔2𝜌

; 𝐴6 = −
1

𝜔2𝜌
; 𝐴7 = −

𝜔2𝜌 − 2𝜇𝐾2
𝑦

𝜔2𝜌𝑞𝑆
; 𝐴8 =

i𝐾𝑦
𝜔2𝜌𝑞𝑆
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Appendix C Plotting Kohmoto’s Invariant in

Mathematica

I𝜔 = 0

Khomotobandg =Plot3D[{x*y/2 + Sqrt[I𝜔 + 4 - xˆ2 - yˆ2 + xˆ2*yˆ2/4], x*y/2 - Sqrt[I𝜔 + 4 - xˆ2 -
yˆ2 + xˆ2*yˆ2/4]}, {x, -4, 4}, {y, -4, 4}, AxesLabel -> Automatic, Mesh -> None, ColorFunction
-> Function[{x, y, z}, RGBColor[1, 0.5, 0]], RegionFunction -> Function[{x, y, z}, x < -2 || x >
2 || y < -2 || y > 2 || z < -2 || z > 2], PlotRange -> {-5, 5}, AxesLabel -> { �𝑥, �𝑦, �𝑧}, PlotPoints ->
100, AxesStyle -> {Directive[Black, 14], Directive[Black, 14], Directive[Black, 14]}]

Khomotopassb =Plot3D[{x*y/2 + Sqrt[I𝜔 + 4 - xˆ2 - yˆ2 + xˆ2*yˆ2/4], x*y/2 - Sqrt[I𝜔 + 4 - xˆ2 -
yˆ2 + xˆ2*yˆ2/4]}, {x, -2, 2}, {y, -2, 2}, AxesLabel -> Automatic, Mesh -> None,ColorFunction
-> Function[{x, y, z}, RGBColor[1, 1, 0]],PlotPoints -> 100,RegionFunction ->Function[{x,
y, z}, -2 < x < 2 && -2 < y < 2 && -2 < z < 2], AxesLabel -> { �𝑥, �𝑦, �𝑧}, AxesStyle ->
{Directive[Black, 14], Directive[Black, 14], Directive[Black, 14]}]

Koh = Show[Khomotobandg, Khomotopassb]
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Huang, D. Gumbs, G. and Kolář, M. 1992. Localization in a one-dimensional Thue-Morse chain.
Physical Review B 46(18), pp. 11479-11486. doi: 10.1103/physrevb.46.11479

Hussein, M. Hulbert, G. and Scott, R. 2007. Dispersive elastodynamics of 1D banded mate-
rials and structures: Design. Journal of Sound and Vibration 307(3-5), pp. 865-893. doi:
10.1016/j.jsv.2007.07.021

Hussein, M. Leamy, M. and Ruzzene, M. 2014. Dynamics of Phononic Materials and Structures:
Historical Origins, Recent Progress, and Future Outlook. Applied Mechanics Reviews 66(4). doi:
10.1115/1.4026911

Jones, I. Movchan, A. and Gei, M. (2010). 2010. Waves and damage in structured solids with
multi-scale resonators. Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 467(2128), pp. 964-984. doi: 10.1098/rspa.2010.0319

Jounior, L, V. and Savi, A, M. 2016. Dynamics of Smart Systems and Structures: Concepts and
Applications. Switzerland: Springer.

Kadic, M. Milton, G. Van Hecke, M. and Wegener, M. 2019. 3D metamaterials. Nature Reviews
Physics 1(3), pp. 198-210. doi: 10.1038/s42254-018-0018-y.

Kane, C. and Lubensky, T. 2013. Topological boundary modes in isostatic lattices. Nature Physics
10(1), pp. 39-45. doi: 10.1038/nphys2835

Kenneth, M. Golden, Geoffrey R. Grimmett, Richard D. James, Graeme W. and Milton, Pabitra
N. 2012. Mathematics of Multiscale Materials. New York: Springer.

204



References

Khelif, A. Deymier, P. Djafari-Rouhani, B. Vasseur, J. and Dobrzynski, L. 2003. Two-dimensional
phononic crystal with tunable narrow pass band: Application to a waveguide with selective fre-
quency. Journal of Applied Physics 94(3), pp. 1308-1311. doi: 10.1063/1.1557776

King, P. and Cox, T. 2007. Acoustic band gaps in periodically and quasiperiodically modulated
waveguides. Journal of Applied Physics 102(1), p. 014902. doi: 10.1063/1.2749483

Kohn, W. 1959. Analytic Properties of Bloch Waves and Wannier Functions. Physical Review
115(4), pp. 809-821. doi: 10.1103/physrev.115.809
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