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a b s t r a c t 

The uptake of low carbon technologies, particularly Electric Vehicles (EVs) and Heat-Pumps 

(HPs), at the low voltage (LV) distribution network, in the quest of cutting down on green- 

house gas (GHG) emissions in the transportation and residential sectors, has the potential 

to cause general load increase and may lead to higher and longer peak load demand. This 

development can, as hinted in previous studies, pose a real challenge of capacity overload- 

ing to transformers at the LV distribution network of electricity system. Prolonged peri- 

ods of transformer overloading could lead to premature transformer failure and shortens 

transformer’s life expectancy. A direct solution to addressing transformer overloading is 

the upgrading of the transformer capacity. However, the number of LV distribution trans- 

formers in electricity system to be upgraded and the resources needed for such operation 

make the solution less desirable to the Distribution Network Operators (DNOs). Therefore, 

it is important to develop cost-effective solutions for the optimal utilization of the existing 

transformer capacity. Adaptive thermal loading of transformers is one of such solutions. 

This paper focusses on the Adaptive Thermal Loading (ATL) of transformers in LV distribu- 

tion networks with considerable penetration level of EVs and HPs. The thermal model of 

a 500-kVA, 11/0.415-kV (no load), 50-Hz, Dyn11, ONAN mineral oil filled, free breathing, 

ground mounted transformer serving a real and typical urban LV network in the United 

Kingdom (UK) is developed based on IEC 60,076–7:2005 standard and used as the case 

study. A method of adaptive thermal loading of the transformer is presented to examine 

its capacity performance when serving the future load of the LV network following the in- 

tegration of projected uptake figures of EVs and HPs for the years 2020, 2030, 2040 and 

2050 into the network. Given the load and temperature forecasts of a day, the method 

aims at optimizing, considering the real and present conditions of the operating environ- 

ment, the overall daily transformer capacity utilization that gives maximum daily return 

on investment without undermining reliability of supply and normal life expectancy of 

the transformer. Results show improved performances of the transformer when the adap- 

tive thermal loading method is used. 
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Introduction 

The energy consumption for residential heating in the United Kingdom (UK) in 2021 accounted for approximately 16% of 

all GHG gas emissions [1] . In the UK, most of the residential heating needs are met by gas-fired boilers [1] . In Great Britain

(GB) alone, 84.2% of households use gas-fired boilers for heating [2] . Also, in 2021, the transport sector accounted for 26%

of all GHG emissions in the UK [1] . The road transport, especially passenger cars, is the major contributor in this sector.

Internal Combustion Engine (ICE) cars, as at the end of 2021, made up above 90% of all cars licensed by propulsion/fuel type

in the UK [3] . 

To reduce emissions in the transport sector, EVs are expected to play a dominant role. The UK Government’s ambition 

is that nearly all cars and vans on the roads are zero emission by 2040 [4] . Government says as this number grows EVs

will become a “resource for a smart electricity ” bringing benefits for drivers and creating a more flexible and efficient energy

system [4] . 

Therefore, there is considerable potential in cutting down on GHG emissions in both residential and transport sectors 

by switching to low carbon sources and adoption of new technologies. Hence, the drive towards increasing awareness on 

the use of HPs for residential heating and EVs for road transportation. To this end, the UK Government initiated incentive

schemes such as ‘Plug-in Car Grant’ to encourage uptake of EVs and ‘Renewable Heat Incentive’ to encourage the switching 

from fossil fuel heating to renewable heating [ 5 , 6 ]. 

A significant uptake of HPs and EVs in a geographical area will increase the load demand of that area and may also

increase the magnitude and duration of its peak load demand. A number of studies [7–12] assessing the impacts of uptake

of EVs and HPs on the electricity distribution networks concluded that the distribution transformers may be overloaded. 

Prolonged and/or accumulated periods of overloading could shorten transformer’s life expectancy and leads to premature 

failure [ 13 , 14 ]. Transformer is one of the most critical equipment in the power system [15] . Amongst the impacts of an

unplanned outage of a transformer are reduction in system reliability and economic losses to DNOs [ 16 , 17 ]. 

In previous literature many methods have been proposed for managing EVs and HPs load without overloading the trans- 

former. In [11] , a temperature-based smart charging algorithm was developed by combining a transformer thermal ageing 

model with empirical travel behaviour of the EVs owners. The study results claimed that delaying charging until after mid- 

night can increase, rather than decrease the transformer ageing. However, the transformer thermal ageing model was based 

on ‘Equivalent ageing Factor’ averaged over a 12-hour period and not over a 24-hour period. 

In [12] , a Java-based simulation platform was developed to study the ageing Acceleration Factor and Loss-of-Life of a 

distribution transformer under different scenarios of EV battery charging. Results indicated that an intelligent management 

of EV battery charging profile, based on the assumption of communication between residential storage device and EV via 

an intelligent charge controller, could help manage the distribution transformer loss-of-life. The capital investment for the 

storage device and the communication set-up was, however, not costed. 

Three different coordination mechanisms for negotiation between DNOs and EVs aggregators were proposed in [18] to 

manage load congestion problem. But none of these mechanisms considered the thermal behaviour of the transformer. 

In [19] , an integrated approach for real-time load congestion management by combining a cost-based Demand-Response 

mechanism, real-time thermal model of transformer and active power curtailment was proposed. The integrated approach in 

[19] is however contingent on the availability of small-scale prosumers, i.e. end-users and local producers, in the distribution 

network. 

In [20] , an Enhanced Transformer Ratings Tool was developed based on the IEC 60,076–7 thermal model. The tool was

tested on 33/11 kV primary distribution transformers with the aim of calculating enhanced seasonal transformer ratings 

for winter, summer, and spring/autumn. However, in the development of the tool in [20] which aims to calculate a single

enhanced seasonal thermal rating, average seasonal temperatures were used, and not measured temperature. 

In this paper, an Adaptive Thermal Loading (ATL) method of distribution transformer is proposed. In this method, a 

Non-Linear Programming (NLP) function is formulated and solved to determine optimal, considering the real and present 

conditions of the operating environment, overall daily transformer capacity utilization that will yield maximum daily return 

on the capital invested on the transformer without sacrifice of normal life expectancy of the transformer. 

The aim of this study is to investigate to what extent the capacity headroom for the accommodation of more EVs and

HPs load on the LV distribution network could be raised while asset reinforcement deferral is enforced. It is assumed here

that associated equipment such as tap changers, switchgears, bushings, protection and metering instruments, busbars, etc., 

can withstand the additional stress that comes with the excess load above the transformer nameplate rating. The proposed 

method is applied on a distribution transformer serving a real urban LV network with projected uptake figures of HPs and

EVs for the year 2050. 

The rest of the paper is organized as follows: Section 2 describes the distinction and the relative merits/demerits between 

the adaptive thermal loading of transformer and static loading of transformer. In section 3, transformer thermal modelling 

based on IEC 60,076–7:2005 is presented. The NLP function for the adaptive thermal loading of the transformer is formulated 

in Section 4. Details of the real LV network used as the case study are presented in Section 5. The proposed method is

implemented on the case study in Section 6. Results are presented and discussed in Section 7 and in Section 8 summary

and conclusions are drawn. 
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Fig. 1. Transformer thermal diagram [13] . 

 

 

 

 

 

 

 

 

 

 

 

 

Adaptive thermal loading versus static loading of transformer 

The ageing process and hence the expected life of an oil-immersed transformer are principally determined by the ageing 

of the paper insulation of its winding [21] . The paper insulation degradation is a function of temperature, moisture con-

tent, oxygen content and time [22] . Moisture and oxygen contents of the insulation paper can be minimised with modern

preservation techniques [ 23 , 24 ]. Temperature and time therefore remain as the major factors determining the degradation 

rate of paper insulation and therefore the expected life of the transformer [25] . The temperature of the hottest spot within

the transformer winding, known as the ‘Hot Spot Temperature’ (HST) is reckoned as the operating temperature of the paper 

insulation [26] . The higher the HST, the quicker the winding insulation degrades and the faster the transformer ages. The

degradation rate of insulation paper doubles for every 6 °C rise above the rated HST [13] . The HST is a function of ambient

air temperature, oil temperature, and transformer design amongst others [27] . 

Static load rating is specified by the manufacturers to limit the operating temperature to less than 110 °C, for a thermally

upgraded insulation paper, based on ambient temperature of up to 40 °C to ensure normal life expectancy of the transformer

[14] . However, in most cases, the ambient temperature in UK is far below 40 °C and the transformers are operating, most of

the time, below their temperature limits, i.e., thermally low loaded. This condition can be exploited to safely maximise the 

use of existing transformer capacity based on real conditions in which the transformer operates. Transformers can therefore 

be adaptive thermally loaded based on real environmental conditions and HST rather than on static load rating. The use of

static load rating does not fully capture the real and present thermal conditions and can lead to false indication of capacity

reinforcements and/or strategic measures to reduce load due to false indication of full capacity being exhausted. 

In adaptive thermal loading of the transformer, load data is considered along with meteorological measurements. Using 

these pieces of information, transformers can be loaded in such a way to gain variable capacity headroom by leveraging on

environmental cooling. This implies that adaptive thermal rating often exceeds the nameplate rating. However, under harsh 

environmental conditions, adaptive thermal rating may be lower than the nameplate rating of the transformer. The rationale 

behind adaptive thermal loading of transformer is to enable the DNOs use more intensively the distribution transformers 

and possibly achieve capacity reinforcement deferral in the wake of expected load increase due to the uptake of HPs and

EVs in homes. 
3 
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Transformer thermal modelling 

IEC 60,076–7:2005 stipulates how oil-immersed transformer can be operated under different ambient temperature and 

time-varying load. Fig. 1 is the transformer thermal diagram per [13] which explains the temperature distribution inside the 

transformer. 

The following assumptions are made about temperature distribution inside the transformer [13] : 

• The oil temperature increases linearly from bottom to top of the tank irrespective of the cooling mode. 

• The temperature rise of the winding increases linearly and is parallel to the oil temperature rise, with a constant differ-

ence (gr) between the two parallel lines. 

• Due to the allowance being made for the increase in stray losses, the hot-spot temperature rise is higher than the tem-

perature rise of the conductor at the top of the winding. 

From Fig. 1 , it is seen that the HST(t) is a sum of three components: the ambient temperature T a (t), top-oil temperature

rise �TOR (t) and the hot-spot to top-oil gradient �HSTOG (t) as expressed in (1). 

HST ( t ) = T a ( t ) + �T OR ( t ) + �HST OG ( t ) (1) 

The HST (t) during a transient period, i.e., load change from one steady state to another can be modelled by functions of

the exponential forms of top-oil temperature and hot-spot to top-oil gradient as in (2) and (3) respectively: 

For load increase: 

�T OR ( t ) = �T OR ( i ) + [ �T OR ( f ) − �T OR ( i ) ] × f 1 ( t ) (2) 

�H ST OG ( t ) = �H ST OG ( i ) + [ �H ST OG ( f ) − �H ST OG ( i ) ] × f 2 ( t ) (3) 

Where �T OR (i ) and �HST OG (i ) are initial top-oil temperature rise ( °C) and initial hot-spot to top-oil gradient ( °C) at the

beginning of the load change. �T OR ( f ) and �HST OG ( f ) are final top-oil temperature rise ( °C) and final hot-spot to top-oil

gradient ( °C) at the end of the load change. f 1(t) and f 2(t) are exponential functions that describe the relative increase of

top-oil temperature rise and hot-spot to top-oil gradient per unit of the steady state value respectively. 

f 1 ( t ) = 1 − e −t/ ( k 11 ×τo ) (4) 

f 2 ( t ) = 

[
k 21 

(
1 − e −t/ ( k 22 ×τw ) 

)
− ( k 21 − 1 ) 

(
1 − e −t/ ( τo/k 22 ) 

)]
(5) 

Where k 11 , k 21 and k 22 are thermal model constants. τo, τw 

and t are oil time-constant (mins), winding time-constant

(mins) and duration of the load (mins) respectively. 

For load decrease: 

�T OR ( t ) = �T OR ( f ) + [ �T OR ( i ) − �T OR ( f ) ] × f 3 ( t ) (6) 

�H ST OG ( t ) = �H ST OG ( f ) + [ �H ST OG ( i ) − �H ST OG ( f ) ] × f 4 ( t ) (7) 

Where f 3(t) and f 4(t) are exponential functions that describe the relative decrease of top-oil temperature rise and 

hot-spot to top-oil gradient per unit of the steady state value respectively. 

f 3 ( t ) = e −t/ ( k 11 ×τo ) (8) 

f 4 ( t ) = 

[
k 21 ×

(
e −t/ ( k 22 ×τw ) 

)
− ( k 21 − 1 ) ×

(
e −t/ ( τo/k 22 ) 

)]
(9) 

In (5) and (9), if k 21 is unity and τw 

is negligible, then (3) and (7) become 

�H ST OG ( t ) = �H ST OG ( f ) (10) 

The initial and final top-oil temperature rise after a load change over a period t are given by (11) and (12) respectively. 

�T OR ( i ) = �T OR ( R ) ×
(

(K 

2 
i 

× R ) + 1 

( R + 1 ) 

)
x (11) 

�T OR ( f ) = �T OR ( R ) ×
(

(K 

2 
f 
× R ) + 1 

( R + 1 ) 

)
x (12) 

Where �T OR (R ) is the top-oil temperature rise ( °C) at rated load. R is the ratio of loss at rated load to no-load loss. K i is

the ratio of initial load to rated load. K f is the ratio of final load to rated load and x is the oil exponent constant. 

Similarly, the initial and final hot-spot to top-oil gradient after load change are given by (13) and (14) respectively. 

�H ST OG ( i ) = �H ST OG ( R ) × ( K i ) y (13) 
4 
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�H ST OG ( f ) = �H ST OG ( R ) ×
(
K f 

)
y (14) 

Where �HST OG (R ) is hot-spot to top-oil gradient ( °C) at rated load and y is the winding exponent constant. 

The degradation rate of the transformer winding insulation obeys the Arrhenius reaction rate theory [28] . Therefore, the 

per-unit life ( PUL ) of transformer is given by (15): 

P UL ( t ) = 9 . 8 × 10 

−18 ×, e ( , 
150 0 0 

HST ( t ) +273 ) (15) 

The inverse of the PUL is the ageing Acceleration Factor ( AAF ). 

AAF ( t ) = 

1 

P UL ( t ) 
(16) 

From (15) and (16), for HST of 110 °C both PUL and AAF are unity. For HST greater than 110 °C, PUL is less than unity and

AAF is higher than unity. Conversely, for HST less than 110 °C, PUL is higher than unity and AAF is less than unity. 

The estimate of the transformer loss life ( LoL ) in percentage of normal life expectancy after a 24-hour operating period

can be determined by (17): 

LoL ( 24 hr ) = 

∑ T 
t=1 ( AAF ( t ) × T s ( t ) ) ∑ T 

t=1 T s ( t ) 
× 24 

N li f e 

× 100% (17) 

In (17), t is the index of time interval. T is the total number of time intervals. T s is the duration of time interval in

hours. N li f e is the normal life expectancy of the transformer in hours. 

Transformer adaptive thermal loading: mathematical formulation 

Transformers are important components, in terms of both capital investment and reliability of the power system. High- 

capacity utilisation factor of transformers and good returns on investments are therefore the expectations of the DNOs. 

The adaptive thermal loading of transformer is formulated as an optimisation problem with the objective of maximising 

daily return on the transformer utilisation in accordance with the real and present operating and environmental conditions. 

Constraints to the optimisation problem are the thermal and load conditions that ensure the normal life expectancy of the 

transformer. The objective function is formulated and expressed in (18): 

DRU = max 

24 ∑ 

t=1 

[(
L ( t ) × EP ( t ) 

)
−

(
T OC ( t ) × LoL ( t ) 

)]
(18) 

Where DRU is the ‘Daily Return on transformer Utilisation’ in currency unit (£). L (t) is the load on transformer at time t

in kW. EP (t) is the ‘Energy Price’ at time t . T OC (t) is the ‘Total Owning Cost’ of the transformer in currency unit (£). LoL (t) is

the loss of life of the transformer at time t in per unit. 

Total owning cost T OC (t) not only takes the initial cost of buying the transformer into account but also the cost to operate

and maintain the transformer [29] . TOC can be determined as the sum of the initial cost price C p , the cost of no-load C NL ,

and the cost of load-loss C LL [29] . 

T OC ( t ) = C P + C NL + C LL ( t ) (19) 

The objective function in (18) is subject to the constraints of (20) to (23): 

K ( t ) ≤ 1 . 8 (20) 

�T OR ( t ) ≤ 110 

◦C (21) 

HST ( t ) ≤ 140 

◦C (22) 

LoL ( 24 hr ) ≤ 0 . 0133% (23) 

The constraint expressed in (20) limits the transformer loading to 1.8 per unit of its rated capacity. In (21), the top-oil

temperature rise is limited to 110 °C to manage pressure build-up. This is to prevent expansion of oil which could lead

to overflow of oil in the tank. The HST is kept under 114 °C in (22) to prevent formation of gas bubbles in the oil and

paper insulation. Eq. (23) ensures that the daily cumulative loss of life of the transformer insulation does not exceed that of

normal operation of the transformer at HST of 110 °C for 24 h. 

Fig. 2 shows the algorithm for adaptive thermal loading of transformer and optimal DRU. 
5 
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Fig. 2. Algorithm for adaptive thermal loading of transformers and optimal DRU . 

Table 1 

Feeders Analysis. 

Feeder 2014 Annual load (MWh) Length (m) No of Buildings 

1 360.78 1190 95 

2 202.29 555 51 

3 402.70 1155 120 

4 108.94 250 32 

Total 1074.71 298 

 

 

 

 

 

Case study 

A distribution transformer serving a real urban residential LV network in Cardiff is the case study. The area is supplied

by a 500-kVA, 11/0.415-kV (no load), 50-Hz, Dyn11, ONAN mineral oil filled, free breathing, ground mounted transformer. 

The transformer supplies 347 households consisting of 298 buildings in four feeders. Fig. 3 shows the simplified diagram of

the LV network and Table 1 gives the analysis of the number of buildings per feeder, annual baseline load of the feeders in

the year 2014 and the length of the feeders. 

In this work, residential baseline electricity demand is described as the household electricity demand which excludes 

the electricity demand of EVs and HPs. In 2014, the uptake levels of both EVs and HPs were very small, and their combined

electricity demand was not visible in the total residential annual electricity demand presented in [ 30 , 31 ]. Therefore, residen-
6
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Fig. 3. Simplified diagram of the case study LV network. 

Table 2 

Number Of EVs And HPs in the LV Network Under TD Scenario, 2020–2050 [32] . 

Year Number of EVs (Units) Number of HPs (Units) 

2020 23 5 

2030 93 45 

2040 167 95 

2050 256 207 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tial annual electricity demand in 2014 is regarded as ‘reference baseline’ in the context of this work. Projected residential 

annual baseline electricity demand for 2020, 2030, 2040 and 2050 of GB are estimated from the breakdown analysis of the

annual demand presented in National Grid’s Future Energy Scenarios (FESs) [30] . 

National projection figures of the different uptake scenarios of EVs and HPs as presented in the National Grid’s FESs 

document [30] were scaled down to the level of the LV network. The process of scaling down was well detailed in [32] .

National Grid’s FESs presents a number of “plausible and credible pathways for the future of energy for GB, from today out

to 2050 ′′ . These scenarios are developed based on the energy trilemma of security, affordability and sustainability [30] . 

In the FESs, the most optimistic uptake scenario for low carbon technologies (LCTs) in general and EVs and HPs in par-

ticular is called the ‘Two Degrees’ (TD). The scenario name ‘TD’ is derived from the Article 2 of the Paris Agreement [33] . It

indicates the target of holding the increase in global average temperature to well below 2 °C above the pre-industrial levels.

The TD depicts a scenario of prosperous economic growth, increased focus on RESs and LCTs, and strong political drive to

achieve the renewable integration and all of UK’s 2050 emissions reduction targets. It is a scenario in which technology 

and investment are focused on innovation in renewable energy sources (RESs) (solar and wind) and low carbon (nuclear) 

generation. 

Table 2 presents the number of EVs and HPs the LV network is hosting under the TD scenario in the years 2020, 2030,

2040 and 2050. 

By the year 2050, the LV network is hosting 256 EVs and 207 HPs. The EVs and the HPs are distributed amongst the

feeders based on the ratio of the number of buildings per feeder. Table 3 gives detailed distribution of EVs and HPs between

the feeders of the LV network in TD scenario. 

Future load profiles of the LV network for the years 2020, 2030, 2040 and 2050 were respectively created considering the

baseline load growth and uptake of EVs and HPs by the residents of the area. Based on the normalisation of load profiles

from [34] , projected annual baseline demand of the LV network for the years 2020, 2030, 2040 and 2050 are converted to

half-hourly seasonal (summer weekday and winter weekday) daily profiles. 

The average daily EVs charge requirements of the LV network as determined in [32] and the half-hourly percent of

average daily charge in [35] are adopted to generate the actual average half-hourly EV charging profile. Fig. 4 shows the EVs

daily charge requirements distribution and Fig. 5 is the average half-hourly EV charging profile. The daily average electricity 
7
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Table 3 

EVs And HPs distribution between the feeders in TD scenario. 

Feeder Year No of EVs (Units) No of HPs (Units) 

1 2020 7 1 

2030 28 14 

2040 50 29 

2050 77 62 

2 2020 5 1 

2030 19 9 

2040 33 19 

2050 51 41 

3 2020 9 2 

2030 37 18 

2040 67 38 

2050 102 83 

4 2020 2 1 

2030 9 5 

2040 17 10 

2050 26 21 

Fig. 4. EVs daily charge requirement distribution [32] . 

Fig. 5. Average half-hourly EV charging profile [35] . 

 

 

 

demand of a 6-kW variable speed air-source HP, shown in Fig. 6 , whose operating profile for the provision of both residential

space heating and hot water was derived from the simulation described in [32] was used in this study. 

Powerflow simulation study of the created future load profiles of the LV network was performed for the years 2020, 

2030, 2040 and 2050. GridLAB-D power system simulation software was used for the powerflow simulation study. The 

powerflow simulation showed the impacts of the load demand of the uptake of EVs and HPs in the LV network on the

transformer loading. Fig. 7 shows the transformer loading under the TD scenario on a typical summer weekday (TDSmrWd) 

in the years 2020, 2030, 2040 and 2050. Fig. 8 , on the other hand, shows the transformer loading under the TD scenario
8 
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Fig. 6. HP daily average demand [32] . 

Fig. 7. Half-hourly transformer loading, TDSmrWd, 2020 – 2050. 

 

 

 

 

on a typical winter weekday (TDWtrWd) in the years 2020, 2030, 2040 and 2050. The transformer is adequate to meet the

load requirements of the network in the TDSmrWd scenario for all the years considered (see Fig. 7 ). Whereas in Fig. 8 , the

transformer experienced sustained overload of more than 30% in 2050_TDWtrWd. 

The challenge is therefore the overloading of the transformer which could lower the headroom for the uptake of EVs 

and HPs in the LV network. Upgrading the transformer capacity to meet the winter load demand will be uneconomical as

the transformer is underutilised even on a typical summer weekday in 2050. The proposed adaptive thermal loading of 

transformer is therefore applied. The goal is to optimize the capacity utilization of the transformer in an attempt to meet all

the load requirements of the network without undermining system reliability and normal life expectancy of the transformer. 

This can be achieved by leveraging on the real weather conditions of winter to thermally load the transformer. 
9 
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Fig. 8. Half-hourly transformer loading, TDWtrWd, 2020 - 2050. 

Fig. 9. Transformer Loading and load losses. 
Implementation 

The transformer was studied, and its thermal behaviours analysed when carrying the load demand of the LV distribution 

network under TDWtrWd scenario in 2050 . Three situations were investigated to verify the usefulness of the proposed 

adaptive loading method: 
10 
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Fig. 10. Transformer Loading profiles on a winter weekday in 2050. 

 

 

 

 

 

 

 

 

1) Dumb loading (DL): The transformer is allowed to carry the load demand of the LV area without any intervention. This is

a do-nothing situation. To simulate the situation, Eq. (18) is applied on the transformer without imposing the constraints 

of Eqs. (20) to (23) while the thermal condition of the transformer is evaluated. 

2) Capacity enhancement (CE): The capacity of the transformer is upgraded to a higher rating. To simulate this situation, 

the capacity of the case study transformer is upgraded to 800kVA and then allowed to carry the load demand of the LV

area without any further intervention. That is according to Eq. (18) without imposing the constraints of Eqs. (20) to (23) .

3) Adaptive loading (AL): The transformer is allowed to carry the load demand of the LV area based on the proposed

adaptive thermal loading method. The objective function of Eq. (18)) was implemented on the transformer subject to the 

constraints of Eqs. (20) to (23) . 

In each of the three situations, the following plots of the transformers were obtained and compared. 

• Transformer loading profile 

• Transformer utilisation factor 

• Daily HST plot 

• Daily cumulative LoL plot 

• Daily cumulative DRU plot 

The parameters of the transformer of the LV distribution network are given in Table 4 . 

Ambient temperature data for a typical winter day and a typical summer day are from the MET Office [36] . The rated load

loss of the transformer was determined from the power flow simulation. Fig. 9 is the plot of transformer loading against the

load losses for some data points. From the plot of Fig. 9 , the winding resistance of the secondary is estimated to be 0.02 �. 

The UK day-ahead wholesale electricity price from N2EX [37] divided by a factor of 0.363 to reflect the total electricity

price, in line with the Office of Gas and Electricity Markets (Ofgem) electricity bill breakdown [38] gives the energy price

used in the objective function. The cost price of transformers was supplied by a UK-based power equipment marketing 

company on a non-disclosure agreement. 

Analytical Solver®, a commercial optimization software package from the Frontline Solvers [39] , was used to solve the 

optimization problem. The problem model was diagnosed as Non-Convex Non-Linear Programme (NonCvx NLP) and it was 

solved with KNITRO (V10.3.0.0) Solver Engine. 
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Table 4 

Distribution Transformer Parameters. 

Parameters Values 

Rating 11/0.4 kV,500kVA 

Cooling type ONAN 

x 0.8 

y 1.6 

k 11 1.0 

k 21 1.0 

k 22 2.0 

�T OR (R ) 65 °C 
�HST OG (R ) 23.0 °C 
N li f e 180,000hours 

τo 180minutes 

τw 10minutes 

R 5 

Rated load current (L r ) 722.5A 

Fig. 11. Transformer Utilisation Factors on a winter weekday in 2050. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results and discussion 

Fig. 10 shows the load demand of the LV area and the transformer loading profiles of the three investigated situations

on a typical winter weekday in 2050. The load demand exceeds the transformer limit before enhancement by an average 

of about 30% throughout the evening period in the DL profile. In the AL profile, the loading capability of the transformer

is above the transformer limit before enhancement throughout the whole period. However, it is deficient by about 15% on 

average in meeting the evening load demand of the LV area. After the transformer capacity is upgraded, the CE profile

shows, as seen in Fig. 10 , that the load demand of the LV area is satisfied with the transformer having surplus capacity. 

Fig. 11 shows the utilisation factors of the transformers in each of the loading profiles. In the DL profile, the transformer

has an average daily utilisation factor of about 0.9. In the AL profile, the transformer has an almost constant utilisation

factor averaging 1.18 throughout the day. However, it is observed in the AL profile that the transformer utilisation factor at

night time slightly decreases with time into the day. 

This is because as the temperature rises from the night to the day, the transformer adapts and adjusts its loading capa-

bility accordingly. In the CE profile, the transformer has an average daily utilisation factor of about 0.56. 

Thermal behaviours (HST curves) of the transformers under the three investigated loading profiles are presented in 

Fig. 12 . As seen, the HST of the transformer in the DL profile is well below the 110 °C mark that ensures normal life

expectancy until 17:00 h when the HST increases rapidly. 

Between 17:00 h and 22:30 h the HST is above 120 °C reaching 138 °C between 18:00 h and 19:00 h. This implies that the

transformer in the DL profile is thermally under-loaded up until 17:00 h when it is now thermally overloaded for the rest

of the evening. The HST of the transformer in the AL profile, as seen in Fig. 12 , is almost constant at 110 °C throughout the

day. This implies that the transformer in the AL profile is adequately thermal loaded throughout the day. In the CE profile

(see Fig. 12 ), the HST of the transformer is below 110 °C throughout the day reaching a maximum of 72 °C at 18:30 h. The

transformer is therefore thermally under-loaded. 
12 
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Fig. 12. HST curves of transformers on a winter weekday in 2050. 

Fig. 13. Daily cumulative LoL plots of transformers on a winter weekday in 2050. 

 

 

 

 

 

 

 

 

 

 

 

 

The daily cumulative loss of life of the transformers in each of the loading profiles on a winter weekday in 2050 are

presented in Fig. 13 . For the DL profile, the cumulative loss of life of the transformer is almost nil until 17:00 h when it

increases rapidly to reach a maximum of 0.02% at the end of the day. 

The trend is due to the fact that the transformer in DL profile is initially thermally under-loaded until 17:00 h and

thereafter thermally overloaded for the rest of the evening. The daily cumulative loss of life of the transformer in DL profile

is about two times above normal. For the AL profile, the cumulative loss of life of the transformer gradually increases from

zero at 0 0:0 0 h and reaches a maximum of about 0.01% at 23:30 h. This is the normal daily loss of life for a full life

expectancy of the transformer. The daily cumulative loss of the transformer in the CE profile is almost zero as seen in

Fig. 13 . This is because the transformer is thermally under-loaded throughout the day. This practically implies that under 

this condition the transformer could out-live its normal life expectancy. 

The daily return on utilisation of the transformer in each of the loading profiles on a winter weekday in 2050 are pre-

sented in Fig. 14 . The daily return on utilisation of transformer in DL and CE profiles are almost equal. 

This is because their TOCs are almost equal. The high cost of loss of life of transformer in DL profile almost balances

the initial high cost of a higher rating transformer in CE profile. The daily return on utilisation of transformer in AL is the

highest at a value of £4350, which is £835 more than DRU of CE. AL profile has the highest DRU because the transformer

utilisation factor is relatively high and the loss of life of the transformer is moderately normal. 

Conclusions 

An adaptive thermal loading method of distribution transformer serving LV area distribution network characterised by 

significant uptake of EVs and HPs is presented. The aim is to provide a cost-effective solution to the problems of transformer
13 
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Fig. 14. Daily return on utilisation of transformers on a winter weekday in 2050. 

 

 

 

 

 

 

 

 

 

overloading and its attendant consequences of possible premature failure of transformer and restriction of further uptake of 

EVs and HPs. 

A distribution transformer serving a typical real urban LV network in the UK is used as the case study. Future load

profiles of the LV network for the years 2020, 2030, 2040 and 2050 were respectively created considering the uptake of EVs

and HPs by the residents of the area. In the method, a Non-Linear Programming (NLP) optimization function is formulated 

and solved to determine optimal, considering the real and present conditions of the operating environment, overall daily 

transformer capacity utilization that will yield maximum daily return on the capital invested on the transformer without 

sacrifice of normal life expectancy of the transformer. The optimisation problem of the proposed adaptive thermal loading 

method was solved using Analytical Solver® – a commercial optimization software package from the Frontline Solvers. To 

verify the usefulness of the proposed method, three situations were investigated: 

1) Dumb loading (DL) : The transformer is allowed to carry the load demand of the LV area without any intervention. This

is a do-nothing situation. 

2) Capacity enhancement (CE) : The capacity of the transformer is upgraded to a higher rating, i.e. replace the transformer 

with one of higher rating. 

3) Adaptive loading (AL) : The transformer is allowed to carry the load demand of the LV area based on the proposed

adaptive thermal loading method. 

Results showed that the loadability of the transformer increased by about 18% over its static rating in winter with the

proposed method of loading. Before the proposed method, the transformer was overloaded by about 30% for not less than 

five hours and suffered a daily loss of life of 0.02%, which is twice above normal daily loss of life. With the proposed method,

the overloading was reduced to 15% and the daily loss of life of the transformer was also reduced to 0.01% that ensures full

life expectancy of the transformer. Upgrading the transformer capacity resulted in low-capacity utilisation factor. 

The proposed adaptive thermal loading of distribution transformers would particularly be useful to the DNOs for the 

following reasons: 

• It provides DNOs with information on the loading and thermal limits of distribution transformers at different time of the 

day. 

• The information on the thermal limit of distribution transformers would enable DNOs to make better informed decisions 

about transformer loading, capacity reinforcement and load management techniques that are not based on static rating 

of transformers. 

Future research on this topic will be focused on load management techniques that complement the adaptive thermal 

loading of the transformer to cost-effectively meet all the load demand of the LV network. 

To bring Africa and the African Union (AU) Agenda 2063 into the perspective of this paper, the proposed adaptive ther-

mal loading of distribution transformers would help in achieving the priority areas of the seventh goal of the AU Agenda

2063. The seventh goal of the AU Agenda 2063 is about environmental sustainability and climate resilient economies and 

communities. An effect of the climate change is extreme weather conditions – high temperatures especially in Africa. Adap- 

tive thermal loading of transformers rather than static (or nameplate capacity) loading would ensure that transformers are 

not dangerously overloaded and prevent premature failure of transformers. The proposed model presented in this paper is 

extendable and deployable even in Africa. 
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