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INTERLEAVING MAYER-VIETORIS SPECTRAL SEQUENCES

ÁLVARO TORRAS-CASAS AND ULRICH PENNIG

Abstract. We discuss the Mayer-Vietoris spectral sequence as an invariant in
the context of persistent homology. In particular, we introduce the notion of ε-
acyclic carriers and ε-acyclic equivalences between filtered regular CW-complexes
and study stability conditions for the associated spectral sequences. We also look
at the Mayer-Vietoris blowup complex and the geometric realization, finding sta-
bility properties under compatible noise; as a result we prove a version of an
approximate nerve theorem. Adapting work by Serre, we find conditions under
which ε-interleavings exist between the spectral sequences associated to two dif-
ferent covers.

1. Introduction

One of the benefits of homology as a topological invariant over, for example, the
homotopy groups, is its computability via long exact sequences. The classical Mayer-
Vietoris exact sequence has been used in countless examples to compute Hk(X) from
a decomposition of a space X into two open subsets U and V . When we generalise
this concept to open covers (Ui)i∈I consisting of more than just two subsets, the
relations between the parts Hk(Ui) become more intricate and are encoded in the
Mayer-Vietoris spectral sequence. These sequences first appeared in work of Leray
and later Serre, and they proved to be one of the most powerful tools in pure
algebraic topology. Applications of spectral sequences in applied algebraic topology,
however, are still a young subject.

In [26] it was proven that the Persistence Mayer-Vietoris spectral sequence can
be used to compute persistent homology. The starting point is a filtered simplicial
complex X together with a cover by subcomplexes U . Then, one computes PHi(Uσ)
for all i ≥ 0 and σ ∈ NU . Here, notice that NU is the nerve of the cover U whose
simplices σ ∈ NU are subsets from U ; this leads to the notation Uσ =

⋂
U∈σ U .

The Mayer-Vietoris spectral sequence starts from these groups and the morphisms
induced by inclusions and converges to PHi(X). As pointed out in [27], the addi-
tional insight gained from the cover U can be used for example for multiscale feature
detection. Similar information was also explored much earlier in [28] in the form of
localized homology.

Motivated by these results, we study the spectral sequence E∗
p,q(X,U) and answer

the following questions:

• Let a pair (X,U) consisting of a space, X, and a cover for X, U . The
Mayer-Vietoris spectral sequence E∗

p,q(X,U) converges to PH∗(∆
U(X)). Is

PH∗(∆
U(X)) stable? Can this result be generalised?
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• Suppose that the data in each covering set Uσ for σ ∈ NU is modified slightly.
If the underlying cover U is ignored, then we would not expect E∗

p,q(X,U)
to be stable. Are there natural coherence conditions between changes in the
sets Uσ that imply stability? If so, what do we mean by stability of spectral
sequences?
• Let U and V be covers of the same space X. Can we compare E∗

p,q(X,U)
and E∗

p,q(X,V) up to ε-interleavings?

To explain why the first question is important and how it is linked to spectral
sequences, we note that E∗

p,q(X,U) converges to the target persistent homology

PH∗(∆
U(X)) (this is usually denoted by E∗

p,q(X,U) ⇒ PH∗(∆
U(X))). The blowup

complex ∆U(X) already appeared in the context of topological data analysis in [16]
and [28]. It is homotopy equivalent to a homotopy colimit, and therefore enjoys good
properties with respect to local homotopy equivalences. For example, if we assume
that Uσ is contractible for all σ ∈ NU , then we can use [13, Proposition 4G.2] to
recover Leray’s Nerve Theorem. That is, there are homotopy equivalences

X ≃ ∆U(X) ≃ ∆U(∗) = N(U),

where ∗ denotes the constant complex of spaces on U , see [13, App. 4.G]. The funda-
mental importance of this result in applied topology is underlined by the persistent
Nerve lemma presented in [5]. It is worth mentioning the Approximate Nerve The-
orem [12] and the Generalized Nerve Theorem [3], which are approximate versions
of the Leray Theorem within the context of persistence. In particular, in [12] the
spectral sequence E∗

p,q(X,U)⇒ PH∗(X) is examined, and it is studied how much it
differs from another spectral sequence E∗

p,q(∗,U) ⇒ PH∗(N(U)), by careful inspec-
tion of all pages as well as the extension problem.

Throughout the paper we focus on the category RCW-cpx of regularly filtered
regular CW complexes as well as the subcategory FCW-cpx of filtered regular CW
complexes, see subsection 2.1. Instead of restricting our attention to a space X to-
gether with a cover U , we look at regular diagrams D in RCW-cpx over a simplicial
complex K. There is a natural replacement for the Mayer-Vietoris blowup complex
in this setting, denoted by ∆K(D), as explained in [13, App. 4.G.]. This object
also appears in the context of semisimplicial spaces, where it is called the geometric
realization [9]; in fact, it has an associated spectral sequence [9, Sub. 1.4.]. As we
explain in Sec. 3, there are good reasons why it is worth taking this more general
perspective. In particular, we consider the spectral sequence

E2
p,q(D)⇒ PHp+q(∆KD) .

In order to address the first two questions, we introduce the notion of acyclic
carriers to define ε-acyclic equivalences. Using the Acyclic Carrier Theorem we
show the following: Let X and Y be two objects in RCW-cpx. If there exists
an ε-acyclic equivalence F ε : X ⇒ Y , then PH∗(X) is ε-interleaved with PH∗(Y )
(see Lemma 4.7 and Proposition 4.2 for a stronger statement in FCW-cpx). These
equivalences provide a very flexible notion that works in different contexts as the
examples 4.5, 4.6 and 4.8 show.

We address the first question in the following way. Let D and L be two diagrams
over the same simplicial complex K and assume that for all σ ∈ K there are ε-
acyclic equivalences F ε

σ : D(σ) ⇒ L(σ) which satisfy a compatibility condition with
respect to composition in the poset category associated to K, see Proposition 5.2 for
details. Then, there is an ε-acyclic equivalence F ε : ∆K(D) ⇒ ∆K(L). This result
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implies stability in the targets of convergence of the spectral sequences. We use
this result to show a ‘Strong Approximate Multinerve Theorem’ in Theorem 5.3.
Later, in section 6, we introduce (ε, n)-interleavings, which are given by spectral
sequence morphisms that start at some page n together with a shift by a persistence
parameter ε > 0. Assuming the same conditions as in the geometric realization case,
we can obtain a (ε, 1)-interleaving between E∗

p,q(D) and E
∗
p,q(L), see Proposition 5.2.

This result appears in Theorem 6.5 and a specialised strong statement for covers of
spaces in FCW-cpx is given in Proposition 6.4.

As for the third question about the comparison of the spectral sequences associ-
ated to two covers U and V of a space X, we rely on work of Serre from the fifties,
in which he studied the relation between the Čech cohomology of two different cov-
ers [24]; here we adapt this work in the context of cosheaves and cosheaf homology.
Take a cosheaf F of abelian groups on X and assume that there is a refinement
V ≺ U . Serre showed that the refinement morphism induced on Čech homology
ρUV : Ȟ∗(V ,F) → Ȟ∗(U ,F) is independent of the particular choice of morphism
in the cochains. In [24] it was also shown that ρUV can be factored through a
construction that uses a double complex associated to both covers Cp,q(U ,V ;F),
see [24, Proposition 4, Sec. 29]. This construction introduces two double complex
spectral sequences IE

∗
p,q(U ,V ;F) and IIE

∗
p,q(U ,V ;F), both of which converge to

Ȟ∗(U ∩ V ;F) ≃ Ȟ∗(V ;F). Here one might study conditions on IIE
∗
p,q(U ,V ;F) to

find when an inverse of ρUV exists. As an application, Serre obtained an analogous
result to the Leray Theorem in the context of sheaves [24, Theorem 1 in §29].

We start our analysis of the third question in Sec. 7. In case V ≺ U there is a
unique morphism induced by the refinement map on the second page

ρUV : E∗
p,q(X,V)→ E∗

p,q(X,U) .

On the other hand, Theorem 7.10 tells us under what conditions there exists an
ε-shifted morphism ψ : E∗

p,q(X,U)→ E∗
p,q(X,V)[ε] so that ρUV and ψ form an (ε, 2)-

interleaving between E∗
p,q(X,U) and E∗

p,q(X,V). Finally, in Proposition 7.12 we
give a means of obtaining an (ε, 2)-interleaving between E∗

p,q(X,U) and E
∗
p,q(X,V)

through the computation of local Mayer-Vietoris spectral sequences E∗
p,q(Uσ,V|Uσ

)
for all σ ∈ NU . Since the open regions Uσ are assumed to be ‘small’ in comparison
to X, this gives a means of using local calculations to deduce the interleaving. As
Corollary 7.14 we present the case when V does not need to refine U .

Acknowledgements

We would like to thank P. Skraba and D. Govc for fruitful discussions during spring
2020 that lead up to important ideas of this manuscript. In particular P. Skraba
pointed out to us the 1955 notes [24] from J. P. Serre, which have been key for the
results from section 7.

2. Background

2.1. Regular CW-complexes with filtrations. Recall the definition of CW-
complex from [13, Chapter 0]. In contrast to the usual treatment of CW-complexes,
but in line with the structure we are dealing with in TDA, we consider the cell
decomposition as part of the data of our CW-complexes. For a CW-complex X, if
c is an open cell in X we follow the notation from [7] and denote this by c ∈ X.
We denote by Xn the set of n-dimensional cells from X and we denote by X≤n
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the n-skeleton from X. Recall that X has a natural filtration given by its skeleta
X0 ⊆ X≤1 ⊆ · · · ⊆ X≤N ⊆ · · · , and a cellular morphism f : X → Y respects this
filtration, in the sense that it restricts to morphisms fm : X≤m → Y ≤m for allm ≥ 0.
We work with regular CW-complexes, which are CW-complexes where the attach-
ing maps are homeomorphisms. It is recommended to consult [7, 17] for properties
and results related to regular CW-complexes. An intuitive way of understanding
incidences of cells in regular complexes is through the barycentric subdivision, as
explained in [11, §2.1]. Given a pair of cells a ∈ Xn and b ∈ Xn−1, we denote by
[b : a] the degree of attaching map ∂a→ b/∂b.

Definition 2.1. A cellular morphism f : X → Y is a regular morphism whenever
the closure f(a) is a subcomplex of Y for all cells a ∈ X. For such a morphism and
a pair a ∈ Xn and b ∈ Y n, we denote by [b : f(a)] the degree of the morphism f
restricted to the open cell a and mapping into the open cell b.

We write CW-cpx to denote the category of finite regular CW-complexes and
regular morphisms. Denote by R the ordered category (R,≤) of real numbers. We
focus on functors X : R→ CW-cpx which we call regularly filtered CW complexes,
and we denote their category byRCW-cpx. We say that an object X ∈ RCW-cpx

is tame, whenever X is constant along a finite number of right open intervals de-
composing the poset R. For X ∈ RCW-cpx, we write Xr for the regular CW-
complex X(r) for all r ∈ R. On the other hand we write X(r ≤ s) to denote the
morphisms Xr → Xs for all r ≤ s in R; we call such morphisms structure maps.
The reader might find an example of such a regularly filtered complex in Appen-
dix A. If the morphisms X(r ≤ s) : Xr → Xs are injections preserving the cellular
structure for all r ≤ s in R, then we call X a filtered CW-complex, denoting by
FCW-cpx the corresponding subcategory of RCW-cpx. Notice that objects in
FCW-cpx can be seen as a pair (colimX∗, f) where colimX∗ is a regular CW-
complex and f : colimX∗ → R is a filtration function.

Throughout this text, we work with a fixed field F. Given X ∈ RCW-cpx, we
define the persistent homology in degree n as the functor PHn(X) : R→ vect given
by computing cellular homology PHn(X)r = Hcell

n (Xr;F) for all r ∈ R. As Xr is
finite, the vector space PHn(X)r is finite dimensional for all r ∈ R. If in addition
X is tame, PHn(X) only changes at a finite number of points r ∈ R. We call
the category of functors R → vectF persistence modules and denote it by PMod.
Given a ∈ (0,∞) and X ∈ RCW-cpx, we write X[a] for the element of RCW-cpx

such that X[a]r = Xr+a for all r ∈ R. We use Σε to denote the ε-shift functor Σε :
RCW-cpx→ Hom(RCW-cpx) which sends X ∈ RCW-cpx to ΣεX : X → X[ε],
where ε ≥ 0. Also, for any morphism of filtered CW-complexes f : A→ B, one can
check that f [ε] ◦ ΣεA = ΣεB ◦ f , where we use f [ε] : A[ε] → B[ε]. Similarly, there
are shift functors for persistence modules Σε : PMod→ Hom(PMod) for ε ≥ 0.

Remark 2.2. Notice that the standard algorithm for the computation of persistent
homology cannot be applied to objects in RCW-cpx. However, if X is tame and
one successfully computes the coefficients for the morphisms Ccell

∗ (Xr) → Ccell
∗ (Xs)

for all r ≤ s in R, then one can use Image Kernel from [26] to obtain a barcode
basis for the filtered cellular complex Ccell

∗ (X). Then we compute homology of the
persistence morphisms given by the differentials dn : Ccell

n (X) → Ccell
n−1(X) by the

use of Image Kernel. See [26] for an explanation.
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2.2. Acyclic carriers. Fix a field F. We say that X ∈ CW-cpx is F-acyclic if the

reduced homology H̃∗(X;F) with F-coefficients vanishes in all dimensions; as the
field is understood from the context, we just say that X is acyclic. Consider two
objects Φ and Γ from CW-cpx with their respective pairs of chains and differentials(
Ccell

∗ (Φ), δΦ
)
and

(
Ccell

∗ (Γ), δΓ
)
. Let ⟨·, ·⟩Φ and ⟨·, ·⟩Γ denote the inner products on

Ccell
∗ (Φ) and Ccell

∗ (Γ), where the cells form an orthonormal basis. We define a relation
≺ on Φ by setting τ ≺ σ if ⟨τ, δΦ(σ)⟩Φ ̸= 0 and by taking the transitive closure. We
denote by ⪯ the partial order generated by ≺. Thus, τ ≺ σ does not necessarily
imply dim(τ) + 1 = dim(σ). Also, notice that ⟨τ, δΦ(σ)⟩Φ = [τ : σ], see the cellular
boundary formula from [13, Sec. 2.2].

Definition 2.3. A carrier F : Φ ⇒ Γ is a map from the set of cells of Φ to
subcomplexes of Γ that is semicontinuous in the sense that for any pair τ ≺ σ in Φ,
F (τ) ⊆ F (σ). A carrier F : Φ ⇒ Γ is called acyclic, if for every σ ∈ Φ, F (σ) is a
nonempty acyclic subcomplex of Γ.

Given a chain map wp : C
cell
p (Φ) → Ccell

p+r(Γ) of degree r = 0, 1, we say that it is
carried by F if for all cells σ ∈ Φp

{γ ∈ Γp+r | ⟨wp(σ), γ⟩Γ ̸= 0} ⊆ F (σ) ,

where we followed the notation from [21].
The next statement is an application of [20, Theorem 13.4]. In Proposition 4.2

we prove a version of this statement that applies to filtered CW-complexes. Notice
that this theorem works for carriers which are F-acyclic and which do not necessarily
need to be Z-acyclic; see the proof of Proposition 4.2.

Theorem 2.4. Let F : Φ ⇒ Γ be an acyclic carrier between CW-complexes Φ and Γ.
Then we have that

• existence: there is a chain map carried by F ,
• equivalence: if F carries two chain maps ϕ and φ, then F carries a chain
homotopy between ϕ and φ.

Given two acyclic carriers F,G : Φ ⇒ Γ, we write F ⊆ G whenever F (σ) ⊆ G(σ)
for all σ ∈ Φ. Given another pair of acyclic carriers F ′ : Φ ⇒ Γ and G′ : Γ ⇒ Ψ, we
also define the composition carrier G′ ◦ F ′ : Φ ⇒ Ψ, where each σ ∈ Φ is sent to

G′ ◦ F ′(σ) :=
⋃

τ∈F (σ)

H(τ) .

In particular, notice that if f is carried by F ′ and g is carried by G′, then g ◦ f is
‘carried’ by G′ ◦ F ′. However, this composition does not need to be acyclic.

Example 2.5. Consider a regular morphism f : Φ → Γ. We define the (not

necessarily acyclic) carrier Ff : Φ ⇒ Γ induced by f that sends σ ∈ Φ to f(σ). By

continuity of f , for any pair τ ≺ σ in Φ, we have that f(τ) ⊆ f(σ). Also, f(σ) ̸= ∅
since it must contain at least a point. Given an acyclic carrier G : Γ ⇒ Ψ, we denote
by G(f(σ)) the composition of carriers G ◦Ff (σ) for all σ ∈ Φ. This comes up very
often in this text and whenever we are looking at the composition G◦Ff we assume
that it is acyclic. Note that Ff is acyclic if f is an embedding of the regular CW-
complex Φ as a subcomplex of Γ. The hypothesis that f is regular is key to define
the carrier Ff . If we considered a more general continuous morphism f : Φ → Γ,
a possible strategy would be to use outer approximations [14, 21]. However, for
simplicity, we restrict to regular morphisms in this article.
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2.3. Regular diagrams of filtered complexes. First, recall a few gluing con-
structions that one can perform in algebraic topology. For a brief introduction to
these, see [13, App. 4.G]. They are also relevant in Kozlov’s approach [15], where
diagrams of spaces over trisps are studied.

Let K be a simplicial complex. We view K as a category whose objects are given
by the simplices σ ∈ K. For any pair of simplices τ, σ ∈ K such that τ ⪯ σ, there
is a unique arrow τ → σ in K. We are particularly interested in Kop, the opposite
category of K whose arrows are given by reversing the arrows of K. The example
one should have in mind here is the case where K is the nerve of a cover of a cellular
complex. Splitting the input data up by the cover then provides a diagram over the
nerve where higher intersections of covering sets are included into smaller degree
intersections. We formalise these constructions in the following definition.

Definition 2.6. Let K be a simplicial complex. A functor D : Kop → CW-cpx is
called a regular diagram of CW-complexes and its category is denoted byRDiag(K);
notice here that, for any pair of simplices τ ⪯ σ of K, the morphism D(τ ⪯ σ) :
D(σ)→ D(τ) is regular; we call such morphisms face maps. Given a pair of diagrams
D,L ∈ RDiag(K), a morphism of diagrams φ : D → L is a natural transformation;
i.e. the commutativity relation

D(τ ⪯ σ) ◦ φ(σ) = φ(τ) ◦ D(τ ⪯ σ)

holds for any pair τ ⪯ σ of simplices in K.

Example 2.7. Let L be a simplicial complex and suppose that it is covered by a pair
of nontrivial subcomplexes L0 and L1. Consider a pair of vertices v, w ∈ L0∩L1 and
suppose that both are connected by a pair of paths γ0 and γ1 within the respective 1-
skeletons of L0 and L1. Further, we ask that these paths are simple, in the sense that
they do not self intersect. Now, consider a diagram D ∈ RDiag(∆1) given by the
closures of the paths on the vertices D(0) = γ0 and D(1) = γ1, while D([0, 1]) = ∆1,
the standard one simplex. We define the face maps of D, for i = 0, 1, as the regular
morphism mapping 0 7→ v and 1 7→ w, while [0, 1] is sent to γi. On the other hand,
we consider a diagram L ∈ RDiag(∆1) which is given by the cover {L0, L1}; that
is, we define L(0) = L0, L(1) = L1 while L([0, 1]) = L0 ∩ L1; also, the face maps
of L are given by inclusions. Then, we might consider a morphism of diagrams
φ : D → L given by inclusions D(0) →֒ L(0) and D(1) →֒ L(1), while D([0, 1]) = ∆1

is sent to some path within L0 ∩ L1 so that φ is well-defined. In fact, φ can only
be well-defined whenever γ0 = γ1. Later, in definition 5.1, introduce (ε,K)-acyclic
carriers; in this case, one might be able to consider such a carrier F ε : D ⇒ L so
that γ0 and γ1 are only required to lie within some acyclic complex.

The main object of study in this work are diagrams of filtered CW-complexes.
These arise naturally in topological data analysis, for example whenever point clouds
come equipped with a cover. We therefore make the following definition:

Definition 2.8. A regularly filtered regular diagram of CW-complexes D over K is
a functor D : Kop → RCW-cpx; we denote this category by RRDiag(K). As
in RDiag(K), morphisms in RRDiag(K) are given by natural transformations.
We might consider the subcategory of RRDiag(K) given by functors D : Kop →
FCW-cpx, which we call filtered regular diagrams of CW-complexes denoting the
corresponding category by FRDiag(K). If for a diagram D ∈ FRDiag(K) the
face maps D(τ ≺ σ) are inclusions respecting the cellular structures for all τ ≺ σ
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from K, then we call D a fully filtered diagram of CW-complexes, whose category
we denote by FFDiag(K) .

Example 2.9. Consider a filtered CW-complex X covered by filtered subcomplexes
U . We define XU over the nerve NU as XU(σ) = Uσ for all σ ∈ NU . This diagram
XU is part of FFDiag(NU) since all morphisms XU(τ ⪯ σ) are actually embeddings
of subcomplexes. On the other hand, we can define the constant diagram ∗U as
∗U(σ)r = ∗ if X

U(σ)r ̸= ∅ or ∗
U(σ)r = ∅ otherwise; for all σ ∈ NU and all r ∈ R.

We also have that ∗U is in FFDiag(NU). Then, there is an obvious epimorphism
of diagrams XU → ∗U . Continuing with the same example, we can also define the
complex of spaces πU

0 given by πU
0 (σ) = π0(Uσ) for all σ ∈ NU ; where for each r ∈ R,

π0(Uσ(r)) denotes the discrete topological space given by the connected components
of Uσ(r). Thus, each π0(Uσ) is a disjoint union of points that are identified with each
other as the filtration value increases and so it cannot be an element in FCW-cpx,
but rather an element from RCW-cpx. Thus, in this case πU

0 ∈ RRDiag(K). For
all r ∈ R, there is an epimorphism XU(r) → π0

U(r) sending each cell from XU(r)
to its respective connected component from π0

U(r); these morphisms are consistent
along R. Altogether we have a sequence of epimorphisms XU → π0

U → ∗U .

2.4. Geometric Realization. For an abstract simplicial complex K, we denote
by |K| its underlying topological space. Given a simplex σ ∈ K, we write |σ| to
denote the number of vertices of σ. We use dim(σ) for the dimension of a simplex
σ, that is dim(σ) = |σ| − 1. We write by ∆n the topological space associated to the
standard n-simplex. Given a simplex σ ∈ K, we use the notation ∆σ := ∆dim(σ) for
simplicity. Given a pair τ ≺ σ in K, we have a corresponding inclusion ∆τ →֒ ∆σ.
As a special case of a CW-complex, we denote by Kn and K≤n the set of n-cells
and the n-skeleton respectively.

Definition 2.10. Let D ∈ RDiag(K). The geometric realization ∆KD of D is the
object in CW-cpx defined as

∆KD =
⊔

σ∈K

∆σ ×D(σ)
/
∼ ,

where, for any pair τ ⪯ σ in K the relation identifies a pair of points

(∆τ →֒ ∆σ)(x)× y ∼ x×D(τ ⪯ σ)(y)

for each pair of points x ∈ ∆τ and y ∈ D(σ). This ∆KD has a natural filtration
given by F p∆KD =

⋃
σ∈K≤p ∆σ×D(σ) for all p ≥ 0. A cell τ × c is a face of another

cell σ× a if and only if τ ⪯ σ and also c ∈ D(τ ⪯ σ)(a). If the underlying simplicial
complex K is clear from the context, we write ∆D instead of ∆KD.

Notice that Definition 2.10 also applies to diagrams D ∈ RRDiag(K). We define
∆KD by setting (∆KD)r := ∆K(Dr) for all r ∈ R. Notice that our gluing conditions
are consistent in this case as

D(τ ⪯ σ) ◦ ΣtD(σ)(y) = ΣtD(τ) ◦ D(τ ⪯ σ)(y)

for any pair τ ⪯ σ from K and all t > 0 and all points y ∈ D(σ). Altogether we
obtain ∆K(D) ∈ RCW-cpx. Given a regular morphism F : D → L of diagrams in
RRDiag(K), there is an induced morphism on the geometric realization which we
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denote ∆F . Denote by ∗D the diagram given by

∗D(σ)r =

{
∗ if D(σ)r ̸= ∅

∅ else

and note that there is a homotopy equivalence ∆(∗D)r ≃ |K
D
r |, where K

D is the
filtered simplicial complex with the same underlying vertex set as K and σ ∈ KD

r

if and only if D(σ)r ̸= ∅. The projection onto the simplex coordinates gives a base
projection pb : ∆D → ∆(∗D) ≃ |KD|.

Example 2.11. Let D ∈ FRDiag(K). We define the multinerve of D as

MNerv(D) = ∆(π0(D)) .

This object was first introduced in [6] in the case of πU
0 for a space X covered by U .

In [6] it was defined as a simplicial poset, a notion that is equivalent to that of a
∆-complex. There are epimorphisms ∆D → MNerv(D)→ ∆(∗D) ≃ |K|.

Remark 2.12. Let D be a diagram of CW-complexes over the simplicial complex K.
We can extend D to a diagram D′ on the barycentric subdivision Bd (K) by defining
D′(τ0 ≺ · · · ≺ τn) = D(τn) on an n-simplex τ0 ≺ τ1 ≺ · · · ≺ τn in Bd (K). A non-
identity morphism in Bd (K) that has τ0 ≺ τ1 ≺ · · · ≺ τn as its codomain must have
the same flag with one of the τk’s left out as its domain. The diagram D′ maps such a
morphism to the identity in case k ̸= n or the morphism D(τn−1 ≺ τn) in case k = n.
It is clear from the definition of the homotopy colimit via the simplicial replacement
that the geometric realization ∆(D′) coincides with the definition of hocolimD;
see [8, § 4] and also [15, Def. 15.8]; notice that in the category K, each flag is to
be interpreted as a sequence of arrows τ0 ← τ1 ← · · · ← τn. A modified version of
the homotopy equivalence |K| ≃ |Bd (K)| shows that ∆(D) ≃ ∆(D′). Hence, we
could have worked with homotopy colimits all throughout, but we chose to work
with the geometric realization since it is technically easier to handle and because in
some instances it is the Mayer-Vietoris blowup complex, which has already appeared
before in TDA [28]. An instance of a homotopy colimit in TDA can be found in
Appendix B in [4].

Proposition 2.13. Let F : D → L be a morphism of diagrams in RDiag(K). If
F(σ) is a homotopy equivalence for all σ ∈ K, then ∆F : ∆D → ∆L is a homotopy
equivalence.

One way to see this is to view ∆D as a homotopy colimit (see Remark 2.12), which
is a homotopy invariant functor on diagrams. Also, a proof of this result in the more
general context of diagrams of spaces can be found in [13, Proposition 4G.1].

Example 2.14. Let X ∈ CW-cpx covered by U and recall the diagram XU from
Example 2.9. In this case ∆(XU) is the Mayer-Vietoris blowup complex associated
to the pair (X,U) and it can be described as a subspace of the product X × |NU |.
This leads to the fiber projection pf : ∆(XU) → X and to the base projection pb :
∆(XU) → |NU |. As shown in [13, Proposition 4G.2], pf is a homotopy equivalence
∆(XU) ≃ X. If each XU(σ) is contractible for all σ ∈ NU , then pb is also a homotopy
equivalence by Proposition 2.13.

An interesting direction of research would be to use Proposition 2.13 to define
compatible collapses, such as in Discrete Morse Theory (see [1, 21, 25]) and end
up with a diagram of regular CW-complexes. This motivates the study of spectral
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sequences associated to such diagrams. We see further reasons in Section 3. On the
other hand, given the importance of Proposition 2.13, we would like to adapt it to an
approximate version in the context of diagrams in RRDiag(K). Instead of studying
homotopy equivalences, we consider equivalences induced by acyclic carriers. This
is done in Section 5.

2.5. Spectral Sequences of Bounded Filtrations. Let A∗ be a graded module
with differentials dn : An → An−1 for all n ≥ 1, and such that Am = 0 for all m < 0.
Assume that there is a filtration 0 = F−1A∗ ⊆ F 0A∗ ⊆ F 1A∗ ⊆ · · · ⊆ FNA∗ = A∗

of A∗ that is preserved by the differentials d∗ in the sense that dn(F
pA) ⊆ F pA for

all p ≥ 0. We say that A∗ is a filtered differential graded module and denote this by
the triple (A, d, F ). Then there is a spectral sequence

E1
p,q = Hq

(
F pA∗

/
F p−1A∗

)
⇒ Hp+q

(
A∗

)

for all p, q ≥ 0, see [19, Theorem 2.6]. A morphism of spectral sequences is a
sequence of bigraded morphisms f r : Er

p,q → E
r

p,q that commute with the spectral
sequence differentials, i.e. dr ◦ f

r = dr ◦ f
r for all r ≥ 0. Apart from that, these

morphisms satisfy f r+1 = H(f r) for all r ≥ 0.
Suppose that (A∗, d, F ) is another filtered differential graded module together

with its corresponding spectral sequence E
r

p,q. Consider a morphism f : A∗ → B∗

that commutes with the differential f ◦ d = d ◦ f and also preserves filtrations
f(F pA∗) ⊆ F

p
(A∗) for all p ≥ 0. This induces a morphism of spectral sequences

Er
p,q → E

r

p,q

by [19, Theorem 3.5]. We denote by SpSq the category of spectral sequences, while
we denote by PSpSq the category of functors F : R→ SpSq.

3. Spectral Sequences for Geometric Realizations

Recall the persistent Mayer-Vietoris spectral sequence [26] associated to a pair
(X,U) of a space with a cover:

E1
p,q(X,U) =

⊕

σ∈Np

U

PHq(X
U(σ))⇒ PHp+q(∆X

U) ≃ PHp+q(X) . (1)

For the details about this spectral sequence in the persistent case we refer the reader
to [26]. There are some limitations to the applicability of this spectral sequence
to Vietoris-Rips complexes that were already pointed out in [27]: If we choose a
cover of a point cloud X and then deduce a cover U of the associated Vietoris-Rips
complex VR∗(X) by subcomplexes, then we can only recover PHk(VR(X)) from
PHk(∆VR∗(X)

U) for filtration parameters below an upper bound R determined by
the overlaps of the covering sets. In this section we present a regular diagram of
CW-complexes that avoids this upper limit problem completely, see Example 3.6.

Before we solve our problem, we need to introduce some chain complexes. We
come back to the case of filtrations later, but for now we focus on regular diagrams
instead. Given a diagram D in RDiag(K), we denote by D(τ ⪯ σ)∗ the induced
morphism of cellular chain complexes Ccell

∗ (D(σ))→ Ccell
∗ (D(τ)). The cellular chain

complex Ccell
∗ (∆D, δ∆) associated to ∆D is defined as follows: For all m ≥ 0 we

have that Ccell
m (∆D) is a vector space generated by cells σ × c with dim(σ) = p and
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c ∈ D(σ)q so that p+ q = m. On such a cell σ × c the differential δ∆ is given by

δ∆(σ×c) =
∑

σi≺σ

(−1)i




∑

a∈D(σi⪯σ)(c)

[a : D(σi ⪯ σ)(c)]σi × a


+(−1)dim(σ)

∑

b∈c\c

[b : c]σ×b

where the first sum runs over the faces σi of σ. As shown in the proof of Lemma 3.1,
the map δ∆ is indeed a differential. In addition, notice that the filtration of ∆K(D)
carries over to Ccell

∗ (∆KD) by taking F pC∗(∆KD) := C∗(F
p∆KD) for all p ≥ 0.

Now, consider the double complex (Cp,q(D), d
V , dH) given by

Cp,q(D) =
⊕

σ∈Kp

Ccell
q

(
D(σ)

)

for all p, q ≥ 0. The vertical differential is defined by the direct sum of chain differ-
entials dVp,q = (−1)p

⊕
σ∈Kp dσq where dσ∗ denotes the differential from Ccell

∗ (D(σ)) for

all σ ∈ Kp; of course dV ◦dV = 0. The horizontal differential is given by the Čech dif-
ferential dHp,q which is defined for a cell a ∈ D(σ) as

∑
σi≺σ

(−1)iD(σi ≺ σ)∗(a), where

D(σi ≺ σ)∗ denotes the induced chain morphism Ccell
∗ (D(σ)) → Ccell

∗ (D(σi)) for all
faces σi from σ. Also, dH ◦ dH = 0 by functoriality of Ccell

∗ (·) and the fact that
D(ρ ≺ τ)∗D(τ ≺ σ)∗ = D(ρ ≺ σ)∗ for any three simplices ρ ≺ τ ≺ σ. Note that for
each pair of indices i < j, the face map D(σij ⪯ σ)∗ appears twice with respective
coefficients (−1)i(−1)j and (−1)i(−1)j−1; which have opposite sign and cancel out.
On the other hand, anticommutativity dV ◦ dH = −dH ◦ dV follows since D(τ ≺ σ)∗
is a chain morphism for all τ ≺ σ from K.
Now, we consider the double complex spectral sequence from [19, Section 2.4].

Given D in RDiag(K) there is a spectral sequence

E1
p,q(D) =

⊕

σ∈Kp

Hq(D(σ))⇒ Hp+q(S
Tot
∗ (D))

where STot(D) is the total complex defined as STot
n (D) =

⊕
p+q=nCp,q(D) together

with a differential dTot = dV +dH . Also, recall that the total complex has a filtration
induced by the vertical filtration on Cp,q(D) given by

FmSTot
∗ (D) =

⊕

p+q=n
p≤m

Cp,q(D)

for all integers m ≥ 0, see [26] for an explanation. Next, we relate this total complex
to the geometric realization from Definition 2.10.

Lemma 3.1. There is an isomorphism Ccell
∗ (∆D, δ∆) ≃ STot

∗ (D) which preserves
filtration. That is, F pCcell

∗ (∆D, δ∆) ≃ F pSTot
∗ (D) for all p ≥ 0.

Proof. First we define a chain morphism ψ : Ccell
m (∆D) → STot

m (D) generated by
the assignment: a cell σ × c ∈ (∆D)m with σ ∈ Kp and c ∈ D(σ)q for integers
p+ q = m, is sent to ψ(σ× c) = (c)σ ∈ S

Tot
m (D); where by (c)σ we refer to the vector

from STot
m (D) which is zero in all components except at the component indexed by

σ, where it is equal to c. On the other hand, ψ is a chain morphism since we have
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the equality

ψ
(
δ∆(σ × c)

)
=
∑

σi≺σ

(−1)i
( ∑

a∈D(σi⪯σ)(c)

([a : D(σi ⪯ σ)(c)]a)σi

)

+ (−1)dim(σ)
∑

b∈c\c

([b : c]b)σ =
∑

σi≺σ

(−1)i(D(σi ⪯ σ)∗(c))σi + (−1)dim(σ)(dσq (c))σ

= (dH + dV )((c)σ) = dTot((c)σ) .

One can see that ψ is injective, and admits an inverse ψ−1 : STot
m (D) → Ccell

m (∆D)
that sends (σ)c to σ × c. Notice that by definition ψ sends a chain in F pCcell

n (∆D)
to a chain in F pSTot

n (D) for all p ≥ 0 and in particular it preserves filtration. □

Remark 3.2. Continuing with Remark 2.12, as both ∆Bd (K)D
′ and hocolim (D)

refer to the same space, we could have considered the homotopy colimit spectral
sequence

E1
p,q(Bd (K),D′) =

⊕

σ∈Bd (K)p

Hq(D
′(σ))⇒ Hp+q(hocolimD) .

Let us construct a diagram of spaces whose geometric realization is homeomorphic
to |K| for any finite simplicial complex K. We start by taking a finite partition P
of the vertex set V (K) and denote by K(U) the maximal subcomplex of K with
vertices in U ∈ P . We denote by ∆P the standard simplex with vertices in P . For a
simplex τ ∈ K, we define P(τ) ∈ ∆P to be the simplex consisting of all partitioning
sets U ∈ P such that τ ∩ U ̸= ∅. In particular if U ∈ P(τ), then it determines
a standard simplex τ(U) ∈ K(U) of dimension |τ ∩ U | − 1 ≥ 0 whose vertices are
precisely those from τ ∩ U , so that there is an inclusion ∆τ(U) →֒ |K(U)|. For a
vertex v ∈ K, we denote by P(v) the partitioning set from P which contains v.

We define the (K,P)-join diagram J K
P : (∆P)op → FCW-cpx for all σ ⊆ P by

assigning the subspace formed by the union of products of images

J K
P (σ) =

⋃

ρ∈K
P(ρ)=σ

∏

U∈σ

Im
(
∆ρ(U) →֒ |K(U)|

)
,

for all σ ∈ ∆P ; by definition, notice that J K
P (σ) ⊆

∏
U∈σ |K(U)|. Additionally,

notice that J K
P (U) = |K(U)| for all U ∈ P . However, J K

P (σ) could even be empty
for σ ∈ ∆P with dim(σ) > 0. For any pair τ ⪯ σ in ∆P , we consider the projection
πτ⪯σ :

∏
U∈σ |K(U)| →

∏
U∈τ |K(U)|, that forgets all product components which are

indexed by vertices of σ that are not vertices of τ . We claim that πτ⪯σ restricts to
a well-defined face map J K

P (τ ⪯ σ) : J K
P (σ) → J K

P (τ). In order to show this, we
consider an arbitrary simplex ρ ∈ K such that P(ρ) = σ. Next, we consider the
face λ(τ) ⪯ ρ which is spanned by the vertices from ρ ∩ U for all U ∈ τ , so that
P(λ(τ)) = τ and also λ(τ)(U) = ρ(U) for all U ∈ P . Then, we obtain the following
equality

πτ⪯σ

(∏

U∈σ

Im
(
∆ρ(U) →֒ |K(U)|

))
=
∏

U∈τ

Im
(
∆λ(τ)(U) →֒ |K(U)|

)
,

so that the face maps are well-defined, as claimed.

Lemma 3.3. Let K be a simplicial complex together with a partition P of its vertex
set V (K). There is a CW-complex homeomorphism ∆(J K

P ) ≃ |K|.
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Proof. Consider the continuous map f : ∆(J K
P )→ |K| defined by mapping a point

(
∑

U∈P(τ)

yUU,

(
∑

v∈U

xvv

)

U∈P(τ)

)
∈ ∆P(τ) ×

∏

U∈P(τ)

∆τ(U)

/
∼

to
∑

v∈τ yP(v)xvv in ∆τ for all τ ∈ K; where we have values 0 ≤ yU ≤ 1 and
0 ≤ xv ≤ 1 for all U ∈ P(τ) and all v ∈ U , and such that

∑
U∈P(τ) yU = 1 and∑

v∈U xv = 1 for all U ∈ P . On the other hand, let
∑

v∈τ xvv ∈ ∆τ be a point such
that 0 ≤ xv ≤ 1 for all v ∈ ∆τ and such that

∑
v∈τ xv = 1. Then we can define the

inverse continuous map

f−1

(
∑

v∈τ

xvv

)
=

(
∑

U∈P(τ)

(
∑

v∈U

xv

)
U,

(
ψU

(
∑

v∈τ

xvv

))

U∈P(τ)

)

where we consider a map ψU : ∆τ → ∆τ(U) given by

ψU

(
∑

v∈τ

xvv

)
=





∑
v∈τ(U)

(
xv∑

v∈τ(U) xv

)
v if

∑
v∈τ(U) xv ̸= 0

∗ ∈ ∆τ(U) otherwise, where ∗ denotes any point (see below).

.

By the equivalence relation used to define ∆(J K
P ), the product factor ∆τ(U) is col-

lapsed to a single point for the subset of points whose U -coordinate in ∆P(τ) vanishes.
If
∑

v∈τ(U) xv = 0, then xv = 0 for all v ∈ τ(U) and the U -coordinate of the point∑
v∈τ xvv in ∆P(τ) is 0. It is straightforward to check that f and f−1 are well-defined

and consistent along K. □

Example 3.4. Consider the simplicial complex K depicted in the top left part of
Figure 1, formed by gluing a 2-simplex to a 4 simplex along an edge. We consider
a partition of the vertex set of K into the two subsets P = {U, V }, where points
in U are indicated by black circles and points in V are indicated by red squares.
In the top right of Figure 1, we depict the standard 1-simplex ∆P together with
the diagram JKP over it. In particular, notice that JKP ([U, V ]) is a subset of the
product |K(U)| × |K(V )| and that the morphisms JKP ([U, V ]) → JKP (V ) = |K(V )|
and JKP ([U, V ]) → JKP (U) = |K(U)| are both projections. In addition, notice that
J K

P ([U, V ]) has five vertices corresponding to the five different edges connecting
vertices from U to V , five edges corresponding to five 2-simplices containing vertices
in both U and V and a single 2-cell corresponding to the unique 4-simplex in K.
Finally, the bottom left of Figure 1 shows the geometric realization ∆JKP .

Observe that J K
P is a diagram of prodsimplicial complexes as in [15, Def. 2.43],

which are in particular regular CW-complexes. By the observations above we can
therefore consider the associated double complex spectral sequence

E1
p,q(J

K
P ) =

⊕

σ∈∆P

Hq(J
K
P (σ))⇒ Hp+q(∆J

K
P ) ≃ Hp+q(K) .

Next, we show that the “size” of K is the same as the “size” of the diagram J K
P . For

this, recall that each simplex σ ∈ K corresponds to a unique simplex P(σ) ∈ ∆P .
This is different to the case of a cover, U , for K, where a simplex in K might
correspond to several simplices from the nerve NU . Here, we write #L for the
number of cells in a complex L.

Proposition 3.5. #K =
∑

σ∈∆P #J K
P (σ).
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Proof. Consider an assignment ψ : K →
⊔
σ∈∆P J K

P (σ) given by sending ρ ∈ K to
(ρ(U))U∈P(ρ) ∈ J

K
P (P(ρ)); where (ρ(U))U∈P(ρ) ∈

∏
U∈P(ρ) |K(U)|. By the definition

of J K
P , ψ is well-defined and surjective. Also, ψ is injective as the vertex set from

ρ ∈ K is uniquely determined by the simplices ρ(U) for all U ∈ P(ρ). □

K

U V

J K
P (U) J K

P (V )

J K
P ([U, V ])

[U, V ]U V

∆
P

J K
P

∆J K
P

Figure 1. Depiction of K, J K
P and ∆J K

P from Example 3.4. Over
the edge [U, V ], we consider J K

P ([U, V ]) ⊂ |K(U)| × |K(V )|, where
we add dashed lines to illustrate the embedding into the product. On
the bottom left we depict ∆J K

P , where each red dashed line and each
green line is collapsed to a single point.

Now, let us consider a filtered simplicial complex K∗ ∈ FCW-cpx such that its
vertex set V (K∗) is fixed throughout all values of R. Let P be a partition of V (K∗).
We define the filtered regular diagram J K

P ∈ FRDiag(P) by sending r ∈ R to J Kr

P .
These diagrams inherit the shift morphisms ΣK∗ from K∗ in the following way: Let
σ ∈ ∆P and notice that we have restrictions Σs−rK|U : |Kr(U)| → |Ks(U)| for all
U ∈ σ, so that we have induced morphisms

∏

U∈σ

Σs−rK|U : JKr

P (σ)→ JKs

P (σ)

for all σ ∈ ∆P . In turn, these induce a shift morphism on ∆JKP which respect
filtrations, so that we have a commutative diagram

E∗
p,q(J

Kr

P ) ∆JKr

P Kr

E∗
p,q(J

Ks

P ) ∆JKs

P Ks

≃

≃

and thus PH∗(∆J
K
P ) ≃ PH∗(K∗). For each simplex σ ∈ ∆P one can see J K

P (σ) as
a filtered simplicial complex, so that

E1
p,q(J

K
P ) =

⊕

σ∈(∆P )p

PHq(J
K
P (σ))⇒ PHp+q(K) .



INTERLEAVING MAYER-VIETORIS SPECTRAL SEQUENCES 14

Example 3.6. Consider a point cloud X, a partition P and consider its Vietoris
Rips complex VR∗(X) ∈ FCW-cpx. In this case we have a fixed partition of the
vertex set of VR∗(X), which allows us to consider the spectral sequence:

E1
p,q

(
J

VR∗(X)
P

)
=
⊕

σ∈∆P

PHq(J
VR∗(X)
P (σ))⇒ PHp+q(VR∗(X)) .

This is very convenient as it avoids the main difficulties with the Mayer-Vietoris
blowup complex associated to a cover. Namely, one recovers PH∗(K) completely
without any bounds depending on the cover overlaps. In addition, notice that

∆J
VR∗(X)
P has the same number of cells than VR∗(X), contrary to the Mayer-Vietoris

blowup complex, whose number of cells is much larger, as shown in Proposition 3.5.

The (K,P)-join diagram is related to [23, Example 4]. There the motivation
behind the filtrations is given by a consistency radius and a filtration based on
the differences between local measurements. The same example appears (without a
filtration) as one of the opening examples in [13, Appendix 4.G].

4. ε-acyclic carriers

The following definition encodes our notion of ‘noise’.

Definition 4.1. Let X, Y ∈ RCW-cpx. An ε-acyclic carrier F ε
∗ : X∗ ⇒ Y [ε]∗ is a

family of acyclic carriers F ε
a : Xa ⇒ Ya+ε for all a ∈ R such that

Y (a+ ε ≤ b+ ε)F ε
a (c) ⊆ F ε

b (X(a ≤ b)(c))

for all cells c of Xa and a, b ∈ R with a ≤ b.

The proposition below is an adaptation of [20, Theorem 13.4] or [7, Lemma 2.4]
to the context of tame filtered CW-complexes.

Proposition 4.2. Let X∗, Y∗ ∈ FCW-cpx be tame, and assume that there exists
an ε-acyclic carrier

F ε
∗ : X∗ ⇒ Y [ε]∗ .

Then there exist chain morphisms f εa : C∗(Xa) → C∗(Ya+ε) carried by F ε
a for all

a ∈ R, so that Y (a + ε ≤ b + ε) ◦ f εa = f εb ◦X(a ≤ b). Furthermore, given another
such sequence of morphisms gεa : C∗(Xa) → C∗(Ya+ε), there exist chain homotopy
equivalences Hε

a : g
ε
a ≃ f εa which are carried by F ε

a for all a ∈ R.

Proof. Let b ∈ R and assume that f εa has already been defined for all values a < b,
where we allow for b = −∞. We first define f εb on all cells which are in the image
of X(a < b) for any a < b using the definition

f εb ◦X(a < b) = Y (a+ ε < b+ ε) ◦ f εa .

Notice that the assumption that Xa ⊆ Xb is crucial for this to work. By hypotheses,
given a cell c ∈ Im(X(a < b)), its image f εb (c) is then contained in

Y (a+ ε < b+ ε)F ε
a (c̃) ⊆ F ε

b (X(a < b)(c̃)) ,

where c̃ ∈ Xa is such that c = X(a < b)(c̃). Hence, f εb satisfies the carrier condition.
Next we define f εb on the remaining cells in

X̃b = Xb \
(⋃

a<b

X(a < b)
)
.
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We proceed to prove this by induction. First, choose a 0-cell f εb (v) ∈ F
ε
b (v) for each

remaining 0-cell v ∈ X̃b, and notice that d∗f
ε
b (v) = 0 = f εb (d∗v), where we use d∗ for

the chain complex differentials. Next, by induction, assume that for a fixed p ≥ 0,
the p-cells s ∈ Xb have image f εb (s) carried by F ε

b (s) and such that d∗ ◦ f
ε
b (s) =

f εb ◦ d∗(s). We would like to extend f εb to the (p+1)-cells. By semicontinuity, given
such a cell c ∈ Xb, its boundary d∗c is contained in F ε

b (c). On the other hand,
notice that by linearity and the induction hypotheses d∗f

ε
b (d∗c) = f εb (d∗d∗c) = 0,

thus f εb (d∗c) is a cycle in F ε
b (c). By acyclicity, there exists h ∈ F ε

b (c) such that
d∗h = f εb (d∗c) and thus we can define f εb (c) = h. Altogether, we have defined a
chain morphism f εb which is carried by F ε

b .
Since X∗ is tame, there exist a finite sequence of values a1 < a2 < · · · < aN such

that Xs = Xai for all s ∈ (ai−1, ai) where we define a0 = −∞ and aN+1 = ∞.
We apply the construction of f εb for all values b ranging over ai from i = 1 up to
i = N . This determines the chain morphism f ε∗ : C∗(X∗)→ C∗(Y [ε]∗), where we set
f εs = f εai for all s ∈ (ai−1, ai] where i = 1, 2, . . . , N and also f εt = f εaN for all t > aN .

Now, assume that gεb is also carried by F ε
b for all b ∈ R. Following [18, Sec. 12.3],

we define the chain complex I given by I0 = ⟨[0], [1]⟩ and I1 = ⟨[0, 1]⟩ and Ik = 0 for
k > 0. This is the cellular chain complex of the unit interval I decomposed into two
0-cells and one 1-cell. A chain homotopy hεb : f

ε
b ≃ gεb corresponds to a chain map

hεb : C
cell
∗ (Xb)⊗I → Ccell

∗ (Yb) such that hεb(x, [0]) = f εb (x) and h
ε
b(x, [1]) = gεb(x) for all

x ∈ Xb. LetH
ε
b (c, i) = F ε

b (c) for a cell (c, i) ∈ X×I. By assumption, Hε : X×I ⇒ Y
is an ε-acyclic carrier. Note that Ccell

∗ (Xb)⊗I ∼= Ccell
∗ (Xb× I). Replicating the first

part of the proof we can now extend any map hεb : C
cell
∗ (Xb) ⊗ I0 → Ccell

∗ (Yb) with
the above properties to all cells of X × I. □

Definition 4.3. Let X∗, Y∗ ∈ RCW-cpx. A shift carrier is an ε-acyclic carrier
IεX : X∗ ⇒ X∗+ε carrying the standard shift ΣεX∗. Let two ε-acyclic carriers

F ε : X∗ ⇒ Y∗+ε ,

Gε : Y∗ ⇒ X∗+ε ,

together with shift carriers I2εX and I2εY . We say that X∗ and Y∗ are ε-acyclic equiv-
alent whenever we have inclusions Gε ◦ F ε ⊆ I2εX and F ε ◦Gε ⊆ I2εY .

The motivation for the definition of ε-acyclic equivalences is the following lemma:

Proposition 4.4. Let X∗ and Y∗ be two tame elements from FCW-cpx which are
ε-acyclic equivalent. Then PH(X∗) and PH(Y∗) are ε-interleaved.

Proof. By Proposition 4.2 we know that there exist two chain maps f ε∗ : C∗(X∗) →
C∗(Y∗+ε) and g

ε : C∗(Y∗)→ C∗(X∗+ε) carried by F ε and Gε respectively. By hypoth-
esis the compositions gε ◦ f ε and f ε ◦ gε are carried by corresponding shift carriers
I2εX and I2εY . Thus, using the second part of Proposition 4.2 we obtain chain homo-
topies gε ◦ f ε ≃ Σ2εC∗(X) and f ε ◦ gε ≃ Σ2εC∗(Y ). Altogether, in homology these
compositions are equal to the corresponding shifts, and PH∗(X∗) and PH∗(Y∗) are
ε-interleaved. □

Example 4.5. Consider two finite metric spaces X and Y. Let dH(X,Y) be their
Hausdorff distance and set ε = 2dH(X,Y). Given a subcomplex K ⊆ VR(X), we
denote its vertex set by X(K) ⊆ X. Likewise for a simplex σ ∈ VR(X), we write
X(σ) ⊆ X for the vertices spanning σ. Define a carrier F ε : VR(X) ⇒ VR(Y) by



INTERLEAVING MAYER-VIETORIS SPECTRAL SEQUENCES 16

mapping a simplex σ ∈ VR(X)a to

F ε(σ) = | sup{K ⊆ VR(Y)a+ε | dH(X(σ),Y(K)) ≤ ε/2}|

This is clearly semicontinuous. If v0, . . . , vn are vertices in F ε(σ), then by definition
{v0, . . . , vn} is an n-simplex in F ε(σ). Therefore we have F ε(σ) ≃ ∆N for some
N ∈ N, which is acyclic. In particular, F ε is an ε-acyclic carrier. Interchanging
the roles of X and Y we also obtain an ε-acyclic carrier Gε : VR(Y) ⇒ VR(X).
Similarly, we define for a simplex σ ∈ VR(X)a the shift carrier

I2ε
X
(σ) = | sup{K ⊆ VR(X)a+2ε | dH(X(σ),X(K)) ≤ ε}|

Analogously one defines I2ε
Y
. Since Gε ◦F ε ⊆ I2ε

X
and F ε ◦Gε ⊆ I2ε

Y
, Proposition 4.4

implies that PH∗(VR(X)) and PH∗(VR(Y)) are ε-interleaved. This is similar to the
proof using correspondences, see [22, Proposition 7.8, Sec. 7.3].

Example 4.6. Consider RN together with a 1-Lipschitz function f : RN → R with
constant ε > 0. On the other hand, consider the lattices ZN and rZN+ l for a pair of
vectors r, l ∈ R

N such that the coordinates of r satisfy 0 < ri ≤ 1 for all 1 ≤ i ≤ N .
Then we take their corresponding cubical complexes C(ZN) and C(rZN + l) thought
as embedded in R

N . The function f induces a natural filtration for these cubical
complexes: a vertex v ∈ C(ZN) is contained in C(ZN)f(v), while a cell a ∈ C(ZN)
appears at the maximum filtration value on its vertices. There is an ε-acyclic carrier
F ε : C(ZN) ⇒ C(rZN + l) sending each cell a ∈ C(ZN) to the smallest subcomplex
F ε(a) containing all b ∈ C(rZN + l) such that b ∩ a ̸= ∅. In an analogous way the
inverse acyclic carrier can be defined, and the compositions F ε ◦ Gε and Gε ◦ F ε

define the shift carriers. Thus, using Proposition 4.4, one shows that PH∗(C(Z
N))

and PH∗(C(rZ
N + l)) are ε-interleaved.

An important assumption of Proposition 4.2 is that we are dealing with tame
filtered CW-complexes. However, what if we considered a pair of elements X∗, Y∗ ∈
RCW-cpx instead? In this context, we notice that given an ε-acyclic carrier F ε :
X∗ → Y∗[ε], it is not necessarily true that the compositions

Y (a+ ε ≤ b+ ε)F ε
a (c) and F

ε
b (X(a ≤ b)(c))

are still acyclic for all pairs a ≤ b from R. Thus, whenever we talk about ε-acyclic
carriers F ε : X∗ → Y∗[ε] in this context we assume that F ε

b (X(a ≤ b)(c)) is acyclic
for all pairs a, b ∈ R with a ≤ b and all cells c ∈ X(a).

Corollary 4.7. Let X∗, Y∗ ∈ RCW-cpx be a pair of elements such that both are
ε-acyclic equivalent in the above sense. Then dI(PH∗(X∗),PH∗(Y∗)) ≤ ε.

Proof. For each persistence value a ∈ R, we use Theorem 2.4 twice to obtain a pair
of chain morphisms fa : Ccell

a (X) → Ccell
a+ε(Y ) and ga+ε : C

cell
a+ε(Y ) → Ccell

a+2ε(X). In
a similar way we obtain a pair of chain homotopies ga+ε ◦ fa ≃ (Σ2εCcell

∗ (X))a and
fa+ε ◦ ga ≃ (Σ2εCcell

∗ (Y ))a so that we have equalities between the induced homology
morphisms [ga+ε] ◦ [fa] = [(Σ2εCcell

∗ (X))a] and [fa+ε] ◦ [ga] = [(Σ2εCcell
∗ (Y ))a] for all

a ∈ R. Now, for a pair of values a ≤ b from R, it is not necessarily true that
Y (a + ε ≤ b + ε) ◦ fa = fb ◦ X(a ≤ b). However, since Y (a + ε ≤ b + ε) ◦ fa and
fb ◦X(a ≤ b) are both included in F ε

b (X(a ≤ b)(c)) by hypotheses, then by applying
Theorem 2.4 again there is a chain homotopy equivalence Y (a + ε ≤ b + ε) ◦ fa ≃
fb ◦X(a ≤ b), which implies

[Y (a+ ε ≤ b+ ε)] ◦ [fa] = [fb] ◦ [X(a ≤ b)] ,
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and we have defined a persistence morphism [f∗] : PH∗(X∗)→ PH∗(Y∗[ε]). Similarly,
we can also put together the ga for all a ∈ R so that we obtain a morphism [g∗] :
PH∗(Y∗)→ PH∗(X∗[ε]). This leads to the claimed ε-interleaving. □

Example 4.8. In Appendix A, we describe a filtered CW-complex X, a regularly
filtered CW-complex Y , together with a pair of 0-acyclic carriers (i.e. ε = 0) F :
Y ⇒ X and G : X ⇒ Y which, together with the compositions G ◦ F and G ◦ F
as shift carriers, define a 0-acyclic equivalence between Y and X. Therefore, by
Corollary 4.7 we obtain isomorphisms PHn(X) ∼= PHn(Y ) for all n ≥ 0. In this case,
notice that Y is much smaller than X; thus it is worth considering the Regularly
Filtered complex Y in place of X. Next, we briefly describe how one could use

ε-equivalences. In this case, one could have considered a filtered complex X̃ which
is equal to X∗ outside the intervals (i − ε, i + ε) for values i = 1, 2, 3, 4 and for
some ε < 1/2. Notice that in this case one should be able to obtain an ε-acyclic

equivalence between X̃ and Y , so that by Corollary 4.7 PHn(X̃) and PHn(Y ) are
ε-interleaved for all n ≥ 0.

Remark 4.9. Notice that our notion of acyclicity is different from that in [3] and [12].
In [12] a filtered complexK∗ is called ε-acyclic whenever the induced homology maps
H∗(Kr)→ H∗(Kr+ε) vanish for all r ∈ R. In this case, one can still (trivially) define
acyclic carriers between ∗ andK∗. The problem arises when defining the shift carrier
IAεK for some constant A > 0, which does not exist in general. One can however,
adapt the proof of Proposition 4.2 so that there is a chain morphism ψε(dim(Kr)+1) :
C∗(Kr) → C∗(Kr+ε(dim(Kr)+1)); and that this coincides up to chain homotopy with
the composition through C∗(∗). One does this by following the same proof as in
Proposition 4.2, but increasing the filtration value by ε each time we assume that
some cycle lies in an acyclic carrier. Thus, if we have dim(K) = supr∈R(dim(Kr)) <
∞, then one could say that there is an ε(dim(K) + 1)-approximate chain homotopy
equivalence between C(∗) and C(K∗).

5. Interleaving Geometric Realizations

Next, we focus on acyclic carrier equivalences between a pair of diagrams D,L ∈
RRDiag(K). We start by taking ε-acyclic carriers F ε

σ : D(σ) ⇒ L(σ) for all σ ∈ K
which have to be compatible in the following sense: For any pair τ ⪯ σ and any cell
c ∈ D(σ), there is an inclusion

L(τ ⪯ σ)(F ε
σ(c)) ⊆ F ε

τ (D(τ ⪯ σ)(c)) (2)

and we assume in addition that F ε
τ (D(τ ⪯ σ)ΣrD(σ)(c)) is acyclic for all r ≥ 0.

This compatibility leads to ‘local’ diagrams of spaces. That is, given a pair of values
a ∈ R and r ≥ 0 and a cell c ∈ D(σ)a, we consider an object F r,ε

σ×c ∈ RDiag(∆σ).
It is given by the space F r,ε

σ×c(τ) = F ε
τ

(
D(τ ⪯ σ)ΣrD(σ)(c)

)
for all faces τ ⪯ σ. For

any sequence ρ ⪯ τ ⪯ σ in K, there are morphisms in F r,ε
σ×c given by restricting

morphisms from L

τ F r,ε
σ×c(τ) F ε

τ

(
D(τ ⪯ σ)ΣrD(σ)(c)

)

ρ F r,ε
σ×c(ρ) F ε

ρ

(
D(ρ ⪯ σ)ΣrD(σ)(c)

)
.

L(ρ⪯τ)⪯
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Using condition (2) repeatedly on the cells from L = D(τ ⪯ σ)ΣrD(σ)(c), we see
that we have an inclusion

L(ρ ⪯ τ)
(
F ε
τ (L)

)
⊆ F ε

σ

(
D(ρ ⪯ τ)(L)

)
.

Thus the diagram F r,ε
σ×c is indeed well-defined, and we may consider the geometric

realization ∆F r,ε
σ×c. By hypothesis each F r,ε

σ×c(τ) is acyclic for all τ ⪯ σ, so that the
first page of the spectral sequence E∗

p,q(F
r,ε
σ×c)⇒ Hp+q(∆F

r,ε
σ×c) is equal to

E1
p,q(F

r,ε
σ×c) =

⊕

τ∈(∆σ)p

Hq(F
r,ε
σ×c(τ)) =

{⊕
τ∈(∆σ)p F if q = 0,

0 otherwise.

In fact, computing the homology with respect to the horizontal differentials on the
first page corresponds to computing the homology of ∆σ. Thus, E2

p,q(F
r,ε
σ×c) is zero

everywhere except at p = q = 0 where it is equal to F. Thus, the spectral sequence
collapses on the second page, and ∆F r,ε

σ×c is acyclic. We use the notation F ε
σ×c = F 0,ε

σ×c.

Definition 5.1. Let D and L be two diagrams in RRDiag(K). Suppose that there
are ε-acyclic carriers F ε

σ : D(σ) ⇒ L(σ) for all σ ∈ K, and such that

L(τ ⪯ σ)
(
F ε
σ(c)

)
⊆ F ε

σ

(
D(τ ⪯ σ)(c)

)

for all c ∈ D(σ) and in addition F ε
τ (D(τ ⪯ σ)ΣrD(σ)(c)) is acyclic for all r ≥ 0.

Then we say that the set {F ε
σ}σ∈K is a (ε,K)-acyclic carrier between D and L. We

denote this by F ε : D ⇒ L.

Theorem 5.2. Let D and L be two diagrams in RRDiag(K). Suppose that there
are (ε,K)-acyclic carriers F ε : D ⇒ L and Gε : L⇒ D, together with a pair of shift
(ε,K)-acyclic carriers I2εD : D ⇒ D and I2εL : L⇒ L, and such that these restrict to
acyclic equivalences

Gε
τ ◦ F

ε
τ ⊆ (I2εD )τ and F ε

τ ◦G
ε
τ ⊆ (I2εL )τ

for each simplex τ ∈ K. Then there is an ε-acyclic equivalence F ε : ∆D ⇒ ∆L
which preserves filtration. That is, there are ε-acyclic equivalences F pF ε : F p∆D ⇒

F p∆L for all p ≥ 0.

Proof. Let σ×c ∈ ∆D be a cell, where c is anm-cell inD(σ). Define an acyclic carrier
F ε : ∆D ⇒ ∆L by sending σ×c to the acyclic carrier ∆F ε

σ×c, which is a subcomplex
of ∆L. Let us first check semicontinuity. For any pair of cells τ × a ⪯ σ× c in ∆D,
the cell a is contained in the subcomplex D(τ ⪯ σ)(c), and by continuity of D(ρ ⪯ τ)

we have that D(ρ ⪯ τ)(a) ⊆ D(ρ ⪯ σ)(c). Thus there are inclusions

F ε
ρ (D(ρ ⪯ τ)(a)) ⊆ F ε

ρ (D(ρ ⪯ σ)(c)) = F ε
ρ (D(ρ ⪯ σ)(c))

for all ρ ⪯ τ . More concisely, F ε
τ×a(ρ) ⊆ F ε

σ×c(ρ) for all ρ ⪯ τ . As a consequence
∆F ε

τ×a ⊆ ∆F ε
σ×c and semicontinuity holds.

Next, notice that F ε
(
Σr∆D(σ × c)

)
= F ε

(
σ × ΣrD(σ)(c)

)
= ∆F r,ε

σ×c which is an
acyclic carrier. In order for F ε to be an ε-acyclic carrier, it remains to show the
inclusion Σr∆L ◦ F ε ⊆ F ε ◦Σr∆D for all r ≥ 0. For this, take σ × c ∈ ∆D and see
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that

Σr∆L ◦ F ε(σ × c) = Σr∆L

( ⋃

τ⪯σ

τ × F ε
τ

(
D(τ ⪯ σ)(c)

))

=
⋃

τ⪯σ

τ × ΣrL(τ)
(
F ε
τ

(
D(τ ⪯ σ)(c)

))
⊆
⋃

τ⪯σ

τ × F ε
τ

(
ΣrD(τ)D(τ ⪯ σ)(c)

)

=
⋃

τ⪯σ

τ × F ε
τ

(
D(τ ⪯ σ)ΣrD(σ)(c)

)
= F ε

(
σ × ΣrD(σ)(c)

)
= F ε ◦ Σr∆D(σ × c) .

Similarly, one can define an ε-acyclic carrier Gε : ∆L⇒ ∆D sending σ × c ∈ ∆L
to ∆Gε

σ×c. In addition, we define respective shift ε-acyclic carriers I2εD : ∆D ⇒ ∆D
and I2εL : ∆L⇒ ∆L, sending respectively σ× c ∈ ∆D to ∆(I2εD )σ×c and τ × a ∈ ∆L
to ∆(I2εL )τ×a. Then we have

Gε ◦ F ε(σ × c) = Gε(∆F ε
σ×c) = Gε

( ⋃

τ⪯σ

τ × F ε
τ

(
D(τ ⪯ σ)(c)

))

=
⋃

ρ⪯τ⪯σ

ρ×Gε
ρ

(
L(ρ ⪯ τ)F ε

τ

(
D(τ ⪯ σ)(c)

))

⊆
⋃

ρ⪯σ

ρ×Gε
ρF

ε
ρ

(
D(ρ ⪯ σ)(c)

)
⊆ ∆(I2εD )σ×c = I2εD (σ × c),

where we have used the commutativity condition and equivalence of F ε
ρ and Gε

ρ.

Consequently Gε ◦F ε ⊆ I2εD ; the other inclusion F ε ◦Gε ⊆ I2εL follows by symmetry.
Altogether, we have obtained an ε-equivalence F ε : ∆D ⇒ ∆L. Finally, notice that
for all p ≥ 0 and for each cell σ×c ∈ F p∆D, its carrier ∆F ε

σ×c is contained in F p∆D
and so it preserves filtration. The same follows for the other acyclic carriers. □

Let X ∈ FCW-cpx together with a cover U . Recall the definitions of the dia-
grams XU and πU

0 over NU from Example 2.9. Let dI
(
PH∗(X

U(σ)),PH∗(π
U
0 (σ))

)
≤ ε

for all σ ∈ NU . This example has been of interest before, see for Example [12] or [3].
As mentioned in Remark 4.9, our notion of ε-acyclicity is much stronger than that
from [12]. This is why we obtain a result closer to the Persistence Nerve Theorem
from [5] than to the Approximate Nerve Theorem from [12].

Given a diagram D ∈ FRDiag(K), recall the diagram π0D from Example 2.11.
We may define an (ε,K)-acyclic carrier πε0D : D ⇒ π0D where we send cells to their
corresponding connected component classes. The compatibility condition π0(D(τ ⪯
σ))(πε0D(D(σ))) ⊆ πε0D(D(τ)) also follows for any pair of simplices τ ⪯ σ from K.

Corollary 5.3 (Strong Approximate Multinerve Theorem). Consider a diagram D
in FRDiag(K). Assume that there is a (ε,K)-acyclic carrier F ε : π0D ⇒ D such
that the composition F ε

σ ◦ π
ε
0Dσ carries the shift morphism Σ2εDσ for all σ ∈ K.

Then, there is an ε-acyclic equivalence F ε : MNerv(D) ⇒ ∆D. Consequently,

dI(PH∗(MNerv(D)),PH∗(∆D)) ≤ ε .

Proof. The shift (2ε,K)-carrier I2επ0D sends points to points, while the other I2εD is
defined as the composition F ε

σ◦π
ε
0Dσ, which is a (2ε,K)-acyclic carrier by hypotheses.

Thus, by Proposition 5.2 there exists an ε-acyclic equivalence F ε : MNerv(D) ⇒

∆D. □

Example 5.4. Consider a filtered simplicial complex L∗ together with a partition of
its vertex set P . Assume that the (L∗,P)-join diagram J L∗

P is such that there exists
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a (ε,K)-acyclic carrier F ε : π0J
L∗

P ⇒ J L∗

P such that F ε
σ ◦ π

ε
0J

L∗

P (σ) is a carrier for
Σ2εJ L∗

P (σ) for all σ ∈ ∆P . Then, by Corollary 5.3, there is an ε-acyclic equivalence
∆π0

(
J L∗

P

)
⇒ ∆J L∗

P so that

dI
(
PH∗(MNerv(J L∗

P )),PH∗(L∗)
)
≤ ε .

Acyclic carriers have been used in [14] and in [21] for approximating continuous
morphisms by means of simplicial maps. Here we have used the same tools to
obtain an approximate homotopy colimit theorem. The acyclic carrier theorem is an
instance of the more general acyclic Model theorem, see [10, Sec. 2]. An interesting
future research direction would be to see how that general result can bring new
insights into applied topology.

6. Interleaving Spectral Sequences

Definition 6.1. Let A and B from SpSq. A n-spectral sequence morphism f :
A → B is a spectral sequence morphism f : A → B which is defined from page n.

Definition 6.2. Given two objects A and B in PSpSq. We say that A and B
are (ε, n)-interleaved whenever there exist two n-morphisms ψ : A → B[ε] and
φ : B → A[ε] such that the following diagram commutes

A B

A[ε] B[ε]

A[2ε] B[2ε]

ψΣεA ϕ ΣεB

ψ[ε]ΣεA[ε] ϕ[ε] ΣεB[ε]

(3)

for all pages r ≥ n. This interleaving defines a pseudometric in PSpSq

dnI
(
A,B

)
:= inf

{
ε | A and B are (ε, n)-interleaved

}
.

Proposition 6.3. Suppose that A and B are (ε, n)-interleaved. Then these are
(ε,m)-interleaved for all m ≥ n. In particular, we have that

dmI
(
A,B

)
≤ dnI

(
A,B

)

for any pair of integers m ≥ n.

Proof. Follows directly from the definitions. □

We start now by considering Mayer-Vietoris spectral sequences. Under some
conditions which are a special case of Theorem 5.2, one can obtain one-page stability.
In fact, this stability is due to morphisms directly defined on the underlying double
complexes, which is a very strong property.

Proposition 6.4. Let X and Y be two tame elements in FCW-cpx together with
a pair of respective finite covers U and V by subcomplexes so that K = NU = NV .
Suppose that there are (ε,K)-acyclic carriers F ε : XU ⇒ Y V and Gε : Y V ⇒ XU ,
together with a pair of shift (ε,K)-acyclic carriers I2ε

XU : XU ⇒ XU and I2ε
Y V : Y V ⇒

Y V , and such that these restrict to acyclic equivalences

Gε
τ ◦ F

ε
τ ⊆ (I2εXU )τ and F ε

τ ◦G
ε
τ ⊆ (I2εY V )τ
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for each simplex τ ∈ K. Then there are a pair of double complex morphisms ϕε :
C∗,∗(X,U)→ C∗,∗(Y,V)[ε] and ψ

ε : C∗,∗(Y,V)→ C∗,∗(X,U)[ε] inducing a first page
interleaving between E∗

∗,∗(X,U) and E
∗
∗,∗(Y,V).

Proof. Unpacking the definitions this means we have to give chain homomorphisms

(ϕεσ)r : C∗(X
U(σ)r)→ C∗(Y

V(σ)r+ε) ,

(ψεσ)r : C∗(Y
V(σ)r)→ C∗(X

U(σ)r+ε)

that are natural in σ ∈ K and in r ∈ R. Since K is a post category, these can be
constructed inductively as follows: As in Proposition 4.2 we may define ϕεσ on all
simplices σ ∈ K of dimension dim(σ) = dim(K). Note that (ϕεσ)r is carried by (F ε

σ)r
for all r ∈ R. Assume by (reverse) induction that ϕετ are defined and carried by F ε

τ

for all τ ∈ K with n ≤ dim(τ) ≤ dim(K) in such a way that for all cofaces τ ⪯ σ
the naturality condition ϕετ ◦X

U(τ ≺ σ) = Y V(τ ≺ σ)[ε] ◦ ϕεσ holds. Now let τ ∈ K
have dimension dim(τ) = n− 1 ≥ 0. The naturality condition on the simplices fixes
ϕετ on the filtered subcomplex Xτ =

⋃
τ≺σ Im

(
XU(τ ≺ σ)

)
, where the union is taken

over all cofaces σ of τ . Here notice that we can assume that ϕετ is well-defined since
the previous choices of ϕεσ for all cofaces τ ≺ σ are consistent due to the fact that for
each cell c ∈ Xτ there exists a unique maximal simplex σ ∈ NU such that c ∈ XU(σ).
In addition, notice that by hypotheses Y V(τ ≺ σ)((F ε

σ)(c)) ⊆ F ε
τ (X

U(τ ≺ σ)(c)) for
all a ∈ R and c ∈ XU(σ), so that our definition of ϕετ in X

τ is indeed carried by F ε
τ .

We then proceed as in Proposition 4.2 to define (ϕετ )a on all simplices in the subset
XU(τ)a \X

τ
a for all a ∈ R. The resulting chain map (ϕετ )a is carried by (F ε

τ )a for all
a ∈ R. Since XU is tame, we only need finitely many steps to obtain a morphism
ϕετ : C∗(X

U(τ))→ C∗(Y
V(τ)[ε]) that satisfies the induction hypotheses.

Thus, we obtain double complex morphisms ϕεp,q : Cp,q(X,U) → Cp,q(Y,V)[ε] for
all p, q ≥ 0 by adding up our defined local morphisms

ϕεp,q :
⊕

σ∈Kp

ϕεσ :
⊕

σ∈Kp

Cq(X
U(σ)) −→

⊕

σ∈Kp

Cq(Y
V(σ))[ε] .

Notice that ϕεp,q commute both with horizontal and vertical differentials since we
assumed that each ϕεσ is a chain morphism and these satisfy a naturality condi-
tion with respect to K. Thus, this double complex morphism induces a spectral
sequence morphism ϕεp,q : E∗

p,q(X
U) → E∗

p,q(Y
V)[ε]. By doing the same construc-

tion, we can obtain local chain morphisms ψεσ : C∗(Y
V(σ)) → C∗(X

U(σ))[ε] so
that by Proposition 4.2 we have equalities [ψεσ] ◦ [ϕ

ε
σ] = [Σ2εC∗(X

U(σ))] and also
[ϕεσ]◦ [ψ

ε
σ] = [Σ2εC∗(Y

V(σ))] for all σ ∈ K. Then we can construct a double complex
morphism ψεp,q : Cp,q(Y,V) → Cp,q(X,U)[ε] inducing an “inverse” spectral sequence
morphism ψεp,q : E

∗
p,q(Y,V)→ E∗

p,q(X,U)[ε]. These are such that from the first page,
ϕε∗,∗ and ψε∗,∗ form a (ε, 1)-interleaving of spectral sequences. □

Notice that the proof of Proposition 6.4 relies heavily on the fact that the di-
agrams we are considering come from a cover. This allows us to define a pair of
double complex morphisms that are compatible along the common indexing nerve.
However, in Theorem 5.2 we observed that, under some conditions, the geomet-
ric realizations of regularly filtered regular diagrams are stable. Does this stability
carry over to the associated spectral sequences? The next theorem shows that this
is indeed the case.

Theorem 6.5. Let D and L be two diagrams in RRDiag(K). Suppose that there
are (ε,K)-acyclic carriers F ε : D ⇒ L and Gε : L⇒ D, together with a pair of shift
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(ε,K)-acyclic carriers I2εD : D ⇒ D and I2εL : L⇒ L, and such that these restrict to
acyclic equivalences

Gε
τ ◦ F

ε
τ ⊆ (I2εD )τ and F ε

τ ◦G
ε
τ ⊆ (I2εL )τ

for each simplex τ ∈ K. Then

d1I(E(D, K), E(L, K)) ≤ ε .

Proof. Recall from Theorem 5.2 that there is a filtration-preserving ε-acyclic carrier
F ε : ∆KD ⇒ ∆KL. Given r ∈ R, this implies that there is a chain complex
morphism f εr : C∗(∆D)r → C∗(∆L)r+ε carried by F ε

r and which respects filtrations
in the sense that f εr (F

pC∗(∆D)r) ⊆ F pC∗(∆L)r+ε for all p ≥ 0. By Lemma 3.1
this defines a morphism f εr : STot

∗ (D)r → STot
∗ (L)r+ε which respects filtrations.

Altogether we deduce that f εr determines a morphism of spectral sequences f εr :
E∗
p,q(D)r → E∗

p,q(L)r+ε. Similarly as in Lemma 4.7 the commutativity

ΣsE∗
p,q(L)r+ε ◦ f

ε
r = f εr+s ◦ Σ

sE∗
p,q(D)r (4)

does not need to hold for all r ∈ R and all s ≥ 0. However, by definition of ε-
acyclic carrier, there is an inclusion Σs∆L ◦ F ε ⊆ F ε ◦ Σs∆D where the superset
is acyclic, so that ΣsC∗(∆L)r+ε ◦ f

ε
r and f εr+s ◦ Σ

sC∗(∆D)r are both carried by the
filtration preserving acyclic carrier F ε ◦Σs∆Dr. This implies that there exist chain
homotopies hεr : Cn(∆D)r → Cn+1(∆L)r+s+ε which respect filtrations and such that

f εr+s ◦ Σ
sC∗(∆D)r − ΣsC∗(∆L)r+ε ◦ f

ε
r = δ∆ ◦ hεr + hεr ◦ δ

∆ .

for all r ∈ R and all s ≥ 0. Recall that the zero page terms are given as quotients
on successive filtration terms E0

p,q(D)r = F pSTot
p+q(D)r/F

p−1STot
p+q(D)r, for all r ∈ R

and all integers p, q ≥ 0. Thus, by Lemma 3.1, these chain homotopies carry over
to STot

∗ (D)r and the commutativity relation from equation (4) holds from the first
page onwards.
Similarly, we can define spectral sequence morphisms gεr : E

∗
p,q(L)r → E∗

p,q(D)r+ε
for all r ∈ R which commute with the shift morphisms from the first page. Also,
by inspecting the shift carriers, we can obtain equalities of 1-spectral sequence mor-
phisms gεr+ε ◦ f

ε
r = Σ2εE∗

p,q(D)r and also f εr+ε ◦ g
ε
r = Σ2εE∗

p,q(L)r for all r ∈ R, and
the result follows. □

Example 6.6. Consider a pair of point clouds X,Y ∈ R
N , together with partitions P

andQ for X and Y respectively. Also, assume that there is an isomorphism ϕ : ∆P →
∆Q such that dH(X ∩ V,Y ∩ ϕ(V )) < ε for all V ∈ P . As defined in Example 4.5,
there are ε-acyclic carrier equivalences F ε

V : VR∗(X∩V ) ⇒ VR∗(Y∩V ) for all V ∈ U .

Now suppose that, for some η > 0, if J
VR∗(X)
P (σ)r ̸= ∅ then J

VR∗(Y)
P (ϕ(σ))r+η ̸= ∅

for all σ ∈ ∆P and all r ∈ R. For any σ ∈ ∆P , one can define (ε + η)-acyclic

carriers F̃
(ε+η)
σ : J

VR∗(X)
P (σ) ⇒ J

VR∗(Y)
Q (σ) by sending a cell

∏
V ∈σ τV ∈ J

VR∗(X)
P (σ)r

to
∏

V ∈σ Σ
ηVR∗(Y ∩ V )

(
F ε
V (τV )

)
∈ J

VR∗(Y)
Q (σ)r+(ε+η) for all r ∈ R. Similarly, we

assume the converse that J
VR∗(Y)
P (σ̃)r ̸= ∅ implies J

VR∗(X)
P (ϕ−1(σ̃))r+η ̸= ∅ for all

σ̃ ∈ ∆Q and all r ∈ R. With an analogous definition to that of F̃
(ε+η)
σ , we obtain

‘inverses’ for the carriers F̃
(ε+η)
σ , so that these become (ε + η)-acyclic equivalences.

One can check that these are compatible along ∆P and ∆Q, so that by Theorem 6.5

d1I
(
E∗

∗,∗(J
VR∗(X)
P ,∆P), E∗

∗,∗(J
VR∗(Y)
Q ,∆Q)

)
≤ ε+ η.
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7. Interleavings with respect to different covers

7.1. Refinement Induced Interleavings. In the previous sections we considered
general diagrams in FRDiag(K) for some simplicial complex K. We now focus on
the situation where we have a filtered complex X together with a cover U , which
provides a diagram XU : NU → FCW-cpx. The associated spectral sequence is
denoted by E∗

∗,∗(X,U), as done at the start of section 3. We want to measure how
E∗

∗,∗(X,U) changes depending on U and follow ideas from [24] to achieve this. First
we consider a refinement V ≺ U , which means that for all V ∈ V , there exists U ∈ U
such that V ⊆ U . In particular, one can choose a morphism ρU ,V : NV → NU such
that Vσ ⊆ Uρσ for all σ ∈ NV . This choice is of course not necessarily unique. We
would like to compare the Mayer-Vietoris spectral sequences of both covers. For
this, we recall the definition of the Čech chain complex outlined in the introduction
of [26], which leads to the following isomorphism on the terms from the 0-page

E0
p,q(X,U) = Čp(U ;C

cell
q ) :=

⊕

σ∈Np

U

Ccell
q (Uσ) ≃

⊕

s∈Xq

fσ(s,U)
∗

(
Ccell
p

(
∆σ(s,U)

) )
. (5)

Here, σ(s,U) is the simplex of maximal dimension in NU such that s ∈ XU(σ(s,U)),
and fσ(s,U) : ∆σ(s,U) →֒ NU denotes the inclusion. The isomorphism in (5) is given
by sending a generator (a)σ ∈

⊕
σ∈Np

U
Ccell
q (Uσ) to its transpose (σ)a, for all cells

a ∈ X and all σ ∈ NU .
Returning to a refinement V ≺ U and a morphism ρU ,V : NV → NU , there is an

induced double complex morphism ρU ,Vp,q : Cp,q(X,V)→ Cp,q(X,U) given by

ρU ,Vp,q ((σ)a) =

{
(ρU ,Vσ)a if dim(ρU ,Vσ) = p,

0 otherwise,

for all generators (σ)a ∈ Cp,q(X,V) with σ ∈ N
p
V and a ∈ Xq.

Lemma 7.1. ρU ,V∗,∗ is a morphism of double complexes. Thus, it induces a morphism
of spectral sequences

ρU ,Vp,q : E∗
p,q(X,V)→ E∗

p,q(X,U)

dependent on the choice of ρU ,V .

Proof. Let δV and δU denote the respective Čech differentials from Čp(V ;C
cell
q ) and

Čp(U ;C
cell
q ). The refinement ρU ,V : NV → NU induces a chain morphism ρU ,V∗ :

Ccell
∗ (NV) → Ccell

∗ (NU), so that we have commutativity ρU ,V∗,∗ ◦ δ
V = δ U ◦ ρU ,V∗,∗ . This

implies that ρU ,V∗,∗ commutes with the horizontal differential dH . For commutativity

with dV , we consider a generating chain (σ)a ∈ E
0
p,q(X,V) with σ ∈ N

p
V and a ∈ Xq.

Then, if dim(ρU ,Vσ) = p, we have

ρU ,Vp,q−1 ◦ d
V
(
(σ)a

)
= ρU ,Vp,q−1

(
(−1)p

∑

b⪯a

([b : a]σ)b

)
= (−1)p

∑

b⪯a

(
[b : a]ρU ,Vσ

)
b

= (−1)pdcellq

(
(ρU ,Vσ)a

)
= dV ◦ ρU ,Vp,q

(
(σ)a

)

and for dim(ρU ,Vσ) < p commutativity follows since both terms vanish.
A morphism of double complexes gives rise to a morphism of the vertical filtration.

By [19, Theorem 3.5] this induces a morphism of spectral sequences ρU ,V∗,∗ . □

Since ρU ,V : NV → NU is not unique, the induced morphism ρU ,V∗,∗ on the 0-page
does not need to be unique either. We have, however, the following:
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a b c d

e f g h

a b c d

e f g h

a b c d

e f g h

a b c d

e f g h

Figure 2. Cubical complex C∗ at values 0,1,2 and 3.

Id
0

U0

0
1

Id
2

0

U1

Id

Id

U2

Figure 3. Cubical complex C∗ with covers U0, U1 and U2, and with
filtration values 0,1 and 2. Blue dots represent classes in E2

1,0(C,Ui)
and red loops represent classes on E2

0,1(C,Ui), for i = 0, 1, 2.

Proposition 7.2. The 2-morphism obtained by restricting ρU ,V∗,∗ is independent of

the particular choice of refinement map ρU ,V : NV → NU .

Proof. We have to show that ρU ,V∗,∗ is independent of the particular choice of the
refinement morphism. First, define a carrier R : NV ⇒ NU by the assignment

σ 7→ R(σ) =
{
ν ∈ NU | Vσ ⊆ Uν

}
.

The geometric realization of the subcomplex R(σ) is homeomorphic to a standard
simplex, in particular contractible, so R is acyclic. Note that ρU ,V∗,∗ is carried by R.

Hence, by Theorem 2.4 for any pair of refinement maps ρU ,V , τU ,V : NV → NU , there
exists a chain homotopy k∗ : Cn(NV)→ Cn+1(NU) carried by R, so that

k∗δ
V + δ Uk∗ = τU ,V∗ − ρU ,V∗

for all n ≥ 0 and where τU ,V∗ and ρU ,V∗ are induced morphisms of chain complexes
C∗(NV)→ C∗(NU). In particular, using the same notation, this translates into chain
homotopies k∗ : E

0
p,q(X,V)→ E0

p+1,q(X,U) on the 0-page such that

k∗δ
V + δ Uk∗ = τU ,V∗,∗ − ρ

U ,V
∗,∗

Thus, τU ,V∗,∗ = ρU ,V∗,∗ from the second page onward. □

Example 7.3. Consider a filtered cubical complex C∗. At value 0, C∗ is given by
the vertices on R2 at the coordinates a = (0, 0), b = (1, 0), c = (2, 0), d = (3, 0), e =
(0, 1), f = (1, 1), g = (2, 1), h = (3, 1), together with all edges contained in the
boundary of the rectangle adhe. Then, at value 1 there appears the edge bf with
the face abfe. At value 2 the edge gc with the face fgcb, and finally at value 3 the face
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ghdc appears. This is depicted on Figure 2. Then, consider the cover U0 by three
subcomplexes on the squares A = (a, b, f, e), B = (b, c, g, f) and C = (c, d, h, g).
Also, we consider the cover U1 given by A and C ∪ B, and U2 given by all C∗. The
induced morphisms on second-page terms at different filtration values are either null
or the identity, as illustrated on Figure 3.

A consequence of Proposition 7.2 is that if we have a space X together with covers
U ≺ V ≺ U , then by uniqueness the morphism on the second page induced by the
consecutive inclusions coincides with the identity. This gives rise to the next result.

Proposition 7.4. Suppose a pair of covers U and V of X are a refinement of one
another. Then there is a 2-spectral sequence isomorphism E2

∗,∗(X,U) ≃ E2(X,V).

This corollary implies that for any cover U of X, the cover U ∪ X obtained by
adding the extra covering element X is such that the second page E2

p,q(X,U ∪ X)
has only the first column nonzero.

Lemma 7.5. Consider a cover U of a space X, and suppose that X ∈ U . Then
E2
p,q(X,U) = 0 for all p > 0.

Proof. This follows from the observation that the cover {X} consisting of a single
element satisfies {X} ≺ U ≺ {X}. Using Proposition 7.4 we therefore obtain
isomorphisms E2

p,q(X,U) ≃ E2
p,q(X, {X}), and the result follows. □

Suppose that none of the two covers V and U refines the other. One can still
compare them using the common refinement V ∩ U =

{
V ∩ U

}
V ∈V,U∈U

which is a

cover of X. Thus, there are two refinement morphisms

E2
p,q(X,U) E2

p,q(X,V ∩ U) E2
p,q(X,V).

ρ
U,V∩U
p,q ρ

V,V∩U
p,q

(6)

Following [24, Sec. 28] we can now build the double complex Cp,q(V ,U ,PHk) which,
for each k ≥ 0, is given by

⊕
σ∈Np+1

V

τ∈Nq

U

PHk(Vσ ∩ Uτ )
⊕

σ∈Np+1
V

τ∈Nq+1
U

PHk(Vσ ∩ Uτ )

⊕
σ∈Np

V

τ∈Nq

U

PHk(Vσ ∩ Uτ )
⊕
σ∈Np

V

τ∈Nq+1
U

PHk(Vσ ∩ Uτ )

δV

(−1)p+1δ U

δV

(−1)pδ U

for any pair of integers p, q ≥ 0. From this double complex we can study the two
associated spectral sequences

IE
1

p,q(V ,U ; PHk) =
⊕

σ∈Np

V

Ȟq

(
Vσ ∩ U ; PHk

)
,

IIE1
p,q(V ,U ; PHk) =

⊕

τ∈Nq

U

Ȟp

(
V ∩ Uτ ; PHk

)
,

whose common target of convergence is Ȟn(V ∩ U ; PHk) with p + q = n. For
details about the spectral sequence associated to a double complex, the reader is
recommended to look at [19, Theorem 2.15].
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(

V1 ∩ V2
)

∩ U2

V1 ∩ U1 V1 ∩ U2 V2 ∩ U2 V1 ∩ (U1 ∩ U2)

(

V1 ∩ V2
)

∩ U2

V1 ∩ U1 V1 ∩ U2 V2 ∩ U2 V1 ∩ (U1 ∩ U2)

Figure 4. Cp,q(V ,U ,PHk) at filtration values 0 and 1.

Example 7.6. Consider the cubical complex C∗ from Example 7.3. Set U = U1, that
is, U is the cover by the sets U1 = A and U2 = B ∪ C. On the other hand, consider
V to be formed of V1 = A ∪ B and V2 = C. The double complex Cp,q(V ,U ,PHk) is
illustrated on Figure 4 for filtration values 0 and 1, and for k = 0. We encourage
the reader to work out the refinement morphisms from (6) and see that these are
actually projections.

Consider the nerve NV∩U as a subset of the product of nerves NV ×NU . We have
then two projections πV : NV∩U → NV and πU : NV∩U → NU , both of which induce
chain morphisms πV

∗ : C∗(NV∩U) → C∗(NV) and πU
∗ : C∗(NV∩U) → C∗(NU). For

example, πV
∗ is given by πV

∗ (σ × τ) = σ if dim(τ) = 0 or πV
∗ (σ × τ) = 0 otherwise,

for all σ ∈ NV , τ ∈ NU . These induce a pair of morphisms

⊕
σ∈Np

V

Ccell
k (Vσ)

⊕
σ∈Np

V

τ∈Nq

U

Ccell
k (Vσ ∩ Uτ )

⊕
τ∈Nq

U

Ccell
k (Uτ ) ,

πU
q,k

πV
p,k

for any pair of integers p, q ≥ 0. The induced map πV
p,k on Ck(Vσ ∩ Uτ ) satisfies

πV
p,k((σ × τ)a) = (πV

∗ (σ × τ))a for all σ ∈ Np
V , τ ∈ NU and all a ∈ (Vσ ∩ Uτ )

k.

The map πU
∗,∗ acts similarly. By definition πU

∗,∗ and πV
∗,∗ both commute with the

Čech differentials δU and δV respectively. Let σ ∈ Np
V and τ ∈ N0

U . Then we have

(σ × τ)a (σ)a

∑
b∈a

(
[b : a]σ × τ

)
b

∑
b∈a

(
[b : a]σ

)
b

πV
∗,∗

dn dn

πV
∗,∗

for all cells a ∈ (Vσ ∩ Uτ )
k. This implies that πV

∗,∗ commutes with dn and the same

holds for πU
∗,∗. We obtain a morphism πV

p,k : Čp(V∩U ;C
cell
k )→ Čp(V ;C

cell
k ) commuting

with d∗ and δV∩U and δV . This induces κVp,k : Čp(V ∩ U ; PHk) → Čp(V ; PHk) and, in

turn, this induces θV,V∩Up,k
: Ȟp(V ∩ U ; PHk)→ Ȟp(V ; PHk).

There is a very natural way of understanding how much θV,V∩Up,k fails to be an

isomorphism. To start, notice that κVp,k is equal to the composition

Čp(V ∩ U ; PHk)
IE

0
p,0(V ,U ; PHk) Čp(V ; PHk) ,

Iπ
V
p,k

where the first morphism forgets the summands with τ ̸∈ N0
U ; the second morphism

is the restriction of κVp,k to the remaining terms. Next, we take for each simplex
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σ ∈ Np
V , the Mayer-Vietoris spectral sequence for Vσ covered by Vσ ∩ U

M2
q,k(Vσ ∩ U)⇒ PHq+k(Vσ),

where we changed the notation from E2
q,k(Vσ,Vσ ∩ U) to M2

q,k(Vσ ∩ U) as it helps

distinguishing this spectral sequence from IE∗
p,q. Then, we write more compactly

IE
1

p,q(V ,U ; PHk) =
⊕

σ∈Np

V

M2
q,k(Vσ ∩ U) .

Taking IE
1
p,0(V ,U ; PHk) as a chain complex, Iπ

V
p,k induces a chain morphism

Iπ
V

p,k :
IE

1

p,0(V ,U ; PHk)→ Čp(V ; PHk)

for all p ≥ 0. In particular, the restriction of IπV
p,k to the summand M2

0,k(Vσ ∩ U)
equals the composition

M2
0,k(Vσ ∩ U) M∞

0,k(Vσ ∩ U) PHk(Vσ) .

Notice that PH0 is a cosheaf, and in this caseM2
0,0(Vσ∩U) = PH0(Vσ) for all σ ∈ N

p
V .

This implies that IπV
p,0 is an isomorphism for all p ≥ 0. By the same argument, there

is another chain morphism for all q ≥ 0

IIπ
U

q,k :
IIE

1

0,q(V ,U ; PHk)→ Čq(U ; PHk) .

Going back to the morphism θV,V∩Up,k , it is given by the composition

Ȟp(V ∩ U ; PHk)
IE∞

p,0(V ,U ; PHk)
IE2

p,0(V ,U ,PHk) Ȟp(V ; PHk) .
IπV

p,k

Using Lemma 7.5, if V ≺ U thenM2
q,k(Vσ∩U) = 0 for all q > 0 and IπV

p,k becomes an

isomorphism. In addition, IE
1
p,q = 0 for all q > 0 and the first two arrows in the above

factorisation of θV,V∩Up,k are isomorphisms. Altogether, the inverse (θV,V∩Up,k )−1 is well-

defined, and by composition we define morphisms θU ,Vp,k = θU ,V∩Up,k ◦ (θV,V∩Up,k )−1. Here

notice that θU ,V∩Up,k is defined in an analogous way to θV,V∩Up,k , but it factors through
IIπU

q,k instead of IπV
p,k. The following proposition should also follow from applying

an appropriate version of the universal coefficient theorem to [24, Proposition 4.4].
Instead, we prove the dual statement of this proposition by means of acyclic carriers.

Proposition 7.7. Suppose that V ≺ U , and let ρU ,V denote a refinement map. The
morphism θU ,Vp,k

: E2
p,k(X,V) → E2

p,k(X,U) coincides with the standard morphism

induced by ρU ,V .

Proof. Since V ≺ U , the morphism θV,V∩Up,k
: Ȟp(V ∩ U ,PHk) → Ȟp(V ,PHk) is an

isomorphism. Now consider the diagram

Ȟp(V ; PHk) Ȟp(U ; PHk)

Ȟp(V ∩ U ; PHk)
IIE∞

0,p(V ,U ; PHk)
IIE2

0,p(V ,U ; PHk) .

ρ
U,V
p,k

≃ IIπU
p,k
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To check that it commutes we study the following triangles of acyclic carriers

NV∩U

NV NU

PUF

R

where R is defined in Proposition 7.2. The carrier F is given for every σ ∈ NV by
F (σ) = ∆σ × |R(σ)|. In fact, F defines an acyclic equivalence by considering the
inverse carrier PV : NV∩U ⇒ NV sending σ × τ to ∆σ. In this case the shift carrier
IV : NV ⇒ NV is given by the assignment σ 7→ ∆σ, and IV∩U : NV∩U ⇒ NV∩U is
given by σ× τ 7→ ∆σ×∆τ∪τ ′ ; where τ ′ ∈ NU is such that |R(σ)| = ∆τ ′ ⊆ NU . Here,
we need to show that ∆σ × ∆τ∪τ ′ is a subcomplex of NV∩U . First notice that, by
hypotheses, Vσ∩Uτ ̸= ∅ and, by definition of R(σ), we have Vσ ⊆ Uτ ′ . Consequently
Vσ ∩

(
Uτ ∩ Uτ ′

)
̸= ∅, which accounts to ∆σ ×∆τ∪τ ′ being a subcomplex of NV∩U .

Since F is acyclic, there exists ν∗ : C∗(NV)→ C∗(NV∩U) carried by F and inducing
a chain morphism f∗ : Čp(V , C

cell
k ) → Čp(V ∩ U , C

cell
k ) by the assignment (σ)s 7→

(ν∗(σ))s for all cells s ∈ X and all σ ∈ NV . On the other hand, recall that θV,V∩Up,k

is induced by πV
p,k, which is given as an assignment (σ × τ)s → (πV

∗ (σ × τ))s. As π
V
∗

is carried by PV and, as noted earlier, F defines an acyclic equivalence, it follows
that πV

∗ ◦ ν∗ is the identity in C∗(NV) up to boundary. Thus, πV
p,k ◦ f∗ is the identity

in Čp(V , C
cell
k ) up to the Čech boundary δ̌V . This implies that f∗ =

(
θV,V∩Up,k

)−1
as

morphisms Ȟp(V ,PHk) → Ȟp(V ∩ U ,PHk). Consequently, θU ,Vp,k is induced by the

assignment (σ)s 7→ (πU
∗ ◦ ν∗(σ))s for all σ ∈ NV and all s ∈ X; where πU

∗ ◦ ν∗ is
carried by PUF = R. Altogether, as ρU ,V is carried by R, we obtain the equality
θU ,Vp,k = ρU ,Vp,k as morphisms Ȟp(V ,PHk)→ Ȟp(U ,PHk). □

Still assuming that V ≺ U , we now look for conditions for the existence of an
inverse φV,U

p,k
: E2

p,k(X,U)→ E2
p,k(X,V) of θ

U ,V
p,k .

Proposition 7.8. Suppose that V ≺ U . If M2
p,k(V ∩ Uτ ) = 0 for all p > 0, k ≥ 0

and all τ ∈ N q
U , then the maps θU ,V∗,∗ induce a 2-isomorphism of spectral sequences

E≥2
∗,∗(X,U) ≃ E≥2

∗,∗(X,V).

Proof. By Proposition 7.2 and Proposition 7.7 we can choose a refinement map
ρU ,V : NV → NU giving a morphism of spectral sequences

ρU ,V∗,∗ : E≥2
∗,∗(X,V)→ E≥2

∗,∗(X,U)

that coincides with θU ,V∗,∗ . Our assumption about M2
p,k implies IIE

2
p,q(V ,U ; PHk) = 0

for all p > 0, which in turn, gives

Ker
(
Ȟq(V ∩ U ; PHk) ↠

IIE
∞

0,q(V ,U ; PHk)
)
= 0 (7)

and

Coker
(
IIE

∞

0,q(V ,U ; PHk) →֒
IIE

2

0,q(V ,U ,PHk)
)
= 0. (8)

Now note that IIπU
q,k yields an isomorphism IIE

2
0,q(V ,U ,PHk) ≃ Ȟq(U ,PHk). This

shows that θU ,Vq,k is a composition of isomorphisms; thus the statement follows. □
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We now relax the conditions in Proposition 7.8 and use the relations of left-
interleaving and right-interleaving of persistence modules (denoted by ∼εL and ∼εR,
respectively) to achieve this (see [12, Sec. 4]). We have to adapt [12, Proposi-
tion 4.14].

Lemma 7.9. Suppose that we have persistence modules A, B and C, and a param-
eter ε ≥ 0 such that A ∼εR B and B ∼εL C. Denote by Φ the morphism Φ : A→ C
given by the composition A ↠ B →֒ C. Then there exists Ψ : C → A[2ε] such that
Φ and Ψ define a 2ε-interleaving A ∼2ε C.

Proof. By hypothesis, we have a sequence

E1 A B C E2
f g

which is exact in A and C and where E1 ∼
ε 0 and E2 ∼

ε 0. Then, let v ∈ C and
notice that ΣεC(v) ∈ Im(g). Thus, there exists a unique vector w ∈ B such that
g(w) = ΣεC(v). On the other hand, there exists z ∈ A, not necessarily unique, such
that f(z) = w. This defines a unique element ΣεA(z) ∈ A.To see this, suppose that
another z′ ∈ A is such that f(z′) = w.Then f(z − z′) = 0 and z − z′ ∈ Ker(f),
which implies 0 = ΣεA(z − z′) = ΣεA(z) − ΣεA(z′), and then ΣεA(z) = ΣεA(z′).
Altogether, we set Ψ = ΣεA ◦ Φ−1 ◦ ΣεC, which is well-defined. □

Recall that for V ≺ U we have that Ȟq(V ; PHk) ≃ Ȟq(V ∩ U ; PHk) for all k ≥ 0
and q ≥ 0. There is a natural way to relax (7) and (8) to the persistent case. We
assume that for ε ≥ 0, there are right and left interleavings

Ȟq(V ∩ U ; PHk) ∼
ε
R

IIE
∞

0,q(V ,U ; PHk) ∼
ε
L

IIE
2

0,q(V ,U ,PHk). (9)

If we define Φq,k : Ȟq(V ∩ U ; PHk)→
IIE

2
0,q(V ,U ,PHk) to be the composition of the

associated persistence morphisms as in Lemma 7.9, then there exists

Ψq,k :
IIE

2

0,q(V ,U ,PHk)→ Ȟq(V ∩ U ; PHk)[2ε],

such that Φq,k and Ψq,k define a 2ε-interleaving. We repeat this argument for the
local Mayer-Vietoris spectral sequences. Assume that for some ν ≥ 0 there are
interleavings

IIE
1

0,q(V ,U ,PHk) ∼
ν
R

⊕

τ∈Nq

U

M∞
k,0(V ∩ Uτ ) ∼

ν
L

⊕

τ∈Nq

U

PHk(Uτ ). (10)

Let Πq,k :
IIE

1
0,q(V ,U ,PHk)→

⊕
τ∈Nq

U
PHk(Uτ ) be the composition of the associated

morphisms. By Lemma 7.9 there exists Ξq,k such that Πq,k and Ξq,k define a 2ν-
interleaving. By slight abuse of notation we continue to denote the induced 2ν-

interleaving between IIE
2
0,q(V ,U ,PHk) and Ȟq(U ; PH∗) by Πq,k and Ξq,k. Altogether

we have that θU ,Vq,k = Πq,k ◦Φq,k ◦ (θ
V,V∩U
q,k )−1 and in this situation there is an ‘inverse’

ψV,U
q,k = θV,V∩Uq,k ◦Ψq,k ◦ Ξq,k, which increases the persistence values by 2(ε+ ν).

Theorem 7.10. Suppose that V ≺ U and for ε ≥ 0 and ν ≥ 0 the interleavings
in (9) and (10) hold. Then

ψV,U
p,q : E∗

p,q(X,U)→ E∗
p,q(X,V)[2(ε+ ν)]

is a 2-morphism of spectral sequences such that θU ,Vp,q and ψV,U
p,q define a second page

2(ε+ ν)-interleaving between E∗
p,q(X,U) and E

∗
p,q(X,V).
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A B

C D

Figure 5. Cubical complex C∗ at values 0,1 and 1 + ε.

Id 0

Figure 6. Morphisms θU ,V1,0 along [0, 1) and along [1, 1 + ε).

Proof. The only thing that remains to be proved is that ψV,U
p,q commutes with the

spectral sequence differentials dn for all n ≥ 2. Since these differentials commute
with the shift morphisms Σ2(ε+ν), this follows from considering the diagram

En
p,q(X,U) En

p−n,q+n−1(X,U)

En
p,q(X,V) En

p−n,q+n−1(X,V)

En
p,q(X,V)[2(ε+ ν)] En

p−n,q+n−1(X,V)[2(ε+ ν)] ,

dn

ψ
V,U
p,q ψ

V,U
p−n,q+n−1

dn

ρ
U,V
p,q

Σ2(ε+ν)

ρ
U,V
p−n,q+n−1

Σ2(ε+ν)

dn

in which the two trapeziums and the two triangles commute. □

Example 7.11. Consider a cubical complex C∗ as shown in Fig. 5, together with
the covers V = {A,B,C,D} and U = {A ∪ B,C ∪D}, see Fig. 5 for the cells A,B,C
and D. In this case, we have

Ȟ1(V ; PH0) ≃ Ȟ1(V∩U ; PH0) ≃ I(0, 1+ε)⊕I(1, 1+ε) ∼ε I(0, 1) ≃ IIE
2

0,1(V ,U ,PH0)

and also
IIE

1

0,0(V ,U ,PH1) ≃ 0 ∼ε I(1, 1 + ε)⊕ I(1, 1 + ε) ≃
⊕

dim(τ)=0

PH1(Uτ ).

These interleavings are shown in Fig. 6. Theorem 7.10 implies that there is a 4ε-
interleaving between E∗

p,q(X,U) and E∗
p,q(X,V). Notice that in this example, the

nontrivial interleaved terms are in different positions of the spectral sequences.
Therefore we can improve the upper bound to 2ε. We use this observation later
in Proposition 7.12.

7.2. Interpolating covers and spectral sequence interleavings. ConsiderX ∈
FCW-cpx, together with a pair of covers W and U so that W ≺ U . Motivated by
the interleaving constructed in Theorem 7.10 we take a closer look at the following
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finite sequence of covers interpolating between W and a cover that both refines
and is refined by U . Let the strict r-th intersections of U be the family of sets
U r = {Uτ}τ∈Nr

U
for all r ≥ 0. We define the (r,W ,U)-interpolation as the covering

set Wr = W ∪ U r. In particular, note that the (0,W ,U)-interpolation has the
property that W0 ≺ U ≺ W0, and consequently E2

p,q(X,U) ≃ E2
p,q(X,W

0). In

addition if U is a finite cover, then we have UN = ∅ for N ≥ 0 sufficiently large and
consequently WN =W .

Proposition 7.12 (Local Checks). Let W ≺ U be a pair of covers for X, where U
is finite. Let N ≥ 0 be such that UN = ∅. For every 0 ≤ r ≤ N , we assume that
there exist εr ≥ 0 and νr ≥ 0 such that for all τ ∈ N r

U

E2
0,q

(
Uτ ,W

r+1
|Uτ

)
∼νrR E∞

0,q

(
Uτ ,W

r+1
|Uτ

)
∼νrL PHq(Uτ )

and also

dI(E
2
p,q(Uτ ,W

r+1
|Uτ

), 0) ≤ εr .

for all p > 0, and q ≥ 0. Then we have that

d2I
(
E∗
p,q(X,W

k), E∗
p,q(X,W

k+1)
)
≤ 2max(εr, νr).

Therefore, by using the triangle inequality, we obtain

d2I
(
E∗
p,q(X,U), E

∗
p,q(X,W)) ≤

N∑

k=0

2max(εr, νr) .

Proof. We need to consider the spectral sequence IIE2
p,q(W

r+1,Wr; PHk). Note that,
by the construction of Wr, for each τ ∈ N r

U with dim(τ) > 0 the set Wr
τ is

contained in one of the open sets from Wr+1. By Lemma 7.5 this implies that
IIE1

p,q(W
r+1,Wr; PHk) = 0 for all p > 0 and q > 0 and k ≥ 0. Moreover, we have

that IIE
1
0,q(W

r+1,Wr; PHk) =
⊕

τ∈Nq

Wr
PHk(W

r
τ ) for all q > 0 and k ≥ 0. The

resulting spectral sequence is shown in Fig. 7.
As a consequence of these observations condition (10) holds for these indices with

ν = 0. In addition, IIE
2
0,q(W

r+1,Wr; PHk) = E2
q,k(X,W

r) holds for all q ≥ 2
and k ≥ 0 (see Fig. 7 and 8). In particular, there is only one possible non-trivial
differential for each entry in the bottom row as indicated in Fig. 8. Note that our
hypothesis dI(E

2
p,q(Uτ ,W

r+1
|Uτ

), 0) ≤ εr applies to the entries in the first column with

p > 0 and gives left and right interleavings of the form

Ȟq(W
r+1 ∩Wr; PHk) ∼

εr
R

IIE
∞

0,q(W
r+1,Wr; PHk) ∼

εr
L

IIE
2

0,q(W
r+1,Wr; PHk)

for all q > 0 and k ≥ 0. Hence, condition (9) holds with value εr.
Let us look now at the case q = 0. Here we have Ȟ0(W

r+1 ∩ Wr; PHk) =
IIE

2
0,0(W

r+1,Wr; PHk) and consequently (9) holds with value ε = 0. Next, by
hypothesis, for all k ≥ 0 we have right and left interleavings

M2
0,k

(
Uτ ∩W

r+1
)
∼νrR M∞

0,k

(
Uτ ∩W

r+1
)
∼νrL PHk(Uτ ) ,

for all τ ∈ N r
U . Thus by taking the direct sum of these interleavings we obtain

IIE1
0,0(W

r+1,Wr; PHk) ∼
νr
R

⊕

τ∈NWr

0

M∞
0,k(W

r
τ ∩W

r+1) ∼νrL E1
0,k(X,W

r) .

and condition (10) also holds for q = 0. The result now follows from Theorem 7.10.
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IIE
1
2,0(W

r+1,Wr; PHk) 0 0
. . .

IIE
1
1,0(W

r+1,Wr; PHk) 0 0 0

IIE
1
0,0(W

r+1,Wr; PHk)
⊕

τ∈N1

Wr

PHk(W
r
τ )

⊕

τ∈N2

Wr

PHk(W
r
τ )

⊕

τ∈N3

Wr

PHk(W
r
τ )

d1

Figure 7. First page of IIE
∗
p,q(W

r+1,Wr; PHk).

∼ εr 0 0
. . .

∼ εr 0 0 0

IIE
2
0,0(W

r+1,Wr; PHk)
IIE

2
0,1(W

r+1,Wr; PHk) E2
2,k(X,Wr) E2

3,k(X,Wr)

d2

d3

Figure 8. Second page of IIE
∗
p,q(W

r+1,Wr; PHk) together with
higher differentials.

Notice that we can slightly improve the statement of Theorem 7.10 here: For each
term in the bottom row of the spectral sequence in this particular example only one
of the two conditions (9) and (10) is nontrivial, and the proof of Theorem 7.10
carries over with 2max(εr, νr) replacing 2(εr + νr). □

Remark 7.13. Notice that for reasonable cases the parameters νr are bounded above
by Kεr for some constant K > 0 by a result from [12]. Nevertheless, we would like
to keep νr and εr separated here, since we hope to compute it from M∗

p,k

(
Uτ ,W

r+1
|Uτ

)

for τ ∈ N r
U hereby get more accurate estimates. Intuitively, asking for εr and νr to

be small is equivalent to asking for cycle representatives in covers from Wr to be
approximately contained in covering sets from Wr+1.

Finally, we would like to compare two separate covers U and V and have an
estimate for the interleaving distance between the associated spectral sequences.
The main idea of Proposition 7.12 is to translate this comparison problem into a
few local checks that can be run in parallel. We formalize this in the following
Corollary.

Corollary 7.14 (Stability of Covers). Consider two pairs (X,U) and (X,V), where
X is a space and U and V are covers. LetW = U ∩V and denote byWr

U andWr
V the

respective (r,W ,U) and (r,W ,V) interpolations. For every 0 ≤ r ≤ N , we assume
that there exist εr, ε

′
r ≥ 0 and νr, ν

′
r ≥ 0 such that for all τ ∈ N r

U and σ ∈ N r
V

E2
0,q

(
Uτ ,W

r+1
U

)
∼νrR E∞

0,q

(
Uτ ,W

r+1
U

)
∼νrL PHq(Uτ ),

E2
0,q

(
Vσ,W

r+1
V

)
∼
ν′r
R E∞

0,q

(
Vσ,W

r+1
V

)
∼
ν′r
L PHq(Vσ),
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for all r ≥ 0, and also

dI(E
2
p,q(Uτ ,W

r+1
U ), 0) ≤ εr , dI(E

2
p,q(Vσ,W

r+1
V ), 0) ≤ ε′r

for all p > 0, and q ≥ 0. Then we have that

d2I
(
E∗
p,q(X,U), E

∗
p,q(X,V)) ≤ R(U ,V)

where R(U ,V) = max
(∑N

r=0 2max(εr, νr),
∑N

r=0 2max(ε′r, ν
′
r)
)
.

Proof. By Lemma 7.1 there are double complex morphisms given by the refinement
maps

Čp(U , C
cell
q ) Čp(W , Ccell

q ) Čp(V , C
cell
q ) .

ρ
U,W
p,q ρ

V,W
p,q

In turn, these induce 2-morphisms of spectral sequences

E2
p,q(X,U) E2

p,q(X,W) E2
p,q(X,V) .

ρ
U,W
p,q ρ

V,W
p,q

Let ψU ,W
p,q and ψV,W

p,q be the ‘inverses’ of ρU ,Wp,q and ρV,Wp,q , respectively, witnessing the
interleavings of the two spectral sequences (see Theorem 7.10 and Proposition 7.12).
The result follows from considering the commutative diagram

E2
p,q(X,U) E2

p,q(X,W) E2
p,q(X,V)

E2
p,q(X,U)[R(V ,U)] E2

p,q(X,W)[R(V ,U)] E2
p,q(X,V)[R(V ,U)]

ΣR(V,U)
ψ
W,U
p,q

ρ
U,W
p,q ρ

V,W
p,q

ΣR(V,U) ΣR(V,U)

ψ
W,V
p,q

ρ
U,W
p,q ρ

V,W
p,q

where all arrows are 2-morphisms of spectral sequences. □

8. Outlook

We expect spectral sequences associated to the geometric realizations of diagrams
of CW-complexes to have a natural use in the distributed computation of persistent
homology. The first future research direction is to develop further examples and use
cases that benefit from the theory developed in this article.

The ε-acyclic carriers and equivalences which we introduced here in the context
of persistent homology are of course based on acyclic carriers, which are similar to
the ones used for example in [2, Theorem 6] to prove a generalisation of the Nerve
Theorem. A possible future research direction might be to ask for conditions on the
acyclic carriers with the goal of obtaining similar results as those from [2] within
the category of regularly filtered diagrams.

The bounds obtained in section 7 for the interleavings between the second pages
of two spectral sequences can certainly be improved; one possible direction is to
explore similar examples as those in [12, § 9] where the authors found sharp bounds.

In general, we think that spectral sequences deserve a more prominent role in
applied algebraic topology and hope that the tools we developed here will motivate
further study.
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Appendix A. Example of Acyclic Equivalence in RCW-cpx

Consider a filtered regular CW complex X which is constant along R, except at
values 1, 2, 3 and 4, where it changes; see Figure 9. In order to describe X, we use
the notation (CD)1 for the edge between C and D, (FGIJ)2 for a two cell whose
vertices are F,G, I, J and so on. By regularity of X, and since we do not define
multiple edges between the same pair of vertices, X is determined by:

X1 = {A,B,C,D,E, F,H} ∪ {(AH)1, (BC)1, (CD)1, (EF )1}

X2 =X1 ∪ {G} ∪ {(AB)1, (DE)1, (FG)1, (GH)1}

X3 =X2 ∪ {I, J} ∪ {(BI)1, (CJ)1, (FJ)1, (GI)1, (IJ)1} ∪ {(FGIJ)2}

X4 =X3 ∪ {K} ∪ {(AK)1, (CK)1, (EK)1, (GK)1}

∪ {(ABCK)2, (CDEK)2, (EFGK)2, (AKGH)2} .

where X0 = ∅; this is shown in Figure 9, which illustrates X. Of course, as X is
a filtered complex, the structure maps of X are given by inclusions Xs →֒ Xt for
all s < t from R. Next, we describe the regularly filtered CW-complex Y, which
is constant along R, except at values 1, 2, 3 and 4, where it changes; this is also
depicted in Figure 9. We define Y∗ by:

Y1 ={α, β, γ}

Y2 =Y1 ∪ {(αβ)1, (αγ)1, (βγ)1}

Y3 =(Y2 \ {(αγ)1}) ∪ {δ, τ} ∪ {(γτ)1, (τδ)1, (αδ)1, (βδ)1, (βτ)1}

Y4 =Y3 \ {α, (αβ)1, (αδ)1}

and Y0 = ∅.
The structure maps of Y are defined as follows, where we use the overline notation
∗ to denote the closure of some cell:

• Y (1 ≤ 2) is an inclusion,

• Y (2 ≤ 3) restricts to an inclusion in the subcomplex (αβ)1 ∪ (βγ)1, while

(αγ)1 is sent to (αδ)1 ∪ (δτ)1 ∪ (τγ)1.
• Y (3 ≤ 4) restricts to the identity in Y3 \ {(αβ)1, α, (αδ)1} while it maps the
vertex α to γ, the edge (αβ)1 to (βγ)1 and the edge (αδ)1 to {(γτ)1, τ, (τδ)1}.

One might check that Y is well-defined according to section 2.1. Next, we proceed
to define an acyclic carrier F : Y ⇒ X, which we depict in Figure 10, as follows:

• F1(α) = (AH)1 , F1(β) = (BC)1 ∪ (CD)1 , F1(γ) = (EF )1 ,
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A
B
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E

F

H
A

B

C

D
E

F

H

G

A
B
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D
E

F

H

G

I

J

A
B

C

D
E

F

H

G

I

J

K

β

γ

α

β

γ

α

β

γ

α

τ

δ
β

γ

τ

δ

Figure 9. The spaces Yi are shown at the top and Xi are at the
bottom for values i = 1, 2, 3, 4. In filtration value 4, a cone with
vertex in K is attached along the octahedron at the boundary of X3;
notice that we used 2-cells which are not 2-simplices.

• F2((αβ)1) = F1(α) ∪ F1(β) ∪ {(AB)1} ,
F2((αγ)1) = F1(α) ∪ F1(γ) ∪ {(HG)1, G, (FG)1} ,
F2((βγ)1) = F1(β) ∪ F1(γ) ∪ {(DE)1} ,

• F3(δ) = G , F3(τ) = F , F3((αδ)1) = (AH)1 ∪ (HG)1 ,

F3((δτ)1) = (IJFG)2 , F3((γτ)1) = (EF )1 ,

F3((βδ)1) = (BC)1 ∪ (CD)1 ∪ (BI)1 ∪ (IG)1
F3((βτ)1) = (BC)1 ∪ (CD)1 ∪ (CJ)1 ∪ (JF )1 ,

• F4(γ) = F4((βγ)1) = F4((γτ)1) = St(K) .

If we did not define a carrier, this is because we assume it is continued from an
earlier definition. On the other hand, we define the carrier G : X ⇒ Y as follows:

• G1(A) = G1(H) = G1((AH)1) = α , G1(E) = G1(F ) = G1((EF )1) = γ ,
G1(B) = G1(C) = G1(D) = G1((BC)1) = G1((CD)1) = β ,

• G2((AB)1) = (αβ)1 , G2((DE)1) = (βγ)1 ,

G2((HG)1) = G2(G) = G2((GF )1) = (αγ)1 ,
• Define A3 = {I, J,G, (IJ)1, (GI)1, (FJ)1, (HG)1, (GF )1, (FGIJ)2},

then ∀σ ∈ A3, we have G3(σ) = (αδ)1 ∪ (δτ)1 ∪ (τγ)1 ,

G3((BI)1) = (βδ)1 , G3((CJ)1) = (βτ)1
• ∀σ ∈ X4 \ {(BI)1, (CJ)1} , G4(σ) = (βγ)1 ∪ (γτ)1 ∪ (τδ)1 .

We define the shift carriers on X and Y by composition, that is, I0X = G ◦ F and
I0Y = F ◦G, which in this particular case lead to well-defined acyclic carriers as one
can check; to illustrate this, we write a couple of compositions:

G3 ◦ F3((βτ)1) = (αδ)1 ∪ (δτ)1 ∪ (τγ)1 ∪ (βτ)1 ,

F3 ◦G3((IJ)1) = (AH)1 ∪ (HG)1 ∪ (IJFG)2 ∪ (EF )1 .

One can check that the conditions from Definition 4.3 are satisfied and so by Corol-
lary 4.7 we obtain isomorphisms PH∗(X) ∼= PH∗(Y ).

Email address: TorrasCasasA@cardiff.ac.uk

Email address: pennigu@cardiff.ac.uk
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Figure 10. We depict the acyclic carriers from F . For each acyclic
carrier we include its initial filtration value within a square on the top
left while we write the cell(s) it corresponds to within a square on the
top right; sometimes we write a pair of numbers a, b to indicate that
the carrier applies for the filtration values in [a, b) and that a new
carrier is defined at b. Solid lines connecting the middle top of a box
to the middle bottom of another box indicate that the containment
relation must hold, where the carrier in the lower box needs to be
embedded into the carrier on the upper box. We use dashed lines for
containment relations involving a union of carriers, e.g. F3((αδ)1) ⊆
F4((γτ)1) ∪ F4((δτ)1) .
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