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Optimal strategies for sinusoidal signal detection
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We derive and study optimal and nearly optimal strategies for the detection of sinusoidal signals hidden in
additive (Gaussian and non-Gaussjarise. Such strategies are an essential part of algorithms for the detec-
tion of the gravitational continuous wavew) signals produced by pulsars. Optimal strategies are derived for
the case where the signal phase is not known and the product of the signal frequency and the observation time
is nonintegral.
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I. INTRODUCTION cycles examining regions in parameter space where, even if a
signal were present, it would not be detected confidently
A key problem in data analysis is to detect sinusoidalenough.
signals in noise. Such signals are often called “lines” or The hierarchical search techniqug-11] all involve a
“peaks" because in the Fourier doma([frequency Spaoe second(so-called incoherehstage. This stage is called “in-
they appear as Sp|kd$|ne||ke feature$ or sharp narrow coherent” because it Uses .SpeC.tral rather than amplitude data.
peaks in the energy spectrum of the signal. When the signaf one neglects polarization, in all of the proposed ap-
is large compared to the noise, such signals are easy to ideRtoaches a putative signal at the second stage wetleic-
tify. When it is weak, the identification becomes more diffi- tively) appear in a spectrum as a sinusoidal signal at fixed
cult. frequency and phase. The third stage of the search works
The work in this paper was motivated by the developmennly on the regions in parameter space where significant
of algorithms to search for continuous wafew) signals in ~ SPectral lines were identified in the second stage.
the new generation of interferometric gravitational-wave de- Our paper addresses the problem of identifying these can-
tectors which are either under construct[ds-5] or planned didates, that is, “registering” candidate sinusoidal signals.
[6]. These signals are produced by rapidly spinning neutrod he analysis makes use of the Neyman-Pearson criterion to
stars(pulsars. identify the “best” statistic to use for such identification. In
To search for new(previously undetectédpulsars re- SOMe cases, thg best sta_tistip depends upon the expected am-
quires a search over possible sky positions, frequencies, arditude of the signal, which is unknown. In these cases, we
pu|sar Spin_down parameters_ The parameter space is Vet‘}ﬁ\./e used |Oca”¥ Optlmal' methods to |dent|fy the best statis-
large and these searches are computationally very intensivli¢ in the weak-signal limit.
Moreover, the searches will be looking for signals that are The analysis is complicated by several factors.
(statistically at the lower limit of detection sensitivity7]. (1) The signal frequency and phase are not known in ad-
A brute-force approactoptimally filtering for all possible ~ vance. . . . .
source parametersrequires unrealistic computational re-  (2) The signal frequency may not lie at an integer multiple
sources(petaflops, so more sophisticated hierarchical ap- of the Rayleigh frequency ~*. A signal of this type does not
proaches have been proposed. When the parameter spacéngke an integer number of cycles during the observation
very large, these approaches retain much or all of the sensiime T. We call such frequencies, and the corresponding sig-
tivity of the brute-force approach but require fewer compu-hal, “unresolved.”
tational resources. This is possible because, in the brute-force (3) The signal frequency must be identified with resolu-
approach, the number of grid points in parameter space is $#n less than=(2T) "%, i.e., to within the nearest frequency
large that the detection threshold must be set very high t&in.
avoid false alarms and enable confident detection. A hierar- (4) The method must handle non-Gaussian noise in an
chical search visits fewer points in parameter space: it igoptimal manner.
nores those below thénigh) threshold that one must set in ~ The analysis presented here addresses all of these con-
order to gain the necessary detection confidence while exan§€rms.
ining a large parameter space. In other words a hierarchical

search method does not “waste” precious computationa);, proslEM DESCRIPTION AND OPTIMAL STATISTICS

The basic problem that we consider is the following. We

*Electronic address: ballen@uwm.edu are givenN samples of a time-domain data stream, sampled
"Electronic address: papa@aei.mpg.de at discrete times=t;=jAt. We denote these data lyy for
*Electronic address: schutz@aei.mpg.de j=0,1,... N—1. The total observation time i$=NAt.
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The question that we want to answer is, does the data streaNote that sincel is an integer and is real the signal only
y; contain a sinusoidal signal affects thelth frequency bin.
If the assumptions are the same as above, but the phase of
2 the signal is unknown and uniformly distributed over the
yj= eqeos2aity—¢) 21 range¢ [ 0,27), then
of constant amplitudeand frequency? To address this ques- 1 27Td 1 e
tion, we make use of the theory of optimal signal detection. p(xle)=5— , 9o
It is convenient to recast the problem in the Fourier domain.

Denote the discrete Fourier transfof@FT) of the data by N2-1g ,

NOR X —e"xk| /2.
K k=1 2T

k# ¢

id)|2/2

N—-1

Xk= E yj82”ijk’N for k=—N/2+1,... N/2. Somewhat later, we will relax these assumptions, and give
1=0 2.2 more general forms fop(x|e) where the signal frequency is
: not a resolved frequency, the noise is not white, and the noise

Since this transformation is invertible, any question or statelS Not Gaussian.

ment about they’s can also be stated in terms of ths; Note that the integration measure fofx|e) is
hence we will often use the term “data” to refer to thés N/2—1

rath_erthar_1 to_ thg’s. Here, and elsew_here, the symbeknd f dx= H f dmxkf dI%,,
y without indices refer to the collective ensemble of all the k=1 J-w —w

data. For convenience we will assume tNat a power of 2.
The indexk will often be referred to as a “frequency bin.” where and3J denote the real and imaginary parts.

The frequencies that these bins correspond to, The problem that we wish to solve is well known in the
theory of signal detection. The space of possible measure-
k k mentsx, for k=1, ... N/2—1 is RN"2. Our goal is to di-
fr=— ==, (2.3 : . . ! S
NAt T vide this space of possible measurements into two disjoint

regionsH, andH,, whose union is all oRN"2. If the ob-
are called “resolved frequencies” for reasons that will be-served data lie itH, (the “null-hypothesis regionf we will
come clear later. conclude that no signal was present in the data. If the data lie

In what follows, we will assume that the datare real. In  in H;, we will conclude that a signal was present. The prob-
this casex,=x*, where the asterisk denotes the complexlem we need to solve is this: What is the best choicéigf
conjugate, and both, andxy,, are real. The data sgtis andH;?
then exactly equivalent to the setxaffor k=0, . .. N/2. To The solution we chose is the Neyman-Pearson criterion:
simplify the mathematics, we will assume that the averagdhe best choice is the one that gives the lowest false dismissal
value of they’s vanishes(i.e., that the dc or average value probability for a given false alarm probability. The false
has been removed from the dasa thatx,=0. We will also  alarm probabilitye is the probability that a signal is detected
assume that there is no energy at the Nyquist frequéggy When none is present,
(which in a real experiment would be enforced by appropri-
ate antialia;ing filtepsso thatxy,,=0. Then, the data s#tis a= j dxp(x|0), (2.4
exactly equivalent to the sef, for k=1, ... N/2—1. xeH,
We use the notatiop(x|€) to denote the probability dis-

tribution function (PDP of the data, in the presence of a and the false dismissal probabilifj(e) is the probability
signal whose amplitude is. For example, if thereal and  that a signal of amplitude is not found,
imaginary parts of thenoise in each frequency bin is inde-
pendent and Gaussian with vanishing mean and unit vari- B(E):J dxp(x|e). (2.5
ance, and the signal is a sinusoid of known phase at resolved xeHy
frequencyf, given byy;= e(2/N)cos(2rft;—¢), then

The Neyman-Pearson criterion leads immediately to the fol-

1 égbzlz'\“z*l 29 lowing rule to partition the space of possible measurements
p(x|e)= Eeflee | kH Zeflx"l : into H, andH ;. Define the likelihood function on the space
k;% of possible measurements by
A= p(x|€)

The factor 2N in the amplitude of the cosine simplifies the form p(X|0)
of the frequency-space PDF, while retaining the standard definitions .
of the DFT. and consider the surfack(x)=Ay=const. The Neyman-

2This is the traditional “physics” definition. The “engineering” Pearson criterion leads to the following choice. Tékg to
definition has the opposite sign bf be the region inside this surface, akld to be the region
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outside this surface. The value Af that defines the surface p(xle)
determines the false alarm and false dismissal probabilities. A(x)= o(x|0) =e Iy elx)). 3.3

In this paper, we will use the Neyman-Pearson criterion to
define an “optimal statistic” which we will denote(x).  While in a general situation the likelihood function depends
This is any function of the observed datavhoselevel sur-  upon all the different variables, in this particular situation it
facesare the same as the level surfaces\@k). If the sta-  depends only upofx,|.
tistic is greater than some threshdidhen we conclude that We defined an optimal statisticto be any function whose
a signal is present, and if the statistic is less than the threshevel surfaces are the same as the level surfaces of the like-
old 7 we conclude that no signal was present. The falsaihood functionA (x). In this simple situation, the likelihood
alarm and false dismissal probabilities are functions of thisunction A(x)=A (X4, ... Xnp—1) depends only upon the
threshold7: as7'is increased the false alarm probability gets modulus|x,| of the amplitude in a singléthe ¢th) Fourier
smaller, and the false dismissal probability gets larger. Irbin. Since it is a monotonically increasing function |af|,
general this optimal statistic is a function of the signal am-we can choose as an optimal statistic any monotonic function
plitude e. However, we will see that for the pulsar detection of |x,|, for example|x,| or |x,|2. For historical and later
problem, wheree is small, the optimal statistic is effectively convenience, let us choose as our optimal statistic the func-
€ independent. tion 7=|x,|2. This is the power in th&th bin. The mean

value of this statistic, the power in tHgh bin, is

11l. AWORKED EXAMPLE

To help make these ideas concrete, we give a complete f dXTp(X|5):f dxx/|’p(x|e)=2+¢€* (3.4
worked example, demonstrating these ideas for the second
PDF described above: a signal of unknown phase at a rdn the absence of a signa¢ € 0) both the real and imaginary

solved frequency,. The PDF is parts ofx, contribute unity.
To complete the analysis of this example, we need to cal-

1 27Td 1 Ixe—ec 212 culate the false alarm and false dismissal probabilities. We
pxle)=5— , 9o will define, for a given value of threshold the regionsH,
andH, by:
N/2—1
x 1 2_e7‘xk‘2/2_ (3.2 Ho={(X1, ... Xnp_1) suchthatr=|x,|?<T},
k=1 27
k#¢ and
Before cgntinuing, it is convenient to express this in (;Iosed Hy={(Xs, ... Xnp_1) Such thatr=|x,|?>7.
form. Writing the complex data sample = |x,|exp() in
terms of its modulu$x,| and phase),, one has Thus our choice of statistic gives a decision rule which has a
simple physical interpretation. If the power in Wins greater
1om 1 b than 7, we conclude that a signal was present. If not, we
— | d¢z—e i
27 Jo 2 conclude that no signal was present.

The false alarm probability2.4) is easy to calculate. It is

_ i 2”d¢ie—[\xfIZJr62—259“(%6“”)1/2 given by the following function of the threshold

2 0 2
a(1)= dxp(x|0)

- ie*(\xe|2+52)/2ifzwdqbeﬂxe\cos(d’*‘/%) X<k
2 27 )0
. =j 2 dxp(x|0)

= = oA X =T
27're LoCelxe])- N2 1

o . - = dx [T —e %2
The final integral has been expressed in terms of a modified XP>T k21 27

Bessel functiori4(r) of the first kind,

1
1(n =f di}ixej dIx,— e~ X2
Io(r):;f dee’ cos?, 27
0

2 o0 1 2

Thus we obtain a closed form for the POE.1): =f dl//@f r|x5|d|x€|—e"xff| 12
0 [Xe|=NT 2

N2-1 g L
_ 2 _ 2 o0
p(xle)=e""2I(e|x|) kﬂl 7€ 72 (3.2 :j d(—|x€|2)exf|2/2

72 \ 2

The likelihood function is now easily found: =e 72 (3.5
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FIG. 2. Solid curves: Detection probability=1—a—p as a
function of the false alarm probability for different values of the
signal amplitudee=0.1,...,0.5 (moving up from the bottom
curve. The crosses mark different values of the threshold in the
same way as for Fig. 1. Dashed curves: Thg?) approximation is
y=e*Texp(—712)/4= — ?a In af2. TheO(e*) approximation toy
is not shown because on this graph it is indistinguishable from the
exact resulfthe solid curves

FIG. 1. The false dismissal probabilig(7) as a function of the
false alarm probabilityx(7) for different values of the signal am-
plitude €. The top curve hag=0.2. Moving down, the remaining
curves havee=0.5,1.0,2.0,3.0. Along each curve, the threshdld
varies from 0 to 8. In the bottom right of the grapf=0. The
crosses mark the points whefe=1/2,1,3/2...,8. Forexample,
with a threshold7=5.5, if the signal amplitude ie=3, then the
false alarm probability isv=~6.4% and the false dismissal probabil-
ity is B~20%.

tistic which is completely independent of the actual choice of

In this calculation, the transition from the third to the fourth the statistic¢ However, the relationship between the thresh-
line is trivial because we integrate over all the coordinatesid 7 and the false alarm and false dismissal probabilities
except forx, . In going from the fourth to the fifth line, we does depend upon the choice of optimal statistic. Because
have changed variables from the real and imaginary parts tthis statistic has been chosen by the Neyman-Pearson crite-
polar coordinates. rion, any other detection statistic that we choose will have

The false dismissal probabilit§2.5), which depends both poorer performance. Thus, for a given signal amplituge
upon the signal amplitude and upon the valug of the  and for a given false alarm probability, any other detection
decision statistic threshold, is obtained with a similar calcu-statistic will have a larger false dismissal probabilgy it

lation: will lie above the illustrated curves.
Our primary interest is in very weak signals. For the pul-
B(T) = dxp(x|€) sar detection problem, we will hawe~0.2 and will be op-
xeHg erating on the threshold of detection where- 8 is only
slightly smaller than unity. For such weak signals, it is useful
:f , dxp(x|e) to define the quantity
Ix(l"<T
:e_fz/zf\f§r|)(€|d|x€|e_‘x(|2/2|O(6|X€|) ’}/(T):].—CY(T)—B(T) (37)
0
a2 72 _ This may be considered either as a function of the threshold
€ jo du e lO(E\/x)' (3.6 7T or as a function of the false alarm probabilid(7). This

quantity y is the difference between the detection probability

This final integral cannot be evaluated in closed form. How-when a signal is present-13, and the false alarm probabil-
ever, it is easy to check that the ling{) =1: if the thresh- ity «. For example, for a very weak signal, the threshold
old is set very large, then the false dismissal probability ismight be set for a false alarm probability ef=15%. The
unity. In a moment, we will study the behavior gfin the  false dismissal probability for this weak signal might e
weak-signal limit ase—0. However, before this, it is in- =84%. Thus, if no signal is present, the threshold will be
structive to study the false alarm versus false dismissal
curves for this statistic.

The false alarm and false dismissal curves for this optimal SRemember that any statistic with the same level surfaces(&}s
detection statistic are illustrated in Fig. 1. PlottiBgas a s an optimal statistic. There are an infinite number of different but
function of @ provides a way of describing the optimal sta- equivalent choices possible.
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exceededa=15% of the time. If a signal is present, the approximate closed form foB. By substituting the power
threshold will be exceeded-13=16% of the time. Roughly series representation of the Bessel function,
speaking, the difference between thege;1—a—B8=1%,
is the probability of the threshold being exceeded because
the signal was present, rather than because of the detector
noise. These weak-signal-limit curves are shown in Fig. 2.

In the smalle (weak-signal limit, it is easy to obtain an into Eq.(3.6) and integrating term by term, one obtains

I L x2 x* x5
o) =1+ + 52t 2304t

y=1-a—p
e 11 & (a2 12 24
4 16 576
2 € e 2
=€ alna 1—§(2+In a)+ m(6+6 nNa+(na))+---|. (3.8
|
Even at the lowest order ia (the first term in square brack- (# peak$signar (# peaks$n signal
ety this is a very good approximation, as shown by the S= p
dashed curves in Fig. 2. At the next ord#re first two terms
in square brackelsthe approximation is indistinguishable (1-B)n—an
from the exact result in Fig. 2—the solid curves. This sim- B eyl
plifies matters enormously. Although the statistics of the op- a(1=a)n
timal detection strategy depends upon the signal amplitude 1—a—
e, for small e, this dependence is simple enough to be ana- =—-\n
lytically approximated. a(l-a)
The detection probability plays a key role in the signifi-
cance of an observation. A hierarchical pulsar search hunts = +\/ﬁ (3.9
for peaks in the spectra coming from a setro$equential Va(l—a)

time series. For example, suppose each time series of length
N is one day long. Four months of such data would corre-The significance is easily calculated as a function of either
spond ton=120. What choice of false alarm probability =~ or 7. In the weak-signal limit, it is
(or, equivalently, of detection thresholf) is optimal?

This question is easily answered. One might guess that the s € T €2 a
best opera_ting pc_Jin_t is v_vhere the de_tection probgb_ibifty \/ﬁ—z = —1:_? mln a.
=1-a— B is maximized: in the weak-signal case this is at a
threshold of7=2 corresponding to a false alarm probability
a=1/e~36.78%. However, this is not correct. In the ab-
sence of signal, each of thredata sets is independent. The
probability of detecting peaks ip of the n data sets is the
same as the probability that a coin will come up heads
times inn flips (if the probability of “heads” is the false
alarm probabilitye). This is given by the binomial distribu-
tion:

The significance as a function of eith@ror « has a maxi-
mum at the threshold valug~3.18721 corresponding to a
false alarm probability ofv~20.3188%. The significance at
this threshold/false alarm probability &<0.40237%%\/n.
Note that this exhibits the expectelh scaling in the number

n of spectra analyzed. We have numerically verified that this
is the optimal statistic.

IV. EXAMPLE: LOCAL PEAK DETECTION—A
NONOPTIMAL STRATEGY

n
probability of p peak;( )ap(l—a)”‘p. ) o
p Section Il found and analyzed the optimak., Neyman-

Pearsohpeak detection strategy. In this section, we carry out

an identical analysis of a differeflfhence nonoptimalstrat-
Thus, in the absence of a signal, the mean number of peakségy. The main purpose is to illustrate a side-by-side compari-
an, and its variance is>= a(1—a)n. In the presence of a son of different detection statistics.

signal, the mean number of peaks registered is gln. A We will assume that the signal and noise satisfy the same
good way to choose a false alarm probability thresholdd ~ assumptions as in Sec. lll, given by E@®.2. There, we
is to maximize the significance This is showed that the optimal detection strategy was to threshold
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on the powerr=|x,|? in the £th bin. Here, we adopt a dif- In these expression$dx, denotes/* , d®x, [ ..dJx,. Put-
ferent detection strategy. We will say that a peak has beeting each of the three integrals into polar coordinates imme-
detected if and only if the powgx,|? in the £th bin exceeds diately yields
the thresholdl andis greater than the power in either of the 2
neighboring frequency bins. This strategy looks for “local ,(7)= f d|x, |2exf|2’2[ jlxﬂ 71|2e"xf‘1|2’2
peaks” that exceed the threshold.

For this peak detection strategy, the detection regigris
defined by f d|x|%e W|2/2[ e u/2|u |X(|

Hi={(X1, -, Xnp—1) suchthat|x,|?>7 and |x|?
2 2 2 1 wd|x |2e*\><e|2/2[1_e*\XzIZ/Z]Z
>[Xe-1]% and [Xe|*>[X¢ 4]} 2], 1%

In other words, the peak detection strategy is to register a o
peak if the observed data set liesHn. The null-hypothesis =f due Y1—e Y]?
or no-signal regionH, is the set complemeni,=RN"? 72
—Hj: all points not lying inH ;. 1
To compare this strategy to the optimal one found in Sec. =—e Mg Tie 72 4.2
[Il, we calculate the false alarm and false detection curves as

before, and compare them with the optimal strategy. Therhe quantity in square brackets that appears in the interme-

false alarm probability is diate steps of this calculation is simply the probability that
bins €+ 1 contain less power than thgh bin. This is one
a(ﬂ:f dxp(x|0) minus the false alarm probabili{3.5) of the optimal test.
As with the optimal test, the false alarm probability7)

vanishes at large threshold-«. However, unlike the opti-
dXe 1 dXe dle g a2+ %2+ Ixg 1 41D2 mal test, the false alarm probability at zero threshold is not
’ unity: a(7=0)=1/3. This is because, even if the threshold

vanishes, to register as a peak thh bin must contain more

Ix(|2>7T, power than both adjacent bins. When no signal is present,
this happens only 1/3 of the time.
[X¢|2>1%,_4]?, The false dismissal probability for this nonoptimal peak
detection strategy can be calculated with the same methods
[Xe|?> X 41]2. as above. One finds

B(ﬂ:J dxp(x|e)
XEHO
zl—f dxp(x|e)
xeHq
1= 20— (Ix|2+ €2)12 “Ixg|2I272
=1-3 d|x|?e™ X2 o (el x [ )[1— e X2
T
=1—e‘52/2j du lp(ey2u)e Y[1—e Y]?
72

1 72
—e M- Ze Ry e—fzfzf dulg(ey2u)e Y [1-e V]2 4.2
0

As for the optimal statistic, this false dismissal probability If the signal amplitude is smak—0 then 8(7=0)—2/3.
approaches one at large thresh@kd-. However, unlike There is a 2/3 probability of missing a small signal at zero
the optimal test, it does not vanish at zero threshold. Settinghreshold, because one of the two neighboring frequency

7=0 in Eq. (4.2 one finds that bins might contain more power than bén
, ) A set of false alarm/false dismissal curves for this nonop-
B(T=0)=e €/*— L 7B, timal statistic is shown in Fig. 3, along with the same curves
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FIG. 3. Solid curves: False dismisgalversus false alarm for false alarm probability o

the nonoptimal detection strategy of this section. Moving down  F|G. 4. These graphs are a comparison of two different peak-
from the top, the curves correspond to signal strengés finding methods, in the weak-signal limismall €). The dashed
=0.2,0.5,1,2,3. Notice that the false alarm probabiiitis less than  ¢yrves correspond to the optim&leyman-Pearsortest: threshold-

1/3 for any value of the threshold. For comparison, the dashed ing on the signal power. The solid curves correspond to the local
curves show the optimal strategy of the previous section. Noticgeak test described in this section. The bottom graph shows the
that the optimal strategy always yields a lower false dismissal probgetection probabilityy/ e2=(1— a— )/€? as a function of false
ability for a given false alarm probability. The crosses mark threshyjgrm probability . The top graph shows the significance

old values7=1,2, ... ,8increasing to the left along each curve. /2 /51— 4). Table | compares the properties of these curves.

for the optimal statistic. Note that for a given signal strength

and false alarm probability, the false dismissal probability istimal strategy. In a “real world” situation, it may be highly
always lower for the Neyman-Pearson test. Also notice thatlesirable to apply a suboptimal strategy, because the math-
at a given threshold, one test statistic does not yield the sam@matical model of the instrumental noise may not be com-
false alarm probability as the other statistic. As the falseplete, and might not accurately reflect its real behavior. In
alarm probability decreases, the two statistics have a perfofact, the suboptimal method discussed in this section has
mance (false dismissal probabilifythat becomes increas- only slightly poorer performance for the simple Gaussian
ingly similar. This is because, at increasing values of thenoise model than the optimal test, but may perform much
thresholdZ, fewer and fewer peaks are rejected because thbetter on “real world” data which have correlations between
neighboring peaks are larger. different frequency bins.

In the small-signal limite—0, one can use the series In the following section, we will apply these methods to
expansion of the Bessel function to obtain analytic expresedevelop optimal tests for the case where the sinusoidal signal
sions for the false alarm probabilif§. The signal detection frequency is not one of the exactly resolved frequentjes
probability is

TABLE I. A comparison of the optimal Neyman-Pearson detec-
y=1-a-p tion strategy and the suboptimal local peak detection method, in the
weak-signal limit. Most of these values can be read off Fig. 4. The
626—3772 1
S T o om

4

4 top half of the table gives information about the maximum-of
+0(€%) =1-—a— B, such as the value of the threshold at the maximum.
The bottom half of the table gives the same information for the

4
€79

2 4 maximum of (1~ a— B)/\a(1- «).
=— aTte T— —e 372+ O(€Y.
9 .
Optimal test  Local peak test

This signal detection probability cannot be expressed in anaviaximum of 1- a— 3 0.183%2 0.1529:2
lytic form entirely in terms ofx given by Eq.(4.1). However s at threshold valug 2.0 2.0
we can plot it and compare with the identical curve for thegng faise alarm probability 36.79% 24.91%
optimal strategy. This is shown in Fig. 4, which also shows
the significance as a function of the false alarm probability. " 1-a—p 5 )
The comparison is shown in Table I. Maximum of ===2 0.402% 0.3806

The primary purpose of these last two sections was tGs at threshold valug” 3.187 3.567
demonstrate how a signal detection strategy can be chosenaid false alarm probability 20.32% 14.14%

an optimal fashion, and how it can be compared to a subop
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V. COMMENTS ON THE WEAK-SIGNAL characterize a detection strategy for the case where the weak

APPROXIMATION sinusoidal signal had unknown phase, but where, if present,
the signal’'s frequency precisely corresponded to one of the
Fourier bins. We now suppose that the frequency is also a
random variable, whose value is uniformly distributed be-
tween f,+f,_4)/2 and {,+f,.1)/2. In other words, the
signal of interest lies somewhere between a half bin to the
{&ft and a half bin to the right of théth frequency bin.

Before delving into the details of the analysis, it will be
helpful to briefly examine the appearan¢e frequency
spacé of an unresolved sinusoidal signal in the absence of
noise. Take the signal frequency to be

In the previous sections, we studied the validity of the
weak-signal limite— 0, and made use of it when appropri-
ate. We will continue to take this limit throughout the paper.
This brings up several interesting issues.

These types of weak-signal approximations have bee
studied extensively under the rubric of “locally optimal sta-
tistics” [12]. Later in this paper, they will make treatment of
non-Gaussian noise models tractable.

In practice, the weak-signal approximation is well justi-
fied for the pulsar detection problem. This is dramatically
illustrated in Fig. 2. This is a typical case: fexc1/2 only the
lowest-order terms ik need to be retained in order to have
a good approximation. Keeping the next order terms as well f|=|—
gives an extremely good approximation evenderl. Typi- NAt
cal detectable signal strengths will lee-0.2.

In the weak-signal limit, the PDF can be well approxi- where we dootassume thdtis an integefcorresponding to
mated by the first nonvanishing term in its Taylor series.in  one of the resolved frequencjeket ¢ denote the nearest bin
The first derivative ofp(x|€) with respect toe vanishes at to |, so that
e=0, becaus@ is an even function oé. This is because the
phase¢ of the signal is uniformly distributed in the range I=¢—06 for 6§e(—1/2,1/2]. (6.2
[0,27). The PDF is well approximated by

(6.9

Without loss of generality, we assume that the frequenéy
between the dc and Nyquist frequencies, corresponding to
the rangd € (O,N/2). In the absence of noise, the signal in
the time domain is given by

1
P(X|€)=IO(X|0)+Eezp”(X|0)+O(64), (5.1

where the prime denote&' de. The likelihood function is

then approximated by 2 . 2 )
yj= eNcos(ZTrf,J At—¢)= GNCOE(ZWH IN— ).

_p(xle) 1 ,p"(x[0) 5.2

= =1+ € .
p(x|0) 2" p(x0) Substituting this into the DFT2.2) and using the sum of the
geometric series

A(X)

Thus in the weak-signal cagaeglecting fourth order terms
in the signal amplitude) the optimal detection statistic is N-1
independent of signal strength, and can be found from the 2 7zl=
second derivative of the PDF at zero signal strength. This j=0
tremendously simplifies the analysis.

The likelihood function itself, or the likelihood function gives Fourier amplitudes
minus a constant, can be used as the optimal statistior
example, threshold oA —1). In the absence of signal, the
mean value of this statistic must vanish. This follows imme- Xy = e[e“f’DN(k—I)+e‘i¢’DN(k+|)], (6.4)
diately from the definition ofA, since

1-2N
1-z

(6.3

f dxp(x|0)(A—1)=f dx[ p(x|€)—p(x|0)]=0. where the functiorD is the Dirichlet kernel

5.3 .
(5.3 DN(z)=ei”Z(1—1/N) sin(wz)

In the weak-signal case, keeping only terms up to a given N sin(7z/N)
order (say €%) in A—1, it is easy to show that the same
relation holds. Hence, in the absence of a signal, the meafs described following Eq(2.3), the range of the frequency
value of A(x)—1 vanishes. This will be useful later. indexkis 1, ... N/2—1. SinceDy(z) vanishes for all inte-
ger arguments except for zero, where its valueDig(0)
=1, in the resolved-frequency case whkigan integer, one
hasx,=0 fork+I, andx,;= ee'?®. In the unresolved case, the
signal energy is not confined to thgh bin, and forms a
We now begin to address one of our key concerns. Theharacteristic pattern of “sidelobes” in the nearby frequency
previous sections showed how to systematically derive andins.

(6.5

VI. OPTIMAL DETECTION OF UNRESOLVED
FREQUENCY SIGNALS
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If the signal frequency is unresolved (oninteger the  for us, the Neyman-Pearson criterion can be easily derived
optimal statistical test will not involve only data from tidéh  for this more limited information: we merely write down the
bin. The adjacent frequency bins also contain part of thé?DF for the parts of the datéthe nearby binswhich are
signal energy, and we will shortly find that the statistically available to us. From this point on, we will assume that our
optimal search also takes into account their contenthe  search for a signal in the vicinity of th&h frequency bin is
sense of energy and informatjon restricted to P+ 1 bins. These are théth bin itself, andP

One can simplify the form of the Dirichlet kernel with frequency bins to its left and to its right. For this restricted
several approximatiorfsOur primary interest is to extract as data set, the PDF is
much useful information as possible from the Fourier ampli-

tudes in the bins near bifi. BecauseDy(z) is strongly o

peaked az=0 and falls off~z~* away from it, one may 1 (e 2m 1T 1

r]eglect the seconq term in Eqs_.4) and concentrate on the p(x|e)= o _1,2d5 0 d¢k:7p o

first term. In addition, in practical applications| will be _

large enough(greater than 19 that the 1N term in the X @~ Xk~ ew(k+ 9)e' %2, (6.8

exponential oD can be neglected. Finally, since we will be
interested in the Fourier amplitudes in nearby bjab<N,
which means that the denominatirsin(#z/N) is well ap-
proximated bywz. This leaves us with

One may now easily write down the likelihood function, and
an optimal statistic, in the weak-signal limit, making use of
Egs. (5.1) and (5.2). It is easily verified that there are no

X ~e€ Pw(k—1), terms of ordere. Writing the PDF in the form

where the coefficients

1 (12 2m
p(x|e)=2—J d6J d¢p el (6.9
- _sinmwz m)-1/2 0
w(z)=¢e'*
7z
. where
=e'™jo(m2)
=¢e ™sinq z). (6.6) P
W(e)= 2 —E Xz ¢ — €o(k+ 8)e'?2—In 27
Here jo is a spherical Bessel function, and we have used K="p 2|7krt '
Woodward and Bracewell’s definition of the sampling func-

tion sinc. . o .
We now suppose that the signal of interest is distributed@nd taking two derivatives with respect & one has

with equal probability, anywhere betweenl/2 a frequency

bin from thefth bin, and write an expression for the PDF of 1 (12 .

the data. If, as before, the signal phageis a uniformly p"(x|o):_J dgf de¢ eW(O){[W’(O)]2+W”(0)}

distributed random variable, and if the instrument noise is 2m) -1 0

Gaussian and satisfies the same assumptions as before, one

h 1/2 2nd ¢ , 5 ,
as :D(X|0)J dé | 5 AW (0)]*+W'(0)}.
—-1/2 0 m
N/2—1-¢
1 (i 2w (6.10
X/ €)= — déf d —
p(xle) 27Tf71/2 0 ¢ kzlzl—e 2w
o =i o~ colks )22 ® We_W|II'do similar calculanons IaFer, in much less detail. The
. ' derivatives are easily evaluated:

In this expression, which involves a product over all fre-

guency bins, the indek has been shifted so thiat=0 labels d P .

the ¢th bin. W (0)= —\AW = > R, okt 8)e?],
When searching for a signal peak in the vicinity of #t@ de e=0 Kk=-P

bin, there are practical reasoft®@mputational efficiency and (6.1

algorithm structurewhy it is desirable to use only informa-

tion from (some small number phearby bins. Fortunately )

d2w P
W'(0)= 4= :—k:E_P lo(k+ 8)[2. (6.12

o N . =0
4Further justification for these approximations may be found in ¢

Sec. X and Fig. 6. . . _
5Section X and Fig. 6 show that virtually all the information is The integrald¢ of W’'(0)? is evaluated by noting that for
within a few bins from thefth bin. any complex numberé and B
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f —%(Ae"”)f)‘{(Be"ﬁ)

~[All8| [ "G cot 6~ aIcos 6~ o)

Al|B| [2=d

| | |f _¢[ o g — thp) +COS 20— Yp— )]
= 3 |Al|B|cog ¢g— thn)
= 3R(AB*). (613

Making use of this, the inner integral in E@.10 gives

2md

w02+ W (o)

P P

"> > XFo X eo(r+8)o* (r' +6)
I’:—Pr’=,p

N| -

P
— > |o(r+8)2
r=—pP

Substituting this back into expressi@é.10 for the second
derivative of the PDF vyields

hv)

p'(x|0) _
p(x|0)

*
Xt (M Xer g —

P
> M.
r=—pP

(6.19

I\JIH
hY

'=-p

Here, M,,, is a (2P+1)-dimensional square, symmetric,
real, positive-definite matrix. Making use of the definition of

w in EqQ. (6.6) gives

(6.195

1/2
M:Mrr’:f dSw(r+8)w*(r'+6)
2

(12
=<—1>Hf A8 ol mw(r + &) ljo[ m(r'+ )].
—1/2

Adopting the Einstein summation conventigepeated indi-

cesr andr’ are summed from- P to P) and substituting Eq.

(6.14) into the weak-signal approximatiafh.2) of the like-
lihood function, one obtains

(1 N
A(X)_]-:? Exr+(Mrr’Xr’+€_Mrr

(1 .
:E Exf+€xr’+(f_5rr’ M. (6.16

PHYSICAL REVIEW D66, 102003 (2002

We note that the formalism of this section can be trivially
adapted to the case where the frequency of the signal lies in
any desired range- A around thefth bin. The only change
is that in Eq.(6.15 one makes the transformation

12 1
f dé— — d5 (6.17

In the limit A— 0, it is easy to see thl ,,=1 and all other
components oM,,,=0. The results are then identical to the
resolved-frequency case of Sec. lll.

The results of this section can be summarized in a few
lines. In Sec. Il we studied the case where the signal fre-
quency was exactly resolved. In that case, we found that the
optimal statistic was the power in the corresponding bin.
Thresholding on this statistic gave the lowest false dismissal
probability for a given false alarm probability. In this section,
after assuming that the signal frequency is uniformly distrib-
uted around birf, we have found that the optimal statistic
(in the weak-signal cagés to threshold on the bilinear quan-
tity (6.16. We can choosérom the value ofP) how many
of the data around the given bin to usePl£=0 we recover
the power statistic of Sec. IIl. IP is larger, then additional
information from neighboring bins also gets added, and the
test performs better. In the following sections, we will ana-
lyze the performance of this test, using the methods of Sec.
IV to compare the optimal statistics for different valuesPof

VIl. PROPERTIES OF THE MATRIX M

Let us begin by exhibiting the 2+ 1)-dimensional ma-
trix M, given by Eq.(6.15. It is easy to integrate E¢6.15
to get an exact expression for the matrix in terms of sine- and
cosine-integral functions Si and Ci. On the diagofab
summation convention on)

M +%Si[w(2n+1)]—%Si[w(Zn—l)],

3 4
" T an?-1)
and off the diagonal

C(2m—1)—C(2m+1)—C(2n—1)+C(2n+1)

2w%(n—m)

mn—

where Ck)=Ci(wx)—Inx. In these equations, the range of

In the absence of a signal, E(.3) shows that the mean the subscript®,mis —P, ... P.

value of A—1 must vanish. This is clearly the case, since

The “central” element oM has row and column numbers

under our assumptions, in the absence of a signal, the meaero. The matrix extends away from this central element by

value of X, (X, ¢ is 28,,,, where 8, is the Kronecker
delta.

an amount determined by the valueRfFor example, ifP
=2 one has the five-dimensional matrix
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- 0.0181 0.0422 —0.0169 —0.0366 —0.01697
0.0422 0.1017 —0.0761 —0.0761 —0.0366
M=0.7731 —0.0169 —0.0761 1.0000 —0.0761 —0.0169
—0.0366 —0.0761 —0.0761 0.1017 0.0422

| —0.0169 —0.0366 —0.0169 0.0422 0.018]]

where the 0th row and column are highlighted, and we have The case analyzed in Sec. lll, where the signal frequency
taken out an overall factor d¥l,,. Note that this matrix is is resolved, and a one-point test is used, corresponds to set-
invariant under reflection about both diagonals, so it can béing P=0 and having\y=1. This is the limit when the
presented by listing just theP( 1)-dimensional block of frequency band6.17) over which the signal is distributed is

elements with non-negative row and column numbers. very small, and centered around a bin frequency. In the op-
Because the matrid is real and symmetric, it can be posite limit where the frequency bandA is large, the ma-
diagonalized by a similarity transformation trix M approaches something proportional to the identity ma-

trix, with a large number of nearly equal eigenvalues.
D=0"MoO, (7.2

whereO is an orthogonal square mat@®=0"1, andD is Vill. PERFORMANCE OF THE OPTIMAL TEST FOR

diagonal. Becaus® is positive, its eigenvalues are all real UNRESOLVED SIGNALS
and positive. To six decimal places of accuracy, for the first The sjtuation we are considering is defined by the PDF
few values ofP, the eigenvalues d¥l are given by given in Eq.(6.7). We will suppose that we have imple-
B 4 _ mented a search for sinusoidal signéls the weak-signal
No=7.73695¢10 "~ for P=0, (72 |imit) using the thresholding statistic defined by E6.16),

for a particular value ofP. We will call such a test the
“(2 P+1)-point test.” For example, the “five point test”
makes use of the data samples in the five bins nearest to
some central bin, to determine if a sinusoidal signal is
present within= half a bin of that central bin.

Our goal is to determine the false alarm and false dis-
missal curves for different values &% In this way, one can
quantify the loss of performance that arises from throwing

No=7.82774<10 1,
A=1.37549%<10 %,
A,=1.0768%10 2 for P=1, (7.3

No=7.83230<10 %,

A, =1.64608< 10" 1 away the additional information coming from bins located
' ' away from the bin of interest.
N,=1.12358¢10 2 Let us first calculate the false alarm probability for the
' (2P+ 1)-point test. This is easy because it only involves the
Ng=8.1685% 105, probability distributionp(x|0) (and its second derivatiyéor
vanishing signal strength, which is an independent Gaussian
A,y=1.5377% 1076 for P=2, (7.4) in each frequency bin. We choose, as our optimal statistic,

the quantity

_ —1
No=7.8331%10 1, r=x"Mx (8.1)

— -1
A=1.76172¢10°7, wherex is a vector of(frequency spagedata around the bin
of interest. This differs fromA —1 by a data-independent
constant terme?/2, so it has the same level surfaces. Thus,
for the three-point test, the optimal statistic to threshold on
would be

A,=1.13227% 10 2,
A3=1.20531x 104,

_ — 6
N,=1.91042¢10°6, =X X X

A5=3.03979% 10 °, 0.0787 —0.0589 —0.0589|| X,_1

x| —0.0589 0.7737 —0.0589|| X,
—0.0589 —0.0589 0.0787 [ X¢+1

N=2.72000<10 ! for P=3. (7.5
We will see shortly that these eigenvalues determine the false

alarm and false dismissal probabilities for the correspondingn the absence of signal, each of tkgis an independent
threshold statistics/tests. random Gaussian variable with zero mean and unit variance.
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Thus, ifU is a unitary matrix, the column vector of variables This gives
Ux are also independent random Gaussian variables with

: . . . 2P ]
zero mean and unit variance. Since the orthogonal matrix 1 (= i I |
. . . . LS = — —igr N _
U=0""1 that diagonalize®/ is unitary, the statistical prop- p(7) wa_xdge r[[o 2\, &+ 2N, 8.3
erties of the optimal statistie (8.1) are the same as those of
a random variable, The integral clearly vanishes fer<0, because the integrand
has all of its poles in the complek plane below the reaj-
2P . . . L
_ ) axis. If 7<<0, the sign of the exponential term permits the
(e 20 Nzl contour of integration to be closed in the upper Ralitane.

Since there are then no poles contained inside the integration
where eachz, is an independent variable whose real andPath, Cauchy’s theorem implies thagr) =0 for 7<0.

imaginary parts have independent Gaussian PDFS with zero TO find a closed form fop(7) when7>0, one must close
mean and unit variance. Note that the PDFuof|z |2 is  the integration contour in the lower hajfplane. The residue

exponential with mean2 and variance4. theorem then implies thai(7) is a sum over the resides of
The PDF of the statistie is easily computed using gen- the poles, which are located &t —i/2\,. One obtains
erating functions. Suppose thats any random variable, and 2P [ o 2P .
p(7)dr is its probability density. We define the generating o(r)=3 e 7 11 ( _ A_r)
function p(&) to be the expected value ef¢™: i=o| 2Nr 75, Ay
r'#r
p(&)= ocd7' 7)eér, 2P
p(é) f_x p(7) _3 O 8.4
r=0 2)\r

This is basically the Fourier transform of the PDF. It makes h introduced  th P iah
it simple to compute the PDF of a random variable that is dlere, we ave Introduced the set o 21 weights
sum of other random variables. Since Co, - - - Cop defined by

2P lz_i (1 )\r’)—l
c,= -— .
7':2 AU ' s N,
r=0

r’#r
where eactu, is a real random variable with PDF (Note: if P=0 thency,=1.) These weights have several in-
0 for u<o, teresting properties. In particular,
p(u)du= B 2P
ze “%du for u=0, > ¢,=1, and (8.5)
r=0
the generating function for the PDF of(in the absence of a
signa) is 2P 2p
2 Cr)\rzz N=Mgr . (8.9
— 2P 0 1 ) r=0 r=0
p&)=11 f du, e 42| elér . o o
r=0 | Jo 2 These weights simplify the notation in what follows.

The false alarm probability(7) can now be obtained by

Qi €\glig+ - +\optizp) straightforward integration:

2P
» 1

= du, —e 42
r[[o [fo 2

2P 4 s a(T)=f d7p(7)
:H zf dure(ig)‘rfllz)ur T
r=0 0

2P

2p => ce T (8.7

=TI (1-2ien,) L 8.2 =0
=0 It follows from Eq. (8.5) that a(0)=1.

Our calculations assume that the eigenvalngsre dis-
tinct (as is the case herelf m of them were equal then a
polynomial of orderm—1 in = would appear on the right-
hand side(RHS) of Eqg. (8.4) and a polynomial of ordem

This closed form for the generating functiarmakes it pos-
sible to find the probability distribution of the optimal statis-
tic 7 in the absence of a signal.

To determinep from p, we invert the Fourier transform  _ 1 jn 7would appear on the RHS of E¢8.7).
For concreteness, we give the numerical form of the false
p(7r)= ifv dEH( £e i€, alarm functions for the first few values Bf The subscript on
27 ) - a denotes P+ 1: the number of points used in the test.
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al( T) e 0.646249',

2P
1 )
M, = 20 )\rzif drrp(7).
as(T)= @~ 0.63875+0.207097_ o~ 3.63577~ 1.46410 r= 0

+e 46430673813 This is because the mean value of the likelihood function in

the absence of a signal is unity. It is also easy to show that

Joa(T)dT=2M,, .

4 @ 44500~ 6.83620_ o~ 6121.07-21.6738 _From this it_ ?s straightforward to calculate the false dis-
missal probability

a5(T) — 670.6384(74 0.250487_ e73.037571 1.25272

+e 325140.0— 37.5716?

T
The false dismissal probabilitg is a bit more challenging to B(T)= f drp(7le)
calculate. However, for the weak-signal case of interest, it is 0

still possible. €2 T 1 T
To find the false dismissal probabiliy we begin by writ- = ( 1= 5 My f dTD(T|0)+Z€2J' dr7p(7]0)
ing the PDF for the weak signal case as 0 0
e.2
p(x|€)=p(x|0)+ 7 €*p"(x|0) =(1—§Mn>[1—a(7)]
1 IO"(X|0)) 22P
= + — 2
PO 1+ 5 € 5x0) + 23 2N~ (T+20)e 7]
r=0
=p(x|0)[1+ %52(%Xf+€Mrr’Xr’+€_Mrr)] €2 o
=1-a(7)—— (T—ZM,,)a(T)-I—f dra(7)]|.
1 (7 4 T
=mﬂm1+§£&—mn)

A bit of rearrangement gives us the weak-signal detection

where 7 is the optimal statisti¢8.1). From this, we can im-  probability y(7)=1—a(7)—B(T) as a function of the
mediately write an expression for the generating function okhreshold:

p(7|€) to lowest order ire,

5 17T 1 ([~
€ 'Y(T)ZE E_Mrr a’(T)"'ZdeTa'(T)

2pP 1 1 /s
Py _ T AU 2| piéT — 2
ptéle=I1 UO du 3o 2|eier 14 2 e (2 M”) |
2P
; ; ; 17 —772
where as before=\qup+ - - - +\ypUyp. Since differentiat- =5\5~ M |a(T)+ EZ C A e T2
ing with respect ta¢ brings down a factor of 7, one has r=0
2P
1
— 1 1d _ - o — T2\
pléle)= 1+§ez(5d—§—mn p(£o). (89 2 & [2 Mo her jCoen T (89
This relation is easily inverted to find a lowest-order formulaThese formulas make it clear that=1— «a— 8 vanishes as
for p(7|€). We simply integrate the new term by parts: 7—0 and asi—x.
_ It is instructive to return briefly to th&=0 (one-poin}
1 (= .. dp test. Equationg8.7) and (8.9) give false alarm and signal
— | déelir— d ; i e
2., d¢ etection probabilities:

. — a- T2\
:%f xdig[eigTa(f)]‘FiTeigTH(g)df alf)=e

d
=p(r)=7p(7]0). "

——Oa Ina
5 @iy

2
Thus we find a formula for the PDF of the optimal statistic yi(D)=1—a;— B,= 6_79*77'&0: €2
in the smalle limit: 4

T These should be compared with the resolved-frequency case,
2 M| |- given in Egs.(3.5 and(3.8). As expected, the formulas are

identical if A\g=1. However, for the unresolved-frequency
Since the PDFs on both sides are normalized, an importamase of this section, E7.2) givesk,~0.773695. Hence the
consequence of this is that the mean value of the test statistiignal detection probability at a given false alarm probability
in the absence of a signal is « is lower than in the resolved-frequency case:

1
1+ 562

p(7]€)=p(7]0)
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For a resolved signgk= — % €?aIn a.

03 f
For an unresolved signgk —0.386&%« In a.

8

Thus, for weak signals, the detection probability of a one-g
point test for unresolved signals is 77% the probability of &
detection of a 1-point test for resolved signals. This can alsc® 0.2 |
be seen by comparing the maxima of the one-point detectior;
probabilities shown in Figs. 4 and 5. =
For the first few values oP, the detection probability is

given by o1l

-2 _ 77— 1.38629-0.646250°
€ “yi(7)=Te :

Detection Probabil

€ 2 73(7) — (T_ 0296636_ 1.17920-0.638759"

_ - —2.85039-3.63507 0 0:2 0:4 0:6 0:3 1
(7-1.58708e False alarm probability o:

+(T—1. —8.12445- 46.4309 _ N
(7—1.84069e ' FIG. 5. Bottom four curves: The detection probabiliéy 2y

=e 2(1—a—p) is plotted as a function of the false alarm prob-

-2 (T —1.135810.638380
€ “ys(7)=(7-0.35186e ability «, for the one-, three-, five-, and seven-point optimal tests

—(7—1.5891(0e  2:63902-3.0375Z defined by Eq(8.1), in the weak-signal limit. While using the ad-
ditional information in the neighboring bins does improve the de-
+(7—1.89585 ¢~ 8:22249-44.5006" tection probability, the improvement is slight. Top four curves: The
significancee ~2s/+/n is plotted for the same one-, three-, five-, and
—(7-1.9181ge 23000+ 612107 segven-point tests:/; thg weak-signal limit. The maxima of the eight
(T 1.9183ae’38'958&325142'°7 curves are given in Table II.
where the subscript ofy is 2P+1: the number of points _'ransform these into time-domaig; for j=0,... N
used in the test. Figure 5 shows the detection probability and 1. , ) i ) .
significance as a function of false alarm probabititjor the Zero-pad the time-domain data 1o times its original
one-, three-, five- and seven-point tests, for this case, whel&"9th N, by appending K —1)N zeros, forj=N, ... NL
the signal frequency is uniformly distributed in the range : _ i
e =1/2 a bin. It is clear from this figure and from Table 1| NOW transform back into the frequency domain to get a

that, while adding the additional information from the nearbyhigher-frequency-resolution set of Fourier amplitudgs
frequency bins does improve the detection probability andiere “high resolution” indicates that the frequency spacing
significance slightly, the gain is relatively small. In practice, between successive bins id T/.

there is little to be gained from going beyond the three- or  In the limit L—c° this gives rise to a continuous spectrum
five-point tests, as can be seen by noting that the eigenvalug$f). The optimal statisticr of the previous section is ex-
of M drop to small values very quickly with increasiiy

This means that for sensible values of the threshold, the TABLE II. The maximum detection probability and signifi-
terms that they add te and 8 have very small effects: the cances of the optimal (2 +1)-point peak detection tests, fé

dominant terms are from the largest eigenvalues. =0,1,2, and 3. These correspond to the curves of Fig. 5. The top
half of the table lists the maximum value of the detection probabil-
IX. INTERPRETATION OF RESULTS ity y=1—a— B, and the values of the threshadldand false alarm
AS FREQUENCY-SPACE “INTERPOLATION” probability & for which that maximum is obtained. The bottom half

of the table lists the maximum value of the significascand the
In this section, the optimal statisticof the previous sec- values of the threshol@ and false alarm probability for which
tion is shown to have a simple intuitive interpretation: It is that maximum is obtained.
the total power contained in a continuous spectrum in the
frequency rangef,_,,<f<f,.1,. The continuous spec- One point Three point Five point Seven point
trum is_obtained_from the discrete spectrupvia frequency- Max(y/ €2) 0.1424 0.1465 0.1477 0.1483
space interpolation . _ T 1.548 1.863 1.918 1.942
This fr“equency-spac% interpolation may be understood in, 0.3679 0.3739 03767 03775
terms of “zero padding,” as follows.
Start with the low-resolution frequency-domain Fourier Max(s/e?/n)  0.3113 0.3188 0.3204 0.3211

amplitudesx, defined by Eq.(2.2). Here, “low resolution” 7 2.467 2.773 2.821 2.840
indicates that the frequency spacing between successive bigs 0.2031 0.2093 0.2121 0.2135
is 1/T.
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actly the signal power contained in this continuous spectrum

in the range fromf,_q,<f<f, 1. This quantity depends

only on the Fourier amplitudes, because the zero padding

has not added any information to the original data set.

To prove this assertion, we first derive a formula for the
high-resolution DFT in terms of the lower-resolution one,
following the procedure above. The Fourier amplitudes of

the time-domain sampleg are given by Eq(2.2) as
N—1

x= >, v for k=—N/2+1,... N/2.
i=o0

9.9

The inverse relationship gives the time-domain samples in

terms of the Fourier amplitudes as

1 N/2
V=i > xje 2mIKIN - for k=0,... N—1.
j=-N/2+1

9.2

Zero-pad these time-domain samples by appendihg (
—1)N zeros, so that the total number of time-domain

samples is nowNL. Taking this back into the frequency
domain gives the high-resolution Fourier amplitudés k
=—NL/2+1,... NL/2)

NL-1
T 2mijk/NL
X = _20 y;es™

=

N-1

_ 2mijk/INL

—E y;es™
i=0

N/2

—27ijr INa2mijk/NL

X, e e

3, o]
-1 ML r)%e

In the third line, we have carried out the sum oyéy using
the geometric series in E¢6.3). The last line is the desired
result giving the high-resolution Fourier amplitudgsin
terms of the low-resolutiox’s. The Dirichlet kernelDy in
Eq. (6.5 is responsible for doing the interpolation.

9.3
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g L1
L E |XL€—L/2+k|2
k=0

-1 2

>,

L N/2
k=0

X

D €+k !
NPT

|~

r=—N/2+1

Since Dy(x) is peaked arounck=0, in the spirit of the
previous section, this may be approximated as the sum over

the 2P+ 1 bins around th&th bin. Further justification can

be found in Sec. X and in Fig. 6 below. This gives

k 1 2

P
2 DN(E_ E—V)Xeﬂ
In the continuous limit, when the number of high-resolution

frequency bind —o0, the outer sum can be converted into
an integral overs=k/L—1/2, giving

172
T= f dé
—-1/2

=]

- 3

rr'=-pP

(9.9

1 L—-1
=2

2

P
> Dn(6—)Xes
r=—p

*
X€+rSrr’Xe+r' .

Here, the matrixS,,, is a (2P+1)-dimensional Hermitian
matrix defined by

1/2
srr,=j ds Dyn(S—1)DX(S—r1').
1/2

(9.5

This equation should be compared to the definitior_gf
given in Eq.(6.195. Making the same largh+approximation
as earlier gives

) Noa 1/2 . . ,
Sy = 1’N>f Aiel (6= lialw(5-1")]

. (L2
et )f_1,2d5jo[w<5+r)]jo[w<5+r'>]= Mo

(9.9

Thus, the optimal statistie of the previous section is just the
average power in a continuous interpolated spectrum within

The high-resolution spectrum has exactly as many de- . .
grees of freedom as the low-resolution spectrum, although ? frequency band of widtit 1/2 a bin around .

hasL times as many frequency bins. This is because the ) )
amplitudes in the high-resolution spectrum are correlated X- WHY "WINDOWING” DOES NOT GIVE A BETTER
with each other. The high-resolution spectrum also contains TEST

an exact duplicate of the low-resolution spectrum. Sibge Windowing is a well-known method for reducing the bias
vanishes for nonzero integer arguments, 80)=1, ev- iy 3 power spectrum, particularly for frequencies that are not
ery Lth high-resolution bin contains the same value as one ofesolved. It is natural to ask if this technique might provide a
the low-resolution binsx, ,=x, for all integerr. better test than the Neyman-Pearson test.

To finish proving the assertion, we calculate the average For largeP (the number of bins used on either side of bin
power in the high-resolution frequency bink=L({  ¢) the answer is clearly “no.” In this case, the Neyman-
—1/2),... L(€+1/2)—1. TheseL high-resolution bins Pearson teds (by its very definition the optimal test. How-
cover the frequency range frofy_q, to fy, 1, Which is  ever, if P is very small, one might wonder if windowing
+1/2 a bin around théth bin. Anticipating the final result, could provide a better test, or if for largewindowing might
this quantity is denoted #.” It is provide a more efficient implementation of the optimal
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Neyman-Pearson test. The reason is that in frequency spac ! v , v
the amplitudesx,| fall off proportionally tok~* away from 08 |
the peak. One might then wonder if windowing can “con-
centrate” more of the power close to the peak, to provide a-, 08
better test wherP has small values. As we shall show, the "= ¢4
answer to the question is still “no” even whehis small.
“Windowing” is the process of multiplying the time-
domain datay; by a time-domain window functiow;, and 0
then transforming the data into frequency space. Thus 1 v v
—w;y; in Eg. (2.2). This is also referred to as “apodizing”
or “tapering.” Note: in addition, one may zero-pad the data
set before taking it into the frequency domain. But, as de--, ®° |
scribed in Sec. IX the optimal test already effectively does "z g4 |
this, in the limit of infinite zero padding.

with windowing

8=-0.5

0.2

0.8 - with no windowing J

Common choices of windowing functions are given such %2
names as “Hamming,” “Parzen,” “Welch,” and so on. 0 ‘
These window functions are chosen for their properties: -2 k-1 k=l al 2 3

quickest sidelobe falloff, narrowest3 db range, minimum Frequency Bink

spectral bias, and so on. As an example here, to explain why £, 6. The frequency-domain effects of windowing sinusoidal
windowing the data first does not provide a better test, Wajgnals of amplitudee are shown in the absence of noise. The
take as a window function the cosine window bottom graph uses a rectangular windesw=1 (no windowing.
The top graph uses the cosine window defined by (£6.1). The

W= \ﬁ 1_C052ﬂ (10.1) solid curves show how the powéx,|? is distributed bin by bin
! 3 N | ’ around the peak &= ¢, for five different frequencies defined by
6=0,—-0.1,...,-0.5in Egs.(6.1), (6.2). The dotted line shows the

The situation for other windowing functions is similar. average. Windowing greatly reduces the differenckjf? between

The window function is normalized so that the total resolved frequenciessE0) and unresolved frequencies, so it re-
power in the spectrum is the same with or without the win-duces theiasin a spectrum. However, it also reduces the power in
dow. This is ensured by the conditigtrue for largeN) the peak substantially: the mean value is @%®ith windowing

compared to 0.7& without windowing. This means that window-
N-1 ing does not give a better test: at a given thresHbld yields a
zo Wj2= N. (10.2 larger false dismissal probability.
i=

This condition ensures that, for stationary noise, the statistithan the Neyman-Pearson test, even for smallhe reason
cal properties of the noise in the frequency bins are the samie that windowing “lowers the peak” for signals that are near
with or without the windowing. Thus, for example, the ex- a resolved frequency even more than it “raises the peak” for
pected power spectra of independent Gaussian-distributesignals that are far from a resolved frequency. The dotted
time-domain sample@vhite Gaussian noigere exactly the lines in Fig. 6 show the average poweaweraged over the six
same for this window and for the rectangular windey  values5=0,0.1 ...,0.5). In the windowed case the average
=1. power in the peak is only 0.8 compared to 0.7& for the
Shown in Fig. 6 are the spectra of sinusoidal sigiial%) unwindowed case. This reduction in peak power results in a
for the frequency bins near the peak. In the unwindowedremendous loss of significance for smallwhen the signals
case, a resolved signab€0) has all its power in théth  are buried in noise. For a given value of the threshdld
bin: |x,|= €. As the frequency shifts upward #®=—0.5,  (corresponding to a fixed false alarm probabjlitthe win-
the magnitude of|x,|?> drops to 0.4@>. The adjacent dowed signal is far less likely to cross the threshold when a
(¢€+1)th bin also contains 40% of the energy. The remainingsignal is present than the nonwindowed signal. Thus, it has a
bins contain the other 20% of the energy, mostly in bins higher false dismissal probability than the Neyman-Pearson
—1 and ¢+2. The large magnitude of this ratio 1/0.40 test.
=2.5 is one reason why rectangular windows are often un- Figure 6 also demonstrates that in the unwindowed case
desirable: a peak at a resolved frequency can be as much aknost all of the power is within a few bins of the peak.
a factor of 2.5 times higher than a peak from a signal of theConsequently, even small valuesPfwill give a nearly op-
same amplitude at an unresolved frequency. In contrast, itimal test. For example, even for the worst-case sigdat (
the windowed case, the magnitude|rf|2=0.67e> whens  —0.5) over 92% of the power is contained in just the range
=0 and only drops tdx,|?=0.482 when §=—0.5. The of bins from ¢—2 to ¢+2. Averaging overs, these bins
ratio 0.67/0.48-1.38 is much smaller; hence the cosine win-contain more than 96% of the signal power. WHeiis in-
dow produces a less biased power spectrum than the rectacreased this rises rapidly: in the worse case= (- 0.5) for
gular window. P=10, the 21 bins around the peak contain more than 98%
But Fig. 6 also makes it clear why windowing does notof the total power. There is effectively nothing to be gained
result in a better test for sinusoidal signals buried in noiseby increasingP to larger values.
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XI. OPTIMAL TESTS IN THE PRESENCE ' '

OF NON-GAUSSIAN NOISE !
Section V showed how the weak-signal assumption of _ o8
small e permitted several useful simplifying approximations. :’-‘« 06
One important simplification was that the optimal statistical =
test does not depend upon the amplitude
This same weak-signal assumption also makes it possibl

to find the optimal statistical test for signals hidden in certain o

types of non-Gaussian noise as described, for example, it 20 - - T
[13,14). Consider the following generalization for the PDF e
(6.9): 15 | i
2wd¢ 1 B '
pider= [ do |
27Tk__p 27TSk 5| |
><e—gk[\ka—Ew(k+5)ei¢|2/25k]. (11.1) 0 ‘ . )
0 5 10 15 20
X

The Gaussian case treated in Sec. VI is a special case of this,
for which gy (x) =x andS,=1. These types of non-Gaussian  FIG. 7. An example of a functiog(x) corresponding to non-
noise models, and the methods that are being used(ltere Gaussian statistical behavior, given by Efjl.2) with 0>=20 and
cally optimal tests are discussed in more detail [ih3,14), p=0.999. Notice that in the central Gaussian regigh(x)~1,
where they are used to construct optimal search techniquagereasy’(x)— o2 when the argument is larger than~¢?/2.
for stochastic background detection and for matched filterThe dotted line in the bottom graph showsr comparison pur-
ing. poses$ g(X) =X.
This form of the PDF assumes that the noise in the dif-
ferent frequency bins is independent, but it allows each bin 1
to have its own, different, arbitrary statistical distribution. e I¥=k pe '+ —e X
For example, this can describe a very common situation, o
where the PDF has a central Gaussian region, plus a non-
Gaussian tail. Typically there is a “knee” at some character-
istic signal amplitude, where the slope of the distributionWheréx=p+(1- p)o’. Here we assume thatis positive
changes, or the non-Gaussian tail begins. Some prehmma@nd less than unity. Thf'cases of most interest are when 1
work [15] has shown that it is straightforward to approximate _ P iS very small, and- is large, so thak~1. Shown in
these functions given a real data stream. Fig. 7 is a graph ofy(x) andg’(x) for the case wherg

The functionsg, are not completely arbitrary. In order =0-999 ando?=20. This corresponds to a case where
that Eq.(11.1) be properly normalized, one must have 99.9% of the data is described by a Gaussian distribution

with unit variance. The other 0.1% of the data samples are
w0 outlier points, described by a different Gaussian distribution
f due W=7, with a variance of 20.
0 It is straightforward to derive the optimal peak-detection

statistic in the weak signal limit, by proceeding exactly as in
For any functional form of, this can be satisfied by adding the Gaussian case of Sec. VI. We write

the correct constant term tp We also require thag satisfy
the additional normalization condition

: (11.2

1/2 27Td¢
% p(x|e)=J d(SJ —eW(9), (11.3
f du ue W=7, ~12 Jo 2w
0
which can always be satisfied by rescaling the argumegt of where
One then has
P .
Xs ¢ — €w(k+ 5)e'?|?
f dxp(x|0)X* X, =28, Sx Wie)= > (_ ) X e ";(Sk el )—m 27754.

(11.9

so the positive weight§, can be interpreted as the mean-

squared noise power in theh frequency bin. This formula

should be compared with E€3.4). For example, one might As before, it is easy to see that(x|e) vanishes at=0. So
have the first nonvanishing derivative is

102003-17



ALLEN, PAPA, AND SCHUTZ PHYSICAL REVIEW D66, 102003 (2002

p(x|0) (w2 rewdp ) " [kt 8)2 [ [%er ol
10~ |22, Zatw @ v o wio=- 3, [t
(115 .
- R(xe, w(k+ 0T (x|
The derivatives ofNV that appear are S K 725, ;

p

1 [ xieel? g whereg, andg] are the first and d derivati f th
o 1 o Ok gy are the first and second derivatives of the
Wi(0)= E Sk - 2S. Rxicr o (k+0)e'?] functiong, with respect to its arguments. Using £6.13 to
evaluate the integral ovep and Eq.(6.15 to evaluate the
and integral overs gives
|
% P 2 2 P " 2
p"(x[0) _ 9| Xk e[ 725097 (% +¢|°12S)) 1 9| Xk e[ /2Sy) )
p(x|0) Z, SS, X (M X4 ¢~ 2k;PT ek Xk ]
P 12 2
Ik [Xir 728
-2 M (11.6
K==p Sk

A good algebraic check is to verify that in the absence of a signal the mean value of this quantity vanishes.
Thus we arrive at the final result: the optimal weak-signal detection statistic in the non-Gaussian case. Leaving out the
data-independent constant term, it is

P

P gk(Xes 72809 (1% 1 o|%2S,) 9i(|Xex o225y
2 M X >
< SkSr k+€ KrAr+¢ 7 e SE

This reduces to the original expressi@l) in the Gaussian case, whagé=1 andg”=0. In the non-Gaussian cagefer to
Fig. 7) the effect of theg’ andg” terms is to “clip” or “truncate” the effects of outlier points.
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