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Supplementary note 1. BASIS GENERATION
METHODS

This supplementary section review few methods for
generating a basis from a time series. There are many
ways to generate the low-order model of a given dynam-
ical behaviour. An important quantity is the so-called
data matrix X built from the data at hand. The data
matrix is a (Ns × Nt)-matrix that collects the Nt data
snapshots x(ti) into columns:

X = [x(t0), x(t1), . . . , x(tNt
)] . (S1)

Here, the vector x(ti) is chosen to be the complex-valued
amplitudes of the modes at the A and B sites. Other
“observables”, such as the absolute values or the total
intensity per sublattices, can be used. This may give dif-
ferent (better or worse) results and is left for a future
study. The bases can then be constructed using dimen-
sional reduction techniques on the data matrix. Here, we
will cover different methods in order to highlight their
importance and limitations for the classification scheme
used.

A. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) [1] is a com-
monly used tool for dimensional reduction of physical
systems. This decomposition relies on the singular value
decomposition (SVD) of the data matrix, given by:

X = UΣV † (S2)

where U and V † are (Ns × Ns) and (Ns × Nt) unitary
matrices, respectively. Σ is a diagonal (N0 ×N0)-matrix
diag = (σ1, . . . , σN0

), with N0 = min(Ns, Nt). The diag-
onal entries of Σ are the so-called singular values and are
ordered in ascendant order σ1 > σ2 > . . . > σN0

≥ 0.
The SVD gives us two orthonormal bases U and V †

since the matrices U and V † are unitary matrices. The
columns of U are ordered according to the variance σi

they capture in the data matrix and are called the sin-
gular vectors: these are the POD modes that are used
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FIG. S1. POD method. Singular values of the (a) non-
oscillating and (b) oscillating regimes. The red dots corre-
spond to the singular values accumulating 99% of the total
variance of the data. (c) Real and (d) imaginary parts of
the field profile of the first POD mode for the non-oscillating
regime. (e) Real and (f) imaginary parts of the field profile of
the (top) first and (bottom) second POD mode for the oscil-
lating regime. The POD bases have been generated from the
time series starting at the 1800-th time step.

in the basis Φ. Moreover, the POD modes are complex
because of the complex data X.

For a low-dimensional attractor, the POD basis can
be safely truncated at a cut-off value r while retaining
the main information of the data matrix. Explicitly, the
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SVD reads:

Xim =

N0∑
n=0

UinσnV
†
nm, (S3)

and keeping only the r highest terms in the decomposi-
tion [Eq. S3], we have the approximation:

Xim ≃
r∑

n=0

UinσnV
†
nm. (S4)

This is re-written, in a matrix form, as:

X ≃ UrΣrV
†
r (S5)

where Ur, Σr and V †
r are the truncated matrix of U , Σ

and V †, respectively. Although the cut-off value r can be
chosen based on different criteria [2], r is typically chosen
so that the POD modes retain a certain amount of the
variance (or energy) σX in the data, namely:

r∑
i=0

σi > σX . (S6)

Figure S1 displays the POD method of the non-
oscillating and oscillating regimes in the domain-wall
SSH lattice with saturable gain [Fig. 1]. The truncation
has been chosen such that σX = 99% of the total vari-
ance is retained. We observe in Figs. S1(a) and S1(b) the
normalised singular values, and that a single POD mode
is retained for the zero-mode-like, whereas three POD
modes are needed for the oscillating regime, as marked
by the red dots. The real and imaginary parts of the
field profile of the corresponding first few POD modes
are plotted in Figs. S1(c) and S1(d) and Figs. S1(e) and
S1(f) for the zero-mode-like non-oscillating and oscillat-
ing regimes, respectively. One can see that the main
spatial feature of the zero-mode is captured in the single
POD mode obtained after truncation, where the major-
ity of its amplitudes are on the A sublattice. On the
other hand, the POD modes of the oscillating dynamical
regime also capture part of the information with some
finite amplitudes on the A and B sublattices.

Importantly, in this decomposition [Eq. S3], SVD is im-
plicitly doing a space-time separation of the data matrix,
where the POD modes U contain the spatial information
while V have the temporal information at each spatial
grid point. Therefore, the POD modes give a static basis
and do not explicitly model the temporal dynamics of the
time series. This method will therefore most likely fail to
identify the correct dynamical regime in the classification
step.

B. Dynamical mode decomposition

Dynamical mode decomposition (DMD) [1, 3, 4] is an
alternative to the POD method for learning the dynam-
ics of non-linear systems. DMD is an explicitly temporal
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FIG. S2. DMD method. (a) Singular values of the os-
cillating regime in the DMD. The red dots correspond to the
singular values accumulating 99% of the total variance of the
data. (b) Plot of the logarithm of the DMD values ln(λ) in
the complex plane. The size of the open circle is proportional
to their corresponding singular values. (c) Real and (d) imag-
inary parts of the field profile of the (top) first and (bottom)
second DMD mode for the oscillating regime. The DMD ba-
sis has been generated from the time series starting at the
1800-th time step.

decomposition that takes the sequences of snapshots into
account, and is able to derive the spatio-temporal pat-
terns of the data matrix X. The dynamics of the system
are taken into account by considering a linear matrix A
that maps a data matrix X1, starting at some time steps
(t1), to the data matrix X2, starting at the next time
step (t2). The matrix A is thus defined as:

X2 = AX1, (S7)

and the corresponding data matrices are given by:

X1 = [x(t1), x(t2), . . . , x(tNt−1)] (S8)

and

X2 = [x(t2), x(t3), . . . , x(tNt
)] . (S9)

Interestingly, Equation S7 is similar to a linear stabil-
ity analysis formulation for discrete maps if we think of
the stability matrix as the linear matrix A. The DMD
method thus consists of solving the following eigenvalues
problem:

AΦ = ΦΛ (S10)

where the columns of Φ are the DMD modes ϕi and the
corresponding DMD eigenvalues λi are the diagonal entry
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of Λ. The DMD modes ϕi give us the spatial eigenmodes
while their corresponding eigenvalues λi have their tem-
poral information. Using a change of units from the data
snapshots, observed at every ∆t, to units in time, the
eigenvalues are complex-valued scalars:

ln (λi)

∆t
= µi + iωi (S11)

where µi gives the growth (decay) rate if µi > 0 (µi < 0)
and ωi the oscillation frequency of the DMD modes ϕi.
However, the size of the data matrix usually makes the

eigendecomposition not feasible. The goal, here, is there-
fore to approximate the eigenvalues and eigenvectors of
A, using only the data matrices X1 and X2. The idea is
to start by the truncated SVD of X1 = UrΣrV

†
r in which

Eq. S7 becomes:

X2 = AUrΣrV
†
r . (S12)

Then the linear matrix A is reduced by considering its
projection onto the truncated POD subspace:

Ar := U†
rAUr = U†

rX2VrΣ
−1. (S13)

The eigenvalue problem for Ar is solved with:

ArW = WΛ, (S14)

from which we have the relation:

Φ = X2V Σ−1W. (S15)

The key feature of the DMD method is that it de-
composes the data into a set of coupled spatio-temporal
modes. The DMD resembles a mixture of the POD in
the spatial domain and the discrete Fourier transform
(DFT) in the time domain. Figure S2 shows the DMD
results for the oscillating regime. We can, indeed, see in
Fig. S2(a) that the singular values are similar to that of
the POD. Besides, we observe in Figs. S2(c) and S2(d)
that the field profile of the DMD modes closely resem-
bles the POD modes in Fig. S1. The largest DMD modes
not only look similar to the POD modes, but they also
contain the oscillation frequencies from ωi, as in DFT.
The DMD even goes beyond DFT by giving an estimate
of the growth (decay) rate in time via µi > 0 (µi < 0).
This can be seen by plotting the DMD modes, scaled by
their contribution in the decomposition σi, in the fre-
quency plane of λi. We can see in Fig. S2(b) that the
dynamical regime has a single DMD mode with ωi = 0
akin to the offset of the oscillation amplitudes, and two
DMD modes with opposite ωi ̸= 0 corresponding to the
oscillating behaviours. All the above three DMD modes
have vanishing growth or decay rate µi = 0.

C. Time-augmented dynamical mode
decomposition

Although the DMD gives the temporal behaviours of
the non-linear system, the temporal information is not
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FIG. S3. aDMD method. (a) Singular values of the
oscillating regime in the aDMD. The red dots correspond to
the singular values accumulating 99% of the total variance
of the data. (b) Plot of the logarithm of the aDMD values
ln(λ) in the complex plane. The size of the open circle is
proportional to their corresponding singular values. (c) Real
and (d) imaginary parts of the “field profile” of the (top) first
and (bottom) second aDMD mode for the oscillating regime.
Here, by “Site n”, we mean the n-th entry of the eigenvector.
The aDMD basis has been generated with Nw = 25 from the
time series starting at the 1800-th time step.

fully incorporated into the DMD basis Φ since only the
DMD modes are used. Exploiting the time evolution in
the dynamical regime requires the use of DMD modes
along with their eigenvalues. The idea is therefore to
incorporate the dynamic information by augmenting the
basis Φ [5]. This time-augmented DMD will be denoted
by aDMD in the remaining of this chapter. Using the
defining relation of the eigenvalues λi as similar to a time
evolution operator, i.e. multiplying by λ is the same as
shifting by one time step, we have for a given DMD mode
ϕi, its evolution given by λNw

i ϕi at Nw time step ahead in
time. Therefore, the time-augmented basis vector reads:

ϕi

λiϕi

...

λNw
i ϕi

 . (S16)

By considering a time window Nw, the time-
augmentation of the DMD basis provides us with the
dynamical information of the non-linear regime. Fig-
ure S3 shows the aDMD results for the same oscillating
regime as in Fig. S2. We can see that the singular val-
ues and aDMD eigenvalues plots [Figs. S3(a) and S3(b)]
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FIG. S4. Phase diagram derived using different de-
composition methods. Phase diagrams obtained from a
library composed of two regimes (one non-oscillating and one
oscillating) from which the bases have been generated us-
ing the (a) POD, (b) DMD, (c) aDMD with Nw = 5 and
(d) aDMD with Nw = 25. The green and blue dots cor-
respond respectively to the identified non-oscillating and os-
cillating regimes. The magenta dots represent the regimes
used for the construction of the library. These are located at
(γAB , gA − γAB) = (0.48, 0.06) and (0.16, 0.44). The white
and grey areas are overlays of the referenced phase diagram
obtained in Fig. 1. The bases have been generated from the
time series starting at the 1800-th time step.

are the same as in the DMD algorithm [Figs. S2(a) and
S2(b)] whereas the “field profile” of the aDMD modes
[Figs. S3(c) and S3(d)] carry some temporal evolution in-
formation. In particular, we observe in the top panel of
Figs. S3(c) and S3(d) the static behaviours of the aDMD
mode with ωi = 0. On the other hand, we can see, in
the bottom panel of Figs. S3(c) and S3(d), one of the
first aDMD modes with ωi ̸= 0 featuring some oscillating
behaviour in time. The size of the basis mode is larger
than the plain DMD, and can exhibit its time evolution.
Nevertheless, the graphs do not exactly plot the tempo-
ral evolution of the DMD modes since the first Ns entry
of the basis state is for the Ns sites; the next Ns for again
the Ns sites but at the next time step, etc.

D. Classification results from different
decomposition methods

The classification results [Eq. (7)] from the decompo-
sition methods reviewed is shown in Fig. S4. We observe
in Figs. S4(a) and S4(b) that the phase diagrams fail to
correctly predict the distinct dynamical regimes. This

is expected since the POD or DMD modes do not con-
tain enough information about the temporal behaviours.
Besides, the classification for these diagrams is based on
a single snapshot (Nw = 0). Thus, it is expected the
classification fails to capture the correct dynamics since
a single snapshot only relies on the spatial pattern of the
regime. On the other hand, we can see in Figs. S4(c)
and S4(d) that the derived phase diagrams have better
accuracy when the bases are time-augmented, or equiv-
alently when the classification scheme uses several snap-
shots. By increasing the time window in the classifica-
tion, the derived phase diagram is even better as illus-
trated in Figs. S4(c) and S4(d) for Nw = 5 and Nw = 25,
respectively. The phase diagram will get improved until
the time window is large enough to capture the dynamic
behaviour.

Supplementary note 2. SPARSE
MEASUREMENT

This section detailed the slight change in the method-
ology in case of sparse sensing. Sparse sensing is often
desirable since the measurement and the data collection
can be expensive for a complex system if the space grid
is too fine, i.e. if Ns is very large. The compressed mea-
surement y(t) is derived from the full-state measurement
x(t) and the measurement matrix C:

y(t) = Cx(t), (S17)

where C is a matrix of size (Np ×Ns) with Np the num-
ber of measurements. Although the measurement ma-
trix C can be represented by some advance and complex
mapping [6], here we focus on point-wise measurements,
namely the Cij entry in the matrix measurement corre-
sponds to the i-th measurement at the j-th spatial grid
point. Therefore the compressed basis is given by:

Θ = CΦ (S18)

where Φ is the basis obtained from the full-state data col-
lection. The library of bases for the J distinct dynamical
regimes is similarly re-written as:

L = {Θ1, . . . ,ΘJ}. (S19)

Nevertheless, the size of the current SSH lattice is, here,
reasonable and allows us to choose the matrix measure-
ment as the identity matrix C = 1Ns

. We will thus use
the full-state instead of sparse measurements, but retain
the Θ and y(t) notations to keep the general formalism.

Supplementary note 3. TOP-DOWN LIBRARY
GENERATION PRINCIPLE

This section supplement the top-down library gener-
ation principle. The general idea of the top-down con-
struction of the library is to start with a library made of a
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FIG. S5. Principle of the adaptively top-down library
generation. (a) Subspace alignment matrix for an initial
library composed of J = 60 regimes. (b) Subspace align-
ment matrix from the same library as in (a) but grouped into
equivalent regimes. (c) Subspace alignment matrix from the
reduced library after the equivalent regimes are merged with
γth = 0.75 in (b). (d) Representative total intensity IA (and
IB) of the A (and B) sublattice in blue (and orange) for the
different regimes. The black vertical dotted line indicates the
starting time from which the bases are generated. The aDMD
bases have been generated with Nw = 25 from the time series
starting at the 1800-th time step.

high number of bases, generated from the time series ran-
domly chosen in the given parameter space region, and
then merge them into groups of equivalent regimes. Fig-
ure S5 illustrates the top-down algorithm. Starting with
a library composed of J bases (here J = 60), the subspace
alignment γij is computed [Fig. S5(a)] and then grouped
into equivalent regimes according to Eq. (9) in the main
text [Fig. S5(b)]. Each representative of the regimes is
then randomly selected within each group [Fig. S5(c)].
We plot in Fig. S5(d) the time series of the representative
of each regime. These regimes are the non-oscillating and
oscillating regimes, as well as a third regime which may
correspond to a transient regime. The vertical dashed
line in the time series represents the initial time used for
constructing the bases in the library.

Supplementary note 4. BOTTOM-UP LIBRARY
GENERATION PRINCIPLE

This section supplement the bottom-up library gen-
eration principle. Figure S6 illustrates the bottom-up
methodology proposed. We start with a single sample
in the library, randomly chosen in the parameter space
region [Fig. S6(a)]. The library is then adaptively con-
structed according to the relative reconstruction error ϵ
[Fig. S6(b)]. Finally, with the large library at hand, the

top-down approach is used to reduce the library size by
merging equivalent regimes [Fig. S6(c)]. The represen-
tative of the regimes is plotted in Fig. S6(d) and cor-
responds to the non-oscillating, oscillating and transient
regimes, respectively.
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FIG. S6. Principle of the adaptively bottom-up li-
brary generation. (a) Total intensity IA (and IB) on the A
(and B) sublattice in blue (and orange) for the single and
randomly chosen regime composing the library. (b) Sub-
space alignment matrix from the adaptively constructed li-
brary with the single initial regime in (a) and with ϵth = 0.01.
(c) Subspace alignment matrix from the reduced library after
the equivalent regimes are merged with γth = 0.75 in (b). (d)
Representative total intensity IA (and IB) of the A (and B)
sublattice in blue (and orange) for the different regimes. The
black vertical dotted line in (a) and (d) indicates the starting
time from which the bases are generated. The aDMD bases
have been generated with Nw = 25 from the time series start-
ing at the 1800-th time step.
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