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Optimal strategies for sinusoidal signal detection
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We derive and study optimal and nearly optimal strategies for the detection of sinusoidal signals hidden in
additive ~Gaussian and non-Gaussian! noise. Such strategies are an essential part of algorithms for the detec-
tion of the gravitational continuous wave~cw! signals produced by pulsars. Optimal strategies are derived for
the case where the signal phase is not known and the product of the signal frequency and the observation time
is nonintegral.

DOI: 10.1103/PhysRevD.66.102003 PACS number~s!: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym
da
o

n
de
fi-

en

de

ro

a
ve
si
ar

-
p-
c
n
u
or
s

ra
ig

n
a
ic
na

if a
tly

-
ata.
p-

xed
orks
ant

an-
ls.
n to
n
d am-
we
tis-

ad-

le
t
tion
sig-

lu-
y

an

con-

e
led
I. INTRODUCTION

A key problem in data analysis is to detect sinusoi
signals in noise. Such signals are often called ‘‘lines’’
‘‘peaks’’ because in the Fourier domain~frequency space!
they appear as spikes~linelike features! or sharp narrow
peaks in the energy spectrum of the signal. When the sig
is large compared to the noise, such signals are easy to i
tify. When it is weak, the identification becomes more dif
cult.

The work in this paper was motivated by the developm
of algorithms to search for continuous wave~cw! signals in
the new generation of interferometric gravitational-wave
tectors which are either under construction@1–5# or planned
@6#. These signals are produced by rapidly spinning neut
stars~pulsars!.

To search for new~previously undetected! pulsars re-
quires a search over possible sky positions, frequencies,
pulsar spin-down parameters. The parameter space is
large and these searches are computationally very inten
Moreover, the searches will be looking for signals that
~statistically! at the lower limit of detection sensitivity@7#.

A brute-force approach~optimally filtering for all possible
source parameters! requires unrealistic computational re
sources~petaflops!, so more sophisticated hierarchical a
proaches have been proposed. When the parameter spa
very large, these approaches retain much or all of the se
tivity of the brute-force approach but require fewer comp
tational resources. This is possible because, in the brute-f
approach, the number of grid points in parameter space i
large that the detection threshold must be set very high
avoid false alarms and enable confident detection. A hie
chical search visits fewer points in parameter space: it
nores those below the~high! threshold that one must set i
order to gain the necessary detection confidence while ex
ining a large parameter space. In other words a hierarch
search method does not ‘‘waste’’ precious computatio
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cycles examining regions in parameter space where, even
signal were present, it would not be detected confiden
enough.

The hierarchical search techniques@8–11# all involve a
second~so-called incoherent! stage. This stage is called ‘‘in
coherent’’ because it uses spectral rather than amplitude d
If one neglects polarization, in all of the proposed a
proaches a putative signal at the second stage would~effec-
tively! appear in a spectrum as a sinusoidal signal at fi
frequency and phase. The third stage of the search w
only on the regions in parameter space where signific
spectral lines were identified in the second stage.

Our paper addresses the problem of identifying these c
didates, that is, ‘‘registering’’ candidate sinusoidal signa
The analysis makes use of the Neyman-Pearson criterio
identify the ‘‘best’’ statistic to use for such identification. I
some cases, the best statistic depends upon the expecte
plitude of the signal, which is unknown. In these cases,
have used locally optimal methods to identify the best sta
tic in the weak-signal limit.

The analysis is complicated by several factors.
~1! The signal frequency and phase are not known in

vance.
~2! The signal frequency may not lie at an integer multip

of the Rayleigh frequencyT21. A signal of this type does no
make an integer number of cycles during the observa
time T. We call such frequencies, and the corresponding
nal, ‘‘unresolved.’’

~3! The signal frequency must be identified with reso
tion less than6(2T)21, i.e., to within the nearest frequenc
bin.

~4! The method must handle non-Gaussian noise in
optimal manner.

The analysis presented here addresses all of these
cerns.

II. PROBLEM DESCRIPTION AND OPTIMAL STATISTICS

The basic problem that we consider is the following. W
are givenN samples of a time-domain data stream, samp
at discrete timest5t j5 j Dt. We denote these data byyj for
j 50,1, . . . ,N21. The total observation time isT5NDt.
©2002 The American Physical Society03-1



e

s
on
in

te

he

’’

e

lex

g
e

ri

-
a

-
a
lv

se of
he

ive
s
oise

e
ure-

oint

a lie
b-

ion:
issal
e
d

fol-
nts
e

m
ion

’’

ALLEN, PAPA, AND SCHUTZ PHYSICAL REVIEW D66, 102003 ~2002!
The question that we want to answer is, does the data str
yj contain a sinusoidal signal

yj5e
2

N
cos~2p f t j2f! ~2.1!

of constant amplitude1 and frequency? To address this que
tion, we make use of the theory of optimal signal detecti
It is convenient to recast the problem in the Fourier doma
Denote the discrete Fourier transform~DFT! of the data2 by
xk :

xk5 (
j 50

N21

yje
2p i jk /N for k52N/211, . . . ,N/2.

~2.2!

Since this transformation is invertible, any question or sta
ment about they’s can also be stated in terms of thex’s;
hence we will often use the term ‘‘data’’ to refer to thex’s
rather than to they’s. Here, and elsewhere, the symbolsx and
y without indices refer to the collective ensemble of all t
data. For convenience we will assume thatN is a power of 2.
The indexk will often be referred to as a ‘‘frequency bin.
The frequencies that these bins correspond to,

f k5
k

NDt
5

k

T
, ~2.3!

are called ‘‘resolved frequencies’’ for reasons that will b
come clear later.

In what follows, we will assume that the datay are real. In
this case,xk5x2k* where the asterisk denotes the comp
conjugate, and bothx0 and xN/2 are real. The data sety is
then exactly equivalent to the set ofxk for k50, . . . ,N/2. To
simplify the mathematics, we will assume that the avera
value of they’s vanishes~i.e., that the dc or average valu
has been removed from the data! so thatx050. We will also
assume that there is no energy at the Nyquist frequencyf N/2
~which in a real experiment would be enforced by approp
ate antialiasing filters! so thatxN/250. Then, the data sety is
exactly equivalent to the setxk for k51, . . . ,N/221.

We use the notationp(xue) to denote the probability dis
tribution function ~PDF! of the data, in the presence of
signal whose amplitude ise. For example, if the~real and
imaginary parts of the! noise in each frequency bin is inde
pendent and Gaussian with vanishing mean and unit v
ance, and the signal is a sinusoid of known phase at reso
frequencyf , given byyj5e(2/N)cos(2pf,tj2f), then

p~xue!5
1

2p
e2ux,2e eifu2/2 )

k51
kÞ,

N/221
1

2p
e2uxku2/2.

1The factor 2/N in the amplitude of the cosine simplifies the for
of the frequency-space PDF, while retaining the standard definit
of the DFT.

2This is the traditional ‘‘physics’’ definition. The ‘‘engineering
definition has the opposite sign ofi.
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Note that since, is an integer ande is real the signal only
affects the,th frequency bin.

If the assumptions are the same as above, but the pha
the signal is unknown and uniformly distributed over t
rangefP@0,2p), then

p~xue!5
1

2pE0

2p

df
1

2p
e2ux,2eeifu2/2

3 )
k51
kÞ,

N/221
1

2p
e2uxku2/2.

Somewhat later, we will relax these assumptions, and g
more general forms forp(xue) where the signal frequency i
not a resolved frequency, the noise is not white, and the n
is not Gaussian.

Note that the integration measure forp(xue) is

E dx[ )
k51

N/221 E
2`

`

dRxkE
2`

`

dIxk ,

whereR andI denote the real and imaginary parts.
The problem that we wish to solve is well known in th

theory of signal detection. The space of possible meas
mentsxk for k51, . . . ,N/221 is RN22. Our goal is to di-
vide this space of possible measurements into two disj
regionsH0 andH1, whose union is all ofRN22. If the ob-
served data lie inH0 ~the ‘‘null-hypothesis region’’! we will
conclude that no signal was present in the data. If the dat
in H1, we will conclude that a signal was present. The pro
lem we need to solve is this: What is the best choice ofH0
andH1?

The solution we chose is the Neyman-Pearson criter
the best choice is the one that gives the lowest false dism
probability for a given false alarm probability. The fals
alarm probabilitya is the probability that a signal is detecte
when none is present,

a5E
xPH1

dxp~xu0!, ~2.4!

and the false dismissal probabilityb(e) is the probability
that a signal of amplitudee is not found,

b~e!5E
xPH0

dxp~xue!. ~2.5!

The Neyman-Pearson criterion leads immediately to the
lowing rule to partition the space of possible measureme
into H0 andH1. Define the likelihood function on the spac
of possible measurements by

L~x!5
p~xue!

p~xu0!

and consider the surfaceL(x)5L05const. The Neyman-
Pearson criterion leads to the following choice. TakeH0 to
be the region inside this surface, andH1 to be the region

s

3-2
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outside this surface. The value ofL0 that defines the surfac
determines the false alarm and false dismissal probabilit

In this paper, we will use the Neyman-Pearson criterion
define an ‘‘optimal statistic’’ which we will denotet(x).
This is any function of the observed datax whoselevel sur-
facesare the same as the level surfaces ofL(x). If the sta-
tistic is greater than some thresholdT then we conclude tha
a signal is present, and if the statistic is less than the thr
old T we conclude that no signal was present. The fa
alarm and false dismissal probabilities are functions of t
thresholdT: asT is increased the false alarm probability ge
smaller, and the false dismissal probability gets larger.
general this optimal statistic is a function of the signal a
plitude e. However, we will see that for the pulsar detecti
problem, wheree is small, the optimal statistic is effectivel
e independent.

III. A WORKED EXAMPLE

To help make these ideas concrete, we give a comp
worked example, demonstrating these ideas for the sec
PDF described above: a signal of unknown phase at a
solved frequencyf , . The PDF is

p~xue!5
1

2pE0

2p

df
1

2p
e2ux,2eeifu2/2

3 )
k51
kÞ,

N/221
1

2p
e2uxku2/2. ~3.1!

Before continuing, it is convenient to express this in clos
form. Writing the complex data samplex,5ux,uexp(ic,) in
terms of its modulusux,u and phasec, , one has

1

2pE0

2p

df
1

2p
e2ux,2eeifu2/2

5
1

2pE0

2p

df
1

2p
e2[ ux,u21e222eR(x,

* eif)]/2

5
1

2p
e2(ux,u21e2)/2

1

2pE0

2p

dfeeux,ucos(f2c,)

5
1

2p
e2(ux,u21e2)/2I 0~eux,u!.

The final integral has been expressed in terms of a mod
Bessel functionI 0(r ) of the first kind,

I 0~r !5
1

pE0

p

duer cosu.

Thus we obtain a closed form for the PDF~3.1!:

p~xue!5e2e2/2I 0~eux,u! )
k51

N/221
1

2p
e2uxku2/2. ~3.2!

The likelihood function is now easily found:
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L~x!5
p~xue!

p~xu0!
5e2e2/2I 0~eux,u!. ~3.3!

While in a general situation the likelihood function depen
upon all the different variables, in this particular situation
depends only uponux,u.

We defined an optimal statistict to be any function whose
level surfaces are the same as the level surfaces of the
lihood functionL(x). In this simple situation, the likelihood
function L(x)5L(x1 , . . . ,xN/221) depends only upon the
modulusux,u of the amplitude in a single~the ,th! Fourier
bin. Since it is a monotonically increasing function ofux,u,
we can choose as an optimal statistic any monotonic func
of ux,u, for exampleux,u or ux,u2. For historical and later
convenience, let us choose as our optimal statistic the fu
tion t5ux,u2. This is the power in the,th bin. The mean
value of this statistic, the power in the,th bin, is

E dxtp~xue!5E dxux,u2p~xue!521e2. ~3.4!

In the absence of a signal (e50) both the real and imaginar
parts ofx, contribute unity.

To complete the analysis of this example, we need to c
culate the false alarm and false dismissal probabilities.
will define, for a given value of thresholdT, the regionsH0
andH1 by:

H05$~x1 , . . . ,xN/221! such thatt5ux,u2<T %,

and

H15$~x1 , . . . ,xN/221! such thatt5ux,u2.T %.

Thus our choice of statistic gives a decision rule which ha
simple physical interpretation. If the power in bin, is greater
than T, we conclude that a signal was present. If not,
conclude that no signal was present.

The false alarm probability~2.4! is easy to calculate. It is
given by the following function of the thresholdT:

a~T!5E
xPH1

dxp~xu0!

5E
ux,u2.T

dxp~xu0!

5E
ux,u2.T

dx )
k51

N/221
1

2p
e2uxku2/2

5E dRx,E dIx,

1

2p
e2ux,u2/2

5E
0

2p

dc,E
ux,u5AT

`

ux,udux,u
1

2p
e2ux,u2/2

5E
T/2

`

dS 1

2
ux,u2D e2ux,u2/2

5e2T/2. ~3.5!
3-3
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In this calculation, the transition from the third to the four
line is trivial because we integrate over all the coordina
except forx, . In going from the fourth to the fifth line, we
have changed variables from the real and imaginary part
polar coordinates.

The false dismissal probability~2.5!, which depends both
upon the signal amplitudee and upon the valueT of the
decision statistic threshold, is obtained with a similar cal
lation:

b~T!5E
xPH0

dxp~xue!

5E
ux,u2<T

dxp~xue!

5e2e
2
/2E

0

AT
ux,udux,ue2ux,u2/2I 0~eux,u!

5e2e
2
/2E

0

T/2

du e2uI 0~eA2u!. ~3.6!

This final integral cannot be evaluated in closed form. Ho
ever, it is easy to check that the limitb(`)51: if the thresh-
old is set very large, then the false dismissal probability
unity. In a moment, we will study the behavior ofb in the
weak-signal limit ase→0. However, before this, it is in-
structive to study the false alarm versus false dismis
curves for this statistic.

The false alarm and false dismissal curves for this optim
detection statistic are illustrated in Fig. 1. Plottingb as a
function of a provides a way of describing the optimal st

FIG. 1. The false dismissal probabilityb(T ) as a function of the
false alarm probabilitya(T ) for different values of the signal am
plitude e. The top curve hase50.2. Moving down, the remaining
curves havee50.5,1.0,2.0,3.0. Along each curve, the thresholdT
varies from 0 to 8. In the bottom right of the graph,T50. The
crosses mark the points whereT51/2,1,3/2, . . . ,8. Forexample,
with a thresholdT55.5, if the signal amplitude ise53, then the
false alarm probability isa'6.4% and the false dismissal probab
ity is b'20%.
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tistic which is completely independent of the actual choice
the statistic.3 However, the relationship between the thres
old T and the false alarm and false dismissal probabilit
does depend upon the choice of optimal statistic. Beca
this statistic has been chosen by the Neyman-Pearson c
rion, any other detection statistic that we choose will ha
poorer performance. Thus, for a given signal amplitudee,
and for a given false alarm probabilitya, any other detection
statistic will have a larger false dismissal probabilityb: it
will lie above the illustrated curves.

Our primary interest is in very weak signals. For the p
sar detection problem, we will havee'0.2 and will be op-
erating on the threshold of detection wherea1b is only
slightly smaller than unity. For such weak signals, it is use
to define the quantity

g~T !512a~T !2b~T !. ~3.7!

This may be considered either as a function of the thresh
T or as a function of the false alarm probabilitya(T). This
quantityg is the difference between the detection probabil
when a signal is present, 12b, and the false alarm probabil
ity a. For example, for a very weak signal, the thresho
might be set for a false alarm probability ofa515%. The
false dismissal probability for this weak signal might beb
584%. Thus, if no signal is present, the threshold will

3Remember that any statistic with the same level surfaces asL(x)
is an optimal statistic. There are an infinite number of different
equivalent choices possible.

FIG. 2. Solid curves: Detection probabilityg512a2b as a
function of the false alarm probabilitya for different values of the
signal amplitudee50.1, . . .,0.5 ~moving up from the bottom
curve!. The crosses mark different values of the threshold in
same way as for Fig. 1. Dashed curves: TheO(e2) approximation is
g5e2T exp(2T/2)/452e2a ln a/2. TheO(e4) approximation tog
is not shown because on this graph it is indistinguishable from
exact result~the solid curves!.
3-4
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exceededa515% of the time. If a signal is present, th
threshold will be exceeded 12b516% of the time. Roughly
speaking, the difference between these,g512a2b51%,
is the probability of the threshold being exceeded beca
the signal was present, rather than because of the det
noise. These weak-signal-limit curves are shown in Fig.

In the small-e ~weak-signal! limit, it is easy to obtain an
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approximate closed form forb. By substituting the power
series representation of the Bessel function,

I 0~x!511
x2

4
1

x4

64
1

x6

2304
1•••

into Eq. ~3.6! and integrating term by term, one obtains
g512a2b

5
e2

4
Te2T/2F11

e2

16
~T24!1

e4

576
~T 2212T124!1•••G

52
1

2
e2a ln aF12

e2

8
~21 ln a!1

e4

144
~616 lna1~ ln a!2!1•••G . ~3.8!
r
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Even at the lowest order ine ~the first term in square brack
ets! this is a very good approximation, as shown by t
dashed curves in Fig. 2. At the next order~the first two terms
in square brackets! the approximation is indistinguishabl
from the exact result in Fig. 2—the solid curves. This si
plifies matters enormously. Although the statistics of the
timal detection strategy depends upon the signal amplit
e, for small e, this dependence is simple enough to be a
lytically approximated.

The detection probability plays a key role in the signi
cance of an observation. A hierarchical pulsar search h
for peaks in the spectra coming from a set ofn sequential
time series. For example, suppose each time series of le
N is one day long. Four months of such data would cor
spond ton5120. What choice of false alarm probabilitya
~or, equivalently, of detection thresholdT ) is optimal?

This question is easily answered. One might guess tha
best operating point is where the detection probabilityg
512a2b is maximized: in the weak-signal case this is a
threshold ofT52 corresponding to a false alarm probabili
a51/e'36.78%. However, this is not correct. In the a
sence of signal, each of then data sets is independent. Th
probability of detecting peaks inp of the n data sets is the
same as the probability that a coin will come up headp
times in n flips ~if the probability of ‘‘heads’’ is the false
alarm probabilitya). This is given by the binomial distribu
tion:

probability of p peaks5S n

pDap~12a!n2p.

Thus, in the absence of a signal, the mean number of pea
an, and its variance iss25a(12a)n. In the presence of a
signal, the mean number of peaks registered is (12b)n. A
good way to choose a false alarm probability~or threshold!
is to maximize the significances. This is
-
-
e
-

ts

th
-

he

is

s5
^# peaks&signal2^# peaks&no signal

s

5
~12b!n2an

Aa~12a!n

5
12a2b

Aa~12a!
An

5
g

Aa~12a!
An. ~3.9!

The significance is easily calculated as a function of eithea
or T. In the weak-signal limit, it is

s

An
5

e2

4

T
AeT/221

52
e2

2
A a

12a
ln a.

The significance as a function of eitherT or a has a maxi-
mum at the threshold valueT'3.18721 corresponding to
false alarm probability ofa'20.3188%. The significance a
this threshold/false alarm probability iss'0.402371e2An.
Note that this exhibits the expectedAn scaling in the number
n of spectra analyzed. We have numerically verified that t
is the optimal statistic.

IV. EXAMPLE: LOCAL PEAK DETECTION—A
NONOPTIMAL STRATEGY

Section III found and analyzed the optimal~i.e., Neyman-
Pearson! peak detection strategy. In this section, we carry
an identical analysis of a different~hence nonoptimal! strat-
egy. The main purpose is to illustrate a side-by-side comp
son of different detection statistics.

We will assume that the signal and noise satisfy the sa
assumptions as in Sec. III, given by Eq.~3.2!. There, we
showed that the optimal detection strategy was to thresh
3-5
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on the powert5ux,u2 in the ,th bin. Here, we adopt a dif
ferent detection strategy. We will say that a peak has b
detected if and only if the powerux,u2 in the,th bin exceeds
the thresholdT and is greater than the power in either of th
neighboring frequency bins. This strategy looks for ‘‘loc
peaks’’ that exceed the threshold.

For this peak detection strategy, the detection regionH1 is
defined by

H15$~x1 ,•••,xN/221! such that ux,u2.T and ux,u2

.ux,21u2 and ux,u2.ux,11u2%.

In other words, the peak detection strategy is to registe
peak if the observed data set lies inH1. The null-hypothesis
or no-signal regionH0 is the set complementH05RN22

2H1: all points not lying inH1.
To compare this strategy to the optimal one found in S

III, we calculate the false alarm and false detection curve
before, and compare them with the optimal strategy. T
false alarm probability is

a~T!5E
xPH1

dxp~xu0!

5E dx,21

2p E dx,

2p E dx,11

2p
e2~ ux,21u21ux,u21ux,11u2)/2,

ux,u2.T,

ux,u2.ux,21u2,

ux,u2.ux,11u2.
ity

tin

10200
n

l

a

c.
as
e

In these expressions,*dxk denotes*2`
` dRxk*2`

` dIxk . Put-
ting each of the three integrals into polar coordinates imm
diately yields

a~T!5
1

2ET

`

dux,u2e2ux,u2/2F1

2E0

ux,u2
dux,21u2e2ux,21u2/2G2

5
1

2ET

`

dux,u2e2ux,u2/2@2e2u/2uu50
u5ux,u2

#2

5
1

2ET

`

dux,u2e2ux,u2/2@12e2ux,u2/2#2

5E
T/2

`

due2u@12e2u#2

5
1

3
e23T/22e2T1e2T/2. ~4.1!

The quantity in square brackets that appears in the inter
diate steps of this calculation is simply the probability th
bins ,61 contain less power than the,th bin. This is one
minus the false alarm probability~3.5! of the optimal test.

As with the optimal test, the false alarm probabilitya(T)
vanishes at large thresholdT→`. However, unlike the opti-
mal test, the false alarm probability at zero threshold is
unity: a(T50)51/3. This is because, even if the thresho
vanishes, to register as a peak the,th bin must contain more
power than both adjacent bins. When no signal is pres
this happens only 1/3 of the time.

The false dismissal probability for this nonoptimal pe
detection strategy can be calculated with the same meth
as above. One finds
b~T !5E
xPH0

dxp~xue!

512E
xPH1

dxp~xue!

512
1

2ET

`

dux,u2e2(ux,u21e2)/2I 0~eux,u!@12e2ux,u2/2#2

512e2e2/2E
T/2

`

du I0~eA2u!e2u@12e2u#2

5e2e2/42
1

3
e2e2/31e2e2/2E

0

T/2

duI0~eA2u!e2u@12e2u#2. ~4.2!
ro
ncy

p-
es
As for the optimal statistic, this false dismissal probabil
approaches one at large thresholdT→`. However, unlike
the optimal test, it does not vanish at zero threshold. Set
T50 in Eq. ~4.2! one finds that

b~T50!5e2e2/42 1
3 e2e2/3.
g

If the signal amplitude is smalle→0 thenb(T50)→2/3.
There is a 2/3 probability of missing a small signal at ze
threshold, because one of the two neighboring freque
bins might contain more power than bin,.

A set of false alarm/false dismissal curves for this nono
timal statistic is shown in Fig. 3, along with the same curv
3-6
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for the optimal statistic. Note that for a given signal streng
and false alarm probability, the false dismissal probability
always lower for the Neyman-Pearson test. Also notice t
at a given threshold, one test statistic does not yield the s
false alarm probability as the other statistic. As the fa
alarm probability decreases, the two statistics have a pe
mance ~false dismissal probability! that becomes increas
ingly similar. This is because, at increasing values of
thresholdT, fewer and fewer peaks are rejected because
neighboring peaks are larger.

In the small-signal limite→0, one can use the serie
expansion of the Bessel function to obtain analytic expr
sions for the false alarm probabilityb. The signal detection
probability is

g512a2b

5
e2e23T/2

4 FTS eT2eT/21
1

3D1eT/22
4

9G1O~e4!

5
e2

4 FaT1e2T2
4

9
e23T/2G1O~e4!.

This signal detection probability cannot be expressed in a
lytic form entirely in terms ofa given by Eq.~4.1!. However
we can plot it and compare with the identical curve for t
optimal strategy. This is shown in Fig. 4, which also sho
the significance as a function of the false alarm probabi
The comparison is shown in Table I.

The primary purpose of these last two sections was
demonstrate how a signal detection strategy can be chos
an optimal fashion, and how it can be compared to a sub

FIG. 3. Solid curves: False dismissalb versus false alarma for
the nonoptimal detection strategy of this section. Moving do
from the top, the curves correspond to signal strengthse
50.2,0.5,1,2,3. Notice that the false alarm probabilitya is less than
1/3 for any value of the thresholdT. For comparison, the dashe
curves show the optimal strategy of the previous section. No
that the optimal strategy always yields a lower false dismissal p
ability for a given false alarm probability. The crosses mark thre
old valuesT51,2, . . . ,8increasing to the left along each curve.
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timal strategy. In a ‘‘real world’’ situation, it may be highly
desirable to apply a suboptimal strategy, because the m
ematical model of the instrumental noise may not be co
plete, and might not accurately reflect its real behavior.
fact, the suboptimal method discussed in this section
only slightly poorer performance for the simple Gauss
noise model than the optimal test, but may perform mu
better on ‘‘real world’’ data which have correlations betwe
different frequency bins.

In the following section, we will apply these methods
develop optimal tests for the case where the sinusoidal si
frequency is not one of the exactly resolved frequenciesf k .

e
b-
-

FIG. 4. These graphs are a comparison of two different pe
finding methods, in the weak-signal limit~small e). The dashed
curves correspond to the optimal~Neyman-Pearson! test: threshold-
ing on the signal power. The solid curves correspond to the lo
peak test described in this section. The bottom graph shows
detection probabilityg/e25(12a2b)/e2 as a function of false
alarm probability a. The top graph shows the significanc
g/e2Aa(12a). Table I compares the properties of these curves

TABLE I. A comparison of the optimal Neyman-Pearson dete
tion strategy and the suboptimal local peak detection method, in
weak-signal limit. Most of these values can be read off Fig. 4. T
top half of the table gives information about the maximum ofg
512a2b, such as the value of the threshold at the maximu
The bottom half of the table gives the same information for
maximum of (12a2b)/Aa(12a).

Optimal test Local peak test

Maximum of 12a2b 0.1839e2 0.1529e2

is at threshold valueT 2.0 2.0
and false alarm probabilitya 36.79% 24.91%

Maximum of
12a2b

Aa(12a)
0.4024e2 0.3806e2

is at threshold valueT 3.187 3.567
and false alarm probabilitya 20.32% 14.14%
3-7
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V. COMMENTS ON THE WEAK-SIGNAL
APPROXIMATION

In the previous sections, we studied the validity of t
weak-signal limite→0, and made use of it when appropr
ate. We will continue to take this limit throughout the pap
This brings up several interesting issues.

These types of weak-signal approximations have b
studied extensively under the rubric of ‘‘locally optimal st
tistics’’ @12#. Later in this paper, they will make treatment
non-Gaussian noise models tractable.

In practice, the weak-signal approximation is well jus
fied for the pulsar detection problem. This is dramatica
illustrated in Fig. 2. This is a typical case: fore,1/2 only the
lowest-order terms ine need to be retained in order to hav
a good approximation. Keeping the next order terms as w
gives an extremely good approximation even fore'1. Typi-
cal detectable signal strengths will bee'0.2.

In the weak-signal limit, the PDF can be well approx
mated by the first nonvanishing term in its Taylor series ine.
The first derivative ofp(xue) with respect toe vanishes at
e50, becausep is an even function ofe. This is because the
phasef of the signal is uniformly distributed in the rang
@0,2p). The PDF is well approximated by

p~xue!5p~xu0!1
1

2
e2p9~xu0!1O~e4!, ~5.1!

where the prime denotes]/]e. The likelihood function is
then approximated by

L~x!5
p~xue!

p~xu0!
511

1

2
e2

p9~xu0!

p~xu0!
. ~5.2!

Thus in the weak-signal case~neglecting fourth order term
in the signal amplitudee) the optimal detection statistic i
independent of signal strength, and can be found from
second derivative of the PDF at zero signal strength. T
tremendously simplifies the analysis.

The likelihood function itself, or the likelihood function
minus a constant, can be used as the optimal statistict ~for
example, threshold onL21). In the absence of signal, th
mean value of this statistic must vanish. This follows imm
diately from the definition ofL, since

E dxp~xu0!~L21!5E dx@p~xue!2p~xu0!#50.

~5.3!

In the weak-signal case, keeping only terms up to a gi
order ~say e2) in L21, it is easy to show that the sam
relation holds. Hence, in the absence of a signal, the m
value ofL(x)21 vanishes. This will be useful later.

VI. OPTIMAL DETECTION OF UNRESOLVED
FREQUENCY SIGNALS

We now begin to address one of our key concerns. T
previous sections showed how to systematically derive
10200
.
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characterize a detection strategy for the case where the w
sinusoidal signal had unknown phase, but where, if pres
the signal’s frequency precisely corresponded to one of
Fourier bins. We now suppose that the frequency is als
random variable, whose value is uniformly distributed b
tween (f ,1 f ,21)/2 and (f ,1 f ,11)/2. In other words, the
signal of interest lies somewhere between a half bin to
left and a half bin to the right of the,th frequency bin.

Before delving into the details of the analysis, it will b
helpful to briefly examine the appearance~in frequency
space! of an unresolved sinusoidal signal in the absence
noise. Take the signal frequency to be

f l5
l

NDt
~6.1!

where we donot assume thatl is an integer~corresponding to
one of the resolved frequencies!. Let , denote the nearest bi
to l, so that

l 5,2d for dP(21/2,1/2]. ~6.2!

Without loss of generality, we assume that the frequencyf l is
between the dc and Nyquist frequencies, corresponding
the rangel P(0,N/2). In the absence of noise, the signal
the time domain is given by

yj5e
2

N
cos~2p f l j Dt2f!5e

2

N
cos~2p j l /N2f!.

Substituting this into the DFT~2.2! and using the sum of the
geometric series

(
j 50

N21

zj5
12zN

12z
~6.3!

gives Fourier amplitudes

xk5e@eifDN~k2 l !1e2 ifDN~k1 l !#, ~6.4!

where the functionDN is theDirichlet kernel:

DN~z!5eipz(121/N)
sin~pz!

N sin~pz/N!
. ~6.5!

As described following Eq.~2.3!, the range of the frequenc
index k is 1, . . . ,N/221. SinceDN(z) vanishes for all inte-
ger arguments except for zero, where its value isDN(0)
51, in the resolved-frequency case wherel is an integer, one
hasxk50 for kÞ l , andxl5eeif. In the unresolved case, th
signal energy is not confined to the,th bin, and forms a
characteristic pattern of ‘‘sidelobes’’ in the nearby frequen
bins.
3-8
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If the signal frequency is unresolved (l noninteger! the
optimal statistical test will not involve only data from the,th
bin. The adjacent frequency bins also contain part of
signal energy, and we will shortly find that the statistica
optimal search also takes into account their content~in the
sense of energy and information!.

One can simplify the form of the Dirichlet kernel wit
several approximations.4 Our primary interest is to extract a
much useful information as possible from the Fourier am
tudes in the bins near bin,. BecauseDN(z) is strongly
peaked atz50 and falls off;z21 away from it, one may
neglect the second term in Eq.~6.4! and concentrate on th
first term. In addition, in practical applications,N will be
large enough~greater than 105) that the 1/N term in the
exponential ofDN can be neglected. Finally, since we will b
interested in the Fourier amplitudes in nearby bins,uzu!N,
which means that the denominatorN sin(pz/N) is well ap-
proximated bypz. This leaves us with

xk'eeifv~k2 l !,

where the coefficients

v~z!5eipz
sinpz

pz

5eipzj 0~pz!

5eipzsinc~z!. ~6.6!

Here j 0 is a spherical Bessel function, and we have us
Woodward and Bracewell’s definition of the sampling fun
tion sinc.

We now suppose that the signal of interest is distribut
with equal probability, anywhere between61/2 a frequency
bin from the,th bin, and write an expression for the PDF
the data. If, as before, the signal phasef is a uniformly
distributed random variable, and if the instrument noise
Gaussian and satisfies the same assumptions as before
has

p~xue!5
1

2pE21/2

1/2

ddE
0

2p

df )
k512,

N/2212,
1

2p

3e2uxk1,2ev(k1d)eifu2/2. ~6.7!

In this expression, which involves a product over all fr
quency bins, the indexk has been shifted so thatk50 labels
the ,th bin.

When searching for a signal peak in the vicinity of the,th
bin, there are practical reasons~computational efficiency and
algorithm structure! why it is desirable to use only informa
tion from ~some small number of! nearby bins.5 Fortunately

4Further justification for these approximations may be found
Sec. X and Fig. 6.

5Section X and Fig. 6 show that virtually all the information
within a few bins from the,th bin.
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for us, the Neyman-Pearson criterion can be easily deri
for this more limited information: we merely write down th
PDF for the parts of the data~the nearby bins! which are
available to us. From this point on, we will assume that o
search for a signal in the vicinity of the,th frequency bin is
restricted to 2P11 bins. These are the,th bin itself, andP
frequency bins to its left and to its right. For this restrict
data set, the PDF is

p~xue!5
1

2pE21/2

1/2

ddE
0

2p

df )
k52P

P
1

2p

3e2uxk1,2ev(k1d)eifu2/2. ~6.8!

One may now easily write down the likelihood function, an
an optimal statistic, in the weak-signal limit, making use
Eqs. ~5.1! and ~5.2!. It is easily verified that there are n
terms of ordere. Writing the PDF in the form

p~xue!5
1

2pE21/2

1/2

ddE
0

2p

df eW(e) ~6.9!

where

W~e![ (
k52P

P H 2
1

2 Uxk1,2ev~k1d!eifU22 ln 2pJ ,

and taking two derivatives with respect toe, one has

p9~xu0!5
1

2pE21/2

1/2

dd E
0

2p

df eW(0)$@W8~0!#21W9~0!%

5p~xu0!E
21/2

1/2

dd E
0

2pdf

2p
$@W8~0!#21W9~0!%.

~6.10!

We will do similar calculations later, in much less detail. T
derivatives are easily evaluated:

W8~0!5
dW

de U
e50

5 (
k52P

P

R@xk1,* v~k1d!eif#,

~6.11!

W9~0!5
d2W

de2 U
e50

52 (
k52P

P

uv~k1d!u2. ~6.12!

The integraldf of W8(0)2 is evaluated by noting that fo
any complex numbersA andB
3-9
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E
0

2pdf

2p
R~Aeif!R~Beif!

5uAuuBu E
0

2pdf

2p
cos~f2cA!cos~f2cB!

5
uAuuBu

2 E
0

2pdf

2p
@cos~cB2cA!1cos~2f2cA2cB!#

5 1
2 uAuuBucos~cB2cA!

5 1
2 R~AB* !. ~6.13!

Making use of this, the inner integral in Eq.~6.10! gives

E
0

2pdf

2p
$@W8~0!#21W9~0!%

5
1

2
R (

r 52P

P

(
r 852P

P

xr 1,* xr 81,v~r 1d!v* ~r 81d!

2 (
r 52P

P

uv~r 1d!u2.

Substituting this back into expression~6.10! for the second
derivative of the PDF yields

p9~xu0!

p~xu0!
5

1

2 (
r ,r 852P

P

xr 1,* Mrr 8xr 81,2 (
r 52P

P

Mrr .

~6.14!

Here, Mrr 8 is a (2P11)-dimensional square, symmetri
real, positive-definite matrix. Making use of the definition
v in Eq. ~6.6! gives

M5Mrr 85E
21/2

1/2

dd v~r 1d!v* ~r 81d! ~6.15!

5~21!r 2r 8E
21/2

1/2

dd j 0@p~r 1d!# j 0@p~r 81d!#.

Adopting the Einstein summation convention~repeated indi-
cesr andr 8 are summed from2P to P) and substituting Eq.
~6.14! into the weak-signal approximation~5.2! of the like-
lihood function, one obtains

L~x!215
e2

2 S 1

2
xr 1,* Mrr 8xr 81,2Mrr D

5
e2

2 S 1

2
xr 1,* xr 81,2d rr 8D Mrr 8 . ~6.16!

In the absence of a signal, Eq.~5.3! shows that the mean
value of L21 must vanish. This is clearly the case, sin
under our assumptions, in the absence of a signal, the m
value of xr 1,* xr 81, is 2d rr 8 , whered rr 8 is the Kronecker
delta.
10200
an

We note that the formalism of this section can be trivia
adapted to the case where the frequency of the signal lie
any desired range6D around the,th bin. The only change
is that in Eq.~6.15! one makes the transformation

E
21/2

1/2

dd→ 1

2DE2D

D

dd. ~6.17!

In the limit D→0, it is easy to see thatM0051 and all other
components ofMrr 850. The results are then identical to th
resolved-frequency case of Sec. III.

The results of this section can be summarized in a f
lines. In Sec. III we studied the case where the signal
quency was exactly resolved. In that case, we found that
optimal statistic was the power in the corresponding b
Thresholding on this statistic gave the lowest false dismis
probability for a given false alarm probability. In this sectio
after assuming that the signal frequency is uniformly distr
uted around bin,, we have found that the optimal statist
~in the weak-signal case! is to threshold on the bilinear quan
tity ~6.16!. We can choose~from the value ofP) how many
of the data around the given bin to use. IfP50 we recover
the power statistic of Sec. III. IfP is larger, then additiona
information from neighboring bins also gets added, and
test performs better. In the following sections, we will an
lyze the performance of this test, using the methods of S
IV to compare the optimal statistics for different values ofP.

VII. PROPERTIES OF THE MATRIX M

Let us begin by exhibiting the (2P11)-dimensional ma-
trix M , given by Eq.~6.15!. It is easy to integrate Eq.~6.15!
to get an exact expression for the matrix in terms of sine-
cosine-integral functions Si and Ci. On the diagonal~no
summation convention onn)

Mnn5
4

p2~4n221!
1

1

p
Si@p~2n11!#2

1

p
Si@p~2n21!#,

and off the diagonal

Mmn5
C~2m21!2C~2m11!2C~2n21!1C~2n11!

2p2~n2m!
,

where C(x)[Ci(px)2 ln x. In these equations, the range
the subscriptsn,m is 2P, . . . ,P.

The ‘‘central’’ element ofM has row and column number
zero. The matrix extends away from this central element
an amount determined by the value ofP. For example, ifP
52 one has the five-dimensional matrix
3-10



M50.7737F 0.0181 0.0422 20.0169 20.0366 20.0169

0.0422 0.1017 20.0761 20.0761 20.0366

20.0169 20.0761 1.0000 20.0761 20.0169G ,
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20.0366 20.0761 20.0761 0.1017 0.0422

20.0169 20.0366 20.0169 0.0422 0.0181
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where the 0th row and column are highlighted, and we h
taken out an overall factor ofM00. Note that this matrix is
invariant under reflection about both diagonals, so it can
presented by listing just the (P11)-dimensional block of
elements with non-negative row and column numbers.

Because the matrixM is real and symmetric, it can b
diagonalized by a similarity transformation

D5O21MO , ~7.1!

whereO is an orthogonal square matrixOt5O21, andD is
diagonal. BecauseM is positive, its eigenvalues are all re
and positive. To six decimal places of accuracy, for the fi
few values ofP, the eigenvalues ofM are given by

l057.7369531021 for P50, ~7.2!

l057.8277431021,

l151.3754931021,

l251.0768731022 for P51, ~7.3!

l057.8323031021,

l151.6460831021,

l251.1235831022,

l358.1685931025,

l451.5377931026 for P52, ~7.4!

l057.8331731021,

l151.7617231021,

l251.1322731022,

l351.2053131024,

l451.9104231026,

l553.0397931029,

l652.72000310211 for P53. ~7.5!

We will see shortly that these eigenvalues determine the f
alarm and false dismissal probabilities for the correspond
threshold statistics/tests.
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The case analyzed in Sec. III, where the signal freque
is resolved, and a one-point test is used, corresponds to
ting P50 and havingl051. This is the limit when the
frequency band~6.17! over which the signal is distributed i
very small, and centered around a bin frequency. In the
posite limit where the frequency band6D is large, the ma-
trix M approaches something proportional to the identity m
trix, with a large number of nearly equal eigenvalues.

VIII. PERFORMANCE OF THE OPTIMAL TEST FOR
UNRESOLVED SIGNALS

The situation we are considering is defined by the P
given in Eq. ~6.7!. We will suppose that we have imple
mented a search for sinusoidal signals~in the weak-signal
limit ! using the thresholding statistic defined by Eq.~6.16!,
for a particular value ofP. We will call such a test the
‘‘(2 P11)-point test.’’ For example, the ‘‘five point test’
makes use of the data samples in the five bins neares
some central bin, to determine if a sinusoidal signal
present within6 half a bin of that central bin.

Our goal is to determine the false alarm and false d
missal curves for different values ofP. In this way, one can
quantify the loss of performance that arises from throw
away the additional information coming from bins locat
away from the bin of interest.

Let us first calculate the false alarm probability for th
(2P11)-point test. This is easy because it only involves t
probability distributionp(xu0) ~and its second derivative! for
vanishing signal strength, which is an independent Gaus
in each frequency bin. We choose, as our optimal statis
the quantity

t[x†Mx ~8.1!

wherex is a vector of~frequency space! data around the bin
of interest. This differs fromL21 by a data-independen
constant terme2/2, so it has the same level surfaces. Th
for the three-point test, the optimal statistic to threshold
would be

t5@x,21* x,* x,11* #

3F 0.0787 20.0589 20.0589

20.0589 0.7737 20.0589

20.0589 20.0589 0.0787
GF x,21

x,

x,11

G .

In the absence of signal, each of thexj is an independen
random Gaussian variable with zero mean and unit varian
3-11



s
wi
tr

-
of

nd
ze

-
d
ng

e
s

s-

d

e

tion

f

-

-

lse

ALLEN, PAPA, AND SCHUTZ PHYSICAL REVIEW D66, 102003 ~2002!
Thus, ifU is a unitary matrix, the column vector of variable
Ux are also independent random Gaussian variables
zero mean and unit variance. Since the orthogonal ma
U5O21 that diagonalizesM is unitary, the statistical prop
erties of the optimal statistict ~8.1! are the same as those
a random variable,

t5(
r 50

2P

l r uzr u2,

where eachzr is an independent variable whose real a
imaginary parts have independent Gaussian PDFS with
mean and unit variance. Note that the PDF ofu5uzr u2 is
exponential with mean52 and variance54.

The PDF of the statistict is easily computed using gen
erating functions. Suppose thatt is any random variable, an
p(t)dt is its probability density. We define the generati
function p̄(j) to be the expected value ofei jt:

p̄~j!5E
2`

`

dtp~t!ei jt.

This is basically the Fourier transform of the PDF. It mak
it simple to compute the PDF of a random variable that i
sum of other random variables. Since

t5(
r 50

2P

l rur

where eachur is a real random variable with PDF

p~u!du5H 0 for u,0,

1
2 e2u/2du for u>0,

the generating function for the PDF oft ~in the absence of a
signal! is

p̄~j!5)
r 50

2P F E
0

`

dur

1

2
e2ur /2Gei jt

5)
r 50

2P F E
0

`

dur

1

2
e2ur /2Gei j(l0u01•••1l2Pu2P)

5)
r 50

2P
1

2E0

`

dure
( i jlr21/2)ur

5)
r 50

2P

~122i jl r !
21. ~8.2!

This closed form for the generating functionp̄ makes it pos-
sible to find the probability distribution of the optimal stati
tic t in the absence of a signal.

To determinep from p̄, we invert the Fourier transform

p~t!5
1

2pE2`

`

dj p̄~j!e2 i jt.
10200
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This gives

p~t!5
1

2pE2`

`

dje2 i jt)
r 50

2P
i

2l r
S j1

i

2l r
D 21

. ~8.3!

The integral clearly vanishes fort,0, because the integran
has all of its poles in the complexj plane below the real-j
axis. If t,0, the sign of the exponential term permits th
contour of integration to be closed in the upper half-j-plane.
Since there are then no poles contained inside the integra
path, Cauchy’s theorem implies thatp(t)50 for t,0.

To find a closed form forp(t) whent.0, one must close
the integration contour in the lower half-j-plane. The residue
theorem then implies thatp(t) is a sum over the resides o
the poles, which are located atj52 i /2l r . One obtains

p~t!5(
r 50

2P F e2t/2lr

2l r
)

r 850
r 8Þr

2P S 12
l r 8
l r

D 21G
5(

r 50

2P
cr

2l r
e2t/2lr. ~8.4!

Here, we have introduced the set of 2P11 weights
c0 , . . . ,c2P defined by

cr[ )
r 850
r 8Þr

2P S 12
l r 8
l r

D 21

.

~Note: if P50 thenc051.! These weights have several in
teresting properties. In particular,

(
r 50

2P

cr51, and ~8.5!

(
r 50

2P

crl r5(
r 50

2P

l r5Mrr . ~8.6!

These weights simplify the notation in what follows.
The false alarm probabilitya(T) can now be obtained by

straightforward integration:

a~T !5E
T

`

dtp~t!

5(
r 50

2P

cre
2T/2lr. ~8.7!

It follows from Eq. ~8.5! that a(0)51.
Our calculations assume that the eigenvaluesl r are dis-

tinct ~as is the case here!. If m of them were equal then a
polynomial of orderm21 in t would appear on the right
hand side~RHS! of Eq. ~8.4! and a polynomial of orderm
21 in T would appear on the RHS of Eq.~8.7!.

For concreteness, we give the numerical form of the fa
alarm functions for the first few values ofP. The subscript on
a denotes 2P11: the number of points used in the test.
3-12
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a1~T !5e20.646249T,

a3~T !5e20.63875T10.2070972e23.6351T21.46410

1e246.430T26.73815,

a5~T !5e20.63840T10.2504872e23.0375T21.25272

1e244.500T26.836202e26121.0T221.6738

1e2325140.0T237.5716.

The false dismissal probabilityb is a bit more challenging to
calculate. However, for the weak-signal case of interest,
still possible.

To find the false dismissal probabilityb we begin by writ-
ing the PDF for the weak signal case as

p~xue!5p~xu0!1 1
2 e2p9~xu0!

5p~xu0!S 11
1

2
e2

p9~xu0!

p~xu0! D
5p~xu0!@11 1

2 e2~ 1
2 xr 1,* Mrr 8xr 81,2Mrr !#

5p~xu0!F11
1

2
e2S t

2
2Mrr D G

wheret is the optimal statistic~8.1!. From this, we can im-
mediately write an expression for the generating function
p(tue) to lowest order ine,

p̄~jue!5)
r 50

2P F E
0

`

dur

1

2
e2ur /2Gei jtF11

1

2
e2S t

2
2Mrr D G ,

where as beforet5l0u01•••1l2Pu2P . Since differentiat-
ing with respect toj brings down a factor ofi t, one has

p̄~jue!5F11
1

2
e2S 1

2i

d

dj
2Mrr D Gp~ju0!. ~8.8!

This relation is easily inverted to find a lowest-order formu
for p(tue). We simply integrate the new term by parts:

1

2pE2`

`

dje2 i jt
dp̄

dj

5
1

2pE2`

` d

dj
@e2 i jtp̄~j!#1 i te2 i jtp̄~j!dj

5tp~t!5tp~tu0!.

Thus we find a formula for the PDF of the optimal statistict
in the small-e limit:

p~tue!5p~tu0!F11
1

2
e2S t

2
2Mrr D G .

Since the PDFs on both sides are normalized, an impor
consequence of this is that the mean value of the test sta
in the absence of a signal is
10200
is

f

nt
tic

Mrr 5(
r 50

2P

l r5
1

2E0

`

dtt p~t!.

This is because the mean value of the likelihood function
the absence of a signal is unity. It is also easy to show
*0

`a(T )dT52Mrr .
From this it is straightforward to calculate the false d

missal probability

b~T!5E
0

T
dtp~tue!

5S 12
e2

2
Mrr D E

0

T
dtp~tu0!1

1

4
e2E

0

T
dttp~tu0!

5S 12
e2

2
Mrr D @12a~T !#

1
e2

4 (
r 50

2P

cr@2l r2~T12l r !e
2T/2lr#

512a~T!2
e2

4 F ~T22Mrr !a~T !1E
T

`

dta~t!G .
A bit of rearrangement gives us the weak-signal detect
probability g(T )512a(T )2b(T ) as a function of the
threshold:

e22g~T !5
1

2 S T
2

2Mrr Da~T !1
1

4ET

`

dta~t!

5
1

2 S T
2

2Mrr Da~T !1
1

2(
r 50

2P

crl re
2T/2lr

5
1

2 (
r 850

2P FT2 2Mrr 1l r 8Gcr 8e
2T/2lr 8. ~8.9!

These formulas make it clear thatg512a2b vanishes as
T→0 and asT→`.

It is instructive to return briefly to theP50 ~one-point!
test. Equations~8.7! and ~8.9! give false alarm and signa
detection probabilities:

a1~T !5e2T/2l0

and

g1~T !512a12b15
e2

4
Te2T/2l05e2F2

l0

2
a1ln a1G .

These should be compared with the resolved-frequency c
given in Eqs.~3.5! and ~3.8!. As expected, the formulas ar
identical if l051. However, for the unresolved-frequenc
case of this section, Eq.~7.2! givesl0'0.773695. Hence the
signal detection probability at a given false alarm probabi
a is lower than in the resolved-frequency case:
3-13
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For a resolved signalg52 1
2 e2a ln a.

For an unresolved signalg520.3868e2a ln a.

Thus, for weak signals, the detection probability of a on
point test for unresolved signals is 77% the probability
detection of a 1-point test for resolved signals. This can a
be seen by comparing the maxima of the one-point detec
probabilities shown in Figs. 4 and 5.

For the first few values ofP, the detection probability is
given by

e22g1~T !5Te21.3862920.646250T,

e22g3~T !5~T20.29663!e21.1792020.638755T

2~T21.58708!e22.8503923.63507T

1~T21.84064!e28.12445246.4309T,

e22g5~T !5~T20.35186!e21.1358120.638380T

2~T21.58910!e22.6390223.03752T

1~T21.89585!e28.22249244.5006T

2~T21.91816!e223.060126121.0T

1~T21.91832!e238.95802325142.0T,

where the subscript ong is 2P11: the number of points
used in the test. Figure 5 shows the detection probability
significance as a function of false alarm probabilitya for the
one-, three-, five- and seven-point tests, for this case, w
the signal frequency is uniformly distributed in the ranged
P61/2 a bin. It is clear from this figure and from Table
that, while adding the additional information from the near
frequency bins does improve the detection probability a
significance slightly, the gain is relatively small. In practic
there is little to be gained from going beyond the three-
five-point tests, as can be seen by noting that the eigenva
of M drop to small values very quickly with increasingP.
This means that for sensible values of the threshold,
terms that they add toa andb have very small effects: the
dominant terms are from the largest eigenvalues.

IX. INTERPRETATION OF RESULTS
AS FREQUENCY-SPACE ‘‘INTERPOLATION’’

In this section, the optimal statistict of the previous sec-
tion is shown to have a simple intuitive interpretation: It
the total power contained in a continuous spectrum in
frequency rangef ,21/2, f , f ,11/2. The continuous spec
trum is obtained from the discrete spectrumxj via frequency-
space interpolation .

This frequency-space interpolation may be understoo
terms of ‘‘zero padding,’’ as follows.

Start with the low-resolution frequency-domain Four
amplitudesxk defined by Eq.~2.2!. Here, ‘‘low resolution’’
indicates that the frequency spacing between successive
is 1/T.
10200
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Transform these into time-domainyj for j 50, . . . ,N
21.

Zero-pad the time-domain data toL times its original
length N, by appending (L21)N zeros, for j 5N, . . . ,NL
21.

Now transform back into the frequency domain to ge
higher-frequency-resolution set of Fourier amplitudesx̄k .
Here ‘‘high resolution’’ indicates that the frequency spaci
between successive bins is 1/LT.

In the limit L→` this gives rise to a continuous spectru
x̄( f ). The optimal statistict of the previous section is ex

FIG. 5. Bottom four curves: The detection probabilitye22g
5e22(12a2b) is plotted as a function of the false alarm pro
ability a, for the one-, three-, five-, and seven-point optimal te
defined by Eq.~8.1!, in the weak-signal limit. While using the ad
ditional information in the neighboring bins does improve the d
tection probability, the improvement is slight. Top four curves: T
significancee22s/An is plotted for the same one-, three-, five-, an
seven-point tests, in the weak-signal limit. The maxima of the ei
curves are given in Table II.

TABLE II. The maximum detection probabilityg and signifi-
cances of the optimal (2P11)-point peak detection tests, forP
50,1,2, and 3. These correspond to the curves of Fig. 5. The
half of the table lists the maximum value of the detection proba
ity g512a2b, and the values of the thresholdT and false alarm
probabilitya for which that maximum is obtained. The bottom ha
of the table lists the maximum value of the significances, and the
values of the thresholdT and false alarm probabilitya for which
that maximum is obtained.

One point Three point Five point Seven poin

Max(g/e2) 0.1424 0.1465 0.1477 0.1483
T 1.548 1.863 1.918 1.942
a 0.3679 0.3739 0.3767 0.3775

Max(s/e2An) 0.3113 0.3188 0.3204 0.3211
T 2.467 2.773 2.821 2.840
a 0.2031 0.2093 0.2121 0.2135
3-14
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OPTIMAL STRATEGIES FOR SINUSOIDAL SIGNAL . . . PHYSICAL REVIEW D 66, 102003 ~2002!
actly the signal power contained in this continuous spectr
in the range fromf ,21/2, f , f ,11/2. This quantity depends
only on the Fourier amplitudesxk because the zero paddin
has not added any information to the original data set.

To prove this assertion, we first derive a formula for t
high-resolution DFT in terms of the lower-resolution on
following the procedure above. The Fourier amplitudes
the time-domain samplesyj are given by Eq.~2.2! as

xk5 (
j 50

N21

yje
2p i jk /N for k52N/211, . . . ,N/2.

~9.1!

The inverse relationship gives the time-domain samples
terms of the Fourier amplitudes as

yk5
1

N (
j 52N/211

N/2

xje
22p i jk /N, for k50, . . . ,N21.

~9.2!

Zero-pad these time-domain samples by appendingL
21)N zeros, so that the total number of time-doma
samples is nowNL. Taking this back into the frequenc
domain gives the high-resolution Fourier amplitudes~for k
52NL/211, . . . ,NL/2)

x̄k5 (
j 50

NL21

yje
2p i jk /NL

5 (
j 50

N21

yje
2p i jk /NL

5
1

N (
j 50

N21

(
r 52N/211

N/2

xre
22p i j r /Ne2p i jk /NL

5 (
r 52N/211

N/2

DNS k

L
2r D xr . ~9.3!

In the third line, we have carried out the sum overj by using
the geometric series in Eq.~6.3!. The last line is the desired
result giving the high-resolution Fourier amplitudesx̄ in
terms of the low-resolutionx’s. The Dirichlet kernelDN in
Eq. ~6.5! is responsible for doing the interpolation.

The high-resolution spectrum has exactly as many
grees of freedom as the low-resolution spectrum, althoug
has L times as many frequency bins. This is because
amplitudes in the high-resolution spectrum are correla
with each other. The high-resolution spectrum also conta
an exact duplicate of the low-resolution spectrum. SinceDN
vanishes for nonzero integer arguments, andDN(0)51, ev-
ery Lth high-resolution bin contains the same value as on
the low-resolution bins:x̄Lr5xr for all integerr.

To finish proving the assertion, we calculate the aver
power in the high-resolution frequency binsk5L(,
21/2), . . . ,L(,11/2)21. These L high-resolution bins
cover the frequency range fromf ,21/2 to f ,11/2, which is
61/2 a bin around the,th bin. Anticipating the final result
this quantity is denoted ‘‘t. ’’ It is
10200
m

,
f

in

-
it
e
d
s

of

e

t5
1

L (
k50

L21

ux̄L,2L/21ku2

5
1

L (
k50

L21 U (
r 52N/211

N/2

DNS ,1
k

L
2r 2

1

2D xrU2

.

Since DN(x) is peaked aroundx50, in the spirit of the
previous section, this may be approximated as the sum o
the 2P11 bins around the,th bin. Further justification can
be found in Sec. X and in Fig. 6 below. This gives

t5
1

L (
k50

L21 U (
r 52P

P

DNS k

L
2

1

2
2r D x,1rU2

. ~9.4!

In the continuous limit, when the number of high-resoluti
frequency binsL→`, the outer sum can be converted in
an integral overd5k/L21/2, giving

t5E
21/2

1/2

ddU (
r 52P

P

DN~d2r !x,1rU2

5 (
r ,r 852P

P

x,1rSrr 8x,1r 8
* .

Here, the matrixSrr 8 is a (2P11)-dimensional Hermitian
matrix defined by

Srr 85E
21/2

1/2

dd DN~d2r !DN* ~d2r 8!. ~9.5!

This equation should be compared to the definition ofLrr 8
given in Eq.~6.15!. Making the same large-N approximation
as earlier gives

Srr 85eip(r 2r 8)(121/N)E
21/2

1/2

dd j 0@p~d2r !# j 0@p~d2r 8!#

'eip(r 2r 8)E
21/2

1/2

dd j 0@p~d1r !# j 0@p~d1r 8!#5Mrr 8 .

~9.6!

Thus, the optimal statistict of the previous section is just th
average power in a continuous interpolated spectrum wi
a frequency band of width61/2 a bin aroundf , .

X. WHY ‘‘WINDOWING’’ DOES NOT GIVE A BETTER
TEST

Windowing is a well-known method for reducing the bia
in a power spectrum, particularly for frequencies that are
resolved. It is natural to ask if this technique might provide
better test than the Neyman-Pearson test.

For largeP ~the number of bins used on either side of b
,) the answer is clearly ‘‘no.’’ In this case, the Neyma
Pearson testis ~by its very definition! the optimal test. How-
ever, if P is very small, one might wonder if windowing
could provide a better test, or if for largeP windowing might
provide a more efficient implementation of the optim
3-15
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ALLEN, PAPA, AND SCHUTZ PHYSICAL REVIEW D66, 102003 ~2002!
Neyman-Pearson test. The reason is that in frequency s
the amplitudesuxku fall off proportionally tok21 away from
the peak. One might then wonder if windowing can ‘‘co
centrate’’ more of the power close to the peak, to provid
better test whenP has small values. As we shall show, th
answer to the question is still ‘‘no’’ even whenP is small.

‘‘Windowing’’ is the process of multiplying the time-
domain datayj by a time-domain window functionwj , and
then transforming the data into frequency space. Thusyj
→wjyj in Eq. ~2.2!. This is also referred to as ‘‘apodizing
or ‘‘tapering.’’ Note: in addition, one may zero-pad the da
set before taking it into the frequency domain. But, as
scribed in Sec. IX the optimal test already effectively do
this, in the limit of infinite zero padding.

Common choices of windowing functions are given su
names as ‘‘Hamming,’’ ‘‘Parzen,’’ ‘‘Welch,’’ and so on
These window functions are chosen for their properti
quickest sidelobe falloff, narrowest23 db range, minimum
spectral bias, and so on. As an example here, to explain
windowing the data first does not provide a better test,
take as a window function the cosine window

wj5A2

3F12cos
2p j

N G . ~10.1!

The situation for other windowing functions is similar.
The window function is normalized so that the tot

power in the spectrum is the same with or without the w
dow. This is ensured by the condition~true for largeN)

(
j 50

N21

wj
25N. ~10.2!

This condition ensures that, for stationary noise, the stat
cal properties of the noise in the frequency bins are the s
with or without the windowing. Thus, for example, the e
pected power spectra of independent Gaussian-distrib
time-domain samples~white Gaussian noise! are exactly the
same for this window and for the rectangular windowwj
51.

Shown in Fig. 6 are the spectra of sinusoidal signals~2.1!
for the frequency bins near the peak. In the unwindow
case, a resolved signal (d50) has all its power in the,th
bin: ux,u5e2. As the frequency shifts upward tod520.5,
the magnitude ofux,u2 drops to 0.40e2. The adjacent
(,11)th bin also contains 40% of the energy. The remain
bins contain the other 20% of the energy, mostly in bins,
21 and ,12. The large magnitude of this ratio 1/0.4
52.5 is one reason why rectangular windows are often
desirable: a peak at a resolved frequency can be as muc
a factor of 2.5 times higher than a peak from a signal of
same amplitude at an unresolved frequency. In contras
the windowed case, the magnitude ofux,u250.67e2 whend
50 and only drops toux,u250.48e2 when d520.5. The
ratio 0.67/0.4851.38 is much smaller; hence the cosine w
dow produces a less biased power spectrum than the re
gular window.

But Fig. 6 also makes it clear why windowing does n
result in a better test for sinusoidal signals buried in no
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than the Neyman-Pearson test, even for smallP. The reason
is that windowing ‘‘lowers the peak’’ for signals that are ne
a resolved frequency even more than it ‘‘raises the peak’’
signals that are far from a resolved frequency. The dot
lines in Fig. 6 show the average power~averaged over the six
valuesd50,0.1, . . . ,0.5). In the windowed case the avera
power in the peak is only 0.60e2 compared to 0.76e2 for the
unwindowed case. This reduction in peak power results i
tremendous loss of significance for smalle, when the signals
are buried in noise. For a given value of the thresholdT
~corresponding to a fixed false alarm probability!, the win-
dowed signal is far less likely to cross the threshold whe
signal is present than the nonwindowed signal. Thus, it ha
higher false dismissal probability than the Neyman-Pear
test.

Figure 6 also demonstrates that in the unwindowed c
almost all of the power is within a few bins of the pea
Consequently, even small values ofP will give a nearly op-
timal test. For example, even for the worst-case signal (d5
20.5) over 92% of the power is contained in just the ran
of bins from ,22 to ,12. Averaging overd, these bins
contain more than 96% of the signal power. WhenP is in-
creased this rises rapidly: in the worse case (d520.5) for
P510, the 21 bins around the peak contain more than 9
of the total power. There is effectively nothing to be gain
by increasingP to larger values.

FIG. 6. The frequency-domain effects of windowing sinusoid
signals of amplitudee are shown in the absence of noise. T
bottom graph uses a rectangular windowwi51 ~no windowing!.
The top graph uses the cosine window defined by Eq.~10.1!. The
solid curves show how the poweruxku2 is distributed bin by bin
around the peak atk5,, for five different frequencies defined b
d50,20.1, . . . ,20.5 in Eqs.~6.1!, ~6.2!. The dotted line shows the
average. Windowing greatly reduces the difference inux,u2 between
resolved frequencies (d50) and unresolved frequencies, so it r
duces thebias in a spectrum. However, it also reduces the power
the peak substantially: the mean value is 0.60e2 with windowing
compared to 0.76e2 without windowing. This means that window
ing does not give a better test: at a given thresholdT it yields a
larger false dismissal probability.
3-16
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XI. OPTIMAL TESTS IN THE PRESENCE
OF NON-GAUSSIAN NOISE

Section V showed how the weak-signal assumption
smalle permitted several useful simplifying approximation
One important simplification was that the optimal statisti
test does not depend upon the amplitudee.

This same weak-signal assumption also makes it poss
to find the optimal statistical test for signals hidden in cert
types of non-Gaussian noise as described, for example
@13,14#. Consider the following generalization for the PD
~6.8!:

p~xue!5E
21/2

1/2

ddE
0

2pdf

2p )
k52P

P
1

2pSk

3e2gk[ uxk1,2ev(k1d)eifu2/2Sk] . ~11.1!

The Gaussian case treated in Sec. VI is a special case of
for which gk(x)5x andSk51. These types of non-Gaussia
noise models, and the methods that are being used here~lo-
cally optimal tests!, are discussed in more detail in@13,14#,
where they are used to construct optimal search techniq
for stochastic background detection and for matched fil
ing.

This form of the PDF assumes that the noise in the
ferent frequency bins is independent, but it allows each
to have its own, different, arbitrary statistical distributio
For example, this can describe a very common situat
where the PDF has a central Gaussian region, plus a
Gaussian tail. Typically there is a ‘‘knee’’ at some charact
istic signal amplitude, where the slope of the distributi
changes, or the non-Gaussian tail begins. Some prelimi
work @15# has shown that it is straightforward to approxima
these functions given a real data stream.

The functionsgk are not completely arbitrary. In orde
that Eq.~11.1! be properly normalized, one must have

E
0

`

due2gk(u)51.

For any functional form ofg, this can be satisfied by addin
the correct constant term tog. We also require thatg satisfy
the additional normalization condition

E
0

`

du ue2gk(u)51,

which can always be satisfied by rescaling the argument og.
One then has

E dxp~xu0!xk* xr52dkrSk ,

so the positive weightsSk can be interpreted as the mea
squared noise power in thekth frequency bin. This formula
should be compared with Eq.~3.4!. For example, one migh
have
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e2g(x)5kFpe2kx1
12p

s2 e2kx/s2G , ~11.2!

wherek5p1(12p)s2. Here we assume thatp is positive
and less than unity. The cases of most interest are whe
2p is very small, ands2 is large, so thatk'1. Shown in
Fig. 7 is a graph ofg(x) and g8(x) for the case wherep
50.999 ands2520. This corresponds to a case whe
99.9% of the data is described by a Gaussian distribu
with unit variance. The other 0.1% of the data samples
outlier points, described by a different Gaussian distribut
with a variance of 20.

It is straightforward to derive the optimal peak-detecti
statistic in the weak signal limit, by proceeding exactly as
the Gaussian case of Sec. VI. We write

p~xue!5E
21/2

1/2

ddE
0

2pdf

2p
eW(e), ~11.3!

where

W~e!5 (
k52P

P H 2gkS uxk1,2ev~k1d!eifu2

2Sk
D2 ln 2pSkJ .

~11.4!

As before, it is easy to see thatp8(xue) vanishes ate50. So
the first nonvanishing derivative is

FIG. 7. An example of a functiong(x) corresponding to non-
Gaussian statistical behavior, given by Eq.~11.2! with s2520 and
p50.999. Notice that in the central Gaussian region,g8(x)'1,
whereasg8(x)→s22 when the argumentx is larger than's2/2.
The dotted line in the bottom graph shows~for comparison pur-
poses! g(x)5x.
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p9~xu0!

p~xu0!
5E

21/2

1/2

ddE
0

2pdf

2p
$@W8~0!#21W9~0!%.

~11.5!

The derivatives ofW that appear are

W8~0!5 (
k52P

P
1

Sk
gk8S uxk1,u2

2Sk
DR@xk1,* v~k1d!eif#

and
er
.E

f
nd

in

A

-
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wheregk8 and gk9 are the first and second derivatives of t
functiongk with respect to its arguments. Using Eq.~6.13! to
evaluate the integral overf and Eq.~6.15! to evaluate the
integral overd gives
out the

Planck
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A good algebraic check is to verify that in the absence of a signal the mean value of this quantity vanishes.
Thus we arrive at the final result: the optimal weak-signal detection statistic in the non-Gaussian case. Leaving

data-independent constant term, it is

t5 (
k,r 52P
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SkSr
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k52P
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2

Mkkuxk1,u2. ~11.7!

This reduces to the original expression~8.1! in the Gaussian case, whereg851 andg950. In the non-Gaussian case~refer to
Fig. 7! the effect of theg8 andg9 terms is to ‘‘clip’’ or ‘‘truncate’’ the effects of outlier points.
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