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ABSTRACT 

Current approaches for autonomous crack detection are mainly based on supervised learning, 
which relies on a large number of annotated examples for training. However, it requires a time-
consuming and labor-intensive image acquisition process. This paper proposes a transductive 
approach based on the improved Prototypical Network (ProtoNet) for few-shot crack detection 
to solve this issue. Its architecture consists of a cross-domain feature encoder and a linear 
classifier. The feature embedding is achieved through pre-trained DNN backbones from 
ImageNet, and the transductive inference is based on Euclidean distance after embedding 
normalization. The approach is validated on a public dataset for automatic bridge crack 
detection, which can achieve over 94% mean accuracy for 2-way 5-shot crack identification in 
the test set through pre-trained GoogleNet backbone after fine-tuning. The approach is also 
tested using real bridge inspection images, demonstrating its capability of fast implementation 
for crack detection with weakly supervised information under practical scenarios.  
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1 Introduction 
Autonomous crack detection is a real-world challenge in visual inspection for infrastructures 
due to various materials, surface coatings, and changing light and weather conditions [1]. Its 
approaches are mainly based on inductive supervised learning, which requires many labeled 
examples for model training [2]. This results in a time-consuming and labor-intensive image 
acquisition process. Although supervised transfer learning [3], [4] was expected to solve this 
issue, it tends to be overfitting with very limited labeled examples (i.e., under few-shot 
conditions). Meanwhile, there is little research about appropriate domain adaption for crack 
detection. Therefore, this work aims to propose an efficient framework and approach for few-
shot crack detection, which is beneficial to practical inspection under complex circumstances 
with weakly supervised information.  

This work proposes an approach based on the improved Prototypical Network (ProtoNet) for 
crack detection under few-shot conditions, consisting of a cross-domain feature encoder and a 
linear classifier. The Prototypical Network is improved with embedding normalization and a 
linear classifier. The feature embedding is achieved by domain adaption through pre-trained 
deep-learning models based on ImageNet. Different deep neural network (DNN) backbones 
are compared in the experiment. The binary classification is achieved based on transduction 
through a linear classifier using Euclidean distances between the query item and prototypes in 
the support set, and the performance can be further improved through fine-tuning.  

The approach is validated on a public image set [5] for automatic bridge crack detection. A 
dedicated CNN architecture for this dataset can achieve an accuracy of 96.37% on the test set 
based on supervised learning [5]. The experiment demonstrates that the domain adaption from 
the ImageNet is an effective way for crack feature embedding, although there are no specific 
crack-related tasks in the ImageNet. The pre-trained GoogleNet and Swim-Transformer 
backbones perform as the best two embedding functions, achieving a mean accuracy of over 
94% after fine-tuning for 2-way 5-shot crack identification on the test set, which is close to the 
supervised learning performance.  

Furthermore, the proposed approach can be utilized for crack detection based on the split image 
patches to indicate the crack location, area, skeleton, and direction. The real bridge inspection 
images [1] are employed in the experiment, and the result demonstrates the excellent capability 
of fast implementation for crack detection with weakly supervised information under practical 
scenarios. The approach is promising to be developed for multi-defect detection using 
ensemble learning and region proposal.  

2 Literature review 
2.1 Crack detection 

The most straightforward task in crack inspection is crack identification, i.e., determining 
whether a crack exists in an image. It is a binary classification task and can also be extended to 
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crack detection, providing more information about the crack, such as location, area, skeleton, 
and direction [6]. A typical crack detection method is based on patches, which is implemented 
by splitting the image into patches or sliding a window on the image. Then the classifier is 
applied on each patch, followed by stitching them back [7], as shown in Fig. 1. Another method 
for object detection is based on a bounding box, such as YOLO and SSD. However, this method 
is not always the best choice for crack detection. The generated bounding box will involve 
many undefective sub-regions, e.g., using a large rectangle bounding box to mark an oblique 
crack.   

 

Figure 1: concrete crack detection by patch splitting and classification [7] 

Many AI-based approaches have been developed for crack detection to assist routine visual 
inspection, including traditional machine learning (ML) and deep learning (DL). In the former, 
image processing for feature extraction is still required for feature extraction. Contrastingly, 
supervised DL can extract features automatically, such as DCNNs [5], [8]–[10] and 
transformers [11]. Cha et al. [12] employed supervised learning with DCNN for the first time 
to identify crack images without hand-crafted features. The model was trained on 40k crack 
and non-crack images (256 ×256) and then integrated with a sliding window technique to scan 
any image larger than 256 ×256 for crack detection, as shown in Fig. 1. It demonstrates the 
availability of the patch-based method for crack detection under practical scenarios. There are 
also efforts for crack detection using the bounding-box method, e.g., Xiang et al. [11] integrated 
a transformer module in YOLOv5 for road crack detection. However, most previous works are 
based on supervised learning, in which a sufficient dataset of crack and non-crack images is 
still required [13], [14]. Hence, a weakly-supervised approach for crack detection with only a 
few labeled examples becomes necessary. Although cross-domain transfer learning has the 
potential to solve this problem, it suffers from overfitting or difficulty in convergence under 
few-shot conditions. Meanwhile, some critical questions have not been solved, such as reliable 
source domains for crack detection through transfer learning.  

2.2 Few-shot classification 

Few-shot learning (FSL) was initially taken as an example of meta-learning. A meta-learner 
was trained through a series of works (episodic training) for unseen but related tasks with just 
a few examples. A few approaches have been developed for few-shot classification based on 
meta-learning, such as ProtoNet [15] is little research on applying meta-learning approaches 
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for few-shot crack detection. The only related one is an attribute-based approach proposed by 
Xu et al. [16] for few-shot damage classification through meta-learning. However, the approach 
is still based on episodic training through a series of related tasks (including crack) and is not 
developed to the level of crack detection.  

Recently, a few works [17], [18] have demonstrated that cross-domain transfer can achieve 
similar performance to the meta-learning approaches, such as Baseline and Baseline++ in [17], 
which is more efficient than episodic training. A similar work recently is an approach [19] for 
few-shot plant disease classification based on transfer learning across a Plant and Pest (PP) 
image set, which uses a transformer for feature embedding and Mahalanobis distance for 
evaluation. In this work, the cross-domain effect is achieved by excluding the query classes 
(i.e., plants and diseases) from the training set. However, as expected, this inter-class difference 
is insufficient because they are all plant-related images, and the approach still requires a 
prepared dataset of different plants and diseases. Therefore, it becomes a question to achieve 
few-shot crack detection using distinct cross-domain transfer learning from a popular public 
dataset (such as the ImageNet) to crack detection. This work proposes an approach for crack 
detection that does not require time-consuming data acquisition and can be quickly 
implemented with weakly supervised information under practical scenarios.  

3 Methodology 
3.1 Few-shot problem definition 
In the FSL, the dataset � is separated into �������� and ������ with input � and label �, 
shown in Eq. 1 and Eq. 2. For the N-way K-shot classification, ��������  comes from � 
categories with K  samples per category, so there are � × �  support examples. ������ 
contains samples from � categories with � samples per category, and the goal is to classify 
the � × � samples into � categories with weakly supervised information from ��������. � 
is usually from 1 to 5, and here, crack detection is a binary classification problem, so � = 2.   

�������� = {(��, ��)}������×� �1� 

������ = �������
���×�

�2� 

 

3.2 Proposed approach 

This work proposes a transductive approach based on the improved ProtoNet, which consists 
of feature embedding, transduction, and linear classification. Its architecture is shown in Fig. 2 
using an example of 2-way 3-shot crack detection. The patches with the blue boundary belong 
to the support set, while the others belong to the query set.  
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Fig. 1 Proposed approach and architecture for crack detection 

The ImageNet is utilized as the source domain. The feature embedding is achieved by domain 
adaption using the pre-trained DL backbones based on the ImageNet rather than episodic 
training in the original ProtoNet. Therefore, the approach does not require a collection of defect 
images in advance to train a supervised model or a meta-learner. The ProtoNet is improved 
with embedding normalization and a linear classifier. The mean vector of support embeddings 
is computed as the prototype for each class.  

The transductive inference is based on the prototypes and Euclidean distance (Eq. 3) through a 
linear classifier (Eq. 4). Here, � = 2  for binary classification. ��×�  represents Euclidean 
distances between a support example and each prototype. ��×� and ��×� are parameters and 
bias, respectively.  

� = ����(�, �) = (�|� − �|�)
�
� �3� 

��×� = �������(��×� ⋅ ��×� + ��×�) �4� 

4 Ablation study 
4.1 Preparation 

The approach is validated on a public dataset for automatic bridge crack detection [5], including 
the 2014 background and 4055 crack images (224×224). A dedicated CNN model based on 
supervised learning can reach 96.37% accuracy on the test set (train-test split of 80%:20%) 
[14]. Hence, the experiment is designed to test the performance of the proposed approach on 
the test set under few-shot conditions. The query accuracies are shown in a boxplot based on 
5000 samplings. Furthermore, real bridge inspection images from the CODEBRIM dataset [1] 
are utilized to demonstrate its capability of fast implementation for practical bridge inspection.  
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4.2 1-shot and 5-shot classification 

The experiment starts with 2-way 1-shot and 2-way 5-shot classifications. The image size is 
224×224. The ResNet18 is utilized for feature embedding. Its parameters are pre-trained on 
ImageNet. Meanwhile, the hardcoded mean � = [0.485,0.456,0.406]  and the standard 
deviation = [0.229,0.224,0.225] , derived statistically from the ImageNet, are adopted for 
image transformation. The results without fine-tuning are shown in Fig. 3. As can be seen, the 
mean accuracy of 2-way 1-shot classification is around 80%, and 2-way 5-shot can reach over 
90% accuracy with an interquartile range (IQR) of 4%. The experiment demonstrates that the 
approach based on cross-domain transfer learning from ImageNet is available for few-shot 
crack identification. As 2-way 5-shot classification performs much better than 2-way 1-shot, it 
is adopted for further ablation studies.   

 

Fig. 2 2-way 1-shot and 2-way 5-shot classification performance 

4.3 Different deep-learning backbones 

The experiment uses different pre-trained DNN backbones based on ImageNet for feature 
embedding. Due to CUDA memory limitation, the image size is reduced to 84×84. The results 
are shown in Fig.4. As can be seen, different embedding functions have a significant impact on 
performance. The pre-trained GoogleNet and Swim-Transformer are the best two backbones 
for 2-way 5-shot crack identification in this dataset, achieving a mean accuracy of over 93% 
on the test set.  
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Fig. 3 Comparison of different pre-trained DL backbones from the ImageNet  

4.4 Linear Classifier and Fine-tuning 

Fine-tuning is taken on Eq. 4 using feature embeddings and prototypes through the pre-trained 
GoogleNet backbone. The RMSProp is adopted as the optimizer (learning rate 0.01). The mean 
query accuracy and 95% confidence interval are shown in Fig. 4.  

 

Fig. 4 Fine-tuning to improve classification performance  

As can be seen, fine-tuning can enhance the mean accuracy by 0.6%, and the increment has 
statistical significance. Early stopping should be taken near the epoch number where the 
accuracy peaks, i.e., 600 epochs, which can be utilized as the empirical criteria for fine-tuning 
in this dataset. After the peak, the accuracy will decrease due to overfitting.  

4.5 Practical crack detection  

The approach is also validated using the real bridge inspection images from the CODEBRIM 
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dataset [1]. The image is first split into patches, as shown in Fig. 5. The patches marked by blue 
boundary are selected as the support set, while the others are taken as the query set. The crack 
location and skeleton can be detected with only three labeled images for each class, as shown 
in the top right of Fig. 5. Moreover, the derived prototypes and classifier from the support set 
can be applied to a new image for crack detection without labeling, as shown in the bottom 
right of Fig. 5. The experiment demonstrates the approach capability of fast implementation 
for crack detection under practical scenarios with only a few labeled examples.  

 

Fig. 5 Few-shot crack detection in real bridge inspection images 

5 Conclusion  
This work proposed an approach based on the improved ProtoNet for crack detection with only 
a few annotated examples. It integrates cross-domain transfer learning, transductive inference, 
and linear classification. The feature embedding is achieved via the pre-trained DL backbones 
based on ImageNet. The approach is explored on a public dataset for automatic bridge crack 
detection, achieving a mean accuracy of over 94% for 2-way 5-shot crack identification 
through the GoogleNet backbone after fine-tuning. Furthermore, the approach is also validated 
using real bridge inspection images, demonstrating its fast implementation capability for crack 
detection under practical scenarios with only a few annotated examples. The approach is also 
promising for the detection of other defects with weakly supervised information. However, it 
also has a few limitations currently. For example, the current development is only based on 
binary classification (i.e., defect and background), and the performance is sensitive to noise 
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such as stains and marks. Therefore, the next step of the work is to develop the approach to the 
level of multi-defect detection and enhance its robustness.  

6 Declaration 
The authors declared that they have no conflicts of interest in this work. 

7 Acknowledgment 
This work was supported by the Cardiff University – China Scholarship Council (CSC) joint 
program.    

 

Reference 
[1] M. Mundt, S. Majumder, S. Murali, P. Panetsos, and V. Ramesh, ‘Meta-learning 

convolutional neural architectures for multi-target concrete defect classification with the 
concrete defect bridge image dataset’, Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 11188–
11197, 2019, doi: 10.1109/CVPR.2019.01145. 

[2] Y. J. Cha, W. Choi, and O. Büyüköztürk, ‘Deep Learning-Based Crack Damage 
Detection Using Convolutional Neural Networks’, Computer-Aided Civil and 
Infrastructure Engineering, vol. 32, no. 5, pp. 361–378, 2017, doi: 10.1111/mice.12263. 

[3] Q. Yang, W. Shi, J. Chen, and W. Lin, ‘Deep convolution neural network-based transfer 
learning method for civil infrastructure crack detection’, Autom Constr, vol. 116, no. 
May, p. 103199, 2020, doi: 10.1016/j.autcon.2020.103199. 

[4] D. Dais, İ. E. Bal, E. Smyrou, and V. Sarhosis, ‘Automatic crack classification and 
segmentation on masonry surfaces using convolutional neural networks and transfer 
learning’, Autom Constr, vol. 125, no. January, 2021, doi: 
10.1016/j.autcon.2021.103606. 

[5] H. Xu, X. Su, Y. Wang, H. Cai, K. Cui, and X. Chen, ‘Automatic bridge crack detection 
using a convolutional neural network’, Applied Sciences (Switzerland), vol. 9, no. 14, 
2019, doi: 10.3390/app9142867. 

[6] J. König, M. Jenkins, M. Mannion, P. Barrie, and G. Morison, ‘What’s Cracking? A 
Review and Analysis of Deep Learning Methods for Structural Crack Segmentation, 
Detection and Quantification’, pp. 1–18, 2022. 

[7] Y. J. Cha, W. Choi, and O. Büyüköztürk, ‘Deep Learning-Based Crack Damage 
Detection Using Convolutional Neural Networks’, Computer-Aided Civil and 
Infrastructure Engineering, vol. 32, no. 5, pp. 361–378, 2017, doi: 10.1111/mice.12263. 



10 
 

[8] H. Fu, D. Meng, W. Li, and Y. Wang, ‘Bridge crack semantic segmentation based on 
improved deeplabv3+’, J Mar Sci Eng, vol. 9, no. 6, 2021, doi: 10.3390/jmse9060671. 

[9] Y. Mohammed, N. Uddin, C. Tan, and Z. Shi, ‘Crack Detection using Faster R-CNN and 
Point Feature Matching’, vol. 10, no. 3, 2020, doi: 10.19080/CERJ.2020.10.555790. 

[10] M. Nie and C. Wang, ‘Pavement Crack Detection based on yolo v3’, Proceedings - 2019 
2nd International Conference on Safety Produce Informatization, IICSPI 2019, pp. 327–
330, 2019, doi: 10.1109/IICSPI48186.2019.9095956. 

[11] X. Xiang, Z. Wang, and Y. Qiao, ‘An Improved YOLOv5 Crack Detection Method 
Combined with Transformer’, IEEE Sens J, vol. 22, no. 14, pp. 14328–14335, 2022, doi: 
10.1109/JSEN.2022.3181003. 

[12] Y. J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk, ‘Autonomous 
Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple 
Damage Types’, Computer-Aided Civil and Infrastructure Engineering, vol. 33, no. 9, 
pp. 731–747, 2018, doi: 10.1111/mice.12334. 

[13] Y. J. Cha, W. Choi, and O. Büyüköztürk, ‘Deep Learning-Based Crack Damage 
Detection Using Convolutional Neural Networks’, Computer-Aided Civil and 
Infrastructure Engineering, vol. 32, no. 5, pp. 361–378, 2017, doi: 10.1111/mice.12263. 

[14] H. Xu, X. Su, Y. Wang, H. Cai, K. Cui, and X. Chen, ‘Automatic bridge crack detection 
using a convolutional neural network’, Applied Sciences (Switzerland), vol. 9, no. 14, 
2019, doi: 10.3390/app9142867. 

[15] J. Snell, K. Swersky, and R. Zemel, ‘Prototypical networks for few-shot learning’, in 
Advances in Neural Information Processing Systems, 2017, pp. 4078–4088. 

[16] Y. Xu, Y. Bao, Y. Zhang, and H. Li, ‘Attribute-based structural damage identification by 
few-shot meta learning with inter-class knowledge transfer’, Struct Health Monit, vol. 
20, no. 4, pp. 1494–1517, 2021, doi: 10.1177/1475921720921135. 

[17] W. Y. Chen, Y. C. F. Wang, Y. C. Liu, Z. Kira, and J. Bin Huang, ‘A closer look at few-
shot classification’, 7th International Conference on Learning Representations, ICLR 
2019, no. 2018, pp. 1–17, 2019. 

[18] G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto, ‘A Baseline for Few-Shot 
Image Classification’, pp. 1–20, 2019, [Online]. Available: 
http://arxiv.org/abs/1909.02729 

[19] S. V. Nuthalapati and A. Tunga, ‘Multi-Domain Few-Shot Learning and Dataset for 
Agricultural Applications’, Proceedings of the IEEE International Conference on 
Computer Vision, vol. 2021-Octob, pp. 1399–1408, 2021, doi: 
10.1109/ICCVW54120.2021.00161. 

  


