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Fitting Cylinders Computation with an Application to Measuring1

3D Shapes2

Jovǐsa Žunić ∗ and Padraig Corcoran †3

Abstract4

This paper observes a fitting cylinders problem for 3D shapes. The method presented defines5

two cylinders that fit well with the shape considered. These cylinders are easy and fast to6

compute. Would the 3D shape considered be digitized, i.e. represented by the set of voxels,7

the computation is asymptotically optimal. Precisely, the time required for the computation is8

O(N), where N is the number of voxels inside the shape.9

Next, we show how these fitting cylinders can be used to measure 3D shapes. More precisely,10

we define a new 3D shape measure that numerically evaluates how mach a shape given looks11

like a cylinder. Interestingly, both fitting cylinders have to be used to define such a measure12

- just one of them is not sufficient. The new measure is invariant with respect to translation,13

rotation, and scaling transformations, and ranges over the interval [0; 1], and takes the value 114

if and only if the shape considered is a perfect cylinder. It is robust and simple to compute.15

Key-words: Fitting 3D shapes, fitting objects by cylinders, 3D moments, invariants, object16

fitting efficiency, 3D shape measure.17

18

1 Introduction19

This paper deals with shape fitting and shape measurement problems - two recurrent problems in20

pattern recognition, image processing, and computer vision. More precisely, we deal with fitting21

cylinders and cylinderness measure for 3D shapes. Being one of the basic shapes that appear22

frequently in different domains, from medicine to the industry, a spectrum of the problems related23
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to cylindrical shapes were already studied in the literature. Just to mention the cylindrical surface24

fitting problems, [22, 23, 30, 32], segmentation problem [17], parameters estimation problem [7], or25

the registration problem [2], for an illustration.26

The research related to the 3D shape based object analysis was not so intensive at the beginning27

of a usage of computers for manipulation and processing of image based data. It becomes more28

important due to the developments in the 3D image technologies, and a 3D data availability.29

Initially, the shape characterization based on the 3D moment invariants has been done – [14, 16, 28].30

A study on an analogue of the famous Hu moment invariants [12, 16] that has resulted in designing31

a compactness measure [36] for 3D shapes, and latter on recovering ellipsoidness measures [15, 35],32

is another set of problems that have been considered. The cubeness [19], vesselness [8], rectilinearity33

[13], Minkowski compactness measure [18], are other examples of the numerical characterizations34

of the 3D shapes.35

So far, most shape measures are developed related to a study of two-dimensional shape proper-36

ties. Most popular shape properties have allocated multiple shape measures. Just to mention two37

of them, ellipticity [1, 21, 29, 38] and circularity [10, 24, 34]. Of course, there are many more shape38

properties that have been evaluated numerically: squareness [27], elongation [33, 37], anisotropy39

[25], bizarreness [3], and so on. There are also measures particularly related to the curve properties40

[9], curve temperature [6], linearity [26], and many more.41

In this paper we introduce a new 3D shape measure, herein named shape cylinderness measure.42

This is a global shape descriptor, in sense that all the shape points are used for the computation –43

not only the boundary ones. The 3D shape cylinderness measure evaluates how much the object44

considered looks like a cylinder. The new measure ranges over the interval [0, 1], takes the value 145

if and only if the shape measured is a cylinder. Also, it is invariant with respect to the translations,46

rotations, and scaling transformations. In addition, the new measure is simple to compute and is47

robust.48

The paper is organized as follows: The next section includes the basic notations and definitions49

used in the paper. Section 3 establishes a theoretical framework for the definition of the new fitting50

cylinders, for 3D shapes. It has turned out that our method leads to two fitting cylinders, for a51

given 3D shape, for a small exception for almost spherical shapes. The computation is efficient,52

and would voxlized data are used is asymptotically optimal.53

In the Section 4, we use these fitting cylinders to design a new 3D shape measure, numerical54

evaluation how much a given set looks like a cylinder1. A formal definition of the new measure is55

given there, as well.56

Experimental illustrations are in the Section 5. The same section includes a modification of57

the cylinderness measure from the Section 4. Such a modification enables a simpler computation.58

1Here in, by a cylinder we mean a 3D body, not a cylindrical surface.

2



Concluding remarks are in the last section.59

2 Notations and Definitions60

We start with the basic notations and definitions, used in this paper.61

• So called, geometric moments, mp,q(S), of a 3D region/shape S are defined as follows

mp,q,r(S) =

∫∫∫
S
xpyqzrdxdydz. (1)

• The moments m0,0,0(S), m1,0,0(S), m0,1,0(S), and m0,0,1(S) are used to define the shape62

centroid, (xc(S), yc(S), zc(S)), formally defined as63

(xc(S), yc(S), zc(S)) =(
m1,0,0(S)

m0,0,0(S)
,
m0,1,0(S)

m0,0,0(S)
,
m0,0,1(S)

m0,0,0(S)

)
(2)

Obviously, if the shape in question is assumed to be of a unit volume, i.e. m0,0,0(S) = 1, then64

the point (m1,0,0(S), m0,1,0(S), m0,0,1(S)) coincides with the centroid o S.65

• To simplify theoretical derivations and without loss of generality, we will assume that all the66

shapes considered will be translated such that their centroid coincides with the origin. Thus,67

(xc(S), yc(S), zc(S)) = (0, 0, 0) (3)

would be assumed even though has not been mentioned.68

• In our derivations we will use a well known quantity, J(S) [16], defined as69

J(S) =
m2,0,0(S) +m0,2,0(S) +m0,0,2(S)

m0,0,0(S)5/3
, (4)

assuming that the centroid of S and the origin coincide. J(S) is invariant with respect to70

translations, rotations, and scaling transformations. Actually, J(S) might be seen as a 3D71

analogue of the first Hu moment shape invariant [12], commonly used in shape based object72

analysis tasks.73

• By a cylinder C(h, a) we mean a 3D body bounded by the two hyper-planes z1 and z2, and a74

circular oval w – all three cylinder bounding surfaces are defined as follows (for an illustration75

see Fig.1):76

z1 =

{
(x, y, z)|z =

h

2

}
,

z2 =

{
(x, y, z)|z = −h

2

}
,

w =
{

(x, y, z)|x2 + y2 = a2
}
. (5)
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In other words,77

C(h, a) =

{
(x, y, z) | |z| ≤ h

2
, x2 + y2 ≤ a2

}
. (6)

If the cylinder C(h, a) has the volume equal to 1, then a =
1√
π · h

. In other words, C(h, a) is78

dependent on a single parameter h. For a shorten denotation we will write C(h), instead of79

C(h, a). Thus,80

C(h) = C(h, a) = C

(
h, a =

1√
π · h

)
. (7)

The parameters h and a would be called the height and base radius, of the cylinder C(h, a),81

respectively.

Figure 1: A part of a cylinder, from the first octant, positioned as defined by their surface equations

given as in (5).

82

3 Fitting Cylinders for 3D Shapes83

In this section, first we develop a theoretical framework needed to compute two fitting cylinders,84

for a given 3D shape. A formal definition for these two cylinders follows easily from the theoretical85

observations made. Experimental illustrations are in a separate subsection.86

We start from the formulas for the volume V ol(C(a, h)) of the cylinder C(a, h) and for the87

invariant J(C(a, h)) (as given in (4)). These are as follows:88

V ol(C(h, a)) = π · a2 · h,

(8)

J(C(h, a)) =
1

(π · h · a2)2/3
·
(
h2

12
+
a2

2

)
.
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The expression for V ol(C(a, h)) is trivial, while a derivation of expression for J(C(h, a)) follows89

J(C(h, a)) =

=
1

(π · h · a2)5/3
·
∫∫∫

C(a,h)
(x2 + y2 + z2)dxdydz (9)

=
1

(π · h · a2)5/3

∫ 2π

0

∫ a

0

∫ h2

−h/2

(
ρ3 + ρz2

)
dφdρdz (10)

=
2 · π

(π · h · a2)5/3
·
∫ a

0

∫ h/2

−h/2

(
ρ3 + ρz2

)
dρdz (11)

=
2 · π

(π · h · a2)5/3
·
∫ a

0

(
hρ3 +

ρ

12
h3
)
dρ (12)

=
π · h · a2

(π · h · a2)5/3
·
(
h2

12
+
a2

2

)
(13)

=
1

(π · h · a2)2/3
·
(
h2

12
+
a2

2

)
. (14)

If we set the volume of C(h, a) to be equal to 1, we have the following two equivalent equalities,90

satisfied by J(C(h, a))91

J

(
C

(
h =

1

π · a2
, a

))
=
a2

2
+

1

12 · π2 · a4
,

(15)

J

(
C

(
h, a =

1√
π · h

))
=

1

2 · π · h
+
h2

12
.

We will exploit the second equality from (15), and use the notations from (7), to receive the92

following equality satisfied by h. form:93

π · h3 − 12 · π · J(C(h, a)) · h+ 6 = 0. (16)

3D shape moment invariant J(S) is a distinct and natural 3D shape characteristic. Looking at94

the formula in (4), it can be concluded (for more details see [35, 36]) that J(S) evaluates the average95

squared distance of the points from S to the centroid of S. As such, the quantity J(S) is invariant96

with respect to the translations, rotations, and scaling transformations. Thus, a use of isometric97

transformations, to place the objects compared into a desirable position, is not necessary. This is98

why we decide to exploit the invariant J(S), and the related equation in (16), for the computation99

of the shape fitting cylinders. More precisely, we start from100

π · h3 − 12 · π · J(S) · h+ 6 = 0 (17)

and compute the parameters h, that uniquely (up to isometric transformations) define the corre-101

sponding unit volume cylinder C

(
h, a =

1√
π · h

)
. It turns out that, with small exceptions, there102

are two parameters h, satisfying the conditions above.103
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The equation in (17) is a cubic equation in h. The number of solutions (roots) of (17) depends104

on the, so called, discriminant ∆, as follows:105

• if ∆ > 0, the equation in (17) has three real solutions;106

• if ∆ = 0, the equation in (17) has one multiple real solution;107

• if ∆ < 0, the equation in (17) has one real solution and two complex ones.108

In the case observed here, the discriminant ∆ is as follows109

∆ = 108 · π2 ·
(
64 · π2 · J(S)3 − 9

)
. (18)

Of course, we are interested in the positive values of h, that are solutions of the equation in110

(17). This is because h has a clear geometric interpretation – the cylinder height (see Fig.1).111

The quantity J(S) is not bounded above (i.e. J(S) can be arbitrarily large) but reaches its112

minimal possible value if S is a 3D ball (i.e. a shape bounded by a perfect 3D sphere) [35, 36].113

The following estimate gives the best possible lower bound [35, 36]:114

J(S) ≥ 35/3

5 · (4π)2/3
≈ 0.2309, (19)

with the equality, in (19), if and only if S is a 3D ball [35, 36].115

Thus, an immediate observation would say, the discriminant ∆ (for an arbitrary shape S)116

defined as in (18), is inside the interval117 108 · π2 ·

64 · π2 ·

(
35/3

5 · (4π)2/3

)3

− 9

 , ∞


[
108 · π2 ·

(
4 · 35

125
− 9

)
, ∞

)
≈ [−1304.7, ∞) . (20)

So, observing the range of J(S) only, all three situations ∆ > 0, ∆ = 0, and ∆ < 0, would be118

possible.119

Note 1 The lower bound for J(S), if S is a perfect cylinder is, of course, larger than the lower120

bound in (19). If we start from the second equality in (15), we have121

dJ(C(h, a))

dh
=

−1

2 · π · h2
+
h

6
. (21)

So, the equation
dJ(C(h, a))

dh
= 0 has a single solution: h =

3

√
3

π
. Further, since

lim
h→0

J(C(h, a)) = lim
h→∞

J(C(h, a)) =∞,
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we deduce (taking into account the scaling invariance of J(S)) that the minimum value of the J(S),122

if S is a perfect cylinder, is reached for h =
3

√
3

π
and is calculated as follows123

min{J(C(h, a)) | C(h, a) is a cylinder}

= J

(
C

(
h =

3

√
3

π

)
, a =

1
6
√

3 · π2
,

)

= J(C(h ≈ 0.9847, a ≈ 0.5685))

=
3

4 · 3
√

3 · π2
≈ 0.2424. (22)

124

Note 2 There is a short interval125

I =

[
35/3

5 · (4π)2/3
,

3

4 · 3
√

3 · π2

)
≈ [0.2309, 0.2424) (23)

such that J(C(h)) /∈ I, for all h. The shapes S whose J(S) values are inside I are nearly spherical126

and all of them are best matched (in terms considered here) by the cylinder J
(
C
(

1
6√
3·π2

, 3

√
3
π

))
,127

as described in (22). This is not of a great importance for us now, since this work is aimed to128

analyze more ‘elongated’ 3D shapes. For such, ‘not nearly spherical’, shapes J(S) is larger than129

3

4 · 3
√

3 · π2
≈ 0.2424.130

So far, we have shown that there are just a finite number (up to three) candidates for the131

cylinders that fit well with the shape considered. Next, we show even more, that the method does132

offer exactly two fitting cylinders, for any shape S with J(S) /∈ I (see (23)). We show this in two133

steps (the next two items).134

• In the case of ∆ < 0, not all the three solutions of the equation in (17) can be positive.135

Indeed, if h1, h2, and h3, are roots of the equation in (17) then136

π · h3 − 12 · π · J(S) · h+ 6

= π · (h− h1) · (h− h2) · (h− h3), (24)

and further137

−h1 − h2 − h3 = 0,

h1 · h2 + h1 · h3 + h2 · h3 = −12 · J(S),

−π · h1 · h2 · h3 = 6. (25)

However, if h1 ≥ 0, h2 ≥ 0, and h3 ≥ 0 is assumed, then h1 · h2 + h1 · h3 + h2 · h3 > 0.138

Consequently, the second equality h1 · h2 + h1 · h3 + h2 · h3 = −12 · J(S), in (25), would139

contradict to the fact that J(S) > 0, for any shape S.140
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• Similarly to the above, we deduce a contradiction if we assume only one root, let say h1,141

in (17) to be positive. Then, it must be h2 · h3 > 0. This further would contradict to142

−π · h1 · h2 · h3 = 6, (from (25)), since the left part of the last equality would be a negative143

number, i.e. cannot be equal to 6.144

Thus, exactly two zeros of the equality in (17) are positive. More details are in the following note.145

Note 3 If two zeros, let say h1 and h2, in the polynomial in (24) are equal then h1 = h2 =
3

√
3

π
. In146

such a case, the third zero h3 is negative and satisfies h3 = −2 · 3

√
3

π
. In other words, this is the only147

case where the fitting cylinders coincide. Such a fitting cylinder is C

(
h =

3

√
3

π
, a =

1
6
√

3 · π2

)
,148

i.e. the cylinder that has the minimal possible value of the 3D invariant J(S) (see Note 1 and149

derivation of the equality in (22)).150

Now, since we know that the number of solutions of the equation in (17) is exactly two, we give151

the following definition of the cylinders fitting with a given 3D shape.152

Definition 1 Let a 3D shape, with J(S) /∈ I, be given. Then we define two fitting cylinders153

C (hl) = C

(
hl, as =

1√
π · hl

)
(26)

C (hs) = C

(
hs, al =

1√
π · hs

)
(27)

for the shape S. The parameters hl and hs are solutions of the following equation (see (17)) 2:

π · h3 − 12 · π · J(S) · h+ 6 = 0.

We assume hl > hs (i.e. indicies l and s stand for ‘long’ and ‘short’, respectively).154

3.1 Fitting Cylinders Examples155

We proceed with several examples that include shapes selected randomly and their corresponded156

fitting cylinders, computed based on the equation in (17). These examples are in Fig.2. Four 3D157

shapes are selected randomly from the well known McGill 3D Shape Benchmark shape data set158

[20]. They are displayed in the first row in Fig.2, and their names, as given in the data set [20],159

are immediately below them. Their corresponding fitting cylinders are displayed below them3,160

2This is a cubic equation, whose solutions can be given in an explicit (but slightly complicated) form, by using

Cardano’s result.
3Notice that the fitting cylinders, in Fig.2, are presented by their oval surfaces only – not as 3D closed bodies, as

they are. This has been done for a better visualization purpose.
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teddy1 hands10 dolphins6 snakes 24

hl = 1.9859, as = 0.4004 hl = 2.7019, as = 0.3432 hl = 2.4681, as = 0.3591 hl = 3.6180, as = 0.2966

hl
2·as

= 2.4802 hl
2·as

= 3.9359 hl
2·as

= 3.4363 hl
2·as

= 6.0988

hs = 0.4027, al = 0.8891 hs = 0.2403, al = 1.1509 hs = 0.2814, al = 1.0636 hs = 0.1404, al = 1.5057

hs
2·al

= 0.2265 hs
2·al

= 0.1044 hs
2·al

= 0.1323 hs
2·al

= 0.0466

Figure 2: Four shapes, selected randomly, from [20] data set are in the first row. Their fitting

cylinders are given below them, together with the positive zeros hl and hs, computed from the

related equality in (17). The parameters as = 1/
√
π · hl, al = 1/

√
π · hs, hl/(2 · as), and hs/(2 · al),

are also given, for better illustration purposes.

9



together with the corresponding hl and hs values necessary for their computation. The larger,161

positive zero hl of the equation in (17) determines a more ’elongated’ fitting cylinder, while the162

smaller positive zero of the equation in (17) determines the cylinder that is less elongated. The163

values as =
1√
π · hl

and al =
1√
π · hs

, that correspond to the values hl and hs, respectively, are164

also given. The corresponding values
hl

2 · as
and

hs
2 · al

are also provided, in order to illustrate165

how much the fitting cylinders are elongated.166

At the moment, it seems reasonable to say that the first, second and third shape, in the first167

row, are better fitted with the more elongated cylinder (determined by the bigger h value (i.e. by168

the computed parameter hl). The fourth shape (in the first row) does look to be far away from a169

cylindrical shapes. This is why is difficult to have a perception which of two computed fit cylinders170

would be a better fit to the shape displayed. A method to evaluate numerically how good is fitting171

between the shape considered and their related fitting cylinders, as well as properties of such the172

method, will be discussed in the following section.173

More shapes and their corresponding fitting cylinders can be found in the Fig.3-6. This time174

the fitting cylinders are given by their unique parameters hl and hs, but they are not displayed, as175

it has been done in Fig.2.176

4 Cylinderness Measure for 3D Shapes177

In this section we observe how a comparison between the shape given and its two fitting cylinders,178

could lead a numerical evaluation of how much a shape given looks like a cylinder4 Such a computed179

quantity will be called the shape cylinderness measure.180

As it has been shown, there are two solutions hl and hs of the equation in (17), and these181

solutions define two fitting cylinders182

C

(
hl, as =

1√
π · hl

)
and C

(
hs, al =

1√
π · hs

)
. (28)

There are many ways how two shapes can be compared. Herein we will employ a very general one,183

that can applied to arbitrary pair of shapes. Such a shape comparison leads to two quantities,184

Ca(S) and Cb(S) (see Definition 2), and further to the new 3D shape cylinderness measure, as given185

in Definition 3.186

Later on, in the next section, we will describe a modified measure that simplifies the computa-187

tion, still keeps nice measure properties, but slightly reduces the situations were it can be applied188

directly (to the highly symmetric shapes, for example).189

4Notice that a comparison with just one of these fitting cylinders does not lead to the measure satisfying the

desirable properties like those listed in the Theorem1. This is, for example, because Ca(S) = Cb(S) = 1 cannot be

true for an arbitrary shape (cylinder) S. More precisely, Ca(S) = Cb(S) = 1 would imply that S coincides with both

fitting cylinders corresponding to the parameters a and b. This is not possible.

10



Definition 2 Let a 3D shape S be given. Let the volume of S be equal to 1 and the centroid of S190

be coincident with the origin. We define two auxiliary quantities Ca(S) and Cb(S) as follows:191

Ca(S) = max
S(α)

{
V olume (S(α) ∩ C (hl, as))

V olume (C (hl, as))

}
(29)

192

Cb(S) = max
S(α)

{
V olume (S(α) ∩ C (hs, al))

V olume (C (hs, al))

}
(30)

where193

– hl and hs are zeros of the equation in (17), allocated to the shape S;194

– as = 1√
π·hl

, al = 1√
π·hs

;195

– C(hl, as) and C(hs, al) are cylinders defined as in (6); and finally,196

– S(α) is a shape obtained by an arbitrary rotation of the shape S around its centroid.197

Now, we are able to give a formal definition of the new cylinderness measure, denoted by C(S).198

Definition 3 Let a shape S, whose volume is equal to 1 and whose centroid coincides with the199

origin, be given. The 3D shape cylinderness measure, C(S), is defined as follows:200

C(S) = max {Ca(S), Cb(S)} (31)

where Ca(S) and Cb(S) are as in (29) and (30), respectively.201

The next theorem lists important properties of the measure C(S).202

Theorem 1 The cylinderness measure C(S) has the following properties:203

(a) C(S) ∈ [0, 1], for all the 3D shapes S;204

(b) C(S) = 1 ⇔ S is a cylinder;205

(c) C(S) is invariant with respect to the translations, rotations, and scaling transformations.206

Proof. The items (a) and (c) follow from the definition. To prove (b) let us assume that S0 is a207

unit volume cylinder C (h0, a0), defined by the parameters h = h0 and a0 = 1√
π·h0

, as given in (6).208

This further means209

J(S0) =
1

2 · π · h0
+
h20
12

(32)

based on (15). Entering the equality in (32) into (17), we get210

π · h3 − 12 · π · h ·
(

1

2 · π · h0
+
h20
12

)
+ 6 = 0. (33)
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The equality in (33) is equivalent to211

π · (h− h0) ·
(
h · (h+ h0)−

6

π · h0

)
= 0. (34)

Thus, h = h0 is the solution of the equation in (33), and the method offers the cylinder C
(
h0, a = 1√

π·h0

)
,212

as one of the best fitted cylinders to the given shape S0. Since S0 = C
(
h0, a = 1√

π·h0

)
, this further213

means that either C1(S0) = 1 or C2(S0) = 1, is true (see (29) and (30)). So, C(S0) = 1 is proven,214

due to the equality/definition in (37).215

On the other side, if C(S0) = 1 then it must be either Ca(S0) = 1 or Cb(S0) = 1. Due to the216

definitions in (29) and (30), the shape S0 must coincide with one of the fitting cylinders, C(hl, as)217

and C(hs, al), where hl and hs are the solutions of the equation in (17). This establishes the proof.218

�219

5 Experimental Section220

In this section, first, we give a modified version of the cylinderness measure established in the221

previous section. Then, we provide several experiments in order to enable a better understanding222

how the modified cylinderness measure behaves. All experiments also include the unique parameters223

(hl and hs), necessary to reconstruct the fitting cylinders, related to the shapes considered. This224

time the cylinders are not displayed, as this has been done in Fig. 2225

5.1 A Modified Cylinderness Measure226

Till now, all the theoretical framework was established by working in a continuous space. However,227

in image processing and computer vision tasks, and more generally, in images technology based228

object analysis procedures, we deal with computer images - i.e. in situations where real 3D objects229

are presented with the sets of voxels inside the objects. Because of that, the maxima in (29) and230

(30) can be only computed numerically. Of course, this always causes an inherent error. Such an231

error is not large, in this particular case. This is because the volumes of 3D regions, as required232

in (29) and (30), can be approximated efficiently just by enumerating the integer points (voxels)233

inside the 3D region considered [4, 11].234

A straightforward numerical computation of the maximums in (29) and (30), by using incre-235

mental angles rotations around the object centroid, can be time consuming, particularly if the236

objects considered are represented by a high 3D image resolution, i.e. if the objects consist of a237

large number of voxels.238

Because of the above, we will relax conditions in Definition 2, in order to preserve a simpler239

computation. We propose efficient substitutes for the quantities Ca(S) and Cb(S), and the cylin-240

derness measure C(S), (see Definition 3), that can be computed without a use of any incremental241
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optimizing procedure. More precisely, the shapes considered are oriented such that their principal242

axes [5] coincide with the principal axes of their fitting cylinders, and all the necessary compu-243

tations are done without any additional incremental rotations of the shapes measured. All the244

theoretical observations and the statements made are analogue to those in the previous sections.245

The key statements still remain valid for the modified measure, as in the case of the C(S) measure.246

Thus, the proofs are omitted.247

Definition 4 Let a 3D shape S be given. Let the volume of S be equal to 1 and the centroid of S248

be coincident with the origin. We define two following quantities C1(S) and C2(S) as follows:249

C1(S) = max
S(β)

{
V olume (S(β) ∩ C (hl, as))

V olume (C (hl, as))

}
(35)

250

C2(S) = max
S(β)

{
V olume (S(β) ∩ C (hs, al))

V olume (C (hs, al))

}
(36)

where S(β) equals the shape S oriented such that its principal axes coincide with the principal axes251

of the fitting cylinders C (hl, as) and C (hs, al)
5.252

Now, we are able to give a formal definition of the measure C(S) that is a modification of the253

C(S) measure.254

Definition 5 Let a shape S, whose volume is equal to 1 and whose centroid coincides with the255

origin, be given. The 3D shape cylinderness measure, C(S), is defined as follows:256

C(S) = max {C1(S), C2(S)} (37)

where C1(S) and C2(S) are as in (35) and (36), respectively.257

Note 4 The time complexity of the initial method for the computation of the cylinderness measure258

varies depending on the number of incremental rotations required (see Definition 2). It goes from259

– an asymptotically optimal time complexity of O(N) (N is the number of shape points) if the260

number of incremental rotations is fixed;261

to262

– an unbounded complexity, if the number of incremental rotation used, is unbounded too.263

Thus, the dominance of the modified method, compared to the one based on Definition 2, can be264

significant if the number of incremental rotations used is big enough.265

The next theorem lists desirable properties of the measure C(S). These properties are analogue266

to the properties of the C(S) measure (see Theorem 1).267

5We still use the maximum operator in (35) and (36), but there are no more than 8 choices for β. Just to mention

that the number of α values in (29) and (30) can be selected to be arbitrary large.
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Theorem 2 The cylinderness measure C(S) has the following properties:268

(a) C(S) ∈ [0, 1], for all the 3D shapes S;269

(b) C(S) = 1 ⇔ S is a cylinder;270

(c) C(S) is invariant with respect to the translations, rotations, and scaling transformations.271

We start our experiments with synthetics shapes. After that we use a relatively small collection272

of shapes from the well know data set [20]. The results obtained are reasonable, and we may say,273

fit well with human perception.274

As it has been mentioned, in all the experiments we had to work on discretized data – i.e. on275

the objects presented by the sets of voxels. This is why all computed values and parameters are276

approximate ones, and given as decimal numbers.277

5.2 Experiments on Synthetic Data278

To illustrate the behavior of the new measure C(S) we have used a 3D cube stretched/shrunk for279

different coefficients, in direction of the coordinate axes. The results are given in Fig.3. Five objects280

are considered. The first object, in the first row, is a regular cube. It has relatively high cylinderness281

measure (C(S) = 0.8458). It is worth noticing that the corresponding values C1(S) = 0.8458 and282

C2(S) = 0.7875 are relatively close. This can be explained by a relatively high N -fold symmetry283

of a regular cube. The next two shapes, whose edge-length ratio differs essentially (i.e. these are284

1× 1× 2 and 1× 1× 8) have almost the same computed cylinderness measure, 0.9093 and 0.9091,285

respectively This is not a surprise taking into account that both measured 3D shapes have a square286

as the base, instead of the circle. This is the only difference from a perfect cylinder.287

Anyhow, once the shape S varies, its allocated fitting cylinders vary, as well (even though the288

corresponded cylinderness measure may stay the same). Indeed, for the second and third shape,289

in Fig.3 these cylinders are determined by the parameters, that differs very much, hl = 1.5846290

and hs = 0.5616 (for the second shape), and hl = 3.8909 and hs = 0.1223 (for the third shape).291

However, the comparison of the second shape with allocated fitting cylinder C(hl = 1.5846) and292

comparison of the third shape with the allocated fitting cylinder C(hl = 3.8909) leads to almost293

identical cylinderness measures (0.9093 and 0.9091 respectively). It might be worth noticing that294

their comparison with the corresponding fitting cylinders C(hs = 0.5626) and C(hs = 0.1223) leads295

to the essentially different scores of C2(S) = 0.6562 and C2(S) = 0.1967, respectively.296

Regarding the fourth and fifth shape in the first row in Fig.3, we notice that the computed297

cylinderness measures are obtained by comparing these shapes with the cylinders C(hs = 0.3871)298

and C(hs = 0.2466). In other words, the method says that these shapes are more similar to the less299
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1× 1× 1 1× 1× 2 1× 1× 8 1× 4× 4 1× 4× 8

hl = 1.1613 hl = 1.5846 hl = 3.8909 hl = 2.0359 hl = 2.6625

hl
2·as

= 1.1091 hl
2·as

= 1.7678 hl
2·as

= 6.8017 hl
2·as

= 2.5744 hl
2·as

= 3.8502

C1(S) = 0.8458 C1(S) = 0.9093 C1(S) = 0.9091 C1(S) = 0.4826 C1(S) = 0.5344

hs = 0.8271 hs = 0.5616 hs = 0.1223 hs = 0.3871 hs = 0.2466

hs
2·al

= 0.6666 hs
2·al

= 0.3730 hs
2·al

= 0.0379 hs
2·al

= 0.2134 hs
2·al

= 0.1085

C2(S) = 0.7875 C2(S) = 0.6562 C2(S) = 0.1967 C2(S) = 0.8391 C2(S) = 0.7024

C(S) = 0.8458 C(S) = 0.9093 C(S) = 0.9091 C(S) = 0.8391 C(S) = 0.7024

Figure 3: Five shapes obtained by stretching a cube, for different coefficients, are in the first

row. The edge-length ratios are immediately below the shapes obtained. The parameters of the

corresponding fitting cylinders are also given, as well as the computed quantities C1(S) and C2(S),

for each of the shapes considered. The computed cylinderness measure values are in the last row.
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teddy10 dolphins3 four29 octopuses4 pliers2

hl = 2.0936 hl = 2.5487 hl = 3.0153 hl = 2.9769 hl = 4.1306

hl
2·as

= 2.6846 hl
2·as

= 3.6060 hl
2·as

= 4.6402 hl
2·as

= 4.5519 hl
2·as

= 7.43994

C1(S) = 0.7447 C1(S) = 0.7770 C1(S) = 0.5447 C1(S) = 0.2689 C1(S) = 0.2034

hs = 0.3702 hs = 0.2848 hs = 0.1972 hs = 0.2018 hs = 0.1091

hs
2·al

= 0.1996 hs
2·al

= 0.1217 hs
2·al

= 0.0776 hs
2·al

= 0.0803 hs
2·al

= 0.0319

C2(S) = 0.5669 C2(S) = 0.4343 C2(S) = 0.3029 C2(S) = 0.1595 C2(S) = 0.2326

C(S) = 0.7447 C(S) = 0.7770 C(S) = 0.5447 C(S) = 0.2689 C(S) = 0.2326

Figure 4: Five shapes from different classes in [20] are in the first row. The related parameters (hl,

hl/(2 · as), C1(S), hs, hs/(2 · al), and C2(S)) are displayed below the corresponding shapes. The

cylinderness measures C(S) computed are in the last row.

elongated cylinders (in the sense of the hs/(2·as) and hs/(2·al) ratios) than to the (more elongated)300

cylinders determined by larger hl values (i.e. the cylinders C(hl = 2.0359) and C(hl = 2.6625)).301

This might be understood as expected and intuitively clear outcome and confirmation that both302

fitting cylinders have to be taken into account if we would like to compute the cylinderness measure303

of of the shapes considered.304

5.3 Experiments on a Known 3D Shapes Data-set Examples305

In this subsections we have used shapes from the well-known data-set [20].306

– Five shapes, in Fig.4, are selected randomly from different shape classes, and their cylinderness307

measures are computed. The related parameters hl and hs, of the corresponding fitting cylinders,308

the visualizations supporting ratios hl/(2 ·as) and hs/(2 ·al), and related quantities C1(S) and C2(S)309

are also provided.310

The obtained results might be understood as expected ones. The highest cylinderness measure311

is computed for the first two shapes. The third shape is ‘bended’ slightly, which has caused a312
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humans15 humans17 hands3 hands2 snakes14 snakes25

hl = 3.1464 hl = 3.6370 hl = 3.4002 hl = 3.0174 hl = 5.2855 hl = 4.7292

hl
2·as

= 4.9461 hl
2·as

= 6.1470 hl
2·as

= 5.5565 hl
2·as

= 4.6451 hl
2·as

= 10.7690 hl
2·as

= 9.1144

C1 = 0.6723 C1 = 0.4794 C1 = 0.6396 C1 = 0.6606 C1 = 0.0667 C1 = 0.3260

hs = 0.1824 hs = 0.1391 hs = 0.1579 hs = 0.1969 hs = 0.0675 hs = 0.0839

hs
2·al

= 0.0690 hs
2·al

= 0.0460 hs
2·al

= 0.0556 hs
2·al

= 0.0774 hs
2·al

= 0.0155 hs
2·al

= 0.0215

C2 = 0.3853 C2 = 0.3025 C2 = 0.3427 C2 = 0.3977 C2 = 0.0478 C2 = 0.4122

C = 0.6723 C = 0.4794 C = 0.6396 C = 0.6606 C = 0.0667 C = 0.4122

Figure 5: Three pairs of shapes, from the data set [20], are used to illustrate the C(S) behavior

under the shape deformation transformations. Immediately below the shapes are their names as

given in [20]. The related shape parameters and the quantities C1(S) and C2(S) are also provided.

The measured shape cylinderness values are in the last row.

decrease in the cylinderness measure computed. The lowest cylinderness measure is computed for313

the pliers shape (the shape on the right). This is also in accordance with our perception. It might314

be worth mentioning that the cylinderness measure for this pliers shape comes from the shape315

comparison with the cylinder determined by the smaller computed h (i.e. hs) value. The rest of316

the shapes, in Fig.4 fit better with the cylinder determined by the higher h (i.e. hl) value, computed317

from the equation in (17).318

– The behavior of the new cylinderness measure C(S) under the shape deformation transfor-319

mations is illustrated by examples in Fig.5. Three pairs of shapes, from different classes in [20],320

are considered. The second shape in each pair of shapes presented can be understood as the first321

shape (in the related pair) subjected to certain level of a deformation transform. Depending on322

the level of deformation applied, the computed C(S) values vary differently. The largest difference323

is computed for two ’snake’ shapes (the last two shapes in the first row). The same could be said324

for the related quantities C1(S) and C2(S) inside of each pair.325
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5.4 Robustness under Erosion Transformation326

In the next experiments we consider the robustness of the new measure, under erosion transforma-327

tions. We have used a cylinder whose height is h = 20.02 the base radius is a = 4.2. As it has been328

mentioned, herein we have to work with the discretized real objects. So, the cylinder observed is329

represented by using the cubes/voxels of the size 1× 1× 1. In this particular case, the number of330

voxels, whose centers belong to the cylinder observed, was 1092. The discretized/voxelized cylinder331

is displayed on the left, in Fig.6. The voxel centers, in the shapes in Fig.6, are represented by the332

dots. For such obtained voxelized data, the shape of the original cylinder shape is estimated to be333

equal to the shape of a unit volume cylinder C(h = 2.0361) (i.e. with the parameter hl = 2.0361).334

It has turned out, the estimated cylinderness measure was equal to 1. In other words, it has hap-335

pened that all the scaled voxels, belonging to the normalized observed cylinder, were inside the336

fitting cylinder C(hl = 2.0361), as well. It is worth mentioning that for another choice of digitized337

cylinder (whose parameters differ from h = 20.02 and a = 4.2.), the estimated cylinderness may338

vary.339

Next, we have removed a certain number of voxels from the original cylinder (i.e. its discretiza-340

tion). These voxels are selected randomly. For the second, third, and fourth shape, in the first341

row in Fig.6, the number of voxels removed were nearly 10%, 20%, and 40%, respectively. The342

exact number of voxels, remaining to represent the initial shape, is given immediately below the343

shapes related. Roughly speaking, the computed cylinderness measure C(S), of such eroded shape,344

has been changed (decreased) accordingly to the percentage of the voxels removed. It is up to the345

readers to judge is the presented robustness good enough for their possible applications.346

We also have provided the data (i.e. hl and hs values) showing how do fitting cylinders (allo-347

cated the shapes eroded) changes under such erosion transformations applied. Again, we leave the348

judgment of the quality of the results obtained to the readers. Surely, the judgment would depend349

on the application planned to be done.350

Comments similar to the comments above apply to the first shape in the second row, even351

though the erosion level is very high (more than 50% voxels were removed). The last two shapes,352

in the second row, are given to illustrate that the cylinderness measure C(S) can be applied to an353

arbitrary set of 3D points (or voxels), not necessary to the point-sets that do suggest that they354

represent connected 3D objects, or 3D objects of a specific class (in this case the digitized 3D355

cylinders). Thus, very small C(S) values, for the last two shapes, are not surprising.356

6 Concluding Remarks357

A theoretical framework has been established to solve a cylinder fitting problem for 3D shapes. It358

has been turned out that the method established allocates two fitting cylinders for any of 3D shapes,359
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1092 voxels 1000 voxels 900 voxels 700 voxels

hl = 2.0361 C1 = 1 hl = 2.1096 C1 = 0.9260 hl = 2.2153 C1 = 0.7922 hl = 2.4396 C1 = 0.6257

hs = 0.3871 C2 = 0.5522 hs = 0.3657 C2 = 0.5050 hs = 0.3377 C2 = 0.3029 hs = 0.2871 C2 = 0.3629

C(S) = 1 C(S) = 0.9260 C(S) = 0.7922 C(S) = 0.62579

500 voxels 300 voxels 100 voxels

hl = 2.7632 C1 = 0.4540 hl = 3.9895 C1 = 0.1900 hl = 4.7270 C1 = 0.0700

hs = 0.2308 C2 = 0.2840 hs = 0.1166 C2 = 0.1050 hs = 0.0840 C2 = 0.0500

C(S) = 0.4540 C(S) = 0.1602 C(S) = 0.0700

Figure 6: The discrete point set in the first row on the left represents a cylinder discretized on

a regular 3D integer grid. The rest of the shapes are obtained by removing a certain number

of points from the shape on the left. The number of the points removed is immediately below

the shapes. The rest of voxels were used to approximate cylinderness measure C of such discrete

point sets, consisting of unit volume voxels/cubes. The values, given below the shapes, relate to

the estimated fitting cylinders (hl and hs), the computed quantities C1 and C2, and finally to the

computed cylinderness measures C.
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with small exception for nearly spherical 3D shapes. If the method is applied to the 3D voxelized360

shapes it has an asymptotically optimal time complexity – i.e. it has the O(N) computational361

complexity, where N is the number of voxels that belong to the digitized shape considered.362

Further, the fitting cylinders obtained are used to design a new 3D shapes measure. This363

measure is named a cylinderness measure, since it gives a numerical evaluation of how much a 3D364

shape given looks like a perfect cylinder. The new measure has the following desirable properties:365

(i) It varies through the interval [0, 1]; (ii) The measure picks the value 1 if and only if the shape366

measured is a cylinder; (iii) The measure is invariant with respect to the translation, rotation, and367

scaling transformations. Being theoretically well founded, the behavior of the new measure can be368

predicted to some extent, without verification experiments needed. This is always an advantage.369

The initial method (described in Definition 2 and Definition 3) requires the incremental rotations370

of the shape measured (see the role of the parameter α in Definition 2), for the computation of the371

cylinderness measure. In order to avoid the required incremental rotations of the shape considered, a372

modified method for the computation of the shape cylinders measure is introduced (see Definition373

4 and Definition 5). The modified method uses principal axes, for the 3D shape cylinderness374

computation. In this way incremental rotations are not needed. The fitting cylinders are the same375

in initial method and its modification.376

Notice that the computation of fitting cylinders, for a given shape S, is a shape based one since it377

is based on the (shape moments) invariant J(S). The invariant J(S) is computable from low-order378

moments, i.e. the moments whose order is upper bounded by two. Such a selection is made to379

simplify the computation of the fitting cylinder parameters. The cylinderness measure established380

uses a standard geometric approach, where the set difference between the shape considered and its381

fitting cylinders is observed.382

Several experiments on synthetic data/shapes and the shapes selected from the well-known383

McGill 3D Shape Benchmark data set [20] are provided. The cylinders measure values obtained384

may be understood as reasonable and expected ones.385

Experiments on shapes subjected to deformation transforms, and eroded discretized shapes are386

also provided. These show that the new measure is robust.387

Despite the fact that all theoretical derivations and observations are made in a continuous388

space, the new cylinderness measure is aimed to be applied to the computer manipulated 3D389

images, or more generally 3D point sets. Thus, all the experiments are performed on discrete point390

sets, obtained in a process of the voxelization of real objects. This always implies an inherent391

computation error. A good thing here is that the measure is applied to the solid 3D shapes392

– i.e. all the shape points are taken into account, not only the boundary ones, for example.393

This further implies that all the parameters (the 3D moment invariant used, and volumes of the394

shapes considered), needed for the computation of the cylinderness measure C(S), can be computed395
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efficiently (within a small approximation error), as it is well known [4, 11] from the number theory.396
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