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Abstract

Interactions between coinfecting pathogens have the potential to alter the course of infection

and can act as a source of phenotypic variation in susceptibility between hosts. This pheno-

typic variation may influence the evolution of host-pathogen interactions within host species

and interfere with patterns in the outcomes of infection across host species. Here, we exam-

ine experimental coinfections of two Cripaviruses–Cricket Paralysis Virus (CrPV), and Dro-

sophila C Virus (DCV)–across a panel of 25 Drosophila melanogaster inbred lines and 47

Drosophilidae host species. We find that interactions between these viruses alter viral loads

across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a

~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evi-

dence of a host genetic basis for these effects. Across host species, we find no evidence of

systematic changes in susceptibility during coinfection, with no interaction between DCV

and CrPV detected in the majority of host species. These results suggest that phenotypic

variation in coinfection interactions within host species can occur independently of natural

host genetic variation in susceptibility, and that patterns of susceptibility across host species

to single infections can be robust to the added complexity of coinfection.

Author summary

The susceptibility of a host to infection can be influenced by the presence of co-occurring

(i.e., coinfecting) pathogens, which can interact by suppressing and activating host immu-

nity, and competing for host resources. The influence of coinfections on host susceptibil-

ity could have ramifications for the evolution of hosts and pathogens, and this may be

seen within a single host species as a change in the contribution of host genetics to suscep-

tibility during coinfections, and across host species as a change in the ability of evolution-

ary relationships to explain similarities in susceptibility. Here, we test these possibilities by

measuring susceptibility to two different Cripaviruses during single infections and coin-

fections across different insect host genotypes and host species. We find that these two

viruses interact during coinfections within the fruit fly Drosophila melanogaster, altering

host susceptibility, but that variation in this interaction didn’t show any evidence of being

influenced by host genetics. Similarly, we find little evidence of the explanatory power of
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evolutionary relationships across host species changing between single infections and

coinfections. These results suggest that variation in interactions between pathogens can

occur without the influence of host genetics, and that it is possible for patterns in suscepti-

bility across host species measured during single infection to be maintained during

coinfection.

Introduction

Coinfections–simultaneous infections of a host with multiple pathogen lineages or species–are

ubiquitous in nature, and represent the real-world context in which many infections occur [1–

3]. Interactions between pathogens during coinfection can alter the virulence experienced by

the host, and the loads and transmission rates of one or both pathogens [4–9]. At a population

level, these interactions can lead to changes in infectious disease dynamics [10,11], such as the

exclusion of novel viruses from host populations with other established pathogens [12,13], or

fluctuations in the epidemic spread of one virus depending on the prevalence of other viruses

[14,15]. These changes can ultimately alter the selective pressures imposed on hosts and patho-

gens, and coinfections have been proposed as a mechanism for the maintenance of genetic

diversity in pathogen populations; as the fitness of pathogen genotypes may fluctuate not only

in red queen dynamics with the host but also with coinfection prevalence and a pathogen’s

competitive ability across coinfection scenarios [16]. Despite this, coinfections remain a largely

understudied source of phenotypic variation during infection, and further investigation of

their influence on the outcome of infection in different hosts and host species is needed.

Within coinfected hosts, pathogens can interact directly, such as through the production of

toxins, modulation of the opposing pathogen’s gene expression, and the production of hybrid

virions [17–19], or indirectly through the production of common goods, competition for host

resources, and interactions with host gene expression and immunity [20–25]. For example, in

HIV-virus coinfections–a mechanistically well studied set of interactions due to their sus-

pected involvement in AIDS progression [26]–several viruses have been shown to alter suscep-

tibility to HIV infection by changing the expression of cell surface receptors CD4 and CCR5

[27,28]. In the case of human cytomegalovirus (HCMV), which upregulates CCR5 expression

and increases HIV viral loads in coinfected tissues, HIV can reciprocally induce the expression

of transmembrane proteins that promote HCMV infection [29,30]. Conversely, measles virus

coinfections can inhibit HIV-1 replication due to measles-related activation of proinflamma-

tory cytokines [31]. As such, the presence of coinfecting viruses may enhance or interfere with

the ability of a virus to effectively establish an infection in a host, with these interactions often

mediated by host components.

Despite the known role of host components in many coinfections, the extent to which host

genetic variation in these components can influence the strength of interactions between path-

ogens–and so the ability of hosts to evolve directly to selective pressures imposed by coinfec-

tion–is unknown. Evidence suggesting a role of host genetics in the outcomes of coinfections

is limited; however, several studies in plants have shown that pathogen community composi-

tion, coinfection prevalence, and disease severity during coinfection can vary non-randomly

between host genotypes [32–34]. Coinfections can also be influenced by host dietary choices

and the quantity of nutrients available in the host [35,36]–both of which are heritable traits

[37,38]–which suggests that host genetic variation may influence coinfection outcomes.

Broadly, we may expect host genetic variation to lead to changes in the strength of interaction

between coinfecting pathogens when the interaction occurs through modulation of a host
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component (e.g., immune pathways or resource competition), or when host genetic variation

influences the pathogen load of one or both pathogens.

Variation in the outcomes of coinfection across host species has also received relatively little

attention, with most cross-species studies to date focusing either on single infections in con-

trolled experimental systems [39–46] or looking for broad patterns in infections across large

datasets of natural systems where coinfection status is unknown [47–53]. These studies have

shown that the evolutionary relationships between host species can explain a large proportion

of the variation in infection traits. For example, virulence tends to increase [46–48], and

onward transmission and pathogen load decrease [40,47], with greater evolutionary distance

between donor and recipient hosts. Irrespective of distance to the donor host, closely related

species also tend to share similar levels of susceptibility to novel pathogens [40–42]. Phyloge-

netic models such as these form part of the growing field of zoonotic risk prediction, the aim

of which is to provide accurate and actionable predictions of host-virus interactions to inform

public health measures [54]. The accuracy of current models may be improved by identifying

and incorporating additional sources of variation in the outcome of cross-species transmission

[55]. Coinfection status, detectable through metagenomic screening [56], may be a beneficial

inclusion in such models, provided the strength and/or direction of coinfection interactions

are known (or inferable).

Here, we investigate the influence of coinfection on virus susceptibility within and across

host species, using panels of Drosophila hosts and experimental infections with two Cripa-
viruses: Cricket Paralysis Virus (CrPV) and Drosophila C Virus (DCV). Viral loads were mea-

sured during single and coinfection conditions across 25 inbred lines of Drosophila
melanogaster and 47 Drosophilidae species. By analysing both viral loads and the change in

viral loads from single to coinfection, we quantify the host genetic and phylogenetic compo-

nents of susceptibility to each virus, and investigate whether these host components also influ-

ence the strength and direction of coinfection interactions in this system.

Both DCV and CrPV are well studied pathogens in Drosophila melanogaster and multiple

similarities exist in their interactions with their hosts that could lead to interactions during

coinfection. Both viruses are targeted by the antiviral RNAi pathway during infection of D.
melanogaster [57,58], and activate the IMD immune signalling pathway, inducing nonspecific

antiviral gene expression [59–61]. Each encodes an inhibitor of antiviral RNAi, which act on

different components of the pathway; the DCV inhibitor binds and sequesters viral RNA to

prevent its cleavage by the antiviral RNAi endonuclease Dicer-2, and also disrupts formation

of the RNA-induced silencing complex (RISC) [62,63]; the CrPV inhibitor binds the RISC pro-

tein Argonaute-2, causing suppression of RISC viral RNA cleavage [63]. Infections with DCV

have also been shown to induce nutritional stress in infected hosts, due to intestinal obstruc-

tion and accumulation of food in the fly crop, although CrPV infection results in no such phe-

notype [64]. DCV and CrPV may therefore be capable of interacting indirectly during

coinfection through multiple routes: by suppression of antiviral RNAi, transactivation of host

antiviral gene expression, or competition for limited host resources. As such, coinfection

could enhance the accumulation of one or both viruses by suppressing host immunity. Alter-

natively, coinfection may result in lower titres for one or both viruses due to activation of gen-

eral antiviral immune responses or competition for host resources.

Susceptibility to DCV infection has a strong host genetic component [65], with polymor-

phisms in two major-effect genes (pastrel and Ubc-E2H) explaining a large proportion of the

variation in DCV susceptibility [65–68]. Both genes have also been implicated in CrPV suscep-

tibility during knockdown experiments [68]. DCV and CrPV both vary widely in their ability

to persist and replicate across different Drosophilidae host species, and are strongly positively

correlated in their susceptibilities across host species [42]. For both viruses, the host phylogeny
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explained a large proportion of the variation in viral load during single infection [41–43,45]. A

role of host genetics during coinfection may therefore manifest either as a change in the

genetic or phylogenetic components of susceptibility to each individual virus, or as a genetic

or phylogenetic component directly influencing the strength of interaction between these

viruses. We tested the possibility that host genetic or phylogenetic components can influence

the outcomes of coinfection in two separate experiments that measured viral loads of DCV

and CrPV in both single and coinfection settings across two different host panels. In the first

experiment, we examined the differences between single and coinfection viral loads across dif-

ferent host genotypes within-species, using 25 inbred lines of Drosophila melanogaster from

the Drosophila Genetic Reference Panel (DGRP) [69]. In the second experiment, we examined

differences across-species using 47 Drosophilidae host species.

Materials & methods

Fly stocks

Stocks of DGRP flies were kindly provided by Jon Day and Francis Jiggins [65]. In total, 25

DGRP lines were used (for details see S1 Table), with 15 lines containing the resistant “G”

allele of the A2469G pastrel SNP and 10 containing the susceptible “A” allele [66]. Pastrel allele

status was confirmed via conventional PCR using SNP genotyping primers from [66] (S2

Table). Laboratory stocks of 47 Drosophilidae host species were used to provide the across-spe-

cies host panel (S3 Table), as in previous studies [41,42].

All flies were maintained in multi-generation stock bottles (Fisherbrand) at 22˚C, 70% rela-

tive humidity in a 12-hour light-dark cycle. Each stock bottle contained 50ml of one of four

varieties of Drosophila media (https://doi.org/10.6084/m9.figshare.21590724.v1) which were

chosen to optimise rearing conditions for parental flies. All fly lines and species were con-

firmed to be negative for infection with CrPV and DCV prior to experiments by quantitative

reverse-transcription PCR (qRT-PCR, described below). To limit the effects of variation in lar-

val density on the condition of DGRP lines, experimental flies were reared in vials with finite

numbers of larvae, achieved by transferring groups of five 7 day old mated females to fresh

vials each day for 3 days, with daily pools of offspring from these vials collected for experi-

ments. Due to large differences in fecundity, larval density controls were not practical for the

across-species host panel.

Inferring the Drosophilidae host phylogeny

The method used to infer the host phylogeny has been described in detail elsewhere [41].

Briefly, publicly available sequences of the 28S, Adh, Amyrel, COI, COII, RpL32, and SOD
genes were collected from Genbank (see https://doi.org/10.6084/m9.figshare.13079366.v1 for a

full breakdown of genes and accessions by species). Gene sequences were aligned in Geneious

version 9.1.8 (https://www.geneious.com) using a progressive pairwise global alignment algo-

rithm with free end gaps and a 70% similarity IUB cost matrix. Gap open penalties, gap exten-

sion penalties, and refinement iterations were kept as default.

Phylogenetic reconstruction was performed using BEAST version 1.10.4 [70] as the subse-

quent phylogenetic mixed model (described below) requires a tree with the same root-tip dis-

tances for all taxa. Genes were partitioned into separate ribosomal (28S), mitochondrial (COI,
COII), and nuclear (Adh, Amyrel, RpL32, SOD) groups. The mitochondrial and nuclear groups

were further partitioned into groups for codon position 1+2 and codon position 3, with

unlinked substitution rates and base frequencies across codon positions. Each group was fitted

to separate relaxed uncorrelated lognormal molecular clock models using random starting

trees and four-category gamma-distributed HKY substitution models. The BEAST analysis
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was run twice, with 1 billion Markov chain Monte Carlo (MCMC) generations sampled every

100,000 iterations, using a birth-death process tree-shape prior. Model trace files were evalu-

ated for chain convergence, sampling, and autocorrelation using Tracer version 1.7.1 [71]. A

maximum clade credibility tree was inferred from the posterior sample with a 10% burn-in.

The reconstructed tree was visualised using ggtree version 2.0.4 [72].

Virus isolates

Virus stocks were kindly provided by Julien Martinez (DCV) [73], and Valérie Dorey and

Maria Carla Saleh (CrPV) [62]. The DCV isolate used here (DCV-C) was isolated from lab

stocks established by wild capture in Charolles, France [74], and the CrPV isolate was collected

from Teleogryllus commodus in Victoria, Australia [75]. Virus stocks were checked for contam-

ination with CrPV (DCV) and DCV (CrPV) by qRT-PCR and diluted in Ringers solution [76]

to equalise the relative concentrations of viral RNA. Before inoculation, virus aliquots were

either mixed 1:1 with Ringers (single infection inoculum) or 1:1 with an aliquot of the other

virus (coinfection inoculum). This was done to keep the individual doses of each virus consis-

tent between infection conditions.

Inoculation

Before inoculation, 0–1 day old male flies were transferred to vials containing cornmeal

media. These flies were then transferred to fresh media every 2 days for a week (age 7–8 days),

at which point they were inoculated. Vials contained between 7 and 20 flies (mean = 12.7), and

were kept at 22˚C, 70% relative humidity in a 12-hour light-dark cycle throughout the experi-

ments. Male flies were used to avoid any effect of sex or mating status, which has been shown

to influence the susceptibility of female flies to other pathogens [77–79]. Flies were inoculated

under CO2 anaesthesia via septic pin prick with 12.5μm diameter stainless steel needles (Fine

Science Tools, CA, USA). These needles were bent approximately 250μm from the end to pro-

vide a depth stop and dipped in virus inoculum before being pricked into the pleural suture of

anaesthetised flies. Inoculation by this method bypasses the gut immune barrier but avoids dif-

ferences in inoculation dose due to variation in feeding rate, and infections using this route

largely follow the same course as oral infections but with less stochasticity [80].

Measuring change in viral load

To provide a measure of viral load during single and coinfection, inoculated flies were snap

frozen in liquid nitrogen at 2 days (± 2 hours) post-inoculation. Additional samples were col-

lected for each species in the Drosophilidae host panel immediately after inoculation, which

were used to account for differences in housekeeping gene expression across host species dur-

ing CT normalisation (see below). Total RNA was extracted from flies homogenized in Trizol

(Invitrogen) using chloroform-isopropanol extraction, and reverse transcribed using GoScript

reverse transcriptase (Promega) with random hexamer primers. qRT-PCR was carried out on

1:2 diluted cDNA on an Applied Biosystems StepOnePlus system using a Sensifast Hi-Rox

SYBR kit (Bioline). Cycle conditions were as follows: initial denaturation at 95˚C for 120 sec-

onds, then 40 cycles of 95˚C for 5 seconds and 60˚C for 30 seconds. The primer pairs used for

virus qRT-PCR assays were: (DCV) forward, 5’-GACACTGCCTTTGATTAG-3’; reverse, 5’-

CCCTCTGGGAACTAAATG-3’; (CrPV) forward, 5’-TTGGCGTGGTAGTATGCGTAT-3’;

reverse, 5’-TGTTCCGTCCTGCGTCTC. RPL32 housekeeping gene primers were used for

normalisation and varied by species (S4 and S5 Tables). For each biological sample, two tech-

nical replicate qRT-PCR reactions were performed for each amplicon (viral and RPL32).
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Between-plate variation in CT values was estimated and corrected using linear models with

plate ID and biological replicate ID as fixed-effects [81,82]. For DGRP lines, mean viral CT val-

ues from technical replicate pairs were normalised to RPL32 and converted to relative viral

load using the ΔΔCT method, where ΔCT = CT:Virus−CT:RPL32 and ΔΔCT = 40 –ΔCT. To account

for potential differences in RPL32 expression between species, change in viral load in the Dro-
sophilidae species experiment was calculated as fold-change in viral load from inoculation to 2

days post-infection using the ΔΔCT method, where ΔCT = CT:Virus−CT:RPL32 and ΔΔCT = ΔCT:

day0 –ΔCT:day2. Amplification of the correct products was verified by melt curve analysis.

Repeated failure to amplify product, the presence of melt curve contaminants, or departures

from the melt curve peaks of positive samples (±1.5˚C for viral amplicons; ±3˚C for RPL32)

were used as exclusion criteria for biological replicates. For a full breakdown of the replicates

per experiment for each combination of fly line/species and infection condition see S6 Table.

Analysis of coinfection within and across species

Genetic variation in the outcome of single and coinfection across DGRP lines was analysed

using methods previously described by Magwire et al. [65]. Briefly, multivariate generalised

linear mixed models (GLMMs) were fitted using the R package MCMCglmm [83], with either

the viral loads of each virus under each infection condition, or the change in viral load during

coinfection (coinfection viral load—single infection viral load) as the response variable. The

structures of these models were as follows:

ylic ¼ b1:c þ ml:c þ mb:c þ elic ð1Þ

yliv ¼ b1:v þ ml:v þ mb:v þ eliv ð2Þ

In model (1), ylic is the viral load for the combination of virus and infection condition c
(CrPV single infection, CrPV coinfection, DCV single infection, DCV coinfection) in the ith

biological replicate of DGRP line l. The fixed effect β1 represents the intercepts for each combi-

nation, the random effect μl represents the deviation of each DGRP line from the overall mean

viral load for each combination (equivalent to the between-line variance), and elic represents

the residual error. A small but significant effect of experiment block was found in initial mod-

els, driven by ~10 fold differences in DCV viral loads of the third experimental block. To

account for this, random effects of block by infection condition (μb:c, μb:v) were added to both

models. The structure of model (2) remains the same, but with the change in viral load during

coinfection for each virus as the response variable, and yliv representing the change in viral

load for the ith biological replicate of virus v and DGRP line l. Pastrel allele status (susceptible

“A”, resistant “G”) was included in additional models as a fixed effect (β2:lp).

Phylogenetic GLMMs were used to investigate the effects of host evolutionary relatedness

on viral load during single and coinfection, and to calculate interspecific correlations between

different infection conditions across host species. Multivariate models were fitted with the

viral loads of each virus under each infection condition as the response variable. The structure

of these models were as follows:

yhic ¼ b1:c þ mp:hc þ ms:hc þ ehic ð3Þ

yhic ¼ b1:c þ mp:hc þ ehic ð4Þ

In these models, yhic is the change in viral load for the combination of virus and infection

condition c (CrPV single infection, CrPV coinfection, DCV single infection, or DCV coinfec-

tion) in the ith biological replicate of host species h. The fixed effect β1 represents the intercepts
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for each combination, the random effect μp represents the effects of the host phylogeny assum-

ing a Brownian motion model of evolution, and e represents the model residuals. Model (3)

also includes a species-specific random effect that is independent of the host phylogeny (μs:hc).
This explicitly estimates the non-phylogenetic component of between-species variance and

allows the proportion of variance explained by the host phylogeny to be calculated. μs:hc was

removed from model (4) as model (3) struggled to separate the phylogenetic and species-spe-

cific traits for some infection conditions. Wing size, measured as the length of the IV longitu-

dinal vein from the tip of the proximal segment to the join of the distal segment with vein V

[84], provided a proxy for body size [85] and was included in a further model as a fixed effect

(wingsizeβ2:hc). This was done to ensure that any phylogenetic signal in body size did not

explain the differences seen in viral load between species [86].

To investigate the effect of host genetics and host evolutionary relatedness on the change in

viral load from single to coinfection, additional models were run with the change in viral load

during coinfection (coinfection viral load—single infection viral load) on viral load as the

response variable:

yhiv ¼ b1:v þ mp:hv þ ms:hv þ ehiv ð5Þ

yhiv ¼ b1:v þ mp:hv þ ehiv ð6Þ

In these models, yhiv is the change in viral load for the ith biological replicate of virus v and

host genotype or species h. The explanatory structure otherwise remains the same as models

(3–4).

Within models (1–6), the random effects and residuals were assumed to follow a multivari-

ate normal distribution and a centred mean of 0. Models (1–2) were fitted with a covariance

structure Vt� l for the between line variances, and Ve� I for the residuals, with� represent-

ing the Kronecker product, and I representing an identity matrix. V represents 4 x 4 covari-

ance matrices for model (1) and 2 x 2 covariance matrices for model (2) which describe the

between-line variances and covariances in viral load for each infection condition and virus.

Models (3–6) were fitted with a covariance structure of Vp� A for the phylogenetic effects, Vs

� I for species-specific effects, and Ve� I for residuals. A represents the host phylogenetic

relatedness matrix, I an identity matrix, and V represents 4 × 4 covariance matrices for models

(3–4), or 2 x 2 covariance matrices for models (5–6), describing the between-species variances

and covariances of changes in viral load for each combination of virus and infection condition.

As each biological replicate was only tested with one combination of virus and infection condi-

tion, the covariances of Ve cannot be estimated and were set to 0 for all models.

Models were run for 13 million MCMC generations, sampled every 5000 iterations with a

burn-in of 3 million generations. Parameter expanded priors were placed on the covariance

matrices, resulting in multivariate F distributions with marginal variance distributions scaled

by 1000. Inverse-gamma priors were placed on the residual variances, with a shape and scale

equal to 0.002. To ensure the model outputs were robust to changes in prior distribution, mod-

els were also fitted with flat and inverse-Wishart priors, which gave qualitatively similar results.

All parameter estimates reported from models (1–6) are means of the posterior density, and

95% credible intervals (CIs) are the 95% highest posterior density intervals which are reported

in brackets following the estimates in the results.

The covariance matrices of models (1) and (2) were used to calculate the heritabilities (h2),
and covariates of additive genetic and environmental variation (CVA and CVE respectively) of

viral load and the effects of coinfection within host species. Heritability was calculated as

h2 ¼
VA

VAþVE
, where VA represents the additive genetic variance and VE the environmental
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variance of each trait [87]. As DGRP lines are homozygous, VA can be calculated as half the

between-line variance, assuming purely additive genetic variation [65]. VE was set as the resid-

ual variance of each model, which contains both non-additive genetic and environmental

effects on viral load and any measurement errors. Genetic correlations between infection con-

ditions were calculated from the model (1) and (2) vl matrices as
covx;yffiffiffiffiffiffiffiffiffiffiffiffi
varx∗vary
p and slopes of each

relationship as
covx;y
varx

.

The proportion of the between species variance that can be explained by the phylogeny was

calculated from models (3) and (5) using the equation
Vp

VpþVs
, where vp and vs represent the phy-

logenetic and species-specific components of between-species variance respectively [86], and

are equivalent to phylogenetic heritability or Pagel’s lambda [88,89]. The repeatability of viral

load measurements was calculated from models (4) and (6) as
Vp

VpþVe
, where ve is the residual

variance of the model [90]. Interspecific correlations in viral load between single and coinfec-

tion were calculated from model (4) vp matrix as
covx;yffiffiffiffiffiffiffiffiffiffiffiffi
varx∗vary
p .

Results

Coinfection causes changes in DCV and CrPV viral load across

D. melanogaster genotypes

To investigate variation in the outcome of coinfection within host species, we injected a total

of 8,618 flies from 25 lines of the Drosophila Genetic Reference Panel with one of three virus

inoculums: DCV, CrPV, and DCV + CrPV, and measured the outcome of infection as the

viral load of each virus at 2 days post-inoculation using qRT-PCR (Fig 1). Point estimates of

the mean viral load across lines suggest that DCV viral load increases ~3-fold during coinfec-

tion with CrPV, and CrPV viral load decreases ~2.5-fold during coinfection with DCV,

although credible intervals of these estimates overlapped (Table 1, “Single Infection” and

“Coinfection” conditions). When models were fitted on the change in viral load (coinfection-

single infection), in effect treating viral loads within experiment blocks as paired data, similar

and significant effects of coinfection across lines were detected (Table 1, “Change” conditions).

Several lines showed notably large changes during coinfection: two DGRP lines showed ~10

fold decreases in CrPV viral load, and three lines showed ~40–150 fold increases in DCV viral

load. Removing these lines from model (2) reduced the mean changes in viral load during

coinfection to a ~2 fold increase for DCV and a ~2 fold decrease for CrPV, but the effects of

coinfection on both viruses remained significant.

No evidence of a host genetic component to the outcome of coinfection

To estimate the influence of host genetic variation on the viral loads measured during single

and coinfection, GLMMs were fitted to allow the phenotypic variation in viral loads to be par-

titioned into genetic and environmental components. Point estimates of heritability of DCV

viral load (0.25–0.30) were higher than for CrPV (0.13), and this difference was driven by

changes in the genetic component of variation (S7 Table): CrPV CVA = 0.08, (0.05, 0.11), DCV

CVA = 0.16, (0.12, 0.20). This is consistent with previous studies which also found the genetic

component of variation in susceptibility of D. melanogaster to single infections with DCV (a

natural pathogen) is higher than for a novel pathogen [65]. However, we found little evidence

that heritability of DCV or CrPV viral loads change in relation to coinfection, with the credible

intervals of h2 estimates for single and coinfection viral loads overlapping for both viruses

(Table 1). Additionally, no host genetic component was found for the change in viral load
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Fig 1. Viral loads of CrPV and DCV across DGRP lines during single and coinfection. Bar heights show the mean viral load or changes in viral load

(coinfection-single infection) at 2 dpi on a log10 scale, with error bars showing the standard error of the mean. Blue bars represent single infection viral loads, or

changes in viral load where single infection viral loads were greater than coinfection viral loads. Red bars represent coinfection viral loads, or changes in viral

load where coinfection viral loads were greater than single infection viral loads. DGRP lines are arranged on the x-axis in order of susceptibility to CrPV during

single infection.

https://doi.org/10.1371/journal.ppat.1011044.g001
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during coinfection (Tables 1 and S8). Together, this suggests that variation in the strength of

coinfection interactions between these viruses was independent of natural host genetic varia-

tion, and that coinfection status does not appear to alter the host genetic component of suscep-

tibility to either virus.

Correspondingly, strong positive correlations between single and coinfection viral loads

were found for both DCV: r = 0.94 (0.84, 1.00), and CrPV: r = 0.90 (0.73, 1.00), with little evi-

dence of genotype-by-coinfection interactions. Strong positive correlations were also seen

between the two viruses, such that DGRP lines more susceptible to DCV were often also more

susceptible to CrPV (Fig 2A–2D). No correlation was seen between the viral load of each virus

during coinfection and the change in viral load between single and coinfection experienced by

the other virus (S1 Fig), indicating that the strength of coinfection interaction between DCV

and CrPV across D. melanogaster genotypes is not virus density dependent. Together, this sug-

gests that susceptibility to DCV and CrPV share similar genetic architectures within D. mela-
nogaster, with host genetic variation affecting DCV viral load similarly affecting CrPV viral

load irrespective of coinfection status.

Viral load remains a repeatable trait across host species during coinfection

To investigate how coinfection may alter susceptibility across host species, we performed simi-

lar experimental single and coinfections across 47 Drosophilidae host species. A total of 13,596

flies were inoculated, and the change in viral load after two days of infection was measured by

qRT-PCR (Fig 3). Neither virus showed evidence of changes in their overall mean viral loads

or variance across host species between single and coinfection (Table 2). Power analysis based

on the effects of coinfection found in D. melanogaster (Fig 1 and S1 Methods) showed that the

level of replication in this experiment was adequate to detect systematic ~2-fold changes in

viral load across host species. As such, this result suggests there is no evidence for large additive

effects of coinfection that are consistent across host species. Instead, most host species showed

no discernible differences in viral loads during coinfection, with notable exceptions including

D. obscura (both viruses decreased in viral load by ~600 fold), D. suzukii (DCV unchanged but

CrPV decreased by ~25 fold), Zaprionus tuberculatus (CrPV unchanged but DCV decreased

by ~50 fold), and D. virilis (CrPV unchanged but DCV increased by ~40 fold).

Phylogenetic GLMMs were fitted to the data to determine the proportion of variation in

viral load explained by the host phylogeny (Table 2). The host phylogeny explained a large pro-

portion of the variation in viral load for CrPV during single infection: 0.88 (0.69, 1), and coin-

fection: 0.82 (0.59, 1), with no credible difference between these two estimates. Estimates of

the variation in DCV viral load explained by phylogeny were low: 0.1–0.13 with wide credible

intervals due to model (3) struggling to separate phylogenetic and non-phylogenetic effects for

Table 1. Estimates of the phenotypic mean, environmental variance (VE), additive genetic variance (VA), and heritability (h2) of viral load and the change in viral

load during coinfection across DGRP lines for CrPV and DCV during single infection and coinfection. Values for “single infection” and “coinfection” conditions

were taken from model (1), which was fitted on log10-transformed fold-changes in viral load, while values for “change” were taken from model (2), which was fitted on

log10-transformed Δ fold-changes in viral load (coinfection-single infection).

Virus Condition Mean Ve VA h2

CrPV Single Infection 4.68 (4.02, 5.34) 0.94 (0.79, 1.09) 0.14 (0.05, 0.25) 0.13 (0.05, 0.22)

Coinfection 4.28 (3.60, 4.96) 0.74 (0.61, 0.86) 0.12 (0.04, 0.20) 0.13 (0.06, 0.22)

Change -0.27 (-0.37, -0.18) 0.39 (0.05, 0.92) 0.00 (0.00, 0.02) 0.02 (0.00, 0.09)

DCV Single Infection 6.17 (5.29, 6.98) 2.08 (1.75, 2.46) 1.00 (0.47, 1.65) 0.32 (0.20, 0.46)

Coinfection 6.62 (5.82, 7.40) 1.80 (1.49, 2.09) 0.71 (0.33, 1.18) 0.28 (0.16, 0.40)

Change 0.33 (0.18, 0.47) 0.21 (0.15, 0.27) 0.03 (0.00, 0.06) 0.11 (0.00, 0.23)

https://doi.org/10.1371/journal.ppat.1011044.t001
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DCV. The repeatability of viral load across host species was high for both viruses during single

infection, CrPV: 0.86 (0.78, 0.93), DCV: 0.94 (0.90, 0.97) and coinfection, CrPV: 0.76 (0.64,

0.87), DCV: 0.89 (0.82, 0.94), with the between-species phylogenetic component explaining a

high proportion of the variation in viral load with little within-species variation or measure-

ment error. Although point estimates of these parameters were all consistent with a slight

decrease in phylogenetic signal during coinfection, the effect size was small, and we did not

detect credible differences in phylogenetic signal between single and coinfection.

Viral load is strongly correlated between single and coinfection across host

species

Interspecific correlations in viral load between single and coinfection were calculated for each

virus from the variance-covariance matrix of model (4). We found strong positive correlations

in viral loads between single and coinfection for DCV: r = 0.95 (0.89, 0.99) (Fig 4A) and CrPV:

Fig 2. Genetic correlations in viral load between single and coinfections of CrPV and DCV. Correlations in viral

load between CrPV during single and coinfection (A); DCV during single and coinfection (B); CrPV and DCV during

single infection (C); and CrPV and DCV during coinfection (D). Individual points represent the mean viral load at 2

dpi for each DGRP line on a log10 scale, with trend lines added from a univariate least-squares linear model for

illustrative purposes. Genetic correlations (r), regression slopes (β), and 95% Cis have been taken from the output of

model (1).

https://doi.org/10.1371/journal.ppat.1011044.g002
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Fig 3. Viral loads of CrPV and DCV across host species during single and coinfection. Bar heights show the mean viral load or changes in viral load

(coinfection–single infection) by 2 dpi on a log10 scale, with error bars showing the standard error of the mean. Blue bars represent single infection viral

loads, or changes in viral load where single infection viral loads were greater than coinfection. Red bars represent coinfection viral loads, or changes in viral

load where coinfection viral loads were greater than single infection. The phylogeny of Drosophilidae hosts is presented at the bottom, with the scale bar

showing nucleotide substitutions per site, and the axis showing the approximate age since divergence in millions of years (mya) based on estimates from

[91].

https://doi.org/10.1371/journal.ppat.1011044.g003
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Table 2. Estimates of overall mean, across-species variance, repeatability, and the proportion of variance explained by the host phylogeny for viral load and the

change in viral load during coinfection. Values for mean viral load, across species variance, and repeatability for the “single infection” and “coinfection” conditions were

taken from model (4), which was fitted on log10-transformed fold-changes in viral load, while these values for “change” during coinfection were taken from model (6),

which was fitted on log10-transformed Δ fold-changes in viral load (coinfection-single infection). The proportion of variance explained by phylogeny was taken from

model (3) for the “single infection” and “coinfection” conditions, and model (5) for “change” during coinfection.

Virus Condition Mean Across-species variance Repeatability Variance explained by phylogeny

CrPV Single Infection 3.44 (1.88, 4.99) 3.63 (1.86, 5.75) 0.86 (0.78, 0.93) 0.88 (0.69, 1)

Coinfection 3.30 (2.21, 4.38) 2.93 (1.36, 4.75) 0.76 (0.64, 0.87) 0.82 (0.82, 1)

Change -0.13 (-0.49, 0.19) 0.17 (0, 0.46) 0.11 (0, 0.27) 0.57 (0, 1)

DCV Single Infection 4.75 (2.09, 7.49) 9.85 (5.20, 15.46) 0.94 (0.90, 0.97) 0.13 (0, 0.43)

Coinfection 4.57 (1.82, 7.26) 10.40 (4.87, 16.44 0.89 (0.82, 0.94) 0.10 (0, 0.27)

Change -0.12 (-1.08, 0.86) 0.92 (0, 1.84) 0.36 (0.08, 0.62) 0.49 (0, 0.99)

https://doi.org/10.1371/journal.ppat.1011044.t002

Fig 4. Interspecific correlations in viral load between single and coinfections of CrPV and DCV. Correlations in

viral load between CrPV during single and coinfection (A); DCV during single and coinfection (B); CrPV and DCV

during single infection (C); and CrPV and DCV during coinfection (D). Individual points represent the mean viral

load at 2dpi for each Drosophilidae host species on a log10 scale, with trend lines added from a univariate least-squares

linear model for illustrative purposes. Interspecific correlations (r), regression slopes (β), and 95% Cis have been taken

from the output of model (4).

https://doi.org/10.1371/journal.ppat.1011044.g004
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r = 0.94 (0.86, 0.99) (Fig 4B), with the regression slopes of each indicating a near 1:1 relation-

ship: DCV: β = 0.98 (0.77, 1.22), CrPV: β = 0.85 (0.66, 1.05), and limited evidence of host spe-

cies by coinfection interactions. The strength of the interspecific correlation in viral load

between DCV and CrPV (Fig 4C and 4D) also did not differ between single: r = 0.59 (0.31,

0.82), and coinfection: r = 0.67 (0.43, 0.88) and was consistent with previous estimates: r = 0.59

(0.26, 0.87) [42]. As seen within host species, no correlation was detectable between the viral

loads of each virus during coinfection and the strength of coinfection interaction experienced

by the other virus (S2 Fig), indicating that the strength of coinfection interaction between

DCV and CrPV across host species is not virus density dependent.

Little evidence of phylogenetic signal in the strength of coinfection

interaction

As the viral loads of DCV and CrPV show a strong phylogenetic signal across host species, we

also tested if there was phylogenetic signal across hosts in the change in viral load from single

to coinfection (Table 2). Fitting phylogenetic mixed models to these data revealed little support

for any phylogenetic signal in the change in viral load during coinfection, with low estimates

of repeatability for DCV: 0.36 (0.08, 0.62) and no credible difference from zero for repeatability

of CrPV or the variance explained by phylogeny for either virus.

Discussion

Here, we measured variation in the outcome of coinfections within and across host species,

using a Drosophila experimental system and two Cripaviruses: DCV and CrPV. We found

effects of coinfection on viral load across genotypes of D. melanogaster, with DCV increasing

~3 fold and CrPV decreasing ~2 fold during coinfection. Consistent with previous studies, we

found that natural genetic variation explained a large proportion of variation in susceptibility

to single infections [65], but little evidence was found for a change in this genetic component

of susceptibility in the presence of a coinfecting virus, or for a host genetic component to the

strength of interaction between these viruses. Across host species, we found no evidence of

consistent coinfection interactions between these viruses and no change in the phylogenetic

patterns of susceptibility to each virus during coinfection, although coinfection interactions

were apparent in a subset of host species. Strong positive correlations between single and coin-

fection viral loads, and between DCV and CrPV both within and across host species suggest

that similar genetic architectures are underlying susceptibility to these viruses, and that suscep-

tibility is largely independent of coinfection status.

Exploitative coinfection interactions–where one pathogen benefits from coinfection to the

detriment of the other–have been described in intestinal parasites of wood mice and wild rab-

bits [92,93], and in mixed-genotype Pseudomonas infections in plants [94]. The mechanisms

underlying exploitative coinfection interactions are unknown but may be due to differences in

the relative importance of specific interactions between each virus and the host in overall sus-

ceptibility. Within D. melanogaster, no correlation was seen in the strength of interaction expe-

rienced by one virus and the viral loads of the other virus, suggesting that the strength of

coinfection interaction is not virus density-dependent, as more susceptible host genotypes did

not experience increased changes in viral load with coinfection compared to more resistant

genotypes. This suggests that the coinfection interaction within D. melanogaster is unlikely to

be caused by resource competition between DCV and CrPV, as susceptible hosts experienced

>100-fold higher viral loads for both DCV and CrPV compared to more resistant hosts with

no evidence of limited virus replication. DCV may instead be benefiting from increased sup-

pression of antiviral RNAi due to expression of the CrPV immune inhibitor [63], while CrPV
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is hindered by the activation of other mechanisms of host immunity by DCV. However, com-

plex direct virus-virus interactions have been described in multiple coinfections, and it is pos-

sible that DCV and CrPV are directly influencing each other’s expression or virion surface

composition [19,95].

Across host species, the changes in viral load during coinfection were highly variable and

show no consistent interaction between DCV and CrPV. Coupled with the fact we did not

detect effects of genetic variation within host species or evolutionary relatedness across host

species in the change in viral load during coinfection, our results suggest that natural levels of

variation in host genetics have little impact on the strength of interaction between these viruses

during coinfection. This contrasts with coinfection studies in other systems, which describe

variation between host genotypes in pathogen community composition, coinfection preva-

lence, and disease severity during coinfection [32–34]. Mathematical models investigating sto-

chasticity during coinfection have suggested that otherwise identical coinfections can have

directionally different outcomes [96], and so it may be that any influences of host evolutionary

relatedness and genotype are being masked by high stochasticity in the outcome of coinfection

in this system. It is possible that stochasticity may be lower in sequential coinfections where

the initial virus is able to establish a stable infection before the introduction of a second virus,

and a comparison between the stochasticity experienced during simultaneous and sequential

coinfection warrants further study. Alternatively, variation in the strength of coinfection inter-

action between host genotypes may be influenced by a small number of major-effect loci that

are not dispersed phylogenetically, which these experiments were not designed to detect. High

stochasticity may explain the discrepancy in the direction of coinfection interaction in D. mel-
anogaster in our two experiments, where on average CrPV decreases in viral load across

DGRP lines but increases in the D. melanogaster line used in our across-species experiment

(where within-line replicates were lower). However, it is also possible that this change in the

direction of interaction is genuine and influenced by the specific genotype of D. melanogaster
used in the across-species experiment, which was not included in the within-species panel.

As inferential models of cross-species infections grow in complexity, they will continue to

incorporate more non-genomic data which is known to influence the outcome of infection

(e.g., [97]). Our findings suggest that coinfection will not be a necessary inclusion in models of

every host-pathogen system, as the ability of the host phylogeny to explain variation in viral

load was largely unaffected during coinfection in this case. Despite this, coinfection is known

to cause changes in infection traits in many systems [4–9,98–110], with consequences for path-

ogen spread and establishment in natural populations [10–15]. Few studies exist that describe

pathogens that do not interact during coinfection [111], (although this may represent publica-

tion bias), and so the frequency of consequential coinfection interactions in nature is as yet

unknown. It remains unclear if interactions between pathogens can be consistently predicted

a priori from single infection data [112,113], or from pathogen and host genomic data [114].

In cases of direct interaction between pathogens, such as the binding and activation of endoge-

nous HIV by herpes simplex virus proteins [95], differing outcomes in coinfection may be pre-

dictable through conventional tools for inferring protein-protein and protein-nucleotide

binding [115,116]. However, where pathogens interact indirectly, such as through immune

modulation or resource availability, it may be necessary to understand the extent of variation

in these host factors that is required to influence the outcome of infection before inferring

interactions between coinfecting pathogens.

Here, we have tested for variation in the outcome of coinfection within and across host spe-

cies, and our findings suggest that host genetics may not influence coinfection interactions in

all host-pathogen systems. This approach can now be expanded to a more diverse range of

coinfecting pathogens, to look for effects of host genetic variation during other pathogen-
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pathogen interactions, to better understand the potential determinants of the outcome of coin-

fection interactions, and how these interactions may affect the evolution of host susceptibility.
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87. Hansen TF, Pélabon C, Houle D. Heritability is not Evolvability. Evol Biol. 2011; 38(3):258. https://doi.

org/10.1007/s11692-011-9127-6

88. Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999; 401(6756):877–84.

https://doi.org/10.1038/44766 PMID: 10553904

89. Housworth EA, Martins EP, Lynch M. The Phylogenetic Mixed Model. Am Nat. 2004; 163(1):84–96.

https://doi.org/10.1086/380570 PMID: 14767838

90. Falconer D. Introduction to quantitative genetics. 4th ed. Pearson Education India; 1996.

91. Kim BY, Wang JR, Miller DE, Barmina O, Delaney E, Thompson A et al. Highly contiguous assemblies

of 101 drosophilid genomes. Elife. 2021; 10:e66405. https://doi.org/10.7554/eLife.66405 PMID:

34279216

92. Clerc M, Devevey G, Fenton A, Pedersen AB. Antibodies and coinfection drive variation in nematode

burdens in wild mice. Int J Parasitol. 2018; 48(9–10):785–92. https://doi.org/10.1016/j.ijpara.2018.04.

003 PMID: 29920254

93. Lello J, Boag B, Fenton A, Stevenson IR, Hudson PJ. Competition and mutualism among the gut hel-

minths of a mammalian host. Nature. 2004; 428(6985):840–4. https://doi.org/10.1038/nature02490

PMID: 15103373

94. Barrett LG, Bell T, Dwyer G, Bergelson J. Cheating, trade-offs and the evolution of aggressiveness in

a natural pathogen population. Ecol Lett. 2011; 14(11):1149–57. https://doi.org/10.1111/j.1461-0248.

2011.01687.x PMID: 21951910

95. Perre PV de, Segondy M, Foulongne V, Ouedraogo A, Konate I, Huraux J-M et al. Herpes simplex

virus and HIV-1: deciphering viral synergy. Lancet Infect Dis. 2008; 8(8):490–7. https://doi.org/10.

1016/S1473-3099(08)70181-6 PMID: 18652995

96. Pinky L, Gonzalez-Parra G, Dobrovolny HM. Effect of stochasticity on coinfection dynamics of respira-

tory viruses. Bmc Bioinformatics. 2019; 20(1):191. https://doi.org/10.1186/s12859-019-2793-6 PMID:

30991939

97. Brierley L, Pedersen AB, Woolhouse MEJ. Tissue tropism and transmission ecology predict virulence

of human RNA viruses. Plos Biol. 2019; 17(11):e3000206. https://doi.org/10.1371/journal.pbio.

3000206 PMID: 31770368

98. Brealey JC, Chappell KJ, Galbraith S, Fantino E, Gaydon J, Tozer S et al. Streptococcus pneumoniae

colonization of the nasopharynx is associated with increased severity during respiratory syncytial virus

infection in young children. Respirol Carlton Vic. 2018; 23(2):220–7. https://doi.org/10.1111/resp.

13179 PMID: 28913912

99. Garcia-Garcia ML, Calvo C, Ruiz S, Pozo F, Pozo V del, Remedios L et al. Role of viral coinfections in

asthma development. Plos One. 2017; 12(12):e0189083. https://doi.org/10.1371/journal.pone.

0189083 PMID: 29206851

100. Waknine-Grinberg JH, Gold D, Ohayon A, Flescher E, Heyfets A, Doenhoff MJ et al. Schistosoma

mansoni infection reduces the incidence of murine cerebral malaria. Malaria J. 2010; 9(1):5–5. https://

doi.org/10.1186/1475-2875-9-5 PMID: 20051114

101. Yoshida L-M, Suzuki M, Nguyen HA, Le MN, Vu TD, Yoshino H et al. Respiratory syncytial virus: co-

infection and paediatric lower respiratory tract infections. Eur Respir J. 2013; 42(2):461–9. https://doi.

org/10.1183/09031936.00101812 PMID: 23645407

102. Bo-shun Z, Li L, Qian Z, Zhen W, Peng Y, Guo-dong Z et al. Co-infection of H9N2 influenza virus and

Pseudomonas aeruginosa contributes to the development of hemorrhagic pneumonia in mink. Vet

Microbiol. 2020; 240:108542. https://doi.org/10.1016/j.vetmic.2019.108542 PMID: 31902499

103. Pomorska-Mól M, Dors A, Kwit K, Kowalczyk A, Stasiak E, Pejsak Z. Kinetics of single and dual infec-

tion of pigs with swine influenza virus and Actinobacillus pleuropneumoniae. Vet Microbiol. 2017;

201:113–20. https://doi.org/10.1016/j.vetmic.2017.01.011 PMID: 28284596

104. Bandilla M, Valtonen ET, Suomalainen L-R, Aphalo PJ, Hakalahti T. A link between ectoparasite infec-

tion and susceptibility to bacterial disease in rainbow trout. Int J Parasitol. 2006; 36(9):987–91. https://

doi.org/10.1016/j.ijpara.2006.05.001 PMID: 16750536

105. Righetti AA, Glinz D, Adiossan LG, Koua A-YG, Niamké S, Hurrell RF et al. Interactions and Potential
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