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Abstract

Stochastic wind power prediction errors hurt the normal operation of integrated power
and natural gas systems (IPGS). First, the data-driven stochastic chance-constrained pro-
gramming method is applied to deal with wind power prediction errors, and its probability
distribution is accurately fitted by variational Bayesian Gaussian mixture model with mas-
sive historical data. In addition, the data-driven chance constraints of tie-line power and
reserve capacity of gas turbine are built. Next, to utilize wind power more reasonably,
the operational characteristics and optimal commitment of power-to-hydrogen devices are
considered and modelled in proposed strategy to reflect the actual situation of IPGS. Then,
the original complicated dispatch problem is converted into a tractable second-order cone
programming problem via convex relaxation and quantile-based analytical reformulation
techniques. Finally, the effectiveness of the proposed strategy is validated by numerical
experiments based on a modified IEEE 33-bus system integrated with a 10-node natural
gas system and a micro hydrogen system.

1 INTRODUCTION

To combat global warming and energy shortage, renewable
energy is being vigorously developed worldwide [1] to pro-
vide people with clean and green electricity. Renewable energy
output is stochastic and volatile due to uncertain weather condi-
tions. The electricity generated by renewable energy cannot be
fully utilized due to the limited flexibility and reserve capacity
of power system, which is often largely curtailed, especially in
China.

The utilization rate of renewable energy is increased by
the coordinated dispatch and coupled conversion of integrated
power and natural gas systems (IPGS) [2], and the curtailed
renewable energy can be converted to hydrogen by P2H (power-
to-hydrogen) devices. Besides, the optimal dispatch for IPGS
will also reduce the total operation costs [3, 4] and increase
operational security [5, 6]. Therefore, researching the optimal
dispatch strategy for IPGS is gaining increasing interest today.
It is crucial to study the optimal dispatch of IPGS, considering
wind power uncertainties and the operational characteristics of
P2H devices.
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The stochastic output power and wind power prediction
errors (WPPE) often lead to the frequent and significant fluc-
tuation of tie-line power, affecting the economic operation of
the external power grid [7].Meanwhile, an adequate reserve
capacity of gas turbine (GT) is required to cope with those
stochastic uncertainties of wind power and load [8, 9]. There-
fore, the question of how to reduce the fluctuations of tie-line
power and determine an appropriate reserve capacity consid-
ering wind power uncertainty needs to be further investigated.
Several references study WPPE, but the stochastic dispatch for
IPGS has not yet been adequately addressed [8, 9]. The chance-
constrained stochastic programming (CCSP) is a commonly
used method to deal with WPPE. The CCSP method fully
exploits the information efficiency of massive historical data,
which has been widely used in the operation of IPGS [8]. The
economics and the security level are coordinated with an appro-
priate confidence value in CCSP that indicates the operator’s
tolerance level for stochastic risks.

The sample-average approximation (SAA) is a common
method in CCSP, which is close to the actual situation
when its sample number is large enough [10]. However, each
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sample in SAA introduces a binary variable. As the sample
size increases, the number of binary variables grows rapidly,
making this mixed-integer programming problem difficult to
solve [10]. Therefore, the SAA is widely believed as time-
consuming, inefficient, and even intractable [11, 12] with large
samples. It is computationally challenging to solve SAA with
multiple integer or discrete variables [10]. Worse still, the accu-
racy and performance of this method are unsatisfactory when
its sample number is not sufficient or finite [13]. In contrast,
another widely used method in CCSP is the quantile-based
analytical reformulation. Its calculation speed is fast but it usu-
ally needs an accurate priori probability distribution of WPPE
[8]. However, many references [9, 14, 15] assume that WPPE
follows a conventional priori distribution, such as Gaussian
distribution. For example, WPPE in IPGS are assumed to fol-
low Gaussian distribution. The CCSP was used to solve this
stochastic programming problem in power systems [14] and
micro multi-energy systems [16]. This assumption that the
probability distribution of WPPE follows Gaussian distribu-
tion is too simple and perfect, and it may result in inaccuracy
in probability distribution fitting and solution [17]. Gaussian
distribution is simple, unimodal, and symmetrical, but WPPE
usually shows multi-peak and asymmetry characteristics [18]. As
a result, the fitting accuracy of WPPE using Gaussian distribu-
tion is unsatisfactory, and it is usually arduous to implement
in a real power system [19]. In addition, it should recognize
that renewable energy prediction errors usually have unique
distribution characteristics in some geographical regions. More-
over, a simple distribution cannot fit the real distribution
characteristics.

With the wide application of advanced measurement infras-
tructure in IPGS, vast amounts of data have been accumulated,
including historical prediction and actual measurement data of
renewable energy. Unfortunately, the information from these
vast amounts of data has not been adequately used to fit WPPE
at present. Gaussian mixture model (GMM) has been used
incrementally in recent years to fit the actual probability dis-
tribution of WPPE. Then this fitted probability distribution is
introduced as an input parameter for the CCSP [8, 17]. The
fitting accuracy strongly depends on the number of Gaussian
components, and relatively large fitting errors occur when the
number of Gaussian components is inappropriate. Neverthe-
less, the number of Gaussian components is usually selected
by manual observation [8], which easily leads to over-fitting or
under-fitting problems. The probabilistic statistical information
of historical WPPE data is not fully and appropriately utilized by
the traditional GMM method. For this reason, how to accurately
fit the probability density and automatically select the reason-
able number of Gaussian components in GMM is extremely
important. At present, the CCSP with GMM method is mainly
used in the probabilistic power flow calculation [18, 20], eco-
nomic dispatch [17], and unit commitment [8] in traditional
power systems. The calculation speed of optimal dispatch with
GMM method is fast [8, 17, 18, 20]. Still, it is seldom used in
the operation of IPGS. More importantly, its upgrade version-
the variational Bayesian Gaussian mixture model (VBGMM)

method is only adopted in the optimal power flow [19], and it is
rarer in the operation of IPGS. Compared to traditional power
systems, IPGS is a more complex integrated multiple energy
systems [3], and its operation considering stochastic WPPE
with the data-driven CCSP method, VBGMM, needs more
attention.

Another fact that needs to be addressed is that, the opera-
tional characteristics and actual operation constraints of P2H
device in IPGS needs to get more attention. Refs. [9, 21] neglect
operational characteristics and ramping constraints of P2H
devices. The models in the above two references are relatively
simple, not reflecting their actual situation. There are two types
of advanced P2H devices, including PEMEC (proton exchange
membrane electrolysis cell) and SOEC (solid oxide electroly-
sis cell) [3, 22]. The former’s start-up/shut-down and ramp
speed is rapid, and it has a wide adjustable power range, but
its conversion efficiency is relatively low. In contrast, the con-
version efficiency of the latter is high, but it has a slow response
speed and a narrow adjustable power range. In addition, most
research papers do not consider the operational characteristics,
optimal commitment, and power allocation of the above two
P2H devices. The reliable and economical operation of IPGS
will be further ensured if these three factors could be taken into
account and modelled reasonably.

Generally, up until now, there are two obvious deficiencies in
the existing dispatch strategies for IPGS: (1) Stochastic WPPE
has not been effectively addressed, and its potential informa-
tion of historical data has not been fully utilized, affecting the
economic operation of IPGS; (2) The operational characteris-
tics and optimal commitment of P2H devices have been hardly
considered and modelled, not reflecting the actual operating
situation.

To solve the above two problems, a stochastic data-driven
chance-constrained day-ahead dispatch strategy for IPGS con-
sidering the operational characteristics of P2H devices is
proposed. The main contributions are presented as follows:

1. The data-driven CCSP is proposed to cope with stochastic
WPPE, and VBGMM is used to fit the probability distri-
bution of WPPE [23]. Specifically, the tie-line power and
GT reserve capacity are modelled as data-driven chance
constraints with VBGMM.

2. The operational characteristics and optimal commitment of
the two types of P2H devices are also considered and mod-
elled, which can ensure the reliable and economic operation
of IPGS.

3. Scheduled wind power (SWP), wind power consumed by
P2H devices, purchased power from the external power grid,
and the output of GTs are optimally coordinated to support
the economic operation of IPGS effectively.

The remainder of this paper is organized as follows. The
stochastic optimization for IPGS dispatch is introduced in Sec-
tion 2. The solution method is presented in Section 3. The
case study is shown in Section 4. Then the conclusions are
summarized in Section 5.
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FIGURE 1 IPGS structure.

2 STOCHASTIC OPTIMIZATION FOR
IPGS DISPATCH

2.1 Structure of IPGS

The IPGS here is mainly composed of two subsystems: A nat-
ural gas system and a power distribution system that integrates
a micro hydrogen system. The joint operation and management
of power system and natural gas system in some countries, such
as the U.K., is common [24], so IPGS is assumed to be dis-
patched and managed as a whole by the multi-energy operator
here.

There are many conversion facilities to meet the multi-energy
demands in IPGS. Specifically, the power demand is met by the
output power of GT, the wind turbine, and purchased power
from the external power grid. The wind turbine output contains
two parts: directly scheduled wind power and wind energy con-
sumed by P2H device. Here, the produced hydrogen is stored in
hydrogen storage (HS). The hydrogen stored in HS is profitably
sold to an external hydrogen customer. Besides that, the exter-
nal gas station supplies the consumed natural gas of IPGS. The
structure of IPGS is shown in Figure 1.

In this paper: “operational characteristics” refers to the start-
up/ start-down and ramp speed and operating range of P2H
devices. The typical process in P2H is also shown in Figures 1
and 2. Water is electrolyzed to hydrogen and oxygen by PEMEC
or SOEC consuming renewable energy.

As shown in Figure 2, high-temperature conditions are essen-
tial in SOEC, so it usually takes several hours to startup [3].
Specifically, the water is electrolyzed by the solid oxide at high
temperatures, about 800◦C, and the conversion efficiency of
SOEC improves due to the increased thermodynamic energy
and kinetic energy. Therefore, it takes several hours to heat the
electrolyzer and accumulate heat to reach such a high tempera-
ture. For example, the start-up time of SOEC is about 2 h [25].
Compared to SOEC, the operating and reaction temperature
of PEMEC is relatively low, about 80◦C, so its start-up time
is short and can be neglected. Due this large thermal inertia,
SOEC usually has low start-up and shut-down speed and low
ramp rate, so it is unreasonable to ignore its operational charac-
teristics. The operational characteristics model of P2H devices
is then discussed in more detail in Section 2.3 below.

FIGURE 2 P2H structure.

2.2 Data-driven chance constraints

With the increasing installed capacity of renewable energy in
power distribution system, the tie-line power between power
distribution system and external power grid often fluctuates ran-
domly due to the stochastic output of distributed renewable
energy. This fluctuation affects the security and economic oper-
ation of the external power system greatly [7]. To reduce the
negative impact of power fluctuation caused by intermittent dis-
tributed wind power on the external power grid, the data-driven
CCSP is built. It consists of two key elements: Stochastic chance
constraints and the data-driven probability distribution fitting
method of WPPE.

2.2.1 Chance constraints of the tie-line and GT

To relieve the power regulation burden of external power grid,
the power fluctuations of the tie-line must be limited. Besides, to
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ensure users’ power security in IPGS, adequate reserve capacity
of GT is necessary.

The actual output of distributed wind power is stochastic and
can be regarded as the predicted wind power plus stochastic pre-
diction errors, as shown in Eq. (1). Without loss of generality,
assume all power/ gas load is deterministic, and the influence
of stochastic WPPE on the change of network losses is negligi-
ble. Due to the stochastic uncertainty of wind power, the tie-line
power is also stochastic, as shown in Eq. (2).

W̃ a
w,t = W

f
w,t + ẽw,t (1)

P̃sub,t = Psub,t − ẽw,t (2)

To reduce the adverse impact of the stochastic power fluctu-
ation of the tie-line, its maximum power is modelled as chance
constraints, as described in Eq. (3). Specifically, the probability
that the actual power of the tie-line P̃sub,t is less than or equal
to maximum permissible value Pmax

sub is calculated as the equa-
tion on the left-hand side of Eq. (3). The threshold value of
the probability of the tie-line is defined by the parameters on
the right-hand side of the Eq. (3), which is a predefine con-
stant. Eq. (3) denotes the possibility that the actual power of
the tie-line with stochastic WPPE is less than or equal to the
maximum permissible value should exceed a high-probability
threshold value 1 − 𝛼max

sub .

Pr(P̃sub,t ≤ Pmax
sub ) ≥ 1 − 𝛼max

sub (3)

The directly scheduled wind power by the power distribution
systems equals the predicted wind power minus the wind energy
consumed by P2H device, as shown in (4).

W s
w,t = W f

w,t −W H
w,t (4)

where W S
w,t means the total wind power that is directly utilized

by the power distribution systems, W f
w,t is the predicted wind

power, and W H
w,t is the wind power consumed by P2H device.

To prevent the risk of stochastic WPPE and potential power
load fluctuation, a reasonable reserve capacity of GT is needed
to ensure the power balance in IPGS, calculated as (5) and (6).

Pr

(
NG∑
g=1

PUR
g,t ≥

NW∑
w=1

W s
w,t −

NW∑
w=1

(W̃ a
w,t −W H

w,t ) + PUR,L

)
≥ 1 − 𝛼UR

(5)

Pr

(
NG∑
g=1

PDR
g,t ≥ −

NW∑
w=1

W s
w,t +

NW∑
w=1

(W̃ a
w,t −W H

w,t ) + PDR,L

)
≥ 1 − 𝛼DR

(6)

The demand for reserve capacity consists of two parts, one
for stochastic WPPE and the other for potential load fluctuation
PUR,L/ PDR,L.

In Eq. (5), its third variable (total actual stochastic wind
power output) minus the fourth variable (the wind power

for P2H),
∑NW

w=1 (W̃ a
w,t −W H

w,t ), denotes the actual stochastic
value of wind power directly utilized by the power distribution

systems. Then the second variable
∑NW

w=1 W s
w,t minus the dif-

ference between the third and fourth variables,
∑NW

w=1 W s
w,t −∑NW

w=1 (W̃ a
w,t −W H

w,t ), is the opposite number of stochastic
WPPE (−ẽw,t ). Similar to Eq. (5), the opposite number of
the second variable plus the difference between the third

and fourth variable in (6), −
∑NW

w=1 W s
w,t +

∑NW
w=1 (W̃ a

w,t −W H
w,t ),

equals stochastic WPPE (ẽw,t ).
Besides, the reserve capacity for the latter one is predefined as

a fixed constant value (3% of the maximum value of load). The
threshold value of the probability of the upward/downward
reserve capacity is defined by the parameters on the right-hand
side of chance constraints (4) and (5). Then the following two
equations, (7) and (8), are obtained by substituting (3) to (5) and
(6), which are presented as follows:

Pr(
NG∑
g=1

PUR
g,t ≥ −ẽw,t + PUR,L) ≥ 1 − 𝛼UR (7)

Pr(
NG∑
g=1

PDR
g,t ≥ ẽw,t + PDR,L) ≥ 1 − 𝛼DR (8)

To eliminate potential adverse impacts from stochastic
WPPE and load fluctuation, then Equations (5), (6) and (7),
(8) denote the probability that dispatched upward/downward

reserve capacity of GT
∑NG

g=1 PUR
g,t /

∑NG
g=1 PDR

g,t exceeds its
demand for reserve capacity should exceed a high-probability
threshold value 1 − 𝛼UR/ 1 − 𝛼DR.

2.2.2 Data-driven fitting method for WPPE

As mentioned earlier, massive historical data in IPGS, such
as prediction power data and measured generated power data
of wind power, has been accumulated. However, the informa-
tion of those massive data has yet to be sufficiently utilized
at present. With the increasing penetration of wind power in
power distribution system, the power fluctuations in IPGS also
increase. Therefore, it is critical to study the distribution char-
acteristics of WPPE, and an accurate probability distribution of
WPPE is an indispensable precondition for the economical and
secure operation of IPGS.

Here, the data-driven CCSP based on VBGMM for the oper-
ation of IPGS is proposed, increasing the data utilization ratio
of wind power with high feasibility and practical value. More
importantly, the fitting accuracy of VBGMM for WPPE is
higher than Gaussian distribution and traditional GMM method
[19]. In theory, an arbitrary probability distribution can be fitted
relatively accurately by GMM if it adjusts its parameters, such as
the number of components, weight, means, and covariance [8].
It’s fitting accuracy depends on the number of Gaussian com-
ponents involved heavily [19]. However, the traditional GMM
method relies on manual observation or prior knowledge set by
experts [19] to choose the number of Gaussian components. It
is hard to select reasonable parameters [19]. Besides, VBGMM
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FIGURE 3 Flowchart of VBGMM method.

method is seldom adopted to fit the probability distribution of
WPPE in IPGS.

Compared to the above traditional GMM, the number of
components of VBGMM can be acquired automatically with-
out prior setting [19]. Therefore, it’s fitting accuracy is also
better than the traditional GMM, and the symmetrical charac-
teristic of WPPE can also be described [8, 17, 19]. VBGMM
is a non-parametric Bayesian model based on Dirichlet pro-
cess, fully utilizing the probabilistic statistical information of
historical prediction data and measured data of wind power [23].
VBGMM can infer the number of Gaussian components of
historical wind power data, so the predefined number of Gaus-
sian components by manual observation is no longer needed
[26]. Besides, some other vital parameters of VBGMM can
also be inferred, including the weight, mean, and variance of
each Gaussian component, the number of Gaussian compo-
nents, and so on. Moreover, the probability density function
(PDF) and cumulative distribution function (CDF) of WPPE
can be obtained automatically. Then, the fitted PDF and CDF
are introduced as the initial input parameter of the CCSP. The
flowchart of VBGMM method is presented in Figure 3.

For finite partitions, θ1, …, θi in measure space Θ, the distri-
bution G satisfies the following property (9), and then G follows
the Dirichlet process, which can be denoted by Eq. (10) [26]. G

has two core elements, the concentration parameter ϕ and the
base probability measure G0 [27]. Specifically, Gaussian distri-

bution is adopted as the base probability measure in VBGMM
method.

G ((𝜃1), … , (𝜃i )) ∼ Dir (𝜙G0(𝜃1), … , 𝜙G0(𝜃i )) (9)

G ∼ DP (𝜙,G0) (10)

An infinite number of Gaussian components can be provided
to analyze the probability distribution of WPPE in VBGMM
[26]. The stick-breaking process is a common method for con-
structing Dirichlet process. Eqs. (11)–(15) are used to build
the stick-breaking process. The categorization weight can be
calculated by the random sampling of the base probability mea-
sure, and the calculation formula of G is presented in (14). The
hidden variables are described in (15) [19].

va ∼ Beta(va|1, 𝜙) (11)

𝜔a = va

k−1∏
s=1

(1 − vs ) (12)

∞∑
a=1

𝜔a = 1 (13)

G =

∞∑
a=1

𝜔a𝛿𝜃a (14)

℧ = {va}
∞
a=1, Υ = {𝜔a}

∞
a=1 (15)

WPPE is regarded as a set of stochastic variables E = {eb}
B
b=1,

and the joint PDF of WPPE using VBGMM method is denoted
as (16).

f (e|𝜔, 𝛽) =
B∏

b=1

∞∑
a=1

𝜔aNa (eb|𝜇a, Λa ) (16)

where 𝛽 = {𝜇a, Λa}
∞
a=1.

The binary indicator variable zb
a is introduced in (17) to indi-

cate the category to which stochastic variables in the historical
data belong. The conditional PDF of WPPE with indicator
variable zb

a is presented as Eq. (17).

f (e|Z, 𝛽) =
B∏

b=1

∞∑
a=1

Na (eb|𝜇a, Λa )

zb
a

(17)

where Z = {zb
a }

a=∞,b=B
a=1,b=1 .

Then the variational Bayesian inference method is used to
estimate the posterior probability distribution of the hidden
variable Ξ = {Z, 𝜔,℧, Υ} [19]. The parameter estimation and
fitting of VBGMM with the variational Bayesian inference
are implemented based on sklearn. mixture package [23]. The
inferred CDF and PDF of WPPE are as follows [17]:

fE (ẽt ) =
NE∑
e=1

𝜔eNe (ẽt |𝜇e,
∑

e
) (18)
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FE (ẽt ) =
NE∑
i=1

𝜔iΦi

(
ẽt |𝜇i ,

∑
i

)
(19)

NE∑
i=1

𝜔i = 1, 𝜔i ≥ 0 (20)

In Eqs. (18) and (19), the PDF and CDF of WPPE are
composed of the linear combination of the multiple Gaussian
components, respectively; In Eq. (20), The sum of the weights
of each Gaussian component is 1.

2.3 Operational characteristics of P2H
devices

1. Minimum up time constraints of SOEC

QS,l∑
t=1

[
1 − uS

l ,t

]
= 0 , ∀t = 1, … ,QS,l (21)

t+T
S,U

l
−1∑

k=t

uS
l ,k

≥ T
S,U

l

[
uS

l ,t
− uS

l ,t−1

]
,

∀t = QS,l + 1, … , T − T
S,U

l
+ 1 (22)

T∑
k=t

{uS
k,l
− [uS

l ,t
− uS

l ,t−1]} ≥ 0 ,

∀t = T − T
S,U

l
+ 2, … , T − 1 (23)

QS,l = min
{

T ,
[
T

S,U
l

−U S
l ,0

]
uS

l ,0

}
(24)

where (21) is used to limit SOEC must be on at the initial time;
(22) describes a typical minimum up time constraint at the inter-
mediate time; (23) enforces SOEC must be on at the remaining
time of the day; (24) calculates the minimum up time at the initial
time.

2. Minimum down time constraints of SOEC

LS,l∑
t=1

[
uS

l ,t

]
= 0 , ∀t = 1, … ,LS,l (25)

t+T
S,D

l
−1∑

k=t

u
{.}
l ,k

≥ T
S,D

l

[
uS

l ,t−1 − uS
l ,t

]
∀t = LS,l + 1, … , T − T

S,D
l

+ 1 (26)

T∑
k=t

{1 − uS
k,l
− [uS

l ,t−1 − uS
l ,t

]} ≥ 0 ,

∀t = T − T
S,D

l
+ 2, … , T − 1 (27)

LS,l = min
{

T ,
[
T

S,D
l

−V S
l ,0

]
[1 − uS

l ,0]
}

(28)

where (25) is used to limit SOEC must be off at the initial
time; (26) describes a typical minimum down time constraint
at the intermediate time; (27) enforces SOEC must be off at the
remaining time of the day; (28) calculates the minimum off time
at the initial time.

3. Ramp constraints of SOEC

PS
l ,t
− PS

l ,t−1 ≤ PS
l ,up (29)

PS
l ,t−1 − PS

l ,t
≤ PS

l ,down (30)

where (29) and (30) are the ramp up/down constraints of the
SOEC, respectively.

4. Operation constraints of SOEC

uS
l ,t

PS
l ,min ≤ PS

l ,t
≤ uS

l ,t
PS

l ,max (31)

uP
p,t PP

p,min ≤ PP
p,t ≤ uP

p,t PP
p,max (32)

where (31) and (32) state the operating constraints of SOEC and
PEMEC, respectively.

5. Conversion efficiency of P2H

H
{.}
h,t
= 𝜂

{.}
h

P
{.}

h,t
, {.} = {P, S} (33)

where (33) is the efficiency of SOEC and PEMEC.

2.4 Operation constraints of subsystems in
IPGS

2.4.1 Power distribution system constraints

a. Wind power allocation constraints

W H
w,t =

∑
h∈ΩPE(w)

PP
h,t
+

∑
h∈ΩSO(w)

PS
h,t

(34)

where (34) denotes the total consumed power of P2H by SOEC
and PEMEC.

b. Branch power flow constraints

Pi j ,t − ri j Ii j ,t + PN
j ,t =

∑
k∈c ( j )

Pjk,t (35)

Qi j ,t − xi j Ii j ,t + QN
j ,t =

∑
k∈c ( j )

Q jk,t (36)

Vj ,t = Vi,t − 2
(
Pi j ,t ri j + Qi j ,t xi j

)
+
(

r2
i j ,t + x2

i j ,t

)
Ii j ,t (37)
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Vi,t Ii j ,t ≥ P2
i j ,t + Q2

i j ,t (38)

where (35)–(38) describe the branch power flow in the power
distribution system, also called DistFlow.

c. Nodal power balance constraints

PN
j ,t =

∑
g∈𝛀GT( j )

PGT
g,t + Psub,t +

∑
w∈𝛀WT( j )

W s
w,t −

∑
d∈𝛀EL( j )

PEL
d ,t

(39)

QN
j ,t =

∑
g∈𝛀GT ( j )

QGT
g,t + Qsub,t +

∑
q∈𝛀SVC ( j )

QSVC
q,t −

∑
d∈𝛀EL ( j )

QEL
d ,t

(40)

where (39) and (40) represent the nodal active and reactive
power balance constraints, respectively. The nodal power equals
the sum of the output of GT and wind power, substation (if any)
minus the load.

d. Running state of GT

U On
g,t −U Off

g,t = U GT
g,t −U GT

g,t−1 (41)

0 ≤ U On
g,t ≤ U GT

g,t (42)

0 ≤ U Off
g,t−1 ≤ 1 −U GT

g,t (43)

where (41)–(43) show the relationship among GT’s running
state, start-up, and shut-down indicators, respectively.

e. Ramp constraints of GT

PGT
g,t − PGT

g,t−1 ≤ PGT
g,up (44)

PGT
g,t−1 − PGT

g,t ≤ PGT
g,down (45)

where (44) and (45) state GT’s ramp up/down constraints.

f. Operation constraints

PGT
g,t + PUR

g,t ≤ U GT
g,t P̄GT

g (46)

U GT
g,t PGT

g ≤ PGT
g,t − PDR

g,t (47)

Q
SVC

q
≤ QSVC

q,t ≤ Q̄SVC
q (48)

I
i j
≤ Ii j ,t ≤ Īi j (49)

V ≤ Vi,t ≤ V (50)

where (46) and (47) denote the operating constraints consid-
ering the reserve capacity of GT; (48) states the output of

the reactive power compensation device, static var compenstor
(SVC) should not exceed its capacity; (49) and (50) denote the
branch current of the line and bus voltage cannot exceed their
limits.

2.4.2 Natural gas system constraints

a. Pipeline natural gas flow constraints

The Weymouth equation is usually adopted to describe the
relationship between the natural gas flow of pipeline and the
gas pressure of node, as shown in Eq. (51) [28].

f 2
mn,t = C 2

mn(𝜋2
m,t − 𝜋2

n,t ) (51)

b. Nodal natural gas flow balance constraints∑
m∈Ωp,in(m)

fgm,t −
∑

m∈Ωp,out(m)

fmn,t +
∑

y∈ΩGW(m)

f W
y,t

=
∑

z∈ΩGL(m)

f L
z,t +

∑
g∈ΩGT(m)

f GT
g,t (52)

where (52) represents the natural gas flow balance at each
node.

c. Operation constraints

𝜋 ≤ 𝜋t ≤ 𝜋 (53)

f
mn

≤ fmn,t ≤ f̄mn (54)

f
W

≤ f W
y,t ≤ f̄ W (55)

where (53) and (54) are the operating constraints of gas node
pressure and pipeline gas flow, respectively; (55) denotes the
operating constraint of the natural gas station.

d. Natural gas consumption of GT

The natural gas consumption of GT is calculated by the linear
model in most cases, which is denoted as following (56):

f GT
g,t = PGT

g,t 𝜂GT
g,t (56)

e. Hydrogen balance constraints∑
h∈ΩPE(i )

H P
h,t
+

∑
h∈ΩSO(i )

H S
h,t
=

∑
s∈ΩSH(i )

(H in
s,t − H out

s,t ) (57)

In (57), the produced hydrogen of PEMEC and SOEC
should equal the consumed hydrogen of HS.

f. Hydrogen storage constraints

S H
s,t = S H

s,t−1 + H in
s,t 𝜂

H,in
s − H out

s,t ∕𝜂
H,out
s (58)
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B
H,in
s,t H

in
s
≤ H in

s,t ≤ H̄ in
s B

H,in
s,t (59)

B
H,out
s,t H

out
s

≤ H out
s,t ≤ H̄ out

s B
H,out
s,t (60)

S
H
s,t

≤ S H
s,t ≤ S̄ H

s,t (61)

B
H,in
s,t + B

H,out
s,t ≤ 1 (62)

where (58) denotes the hydrogen balance constraint of HS in
two consecutive time intervals. (59) and (60) state the range
of charging and discharging of HS. (61) enforces the residual
hydrogen to be within its capacity limit. The binary vari-
able is introduced in (62) to prevent charging and discharging
simultaneously.

g. Hydrogen supply for hydrogen buyer constraints

S H
s,T

= HD (63)

Be noted that, here, it is assumed that stored hydrogen in HS
is regularly sold to the hydrogen buyer at 24:00 to meet their
hydrogen demand.

2.5 Objective function

The dispatch objective of the multi-energy operator is to min-
imize the total operating costs of IPGS based on day-ahead
prediction data, consisting of the power and natural gas pur-
chase costs, reserve capacity costs, start-up costs, and profits by
selling hydrogen, which is denoted in (64).

min Cop =

T∑
t=1

⎛⎜⎜⎜⎝
∑Ng

g=1

(
pUR

g PUR
g,t + pDR

g PDR
g,t + pS

gU On
g,t

)
+pe,t Psub,t +

∑Nw
y=1 cy f W

y,t

⎞⎟⎟⎟⎠ − cHHD

(64)

3 SOLUTION METHOD

The day-ahead data-driven chance-constrained dispatch strategy
for IPGS can be summarized as follows:{

min Cop

s.t.(1) − −(8), (18) − −(63)
(65)

where (1)–(8) are the chance constraints, (18)–(20) are the fitted
CDF and PDF by VBGMM, (21)–(33) are the operational char-
acteristics model of P2H devices, and (34)–(63) are operation
constraints of three subsystems in IPGS.

There are some non-linear constraints such as (3), (5)–(8) and
(51), so the original dispatch strategy for IPGS is a stochastic
mixed-integer non-linear programming (MINLP) problem. The
stochastic MINLP problem is NP-hard and difficult to solve.
The quantile-based analytical reformulation and second-order

cone programming (SOCP) technique are adopted to solve the
above MINLP problem.

The chance constraints of the tie-line and GT in (3), (5)–(8)
are usually regarded as non-convex, stochastic, and intractable ,
and solving this CCSP is often a non-trivial task [29]. For exam-
ple, it is very hard to get the closed form of CCSP in many
cases. The chance constraints cannot be solved by the commer-
cial solvers directly. Consequently, the quantile-based analytical
reformulation technique is adopted to solve this problem, then
the CCSP problem is converted to a deterministic problem,
described in (66)–(68).

Psub,t ≤ Pmax
sub + QU (𝛼max

sub |ẽw,t ) (66)

NG∑
g=1

PUR
g,t ≥PUR,L − QU (𝛼UR|ẽw,t ) (67)

NG∑
g=1

PDR
g,t ≥ PDR,L + QU (1 − 𝛼DR|ẽw,t ) (68)

As the first parameter on the right-hand side of (66)–(68) is
a predefined constant, then the core and difficulty of (66)–(68)
is getting the second parameter, the quantile value of stochastic
WPPE on the right-hand side. As VBGMM method is used to
fit the probability distribution of WPPE, the CDF of WPPE
is a linear combination of the CDF of Gaussian distribution,
essentially a non-linear equation. As a result, the quantile value
in Eqs. (64)–(66) can be regarded as the root of the CDF in the
corresponding confidence level, which can be calculated by a
common root-finding method for the non-linear equation. The
fzero function in Matlab is used to find the root fast with high
accuracy [30].

The SOCP handles the non-linear Weymouth constraint (51),
presented below. However, this cone relaxation technique is not
our contribution and focus, and more detailed descriptions are
discussed in [31].

f 2
mn,ave,t +C 2

mn𝜋
2
n,t ≤ C 2

mn𝜋
2
m,t (69)

The relaxation error may occur because of the cone relax-
ation technique, and the following equation is used to calculate
the maximum relaxation gap of pipeline mn [32]. And the solu-
tion in relaxed SOCP model can be regarded as exact if the
following relaxation gap is small enough.

gap = max

{
C 2

mn𝜋
2
m,t −C 2

mn𝜋
2
n,t − f 2

mn,t

f 2
mn,t

, ∀t ∈ T , ∀mn

}
(70)

where the gap is the maximum relaxation gap.
The original complex stochastic MINLP problem is con-

verted to an easy mixed-integer SOCP (MISOCP) problem with
the above cone relaxation and analytical reformulation tech-
nique. Then, many common commercial solvers can solve the
mixed-integer SOCP problem quickly. The flowchart of the
dispatch strategy of IPGS is shown in Figure 4.
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FIGURE 4 Flowchart of dispatch strategy.

FIGURE 5 Test system.

4 CASE STUDY

In this section, the proposed data-driven chance-constrained
dispatch strategy for IPGS is coded in Julia/JuMP [33] environ-
ment on a laptop with AMD R7-4800U (1.8 GHz) and 16 GB
RAM. This problem is solved by the commercial solver Gurobi
9.0.3.

The modified IEEE 33-bus system integrated with a 10-node
natural gas system and a micro hydrogen system is presented in
Figure 5. The substation is located at bus 1, supplying electricity
to IPGS through the tie-line. The wind power farm (3 MW)
is located at bus 31, and one PEMEC (0.1 MW), two SOECs
(0.5 MW*2), and HS is also installed at this bus. Furthermore,
two GTs are located at bus 3 and 16, respectively. There is a
city gas station located in gas node 1, and gas node 2 and node
6 are responsible for supplying natural gas to GTs. The base
value of power is 1 MVA, and voltage magnitude is 4.16 kV. The
maximum permissible value of the active power of the tie-line
is 5.8 MW. The tolerance level for stochastic risks is 5%. The
actual prediction errors and measured data of wind power from
April 5, 2021, to April 5, 2022, of the Elia are considered as
initial data [34].

There are six different cases to study the impact of WPPE
and operational characteristics on the dispatch for IPGS, which

TABLE 1 Six different cases

Case SAA GAUSSIAN GMM VBGMM

Operational

characteristics and

optimal commitment

1 √ × × × √

2 × √ × × √

3 × × √ × √

4 × × × √ √

5 × × × × √

6 × × × × ×

are described as follows: The six different cases are summa-
rized in Table 1. Moreover, the dispatch results in six cases
are presented in Table 2 and Figure 6–9, and the comparison
between the six cases is discussed below. The results of the max-
imum relaxation gap of pipeline are 1.7 × 10−5, and its value
is small enough, so the relaxed MISOCP model is regarded as
exact.

In case 1, WPPE and the operational characteristics and opti-
mal commitment of P2H devices are considered, and the SAA
method is used to deal with the chance constraints;
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TABLE 2 Comparison of dispatch results in six cases

Case

Dispatch

objective

value ($)

Produced

hydrogen

(kg)

Computing

time (s)

MIP

gap

Log-

likelihood

Function

(Bigger is

Better)

1 27703.830 100 11,133.236 0.2% –

2 27734.493 100 45.983 0 0.042

3 27744.028 100 56.799 0 0.095

4 27767.133 100 61.545 0 0.099

5 27327.228 100 48.807 0 –

6 27510.482 100 49.343 0 –

FIGURE 6 Dispatch results of the tie-line power in cases 1–6.

FIGURE 7 Dispatch results of the upward reserve in cases 1–6.

In case 2, WPPE and the operational characteristics and opti-
mal commitment of P2H devices are considered, and Gaussian
distribution is used to fit the probability distribution of the
WPPE;

In case 3, WPPE and the operational characteristics and
optimal commitment of P2H devices are considered, and the
traditional GMM is used to fit the probability distribution of
the WPPE;

FIGURE 8 Dispatch results of the downward reserve in cases 1–6.

FIGURE 9 Comparison of actual tie-line power in a typical day.

In case 4, WPPE and the operational characteristics and opti-
mal commitment of P2H devices are considered, and VBGMM
is adopted to fit the probability distribution of the WPPE;

In case 5, the operational characteristics and optimal com-
mitment of P2H devices are considered, and WPPE is not
considered.

In case 6, WPPE, the operational characteristics, and the opti-
mal commitment of P2H devices are not considered, and only
one traditional PEMEC (1.1 MW) is installed in this case, which
is also called the traditional deterministic model.

1. Comparison of fitting effect under different probability dis-
tributions: Many references assume that WPPE follows
Gaussian distribution, not conforming to reality in some
geographical regions. The accuracy of the fitted probability
distribution of WPPE has a great impact on the economi-
cal and secure operation of IPGS. As presented in Figure 10,
the above conclusion can be obtained intuitively. The histor-
ical data of WPPE is non-Gaussian, obviously, so the fitting
effect in case 1 with Gaussian distribution is the worst. Then
the traditional three-component GMM method in case 3 is
used to fit the probability distribution of WPPE, and the fit-
ting effect of this method is better than in case 2. It is easy
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FIGURE 10 Comparison of the fitting effect in cases 2–4.

to find that the fitting effect in case 4 with VBGMM is the
best, accurately describing the characteristics of actual histor-
ical data. Besides, the fitting effect in cases 2–4 gets better,
in turn, verified again by the statistical index in Table 2.
Specifically, the value of the statistical index in case 4, the
log-likelihood function, is the best.

2. Comparison of times of overload and adjustment cost in
a typical day: As can be seen from Table 2, the dispatch
objective value in cases 5 and 6 are the lowest. The dispatch
decision making in case 5 and case 6 is, essentially, a deter-
ministic optimization problem without considering WPPE,
and its robustness for stochastic WPPE is weakest. To clearly
show the advantage of our proposed dispatch strategy, the
dispatch and adjustment results are compared on a typical
day between cases 1 and 6.

As seen from Figure 6, the peak power of the tie-line in
the 8th, 10th, 11th, 12th, and 18th h in cases 5 and 6 is the
largest and close to the maximum permissible value of the active
power of the tie-line. Moreover, according to actual historical
data analysis of the Elia, the actual wind power output is usu-
ally lower than its predicted value, which can also be drawn
from Figure 10. Therefore, it is necessary to purchase more
power from the external power grid again to compensate for
actual insufficient wind power. Then the actual power of the tie-
line easily exceeds the maximum permissible value of the active
power of the tie-line. The economic operation may be affected
due to the adverse fluctuations of the tie-line power. By contrast,
the dispatch results in cases 1–4 consider stochastic and adverse
WPPE, so the peak power of the tie-line in cases 1–4 is lower,
and its actual power of the tie-line does not usually exceed the
maximum permissible value.

In addition, as shown in Table 3, the times of overload in
case 5 are five, and the times of overload in case 6 are six.
To compensate for the insufficient actual wind power output,
the multi-energy operator needs to purchase more power from
the external power grid again. As shown in Figure 9, the actual
power of the tie-line on this typical day exceeds the maximum
permissible value of the active power of tie-line in the 8th, 10th,
11th, 12th, and 18th hours in cases 5 and 6. Hence, the multi-
energy operator needs to pay more power adjustment costs. In
this work, the following assumptions about the adjustment price

TABLE 3 Comparison of total cost with the adjustment in six cases

Case

Budgeted

objective

value ($)

Adjustment

costs ($)

Total costs

($)

Overload

times

1 27703.830 953.287 28,657.117 1

2 27734.493 957.839 28,692.332 1

3 27744.028 953.210 28,697.238 1

4 27767.133 951.943 28,719.076 1

5 27327.228 1422.426 28,749.654 5

6 27510.482 1459.455 28,969.937 6

TABLE 4 Comparison of violation rate in six cases

Maximum violation rate

Case Overload

Insufficient

upward

reserve

Insufficient

downward

reserve

Average

violation rate

(Lower is

Better)

1 6.6% 10.9% 9.5% 4.38%

2 7.2% 7.7% 3.7% 3.62%

3 5% 9.3% 8% 3.57%

4 4.8% 7.6% 5.4% 3.42%

5 81.4% 81.4% 29.7% 39.06%

6 81.4% 81.4% 29.7% 40.00%

are made, the adjustment price is time of use price if the actual
power of the tie-line does not exceed the maximum permissible
value. Otherwise, the adjustment price is 130% peak load price
(230$/MWh). The adjustment costs in cases 5 and 6 are the
largest, then their total costs are also the largest. By contrast,
the adjustment costs and total costs in cases 1–4 are lower with
considering stochastic WPPE. Besides, the adjustment costs in
case 4 are the lowest, illustrating the benefits of the proposed
data-driven CCSP method.

3. Comparison of violation rate: An actual simulation test is
implemented to measure the actual violation rate of the
chance constraints in the first four cases. One thousand
actual WPPE samples are regarded as the input data in each
chance constraint, and the violation rate is counted and
analyzed. The comparison of violation rates in six cases is
presented in Table 4.

As can be seen from Table 4, both the maximum violation
rate and average violation rate of the deterministic optimization
(cases 5 and 6) are the largest. More specifically, the maximum
violation rate (overload and insufficient upward reserve viola-
tion rate) in the last two cases is very large, 81.4%, and the
average violation rate of each chance constraint at every hour is
about 40%. The dispatch strategy in the last two cases is a deter-
ministic optimization problem without considering WPPE, so
their violation rate is too large. IPGS using the dispatch results
in cases 5 and 6 cannot operate safely with high probability.
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In contrast, both the maximum and average violation rates
in cases 1–4 are lower because stochastic WPPE is considered,
and CCSP is used to alleviate its adverse effect. Specifically, the
value of the maximum violation rate of the insufficient upward/
downward reserve and average violation rate in case 1 (SAA
method) is the largest among the first four cases considering
WPPE, indicating its performance for resisting the uncertainty
of stochastic WPPE is poor. The accuracy and feasibility of the
SAA method heavily depend on the number of samples. An
accurate SAA method usually requires a sufficiently large num-
ber of samples, which results in massive binary variables. Then
the MISOCP with massive binary variables is difficult to solve
and time-consuming. In case 1, the number of samples of the
SAA method is 500 and relatively small, but it is hard to solve
yet. As a result, the violation rate of the SAA is high.

Besides, the maximum violation rate of overload in case 2
(Gaussian distribution) is the largest among the first four cases,
and its average violation rate is also large, indicating its per-
formance against stochastic WPPE is better than the first two
methods.

And most remarkably, the maximum violation rate of over-
load and insufficient upward reserve and the average violation
rate in case 4 (VBGMM method) are the lowest. Hence, its
robustness for stochastic prediction errors is the strongest in
all cases, which also indicates the dispatch results of the tie-line
and reserve capacity are more reasonable. In addition, the lowest
violation also means the fitting effect of VBGMM is the best.

4. Comparison of Computing time: As shown in Table 2,
the SAA with 500 samples is time-consuming and takes
11,133.236 s to get dispatch results with a large mixed-integer
programming (MIP) gap (0.2%). As a result, the SAA may
not be effective for practical application.

By contrast, the computing time using the quantile-based a
analytical reformulation among cases 2–6 is short, about 45–
60 s, and the MIP gap is 0, so this data-driven CCSP will be
convenient for practical application.

5. Comparison with/without the operational characteristics
and optimal commitment of P2H devices: As shown in
Figure 11, the operating power of P2H device (single
PEMEC) in case 6 varies greatly between the 1st and 2nd
hour. By contrast, the SOECs in case 5 operate smoothly
considering the operational characteristics, which is more
suitable for its actual operation. In the actual operation cases,
operating power of SOEC cannot vary greatly and rapidly, so
it is necessary to consider the operational characteristics of
P2H devices in the dispatch strategy.

Besides, as presented in Table 2, the operation cost in case
5 is lower than that in case 6 because the optimal commitment
and power allocation of the two types of P2H devices (SOECs
PEMEC) are considered in case 5. The conversion efficiency of
compared to PEMEC, so most of the wind power is consumed
by SOEC to produce hydrogen, and the remaining wind power
is consumed by PEMEC. By contrast, there is only one type of
P2H device, PEMEC, and all wind power is consumed by this

Predicted Output

FIGURE 11 Allocation results of wind power in the last two cases.

low-conversion-efficiency PEMEC in case 6, so the operation
costs in this case are larger.

In addition, as shown in Figure 11, P2H devices prefer to
produce hydrogen at night due to the lower electricity price. In
the actual energy market, the price of hydrogen is usually higher
than natural gas, so it is wiser to produce the hydrogen and sell
it to external hydrogen buyers to make more profits.

5 CONCLUSIONS

This paper proposes a data-driven chance-constrained dispatch
strategy for IPGS considering P2H operational characteristics,
and some conclusions can be summarised. First, the probabil-
ity distribution of WPPE can be accurately fitted by VBGMM
method, whose fitting effect is better than the traditional GMM
method. Next, the proposed data-driven CCSP is used to deal
with stochastic WPPE and reduce its negative impact on exter-
nal power grid and IPGS. Moreover, the dispatch objective value
(budgeted costs) in the first four cases considering stochastic
WPPE is higher, but their actual total costs are lower, illustrat-
ing the importance of considering stochastic WPPE. The actual
total costs of the proposed dispatch strategy are close to that of
the first three cases considering stochastic WPPE, but its max-
imum violation rate and average violation rate are the lowest,
indicating its robustness for stochastic WPPE is the strongest.
Finally, it is critical to consider the operational characteristics
and optimal commitment of P2H devices in the optimal dis-
patch strategy for IPGS. The operation costs decrease with the
optimal commitment of P2H device.

NOMENCLATURE

Sets and Indices

d ∈ 𝛀EL( j ) Set of power load connected to bus j.
g ∈ 𝛀GT( j ) Set of GT (gas turbine) connected to bus j.
g ∈ 𝛀GT(m) Set of GT connected to gas node m.
i ∈ 𝛀GL(m) Set of gas load connected to gas node m.

j ∈ 𝛀GW(m) Set of gas station connected to gas node m.
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m ∈ 𝛀SVC( j ) Set of reactive power compensation devices
connected to bus j.

m ∈ 𝛀p,in(m) Set of pipeline ingoing gas flow.
m ∈ 𝛀p,out(m) Set of pipeline outgoing gas flow.

o ∈ 𝛀SO(i ) Set of SOEC.
w ∈ 𝛀PE(i ) Set of PEMEC.
w ∈ 𝛀HS(i ) Set of HS (hydrogen storage) connected to bus

i.
w ∈ 𝛀WT( j ) Set of wind turbine connected to bus j.

d, q Index for power demand and the reactive
power compensation device.

l, g, w Index for SOEC, GT, and wind turbine.
m, n Index for gas node m/ n.
S, P Sets of SOEC (solid oxide electrolysis cell)/

PEMEC (proton exchange membrane elec-
trolysis cell)

y, z, t Index for natural gas station/ gas demand/
time.

Variables

ẽw,t Prediction errors of the wind turbine w at
time t.

f W
j ,t Gas production of natural gas station j.

fmn,t Natural gas flow of the pipeline mn at time t.

H
{.}
h,t

Produced hydrogen power by PEMEC or
SOEC h.

Ii j ,t Square of current of branch ij at time t.
PP

p,t Operating power of PEMEC p at time t.

QSVC
q,t The output power of the reactive power

compensation device q at time t.
uP

p,t PEMEC p is ON at time t/t−1, and 0
otherwise.

U GT
i,t Running state, binary variable (1 if GT g is

ON at time t, and 0 otherwise).
H in

s,t , H out
s,t Dis/charging power of HS s at time t.

PS
l ,t

, PS
l ,t−1 Operating power of SOEC at time t/t−1.

S H
s,t , S H

s,t−1 Residual hydrogen capacity of HS s.
𝜋m,t , 𝜋n,t Natural gas pressure in the node m/n at time

t.
B

H,in
s,t , B

H,out
s,t The binary variable that is equal to 1 if HS s

is dis/charging at time t, and 0 otherwise.
fE , FE PDF (probability density function)/CDF

(cumulative distribution function).
f L
z,t , f GT

g,t Gas demand of load z/ GTg at time t.

PUR
g,t , PDR

g,t Upward/downward reserve of GT g.

PGT
g,t , PGT

g,t−1 Output active power of GT at time t/t−1.
P̃sub,t , Psub,t Actual/Scheduled power of the tie-line

PP
w,t , PS

w,t Consumed wind power w by PEMEC/
SOEC at time t.

PEL
d ,t

, QEL
d ,t

Active/ reactive power of electrical load d at
time t.

PN
j ,t , QN

j ,t Injection active/reactive power in node j at
time t.

Pi j ,t , Qi j ,t Active/ reactive power of branch ij.

QGT
g,t , QGT

g,t−1 Output reactive power of GT at time t/t−1.

uS
l ,t

, uS
l ,t−1 Binary variable (1 if SOEC l is ON at time

t/t−1, and 0 otherwise).
U On

g,t , U Off
g,t Start-up/ shut-down state of GT at time t

Vi,t , Vj ,t Square of the voltage of bus i/j at time t.

W̃ a
w,t , W

f
w,t Actual/Predicted output of the wind turbine

w

W H
w,t , W C

w,t , W s
w,t Consumed wind power by P2H (power-to-

hydrogen), curtailed/scheduled wind power
at time t.

𝜔i , 𝜇i ,
∑

i
Weight/mean/variance of component i.

Cop Total operation cost

Parameters

Cmn The constant of the Weymouth equation.
Nw ,Ng,NE Total number of wind turbine/GT/ Gaussian

components.
pe,t The electricity price at the time t.

Pmax
sub The maximum permissible value of the active

power of the tie-line.
uS

l ,0 Initial commitment state of SOEC l (1 if it is
online, 0 otherwise).

𝛼max
sub The tolerance level for overload of the tie-line

cy, cH The price of natural gas/hydrogen.
f̄mn, f

mn
Max/min permissible gas flow of the pipeline
mn.

f̄ W , f
W Max/min permissible gas production of the city

gas station.
H̄ in

s , H
in
s

Max/min charging power of HS s.
H̄ out

s , H
out
s

Max/min discharging power of HS s.
Īi j , I

i j
Max/min current square of branch ij.

PP
p,max, PP

p,min Max/min operating power of PEMEC p.

PS
l ,up, PS

l ,down Max upward/downward ramping ability of
SOEC l at time t.

PS
l ,max, PS

l ,min Max/min operating power of SOEC l.

PP
p,max, PP

p,min Max/min operating power of PEMEC p.

PUR,L, PDR,L Extra upward/downward reserve for power
load.

PGT
g,up, PGT

g,down Max upward/downward ramping power of GT
g at time t.

P̄GT
g , P

GT
g

Maxi/min output power of GT g.
QS,l , LS,l Min uptime/down time of SOEC devicelin the

initial time.
U S

l ,0, V S
l ,0 Accumulated time of SOEC l has been

online/offline in the initial time.
Q̄SVC

q , Q
SVC

q
Max/min output power of the reactive power

compensation device q.
ri j , xi j Resistance/ reactance of branch ij.

S̄ H
s,t , S

H
s,t

Max/min capacity of HS s.

T
S,U

l
, T

S,D
l

Min uptime/downtime of SOEC l.
U S

l ,0, V S
l ,0 Accumulated up/ down time of the SOEC l in

the initial time.
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V , V Max/min voltage square of the bus.
𝛼UR, 𝛼DR The tolerance level for insufficient

upward/downward reserve.

𝜂
{.}
h

, 𝜂GT
g,t The conversion efficiency of PEMEC/ SOEC,

or the GT g at time t.
𝜋, 𝜋 Max/min gas pressure of the node.

pUR
g , pDR

g , pS
g Cost coefficients of upward/downward reserve

and startup of GT g.
QU , Pr Quantile/Probability

Other notations are defined in the text

T Dispatch period, 24 h.
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