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A machine learning approach to drawing phase
diagrams of topological lasing modes
Stephan Wong1,2, Jan Olthaus3, Thomas K. Bracht 3, Doris E. Reiter 3,4 & Sang Soon Oh 1✉

Identifying phases and analyzing the stability of dynamic states are ubiquitous and important

problems which appear in various physical systems. Nonetheless, drawing a phase diagram in

high-dimensional and large parameter spaces has remained challenging. Here, we propose a

data-driven method to derive the phase diagram of lasing modes in topological insulator

lasers. The classification is based on the temporal behaviour of the topological modes

obtained via numerical integration of the rate equation. A semi-supervised learning method is

used and an adaptive library is constructed in order to distinguish the different topological

modes present in the generated parameter space. The proposed method successfully dis-

tinguishes the different topological phases in the Su-Schrieffer-Heeger lattice with saturable

gain. This demonstrates the possibility of classifying the topological phases without needing

for expert knowledge of the system and may give valuable insight into the fundamental

physics of topological insulator lasers via reverse engineering of the derived phase diagram.
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Over the last few years, significant research efforts have
been made on photonic topological insulator (PTI)1–4,
especially on PTI lasers. While the efforts have been

concentrated on the spatial stability of the topologically protected
edge modes, namely on the existence of such topological edge
modes in non-Hermitian PTIs5–13, the temporal stability has not
been the focus of interest so far14–19. Due to the non-linear nature
of PTI lasers, the temporal stability is an important characteristic
to take into account for experimental demonstrations and real-life
applications. Although the spatial stability of the topological
modes, i.e., its robustness, may be guaranteed in active non-
Hermitian PTIs, unstable behaviour may be present in the time
domain. In this regard, the temporal dynamics of the topologi-
cally protected modes have been studied14,16,17, mainly using
linear stability analysis. It is, however, a challenging task to apply
the same approach to more complex structures because of the
high-dimensional phase space and parameter space as well as the
lack of analytical solutions15.

Machine learning (ML) can be advantageous for the theoretical
study of the stability of PTIs, which requires repetitive numerical
simulations for several varying parameters. ML is a data-based
method that can be implemented with different strategies, and the
most appropriate ML strategy depends on the dataset under
study. For instance, a supervised learning strategy relies on
labelled data, a dataset of input-output pairs. This has been uti-
lised in topological photonics20 to draw topological phase
diagrams21, calculate topological invariants9, or explore topolo-
gical band structures22. On the other hand, an unsupervised
learning strategy consists of extracting information from the
dataset for which we do not have labels. This is used for
dimensional reductions by keeping only the main features of the
high-dimensional structure of the dataset or for clustering pro-
blems from which the data is divided into different types23. For
instance, this has been successful in obtaining the phase transition
in the Ising model24, and clustering Hamiltonians that belong to
the same symmetry classes25.

In the unsupervised learning strategy, modal decomposition is
a common and successful method, which reduces the analysis of
very high-dimensional data to a set of relatively few modes.
Among the modal decomposition methods, principal component
analysis (PCA) is a method, which derives the eigenmodes or the
main features based on their variance in the data26. These
eigenmodes can then be utilised as a basis to represent the
dataset27. This reduced-order model method has been extended
to identify distinct non-linear regimes28–34 by constructing a
library composed of representatives of these regimes: this is
known as representation classification. Nevertheless, the pre-
liminary identification of the regimes composing the library and
the construction of the library is a manual process and requires
expert knowledge of the complex system.

In this paper, we propose a representation classification
method to study the spatio-temporal dynamics of non-linear
topological systems. The results will be based on the phase dia-
gram of the Su-Schrieffer-Heeger (SSH) lattice35 with a domain
wall and with saturable gain16,17. To remove the necessity of the
required expertise on the complex system, we present an algo-
rithm, which constructs an appropriate library of the different
phases automatically. For this goal, we propose two approaches: a
top-down approach in which the library has numerous phases
that are merged into the equivalent phases, and a bottom-up
approach in which the library is completed on the fly to get the
most accurate classification. Via reverse engineering of the
derived phase diagram, our proposed method can be used as a
tool to find novel topological lasing modes in more complicated
settings. For given rate equations of a lasing system, one would
only need to integrate the differential equations in the desired

parameter space region and then apply the adaptive representa-
tion classification to obtain the phase diagram.

Results
Phase diagram of the SSH Model. As a toy model, we will
consider the domain-wall-type SSH lattice with saturable gain
[Fig. 1a]. The system has a domain wall, at the A site n= 0, which
separates two SSH lattices, namely lattices composed of two sites
per unit cell, A and B, and characterised by intra- and inter-unit

Fig. 1 Phase diagram of the domain-wall-type Su-Schrieffer-Heeger
(SSH) lattice with saturable gain. a Schematic of the domain-wall-type
SSH lattice considered. The vertical red line is a guide to the eye for the
domain-wall between the two SSH lattices, SSH 1 and SSH 2. b Phase
diagram of the domain-wall-type SSH lattice with saturable gain and linear
loss on the A and B sublattices. The white and grey areas correspond to the
non-oscillating and oscillating topological phases, respectively.
Representative total intensity IA (and IB) of the A (and B) sublattice in blue
(and orange) for the c non-oscillating and d oscillating topological lasing
mode. Spatio-temporal dynamics of the e non-oscillating and f oscillating
topological lasing modes. The colour bars correspond to the amplitudes of
the real and imaginary part of the modes. The non-oscillating and oscillating
topological modes displayed are chosen at (γAB, gA− γAB)= (0.48, 0.06)
and (0.16, 0.44), respectively. γAB and gA are, respectively, the linear loss
and gain on the A sites.
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cell couplings, tintra and tinter, respectively. tintra= t1 and tinter= t2
(tintra= t2 and tinter= t1) for the lattice on the left (right) side of
the domain wall, i.e., the sites with n < 0 (n ≥ 0). The dynamics
of the system ψðtÞ ¼ ψ�NðtÞ; ¼ ;ψ�1ðtÞ;ψ0ðtÞ;ψ1ðtÞ; ¼ ;

�
ψNðtÞÞ � xðtÞ, with Ns= 2N+ 1 sites, reads, for n=−N,…,N:

i
dψn

dt
¼ i

gn
1þ jψnj2

� γn

� �
ψn

þ tintra;nþ1ψnþ1 þ tinter;n�1ψn�1

ð1Þ

where ψn is the amplitude of the n-th site. gn and γn are the linear
gain and linear loss at the n-th site, respectively. Using explicitly
the amplitudes ap and bp of the A and B sites on the p-th unit cell,
respectively, in ψðtÞ ¼ ð¼ ; apðtÞ; bpðtÞ; ¼ Þ, Eq. (1) can be re-
written as:

i
dap
dt

¼ i
gA

1þ japj2
� γA

 !
ap þ tintrabp þ tinterbp�1; ð2Þ

i
dbp
dt

¼ i
gB

1þ jbpj2
� γB

 !
bp þ tintraap þ tinterapþ1; ð3Þ

where gσ and γσ are the linear gain and linear loss at the site
σ= A, B.

In the passive setting (gA= gB= 0, γA= γB= 0), this config-
uration, with t1 > t2, is known to give a single topologically
protected zero-energy (non-oscillating) mode localised at the
domain wall and with non-vanishing amplitudes only on the A
sites36. This is due to the bulk-boundary correspondence at the
domain-wall between trivial and non-trivial topological SSH
lattices. Indeed, an SSH lattice is topologically trivial (non-trivial)
if the intra-unit cell coupling is lower (greater) than the inter-unit
cell coupling.

In the active setting, the lasing modes refer to the modes that
do not vanishing over time, and it has been shown that the
topological phase of the system depends on the gain and coupling
parameters16,17. As parameters, we use the values from ref. 17

with t1= 1, t2= 0.7, gB= 0 and γA= γB≡ γAB. Figure 1b shows
the phase diagram, by varying gA and γAB in the parameter space,
for a lattice composed of Ns= 21 sites (N= 10). In this
configuration, the system has two distinct topological lasing
modes: a non-oscillating lasing mode [white area in Fig. 1b] and
an oscillating lasing mode [grey area in Fig. 1b]. The dynamics of
the two topological phases can be visualised by plotting the total
intensity IA=∑p∣ap∣2 (IB=∑p∣bp∣2) of the A (B) sites in Fig. 1c, d
as in refs. 16,17. Alternatively, more details can be understood by
plotting the space-time dynamics of the topological modes as
shown in Fig. 1e, f. The non-oscillating phase is similar to the
zero-energy mode in the passive SSH lattice. We can see in Fig. 1e
that the mode is localised at the interface and has the majority of
its amplitudes on the A sublattice. On the other hand, the system
with saturable gain exhibits a new topological phase with no
counterpart in the passive setting. The new topological mode is
characterised by an edge mode at the domain-wall with an
oscillating behaviour of the amplitudes on the A and B sites, as
shown in Fig. 1f.

The classification of the new topological phases in non-linear
systems requires, so far, an expert knowledge of the given non-
linear systems, for example, the known results derived in ref. 16.
In fact, the phase diagram in Fig. 1b has been obtained solely by
the fast Fourier transform of the time series in the parameter
space. Thus, the main aim of this paper is to develop a tool to
explore the topological phases of PTI lasers in more complicated
settings for which we have little knowledge.

The phase diagram shown in Fig. 1b will serve as a reference
for our proposed method. The dataset we will utilise throughout

this paper is composed of about 1000 samples, which are
randomly generated from the same coupling and gain parameters’
range as in Fig. 1b. The coupled-mode equations [Eqs. (2) and
(3)] are integrated using the fourth-order Runge-Kutta method
and with ap(t= 0)= bp(t= 0)= 0.01, ∀ p, as an initial condition.
Although the integration has been performed using a fixed time
step dt= 0.01 until a final time at t= 1400, only 2000 time
snapshots are uniformly retrieved in order to keep the time series
at a reasonable size. For the parameters given above, this sample
rate leaves about 10 time steps per period for the oscillating
regime case [Fig. 1d]. The phase diagram is then obtained solely
from the time series of the states within the given
parameter space.

Representation classification method. To classify topological
lasing modes based on their distinct non-linear regimes, we use a
representation classification method28,32,33. The general idea of
representation classification relies on the assumption, and com-
mon situations, that the dynamics of a high-dimensional system
evolves on a low-dimensional attractor such as fixed points or
periodic orbits37. The low-dimensional structure of the attractor
allows for a reduced-order model that accurately approximates
the underlying behaviour of the system: the dynamics of the
complex system can thus be written using a basis that spans the
low-dimensional space. Representation classification consists of
constructing a library of appropriate basis, representative of the
dynamical regimes of interest, and only then employ a filtering
strategy to identify the regime corresponding to a given unknown
time series. In the following, we will use the term “regime" to
denote the different dynamical behaviours or the different topo-
logical phases in the non-linear SSH lattice with saturable gain.
Besides, for convenience, we will plot only the total intensity on
the A (IA=∑p∣ap∣2) and B (IB=∑p∣bp∣2) sublattices to represent
the given regimes. Nevertheless, the time series of the complex
amplitudes at each site will be considered for the construction of
the library.

As is common in complex dynamical systems, the dynamics of
a system close to an attractor lie in a low-dimensional space. This
means that a given spatio-temporal dynamics, denoted by the
vector x(t), can be approximately written in terms of a basis
Φ ¼ fϕigi¼1;¼ ;D spanning the low D-dimensional space, namely:

xðtÞ � ∑
D

i¼1
ϕiβiðtÞ ¼ ΦβðtÞ ð4Þ

where βi are the weighted coefficients in the above linear
combination of basis states ϕi. Using the terminology used in the
literature28,32,33, x(t) will, in the following, be referred to the state
measured at time t.

However, one of the main characteristics of non-linear systems
is the drastically different dynamical behaviours with respect to
the system’s parameters. Therefore, the reduced-order modelling
strategy using a single representative basis, i.e., corresponding to a
single regime, is bound to fail. Instead of finding a global basis, we
here construct a set of local bases, i.e., construct a library
composed of the bases of each non-linear regime of interest:

L ¼ fΦ1; � � � ;ΦJg ¼ fϕj;igj¼1;¼ ;J;i¼1;¼ ;D
; ð5Þ

where J is the number of regimes, Φj’s are the bases of each of the
dynamical regime j, and ϕj,i’s are the corresponding basis states.
This is the supervised learning part of the method, from which
the data-driven method attempts to capture the dynamics of the
system in the reduced-order model. Therefore, the library L
contains the representative basis of each regime of interest, and
corresponds to an overcomplete basis that approximates the
dynamics of the system across the given parameter space. A better
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approximation of x(t), instead of using Eq. (4) for a single basis
regime, then reads:

xðtÞ � ∑
J

j¼1
∑
D

i¼1
ϕj;iβj;iðtÞ ¼ ∑

J

j¼1
ΦjβjðtÞ ð6Þ

where βj,i are the weighted coefficients in the above linear
combination in the overcomplete basis library L. It is worth
noting that the library modes ϕj,i are not orthogonal to each
other, but instead orthogonal in groups of modes for each
different regime j.

Throughout this paper, the bases used for constructing the
library L will be generated by using a time-augmented dynamical
mode decomposition (aDMD) method33 to consider both the
spatial and temporal behaviours (see Supplementary note 1 for
additional information).

Here, we use a classification scheme based on a simple
hierarchical strategy33. The regime classification approach is
fundamentally a subspace identification problem, where each
regime is represented by a different subspace. Given the state
xðti : tiþNw

Þ measured within the time window ½ti; tiþNw
�, with Nw

the time step window size, the correct regime j* is identified as the
corresponding subspace in the library L closest to the measure-
ment in the L2-norm sense33. In other words, the classification
strategy is to find the subspace that maximises the projection of
the measurement onto the regime subspace:

j� ¼ arg max
j¼1;¼ ;J

k Pjxðti : tiþNw
Þk2; ð7Þ

where Pj is a projection operator given by:

Pj ¼ ΦjΦ
þ
j ð8Þ

with Φþ
j being the pseudo-inverse of Φj, ∥⋅∥2 the L2-norm of a

vector, kvk2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ijvij2

p
, and argmax the function that returns

the index of the maximum value.
For the 1D system exemplified in this paper, the data collection

is not too expensive because Ns is reasonable. However, if Ns is
very large, sparse measurement might be desirable and a slight
change in the methodology is then needed as explained in
Supplementary note 2.

Phase diagrams. In the following we will draw phase diagrams
using different approaches to the representation classification. In
the phase diagrams we will mark the different identified regimes
by the colour of the dots, where the (dark or light) blue dots
always mark the oscillating regime, the green dots the non-
oscillating regime, the red dots the transient regime and the
orange dots the transition regime. The white and grey areas
are overlays of the referenced phase diagram obtained in Fig. 1.
The aDMD bases have been generated with Nw= 25 from the
time series starting at the 1800-th time step.

Fixed library. Figure 2a displays the phase diagram derived from a
library basis made of the two topological regimes known from
Fig. 1. These two topological modes, used for the construction of
the library, are represented by the two magenta dots. They are
randomly chosen from the known regimes’ region in Fig. 1b and
the details of the resulted phase diagrams is dependent from that
random choice. The remaining coloured dots in the plot represent
the identified regime j* [Eq. (7)] of each sample depicted by the
dots in the parameter space. However, we can see that the phase
diagram fails to correctly predict all the dynamical behaviours.
Indeed, we observe that many time series are not correctly
identified. Using a different choice of topological regimes in the
parameter space to construct the library could be a solution to
find a better phase diagram, but our attempts only showed

marginal improvement of the agreement. Testing every possible
choices in the dataset with no guarantee of finding the accurate
phase diagram is therefore not a practical solution. Instead, using
four bases in the library instead of two bases, or equivalently
considering four regimes from the given parameter space, the
phase diagram in Fig. 2b shows better results: The identified
oscillating and non-oscillating regimes are more separated and
have a better fitting with the referenced phase diagram, even
though they belong to a distinct regime index j*. Merging the
three oscillating regimes present in the library would then give a
more accurate derived phase diagram. Therefore, Fig. 2 suggests
that increasing the number of bases in the library L and merging
some of them might help to get closer to the desired phase dia-
gram, as we will see in the later sections.

Top-down adaptive library. In the previous section, the con-
struction of the library L was a manual process from which we
already knew the different dynamical regimes. This, however,
requires prior knowledge of the complex system considered. The
strategy, here, is to adaptively construct the library based on the
given data samples. Here, we employ a top-down approach in
which we start with too many samples for the construction of the
library, and then reduce the library size by merging some of them.
Based on some measures in the decision process, this automated
construction of the library thus removes the manual construction
of the regimes.

The underlying assumption of the classification scheme is
based on the dissimilarity between the subspace of different
regimes. We thus propose to consider regimes that are similar as
equivalent regimes. This would, for instance, help us to merge the
three phases in the non-oscillating region in Fig. 2b, and consider
them as a single regime. In other words, the regimes i and j are
said to be equivalent, denoted by i ~ j, if the fraction of
information retained after the projection onto each other,
γij∈ [0, 1], is high enough:

γij > γth; ð9Þ
where γth∈ [0, 1] is the hyper-parameter, which decides the
threshold value for merging different regimes and γij is the
subspace alignment given by:

γij :¼
kPiPjk2F

kPikF kPjkF
; ð10Þ

with ∥⋅∥F the Frobenius norm of a matrix, kMkF :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ijjMijj2

q
.

Importantly, the relation Eq. (9) is numerically computed in such

Fig. 2 Representation classification based on a fixed library. Phase
diagram obtained from the library composed of a two regimes (one non-
oscillating and one oscillating) and b four regimes (three non-oscillating
and one oscillating). The library is constructed by the magenta dots located
at (γAB, gA− γAB)= (0.48, 0.06) and (0.16, 0.44), and for b additionally at
(0.31, 0.11) and (0.17, 0.24). γAB and gA are, respectively, the linear loss and
gain on the A sites.
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a way that the transitivity property of the equivalence relation is
satisfied, namely that if i ~ j and j ~ k then i ~ k. The relation Eq.
(9) is then indeed an equivalence relation because the reflexive
(i ~ i) and symmetric (i ~ j⇒ j ~ i) property of the relation is
automatically satisfied from the definition of γij [Eq. (10)].
Supplementary note 3 gives more details on the top-down library
generation principle.

The top-down representation classification strategy is to
classify the time series according to a large library of bases, and
only then merge the equivalent identified regimes via the
calculated alignment subspace γij and the equivalence relation
Eq. (9). Figure 3 shows the phase diagram obtained from the top-
down algorithm that started with a library composed of J= 60
regimes randomly chosen, along with the representative of each
phase. We observe in Fig. 3a that the derived phase diagram is
able to distinguish the non-oscillating [top panel of Fig. 3b] and
oscillating regimes [middle panel of Fig. 3b]. In addition, a third
regime corresponding to a transient regime [bottom panel of
Fig. 3b] is found close to the γAB= 0 or gA− γAB= 0 axis. This
transient regime indicates that a longer simulation time might be
needed to be considered either in the oscillating or non-oscillating
regimes.

However, we can see that the derived phase diagram is still
failing in the low γAB and low gA− γAB region (bottom-left
region of the present phase diagram), where some time series
are interpreted as non-oscillating instead of oscillating regime.
This shows the limitation of this method where the initially
constructed library may lack some of the paths that may
connect similar bases. For example, regimes i and k might not
be similar enough to be considered as equivalent directly [Eq.
(9)] but are both equivalent to the regime k, i.e., i ~ j and j ~ k,
which is missing in the library. The natural workaround would
be to increase the initial library size and ensure that the regimes
in the library have no missing paths, as we will see in the next
section.

The hyper-parameter γth is an important quantity in the
algorithm since it dictates which regimes are equivalent or not. A
low threshold γth will easily merge regimes while a high γth will
barely reduce the size of the library as depicted in Fig. 4a. The
threshold is here arbitrarily chosen based on Fig. 4, and based on
the refinement of the desired library. For example, we can see in
Fig. 4b that the derived phase diagram with γth= 0.55 has two
different phases. For this coarse threshold, the transient regime is
identified but the distinct non-oscillating and oscillating phases
are merged together into a single phase. On the other hand, with
the same library as in Fig. 4b, Fig. 4c displays the obtained phase

diagram for a finer threshold value γth= 0.95. The plot shows that
the algorithm separates the parameter space into several regimes,
which can be grouped into four main regimes. In addition to the
non-oscillating, the oscillating and the transient regimes, there is
a regime corresponding to the transition between the two
topological phases. Besides, this finer description allows us to
see distinct sets of modes in the oscillating parameter space region
[dark blue and light blue dots in Fig. 4c]. Nevertheless, we observe
again that the initial library misclassifies some of the non-
oscillating time series most likely because of some missing paths,
as said previously.

Bottom-up adaptive library. We propose an alternative and dual
approach, which considers fewer samples in the library. The core
idea of this bottom-up approach is then to add samples on the fly
during the classification of the given sample if the library is not
good enough.

Here, the library is considered to be good enough if the
maximal projection of the measurement onto the regimes’
subspace is high enough. In other words, the library is said to
be good enough if the worst relative reconstruction error, ϵ, is low
enough:

ϵ< ϵth; ð11Þ

where ϵth is the hyper-parameter which decides the threshold
quality of the library and

ϵ :¼ max
j¼1;¼ ;J

kPjyðtÞ � yðtÞk2
kyðtÞk2

; ð12Þ

with ∥⋅∥2 the L2-norm of a vector. Supplementary note 4 gives
more details on the bottom-up library generation principle.

The advantage of this bottom-up approach is the full
exploration of the parameter space region and the automatic
construction of a library based on its quality. This method does
not suffer from the randomly chosen samples used to construct
the library, and the library composition is not restricted to a
narrow parameter space region. Using a good enough library

Fig. 3 Representation classification based on a top-down adaptive
library. a Phase diagram obtained using the top-down classification
strategy with an initial library composed of J= 60 regimes randomly
chosen and the hyper-parameter threshold γth= 0.75. b Representative
total intensity IA (and IB) of the A (and B) sublattice in blue (and orange) for
the different regimes. The black vertical dotted line indicates the starting
time from which the bases are generated.

Fig. 4 Hyper-parameter dependency for the top-down adaptive method.
a Library size against the hyper-parameter threshold γth. Phase diagrams
derived using the top-down classification strategy with b γth= 0.55 and
c γth= 0.95. The initial library is composed of J= 60 regimes randomly
chosen.
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quality, the algorithm should therefore be able to sort the missing
paths issue in the top-down method.

The bottom-up representation classification scheme consists of
classifying the time series according to a given library or adding
this sample into the library if the library is not good enough, and
only then merging the different phases obtained into groups of
equivalent regimes using the top-down method. Figure 5 depicts
the phase diagram derived from the bottom-up classification
algorithm with a starting library composed of a single regime.
Similarly to the top-down approach in Fig. 3a, we observe three
distinct regimes corresponding to the non-oscillating, oscillating
and transient regimes [Fig. 3b]. Nevertheless, the obtained phase
diagram now better predicts the regimes. The misclassifications of
the non-oscillating and oscillating regimes, which were due to
missing paths in the library, are now reduced, and only very few
dots are not correctly identified due to being close to the
topological transition boundary. Likewise, the transient points are
indications of longer simulations needed because of the long
transient time.

Along with the γth hyper-parameter, the threshold hyper-
parameter ϵth is an important parameter since it tells us whether we
want to add or not a given sample into the library. We observe in
Fig. 6a that a low threshold ϵth will addmany samples to the library,
whereas a high ϵth will not add samples to the library at all. The
threshold value ϵth is, again, arbitrarily chosen but with a preference
for a high-quality library, i.e., low ϵth, in order to avoid missing
paths. For example, we can see in Fig. 6c the phase diagram derived
using ϵth= 0.05 (and γth= 0.95), namely with a library that gives
less than 5% of the reconstruction error of the measurement. This
set of hyper-parameter gives four main regimes that seem to
correspond to the non-oscillating, oscillating, transition and
transient regimes. Yet, there is some misidentification of the two
topological phases most likely because of missing paths of the
obtained library. On the other hand, with a better library quality,
here ϵth= 0.005 (and γth= 0.95), the missing paths are retrieved
and the derived phase diagram correctly predicts the topological
phases [Fig. 6b]. Figure 6b shows that the different regimes,
obtained previously with a lower library quality, are now better
defined. The non-oscillating and oscillating regimes are well
located in their respective parameter space region, and the
transition points follow the transition boundary between the two
topological phases. In addition, the bottom-up representation
classification splits the oscillating regime into two oscillating modes
[dark blue and light blue dots in Fig. 6b]. The presence of distinct
oscillating modes is an example of new insights given by the data-
driven classification method. Indeed, the complex values of the
amplitudes of x(t) are, here, taken into account instead of solely the
total intensity of each sublattice A and B as in refs. 16,17. This allows
for a finer description of the dynamic pattern based on the whole
lattice with the relative phase difference of the sites or the absolute
value of amplitudes.

Conclusions
We have proposed a data-driven approach to identify topological
phases of dynamical systems. By utilising the representation
classification strategy based on the aDMD, we have successfully
drawn the phase diagrams of the domain-wall-type SSH lattice
with saturable gain. To avoid manual labelling in the classifica-
tion, we have proposed two automatic library construction
schemes: top-down and bottom-up approaches that merge similar
phases in a library or adaptively construct a library according to
its quality, respectively. We find that the best approach to tackle
the problem of drawing the phase diagram for the SSH is the
bottom-up adaptive method. This shows that reverse engineering
methods allow us an exploration of parameter space without any
expert knowledge of the complex non-linear system.

Our study points out some pitfalls to avoid while using reverse
engineering, and a strategy to extend the method to more complex
systems. While maybe not all phases might be identified on the first
try, our approach is capable of clustering similar behaviour and
gives a first classification of the different modes in the system. It
should be complemented by a thorough analysis of these modes.
Nonetheless, because of its different approach to drawing the phase
diagram and its capability of clustering similar behaviour, reverse
engineering holds the potential to find novel topological lasing
modes, which could have been overlooked in other approaches.

Data availability
The data that support the findings of this study are available on the Cardiff University
Research Portal at https://doi.org/10.17035/d.2023.0252073461.

Code availability
The code that support the findings of this study are available from the corresponding
author upon reasonable request.

Fig. 5 Representation classification based on a bottom-up adaptive
library. a Phase diagram obtained using the bottom-up classification
strategy with a starting library composed of a single regime randomly
chosen, and the hyper-parameters threshold ϵth= 0.005 and γth= 0.75.
b Representative total intensity IA (and IB) of the A (and B) sublattice in
blue (and orange) for the different regimes.

Fig. 6 Hyper-parameter dependency for the bottom-up adaptive method.
a Library size against the hyper-parameter threshold ϵth. The inset is a
zoom-in of the plot. Phase diagram derived using the bottom-up
classification strategy with b ϵth= 0.005 and c ϵth= 0.05. The initial library
is composed of a single regime randomly chosen, and the other hyper-
parameter threshold value is γth= 0.95.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01230-z

6 COMMUNICATIONS PHYSICS |           (2023) 6:104 | https://doi.org/10.1038/s42005-023-01230-z | www.nature.com/commsphys

https://doi.org/10.17035/d.2023.0252073461
www.nature.com/commsphys


Received: 8 November 2022; Accepted: 3 May 2023;

References
1. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat.

photonics 8, 821–829 (2014).
2. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
3. Kim, M., Jacob, Z. & Rho, J. Recent advances in 2D, 3D and higher-order

topological photonics. Light. Sci. Appl. 9, 130 (2020).
4. Kim, M. et al. Three-dimensional photonic topological insulator without

spin–orbit coupling. Nat. Commun. 13, 3499 (2022).
5. Schomerus, H. Topologically protected midgap states in complex photonic

lattices. Opt. Lett. 38, 1912 (2013).
6. Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective

enhancement of topologically induced interface states in a dielectric resonator
chain. Nat. Commun. 6, 6710 (2015).

7. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary
geometries. Science 358, 636–640 (2017).

8. Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge modes,
degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev.
Lett. 118, 28–30 (2017).

9. Zhang, P., Shen, H. & Zhai, H. Machine learning topological invariants with
neural networks. Phys. Rev. Lett. 120, 066401 (2018).

10. Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev.
Lett. 120, 113901 (2018).

11. Takata, K. & Notomi, M. Photonic topological insulating phase induced solely
by gain and loss. Phys. Rev. Lett. 121, 213902 (2018).

12. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in
non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

13. Shao, Z.-K. et al. A high-performance topological bulk laser based on band-
inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

14. Longhi, S. Non-Hermitian gauged topological laser arrays. Ann. Phys. 530,
1800023 (2018).

15. Longhi, S., Kominis, Y. & Kovanis, V. Presence of temporal dynamical
instabilities in topological insulator lasers. Europhys. Lett. 122, 14004 (2018).

16. Malzard, S., Cancellieri, E. & Schomerus, H. Topological dynamics and
excitations in lasers and condensates with saturable gain or loss. Opt. Express
26, 22506 (2018).

17. Malzard, S. & Schomerus, H. Nonlinear mode competition and symmetry-
protected power oscillations in topological lasers. N. J. Phys. 20, 063044
(2018).

18. Wong, S. & Oh, S. S. Topological bulk lasing modes using an imaginary gauge
field. Phys. Rev. Res. 3, 033042 (2021).

19. Gong, Y., Wong, S., Bennett, A. J., Huffaker, D. L. & Oh, S. S. Topological
insulator laser using valley-Hall photonic crystals. ACS Photon. 7, 2089–2097
(2020).

20. Yun, J., Kim, S., So, S., Kim, M. & Rho, J. Deep learning for topological
photonics. Adv. Phys.: X 7, 2046156 (2022).

21. Araki, H., Mizoguchi, T. & Hatsugai, Y. Phase diagram of a disordered higher-
order topological insulator: a machine learning study. Phys. Rev. B 99, 085406
(2019).

22. Peano, V., Sapper, F. & Marquardt, F. Rapid exploration of topological band
structures using deep learning. Phys. Rev. X 11, 021052 (2021).

23. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011).

24. Wang, L. Discovering phase transitions with unsupervised learning. Phys. Rev.
B 94, 195105 (2016).

25. Scheurer, M. S. & Slager, R.-J. Unsupervised machine learning and band
topology. Phys. Rev. Lett. 124, 226401 (2020).

26. Jolliffe, I. In The Encyclopedia of Statistics in Behavioral Science (John Wiley &
Sons, Ltd, Chichester, UK, 2005).

27. Wright, J., Yang, A., Ganesh, A., Sastry, S. & Yi, M. Robust face recognition via
sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227
(2009).

28. Brunton, S. L., Tu, J. H., Bright, I. & Kutz, J. N. Compressive sensing and low-
rank libraries for classification of bifurcation regimes in nonlinear dynamical
systems. SIAM J. Appl. Dyn. Syst. 13, 1716–1732 (2014).

29. Proctor, J. L., Brunton, S. L., Brunton, B. W. & Kutz, J. N. Exploiting sparsity
and equation-free architectures in complex systems. Eur. Phys. J. Spec. Top.
223, 2665–2684 (2014).

30. Fu, X., Brunton, S. L. & Nathan Kutz, J. Classification of birefringence in
mode-locked fiber lasers using machine learning and sparse representation.
Opt. Express 22, 8585 (2014).

31. Brunton, B. W., Johnson, L. A., Ojemann, J. G. & Kutz, J. N. Extracting
spatial-temporal coherent patterns in large-scale neural recordings using
dynamic mode decomposition. J. Neurosci. Methods 258, 1–15 (2016).

32. Bright, I., Lin, G. & Kutz, J. N. Classification of spatio-temporal data via
asynchronous sparse sampling: Application to flow around a cylinder.
Multiscale Model. Simul. 14, 823–838 (2016).

33. Kramer, B., Grover, P., Boufounos, P., Nabi, S. & Benosman, M. Sparse
sensing and DMD-based identification of flow regimes and bifurcations in
complex flows. SIAM J. Appl. Dyn. Syst. 16, 1164–1196 (2017).

34. Ozan, D. E., Iannelli, A., Yin, M. & Smith, R. S. Regularized classification and
simulation of bifurcation regimes in nonlinear systems. IFAC-PapersOnLine
54, 352–357 (2021).

35. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev.
Lett. 42, 1698–1701 (1979).

36. Asbóth, J. K., Oroszlány, L. & Pályi, A. A. Short course on topological
insulators, vol. 919 of Lecture Notes in Physics (Springer International
Publishing, Cham, 2016).

37. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium.
Rev. Mod. Phys. 65, 851–1112 (1993).

Acknowledgements
This research was undertaken using the supercomputing facilities at Cardiff University
operated by Advanced Research Computing at Cardiff (ARCCA) on behalf of the Cardiff
Supercomputing Facility and the HPC Wales and Supercomputing Wales (SCW) pro-
jects. We acknowledge the support of the SCW projects and Sêr Cymru II Rising Star
Fellowship (80762-CU145 (East)), which are part-funded by the European Regional
Development Fund (ERDF) via the Welsh Government.

Author contributions
S.W., D.E.R. and S.S.O. conceived the project. S.W. developed the theoretical model and
performed all the numerical simulations. S.W., J.O., T.K.B., D.E.R. and S.S.O. contributed
to the discussions and the preparation of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01230-z.

Correspondence and requests for materials should be addressed to Sang Soon Oh.

Peer review information Communications Physics thanks the anonymous reviewers for
their contribution to the peer review of this work. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01230-z ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:104 | https://doi.org/10.1038/s42005-023-01230-z | www.nature.com/commsphys 7

https://doi.org/10.1038/s42005-023-01230-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	A machine learning approach to drawing phase diagrams of topological lasing modes
	Results
	Phase diagram of the SSH Model
	Representation classification method
	Phase diagrams
	Fixed library
	Top-down adaptive library
	Bottom-up adaptive library

	Conclusions
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




