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A B S T R A C T   

Structural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, 
most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural 
effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra- 
strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cere-
bellar grey matter even at high diffusion-weightings (b ≥ 10,000 s/mm2). Quantifying the proportion of this 
signal (denoted fs), previously ascertained to originate from inside small spherical spaces, provides a potential 
proxy for cell body density. In this work, this approach was applied for the first time to a clinical cohort, 
including patients with diagnosed movement disorders in which the cerebellum has been implicated in symptom 
pathophysiology. Five control participants (control group 1, median age 24.5 years (20–39 years), imaged at two 
timepoints, demonstrated consistency in measurement of all three measures - MD (Mean Diffusivity) fs, and Ds 

(dot diffusivity)- with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 0.76, respectively. Comparison 
with an older control group (control group 2 (n = 5), median age 51 years (43–58 years)) found no significant 
differences, neither with morphometric nor microstructural (MD (p = 0.36), fs (p = 0.17) and Ds (p = 0.22)) 
measures. The movement disorder cohort (Parkinson’s Disease, n = 5, dystonia, n = 5. Spinocerebellar Ataxia 6, 
n = 5) when compared to the age-matched control cohort (Control Group 2) identified significantly lower MD (p 
< 0.0001 and p < 0.0001) and higher fs values (p < 0.0001 and p < 0.0001) in SCA6 and dystonia cohorts 
respectively. Lobar division of the cerebellum found these same differences in the superior and inferior posterior 
lobes, while no differences were seen in either the anterior lobes or with Ds measurements. In contrast to more 
conventional measures from diffusion tensor imaging, this framework provides enhanced specificity to differ-
ences in restricted spherical spaces in grey matter (including small cells) by eliminating signals from cerebro-
spinal fluid and axons. In the context of human and animal histopathology studies, these findings potentially 
implicate the cerebellar Purkinje and granule cells as contributors to the observed signal differences, with both 
cell types having been implicated in several neurological disorders through both postmortem and animal model 
studies. This novel microstructural imaging approach shows promise for improving movement disorder diag-
nosis, prognosis, and treatment.   
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1. Introduction 

Conventional MRI of brain structure is invaluable in determining 
macroscopic regional differences in brain volume, facilitating under-
standing of the pathological changes underlying a diverse range of 
movement disorders. (Krismer et al., 2019; Arruda et al., 2020) How-
ever, large-scale morphometric measurements provide no information 
of changes in the brain’s underlying microstructure, at which level 
multiple cell properties, packing configurations and extracellular ar-
chitecture can drive volumetric differences. The most commonly applied 
technique for providing a more detailed description of tissue micro-
structure in vivo is diffusion MRI (dMRI), allowing for structures to be 
probed at much smaller scales than the imaging resolution by sensitising 
the signal to the random motion of water. 

Investigation of brain microstructure in individuals diagnosed with 
movement disorders has focused predominantly on dMRI imaging 
changes in white matter (WM), relying on diffusion tensor magnetric 
resonance imaging (DTI), a dMRI technique using low-to-moderate 
diffusion weightings (b ≤ 1500 s/mm2) whose metrics, such as frac-
tional anisotropy (FA) and mean diffusivity (MD), provide only limited 
understanding of the underlying tissue properties, (Jones et al., 2013) 
making definitive attribution of imaging to specific microstructural 
compartments challenging. (Oestreich et al., 2019) However, post- 
mortem studies of distinct movement disorders suggest that changes in 
grey matter (GM) cellular properties are also of pathophysiological 
importance, and may provide evidence of disease-related changes. (Pang 

et al., 2002). 
In recognition of these limitations, more advanced imaging methods 

have been proposed that aim to enhance the specificity of dMRI. 
(Alexander et al., 2019) One recent example has been a focus on the 
proportional signal contribution from small spherical spaces, and its 
potential role as a proxy measurement of cellular density. (Palombo 
et al., 2020; Tax et al., 2020) Assessment of this signal contribution can 
be improved by the use of so-called ‘spherical tensor encoding’ (STE) as 
it is sensitive to diffusion in all directions in a single measurement. 
(Westin et al., 2016) This provides complementary information to the 
conventional ‘linear tensor encoding’ (LTE), widely used in DTI studies, 
for example, which provides sensitivity to diffusion only along a single 
axis (Fig. 1A). (Mori and Van Zijl, 1995; Eriksson et al., 2013) At ultra- 
high diffusion-weightings, STE suppresses signal from water pools in 
elongated structures in which diffusion takes place along at least one 
axis, such as axons, and is particularly suited to isolating signals from 
compartments with very low diffusivity in all directions – e.g. small 
spherical spaces or a ‘dot’ compartment with zero apparent diffusivity. 
Previous work using this technique has shown a consistent residual 
signal in the cerebellar GM of healthy controls at very high diffusion- 
weightings (Fig. 1A), indicating a potential role in detecting cerebellar 
GM microstructural changes, (Tax et al., 2020; Lundell et al., 2019; Vis 
et al., 2021) and of potential utility in detecting changes of cerebellar 
GM microstructure in movement disorders where a role for the cere-
bellum has been implicated. (Burciu et al., 2017; Adanyeguh et al., 
2018; Selvadurai et al., 2020; Maiti et al., 2020) The residual signal itself 

Fig. 1. A. Linear b-tensor diffusion encoding (LTE, top) with diffusion sensitisation along a single axis, and spherical b-tensor diffusion encoding (STE, bottom) with 
diffusion sensitisation in all directions. Timings for the first waveform, temporal gap (180◦ pulse), and second waveform were [28.6, 6.9, 28.6] ms for the linear 
encoding and [35.5, 6.9, 25.6] ms for STE, respectively. The figure show averages across DWIs per b-value, with the intensity min–max normalised per b-value 
according to the LTE image. B. Graphical overview of the estimation of dMRI features from the STE signal as a function of b-value (black line), here simulated as a tri- 
exponential decay with f = [0.2,0.72,0.08] and D = [3, 1, 0.1]μm2/ms where the first and last compartment mimic free water and a spherical restricted compartment, 
respectively. The blue line is estimated by fitting a mono-exponential function to b ≥ 10,000 s/mm2 and has slope Ds and y-intercept S0,s. The red line is estimated by 
fitting a bi-exponential function S = S0

(
ftexp( − b⋅MD)+

(
1 − ft

)
exp( − b⋅3)

)
to b ≤ 1500 s/mm2 and has slope MD and y-intercept ftS0. At low b-values, the deviation 

from mono-exponential behaviour is assumed to be arising from the free water compartment with a diffusivity of 3μm2/ms. C. Cerebellar segmentation in lobules 
(top) and lobes (bottom). D. Schematic cross-sectional representation of cerebellar grey matter microstructure including the granule cell layer (yellow), Purkinje cell 
layer (grey) and the molecular layer (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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is derived from isotropically restricted water compartment, previously 
shown to be present in cerebellar GM, which at high b-values results in a 
residual yet slowly decaying signal above the noise floor. 

This study applies these approaches in vivo to image cerebellar GM 
microstructure in human participants diagnosed with an underlying 
neurological disorder, providing proof-of-concept of enhanced speci-
ficity and sensitivity to cerebellar GM microstructural changes in 
movement disorders. For this proof-of-concept, we applied this tech-
nique to three distinct movement disorder types – adult-onset, idio-
pathic, focal cervical dystonia (AOIFCD), referred to as dystonia from 
this point forward, Parkinson’s disease (PD) and Spinocerebellar Ataxia 
type 6 (SCA6) - spanning neurodegenerative and neurodevelopmental 
disorders, with varying degrees of evidence for involvement of cere-
bellar pathology. Previous work has demonstrated evidence of reduced 
GM Purkinje cell density and impaired dendritic trees, as well as a 
reduced number of dendritic spines in both post-mortem and animal 
model work of these disorders. (Prudente et al., 2013; LeDoux, 2011; 
Wang et al., 2010; Jayabal et al., 2017) Where possible, we have sought 
to relate distinct isotropic diffusion patterns to known regions of histo-
pathological change, and to investigate the extent to which this tech-
nique may be of future prognostic and treatment monitoring value. 

2. Methods 

2.1. Participant recruitment and data collection 

Participants were recruited via the Welsh Movement Disorders 
Research Network (REC ref: 14/WA/0017, IRAS ID: 146495). Informed 
consent was obtained, with ethical approval provided by the Cardiff 
University School of Medicine Research Ethics committee (ref: 18/30, 
‘Investigating the use of Magnetic Resonance Imaging (MRI) in under-
standing disease mechanisms in individuals with movement disorders’). 
Standardised questionnaires were used to collect baseline clinical data 
and all genetic mutations were confirmed in NHS genetics facilities by 
next generation or direct sequencing techniques. Two unaffected control 
groups were recruited, the first (Group 1), was imaged on two separate 
occasions to determine the reproducibility of the microstructural im-
aging findings, and the second (Group 2) age-matched to the patient 
cohorts. Details relating to a subset of the non-age matched healthy 
control participants have been reported previously. (Tax et al., 2020) All 
participants underwent MRI brain scanning on a 3 T ultra-strong 
gradient (300 mT/m) MRI system (Siemens Healthcare, Erlangen, 
Germany). 

2.2. Data acquisition and processing 

2.2.1. Acquisition 
The acquisition protocol included a structural Magnetization Pre-

pared RApid Gradient Echo (MPRAGE) with voxel size 1×1×1 mm, and 
dMRI sequences. The dMRI data were acquired using a prototype spin- 
echo sequence (Szczepankiewicz et al., 2019) with an echo-planar im-
aging (EPI) readout that enables user-defined gradient waveforms to be 
used for diffusion encoding (Fig. 1A). (Tax et al., 2020; Szczepankiewicz 
et al., 2019) STE was performed with b = [250, 1500, 3000, 4500, 6000, 
7500, 9000, 10500, 12000, 13500, 15000] s/mm2, and repeated Ada-
nyeguh et al., 2018; Alexander et al., 2019; Bammer et al., 2003; Glasser 
et al., 2013; Jayabal et al., 2017; Jenkinson and Smith, 2001; Koay et al., 
2009; Lundell et al., 2019; Prudente et al., 2013; Vos et al., 2017; Westin 
et al., 2016 times, respectively. The acquisition order of b-values and 
repetitions was randomized to reduce the impact of system drift. (Vos 
et al., 2017) For conventional diffusion encoding (pulsed-gradient spin 
echo, or LTE), (Adanyeguh et al., 2018; Szczepankiewicz et al., 2021) 
the b-tensor principal eigenvectors were distributed over the unit sphere 
for each b-shell, where the number of directions aand b-values equalled 
the number of repeats and b-values in STE, respectively. b = 0 s/mm2 

(b0) images were acquired every 15th image for monitoring and 

correction of subject motion. Additional b = 0 s/mm2 images with 
reversed phase-encoding were acquired to correct for susceptibility 
distortions. No in-plane acceleration was used, and imaging parameters 
were: voxel size = 4×4×4 mm3 to achieve high signal-to-noise ratio, 
matrix = 64 × 64, 34 slices, TE = 88 ms, TR = 4300 ms, partial-Fourier 
= 6/8, bandwidth = 1594 Hz/pixel. Total acquisition time was 36 min. 

2.2.2. Diffusion MRI data processing 
The dMRI data were checked for signal intensity outliers (Sairanen 

et al., 2018) and pre-processed as follows. Rician noise bias correction 
was performed to reduce effects of the noise floor leading to an artificial 
signal plateau in the signal decay curve. (Koay et al., 2009) The data 
were corrected for signal drift, (Vos et al., 2017) Gibbs ringing, (Kellner 
et al., 2016) image-misalignment due to subject motion and eddy cur-
rents by an initial rigid registration according to the interleaved b0 
images, and a subsequent affine registration of each diffusion weighted 
image (DWI) to the mean per b-value. All data were corrected for 
geometrical distortions due to susceptibility effects (Andersson et al., 
2003) and gradient nonlinearities. (Glasser et al., 2013; Jones et al., 
2018; Setsompop et al., 2013) Spatially varying effective b-values to 
account for gradient nonlinearities were also computed. (Bammer et al., 
2003). 

Various dMRI features were estimated from the data. Under the 
assumption of multiple non-exchanging Gaussian diffusion compart-
ments (each represented by a diffusion tensor), the STE diffusion signal 
as a function of b-value can be written in terms of a sum of the signal 
fractions and mean apparent diffusivities of each compartment. At high 
b-values (b ≥ 10,000 s/mm2), the remaining signal arises from small 
spherical compartments with extremely low diffusivities, or ‘dot-like’ 
compartments, (Tax et al., 2020) and this signal can be used to estimate 
the signal and apparent diffusivity associated with such a compartment 
(denoted as S0,s and Ds, respectively, Fig. 1B). At low b-values (b ≤ 1500 
s/mm2), the STE signal can be used to estimate the mean apparent 
diffusivity (MD) as opposed to deriving it from DT-MRI. (Mori and Van 
Zijl, 1995) MD reflects a weighted average of apparent diffusivities 
across all contributing compartments (including the spherical 
compartment). In addition, to reduce CSF-contributions, which can 
significantly bias MD estimates in case of e.g., atrophy, a free- 
waterelimination strategy was adopted. (Pasternak et al., 2009) 
Briefly, a bi-exponential decay was fitted to the low b-value data, where 
one compartment represents CSF (with a fixed diffusivity of 3 μm2/ms) 
and the other represents tissue (for which the diffusivity is not fixed, but 
estimated). From this, the free-water-eliminated tissue MD, tissue frac-
tion ft and b = 0 s/mm2 signal S0 were estimated. The free-water- 
eliminated tissue signal fraction of the spherical compartment was 
then computed as fs = S0,s/(ftS0). All fits were performed with a 
nonlinear-least squares trust-region-reflective algorithm, where signals 
with a modified Z-score larger than 3.5 were excluded as outliers. 
(Sairanen et al., 2018). 

2.2.3. Cerebellar segmentation 
The MPRAGE image was used to segment the cerebellum (Romero 

et al., 2017) and was affinely registered to the corrected b0-image to 
obtain segmentations of the dMRI images. (Jenkinson and Smith, 2001) 
Segments were grouped into lobes: anterior (A); superior posterior (SP); 
inferior posterior (IP); Flocculonodular (F) (Fig. 1C). Only GM voxels 
with ft > 0.3 and fs- and Ds-values within the 99th percentile were 
included in further analysis. 

2.3. Statistical analysis 

Median values for fs, Ds, and MD were computed for each cerebellar 
lobule (I-IX, Fig. 1C top). To calculate the median values per lobe, voxels 
for all lobules within the lobe were pooled from which median values 
were calculated per lobe (Fig. 1C bottom). Mann-Whitney tests were 

C.M.W. Tax et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 38 (2023) 103419

4

used for comparison of the two control groups (control group 1 vs. 
control group 2) and comparison of basic demographic characteristics 
between all groups. Intraclass correlation coefficient used to determine 
the reproducibility of the microstructural imaging findings, calculated 
using data collected from control group 2 (non-age-matched unaffected 
participants, n = 5) imaged on two separate occasions. Movement dis-
order groups were compared to the age-matched unaffected control 
group 2 using a multiple linear regression model, controlling for total 
cerebellar volume, for the overall cerebellar analyses, and one-way 
ANOVA test with post-hoc Tukey’s test for comparison of the individ-
ual cerebellar lobes (anterior, superior posterior and inferior posterior). 
Bonferroni correction for multiple metrics was applied to all between 
group analyses. 

3. Results 

3.1. Cohort demographic characteristics 

Fifteen participants diagnosed with a movement disorder (10F:5M, 
56.8 ± 10.42 years), 10 non-age-matched, unaffected control partici-
pants (6F:4M, 27.4 ± 5.64 years) (Control Group 1) and five age- 
matched unaffected controls (3F:2M, 51.4 ± 6.27 years) (Control 
Group 2) were recruited. The movement disorder cohort included those 
diagnosed with idiopathic Parkinson’s disease (PD) (n = 5), Dystonia (n 
= 5) and SCA6 (n = 5), with no significant differences in age between 
Control Group 2 and each of the movement disorder cohorts (PD: p =
0.83, Dystonia: p = 0.09, SCA6: p = 0.21). (Tables 1 & 2). 

3.2. Reproducibility of microstructural measures 

Five participants of the non-age-matched control cohort (Control 
Group 1) underwent repeat imaging at a subsequent time point to ensure 
the consistency of these novel measurements. High levels of reproduc-

Table 1 
Comparison of morphometric and grey matter microstructural properties be-
tween control groups of differing age.   

Control 
Group 1 

Control 
Group 2 

p-value  

A. Demographic Characteristics    
n 10 5  
Sex (M: F) 4:6 2:3  0.58 
Age at examination (median 

(range)) 
24.5 (20–39) 51 (43–58)  0.003*  

B. Morphometry (Median (Median Absolute Deviation)) 
Cerebellar volume (total) cm3 132.81 

(12.05) 
115.94 
(21.02)  

0.36 

Cerebellar Grey Matter ROI volume 
(cm3) 

99.14 (9.34) 85.01 (14.29)  0.17 

Cerebellar Grey Matter ROI 
thickness (mm) 

(0.10) 4.59 (0.04)  0.22  

C. Grey Matter Microstructure (Median (Median Absolute Deviation)) 
Cerebellum (Overall)    
Mean Diffusivity (MD) μm√2/ms 0.61 (0.04) 0.60 (0.03)  0.36 
Sphere Signal Fraction (fs) 0.11 (0.02) 0.11 (0.01)  0.17 
Sphere Diffusivity (Ds) μm√2/ms 0.13 (0.02) 0.12 (0.02)  0.22 
Anterior Lobe    
Mean Diffusivity (MD) μm√2/ms 0.65 (0.03) 0.62 (0.04)  0.01 
Sphere Signal Fraction (fs) 0.11 (0.02) 0.10 (0.01)  0.88 
Sphere Diffusivity (Ds) μm√2/ms 0.14 (0.03) 0.13 (0.01)  0.32 
Superior Posterior Lobe    
Mean Diffusivity (MD) μm√2/ms 0.61 (0.03) 0.60 (0.03)  0.72 
Sphere Signal Fraction (fs) 0.10 (0.01) 0.10 (0.01)  0.14 
Sphere Diffusivity (Ds) μm√2/ms 0.12 (0.09) 0.12 (0.01)  <0.001* 
Inferior Posterior Lobe    
Mean Diffusivity (MD) μm√2/ms 0.59 (0.053) 0.59 (0.03)  0.49 
Sphere Signal Fraction (fs) 0.13 (0.02) 0.11 (0.03)  0.005 
Sphere Diffusivity (Ds) μm√2/ms 0.14 (0.01) 0.13 (0.02)  0.07 

ROI: Region of Interest, Bonferroni corrected p-value to correct for multiple 
comparisons < 0.003. 

Table 2 
Demographic data, Cerebellar Grey Matter Morphometric and Microstructural 
Analysis.   

Control 
Group 2 

Parkinson’s 
disease 

Dystonia SCA6 

A. Demographic 
Characteristics     

n 5 5 5 5 
Sex (M: F) 2:3 3:2 2:3 0:5 
Age at examination 

(median (range)) 
[p-value: 
comparison to 
control] 

51 
(43–58) 

54 (36–57) 
0.83 

59 (53–60) 
0.09 

65 
(46–82) 
0.21 

B. Morphometry (Median (Median Absolute Deviation)) 
Cerebellar volume 

(total) cm3  
115.94 
(21.02) 

127.64 (19.91) 
[p = 0.75] 

101.67 
(6.14) 
[p = 0.98] 

89.60 
(12.90) 
[p =
0.16] 

Cerebellar Grey 
Matter ROI volume 
(cm3)  

85.01 
(14.29) 

95.02 (17.98) 
[p = 0.94] 

80.29 
(5.55) 
[p = 0.95] 

64.93 
(11.39) 
[p =
0.13] 

Cerebellar Grey 
Matter ROI 
thickness (mm)  

4.59 
(0.04) 

4.65 (0.05) 
[p = 0.54] 

4.55 (0.06) 
[p = 0.99] 

4.12 
(0.25) 
[p ¼
0.001] 

C. Grey Matter Microstructure (Median (Median Absolute Deviation), [p-value]) 
Cerebellum (Overall) 
Mean Diffusivity (MD)

μm2/ms 
0.60 
(0.03) 

0.58 (0.03) 0.55 (0.06) 0.54 
(0.07)   

[p = 0.01] [p ¼
1.04e-08] 

[p ¼
3.29e- 
07] 

Sphere Signal 
Fraction (fs) 

0.11 
(0.01) 

0.11 (0.02) 0.13 (0.03) 0.14 
(0.03)   

[p = 0.01] [p ¼
3.94e-08] 

[1.27e- 
05] 

Sphere Diffusivity 
(Ds) μm2/ms 

0.12 
(0.02) 

0.13 (0.02) 0.14 
(0.013) 

0.13 
(0.02)   

[p = 0.33] [p = 0.02] [p =
0.05] 

Anterior Lobe     
Mean Diffusivity (MD)

μm2/ms 
0.62 
(0.04) 

0.62 (0.06) 
[p = 0.84] 

0.55 (0.09) 
[p = 0.04] 

0.60 
(0.07) 
[p =
0.27] 

Sphere Signal 
Fraction (fs) 

0.10 
(0.01) 

0.10 (0.03) 
[p = 0.50] 

0.13 (0.03) 
[p = 0.04] 

0.11 
(0.03) 
[p =
0.66] 

Sphere Diffusivity 
(Ds) μm2/ms 

0.13 
(0.01) 

0.12 (0.02) 
[p = 0.55] 

0.15 (0.02) 
[p = 0.02] 

0.11 
(0.03) 
[p =
0.27] 

Superior Posterior 
Lobe     

Mean Diffusivity (MD)
μm2/ms 

0.60 
(0.03) 

0.59 (0.03) 
[p = 0.05] 

0.57 (0.05) 
[p ¼
4.42e-05] 

0.54 
(0.06) 
[p ¼
6.70e- 
05] 

Sphere Signal 
Fraction (fs) 

0.10 
(0.01) 

0.10 (0.02) 
[p = 0.05] 

0.12 (0.03) 
[p ¼
6.81e-05] 

0.13 
(0.02) 
[p ¼
8.47e- 
04] 

Sphere Diffusivity 
(Ds) μm2/ms 

0.12 
(0.01) 

0.13 (0.10) 
[p = 0.17] 

0.13 (0.10) 
[p = 0.53] 

0.12 
(0.01) 
[p =
0.03] 

Inferior Posterior 
Lobe     

Mean Diffusivity (MD)
μm2/ms 

0.59 
(0.03) 

0.57 (0.03) 
[p = 0.03] 

0.52 (0.09) 
[p ¼
2.06e-04] 

0.51 
(0.06) 
[p =
0.004] 

(continued on next page) 
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ibility were demonstrated across the cerebellum for all measures (MD, fs 
and Ds), with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 
0.76, respectively (Fig. 2A). The flocculonodular lobe was removed from 
ongoing analysis due to the low number of voxels identified in com-
parison to both anterior and posterior lobes (<5 for all control 
participants). 

3.3. Comparison of microstructural measures between different control 
groups 

Control Groups 1 and 2 differed in median age at examination (24.5 
and 51 years respectively) (Table 1). No significant differences were 
observed in their overall cerebellar morphometric properties, calculated 
from T1-weighted images, including cerebellar volume (p = 0.36), 
cerebellar grey matter volume (p = 0.17) and cerebellar cortical thick-
ness (p = 0.22). Analysis of the cerebellar GM microstructural 

measurements for the whole cerebellum also found no significant dif-
ferences between the two control groups for M D (p = 0.36), fs (p = 0.17) 
and Ds (p = 0.22) (Fig. 2B). However, when assessing the individual 
cerebellar lobes, a significantly higher Ds in the superior posterior lobe 
(p < 0.001) was observed in the older control group (Group 2), 
compared to that of the younger unaffected control group (Control 
Group 1), but no significant differences for any of the remaining indi-
vidual lobe measures (Table 1, Fig. 2C). 

3.4. Comparison of movement disorders cohorts and age-matched 
controls 

3.4.1. Cerebellar morphometric Characteristics 
Comparison of total cerebellar volume, cerebellar GM volume and 

thickness found no significant differences between the unaffected con-
trol group and each of the movement disorders examined (PD, Dystonia 
and SCA6) following Bonferroni correction for multiple metric com-
parisons with the exception of lower cerebellar GM thickness in the 
SCA6 cohort compared to controls (p = 0.001) (Table 2B). It should be 
noted however, that although multiple measures were applied to mini-
mise the potential for partial volume mixture with CSF and WM, these 
may have contributed to these estimated values. 

3.4.2. Cerebellar grey matter micrpstructural properties 
Analysis of the median voxel values across anterior and posterior 

cerebellar lobes identified significantly lower MD in SCA6 (p = 3.29e- 
07) and Dystonia (p = 1.04e-08) cohorts (Table 2C, Fig. 3A), while 
significantly higher fs values were observed in the same two movement 
disorder groups, Dystonia and SCA6 (p = 3.94e-08 and p = 1.27e-05 
respectively). No significant differences were observed with Ds mea-
surements between the individual movement disorder groups and the 
control cohort. 

Table 2 (continued )  

Control 
Group 2 

Parkinson’s 
disease 

Dystonia SCA6 

Sphere Signal 
Fraction (fs) 

0.11 
(0.03) 

0.11 (0.02) 
[p = 0.05] 

0.15 (0.04) 
[p ¼
4.27e-04] 

0.16 
(0.03) 
[p =
0.001] 

Sphere Diffusivity 
(Ds) μm2/ms 

0.13 
(0.02) 

0.14 (0.02) 
[p = 0.65] 

0.14 (0.01) 
[p = 0.30] 

0.13 
(0.01) 
[p =
0.76] 

A: F: Female, M: Male B: Morphometric measurements for each subgroup within 
the study cohort, ROI: Region of Interest, C: Median and Median Absolute Values 
for each imaging measure for each of the cohort subgroups. One-way ANOVA 
with post-hoc Tukey’s test used for comparison of movement disorder groups to 
unaffected control cohort with subsequent Bonferroni correction for multiple 
metric comparisons (p < 0.003). 
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Fig. 2. A. Intraclass correlation coefficient (ICC) for different dMRI measures (rows) in Control Group 1. B. Comparison of estimated dMRI measures between Group 
1 and 2 across lobes. C. Comparison of estimated dMRI measures between Group 1 and 2 for different lobes. 
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Fig. 3. A. Boxplots of the median values of mean 
diffusivity (MD), signal fraction (fs) and diffusivity 
(Ds) from each cerebellar region (I-X) (circles) 
across the whole cerebellum, excluding the floc-
culonodular lobe. B. Boxplots of the median values 
for each voxel within each region (I-X) (circles) 
analysed by cerebellar lobe; anterior, superior 
posterior and inferior posterior. *** denotes sta-
tistically significant comparisons, beyond that of 
the Bonferroni correction for multiple metric 
comparisons (p < 0.003).   
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3.4.3. Analysis of individual lobes 
Analysis of individual lobes identified significantly different values 

only in the Dystonia and SCA6 cohorts compared to controls, with these 
differences limited to the superior and inferior posterior lobes in the 
dystonia cohort, superior posterior lobes alone in the SCA6 group, and 
no significant changes across any of the disorders in the anterior lobes 
(Table 2C). Superior posterior cerebellar lobe MD values were found to 
be significantly lower in dystonia (p = 4.42e-05) and SCA6 (p = 6.70e- 
05) groups compared to controls while the fs was significantly higher 
(dystonia, p = 6.81e-05; SCA6, p = 8.47e-04). A similar pattern was 
observed for dystonia in the inferior posterior lobe with significantly 
lower MD values (p = 2.06e-04) and higher fs values (p = 4.27e-04) No 
significant differences were observed in the Ds values across any of the 
individual lobes (Table 2C, Fig. 3B). 

4. Discussion 

Primarily due to a lack of appropriate MRI methods Cerebellar GM 
microstructure has been under-investigated in vivo to date. This is the 
first application of STE dMRI at ultra-high b-values with a potential 
imaging proxy for cerebellar GM cell body density in a movement dis-
order patient cohort. A range of degenerative and non-degenerative 
movement disorders were examined, including those associated with 
predominant cerebellar dysfunction (e.g. SCA6), those where the cere-
bellum is recognised to play a contributing role (e.g. Dystonia), and 
those known to demonstrate more diffuse degenerative changes (e.g., 
Parkinson’s disease). (Burciu et al., 2017) In so doing, we have 
demonstrated consistent variation in cerebellar grey matter micro-
structure in degenerative (SCA6) and non-degenerative (Dystonia) 
movement disorders, relative to control populations. This study provides 
a promising initial step, from which work can be extended to larger 
cohorts and more detailed analysis of the cellular variation contributing 
to the observed signal change. 

Conventional measures, such as MD, from DTI reflect the overall 
presence of microstructural barriers to diffusion and could pre-date 
morphometric volume changes, such as previously reported MD 
changes identified prior to cortical thinning in Alzheimer’s disease, 
(Spotorno et al., 20232023) potentially providing a useful measure of 
early GM cellular changes. Consistent with previous studies in cerebellar 
WM, (Sondergaard et al., 2021) lower GM MD has been observed in 
those with dystonia, with the changes identified in this study suggested 
by the authors to be mainly in axonal properties. By contrast the asso-
ciated increase in fs values observed here suggest additional changes in 
small spherical (and thus non-axonal) compartments, extending the 
potential source of these signal changes to other microstructural com-
ponents. Previous studies have not reported changes in the MD of 
cerebellar WM or GM in Parkinson’s Disease, but have identified lower 
FA in cerebellar GM compared to controls. (Zhang et al., 2011) More-
over, a recent review and meta-analysis of DTI findings in PD identified 
FA and MD values to be differentiating between those with PD and 
controls when examining the substantia nigra, corpus callosum, cingu-
late and temporal cortices but not for cerebellar measures. (Atkinson- 
Clement et al., 2017) In apparent contrast with our results, increased MD 
values have been reported in the cerebellar WM of SCA6 cases, (Park 
et al., 2020) however, it should be noted that this previous work does 
not report correction of MD for free water as done in this study, 
potentially contributing to conflicting results. 

Recent in vivo imaging studies have provided further support for a 
central role for the cerebellum in dystonia pathogenesis, and more 
specifically in adult-onset dystonic tremor, where fMRI analysis 
demonstrated increased activity bilaterally in the cerebellum and 
cerebello-thalamic pathway. (Nieuwhof et al., 2022) In this study, 
average MD values were lower in those with Dystonia compared to 
controls, suggesting increased structural density. The biological corre-
lates remain unknown; however, human post-mortem and murine 
models point towards a similar cellular region with predominant 

involvement of the Purkinje Cell layer, although granule cells are more 
numerous and may too contribute, potentially to a larger degree, to the 
observed signal (Fig. 1D). Animal models of dystonia have identified 
increased numbers of synaptic boutons on the dendritic shafts and soma 
of Purkinje cells in the molecular layer of the cerebellar cortex, with 
immunostaining suggesting that these boutons were derived from 
GABAergic interneurons. (Inoue et al., 1993) By contrast, the limited 
number of human post-mortem studies in those with Dystonia have 
demonstrated lower overall Purkinje Cell density, while the murine 
“wriggle mouse sagami” model has demonstrated impaired develop-
ment of Purkinje Cell dendritic trees with fewer synaptic connections 
from parallel fibres to the Purkinje cells. (Prudente et al., 2013; LeDoux, 
2011) Transgenic models of DYT1 (TorsinA) dystonia have shown 
similar findings in Purkinje Cell morphology, with shortened primary 
dendrites and a decreased number of spines on distal dendrites. (Zhang 
et al., 2011) Finally, targeted loss of Purkinje cells in the totteringPC- 

loss mouse results in a dystonic phenotype, with dystonia severity 
correlated with the linear density of Purkinje Cells throughout the cer-
ebellum. (Raike et al., 2013) Notably, however, size estimates of the 
tissue represented by the dot signal in our previous work placed this in 
the range of granule cells within the cerebellum. While only a limited 
number of transgenic animal models have focused on these specific cell 
types, those harbouring dystonia gene, PRRT2 mutations (DYT10), 
found that those with mutations limited to the granule cells (GCs) 
recapitulated the behavioural phenotypes seen in Prrt2-null mice, with 
optogenetic stimulation of granule cells resulting in transient elevation 
followed by suppression of Purkinje cell firing. (Tan et al., 2018). 

A significant pattern of higher fs was also observed in the SCA6 
cohort. SCA6 is an autosomal dominant, late-onset cerebellar ataxia, 
caused by trinucleotide (CAG) expansion in the alpah1A voltage-gated 
calcium channel gene (CACNA1A), the wild-type protein of which is 
highly expressed in both cerebellar Purkinje and granule cells. In addi-
tion, human post-mortem studies in those with SCA6 mutations have 
demonstrated fewer, thicker branches, and a reduced number of Pur-
kinje Cell dendritic spines, with similar microstructural changes in 
transgenic animal models, once again suggesting that the signal 
observed in this study emanates at a cellular level from the Purkinje or 
granule cells of the cerebellum (Wang et al., 2010; Jayabal et al., 2017) 
However, the clear difficulty in this explanation is that while histo-
pathological examination of dystonia models suggests an increase in 
cellular density, which in some cases is correlated with increasing motor 
symptom severity, here, the signal changes associated with SCA6 would 
be more consistent with reduced cellular density. This raises the possi-
bility that the signal changes observed here, in the SCA6 cohort, may 
reflect small spherical compartments generated by cellular degeneration 
but not occupied by a specific cellular subtype. 

Future evaluation using this approach in a larger cohort may further 
improve interpretation on a disease-specific level, particularly changes 
to the dot signal fraction in other cerebellar-predominant degenerative 
disorders and inference as to the underlying histological change that this 
may represent. Furthermore, examination of changes to the diffusion of 
metabolites (which tend to be contained entirely in the intra-cellular 
space) could help reveal whether the isotropically-restricted diffusion- 
weighted signal predominantly arises from the intra- or extra-cellular 
space, further refining the tissue type from which it is derived. 
Furthermore, the present analysis explicitly assumed the signal to 
originate from non-exchanging compartments. However, recent work 
suggests relatively high exchange rates in gray matter in general and in 
cerebellar gray matter in particular. (Olesen et al., 2022) As a conse-
quence, we expect the values of fs to be lower than expected from his-
tology and protocol dependent, as different gradient waveforms have 
different sensitivity to exchange, as well as there being potential bias 
due to microscopic GM kurtosis. (Chakwizira et al., 2023; Novello et al., 
2022) The former point also indicates that a change in fs can be inter-
preted either as a change in its corresponding volume fraction or a 
change in the membrane permeability of the related cell population. The 
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coarse spatial resolution was adopted to maintain acceptable signal-to- 
noise ratio (SNR) in the diffusion-weighted data, and despite the high-
ly curved structure of the cerebellar GM, partial volume mixture with 
CSF and WM was minimised by the use of cerebellar segmentation, free- 
water elimination, and high b-value STE. However, methodological 
choices (e.g., the b-values used in the free-water elimination step) and 
potential inaccuracies (e.g., subtle misalignment with the T1-weighted 
scan or segmentation inaccuracy) could still affect the results, and 
future work should strive to investigate this into greater detail. A po-
tential solution to achieving high spatial resolution while preserving the 
SNR is to adopt alternative image acquisition strategies. Vis et al. 
recently demonstrated that a similar image contrast can be achieved at 
1.6 mm isotropic resolution by using STE at b = 4000 s/mm2 paired with 
a super resolution image reconstruction. (Vis et al., 2021). 

5. Conclusion 

In summary, this study suggests a promising, non-invasive, in vivo 
measure of cerebellar GM microstructural differences across degenera-
tive and non-degenerative movement disorders. We have also demon-
strated the potential for enhancing sensitivity and specificity to small 
spherical spaces, directly from the high b-value diffusion-weighted STE 
signal, rather than the more time consuming, costly, and potentially 
biased modelling of all compartments. Future work will involve further 
elucidating the microstructural origins of the residual signal, with the 
which could originate from within small spaces that may be intra- 
cellular (e.g. dendritic spines or dendritic arbor) or extra-cellular (e.g. 
between densely packed granule cells), or both. 
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Topgaard, D., Lasič, S., 2019. Multidimensional diffusion MRI with spectrally 
modulated gradients reveals unprecedented microstructural detail. Sci Rep. 9 (1) 
https://doi.org/10.1038/s41598-019-45235-7. 

Maiti B, Koller JM, Snyder AZ, Tanenbaum AB, Norris SA, Campbell MC PJ. Cognitive 
Correlates of Cerebellar Resting-State Functional Connectivity in Parkinson Disease. 
Neurology. 2020;28(94(4)):e384-e396. 

Mori, S., Van Zijl, P.C.M., 1995. Diffusion Weighting by the Trace of the Diffusion Tensor 
within a Single Scan. Magn Reson Med. 33 (1), 41–52. 

C.M.W. Tax et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S2213-1582(23)00108-0/h0005
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0005
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0005
https://doi.org/10.1002/nbm.3841
https://doi.org/10.1002/nbm.3841
https://doi.org/10.1016/S1053-8119(03)00336-7
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0020
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0020
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0020
https://doi.org/10.1016/j.nicl.2017.07.011
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0030
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0030
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0030
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0030
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0035
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0035
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0035
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0035
https://doi.org/10.1002/nbm.4827
https://doi.org/10.1002/nbm.4827
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0045
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0045
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0050
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0050
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0050
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0050
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0055
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0055
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0055
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0060
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0060
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0060
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1016/S1361-8415(01)00036-6
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0070
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0070
https://doi.org/10.1016/j.mri.2017.11.002
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0080
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0080
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0085
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0085
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0085
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0090
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0090
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0090
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0090
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0095
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0095
https://doi.org/10.1038/s41598-019-45235-7
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0110
http://refhub.elsevier.com/S2213-1582(23)00108-0/h0110


NeuroImage: Clinical 38 (2023) 103419

9

Nieuwhof, F., Toni, I., Dirkx, M.F., Gallea, C., Vidailhet, M., Buijink, A.W.G., van 
Rootselaar, A.-F., van de Warrenburg, B.P.C., Helmich, R.C., 2022. Cerebello- 
thalamic activity drives an abnormal motor network into dystonic tremor. 
NeuroImage Clin. 33, 102919. 
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