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Abstract—Dependency Modelling is an established Probabilis-
tic Risk Analysis method that is frequently used to identify and
quantify cyber risks in complex environments, such as Industrial
Control Systems. The method is useful for examining the inter-
relationships between different variables, but the limited data
exposure in the modelling restricts its ability to analyse multiple
independent variables simultaneously or sequentially. In response
to this limitation, we present a new technique that leverages the
Bayesian Network method to draw inferences from unrelated
events and uncovers hidden insights that Dependency Modelling
may overlook. We conducted an evaluation of our proposed
technique using lab-generated data that mimics Colonial pipeline
operations. Our results demonstrated that the proposed technique
exposes previously undetected aspects of the dependency model,
providing business and asset owners with a more comprehensive
understanding of their cyber risks and facilitating better decision-
making. Our technique represents a significant advancement
and is the first to apply this inference method to Dependency
Modelling.

Index Terms—Cyber risks, Dependency Modelling, Bayesian
Network, Variable Elimination

I. INTRODUCTION

The industrial technology landscape is continually evolv-

ing, resulting in an increased connection of processes and

components that enhance productivity and bottom-line impact.

However, this transformation also brings new risks to oper-

ational technology (OT) systems and operations, increasing

complexity and posing significant cybersecurity challenges [1].

Despite continuous efforts by industries and governments to

enhance cybersecurity, major industrial cyber breaches remain

as likely today as they did ten years ago. Recent cyber

attacks on Colonial Pipeline and JBS Foods have highlighted

the consequences of cyber threats and the vulnerabilities of

exchanging data and dependencies in enterprise systems [2].

Successful attacks can lead to a complete system failure,

emphasising the need to evaluate alternative approaches to

mitigate cyber risks in complex systems.

Dependency Modelling (DM) provides a comprehensive

framework for establishing links between system events, pro-

cesses, and dependencies, enabling accurate risk assessments
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to support informed decision-making and enhance cyberse-

curity [3]. Despite its capabilities, DM’s limitations prevent

it from providing sufficient insights to fully understand a

system’s complexity beyond conventional approaches, high-

lighting the need for alternative methods.

Contribution: Our proposed technique introduces causal

inference into Dependency Modelling (DM) which allows the

analysis of multiple independent nodes and accounting for

simultaneous or sequential changes within the model. This

multi-nodal analysis increases the identification of cyber risks

that are synonymous with the tight coupling characteristics

phenomena in complex systems where multiple events can

fail synchronously. We believe this enhancement positions

DM as a preferred method to identify cyber risks in complex

environments, including Industrial Control Systems (ICS).

II. RELATED WORK

The potential of Bayesian Networks (BN) as an adaptable

and effective tool in handling incomplete or uncertain informa-

tion has been recognised by researchers [4]. Previous studies,

such as [5], [6], have demonstrated the suitability of BN in

detecting intrusion and insider threats in system networks,

showcasing its efficiency in mitigating cyber risks.

However, the use of BN in identifying cyber risks within

large and complex systems, including ICS, remains limited.

Existing research does not account for the impact of simulta-

neous or sequential failure within complex system networks,

nor have effective techniques for enhancing cyber risk identi-

fication in such systems been proposed.

III. APPROACH

Our approach utilises Directed Acyclic Graphs (DAGs),

which model the conditional dependencies between variables

in a probabilistic model. We implement Bayesian Networks

(BN) to perform statistical inference on DM and calculate the

conditional probabilities of unknown variables based on their

observed values. While both BN and DM are usually causally

constructed, BN assumes that most variables are independent

of their preceding variables, whereas DM assumes that all

variables may be directly impacted by their predecessors. This

property makes BN advantageous, enabling the identification

of a subset of preceding parameters for each parameter in



turn, which allows us to use Variable Elimination (VE) for

causal inference to identify hidden or previously unknown

risks within the system [7].

The VE probabilistic inference algorithm calculates the

marginal probabilities of a target variable by recursively elimi-

nating irrelevant network variables that do not impact the target

variable. This efficiency in handling large and complex BN

makes VE the preferred algorithm over others like the Junction

Tree (JT) and Monte Carlo Markov Chain.

To retrieve hidden data from the model, we construct an

inference query in the form of P (Y |E = e), where Y and

E are disjoint variables in the model, and E is an observed

variable with a value of e [7].

IV. VALIDATION

We aim to determine if the causal inference technique can

reveal changes in the model’s sensitivity when considering the

combination of multiple independent nodes. The traditional 3-

Point Sensitivity (3PS) approach used in DM can only assess

the sensitivity impact of a single leaf node at a time.

To validate our approach, we employed a case study that

mimics Colonial pipeline operations in an Industrial Control

System (ICS) environment, named PipelineX. We focused

on the communication between the IT and OT networks

involved in the shipping process to track product delivery.

After receiving an order from a customer, an operator at

the enterprise network verifies product availability via the

production network before initiating the shipping process. The

shipping process generates a trigger to load the product for

delivery. Figure 1 illustrates the business process description.

Additional information includes the following:

• Remote login to the IT network is available via a secured

Virtual Private Network (VPN) infrastructure, managed

by the Enterprise Access Control.

• There is no network segmentation infrastructure between

the IT and the OT networks.

• A loss of availability on the IT network due to an attack

could disrupt production on the OT network.

Our data is an adaptation from an existing manufacturing

environment with 67 nodes in the model. Each node has three

attributes: name, dependencies (name of parent node), and the

percentage probability of being in a desired state. Each node

is numbered (ref) from 0 (the goal/root node) to 66. We have

included some node names and descriptions in Table I.

TABLE I
NODE WITH REFERENCE NUMBER

Ref Node Name Description

0 Secure and Safe Production This is the goal of the business

9 Enterprise Access Control Access Policies are implemented

34 Wireless Protocols Protocols are updated and secured

40 Background Checks Security check conducted on users

41 Roles and Responsibilities Clearly defined and assigned

42 Training Appropriate training conducted

43 Specialised Training Training specific to functions

44 Security Awareness Basic requirements for users

45 Security Responsibilities Assigned and owned

46 Event and Incident Mgt Logged and reviewed

Fig. 1. Shipping Process Flow in Pipeline X

Conventional behaviour expectation dictates that if a node

fails due to an event, its probability is set to 0 (or 0%). This

event results in a negative impact on the overall model. Con-

versely, setting a node to 1 (or 100%) due to an improvement

in a certain event positively impacts the model. To identify the

node with the highest impact (sensitivity), we set each node

to 0 and 1, respectively, and performed causal inference to

obtain new probability values for the root node. This process

is repeated with combinations of two and three nodes.

The resulting sensitivity scores are presented in Tables II,

III, and IV, where each table lists the top-5 sensitivity scores.

The Node column indicates the node number, corresponding

to its name in Table I. The Probability column displays the

current marginal probability of the overall goal. The last

two columns reveal the sensitivity values, representing the

difference between the marginal probability and the computed

probability when the node is turned off (E=0) and when it

is turned fully on (E=1). As an example, in Table II, Row 1

Column E=0 displays the result of 0.16361779 - 0.042172706,

while Column E=1 is derived from E=1, i.e 0.167503027 -

0.16361779.

TABLE II
CAUSAL INFERENCE FOR SINGLE EVENT

Node Probability E=0 E=1

[40] 0.16361779 0.121445081 0.00388524

[41] 0.16361779 0.121445081 0.00388524

[43] 0.16361779 0.107265991 0.003431626

[44] 0.16361779 0.107265991 0.003431626

[45] 0.16361779 0.107265991 0.003431626

Figure 2A, B and C show the 3PS plots for each table. A

short bar indicates low sensitivity, while a longer bar repre-

sents higher sensitivity. The colour of each bar corresponds

to its influence, where red-coloured bars suggest a negative

impact and green-coloured bars exhibit a positive influence.

The junction between the bars indicates the sensitivity level



Fig. 2. 3-Point Sensitivity Using Causal Inference Analysis

TABLE III
CAUSAL INFERENCE FOR TWO (COMBINED) EVENTS

Node Probability E1=E2=0 E1=E2=1

[40+41] 0.163617787 0.125440583 0.007890686

[40+43] 0.163617787 0.124978108 0.007423034

[40+44] 0.163617787 0.124978108 0.007423034

[40+45] 0.163617787 0.124978108 0.007423034

[41+43] 0.163617787 0.124978108 0.007423034

TABLE IV
CAUSAL INFERENCE FOR THREE (COMBINED) EVENTS

Node Probability E1=E2=E3=0 E1=E2=E3=1

[9+40+41] 0.163617787 0.125560776 0.007904915

[40+41+43] 0.163617787 0.125559031 0.011537933

[40+41+44] 0.163617787 0.125559031 0.011537933

[40+41+45] 0.163617787 0.125559031 0.011537933

[34+40+41] 0.163617787 0.125553184 0.007904016

concerning the overall goal or how far it is from the probability

of the goal. We observed that setting the probabilities of three

nodes to zero (E1 = E2 = E3 = 0) resulted in longer red bars

than only setting the probabilities of two nodes to zero (PE1 =

E2 = 0). This indicates that the model is more sensitive, with

a higher negative impact with more nodes. Conversely, setting

the probabilities of three nodes to one (E1 = E2 = E3 = 1)

resulted in a higher positive influence, with longer green bars

than only setting the probabilities of two nodes to one (E1 =

E2 = 1).

From the information obtained in the model, we conducted

a frequency analysis to identify the nodes with the most

influence, which is a function of how many times they occur in

combination with other nodes. As shown in Figure 3A, Node

41 is the most influential when we perform a two-nodal causal

inference. However, in a three-nodal causal inference, nodes

40 and 41 are of equal influence as both of them appeared five

times, as shown in Figure 3B. The interpretation is that the

asset owner may want to pay closer attention to these nodes.

Fig. 3. Node Frequency Analysis

We validated our technique by checking the consistency

of the sensitivity pattern among the three graphs. As the

number of nodes in the causal inference calculation increases,

the bars in both directions 3PS become longer, indicating

an increased sensitivity (impact) and decreased probability of

success if multiple nodes fail simultaneously. From Tables III

and IV, we observed that node 40 is more critical in a 2-

nodal inference while node 41 is most critical in a 3-nodal

inference. This suggests that our technique can uncover critical

nodes that could potentially prevent attacks, as shown by the

case of the Colonial Pipeline cyber attack. Our technique

enables us to discover more information from DM than it

currently provides, increasing the potential for system owners

to proactively manage and mitigate risks.

V. CHALLENGES AND FUTURE WORK

BN learning requires extensive computation to process

causal queries for two or more nodal combinations, creating

scalability issues for larger models with many nodes. To

overcome these challenges, our consideration is limited to

a system-driven model with a focus on processes and the

interaction between processes. In the future, we hope to

leverage DM’s new capacity to model complex systems and to

develop predictive models that can forecast future cyber risk

trends, based on past data.
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