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A B S T R A C T   

How we judge the similarity between objects in the world is connected ultimately to how we represent those 
objects. It has been argued extensively that object representations in humans are ‘structured’ in nature, meaning 
that both individual features and the relations between them can influence similarity. In contrast, popular models 
within comparative psychology assume that nonhuman species appreciate only surface-level, featural similar
ities. By applying psychological models of structural and featural similarity (from conjunctive feature models to 
Tversky’s Contrast Model) to visual similarity judgements from adult humans, chimpanzees, and gorillas, we 
demonstrate a cross-species sensitivity to complex structural information, particularly for stimuli that combine 
colour and shape. These results shed new light on the representational complexity of nonhuman apes, and the 
fundamental limits of featural coding in explaining object representation and similarity, which emerge strikingly 
across both human and nonhuman species.   

1. Introduction 

Across the animal kingdom exists the capacity to extend familiar 
behaviours to novel but similar situations and objects. This makes sim
ilarity a fundamental concept within models of human and nonhuman 
cognition (Pearce, 1994; Rescorla & Wagner, 1972). Indeed, it has been 
shown to influence learning (Ross, 1984), memory (Simons et al., 2005), 
generalization (Osherson, Smith, Wilkie, López, & Shafir, 1990), cate
gorization (Nosofsky, 1984), and even social behaviour (White, 2008). 
Similarity, however, is fundamentally in the eye of the perceiver 
(Goldstone, 1994b; Hahn & Chater, 1997; Medin, Goldstone, & Gentner, 
1993). It is not a property of physical objects themselves, but rather a 
property of how an animal represents those objects. Specifically, simi
larity is a function of those aspects of an object that are encoded, and the 
importance assigned to them. Theories of similarity, therefore, have 
close connections with theories of representation: how real-world ob
jects are internally represented affects perceived similarity, and 
perceived similarity, in turn, provides insight into mental representation 
(Edelman, 1998; Hahn, 2014). 

A major debate within human psychology concerns the role of re
lations in similarity: a table, for example, is not just a collection of fea
tures (tabletop, legs, colour etc.) but these features arranged in a 

particular way. Human visual representation, therefore, is argued to 
involve so-called ‘structured representations’, that is, representations 
that involve both features and the relations between them (Biederman, 
1987; Hafri & Firestone, 2021; Hahn, Chater, & Richardson, 2003; 
Markman & Gentner, 1993). Indeed, it has been shown that when two 
objects share a perceptual feature (e.g., ‘red’), it contributes more to 
human similarity judgements when it appears in corresponding posi
tions of a relational structure – referred to as a match-in-place (Gold
stone, 1994a). For instance, if presented with an image of two people 
wearing coloured hats and shirts, the pair will be perceived to be more 
similar if both hats are red and both shirts blue, than if the hat and shirt 
colours are swapped for one person in the pair, despite the overall 
feature set remaining unchanged. 

Attempts to formally measure similarity, both within cognitive psy
chology and machine learning, have thus started to move toward ways 
of calculating similarity over structured representations (Hahn et al., 
2003; Markman & Gentner, 1993). However, many of the most popular 
models, particularly in the context of animal learning (Pearce, 1994; 
Rescorla & Wagner, 1972), still treat stimulus representation as a matter 
of decomposing stimuli into individual, task-relevant features, whether 
in a feature vector (Tversky, 1977), or a spatial representation that 
represents items as points in a multi-dimensional space (Shepard, 1957). 
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As we will outline below, the only way relational structure is encoded in 
these models is by treating relations themselves as ‘features’, in partic
ular, as ‘conjunctive features’ (i.e., ‘red’ and ‘hat’ becomes ‘red+hat’). 

While such ‘featural’ representations appear too simplistic for 
humans – at least in some contexts (Goldstone & Medin, 1994; Hahn 
et al., 2003; Markman & Gentner, 1993) – the widespread use of featural 
coding schemes in the animal learning literature would seem to reflect 
an implicit (or even explicit) assumption that these may be adequate for 
some, or even all, nonhuman species. This assumption might have been 
fuelled further by the finding that nonhuman species have difficulty 
recognising purely relational similarities (Blough, 2001; George, Ward- 
Robinson, & Pearce, 2001; Haun & Call, 2009). The fact that nonhuman 
primates do not seem to be able to deal with such purely relational 
similarities (e.g., “equal/unequal”, or “sameness”) is of course distinct 
from the question of whether relational information impacts similarity 
judgements more generally. Needless to say, if nonhuman primates do 
not include relational information in their object representations, then 
such information cannot impact their similarity judgements. The fact 
that they might, however, as has been argued in some studies (Hopkins 
& Washburn, 2002; Huber & Lenz, 1993; Kirkpatrick-Steger, Wasser
man, & Biederman, 1998; Zentall, Wasserman, & Urcuioli, 2014), does 
not prejudge if and how this relational information impacts perceived 
similarity. Just showing sensitivity to relational structure does not tell us 
much (if anything) about the similarity gradients that stem from matches 
or mismatches. To understand this, structural models of similarity from 
the human literature must be tested systematically on animal behaviour. 
Given the close connection between similarity and theories of repre
sentation outlined above, such an examination should elucidate not only 
similarity, in particular the limitations of feature-based models of sim
ilarity, but may also provide valuable insight into the mental object 
representations of nonhuman species. 

1.1. The limits of featural coding 

To address this question, we examined the nature of perceptual 
similarity judgements in three great ape species: humans, chimpanzees, 
and gorillas. Our main question was whether perceived similarity in 
chimpanzees and gorillas are, like humans, sensitive to ‘structure’. To 
this end, we devised a simple stimulus set that allowed us to adjudicate 
between featural and structural models of similarity. Before outlining 
these stimuli and the model predictions in detail, we will first describe 
some of the fundamental issues facing featural models of similarity. This 
is best done with reference to a particular set of items, so we will use 
example items from our actual stimulus set. Each item in our stimulus set 
involves a pair of geometric figures, such as those shown in Fig. 1. 
Broadly, featural models of similarity treat each psychologically rele
vant aspect of an object as a single component, and the entire object is 
represented by all relevant components – whether these are represented 
as a feature set, a feature vector, or a point in a multi-dimensional 
feature space (Shepard, 1980; Tversky, 1977). To illustrate: the left 
stimulus in Fig. 1 (item 1) might be represented by the feature set 
{square, circle, white, black}. 

However, it is not just the simple attributes such as colour or shape 
that are potentially relevant to similarity but also relations between 
these attributes: a particular colour and shape are bound together in the 
same component object (e.g., the square), and that object is arranged in 
a particular way relative to the second object (the circle). Featural 
representations capture such relational information only by turning the 
relation itself into a ‘feature’. This type of conjunctive coding introduces 
a feature ‘black+circle’ to capture the fact that it is the circle not the 
square that is black, thus expanding the feature set to {square, circle, 
white, black, white+square, black+circle}. 

Such an approach runs into trouble because it leads to a proliferation 
of ‘features’: all the basic elements and all their possible combinations 
must be retained to avoid the hyper-specificity that combinations would 
otherwise bring. To illustrate, if one were to only consider 

‘white+square+left’ as a single compound feature, then item 1 and item 2 
no longer share any features and would thus appear maximally dissim
ilar. In other words, one needs to retain both the component features 
(‘white’) and the conjunctions (‘white+square’) to account for com
monalities that appear across different positions and/or objects. This 
requirement not only leads to a combinatorial explosion (with the 
number of conjunctions determined by the binomial coefficient ‘N 
choose k’, which for 10 individual features will add a further 45 separate 
feature pairs, and at N = 15 a further 105) but all of these features 
potentially influence the similarity comparison and counting them in 
assessing ‘commonality’ itself can lead to counter-intuitive distortions. 
For example, such proliferations make it the case that items 1 and 2 have 
considerably fewer features in common when compared to items 1 and 3. 

Representation schemes that allow one to represent relations are 
known as structured representations (Gentner, 1983; for more recent 
literature, see e.g., Doumas, Hummel, & Sandhofer, 2008; Doumas & 
Martin, 2018; Poldrack, 2020; Shepherd, 2018). The most popular ex
amples of such schemes are graph structures or multi-place predicates as 
found in first-order logic, for example, a 2-place predicate such as TO- 
THE-LEFT-OF(x,y). Turning relations into features means that a binary 
relation such as TO-THE-LEFT-OF(x,y) effectively becomes a feature 
such as TO-THE-LEFT-OF-X(y). The crucial difference between these 
two schemes is that only the former, relational, representation separates 
out the relation and both its arguments in such a way that they can be 
accessed simultaneously and thus independently factored into the sim
ilarity comparison. TO-THE-LEFT-OF(x,y) might, for example, provide a 
relational match to TO-THE-LEFT-OF(q,r) thus providing a purely rela
tional commonality across multiple object pairs such as those in Fig. 1. 
For the feature-based version of the same state of affairs, one is left 
simply with two distinct properties TO-THE-LEFT-OF-X() and TO-THE- 
LEFT-OF-Y(). The same is ultimately true of the kinds of conjunctive 
coding schemes that are popular in associative and connectionist models 
(Blumberg & Sokoloff, 2001; Dickinson, 2012; Gluck & Bower, 1988). 

It is for this reason that many theories concerned with the repre
sentation of real-world objects or events – whether these are faces, 
scenes, sentences, or extended narratives – assume that these cannot be 
represented on purely featural schemes (Biederman, 1987; Hahn et al., 

Fig. 1. A simple set of three stimuli (items 1, 2 and 3) for comparison. Below 
item 1 is a featural description in terms of the basic features (s = ‘square’, c =
‘circle’, w = ‘white’, and b = ‘black’), the feature conjunctions (w+s =
‘white+square’, b+c = ‘black+circle’, etc.) and the features/conjunctions 
including relative spatial location (w+l = ‘white+left’, w+s+l = ‘white
+square+left’, etc.). To the right are the features that items 2 and 3 share with 
item 1. Note also that the comparison 1∩3 contains two matches in terms of 
colour: the colour match between the two squares and the colour match be
tween square in the item 1 and circle in item 3. This latter match feels like it 
should ‘count for less’, in line with prior work (Gentner & Markman, 1997), but 
on a conjunctive scheme is dealt with by the conjunctions ‘colour+shape’ and 
‘colour+shape+relative location’. Even excluding the multiple match, however, 
item 2 remains less similar to 1 than 3. 
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2003; Markman & Gentner, 1993). Instead, they seem to require struc
tured representations: complex representations of objects, their parts 
and properties, and – crucially - the interrelationships between them, 
that cannot be boiled down to either lists of features or points in space. 

That said, it is extremely difficult empirically to distinguish between 
representation schemes and with them different approaches to 
measuring similarity. As the examples in Fig. 1 illustrate, similarity 
depends on representation. If only basic, elemental features (e.g., 
‘square’, ‘circle’, etc.) are considered, but no conjunctions, for example, 
then items 2 and 3 are equally similar to item 1. Without independent 
specification of the representation of a pair of items, any degree of 
similarity between them can likely be generated simply by ‘tweaking’ 
the representation. However, our understanding of human cognition (let 
alone nonhuman cognition) is simply not advanced enough to provide a 
sufficiently detailed, and independent, specification of those 
representations. 

Without independent constraint, however, even very general con
trasts, such as evidence simply for structure over purely featural repre
sentations becomes incredibly difficult, because representational 
flexibility allows different types of account to mimic each other’s pre
dictions. Even a classic finding indicating the importance of structure in 
similarity judgements, such as the larger effect on similarity of features 
that appear within corresponding positions of a relational structure (i.e., 
matches-in-place), is subject to this. The example of the hats and 
sweaters from above can be captured readily through the assumption of 
conjunctive features (‘red+hat’, ‘blue+sweater’) in addition to the basic 
features ‘red’, ‘blue’, ‘sweater’ and ‘hat’. Matches-in-place simply give 
rise to both a match in terms of elements, and to a match in terms of 
conjunctive features. Without simultaneously providing evidence 
against conjunctive coding as a sufficient, alternative explanation (which 
those studies do not provide), demonstrating the effect of matches-in- 
place may provide only rather weak evidence for structural 
representations. 

Though difficult, we seek to show that such evidence against 
conjunctive coding is possible. The strategy for doing so is already 
hinted at in Fig. 1. Specifically, the contrast between featural and 
structural representation can be pursued successfully over a suitable set 
of items. While ‘featural’ reconstructions may seem locally plausible 
when considering just one or two comparisons, they can be shown to be 
globally implausible over an entire set of items. The crucial ‘trick’ here is 
to take whatever conjunctive features ‘do the work’ in one comparison 
and then identify another contrast that can be added to the set of 

similarity comparisons under consideration where those conjunctive 
features lead to difficulties, generating implausible predictions of simi
larity. The stimulus set presented in this paper was designed to do just 
that. 

1.2. Devising a stimulus set for contrasting featural and structural models 

Our stimulus materials are pairs of simple shapes and are based on a 
domain that has been successfully applied across species to study simi
larity (Hodgetts & Hahn, 2012; Hodgetts, Hahn, & Chater, 2009; Larkey 
& Markman, 2005), feature binding (Cheries, Newman, Santos, & 
Scholl, 2006) and analogical reasoning (Fagot & Thompson, 2011; 
Vonk, 2003). We constructed from this domain a set of items that would 
distinguish structural accounts from a variety of possible feature models. 
These stimuli are shown in Table 1. As can be seen, each stimulus 
comprises two coloured geometric figures which are always compared 
to the same reference (or target) stimulus. The fact that these items are a 
composite of two shapes makes it possible to readily manipulate featural 
and relational attributes of the stimulus. Our set involves seven such 
comparisons in total (labelled A to G), which vary systematically along 
two dimensions: shape and colour (Task 1) and shape and inner line 
orientation (Task 2; see Methods and Fig. 2A for more detail). For 
clarity, we will refer only to the Task 1 items below. Table 1 summarises 
the model predictions for each comparison. We next outline these 
models. 

The first model considers only basic feature matches (see FEAT, 
Table 1). Feature matches are counted on each stimulus dimension 
separately (e.g., colour and shape) and can be matched multiple times 
(e.g., the feature ‘blue’ in the target item forms a match with both blue 
features in comparison E). Critically, this basic feature model cannot 
distinguish between comparisons that share the same features but in 
different spatial arrangements, that is, comparisons A to C. Given that 
these three comparisons appear perceptually distinct, a purely featural 
representation of this kind seems insufficient. At the very least, colour 
and shape need to be bound together into coherent objects, reflecting the 
fact that it is the circle that is red, not the square. 

The ability to also code conjunctive features, such as ‘blue+square’, 
is a strategy designed to address this issue (see e.g., Wagner & Brandon, 
2000, and references therein). Like the FEAT model described above, 
this conjunctive feature model (C-FEAT) can form multiple matches, 
such that basic features and conjunctions in one stimulus can match with 
multiple features/conjunctions in the other. While such an approach is 

Table 1 
Predicted similarities for our stimulus comparisons across a range of featural and structural models. The stimulus 
comparisons A-G are listed in the first column and are further described in Fig. 2. The remaining columns refer to the 
different models tested. The first four models listed are ‘featural’ models: a basic feature model (FEAT), a feature model 
that codes feature conjunctions (C-FEAT), a conjunctive model that also codes relative spatial location (CS-FEAT), and 
a feature model that matches features only if they appear in corresponding spatial positions (S-FEAT). Additional 
information about how these model predictions were derived can be found in the Supplementary Methods. Compar
isons marked with an asterisk are discussed in the main text. 
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sufficient for distinguishing comparisons where features have swapped 
across objects (i.e., comparison C vs. comparison B in Table 1), such 
models cannot distinguish between identical items (comparison A) and a 
‘swap’ (comparison B), unless they also code for relative spatial location 
of features. Clearly the relative spatial location of features is relevant – at 
least for humans (Hodgetts et al., 2009). To capture this, we can specify 
a new conjunctive spatial feature model (CS-FEAT), in which relative 
spatial features are also added, both as single features but also as com
ponents of more extended conjunctive features (e.g., ‘left’, ‘blue+left’, 
and ‘blue+square+left’ get added to our feature set or vector; e.g., see 
George et al., 2001; George & Pearce, 2003). This new model (CS-FEAT) 
now distinguishes comparisons A and B (i.e., identity and swap) at the 
expense of over-matching ‘down the road’ (see Table 1). Namely, the 
predicted similarities of comparisons D and E are now greater than B. 
Limiting feature matches to certain spatial locations (i.e., ‘blue’ matches 
‘blue’ if and only if blue is in a corresponding spatial position) via a 
spatial-feature model (S-FEAT) seems plausible to address this, but 
renders equally dissimilar comparisons B, F, and even G! These stimulus 
materials thus draw out the fundamental limitation of features in 
capturing relational information. Specifically, tweaking the feature set 
to include conjunctive and/or relational features may seem locally 
plausible when considering just one or two comparisons, but can be 
shown to be globally implausible over an entire set of items. 

The final two columns in Table 1 are structural models of similarity 
that have been applied extensively in past research (Hodgetts et al., 
2009; Larkey & Markman, 2005). The first of these models, MIP (for 
‘matches-in-place’), draws upon existing models of structural alignment, 
which have been applied to capture human similarity judgements across 
a range of contexts, including perceptual similarity (Goldstone, 1994a; 
Larkey & Markman, 2005), as well as metaphor and analogy (Gentner & 
Markman, 1997). Critically, such models assume more structured, hi
erarchical representations, whereby local properties or attributes (e.g., 

‘red’) form parts of whole objects (the hat), which in turn play a specific 
role within the broader relational structure. The alignment process itself 
(see e.g., Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983; 
Gentner & Markman, 1997) seeks to form matches that are structurally 
consistent across two representations, which requires that: a) an element 
in one representation must match with at most one element in the other 
representation (one-to-one mapping); and b) wherever relations are 
placed in correspondence, their respective arguments are also placed in 
correspondence (parallel connectivity) (Falkenhainer et al., 1989). 

Underpinning these structural alignment models, as demonstrated in 
the ‘hat’ and ‘coat’ example above, is the classic distinction between 
matches for elements that have been placed in correspondence 
(matches-in-place, or MIPs) and matches for elements that do not 
correspond (matches-out-of-place, or MOPs). Given the established 
impact of MIPs on similarity ratings in humans (Markman & Gentner, 
1996), including within the stimulus domain used here (Hodgetts et al., 
2009), our alignment model was based on the number of MIPs. 
Consistent with the one-to-one mapping constraint, a feature match on 
our MIP model only “counts” if the objects themselves have been placed 
in correspondence.1 For comparison C, for instance, the lower-level 
features ‘blue’ and ‘square’ (which make up the left-hand object in the 

Fig. 2. (A) The stimulus comparisons used in Task 1 (left) and Task 2 (right). Each task has a target item comprising features A and B on dimension 1 (Task 1 = colour 
[blue/red]; Task 2 = line orientation [vertical/horizontal]) and A and B on dimension 2 (Task 1 = shape [square/circle]; Task 2 = shape [oval/diamond]). 
Alternative combinations of these features make up the comparison stimuli, as outlined in the Methods. (B) Trial schematic for the nonhuman ape training session is 
shown on the left. This phase established their preference for the target items shown in panel A. Subjects received a food reward (grape) for selecting the target item 
over the everyday object stimulus. Training terminated when subjects reached the required criterion (80% correct). In the main experiment, which was the near- 
identical for human and nonhuman participants (see Methods), baseline trials (target item vs. everyday object) were intermixed with ‘test trials’. For test trials, 
targets items were paired with one of seven stimuli from the set (which vary in their similarity to the target). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

1 Note, that different models of structural alignment do differ in their 
adherence to the one-to-one mapping constraint. For instance, while this is a 
strict model constraint within the Structure Mapping Engine (Gentner, 1983; 
Larkey & Markman, 2005), the ‘Similarity, Interactive Activation and Mapping’ 
(SIAM) model (Goldstone, 1994a) allows for differing degrees of correspon
dence. This means that both MIPs and MOPs influence similarity in SIAM, 
though MIPs still receive greater weight overall. As our prior work showed a 
limited influence of MOPs in this stimulus domain, and very little difference 
between a MIP model and SIAM (Hodgetts et al., 2009), we adopted a MIP- 
based implementation of structural alignment in this paper. 
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target stimulus) map on to two separate objects in the right stimulus. 
Given the one-to-one mapping constraint, such many-to-one mappings, 
where a single feature/object in one stimulus is matched with two or 
more features/objects in a second stimulus, are not permitted under this 
MIP model. As a result, only a single match is counted – e.g., the blue 
square is matched with the blue circle on the basis of colour, and like
wise the red circle is matched with only one object in the right stimulus: 
the ‘red square’ based on the shared property ‘red’. This adherence to 
one-to-one mappings at the level of objects allows the MIP model to 
distinguish comparisons B and C, and also does not lead to the profound 
proliferation of features for other comparisons in the set. 

The transformational model of similarity, or ‘Representational 
Distortion’ (RD) (Hahn et al., 2003), proposes that perceived similarity 
emerges from the complexity, or ‘effort’, of transforming the mental 
representation of one object or event into another. Measures of trans
formational complexity, and thus (dis)similarity, may range from 
continuous spatial transformations (e.g., translation, rotation, etc), as 
seen in models of visual object recognition (Graf, 2006; Hahn, Close, & 
Graf, 2009; Lawson, 1999; Lawson & Jolicoeur, 2003), to sets of simple 
operations (insert, delete, swap, etc), which can then be combined into 
longer codes to capture more complex transformational relationships 
(Hahn et al., 2003; Hahn & Bailey, 2005; Hodgetts et al., 2009). 
Conceptually, a single transformation may act upon individual features 
(or indeed continuous feature dimensions), whole ensembles of features, 
or manipulate the interrelationship between features or objects (i.e., 
structure; Hahn et al., 2003). In past empirical work, it has been shown 
that transformational model predictions can capture accurately human 
similarity ratings (Hahn et al., 2003; Hodgetts et al., 2009), speeded 
same-different judgements (Hodgetts & Hahn, 2012), and even 
analogical reasoning (Leech, Mareschal, & Cooper, 2007). Critically, it 
has also been shown that transformations provide superior fits of human 
similarity data when compared to basic feature models (Hahn et al., 
2003; Toussaint, Matthews, Campbell, & Brown, 2012) and models of 
structural alignment (Hodgetts et al., 2009; see also Larkey & Markman, 
2005). 

The RD predictions in this study (Table 1) are derived from a simple 
coding scheme used previously (Hodgetts et al., 2009; Hodgetts & Hahn, 
2012), which has been shown to capture accurately human perceived 
similarity within this stimulus domain. This coding scheme specifies 
three simple operations – create, apply and swap – which can be com
bined to characterise the transformational relationships between the 
items in our stimulus set (Table 1). Transformational ‘complexity’ is 
then operationalised in this model by the number of such trans
formations required by the shortest distance conversion of one object’s 
representation into that of another. This model, by assuming swap-like 
operations, can distinguish between identity (comparison A) and 
spatial changes that act upon the same set of features (i.e., comparisons 
B and C; Table 1). An in-detail specification of how the predictions of 
Table 1 are derived not just for RD, but for all of the models, can be 
found in the Supplementary Methods. 

As noted in Hodgetts et al. (2009), structural alignment models and 
RD are not necessarily in conflict, and in many cases the preferred 
alignment between two object representations will be that which affords 
the simplest transformation between those representations (Graf, 2006). 
Likewise, transformational and featural, or indeed spatial models (e.g., 
Shepard, 1957), are not necessarily in conflict in the sense that the 
former can be seen as generalizations of at least some featural or spatial 
models – generalizations that allow a broader range of ‘transformations’ 
including, crucially, ones that are sensitive to structure in ways that 
featural or spatial models are not. 

For the purposes of the present investigation, what matters is that 
both structural alignment models and RD have been used successfully to 
provide experimental evidence for the importance of structure in human 
similarity judgements (e.g., Hahn et al., 2003; Hodgetts et al., 2009; 
Markman & Gentner, 1996; Toussaint et al., 2012). In other words, our 
interest is not in which of these models might be ‘best’. Rather, we will 

use these models as a collective set of tools for probing the role of 
structure in perceived similarity for nonhuman primates, and thus for 
the role of structure in nonhuman object representation. In short, this 
paper seeks to probe whether there is evidence for representational 
schemes that go beyond mere features, while remaining agnostic to the 
specific ways in which such structural information might be encoded in 
the brain (for a selection of accounts, see e.g., Falkenhainer et al., 1989; 
Goldstone, 1994a; Taylor & Hummel, 2009). 

1.3. The current investigation 

As highlighted in the previous section, one of the key challenges 
when contrasting featural and structural models of similarity is that in 
many contexts it is possible for featural models to ‘mimic’ the pre
dictions of structural models, particularly by ad hoc turning structural 
information (e.g., information about bound objects and spatial position) 
into features through the use of increasingly complex conjunctions. This 
has implications not only for evaluating different models of human 
similarity, but also, via the intimate connection between similarity and 
mental representation, for understanding the nature and complexity of 
the underlying object representations themselves. The way to avoid this 
mimicry is to have a carefully designed set of stimuli that allows us to 
demonstrate that particular ad hoc features, which may be effective at 
the level of individual comparisons, lead to counterintuitive distortions 
across the whole set of comparisons. In this study, we have designed 
such a stimulus domain, which will allow us to disentangle featural and 
structural models of similarity. By addressing the ad hoc mimicry of 
feature-based coding, we can provide much stronger evidence for 
structure sensitivity in both human and nonhuman species, while draw
ing out general dichotomies between featural and structural models of 
similarity and their implications for understanding human and 
nonhuman cognition. 

To allow direct comparisons between ape species, each species group 
(human, chimpanzee, and gorilla) completed the same basic tasks, 
where subjects had to press a specific target stimulus from two possible 
items on each trial (Fig. 2). The difficulty of doing this (as indicated by 
higher error rates in nonhuman apes and slower response times in 
humans) was assumed to be related to higher similarity between the 
target and the seven test items. We constructed two versions of the 
stimuli (labelled Task 1 and Task 2), each with the same underlying 
logical structure, but replacing the surface features of shape and colour 
with shape and the orientation of an inner line (see Fig. 2A). Colour, in 
particular, may be a core property underlying visual object discrimi
nation and individuation in both human and nonhuman primate species 
(Gershkoff-Stowe & Smith, 2004; Mendes, Rakoczy, & Call, 2011). Thus, 
we sought to compare similarities for coloured objects (Task 1) with 
achromatic, single-colour stimuli that manipulated only shape-related 
information (outer shape/inner line). Our main question, however, 
was whether featural models – which seem to make counter-intuitive 
predictions from the perspective of human observers – do, in fact, cap
ture similarity in nonhuman hominids. 

2. Methods 

2.1. Participants 

Five chimpanzees (Pan troglodytes; 1 male, 4 female) and three go
rillas (Gorilla gorilla; 3 females) took part in Task 1 (8 apes in total). One 
chimpanzee (Trudi) did not complete Task 2 as she did not reach cri
terion (80% correct) during the learning phase, resulting in N = 4 
chimpanzees in Task 2 (7 apes in total). All subjects were housed at the 
Wolfgang Köhler Primate Research Center at Zoo Leipzig (Germany). 
They lived in social groups with conspecifics and had access to indoor 
and outdoor areas designed to be appropriate for their species. All 
subjects had touchscreen experience. Apes were tested individually 
within a familiar, indoor room, with the exception of one gorilla 

C.J. Hodgetts et al.                                                                                                                                                                                                                             



Cognition 236 (2023) 105419

6

(Viringika). In Viringika’s case, her young daughter accompanied her in 
the testing area; no obvious disruption to Viringika’s performance was 
noted from this arrangement. Ten human volunteers (3 males, 7 females; 
mean age = 31 years; SD = 6.93) were tested at Cardiff University, 
School of Psychology. This was undertaken with the understanding and 
written consent of each participant. All participants had normal or 
corrected to normal vision. Informed consent was obtained after the 
nature and possible consequences of the study were explained to par
ticipants, in accordance with the local research ethics committee at 
Cardiff University. Further, the animals’ care was in accordance with 
institutional guidelines at the Max Planck Institute for Evolutionary 
Anthropology, and Zoo Leipzig. 

2.2. Stimulus design 

In each task, stimuli consisted of seven test stimuli, corresponding to 
comparisons A-G (Table 1 & Fig. 2) and seven photographs of everyday 
objects. Each test comparison involved two pairs of geometric shapes. 
Each pair was 128 × 128 pixels and individual shapes were separated by 
a horizontal distance of two pixels – an inter-stimulus distance that has 
been shown to facilitate relational processing in nonhuman primates 
(Fagot & Parron, 2010). The everyday object photographs were scaled to 
approximately the same size as the test stimuli. All stimuli were pre
sented on a 350 × 350-pixel touch-sensitive grey square. The test stimuli 
were defined on two feature dimensions for each task (Task 1: Dimen
sion 1 = ‘shape’, Dimension 2 = ‘colour’; Task 2: Dimension 1 = ‘shape’, 
Dimension 2 = ‘inner line orientation’). The value of a given stimulus on 
each dimension can be represented abstractly using letters, where each 
unique letter refers to a unique feature (Task 1 shape: A = square, B =
circle, C = triangle; Task 1 colour: A = blue, B = red, C = green; Task 2 
shape: A = oval, B = diamond, C = rectangle; Task 2 inner line: A =
vertical, B = horizontal, C = diagonal). The arrangement of features for 
each comparison followed the same logical structure on both tasks. The 
target stimulus in each task can be denoted by AB/AB, that is, ‘square to 
the left of circle’, and ‘blue to the left of red’. There were seven possible 
test trials corresponding to the comparisons in Fig. 2A: target stimulus 
versus stimulus AB/AB (‘identity’ or same trials); target stimulus versus 
stimulus BA/BA; target stimulus versus stimulus BA/AB; target stimulus 
versus stimulus AB/AA; target stimulus versus stimulus AA/AA; target 
stimulus versus stimulus CA/BA; target stimulus versus stimulus CC/CC 
(see Fig. 2A). 

2.3. Apparatus 

The nonhuman tasks were presented on a 15-in. LCD monitor, 
mounted in a custom-built metal holder. The monitor was situated 
behind a 15-in. infrared touchscreen frame. The touchscreen frame 
replaced one of the standard safety panels that separated the nonhuman 
apes from the experimenter, becoming the de facto safety panel. Situated 
in front of the touchscreen frame was a thin Plexiglas panel with five 
circular finger holes cut into it. These were in the centre, top-left, top- 
right, bottom-left, and bottom-right corners of the panel. As well as 
forming an additional safety panel, the Plexiglas panel also enabled safe 
touching of the touchscreen frame by the apes. Located on the floor to 
either side of the touchscreen-metal frame, and facing toward the sub
jects, were two small speakers used to present audio feedback. A PC, 
outputting a display resolution of 1280 × 1024 pixels, was connected to 
the LCD monitor and touchscreen frame, and E-Prime 2.0 (Psychology 
Software Tools, Inc., Sharpsburg, PA) was used to run the experiment. 
Food rewards were fed by hand when a correct response was made 
through a plastic tube located next to the touchscreen-metal frame. The 
setup was identical for the chimpanzees and the gorillas. The human 
version of both tasks was presented on a 13-in. laptop outputting a 
display resolution of 1280 × 1024 pixels, and responses were made 
using a mouse. 

2.4. Non-human tasks 

2.4.1. Task 1 - training phase 
When an ape entered the testing area, they received two grapes and 

the testing session was started. Each trial began with a white fixation 
point (150 × 150 pixels) presented in the centre of grey background 
(Fig. 2B). We defined a 350 × 350-pixel touch area around the fixation 
point; a touch within this area initiated a 150 ms inter-stimulus interval 
(ISI), followed by a training trial. On each training trial, the target 
stimulus and one of seven everyday object stimuli was presented 
concurrently (Fig. 2). Selection of the everyday objects on each trial was 
determined randomly without replacement. On each trial, the posi
tioning of the target stimulus and picture was selected randomly from 
four pre-defined possibilities: target stimulus (top-left) versus everyday 
object (top-right), and vice versa; target stimulus (bottom-left) versus 
everyday object (bottom-right), and vice versa. A touch within the 350 
× 350-pixel area of the target stimulus resulted in the immediate 
termination of the trial, presentation of a positive sounding sound and a 
food reward being given. A touch within the 350 × 350-pixel area of the 
real-world object stimulus resulted in the immediate termination of the 
trial, presentation of a negative sounding sound, no food reward and a 
3000 ms delay screen as ‘punishment’. Following this, the same trial was 
repeated (i.e., a ‘correction’ trial) until the subject selected the rewarded 
target stimulus. Following a 1000 ms grey screen inter-trial interval 
(ITI), a new trial began with presentation of the white fixation point. 
Any touch made outside the pre-defined stimulus regions had no 
consequence. The number of trials within a session varied depending on 
the number of correction trials required. The minimum number of trials 
per training session (i.e., assuming perfect performance with no 
correction trials), was 70 trials. Training proceeded until the subject had 
achieved a response accuracy of at least 80% correct over three 
consecutive task runs, at which point they were transferred to the test 
phase. 

2.4.2. Task 1 - test phase 
As in the training phase, the nonhuman subjects received two grapes 

on entering the testing area and then the touchscreen session was star
ted. The first 21 trials of a session were identical to those shown in the 
training phase (i.e., the target stimulus paired with a real-world object), 
though no correction trials were presented (henceforth, ‘baseline’ tri
als). If a chimpanzee or gorilla chose an everyday object picture over the 
target stimulus, this resulted in the presentation of a ‘negative’ sound 
and no food reward being given. Following a 3000 ms delay screen ITI 
(‘punishment’), a new trial began with presentation of the white fixation 
point. After completing these initial 21 trials, subjects could be pre
sented with two trial types: 1) target stimulus versus everyday picture (i. 
e., baseline trials); and 2) target stimulus versus test items A to G 
(henceforth, test trials). Selection of the test stimuli was determined 
randomly without replacement. On each trial, the positioning of the 
target and test stimulus was randomly selected from the four pre-defined 
possibilities specified previously. In contrast to baseline trials, touching 
either the rewarded or unrewarded stimulus on test trials resulted in no 
sound stimulus being played and no food reward being given. Any touch 
made outside stimulus touch areas had no consequence. Following a 
randomly determined grey screen ITI of between 1000 ms and 3000 ms, 
a new trial began with presentation of the white fixation point. One 
block consisted of 14 baseline trials and seven test trials (presented 
randomly), and each run of the task consisted of five blocks. Eight runs 
of the task were completed in total during the test phase. 

2.4.3. Task 2 - training phase 
The same procedure as Task 1 was used with the following excep

tions: 1) a trial began with a black fixation point (150 × 150 pixels; 2) 
the background colour of the screen was always white; and 3) the screen 
positioning of the target stimulus and real-world object was pseudo
random, with the constraint that the target stimulus could not be 
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presented on the left or right of the real-world object more than two 
times in a row. While there was no evidence of the nonhuman apes 
developing a side bias in Task 1, this control was added to reduce the 
possibility of a side bias being developed in Task 2. 

2.4.4. Task 2 - test phase 
The same procedure as Task 1 was used, with the exceptions noted 

above and one further exception: only a maximum of four (unrewarded) 
test trials could be presented in a row. The reason that this was imple
mented was because it was possible, theoretically, for up to 14 unre
warded test trials to appear consecutively in Task 1 (though this never 
occurred). Based on this change to the experimental design, one block in 
Task 2 consisted of seven test trials – as in Task 1 – and between nine and 
12 non-test trials (i.e., target shape versus everyday object picture). In 
each session, six blocks were completed. Overall, each session consisted 
of 126 trials (as in Task 1): 84 baseline trials (including the initial 21 
trials) and 42 test trials. 

Two chimpanzees (Alex and Jahaga) experienced a drop in perfor
mance on the baseline trials during the test phase. When this occurred, a 
correction stage was introduced whereby an incorrect response resulted 
in the presentation of a negative sounding sound, no food reward being 
given and, following a 3000 ms white screen ‘punishment’, a repeat of 
the same trial. As in the training phase, such correction continued until 
the subject chose the target item. Both chimpanzees that experienced the 
aforementioned drop in performance undertook two sessions of this 
modified procedure as soon as the issue arose, which quickly restored 
good performance on baseline trials. 

2.5. Human tasks 

Within each testing session, human participants completed both Task 
1 and Task 2, and the order of these was counterbalanced between 
participants. Unlike the nonhuman ape version of the task, there were no 
training phases, and each task began with 7 baseline trials (versus the 21 
shown in the nonhuman version) and each task comprised a single run 
(versus the 8 presented in the nonhuman version). Within a single run, 
the task structure and parameters were identical to the nonhuman ape 
version. 

3. Results 

3.1. Structure matters for human and nonhuman species 

We first examined the relationship between perceived similarity in 
each ape species and the predictions of our featural and structural 
similarity models. Assuming a power law relationship between simi
larity and response time (Cohen & Nosofsky, 2000; Hodgetts & Hahn, 
2012), the best fitting similarity model for human participants is a 
structural model, RD, across both tasks; this model captures 98% of the 
variance for Task 1, and 88% of the variance in Task 2 (Table 2). For the 
nonhuman apes, the best fitting model is again RD for Task 1, capturing 
58% of the variance, but for Task 2 it is outperformed by the CS-FEAT 
model, with 98% of the variance (the fits for each tested model can be 
found in Table 2). 

This suggests that chimpanzees and gorillas processed the Task 2 
materials, with their more artificial, shape-related dimensions (outer 
shape/inner line orientation), in a fundamentally different way to the 
more ecologically familiar shape-colour combination found in Task 1. In 
other words, there is a task difference on the basis of materials for 
chimpanzees and gorillas. While their performance is aligned to humans 
on one task, showing evidence for structure, their performance looks 
“featural” on Task 2. In the remainder, we provide analyses that follow 
up on this point, while further examining the putative role of structure in 
the perceived similarity of nonhuman apes. 

3.2. Task differences emerge in nonhuman apes but not humans 

The difference between these tasks, as well as an across-species 
structure sensitivity in Task 1, is confirmed by a global analysis that 
combines all the goodness of fit values (R-squared) for the ‘featural’ 
models found in Table 1 into a single feature measure, and likewise all 
‘structural’ models and their goodness of fit into a structure measure. To 
derive a simple metric of ‘structurality’ from this model space, we 
calculated a difference score between the structure and feature measures 
for each individual subject. A positive score on this metric indicates that 
the pattern of perceived similarity across comparisons – at an individual- 
level – is better captured by structural models of similarity. 

Consistent with previous studies of both similarity and analogy 
(Hahn et al., 2003; Hodgetts et al., 2009; Markman & Gentner, 1993), all 
human participants (10/10) were more structural (Fig. 3A). Strikingly, 
the same pattern was also observed for the nonhuman ape species, with 
all individual subjects scoring positively on the structurality measure 
and exhibiting scores that appear in the centre of human structurality 
distribution in Task 1 (Fig. 3A). This shows, therefore, that the structural 
models accounted for more of the variance in individual-level similarity 
data than featural models across all human and nonhuman apes. 

When this metric was evaluated for Task 2 – in which human and 
nonhuman apes were weakly correlated in terms of general patterns of 
similarity (Fig. 3C; Supplementary Results) – the apes appeared more 
featural overall (Fig. 3A). The humans, however, were numerically even 
more structural in Task 2 (Task 1 mean = 0.26; Task 2 mean = 0.29). 
These observations were confirmed statistically, such that the structur
ality difference between human and nonhuman ape species was strongly 
dependent on task stimuli (F (1, 15) = 14.99, p = 0.002, ηp

2 = 0.5, BF10 =

2793.9; Fig. 3A). Follow-up Welch t-tests revealed no significant 

Table 2 
Goodness of fit (R2) for each similarity model tested. The fits for the default 
models (i.e., the predictions shown in Table 1) are shown in the upper table. The 
lower table displays the model fits when the relative weighting of each stimulus 
dimension (e.g., colour and shape) is allowed to vary parametrically (see Section 
3.4 for further detail). The fits of the Contrast Model are also reported (labelled 
CMOD-SM; see Section 3.5 and Supplementary Methods). Both linear and power 
fits are shown, and models are fitted to response time data for the human par
ticipants and accuracy for the nonhuman ape (NHA) species. Prior work has 
shown that similarity-response time relationships are readily captured by a 
power law (Cohen & Nosofsky, 2000; Hodgetts & Hahn, 2012), and so power fits 
are used when assessing model fits of human data.   

Task 1 Task 2  

Human NHA Human NHA 

Default  
model 

Linear  
R2 

Power  
R2 

Linear  
R2 

Power  
R2 

Linear  
R2 

Power  
R2 

Linear  
R2 

Power  
R2 

FEAT 0.33 0.39 0.21 0.17 0.41 0.47 0.66 0.53 
C-FEAT 0.33 0.38 0.16 0.15 0.32 0.42 0.67 0.55 
CS-FEAT 0.43 0.43 0.25 0.22 0.29 0.41 0.98* 0.78 
S-FEAT 0.32 0.22 0.23 0.21 0.17 0.11 0.81 0.80* 
CMOD-SM 0.60 0.59 0.45 0.15 0.76 0.71 0.53 0.48 
MIP 0.57 0.54 0.30 0.23 0.66 0.65 0.43 0.45 
RD 0.73* 0.98* 0.58* 0.80* 0.85* 0.88* 0.57 0.57   

Human NHA Human NHA 

Weighted  
model 

Linear  
R2 

Power  
R2 

Linear  
R2 

Power  
R2 

Linear  
R2 

Power R2 Linear  
R2 

Power  
R2 

FEAT 0.36 0.43 0.23 0.20 0.42 0.47 0.74 0.63 
C-FEAT 0.36 0.43 0.23 0.20 0.42 0.47 0.74 0.63 
CS-FEAT 0.45 0.46 0.44 0.32 0.45 0.49 0.97* 0.88* 
S-FEAT 0.37 0.28 0.46 0.38 0.25 0.17 0.81 0.83 
CMOD-SM 0.63 0.68 0.52 0.41 0.80 0.79 0.64 0.60 
MIP 0.53 0.58 0.53 0.40 0.77 0.77 0.20 0.26 
RD 0.75* 0.92* 0.70* 0.87* 0.85* 0.88* 0.79 0.78  
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difference in the structurality measure in Task 1 (p = 0.45; BF10 = 0.55) 
but a significant difference in Task 2 (p < 0.001; BF10 = 594.6). 
Furthermore, while the human structurality scores did not differ be
tween tasks (p = 0.62; BF10 = 0.35), the nonhuman ape group were 
significantly more ‘featural’ in Task 2 (p = 0.005; BF10 = 10.82). The 
same interaction emerges when considering the single best-fitting sim
ilarity model for each subject (shown in Table S1). Here, the best fitting 
model is structural for the majority of the human participants in both 
Task 1 (8/10) and Task 2 (10/10), and for all chimpanzees and gorillas 
in Task 1 (8/8). The featural models, however, provide the best fit for 5/ 
7 nonhuman apes in Task 2 (Table S1). 

As the structurality measure includes a larger pool of featural 
models, it may underestimate the role of features by also considering 
those which provide a poor fit of the data in a given subject. To address 
this possibility, we recalculated the structurality measure in each subject 
(across species) and subtracted the single best fitting feature model from 

the best fitting structural model (see Fig. 3B). The same interaction was 
observed (F (1, 15) = 18.17, p = 0.001, ηp

2 = 0.46, BF10 = 1821.27; 
Fig. 3B), such that no significant difference was seen between groups in 
Task 1 (p = 0.65; BF10 = 0.47), but a difference was found in Task 2 (p <
0.001; BF10 = 2129.69). 

3.3. Apes are sensitive to spatial location 

The same picture also emerges when we consider individual item 
comparisons. As noted in the Introduction, the key challenge for featural 
models is distinguishing between identity and swap, that is, stimulus 
comparisons A and B (Table 1) – a distinction that can readily be 
captured by structural models. In a featural model, however, this can 
only be achieved by adding some sensitivity to spatial location, such as 
the relative position of objects within the stimulus (see Section 1.2). But 
this then invariably creates problems with comparisons E, F and G in 

Fig. 3. Sensitivity to structure in both human and nonhuman ape species (labelled ‘NHA’ in the figure). (A) ‘Structurality’ scores were calculated by fitting each 
model to similarity data in each individual subject (response time (RT) for humans and accuracy (acc.) for nonhumans) and subtracting the mean fit (R-squared) of 
the featural models from the mean fit of structural models (see main text). Mean structurality scores are shown for both humans (red bars) and nonhuman apes (cyan 
bars) for both Task 1 (left) and Task 2 (right). A positive score indicates that an individual’s data is fit better by structural (MIP, RD) versus featural models (FEAT, C- 
FEAT, CS-FEAT, S-FEAT). Individual data points are shown for each subject in Task 1 (Human: n = 10; Non-human: n = 8) and Task 2 (Human: n = 10; Non-human: 
n = 7). (C) Correlations between human and nonhuman ape similarity judgements for Task 1 and Task 2. From left to right, the graphs depict the correlation between 
human and nonhuman apes (left), humans and chimpanzees (left-middle), humans and gorillas (right-middle) and chimpanzees and gorillas (right). Each scatter plot 
contains seven data points, each reflecting mean RT (humans) and accuracy (nonhumans) for each stimulus comparison (A to G). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1, where the specificity introduced by spatial features (to distin
guish identity and swap) distorts the similarity across the set as a whole. 
Notably, all the species groups can distinguish between identity and 
swap (i.e., comparisons A and B; Fig. S3). The nonhuman apes, for 
instance, are exactly at chance for comparison A but are significantly 
more accurate at identifying the target item for the ‘swap’ comparison in 
both Task 1 (p = 0.002; BF10 = 29.6) and Task 2 (p = 0.007, BF10 = 9.3). 
Incidentally, though it has been claimed that gorillas are less sensitive to 
structure than chimpanzees (Haun & Call, 2009), on our items all three 
gorillas were able to distinguish identity and swap above chance and 
indeed fall within the centre of the chimpanzee distribution on both 
tasks (Fig. 4). 

For humans, the pair of stimuli in comparison E are highly dissimilar 
in both tasks (Fig. S3), but the feature models with spatial sensitivity 
(see ‘S-FEAT and ‘CS-FEAT’ in Table 1) fail to capture this by rendering 
the items in E to be more similar than those in B (e.g., the swap). This 
limitation of the feature models, however, is relevant to performance in 
the nonhuman group; while the stimuli in comparison E are perceived to 
be dissimilar in Task 1, 3/7 nonhuman apes found the items in E to be as 
similar as those in identical comparison A! This indicates difficulty in 
accurately encoding relational information for stimuli based purely on 
line information, giving rise to the interactions observed in Fig. 3. Note, 
however, that these subjects’ behavioural responses to E do not reflect a 
simple ‘blindness’ to one of the two feature dimensions in Task 2 (i.e., 
shape or line orientation), as we detail next. 

3.4. Species-specific differences in dimensional salience 

The relevance of specific feature dimensions to perceived similarity 
can be assessed by deriving model predictions for each dimension 
separately and then giving them different weight in determining simi
larity (100% colour, 90% colour/10% shape, and so on; see Hodgetts 
et al., 2009). This allows us to examine the performance of models for 
dimension 1 only, dimension 2 only, and all relative weightings in be
tween (see Table 2 and Fig. S1A). Exploration of the best-fitting 
dimension weights for the well-performing models suggests that 
humans are sensitive to both colour and shape in Task 1, whereas 
chimpanzees and gorillas are, if anything, slightly more sensitive to 

colour – an observation that resonates with previous findings (Mendes 
et al., 2011). Importantly, the same analyses for Task 2 suggest that, in 
contrast to human subjects, the nonhuman apes struggled to incorporate 
the orientation of the inner line for the Task 2 stimuli (Fig. S1A). This 
finding is also confirmed in a model-independent analysis that examines 
patterns of equivalence between comparisons that would be obtained if 
participants were blind to one or both of the dimensions (see Supple
mentary Results and Fig. S1B). 

Note, however, that a participant’s focus on a single dimension only 
could still provide evidence for structure-sensitivity. For instance, human 
experimental studies that applied similar stimuli to evaluate a range of 
structural models considered variation in only a single dimension 
(Hodgetts et al., 2009). Likewise in the present materials, the qualitative 
difference in respect to comparison E across Task 1 and Task 2 for 
nonhuman apes cannot be explained purely by selective dimension 
blindness, as comparison E is distinct from A regardless of whether a 
participant is paying attention to both dimensions, or a single one (Fig. 
S2). Finally, it is worth noting that even in Task 2 both dimensions (inner 
line/shape) mattered to chimpanzees and gorillas, as seen from the fact 
that there is anecdotal evidence (in terms of Bayes Factor) for a difference 
between the judged similarity of comparisons A and D, which are iden
tical in respect to the more salient outer shape dimension (t = 2.12, p =
0.08; BF10 = 1.4); this suggests some partial sensitivity to the inner line. 

3.5. Common and distinctive features 

Finally, it is worth commenting on the performance of Tversky’s 
Contrast Model (Tversky, 1977). While virtually unknown in the animal 
literature, it is the most well-known featural model in human similarity 
research. The crucial feature of the Contrast Model is that similarity is a 
function of both the common and the unique features of each object in a 
comparison. Unlike the featural models outlined in Table 1, therefore, it 
does not just look for commonalities but also factors in those feature or 
attributes that distinguish objects (see Supplementary Methods for a full 
description of the model, and Tables 1 and S2 for overall and individual- 
level fits, respectively). Given the nature of our stimuli, the difference 
between counting just matches, and counting matches and mismatches 
is more apparent than real: the key value of Tversky’s Contrast Model is 

Fig. 4. Gorillas and chimpanzees are similarly sensitive to structure. The accuracy for each nonhuman subject on the ‘swap’ comparison B is shown for (A) Task 1 and 
(B) Task 2. The gorillas are shown to be within the chimpanzee distribution on both tasks. The density distribution and 95% confidence interval for the chimpanzees 
is shown in blue. The individual data points for the chimpanzees and gorillas are depicted by blue and orange markers, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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realised in situations where object descriptions differ in complexity such 
that the size (and weight) of the sets of distinctive features of each object 
vary. This, for example, is what allows the model to capture asymmetries 
in the context of directional similarity judgements. But these conditions 
are not met in our stimulus materials: every stimulus item consists of 
exactly two components, each of which has a colour and a shape. The 
number of matches is thus taken from the same wider set of possibilities 
in each case, so that enumerating the matching features effectively 
identifies the complement set of the non-matching features as well. As a 
result, we would not necessarily expect this model to perform vastly 
better than other featural models for our stimulus domain, even if 
contrasting features were relevant to all our participants. Indeed, while 
the Contrast Model is the best performing featural model for the humans 
on both Task 1 and Task 2, it is not the best featural model for nonhuman 
subjects (see CMOD-SM in Table 1). In fact, no single featural model 
performs best across Task 1 and Task 2 for the nonhuman apes; a finding 
that obtains both overall and at the individual level (see Tables S1–2). 
Similar to the individual-level fits reported in Section 3.2, the best fitting 
model is structural for the majority of human participants in Task 1 (7/ 
10) and Task 2 (10/10) when the Contrast Model is also considered 
(Table S2). For nonhuman apes, the Contrast Model does not provide the 
best fit in any single subject for Task 1 or Task2 (Table S2). Finally, the 
key interaction between group and task in Fig. 3 is retained when the 
Contrast Model is included in the structurality scores (F (1, 15) = 12.8, p 
= 0.003, ηp

2 = 0.46; BF = 1164.935). 

4. Discussion 

Contemporary models of human similarity place critical emphasis on 
the role of ‘structure’ in the representation of real-world objects and 
events (Gentner & Markman, 1997; Hahn et al., 2003), meaning that 
both individual elements and, critically, how they are interrelated can 
influence perceived similarity. Despite the relevance of structural in
formation to human perceptual similarity, object recognition, analogical 
reasoning, and so on, dominant models of animal learning and cognition 
(e.g., Pearce, 1994; Rescorla & Wagner, 1972) still assume that 
nonhuman similarity and generalization can be readily captured by 
simple, feature-based representation schemes. Challenging this view, we 
have systematically demonstrated in this study that structural models of 
similarity can precisely capture, like in adult humans, patterns of simi
larity judgements in nonhuman species, specifically great apes (chim
panzees and gorillas). By applying a novel measure of ‘structurality’ – 
derived by contrasting a set of featural models with a set of established 
structural models of similarity – we found that all nonhuman apes 
demonstrated sensitivity to structure when discriminating basic object 
stimuli (coloured shapes). This provides strong evidence that nonhuman 
ape species utilise complex object representations that go beyond basic 
feature sets. 

Importantly, the claim that similarity comparisons in nonhuman 
apes seem to involve structured representations is distinct from the 
question of whether they can or cannot recognise purely relational sim
ilarities. Prior work has shown that many nonhuman species have dif
ficulty recognising similarities that are based entirely on abstract 
relational properties, such as identifying that two squares and two cir
cles share the relational property of “sameness” (Blough, 2001; George 
et al., 2001; Haun & Call, 2009; see also Penn, Holyoak, & Povinelli, 
2008; Tomasello & Call, 2007). Obviously, if relational information is 
not even encoded, purely relational matches are impossible, but where 
relational information is encoded, it still may not support arbitrary 
comparisons. Purely relational properties such as “sameness” are highly 
abstract, higher-level aspects of comparisons; that these may be chal
lenging is entirely in keeping with our own results indicating that 
building structured representations out of stimuli composed of arbitrary 
feature combinations is already difficult for nonhuman primates. 

While all nonhuman apes demonstrated a striking sensitivity to 
structure for coloured shapes, they were notably more featural in Task 2, 

which involved line information only (inner and outer contours). 
Additional model-based and model-free analyses suggested that 
nonhuman apes had particular difficulty integrating the outer shape 
with the inner line orientation. This interesting result aligns with prior 
work that highlights a central role for colour (versus shape) information 
in nonhuman primate object individuation and discrimination (Mendes 
et al., 2011; Santos, Sulkowski, Spaepen, & Hauser, 2002). While past 
cross-species work has found some congruence with human results with 
respect to the feature binding of colour and shape (e.g., Buračas & 
Albright, 1999; Cook, 1992),2 research with other types of ‘features’ 
(such as the distinction between local and global features) has suggested 
the possibility of significant cross- species differences (e.g., Fagot & 
Tomonaga, 1999; Hopkins & Washburn, 2002) in how attributes of 
compound stimuli are perceived. In the context of our central question 
about the representation of relational structure, the contrast between 
performance in Task 1 and Task 2 highlights how the functional rele
vance of different forms of lower-level stimulus information may impact 
on the expression of higher-order cognitive processes. For example, 
while colour was highly relevant in this visual discrimination paradigm, 
it may be that shape information would be weighted more in contexts 
where it is ecologically/functionally relevant, such as when selecting 
stimuli for action, as seen in tool selection (Santos, Miller, & Hauser, 
2003). Importantly, while the nonhuman apes failed to show structural 
sensitivity to the line-only stimuli of Task 2, they did show evidence of 
attending to both ‘dimensions’ (outline shape/inner line) in their 
discrimination. This suggests that the difference between the two tasks 
may reflect a performance difficulty rather than an in-principle limita
tion. Specifically, the highly salient, accessible, and familiar dimension 
of colour may be easier to process, leaving greater resources for the 
integration of the second dimension (even human participants were 
somewhat slower in Task 2, hinting at a visual processing advantage for 
the coloured objects in Task 1). In other words, the task differences for 
the nonhuman apes may reflect the kinds of performance differences 
seen widely for humans in cognitive and developmental psychology 
across familiar and less familiar materials. It thus seems possible that 
greater sensitivity to structure in Task 2 would emerge after more 
extensive training with the basic discrimination. This dissociation sug
gests also that requiring the binding mechanism to be wholly indepen
dent of the elements to-be-bound (as assumed to be definitional of 
structured representation in Doumas & Martin, 2018, p. 169) may be too 
strong a constraint for the meaning of structure in nonhuman species. 
Indeed, our results might be taken to suggest that it would be empirically 
and conceptually fruitful to not take the issue of structure in nonhuman 
primates as all or none (Doumas & Martin, 2018). 

That said, the results from Task 1 do mean that models that do not 
include relational information are too restrictive for nonhuman apes, at 
least some of the time. Featural or vector-based models of stimulus 
representation, and as a consequence similarity, continue to dominate 
cognitive psychology (Ashby, 1992; Galesic, Walkyria Goode, Wallsten, 
& Norman, 2018; Hout, Goldinger, & Brady, 2014), animal learning 
(Hall & Rodríguez, 2017; Holmes, Chan, & Westbrook, 2019; Luzardo, 
Alonso, & Mondragón, 2017; Pearce, 2008; Rasmussen, Zucca, Johans
son, Jirenhed, & Hesslow, 2015), cognitive neuroscience (King, Groen, 
Steel, Kravitz, & Baker, 2019; Mur et al., 2013; Theves, Fernandez, & 
Doeller, 2019) and machine learning (Hamel, 2009). Though arguments 
about the empirical adequacy of such representation schemes have been 
repeatedly made, they continue to be popular, arguably, because it is 
empirically difficult to provide compelling evidence for the role of 
structure in determining visual similarity. For one, this stems from the 
difficulty of excluding ‘mimicry’ of seeming sensitivity to structure 
through featural models. However, it stems also from the idea that 

2 Note, this does not mean that nonhuman species can necessarily use these 
object representations in the same way that humans can (e.g., see Smith, Minda, 
& Washburn, 2004). 
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structural similarities may be restricted in their role to ‘higher-level’ 
contexts, such as those involving some form of analogical reasoning 
(Hahn, 2014). This has made it seem plausible that structure does not 
matter to visual similarity in most, or all, nonhuman species. The present 
results refute this. Relational information has often figured as a fault line 
between researchers who view nonhuman species as capable of high- 
level abilities, such as causal reasoning (Beckers, Miller, De Houwer, 
& Urushihara, 2006; Blaisdell, Sawa, Leising, & Waldmann, 2006; Call, 
2004), theory of mind (Tomasello, Call, & Hare, 2003), imitation 
(Tomasello, Carpenter, Call, Behne, & Moll, 2005) or mental time travel 
(Clayton & Dickinson, 2009; Martin-Ordas, Berntsen, & Call, 2013), on 
the one hand, and those who view seeming demonstrations of such 
abilities as the product of simpler associative processes (Dwyer, Starns, 
& Honey, 2009; Heyes, 1998, 2001; Penn & Povinelli, 2007). In this 
context, the present results emphasise the need to distinguish carefully 
between relations embedded within object and/or event representations 
and true higher-order relational reasoning (Penn et al., 2008). Indeed, 
these results emphasise the need to develop more realistic models of the 
former, which include relational structure, even in species that show no 
evidence of the latter. 

On a methodological level, the present paper shows that effective 
tests for the role of structure in perceptual similarity can be derived by 
thwarting attempts at (plausible) mimicry through systematic expansion 
of the set of comparisons. Given such a test, the limitations of featural 
models for human perceptions of similarity emerge very clearly, but 
they also emerge not just for chimpanzees but also the more distantly 
related gorillas – at least for those types of stimuli that combine familiar 
object dimensions. 
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