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Abstract

The advent of pre-trained language models (LMs) has enabled unprecedented advances

in the Natural Language Processing (NLP) field. In this respect, various specialised

LMs for the biomedical domain have been introduced, and similar to their general pur-

pose counterparts, these models have achieved state-of-the-art results in many biomed-

ical NLP tasks. Accordingly, it can be assumed that they can perform medical reason-

ing. However, given the challenging nature of the biomedical domain and the scarcity

of labelled data, it is still not fully understood what type of knowledge these mod-

els encapsulate and how they can be enhanced further. This research seeks to address

these questions, with a focus on the task of interpreting patient case descriptions, which

provides the means to investigate the model’s ability to perform medical reasoning. In

general, this task is concerned with inferring a diagnosis or recommending a treatment

from a text fragment describing a set of symptoms accompanied by other information.

Therefore, we started by probing pre-trained language models. For this purpose, we

constructed a benchmark that is derived from an existing dataset (MedNLI). Following

that, to improve the performance of LMs, we used a distant supervision strategy to

identify cases that are similar to a given one. We then showed that using such sim-

ilar cases can lead to better results than other strategies for augmenting the input to

the LM. As a final contribution, we studied the possibility of fine-tuning biomedical

LMs on PubMed abstracts that correspond to case reports. In particular, we proposed

a self-supervision task which mimics the downstream tasks of inferring diagnoses and

recommending treatments. The findings in this thesis indicate that the performance
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of the considered biomedical LMs can be improved by using methods that go beyond

relying on additional manually annotated datasets.
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Chapter 1

Introduction

1.1 Background and Motivation

Natural language processing (NLP) has witnessed, in recent years, a major successful

shift in how text representations are learned. This fundamental step lies at the heart of

NLP, enabling language to be processed by computers. Lately, a shift from traditional

word representation methods, in which words are represented by low-dimensional vec-

tors, to the paradigm of pre-training and then fine-tuning, which is led by pre-trained

language models (LMs), boosted the performance of many NLP tasks. Pre-trained LMs

are deep neural networks that attempt to initially learn general-purpose rather than task-

specific word representations. Specifically, the representations are first learned from a

massive amount of text (i.e. the pre-training phase), then tweaked for the target task

(i.e. the fine-tuning phase). As a result, NLP systems could be built with less training

data for a particular task and with much higher accuracy. While having pre-trained

word vectors is possible with some earlier word representation methods, the underly-

ing idea behind the recently established models is to produce contextual word vectors

(i.e. each word is represented considering the surrounding context).

With such progress, pre-trained LMs such as BERT (Bidirectional Encoder Represent-

ations from Transformers) [41] are currently the de-facto architecture for solving most

NLP tasks, and their prevalence in general language understanding tasks is today in-

disputable [224, 225]. This comes as no surprise since pre-trained LMs overcome sev-
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eral limitations associated with traditional word vectors. In addition to the pre-trained

LM’s ability to learn context-dependent representations in contrast to the traditional

static vectors, there are several reasons why they are preferred over standard neural

architectures. One important (and perhaps less obvious) reason is that LMs capture

a substantial amount of world knowledge. For instance, several authors have found

that LMs are able to answer questions without having access to external resources

[165, 178], or that they exhibit commonsense knowledge [50, 39]. Therefore, in paral-

lel with such advancement, new questions and challenges emerged, including the need

to investigate what type of knowledge such models capture, what are the limitations,

what are the possible ways to inject external knowledge, and how to adapt them to

different languages and domains. Domain-specific NLP has it is own challenges due

to, for example, the specific vocabulary and text genres (e.g. tweets or medical reports)

while having less available (raw and annotated) data in contrast to the general domain.

One of the most widely studied specialised/domain-specific areas in NLP is the bio-

medical domain, which has seen substantial work produced in terms of specialised

LMs. Several versions of BERT [41] were adapted to support biomedical NLP in-

cluding ClinicalBERT [9], SciBERT [23], BioBERT [104] and PubMedBERT [61].

The potential that NLP brings to the biomedical domain is enormous. Increasingly,

electronic health records (EHR) are being adopted to hold patients’ records. EHR is

a digital health record system that organizes and stores patients health information,

facilitating convenient access to the medical history of patients, including diagnoses,

lab results, treatments, discharge summaries, among others. It consist of two primary

types of textual data: structured data, which refers to information organized within

predefined fields, and unstructured data, which consists of free text entries. A prime

example of unstructured data found within EHR is discharge summaries. These sum-

maries are prepared by physicians to provide a brief and concise report of the pa-

tient’s condition during their current hospitalisation. It typically encompasses inform-

ation about the patient’s medical history (e.g past surgical procedures), chief complaint

representing the main symptoms and signs of the medical condition (e.g shortness of
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breath), the performed procedures (e.g. surgery) and tests (e.g. complete blood count),

medications (e.g aspirin) and follow-up care recommendations (e.g lifestyle modifica-

tions). Aside from medical records, other sources of biomedical text, such as scientific

articles, are still underused and their full potential is yet to be uncovered. Among these

articles, there are case reports that provide detailed descriptions of clinical cases about

individual patients, offering real-world examples that aid in clinical decision-making.

Clinical decision-making refers to the reasoning process through which healthcare pro-

fessionals employ their knowledge and skills to diagnose and treat patients.

The automation of analysing, processing and interpreting patients records will poten-

tially contribute valuable insights. Manually filled structured data could overburden

the possibility of finding and observing hidden patterns while also limiting the aspects

in which such data are viewed, not to mention being tedious and time-consuming. Ex-

ploiting the rich information available in the unstructured text will eventually lead to

better healthcare systems benefiting the patients in the first place as well as the health-

care providers. There are several use cases and applications in which such systems

might be useful. Examples include automating the extraction of structured data, which

saves time and effort. Furthermore, it enables the development of evidence-based de-

cision support systems and enhances patient outcomes, more generally, such as finding

potential diagnoses or treatments. Moreover, such systems could have positive impacts

on aiding drug research, discovering side effects, and recognising unknown symptoms,

among others.

Although it has great potential, the biomedical domain poses a number of particular

challenges for NLP. For instance, there is limited availability of unstructured text in

the form of clinical notes. The reason behind this could be related to many factors, in-

cluding privacy concerns. The de-identification and prepossessing of such text before

being considered ready to train publicly shared models is essential, which is labori-

ous and expensive. Beyond that, the high cost of annotating large biomedical datasets

serves as another obstacle towards effectively training neural models, otherwise these
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models might suffer from generalization issues at inference time. Along with data

scarcity, biomedical NLP models still face difficulties with such domain-intensive tex-

tual data due to it is complexity. Moreover, the variation of medical records writing

styles from different healthcare providers, the use of negation and the extensive use of

abbreviations and acronyms, all present challenges for this domain.

One of the useful use cases for biomedical NLP is to make inferences about patient

case descriptions, which is the focus of this thesis. A patient case description typically

contains information to present a specific clinical case, such as the age, gender, medical

history, and current symptoms of some patient, along with physical examinations and

lab results. The task of interpreting patient case descriptions can be defined as follows:

Given a patient case description of the symptoms displayed by a patient, possibly in

combination with other relevant factors such as age, gender or medical history, we

may want to infer a diagnosis or identify recommended medications. An example of a

patient case description from MedQA [82], which is one of the evaluation datasets, is

shown below:

"A 16-year-old female high school student is brought to the physician by

her parents for her repeated behavioral problems at home and school dur-

ing the past 10 months. Her teachers describe her behavior as uncooper-

ative and disruptive as she persistently refuses to answer questions, insults

her teachers, and annoys her classmates on a daily basis. At home, her

parents try to address her frequent violations of curfew, but attempts at

discussing the issue often result in their daughter losing her temper and

screaming at her parents. Her grades have deteriorated over the past year.

She has no history of psychiatric illness. On questioning, the patient re-

fuses to answer and frequently disrupts the physician’s conversation with

the parents."

As standard language models (LMs) are able to make various factual and commonsense

inferences [165, 39, 258], one might expect these biomedical LMs to be similarly cap-
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able of tasks such as inferring diagnoses from symptoms. However, it is not yet clear

whether LMs indeed have or actually lack sufficient knowledge to solve such tasks,

which makes the evaluation of their capabilities an important and natural direction.

As biomedical LMs have proven successful in capturing the meaning of specialised

terminology [9, 23, 104, 61], the main question is whether they also have medical

reasoning capabilities, e.g. for predicting a likely diagnosis from a given patient case

description. This is highly challenging, even for biomedical language models, because

many pieces of information may need to be combined to find the right answer, and

often some degree of clinical judgment is needed.

To address these challenges, as a first step, we need to understand the weaknesses and

limitations of pre-trained biomedical LMs and investigate what aspects of knowledge

these models capture or fail to capture. Thus, in this thesis, we first aim to analyse and

evaluate the disease knowledge captured by biomedical LMs in a fine-grained way. In

general, various methods have been proposed lately to analyse pre-trained LMs’ cap-

abilities and knowledge, reflecting the importance of having better expectations about

their applicability and what areas need to be improved. However, given the challen-

ging nature of the biomedical domain and, more specifically, the task of interpreting a

patient description, we would still expect them to have a rather poor performance. This

assumption is due to the fact that such a task requires complex reasoning to draw a con-

clusion based on different pieces of text. Consequently, this highlights the necessity to

develop methods for enriching and enhancing their performance.

To meet the need for improving the ability of biomedical LMs to interpret patient

case descriptions and considering the challenges regarding the limited availability of

annotated datasets, we propose two strategies that go beyond fully supervised learning.

In particular, in our first method, we employ a nearest neighbour strategy in which we

seek to find similar patient cases to a given patient case description. To identify these

similar patient cases, we rely on a language model that is fine-tuned in a distantly

supervised way. In the end, we judge the likelihood of a specific diagnosis or treatment
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based on the similarity score between them. In the second approach, we construct

datasets which are annotated in a self-supervised way and then use as intermediate

tasks for fine-tuning the LMs. Intermediate fine-tuning is a technique where models

are first fine-tuned on some task before the final fine-tuning on the evaluation task.

Particularly, here we intend to exploit the freely available case reports mentioned in

the abstracts of scientific articles for the intermediate fine-tuning.

1.2 Hypothesis and Research Questions

The main hypothesis in this thesis is as follows:

Existing biomedical LMs still struggle when it comes to interpreting patient case de-

scriptions, which can partly be explained by the limited amounts of relevant annot-

ated data. We hypothesize that the development of strategies that obviate the need for

manual labelling can at least partially alleviate this issue, allowing biomedical LMs to

interpret patient case descriptions with higher accuracy.

In order to verify this hypothesis, we aim to answer the following research questions:

Research Question 1: What kinds of medical knowledge do pre-trained LMs capture?

More specifically, are these models capable of performing medical reasoning such as

linking symptoms to diseases, or treatments to diseases?

Research Question 2: Is it possible to use nearest neighbour strategies for enhancing

the LM’s interpretation of patient case descriptions (i.e. relying on similar patient cases

to drive the predictions)? Can we construct distantly supervised datasets to compensate

for the lack of annotated datasets to train the model on identifying similar patient cases?

Research Question 3: How, and to what extent, can we obtain self-supervised datasets

that serve as intermediate tasks for fine-tuning the LMs?
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1.3 Contributions

Our primary aim is to enhance the knowledge of pre-trained LMs and boost their per-

formance in interpreting patient case descriptions through the use of approaches that

go beyond fine-tuning with only manually labelled datasets. To achieve this aim, the

following contributions are made:

1. We introduce a new probing method to analyse to what extent different language

models capture knowledge about diseases in a fine-grained way. In particular,

we split positive examples of available datasets (MedNLI [184] and MEDIQA-

NLI [2]) into two main categories to test the LM’s medical and terminological

knowledge. We further divide the medical knowledge category into four sub-

categories that represent the type of reasoning that is needed. Specifically, the

sub-categories include linking symptoms to diseases, treatments to diseases, pro-

cedures to diseases, and tests to diseases. We then evaluate, in isolation, the LM’s

knowledge about each disease in each one of these categories. In other words,

we propose training-test splits per disease. This is to prevent the LMs from

learning about the target disease from the training data. After that, we generate

negative examples by corrupting the positive examples in an adversarial way.

The results suggested that LMs performance is better with examples requiring

terminological knowledge. We also show that the performance of the individual

LMs differs across the different categories. This work was published in [5].

2. We develop a simple yet effective nearest neighbour strategy to enhance the per-

formance of biomedical LMs in interpreting patient case descriptions. Since

we want the model to infer whether the patient case description entails a hypo-

thesis of interest (e.g. diagnosis), we start by retrieving a set of text passages

mentioning this hypothesis. Next, we applied our model to get the most similar

retrieved passage to the given patient description. Then based on the similarity

score between the top retrieved passage and the given patient case description,



1.4 Thesis Structure 8

we will determine whether the patient case description entails the hypothesis. To

train the model for similar patient cases, we need to overcome the lack of an-

notated datasets. Therefore, we proposed constructing the dataset in a distantly

supervised way. This work was published in [6].

3. We propose a set of self-supervised intermediate fine-tuning tasks to boost the

performance of biomedical LMs. We accomplish this primarily by exploiting

case reports found in the literature while aiming to infuse knowledge by target-

ing specific types of medical concepts (i.e. diseases or treatments) using different

strategies. The results show how the different medical concepts and strategies

eventually influence the model performance, and the arbitrary use of the med-

ical concept could sometimes even drive the performance down. This work was

published in [7].

1.4 Thesis Structure

The remainder of the thesis is organised as follows:

• Chapter 2 - Background and Related Work - provides a general overview of text

representation models and the journey that led to the introduction of pre-trained

LMs. Furthermore, this chapter lists the details of some of the available bio-

medical LMs and discusses the related work which investigates the knowledge

encoded in such models and methods to enrich them. Along with that, some of

the different downstream tasks and applications related to this thesis are defined.

In addition, this chapter gives a brief explanation of the different supervision

strategies such as distant and self-supervision.

• Chapter 3 - Datasets and Resources - presents the details of the datasets that were

considered in this work for evaluating our proposed approaches. Additionally,
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this chapter covers the various resources and tools that were utilised to carry out

the experiments.

• Chapter 4 - Probing Pre-Trained Language Models for Disease Knowledge -

presents the proposed method for probing and investigating the capabilities of

several LMs in the biomedical domain. In particular, this chapter proposes to

fine-tune the LMs based on various categories, aiming to analyse to what extent

the LMs capture knowledge about the considered diseases and how they differ

across categories.

• Chapter 5 - Interpreting Patient Case Descriptions using Distantly Supervised

Similar Case Retrieval - describes a model that relies on identifying similar cases

using external resources to drive the model predictions, in which we ultimately

aim to enhance the LM performance over standard fine-tuning (i.e without the

use of external knowledge). A description of the considered pipeline to construct

distantly supervised datasets to train this model is also presented in this chapter.

• Chapter 6 - Self-Supervised Intermediate Fine-Tuning of Biomedical Language

Models for Interpreting Patient Case Descriptions - provides a set of strategies

to construct self-supervised datasets to be used as intermediate fine-tuning tasks,

while comparing their performance. This chapter also introduces various ana-

lysis methods driven by the concept of the proposed strategies and shows the

results of ablation experiments.

• Chapter 7 - Conclusions and Future Work- concludes the thesis by providing

summaries of the results and how those met our initial aims. In addition, this

chapter presents the suggested directions for future work.
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1.5 Summary

In this chapter, we started with a brief overview of pre-trained LMs in general, the

opportunities which NLP brings to the biomedical domain, the challenges faced by

biomedical language models, and our considered problem with motivations behind the

proposed methods. In addition, we discussed the hypothesis and the research ques-

tions. Finally, we listed the contributions and the structure of this thesis. The follow-

ing chapter will give thorough background information about LMs with a review of the

relevant work in the literature.



11

Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides background information for the work done in this thesis. As

we intend to improve the capabilities of the existing biomedical pre-trained LMs, this

chapter reviews the relevant research on this topic. We start with general background

about traditional neural word representation models in Section 2.2. Next, we focus

on the state-of-art pre-trained language models in Section 2.3. After that, in Section

2.4, we present the details of commonly used biomedical LMs with the followed ap-

proaches to train them and work comparing their performance. In Section 2.5, we

review research on assessing the knowledge encoded within the LMs, for the general

and biomedical domains. Subsequently, the methods and strategies to enhance LMs

knowledge and performance are discussed in Section 2.6. In Section 2.7 we review

works on analysing patient case descriptions. In Section 2.8, we list and briefly define

a range of downstream NLP applications used in this thesis. Then in Section 2.9, we

discuss the common supervision strategies generally used in machine learning with a

narrowed focus on the approaches used to go beyond fully supervised learning. Finally,

we summarise the chapter in section 2.10.
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2.2 Word Representations

To solve NLP tasks, as a preliminary step, text data is converted into meaningful nu-

merical representations (i.e. vectors of numbers), which are then used by machine

learning models. Vector representations of words are also known as word embed-

dings. The quality of such representations and how well they capture words’ semantic

and syntactic properties play an essential role in the performance of NLP systems.

Accordingly, works on how to construct these vector representations evolved over the

years. Most early text representation methods primarily rely on the position of the word

within the given text ignoring many other linguistic properties. For instance, one-hot

encodings construct a Boolean vector for each word in a sentence (i.e. the value of 1 is

assigned for the presence of a given word and 0 for it is absence). Obviously, such a

simple and straightforward representation technique is accompanied by various draw-

backs. A key limitation is a lack of semantic, syntactic, and relational information

being captured in terms of word meanings. More sophisticated word representation

methods have been proposed to overcome the drawbacks of the earlier methods. Gen-

erally, employing neural approaches brought substantial advancements by automatic-

ally learning dense vectors, which facilitates identifying useful features while avoiding

the heavy feature engineering for solving each NLP task. In this section, we briefly de-

scribe existing text representations models predated the state-of-the-art and go through

the journey that led to the introduction of transformer-based pre-trained LMs.

Traditional word embeddings models, such as Word2vec [134] and GloVe [160], aim

to learn dense low-dimensional vector representations of words relatively in a way that

similar words are clustered closer to each other in a vector space [89]. Creating the

vectors in this manner intends to capture semantic and syntactic relationships between

different words. Although such initialisation strategies led to better performing deep

learning models, however as a shortfall, these models are context-independent. In

other words, each word is assigned a fixed vector, irrespective of whether the word

has different senses [227, 89]. For instance, the word "season" would always have the
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exact numerical representation regardless of whether the intended meaning is "a time

of the year" or "adding spices to the food". Specifically, each word is mapped to a

single vectorised representation that is averaged across different meanings (depending

on which appeared in the training text corpus). As a consequence, the obtained word

vector might not precisely represent the target word as intended.

To address this limitation, contextualized word embedding models were introduced

with the purpose of capturing the sense of a word as expressed in a specific context

rather than a generalized one. Particularly, unlike representing each word with a single

static vector, the core idea behind them is to consider the context in which the word

is used and the ability to establish more than one representation per word [195]. A

straightforward strategy is to consider the weights of previous words occurring in a text

sequence preceding the target word [210]. These are then provided as informative cues

to construct the word representation. Some of the earliest context-dependent models

are TagML [162], CoVe [128], and Context2Vec [129]. However, apart from the fact

that each has its own weaknesses, all simply consider the output of the model’s final

layer as the encoded-word representation, which bounds their success [147].

ELMo (Embeddings from Language Model )[163] was proposed to address some of the

limitations of the aforementioned models. First, it computes the word representation

based on the average of all layers, which makes the representations deeper. Moreover,

it scans the text sequence independently from left-to-right and right-to-left (i.e. in a

bi-directional way) using a language modelling objective and a two-layer Bi-LSTM.

Thus, the use of language modelling objectives has been shown to be more successful

than prior techniques in advancing some NLP challenging tasks. Despite such success,

the fairly small training dataset sizes act as an obstacle against revealing the full cap-

abilities. Deep neural models need a large amount of training data in order to achieve

reasonable performance, and while text is abundant, annotations are expensive. On that

account, the necessity increased for using freely available text in an unsupervised way.

In this regard, ULMFiT (Universal Language Model Fine-tuning) [70] proposes to first
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pre-train a language model on a large general corpus and then allows the fine-tuning

of the encoded representations with respect to a target task. Yet, such models relied on

LSTM, which suffers from the lack of capturing longer range dependencies [232]. On

the grounds of this, the combined use of self-attention mechanism [217], and language

models pre-training was introduced, particularly with BERT (Bidirectional Encoder

Representations from Transformers) [41] achieving state-of-the-art results on a broad

set of NLP tasks. The following section will explain it in greater detail.

2.3 Transformer-based Pre-trained Language Models

Late 2018 witnessed a breakthrough technique introduced by [41], shifting the NLP

field to a new paradigm. In particular, since the introduction of BERT, the dominant

approach for tackling most NLP problems has been confined to two main steps: the

unsupervised pre-training of such models on a large text corpus and then easily adapt-

ing them to downstream tasks through fine-tuning on annotated datasets. Pretraining

has been shown to be an effective strategy for alleviating some of the main issues

associated with earlier neural models, enabling the model to learn universal features

before learning task-specific features. Therefore, it offers better initialisation and gen-

eralisation for different downstream tasks while reducing the need for annotating large

datasets or training the model from scratch for each task.

BERT builds upon various complex concepts that exist in the literature and inherits the

idea of training a bi-directional language model from ELMo. Instead of using LSTM as

in other earlier models, BERT uses the encoder part from the Transformer architecture.

Transformers [217] were initially introduced with encoder-decoder configuration for

solving sequence-to-sequence tasks such as machine translation. The main idea is

to use attention mechanism and feedforward layers instead of LSTMs or other types

of Recurrent Neural Networks. Rather than sequentially scanning the input sequence

(i.e. left-to-right or right-to-left), attention looks at the entire sequence at once and



2.3 Transformer-based Pre-trained Language Models 15

then determines which parts are important to a given target word [125, 52]. This, in

particular, helps in learning deep representations by encoding contextual embeddings

that are derived from the context of both directions concurrently instead of either left or

right [149, 229]. As explained earlier, each word could have multiple representations

based on the context in which that word is mentioned.

The standard language model training technique is to predict the next word, given the

first part of a sentence. However, since BERT uses self-attention, it randomly masks

words within the sequence using [MASK] token to be predicted during the model train-

ing. This masked language modelling (MLM) objective makes training a language

model compatible with the attention mechanism, which forces the model to look into

the entire context rather than the next word. More specifically, 15% of the input se-

quence is masked, and the model’s objective is to predict those masked tokens by

relying on the unmasked ones. Beside MLM, BERT trains the model with the next

sentence prediction (NSP) objective as well. By using NSP, the model learns to clas-

sify whether a sentence is the following sentence of a given sentence. This objective

grants the model the capability of learning not only the relations between words but

also between sentences. This is particularly beneficial for sentence-pair tasks such as

natural language inference and question answering [64].

Advancements in computational power enabled the pre-training of large transformer-

based language models using a large amount of data (English Wikipedia and books in

the case of BERT), which also led to an increasing number of model parameters. BERT

comes in two main variants, BERT base and BERT large. The former has 110 million

trainable parameters and is organised in 12 layers, and the latter has 340 million train-

able parameters with 24 layers. The maximum input length supported by the model is

512 tokens, where a token could represent a word, subword or even a single character.

To convert given input sequences into vector representations using BERT, we first need

to tokenize the inputs. Each resulted token is then checked against BERT vocabulary.

In the case when a word does not exist in the vocabulary, the BERT tokenizer splits the
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word into pieces (i.e. subwords or even characters). In particular, the number of pieces

depends on the largest subword tokens that can be found in the BERT vocabulary,

which in an extreme case could mean that the word is split into individual characters.

All sub-word tokens following the first token are preceded by "##". Since BERT pro-

duces contextualised embeddings, unlike models such as word2vec, it usually takes a

text sequence as an input (as word order matters) rather than individual words.

To effectively perform various NLP tasks, BERT uses special tokens within each input

sequence. First, it uses [CLS] as the first token for any input sequence and [SEP] as

the last token. [CLS] is often used as a special token for classification, representing the

entire input (i.e. sentence). The final hidden state of this token is used for tasks that

require sentence-level reasoning. A common alternative to using the [CLS] token is

averaging the final layer representations of all tokens from the given input [175, 212,

47]. For sentence pair tasks, to distinguish the first from the second sentence, the [SEP]

token is also used between the two sequences.

2.4 Pre-trained LMs for Biomedical Text

General-purpose pre-trained LMs (i.e. trained on general domain corpora such as Wiki-

pedia, news, and books), have achieved remarkable results. Following this success,

variants of such models have been specifically adapted to various domains. Most rel-

evant for this thesis, several pre-trained LMs have been released for the biomedical

domain. The unsupervised pre-training on biomedical corpora overcomes many pre-

vious limitations, including the need for a large annotated dataset to train the model.

Additionally, domain-specific pertaining mitigate the shift issue in word distributions,

which in turn contributes to substantial gains in performance.

Predominately, for domain-specific variants, two pre-training paradigms are adopted.

The first is to pre-train the LM from scratch on some biomedical text. The other is to

initialise the LM with an already pre-trained LM (either on a general or specific domain
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corpus), then further pre-train it using an unlabeled biomedical text corpus. In the

former case, the model vocabulary includes specific domain terminology. Therefore,

each word contained in the vocabulary is considered as a single token by the model

tokenizer, as opposed to a model that is pre-trained first on the general domain, in which

some domain words might split into pieces (sub-tokens) [88]. This would also result in

a shorter input length sequence, which is more efficient. The latter case is particularly

beneficial for domains in which specialised available text is limited. Although the

biomedical domain has an abundance of available texts (e.g. in the form of scientific

papers in PubMed), both pre-training methods have been proposed and advanced many

biomedical tasks. Examples of biomedical corpus include the abstracts of scientific

articles, their full texts, electronic health records, and Wikipedia medical articles.

Many variants have become readily available for the biomedical domain to cope with

the fast progress in the field, exploring different pre-training options. In other words,

these models differ from each other mostly in the pre-training corpora rather than ar-

chitectural features. Below is the commonly used list of the released variants:

BioBERT Lee et al. [103] proposed a model based on BERTbase-cased [41], which

they further trained on biomedical corpora. More specifically, BioBERT was

further pre-trained on the full text of PMC articles along with PubMed abstracts.

ClinicalBERT Alsentzer et al. [9] introduced four variants based on BERT model.

The models are initialised from either BERT or BioBERT and then further pre-

trained on either the full version of MIMIC-III notes or only the discharge sum-

maries.

SciBERT Beltagy et al. [23] introduced a BERT model variant that was trained from

scratch on approximately 1.14M scientific papers from semantic scholar. More

specifically, 82% of the training corpus were biomedical articles, while the rest

were mainly computer science articles. The full text of the papers was used for

training.
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PubMedBERT Gu et al. [61] released newer BERT model variants that were trained

from scratch on either only PubMed abstracts or on both the abstracts and the

full text of PubMed articles. PubMedBERT is the first model that was purely

pre-trained on biomedical corpus rather than mixing with other domains such as

SciBERT or initialising with a general domain model such as BioBERT and Clin-

icalBERT. Thereby, this model contains in its vocabulary more medical terms

than the previous models.

Several authors have analyzed the performance of these models and the impact of con-

sidering different types of biomedical corpora. For instance, Peng et al. [159] proposed

an evaluation framework for biomedical language understanding (BLUE) tasks. They

obtained the best results with a BERT model variant that was pre-trained on PubMed

abstracts and MIMIC-III clinical notes. Later, Gu et al. [61] introduced BLURB (Bio-

medical Language Understanding & Reasoning Benchmark), a collection of existing

biomedical datasets representing a set of biomedical tasks such as named entity recog-

nition and relation extraction. Another large-scale evaluation of pre-trained biomedical

LMs has been carried out by Lewis et al. [106]. Such evaluation works are needed to

be carried out on a regular basis to find the best-performing model for a given task,

especially in this domain where information is updated frequently. To the best of our

knowledge, no research has been found that evaluated the performance of the different

LMs for interpreting patient case descriptions. Beyond that, there have been a num-

ber of works in the form of surveys summarise the existing pre-trained LMs in the

biomedical domain [88, 226]

2.5 Knowledge Encoded in LMs

There is a rapidly growing body of work that is focused on analysing what knowledge

is captured by pre-trained LMs. For example, the syntactic knowledge in LMs has been

extensively evaluated [74, 69, 115, 211, 236, 57], as well as semantic knowledge [223,
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49, 222, 28, 100, 257]. Other types of knowledge, such as factual and commonsense

knowledge, have been studied as well [164, 179, 111, 258, 153]. A recurring challenge

in such analyses is to separate the knowledge that is already captured by a pre-trained

model from the knowledge that it may acquire during a task-specific fine-tuning step.

A common solution to address this is to focus on zero-shot performance, i.e. to focus

on tasks that require no fine-tuning, such as filling in a blank [39, 208].

As an alternative strategy, Talmor et al. [208] proposes to analyse the performance

of models that were fine-tuned on a small training set. Other work has focused on

extracting structured knowledge from pre-trained LMs. Early approaches involved

manually designing suitable prompts for extracting particular types of relations [165].

However, several authors have proposed strategies that automatically construct such

prompts [30, 192, 81]. Finally, Bosselut et al. [29] proposed to fine-tune LMs on

knowledge graph triples, with the aim of then using the model to generate new triples.

To some extent, these LMs have indeed been shown to implicitly encode different

types of knowledge in their parameters. This encouraged several authors to work to-

wards distilling the observed knowledge in an attempt to augment the promising fea-

tures of the LMs with the accessibility that is found in knowledge bases (KBs), mostly

with the above-mentioned prompts-based methods. Beyond encoded knowledge, other

works focused on understanding biases resulting from pretraining such models on a

vast amount of data [17].

To evaluate the biomedical knowledge that is captured in pre-trained LMs, as opposed

to acquired during training, Jin et al. [83] freeze the transformer layers during train-

ing. They find that when biomedical LMs are thus used as fixed feature extractors,

BioELMo outperforms BioBERT. As several studies proposed the use of pre-trained

LMs’ factual knowledge as an alternative for knowledge bases, Sung et al. [203] eval-

uate the applicability of such an approach for biomedical LMs and investigate whether

such models have sufficient knowledge. Their results showed that the considered bio-

medical LMs are still not ready to serve as KB using the proposed methods, which
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needs more research attention. In a similar direction, Meng et al. [132] proposed a

new probing technique where they aim to overcome one of these domain challenges.

In particular, many entities are encoded in a multi-token fashion (i.e. more than a

single token). For example, the "Renal artery stenosis" condition would be split into

at least three tokens, and in prompting-based methods, each token would be replaced

by [MASK], which means such methods might not be effective. Therefore, they rely

on a nearest neighbour strategy to find the most similar entity to the target entity being

queried. Another line of work suggested the use of adversarial tests [14] to evaluate the

LM’s robustness against spelling errors and synonyms. Particularly, for named entity

recognition tasks, they randomly modify some words by adding noise (e.g. changing

one character within the word) or swapping with synonyms. The results showed that

the performance dropped significantly. To date, analysing and probing medical reas-

oning capabilities within biomedical LMs are still under-studied.

2.6 Enhancing LMs

Various strategies have been proposed for improving the amount of knowledge that

is captured by transformer-based pre-trained LMs. One common approach is to rely

on some kind of knowledge infusion while training the model [255] or during the

fine-tuning phase [116, 53]. The latter is more efficient and less expensive as there

is no need to re-train the model from scratch with the additional pre-training data.

Investigating such ways will ultimately facilitate updating or exploiting other forms

of knowledge, for example, using the available knowledge graphs. This is especially

important for knowledge-intensive tasks, where relying on only task-specific training

data might lead to suboptimal results. Also, this is helpful for domains with inadequate

training data or small datasets. In the following subsections, we will group the common

strategies into categories with an emphasis on works for the biomedical domain, noting

that such methods are not mutually exclusive.



2.6 Enhancing LMs 21

2.6.1 Continual Pre-training

One of the most straightforward approaches is to further train the LM on more data us-

ing the same training objectives (i.e. MLM and NSP). Starting with an existing LM and

then further pre-train it using a new corpus which could be particularly beneficial for a

target domain, downstream task, or for the sake of updating the encoded knowledge. A

notable example of such sequential pre-training in the biomedical domain is Clinical-

BERT. ClinicalBERT was initialised from a previously pre-trained LM, i.e. BioBERT,

and further pre-trained on clinical notes, not to mention that even BioBERT itself was

initialised from the standard BERT and additionally pre-trained on scientific articles.

However, it has been argued that training from scratch, directly on the domain-specific

data, yields better results than the additional pre-training in which the training start

from general domain data [61].

2.6.2 Pre-training Objectives

Several works have been exploring the use of different pre-training objectives aside

from the original ones proposed with the standard BERT (i.e. random MLM and NSP)

either as an alternative or for the additional pre-training. In general, such an approach

has been shown as an effective way to infuse knowledge with respect to some tasks

or domains. Tailoring the objectives to the specific task while pre-training the model

might offer more significant advantages to the performance, and this could be the case

even when some LMs were already pre-trained on the same data but with the standard

objectives. For the biomedical domain, He et al. [68] proposed a pre-training objective

that aims to infuse disease knowledge by exploiting the structure of Wikipedia pages

about diseases. Yuan et al. [247] pre-trained a language model with entity extraction

and linking objectives based on UMLS [27]. Similarly, Michalopoulos et al. [133] in-

corporated semantic type embeddings into the pre-training phase while also taking into

consideration the synonyms of the predicated token for the masked language modelling
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objective. On the other hand, Wijesiriwardene et al. [239] replaced the standard next

sentence prediction objective (NSP) by predicting the synonyms of the medical entit-

ies. In [161], the authors proposed to fine-tune a biomedical language model by using

a masked language modelling objective which is modified such that only biomedical

concepts are masked.

2.6.3 Intermediate Task Fine-tuning

The standard paradigm in NLP at the moment is to fine-tune a pre-trained LM, such as

BERT [40], on task-specific training data. However, it has been observed that adding an

intermediate step, where the LM is first fine-tuned on a different task, for which training

data is more abundant, can be highly beneficial [166, 167, 152, 156, 169]. Several

works have investigated the role of intermediate tasks, in particular with the aim of

analysing when and why results improve [170, 36]. While already available datasets

are usually used for this approach, Vu et al. [221] showed that even synthesizing the

training data can enhance the results. For the biomedical domain, one strategy has been

to rely on transfer learning from general-domain tasks. For instance, Soni and Roberts

[197] use general-domain question answering for intermediate training to improve a

clinical question answering system. Another strategy has been to rely on different but

related tasks, such as pre-training on natural language inference to develop a question

answering system [75].

2.6.4 Augmenting Input with Unstructured Text

Generally, some methods augment the model input with knowledge expressed in tex-

tual form. For instance, Lu et al. [119] used definitions of UMLS concepts for this

purpose. While this improved the results, their evaluation was based on static general-

purpose word vectors and an LSTM-based model. The usefulness of their strategy in

combination with biomedical LMs has not been extensively explored. More generally,
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however, there is some evidence that the effectiveness of augmenting the input with

textual knowledge is limited in the biomedical domain. For instance, Sushil et al. [204]

evaluated the effect of such augmentation strategies and failed to obtain any statistic-

ally significant improvements for MedNLI [183], a well-known benchmark for Natural

Language Inference (NLI) in the biomedical domain. A more detailed description of

this dataset will be given in Chapter 3, Section 3.2.

2.6.5 Structured Knowledge

Beyond unstructured text, other valuable sources of knowledge, such as knowledge

graphs and tabular data, potentially offer stronger capabilities to pre-trained LMs.

Therefore, several studies have been examining how to utilise such sources in order

to complement the knowledge encoded within the LMs. In particular, works on how

to incorporate knowledge graphs attracted the attention of many authors. Knowledge

graphs basically structure the data in the form of triples which mostly represent the

world or commonsense knowledge. Each triple consists of three components: subject,

relation and object. The subject and object are represented as nodes and the relation as

an edge to connect them. Examples of well-known knowledge graphs are ConceptNet

[198] and WikiData [220]. Injecting such distinct forms of knowledge would require

some kind of pre-processing to transform them in a way that is compatible with pre-

trained LMs, especially if that is intended to be during the pre-training phase. One

common approach is to convert the triples into a textual format and then apply the

masked language modelling objective [3].

For the biomedical domain, several authors have proposed techniques for infusing the

knowledge from biomedical knowledge graphs (e.g. UMLS knowledge graph) into

LMs [66, 76]. Zhang et al. [250] used structured knowledge about entities and their

relations for pre-training. As the large size of knowledge graphs is one of the main

challenges associated with using them, Meng et al. [131] introduced a method for

infusing knowledge from a large biomedical knowledge graph through partitioning
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such a graph into smaller sub-graphs.

2.6.6 Static Vector Representations

Instead of improving the language model itself, some authors have also explored the

possibility of combining contextualised embeddings with static vector representations

such as word2vec [4]. The efficiency of training and using static vectors motivates

work towards incorporating them. For the biomedical domain, static representations of

biomedical concepts are readily available. Sharma et al. [191] used UMLS knowledge

graph embeddings to improve the BioELMo model (i.e. a biomedical version of ELMo

model) while Chang et al. [35] combined a BERT-based model with SNOMED CT

knowledge graph embeddings.

2.7 Analysing Patient Case Descriptions

A considerable amount of literature has considered the analysis of patient case descrip-

tions. These works are primarily focused on outcome predictions such as the length of

stay at the hospital [215, 77], re-admission [72, 58, 120, 77], automated ICD coding for

procedures or diagnosis [107, 142, 123], and mortality prediction [235, 215, 43]. For

example, Naik et al. [145] studied enhancing the predictions for in-hospital mortality,

length of stay and the need for ventilation using PubMed abstracts. Patients’ clinical

records have also been utilised for clinical trial recruitment [54, 252]. Apart from that,

studies about predicting the risk of a patient having a particular disease in the future or

by the next hospital visit have been also conducted [121, 118, 136, 110, 249, 158]. Dif-

ferent lines of research have been explored for diagnosis prediction. Some studies have

only targeted the diagnosis of specific diseases such as pneumonia [140, 141] and liver

disease [113]. Boag et al. [26] evaluated different static text representations techniques,

such as Word2Vec, for predicting the diagnosis of a particular set of diseases, including
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sepsis and coronary artery disease. Others have examined predicting a patient’s dia-

gnosis based on that patient’s previous visits and the associated longitudinal records

[158, 109]. In some works on predicting ICD diagnostic code, the disease might be

already mentioned in the text, and the task is to map it to it is corresponding code.

However, and most closely related to our work, van Aken et al. [215] proposed to use

admission notes from MIMIC-III, in which the discharge diagnosis is not mentioned,

to evaluate and enhance the performance of different LMs for ICD code prediction. In

particular, they further pre-train BioBERT on the next sentence prediction task consid-

ering patients’ notes and scientific articles as the first sentence and the outcome as the

second sentence. Wang et al. [234] argued that models need to be trained on predict-

ing the diagnosis without requiring patients’ historical visit data, which is particularly

useful in practice as the patient sequential visits records might not always be available.

Therefore, they used the clinical notes of a single visit to predict the diagnosis. Many

methods for predicting the diagnosis relied on graph neural networks [109, 233]. An-

other common task is medication recommendation, in which several works relied on

the patients’ longitudinal data. For example, An et al. [12] and Su et al. [200] studied

medicines prediction based on historical patient data. On the other hand, Shang et al.

[188] used the single visit data to pre-train BERT and then combined the represent-

ation of graph neural networks with BERT for predicting the medication for patients

with multiple visits.

2.8 Downstream Tasks and Applications

In the previous section, we already discussed the task of analysing patient case de-

scriptions, which plays a central role in this thesis. However, there are a number of

additional biomedical NLP tasks that will also be used, either directly or indirectly. In

this section, we present a quick overview of these tasks.
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Natural Language Inference (NLI) Natural language inference (NLI) is the task of

determining the relation between pairs of text. In particular, given two sequences of

text, the task is to decide whether the first text sequence (i.e. the premise) entails the

second (i.e. the hypothesis), contradicts, or the relationship between them is neutral

[98, 19]. In other words, this task is concerned with predicting whether the hypothesis

is true, false or undetermined given the premise. For example:

Premise: The girl is holding a juice.

Hypothesis: Relation:

The girl is holding a drink. Entailment

The girl is empty-handed. Contradiction

The girl is holding a fruit juice. Neutral

NLI is also known as recognizing textual entailment (RTE)[155, 209]. A simplified

version of NLI consists in only determining whether the hypothesis can be inferred

from the premise or not (i.e. a binary version) [97, 138]. In general, NLI is a central

task in natural language understanding, which is closely related to several applications,

including question answering and information retrieval.

Question Answering (QA) QA is a common NLP task, which is concerned with

providing answers to questions written in natural language. A number of different

variants exist, which depend on how the question and answer are formatted, including

multiple-choice question answering (MCQA) and extractive question answering. In the

former case, a question is given together with a list of possible answers, and the model

is expected to select the correct answer [96, 146, 48]. In the latter case (extractive QA),

a context is provided along with the question, and the model is expected to extract the

answer span from this text [193, 174, 44]. Another variant of QA systems is abstractive

QA, in which the model is expected to directly generate the answer [193, 44].
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Semantic Textual Similarity The aim of this task is to measure the semantic textual

similarity between two pieces of text either by providing the degree of similarity within

a defined range or by simply classifying it as similar or not [20, 231, 202]. In other

words, the task is concerned with how close is the meaning of one text to another. This

task is useful for several applications, such as paraphrase or plagiarism identification,

question answering systems or in specific domains such as healthcare. For example,

in the biomedical domain, models for measuring semantic textual similarity could be

used to find similar patient cases.

Information Extraction (IE) Information extraction mainly enables the automatic

extraction of useful, structured or semi-structured data from unstructured text [79, 60,

90]. It is often used to address a number of NLP tasks, such as named entity recognition

(NER), which is the task that aims to extract and classify entities from raw text [46].

Another example is relation extraction (RE), which is concerned with identifying and

characterizing semantic relations between two entities from text [80].

2.9 Supervision Strategies

Supervised and unsupervised learning are the two standard approaches used within

machine learning [85, 25]. In supervised learning, the model is trained with input data

along with the expected output (i.e. label) [218]. Model performance is then measured

by how accurately it maps previously unseen input data to the target label. Often the

data are manually labelled by human annotators. Supervised learning is used for tasks

such as classification and enables straightforward evaluation of the model perform-

ance [85]. On the contrary, with unsupervised learning, there is no need to provide

the model with predefined labels. Unlabelled inputs are therefore used for training the

model to find patterns and define common characteristics in order to analyze or cluster

the data [218]. To evaluate and validate the model, experts might need to manually
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examine the results, which is subjective and time-consuming. Thus, the main distinc-

tion among these strategies is that one uses annotated data while the other does not

[25]. In between supervised and unsupervised learning, several approaches have been

introduced to overcome the cost of manually labelling the data while maintaining the

advantages of supervised learning as much as possible. We discuss in the following

two such approaches that are used in this thesis, namely distant and self-supervised

learning.

Distant Supervision

Distant supervision aims to ease the process of obtaining the labels. In particular,

the idea is to automatically annotate a set of unlabelled data using other external data

sources such as knowledge bases or dictionaries [135, 148]. An important advantage

of such an approach lies in its practicality, especially when the needed training data for

a particular task is unavailable, hard, or expensive to obtain. It can also be helpful in

augmenting already available training data at low-cost [127, 201, 230]. On the other

hand, this automated way of annotating could inevitably lead to noisy, incomplete,

wrong, and low-quality labels.

In general, distant supervision has been successfully applied in several tasks such as

relation extraction [135, 254], named entity recognition [130], information retrieval

[186], sentiment analysis [56, 171, 205], temporal recognition and normalization [206],

question answering [256], and learning cross-lingual embeddings [33]. In the biomed-

ical domain, Fu et al. [51] proposed the use of distant supervision as a preliminary step

to minimize the load on human annotators for the task of assessing suicidal risk while

[99] aimed to generate a distantly supervised dataset using heuristics to identify the

phenotypes of depression from clinical notes. Taewijit et al. [207] automatically labels

the relation between a drug and an event to capture adverse drug reactions by exploit-

ing knowledge bases. Pattisapu et al. [157] extracted training examples for normal-

izing medical concepts from patient discussion forums using text embeddings models
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to identify the most similar phrases to a given medical concept. Furthermore, sev-

eral works introduced new datasets constructed fully or partly in a distantly supervised

way, such as ChemDisGene [248], TBGA [124], and MedDistant19 [11] for biomed-

ical relation extraction. Also, a multimodal dataset named MELINDA [240] has been

proposed for classifying biomedical experiment methods. As mentioned earlier, one

of the shortcomings of this approximate approach is that it could result in noisy and

imprecise labels. Therefore, as a remedial solution, another line of research has been

proposing methods to de-noise the generated labels and filter which information to

consider [177, 185, 108, 114, 251].

Self-Supervision

In self-supervised approaches, the labels are obtained by leveraging the data itself

without the need for manual labelling or the use of external data sources [148, 172]. In

other words, the learning process is derived from the structure of the input data itself

through automated label generation. For instance, target labels can be extracted from

data using a specific rule. One of the major advantages of self-supervised learning is

that we can expand training data to massive amounts without the need for any form

of external annotations or resources, as the labels are already part of the data. This,

in fact, could allow the model to better generalize to more diverse examples which

might be less represented with hand-labelled datasets. As a downside, however, using

a greater amount of data would demand more computational power. A classic ex-

ample of self-supervised models in NLP is BERT. More specifically, BERT employs

MLM and NPS objectives for the self-supervised pre-training, advancing the field to

new levels. Nevertheless, several works proposed alterations to those self-supervised

objectives boosting the performance further, which we already discussed in Section

2.6.
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2.10 Summary

In this chapter, we presented background information on different text representation

methods, focusing in particular on pre-trained language models. We then explored

the existing biomedical LMs. After that, we reviewed the literature on analysing

knowledge captured by such models. Furthermore, we discussed works and general

strategies that have been proposed in the literature to enhance standard language mod-

els. We then described some downstream NLP applications and the supervision tech-

niques adopted in this thesis. In the next chapter, we will discuss the datasets, resources

and tools that we have used in this thesis to perform the experiments and evaluate the

proposed approaches.
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Chapter 3

Datasets and Resources

3.1 Introduction

This chapter outlines the considered datasets, the textual and structured resources, and

the tools employed in this thesis. As a general approach, we used binary textual en-

tailment as the main task to train the proposed models and assess the strategies. In

this task, the relation between two text fragments holds if one can be inferred from the

other. Thus, we initially targeted two downstream tasks: Natural Language Inference

(NLI) and Multiple-Choice Question Answering (MCQA), which we then recast as a

binary textual entailment task. We primarily considered three available datasets in the

biomedical domain: MedNLI, MedQA and HeadQA. The choice of each dataset was

based on whether it contains, mainly or partly, patient case descriptions, which is the

focus of this thesis. Additionally, we used various types of resources to carry out some

of the experiments or to analyse the results, such as external textual data, named entity

recognition tools and static embeddings of medical concepts.

Section 3.2 lists the details and defines the tasks along with the statistics for each

dataset (i.e. the size of the training, validation and test sets). After that, section 3.3

presents the resources which we used to perform or analyse the experiments. In section

3.4, we provide an overview and describe the tools that were used for the preprocessing

step of the unstructured text. Finally, section 3.5 summarises the chapter.
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3.2 Evaluation Datasets

When it comes to properly evaluating the generalization capabilities of a strategy for

a particular task (e.g. by having a set of evaluation datasets), the biomedical domain

faces a challenge due to the lack of readily available datasets. Therefore, throughout

this thesis, we attempt to compensate for that by adapting existing datasets to the con-

sidered problem, if needed. In this section, we list and describe these existing datasets.

3.2.1 MedNLI

MedNLI [184] is a clinical natural language inference (NLI) dataset that requires reas-

oning over domain-specific knowledge. The NLI task has been described in detail

in Chapter 2. Since this task is concerned with predicting the relation between two

pieces of text, it is in line with the settings that we consider to tackle the problem of

interpreting patient case descriptions. Namely, the patient case description represents

the premise and the diagnosis, for instance, represents the hypothesis. In other words,

given a premise, the task aim is to determine if the given hypothesis could be inferred.

Due to the restricted access, Table 3.1 shows examples that are slightly modified and

similar in spirit to MedNLI examples. This dataset contains a total of 14,049 sentence

pairs, particularly 11,232 for training, 1,395 for validation, and 1,422 for testing. The

premise is derived from MIMIC-III v1.3 notes [86], which is described in 3.3.3. Spe-

cifically, snippets from the "Past Medical History" section are used for constructing the

premises from these notes. Each premise is repeated three times for each hypothesis

relation, whereas the hypothesis for each premise is written by expert annotators.

3.2.2 MEDIQA-NLI

MEDIQA shared challenge [2] introduced a set of tasks including natural language

inference (NLI), Recognizing Question Entailment (RQE), and Question Answering
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Premise Hypothesis Gold Label

Last night labs were drawn and she was found

to have a Hgb of 7.2 per report

She is anemic Entailment

Her hgb is within normal limits Contradiction

She is fatigued Neutral

A 54-year-old man with end-stage renal

disease secondary to type 1 diabetes was

admitted for a kidney transplant.

He is on insulin Entailment

He has normal renal function Contradiction

He has diabetic neuropathy Neutral

Table 3.1: Examples approximating MedNLI instances, along with gold labels.

(QA) for the medical domain to encourage more research in these areas. We are par-

ticularly interested in the NLI shared task, which offers a new test set for the medical

natural language inference while using the same training data as MedNLI. This test

set consists of 405 premise and hypothesis pairs, and it follows the same annotations

schemes as MedNLI, where each pair is labelled with either entailment, neutral, or

contradiction. The premises are also driven from MIMIC-III notes, and the same an-

notators were asked to generate the hypotheses.

3.2.3 MedQA

MedQA [82] is a multiple-choice question answering dataset that is derived from med-

ical exams where the questions require complex medical reasoning. MedQA is a pub-

licly available dataset that is offered in three languages. Specifically, it covers English,

traditional and simplified Chinese. In this thesis, we use the USMLE variant, which

is the English version of the dataset. The total number of questions in the USMLE

version is 12,723, where the training set consists of 10,178 questions, the validation

of 1,272 questions, and 1,273 questions for testing. For each question, there are four

answer candidates. The questions mainly represent patient case descriptions. Table 3.2

shows examples from this dataset.
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Question Answer candidates

A 38-year-old woman comes to the emergency department

because of progressive headache, blurry vision, and nausea

for 1 day. Four days ago, she was diagnosed with a right

middle ear infection. She appears lethargic. Her temperat-

ure is 39.1°C (102.3°F), and blood pressure is 148/95 mm

Hg. Ophthalmologic examination shows bilateral swelling

of the optic disc. The corneal reflex in the right eye is ab-

sent. Sensation to touch is reduced on the upper right side

of the face. Serum studies show increased concentrations of

fibrin degradation products. Which of the following is the

most likely diagnosis?

(A) Cerebral venous thrombosis

(B) Hypertensive emergency

(C) Subarachnoid hemorrhage

(D) Viral meningitis

A 35-year-old man comes to the physician because of itchy,

watery eyes for the past week. He has also been sneezing

multiple times a day during this period. He had a similar

episode 1 year ago around springtime. He has iron defi-

ciency anemia and ankylosing spondylitis. Current medic-

ations include ferrous sulfate, artificial tear drops, and indo-

methacin. He works as an elementary school teacher. His

vital signs are within normal limits. Visual acuity is 20/20

without correction. Physical examination shows bilateral

conjunctival injection with watery discharge. The pupils are

3 mm, equal, and reactive to light. Examination of the an-

terior chamber of the eye is unremarkable. Which of the

following is the most appropriate treatment?

(A) Erythromycin ointment

(B) Ketotifen eye drops

(C) Warm compresses

(D) Fluorometholone eye drops

Table 3.2: Examples of questions from MedQA, along with the answer candidates.

The correct answer is shown in bold.

3.2.4 Head-QA

Head-QA [219] is a multiple-choice question answering dataset that covers questions

about different areas within the healthcare domain, such as medicine, psychology and

biology. The language of this dataset is originally Spanish, but an English version
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is provided as well. We use the English version. Some questions correspond to pa-

tient case descriptions, but the majority of questions are about recalling specific factual

knowledge. In addition, some questions in this dataset require interpreting images (i.e.

some images are provided along with the question in order to drive the answer from

both). As this is beyond the scope of this thesis, we discard all questions involving im-

ages in our experiments. This resulted in a total number of 2589 questions for training,

1336 for validation, and 2675 for testing. Table 3.3 presents a number of examples

from this dataset.

Question Answer candidates

The cardiolipin phospholipid is abundant in the membrane: (A) Internal mitochondrial

(B) External mitochondrial

(C) Plasma.

(D) Lysosomal

Jos, a 61-year-old man with obesity, sleep apnea, admitted

to the ICU five days ago after abdominal surgery. Since the

operation has not received sedatives for sleep, it is sched-

uled analgesia but fails to be effective with the consequent

prolonged discomfort, in addition the environment is over-

stimulating and refers not to have a restful sleep. During

the last 24 hours he has begun to manifest anxiety, increased

sensitivity to pain, agitation that leads him to retire the night

mask for sleep apnea, irritability and is even starting with

hallucinations and an episode of aggression. Point out the

present diagnostic label:

(A) Despair

(B) Deprivation of sleep

(C) Willingness to improve sleep

(D) Sleep pattern disorder

Table 3.3: Examples of questions from HeadQA, along with the answer candid-

ates. The correct answer is shown in bold.
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3.3 Resources

As interpreting a patient case description is a domain-intensive task that requires a

substantial amount of biomedical knowledge, we utilise a number of external resources

to implement or analyse our work. In this section, we describe these resources in

further detail.

3.3.1 UMLS Metathesaurus

The Unified Medical Language System (UMLS) metathesaurus [27] is a large biomed-

ical vocabularies repository consisting of millions of medical concepts, their relations

and semantic types (i.e. disease, drug, etc.), mainly incorporated from a set of existing

ontologies systems. UMLS is provided by the US National Library of Medicine, and

it basically unifies access to each medical concept from the different terminologies. It

assigns a unique identifier to each concept, namely a concept unique identifier (CUI).

Furthermore, it intends to facilitate the mapping between the different terminology sys-

tems such as SNOMED-CT, MeSH, and ICD-10. The UMLS metathesaurus allows for

a broader usage for all these terminologies and could be used to build or enhance many

biomedical applications. The UMLS metathesaurus is updated in a regular basis. We

utilise the UMLS metathesaurus 2020AA full version release in this thesis. First, we

use it to extract the medical concepts from the text in Chapters 4 and 6. We also use it

to access other terminology hierarchies in Chapters 4 and 6.

3.3.2 SNOMED-CT Terminology

The SNOMED Clinical Terms (SNOMED-CT) [45] is a multilingual clinical vocab-

ulary that enables the standardization of medical concepts across different languages.

Therefore, it helps to maintain consistency and minimize the disparity when recording

and sharing healthcare data such as patient records. SNOMED-CT is a terminological
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taxonomy that generally consists of medical terms, synonyms, and relationships. It

places the medical concepts in hierarchies through the "is a" relationship, ranging from

the specific to the most general concepts. Each concept is associated with a unique

identifier. We use SNOMED-CT in this thesis to access the medical concept hierarch-

ies, particularly in Chapters 4 and 6.

3.3.3 MIMIC-III

The Medical Information Mart for Intensive Care database (MIMIC-III) [86] is a large-

scale, freely available set of de-identified information records about 53,423 patients

admissions to the critical care units (ICU). Precisely, this dataset covers the period

from 2001 to 2012 at the Beth Israel Deaconess Medical Center in Boston. MIMIC-III

mainly consists of relational tables, specifically a total of 26 tables, which include both

unstructured texts in the form of clinical notes and discharge summaries and structured

data such as vital signs, lab results and medications. Access to MIMIC-III is restric-

ted to approved users. We particularly use, in this thesis, the discharge summaries in

Chapter 5.

3.3.4 WikiMed and PubMedDS Datasets

WikiMed and PubMedDS [216] are two publicly available datasets that were automat-

ically constructed and proposed for medical entity linking tasks. WikiMed contains

393,618 Wikipedia articles (being those that mention some UMLS concept), while

PubMedDS contains 13,197,430 PubMed abstracts. Despite the fact that these two

datasets were initially introduced for entity linking, which is not our target task, we

instead use them to enhance the LMs’ interpretation of patient case descriptions. In

particular, we are primarily interested in the included set of articles and abstracts rel-

evant to the medical domain for developing our proposed methods. We use WikiMed

in Chapter 5 and PubMedDS in Chapters 5 and 6.
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3.3.5 Cui2vec Embeddings

Pre-trained cui2vec embeddings [22] is a publicly available pre-trained clinical concept

embeddings. It is concerned with clinical concepts (i.e. CUI codes from UMLS) rather

than words, and it is learned using the word2vec algorithm. In particular, cui2vec

utilise a massive set of medical data from multiple sources, including insurance claims,

PubMed articles, and clinical notes. To learn such embeddings, all mentioned concepts

in these sources are mapped to their corresponding CUI codes as a pre-processing step.

That resulted in learning 500-dimensional embeddings for a total of 108,477 medical

concepts. We use cui2vec in Chapters 4 and 6.

3.4 Tools

To efficiently access or pre-process some of the above-mentioned resources, we need

to use specific tools that were designed for this purpose. This section lists the tools that

were used in this thesis.

3.4.1 MetaMap

MetaMap [16] is a commonly used biomedical named entity recognition tool that was

developed by the US National Library of Medicine (NLM) to extract medical concepts

from unstructured text. It is written in the Java programming language and basic-

ally extracts and then maps the medical concepts to their corresponding CUI codes

(i.e. UMLS unique identifiers) ranked by their relevance. To extract the concepts,

MetaMap might take a considerable amount of time to annotate the text due to the

number of processing steps which the text needs to undergo. These steps consist of but

are not limited to, tokenization, part-of-speech tagging, lexical lookup, syntactic ana-

lysis, locating then mapping medical concepts (by relying on UMLS metathesaurus),

and finally, word sense disambiguation. MetaMap is a command-line tool that offers



3.4 Tools 39

a number of format options to generate output files, including XML file format. The

output file contains the identified phrases from a given text mentioning the medical

terms, the candidate concepts with both the exact match and preferred concepts names,

their CUIs, scores, semantic types, etc. After acquiring the output file, parsing the data

is needed to be eventually used for the intended purpose. The download of MetaMap

is available for authorized users only. We utilise MetaMap in Chapter 4.

3.4.2 QuickUMLS

QuickUMLS [196] is a biomedical named entity recognition tool for Python, which is

used to extract medical concepts from free text. The purpose of this tool is similar to

MetaMap, but it provides more efficient extraction suitable for large-scale data (faster

by up to 135 times) while outperforming MetaMap on a number of evaluation bench-

marks or achieving comparable performance. QuickUMLS maps the extracted medical

concepts to the UMLS CUI identifiers by employing approximate string matching (i.e.

locating fuzzy string patterns rather than an exact match) in an unsupervised way. This

tool also provides the spans in which the medical terms appear, similarity scores and

the UMLS semantic types of these medical concepts (e.g. disorders, drugs, etc.). To

set up and use QuickUMLS, an installation of UMLS using the MetaMorphoSys tool

is required beforehand. We use QuickUMLS in Chapters 5 and 6.

3.4.3 PyMedTermino

PyMedTermino [101] is a Python package that offers convenient and fast access to

the various terminologies in UMLS and facilitates the mapping between them. For

example, it can be used to map the CUI code of a medical term to its corresponding

ICD-10 or SNOMED-CT terminology identifiers. In general, this tool provides an

easy interface to approach the different medical terms within different terminologies

systems, their synonyms, and their relations. The terminologies aren’t included in the
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API itself but rather require a separate download from the terminologies’ sources due to

the restricted access. We use the second version of PyMedTermino (PyMedTermino2)

in Chapters 4 and 6.

3.5 Summary

In this chapter, we covered the details of the considered datasets to evaluate our pro-

posed methods. Besides that, we described the tools and the external resources that

were needed to perform the experiments. In the next chapter, we will explain how we

utilised MedNLI dataset to drive the analysis of the LMs’ capabilities while adapting

it to the target problem.
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Chapter 4

Probing Pre-Trained Language

Models for Disease Knowledge

4.1 Introduction

Several biomedical LMs have enabled impressive results on various reading compre-

hension benchmarks for the medical domain, such as MedNLI [184] and MEDIQA-

NLI [2] for Natural Language Inference (NLI), and PubMedQA [84] for QA. As an

example, Wu et al. [241] achieved an accuracy of 98% on MEDIQA-NLI, which might

suggest that medical NLI is essentially a solved problem. This would be exciting, as

medical NLI intuitively requires a wealth of medical knowledge, much of which is not

available in structured form.

However, a closer inspection of MedNLI, the most well-known medical NLI bench-

mark, reveals three important limitations, namely: (1) only few test instances actu-

ally require medical disease knowledge, with instances that (only) require terminolo-

gical and lexical knowledge (e.g. understanding acronyms or paraphrases) being more

prevalent; (2) training and test examples often cover the same diseases, and thus it

cannot be determined whether good performance comes from the capabilities of the

pre-trained LM itself, or from the fact that the model can exploit similarities between

training and test examples; and (3) hypothesis-only baselines perform rather well on

MedNLI, which shows that this benchmark has artefacts that can be exploited, simil-
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arly to general-purpose NLI benchmarks [168].

In this chapter, we aim to analyze to what extent pre-trained LMs are able to perform

medical reasoning in a systematic way. More specifically, we focus on disease know-

ledge, which encompasses, for instance, the ability to link symptoms to diseases, or

treatments to diseases. To this end, we propose DisKnE (Disease Knowledge Eval-

uation), a new benchmark for evaluating biomedical LMs. DisKnE is derived from

MedNLI [184] and is organized into two top-level categories, which cover instances

requiring medical and terminological knowledge, respectively. The medical category is

furthermore divided into four sub-categories, depending on the type of medical know-

ledge that is required. Our proposed DisKnE dataset explicitly addresses the three

limitations listed above and thus constitutes a more reliable testbed for evaluating the

disease knowledge captured by biomedical LMs. We empirically analyse the perform-

ance of existing biomedical LMs, as well as the standard BERT model, on the proposed

benchmark.

The remainder of this chapter is organised as follows. In Section 4.2 we review the

related work to this chapter. In Section 4.3 we describe the process of constructing

DisKnE. Subsequently, in Section 4.4, we thoroughly examine our experimental res-

ults. Lastly, in Section 4.5, we conclude the chapter by summarising our findings.

4.2 Related Work

There is a growing interest in designing probing tasks and analyzing what knowledge is

captured by pre-trained LMs, which are now common across the NLP landscape, e.g.,

for word and sentence-level semantics [154, 38]. Most closely related to our work,

Kearns et al. [92] presented an approach in which they categorise each sentence pair

according to the tense and focus (e.g. medication, diseases, procedures, location) of

the hypothesis, with the aim of providing a detailed examination of MEDIQA-NLI.

Based on this categorization, they compare the performance of Enhanced Sequential
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Inference Model (ESIM) using ClinicalBERT, Embeddings of Semantic Predications

(ESP), and cui2vec. However, their analysis was limited to the MEDIQA-NLI test set,

whereas we include entailment examples from the entire MedNLI and MEDIQA-NLI

datasets. Moreover, we focus specifically on the ability of LMs to distinguish between

closely related diseases, and we move away from the NLI setting to avoid training-test

leakage and artefacts.

Adversarial NLI Several Natural Language Inference (NLI) benchmarks have been

found to contain artefacts that can be exploited by NLP systems to perform well

without actually solving the intended task [168, 62]. In particular, it has been found that

strong results can often be achieved by only looking at the hypothesis of a (premise,

hypothesis) pair. In response to this finding, several strategies for creating harder NLI

benchmarks have been proposed. One established approach is to create adversarial

stress tests [144, 55, 18], in which synthetically generated examples are created to spe-

cifically test for phenomena that are known to confuse NLI models. This may, for

instance, involve the use of WordNet to obtain nearly identical premise and hypothesis

sentences, in which one word is replaced by an antonym or co-hyponym. In this work,

we rely on a somewhat similar strategy, using UMLS to replace diseases in hypotheses.

As another strategy to obtain hard NLI datasets, Nie et al. [150] used human annotat-

ors to iteratively construct examples that are incorrectly labelled by a strong baseline

model. While the aforementioned works are concerned with open-domain NLI, some

work on creating adversarial datasets for the biomedical domain has also been carried

out. In particular, Araujo et al. [13] studied the robustness of systems for biomedical

named entity recognition and semantic text similarity, by introducing misspellings and

swapping disease names by synonyms. To the best of our knowledge, no adversarial

NLI datasets for the biomedical domain have yet been proposed.
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Category # inst. Premise Hypothesis

Symptoms → Disease 112 The patient developed neck pain while

training with increasing substernal heavi-

ness and left arm pain together with sweat-

ing.

The patient has symptoms of

acute coronary syndrome

Treatments → Disease 60 The patient started on Mucinex and Robit-

ussin.

The patient has sinus disease

Tests → Disease 116 Cardiac enzymes recorded CK 363, CK-

MB 33, TropI 6.78

The patient has cardiac

ischemia

A large R hemisphere ICH was revealed

when the patient had head CT

The patient has an aneurysm

Procedures → Disease 70 Bloody fluid was removed by pericar-

diocentesis

The patient has hemopericar-

dium.

Terminological 259 The patient has urinary tract infection The patient has a UTI

The patient has high blood pressure Hypertension

Transfusions in the past could be the cause

of the patient having hepatitis C

The patient has hepatitis C

Table 4.1: Considered categories of disease-focused entailment pairs.

4.3 Dataset Construction

In this section, we describe the process we followed for constructing DisKnE. As we

explain in more detail in Section 4.3.1, this process involved filtering the entailment

instances from the MedNLI and MEDIQA-NLI datasets, to select those in which the

hypothesis expresses that the patient has (or is likely to have) a particular target dis-

ease. These instances were then manually categorized based on the type of knowledge

that is needed for recognizing the validity of the entailment. Section 4.3.2 discusses

our strategy for generating negative examples, which were obtained in an adversarial
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way, by replacing diseases occurring in entailment examples with similar ones. Details

of the resulting training-test splits are provided in Section 4.3.3. In a final step, we ca-

nonicalize the hypotheses of all examples, as explained in Section 4.3.4. Note that the

benchmark we propose consists of binary classification problems (i.e. predicting entail-

ment or not), rather than the standard ternary NLI setting (i.e. predicting entailment,

neutral, or contradiction), which is motivated by the fact that natural contradiction ex-

amples are hard to find when focusing on disease knowledge. Table 4.2 presents the

key statistics data associated with DisKnE.

Medical Terminological

Examples 4133 2639

Diseases 47 24

Balance of positive and negative (P/N) 1/10 1/10

Table 4.2: Key statistics data for DisKnE.

4.3.1 Selecting Entailment Pairs

We started from the set of all entailment pairs (i.e. premise-hypothesis pairs labelled

with the entailment category) from the full MedNLI and MEDIQA-NLI datasets. We

used MetaMap to find those pairs whose hypothesis mentions the name of a disease,

and to retrieve the UMLS CUI (Concept Unique Identifier) code corresponding to that

disease.

We then manually identified those pairs, among the ones whose hypothesis mentions a

disease, in which the hypothesis specifically expresses that the patient has that disease.

For instance, in this step, a number of instances were removed in which the hypothesis

expresses that the patient does not have the disease. The remaining cases were manu-

ally assigned to categories that reflect the type of disease knowledge that is needed

to identify that the hypothesis is entailed by the premise. To clarify, our initial step
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involved employing MetaMap to filter out a specific subset of entailment pairs, spe-

cifically those where the hypothesis makes reference to a disease. Following that, the

author performed a manual categorisation, allocating each filtered set of examples into

distinct categories. Overall, the differentiation between each category was straight-

forward, and this was largely facilitated by the use of keywords in the hypothesis or

the premise that provided some indication of the corresponding category. For instance,

keywords like "started on" and "treated with" were indicative of the treatment category.

The considered categories are described in Table 4.1, which also shows the number of

(positive) examples we obtained and illustrative examples 1.

The primary distinction we make is between examples that need medical knowledge

and those that need terminological knowledge. The former category is divided into

four sub-categories, depending on the type of inference that is needed. First, we have

the symptoms-to-disease category, containing examples where the premise describes

the signs or symptoms exhibited by the patient, and the hypothesis mentions the cor-

responding diagnosis. Second, we have the treatments-to-disease category, where the

premise instead describe medications (or other treatments followed by the patient). The

third category, tests-to-disease, involves instances where the premise describes lab tests

and diagnostic tools such as X-rays, CT scans and MRI. Finally, the procedures-to-

disease category has instances where the premise describes surgeries and therapeutic

procedures that the patient underwent. In the terminological category, the disease is

mentioned in both the premise and hypothesis, either as an abbreviation, a synonym or

within a rephrased sentence.

4.3.2 Generating Examples

The process outlined in Section 4.3.1 only provides us with positive examples. Un-

fortunately, MedNLI and MEDIQA-NLI contain only few negative examples (i.e. in-

1For data protection reasons, we only provide synthetic examples, which are different from but

similar in spirit to those from the original MedNLI dataset.
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stances of the neutral or contradiction categories) in which the hypothesis expresses

that the patient has some disease. For this reason, rather than selecting negative ex-

amples from these datasets, we generate negative examples by corrupting the positive

examples.

In particular, to generate negative examples, we replace the disease X from a given

positive example by other diseases Y1, ..., Yn that are similar to X , but not ancestors or

descendants of X in SNOMED CT [45]. To identify similar diseases, we have relied

on cui2vec [22], a pre-trained clinical concept embedding that was learned from a

combination of insurance claims, clinical notes and biomedical journal articles. Apart

from the requirement that the diseases Y1, ..., Yn should be similar to X , it is also

important that they are sufficiently common diseases, as including unusual diseases

would make the corresponding negative examples too easy to detect. For this reason,

we only consider the diseases that occur in the hypothesis of other positive examples

as candidates for the negative examples. Specifically, among these set of candidate

diseases, we selected the n = 10 most similar ones to X , which were not descendants

or ancestors of X in SNOMED CT (as ancestors and descendants would not necessarily

invalidate the entailment). This resulted in a total of 4133 examples requiring medical

knowledge and 2639 examples requiring terminological knowledge.

4.3.3 Training-Test Splits

Because our focus is on evaluating the knowledge captured by pre-trained language

models, we want to avoid overlap in the set of diseases in the training and test splits.

In other words, if the model is able to correctly identify positive examples for a target

disease X , this should be a reflection of the knowledge about X in the pre-trained

model, rather than knowledge that it acquired during training. However, any single

split into training and test diseases would leave us with a relatively small dataset. For

this reason, we consider each disease X in isolation. Let E be the set of all positive

examples, obtained using the process from Section 4.3.1. Furthermore, we write EX
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for the set of those examples from E in which the target disease in the hypothesis is

X . Finally, we write neg(X) for the set {Y1, ..., Yn} of associated diseases that was

selected to construct negative examples, following the process from Section 4.3.2.

For each target disease X , we define a corresponding test set TestX and training set

TrainX as follows. TestX contains all the positive examples from EX . Moreover, for

each e ∈ EX and each Y ∈ neg(X) we add a negative example eX→Y to TestX which is

obtained by replacing the occurrence of X by Y . If the word before the occurrence of

X is a or an, we modify it depending on whether Y starts with a vowel or consonant.

The positive in TrainX consist of all examples from E in which X is not mentioned.

The negative in TrainX consist of all examples that are not considered for TestX .

Note that in TrainX , we also remove examples in which these diseases are only men-

tioned in the premise. Furthermore, we check for occurrences of all the synonyms of

these diseases that are listed in UMLS. The process of creating the training and test set

for a given target disease X is illustrated in Figure 4.1.

4.3.4 Canonicalization

We noticed that the way in which a given hypothesis expresses that “the patient has

disease X” is correlated with the type of the disease. For this reason, as a final step,

we canonicalize the hypotheses in the dataset. Specifically, we replace each hypothesis

by the name of the corresponding disease X . Several hypotheses in the dataset already

have this form. By converting the other hypotheses in this format, we eliminate any

artefacts that are present in their specific formulation.

4.4 Experiments

We experimentally compare a number of pre-trained biomedical LMs on our proposed

DisKnE benchmark. In Section 4.4.1, we first describe the considered LMs and the
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+
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Figure 4.1: Illustration of training-test splitting process.

experimental setup. The main results are subsequently presented in Section 4.4.2. This

is followed by a discussion in Section 4.4.3.

4.4.1 Experimental Setup

Pre-trained LMs. To understand to what extent the pretraining data of a LM affects

its performance on our fine-grained evaluation of disease knowledge, we specifically

used BERTbase, BioBERT [103] ClinicalBERT [9], and SciBERT [23].

Training Details. For fine-tuning, model hyper-parameters were the same across all

BERT variants such as the random seeds, batch size and the learning rate. In this study,

we fix the the learning rate at 2e-5, batch size of 8 and we set the maximum number

of epochs to 8 with the use of early stopping. We used 10% of the training set as

validation split.
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Evaluation Protocol. We analyze the results per disease and per category in terms

of F1 score for the positive class, reporting results for all diseases that have at least

two positive examples for the considered category. To this end, for each disease X , we

start from its corresponding training-test split, which was constructed as explained in

Section 4.3.3. To show the results for a particular category, we remove from the test

set all the examples that do not belong to that category.

4.4.2 Results

The main results are shown in Tables 4.3–4.7. A number of clear observations can be

made. First, the results for the terminological category are substantially higher than

the results for the other categories, which suggests that the masked language model-

ling objective, which is used as the main pre-training task in all the considered LMs,

may not be ideally suited for learning medical knowledge. Second, recall that the main

difference between the considered biomedical LMs comes from the corpora that were

used for pre-training them. As the results for the terminological category (Table 4.7)

reveal, the inclusion of domain-specific corpora does not seem to benefit their abil-

ity to model biomedical terminology, as similar results for this category are obtained

with the standard BERT model, which was pre-trained on Wikipedia and a corpus of

books and movie scripts. For the Symptoms → Disease category, we see that Clinic-

alBERT outperforms the other biomedical LMs, although the standard BERT model

actually achieves the best performance overall. The results suggest that ClinicalBERT

is better at distinguishing between relatively rare diseases, but that the focus on en-

cyclopedic text benefits BERT for more common diseases. Intuitively, we can indeed

expect that the encyclopedic style of Wikipedia focuses more on symptoms of dis-

eases than scientific articles, which might focus more on treatments, procedures and

diagnostic tests. This is also in accordance with the findings from He et al. [67], who

obtained promising results with a disease-centric LM pre-training task that relies on

Wikipedia. On the Procedures → Disease and Tests → Disease categories, we can
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coronary atherosclerosis 0 0 29 10

chf 67 67 67 67

acs 04 33 0 05

stroke 80 56 90 90

heart disease 80 87 93 100

myocardial infarction 0 0 19 0

heart failure 0 0 22 0

urinary tract infection 100 100 67 100

disorder of lung 89 97 97 100

cirrhosis of liver 0 11 0 0

hyperglycemic disorder 27 13 22 0

pneumonia 89 93 67 100

neurological disease 67 67 80 67

respiratory failure 87 70 22 43

pulmonary edema 74 25 0 50

ami 0 0 0 0

deep vein thrombosis 47 48 50 48

acute cardiac ischemia 0 45 17 72

uri 78 45 67 83

cholangitis 22 22 33 22

atherosclerosis 66 0 67 0

Macro-average 46±3.0 42±7.3 43±3.1 46±3.4

Weighted average 49±3.1 47±6.0 49±2.7 51±2.7

Table 4.3: Results for the Symptoms → Disease category in terms of F1 (%) aver-

aged over three runs. Standard deviations (over the three runs) of the macro and

weighted average are also reported.
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chf 55 55 53 55

acs 12 19 0 0

hypertensive disorder 55 67 54 22

heart disease 45 22 0 89

urinary tract infection 100 100 100 100

disorder of lung 82 89 100 93

hyperglycemic disorder 100 69 87 69

pneumonia 60 67 78 57

anemia 17 17 45 22

renal insufficiency 69 89 67 72

pulmonary infection 82 77 89 83

copd 45 67 61 39

hyperlipidemia 59 61 61 55

Macro-average 60±6.1 61±1.4 61 ±3.8 58±1.6

Weighted average 51 ±5.3 54 ±1.6 51±1.7 45±2.4

Table 4.4: Results for the Treatments → Disease category in terms of F1 (%)

averaged over three runs. Standard deviations (over the three runs) of the macro

and weighted average are also reported.
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coronary atherosclerosis 0 0 0 0

chf 52 55 52 55

acs 0 22 0 0

stroke 87 87 95 77

hypertensive disorder 09 26 45 21

myocardial infarction 28 0 30 14

heart failure 0 55 40 0

urinary tract infection 87 90 59 90

hyperglycemic disorder 81 10 68 33

pneumonia 100 100 89 89

anemia 0 0 24 0

aortic valve stenosis 11 24 0 27

syst. inflam. resp. syndr. 76 64 80 80

acute renal failure syndr. 0 0 0 22

chronic renal insufficiency 0 0 0 0

kidney disease 22 0 45 0

ischemia 93 100 93 100

Macro-average 38 ±2.4 37±1.6 42±3.1 36 ±5.0

Weighted average 31 ±2.6 32±1.2 37±1.5 31 ±3.7

Table 4.5: Results for the Tests → Disease category in terms of F1 (%) aver-

aged over three runs. Standard deviations (over the three runs) of the macro and

weighted average are also reported.
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coronary atherosclerosis 0 0 16 0

heart disease 83 74 84 84

heart failure 33 33 50 0

cirrhosis of liver 0 0 0 0

end stage renal disease 37 29 70 79

respiratory failure 58 27 57 27

renal insufficiency 100 100 93 100

cardiac arrest 100 100 93 100

disorder of resp. syst. 76 80 80 71

peripheral vascular dis. 0 0 78 0

Macro-average 49 ±3.2 44±5.9 62±3.9 46±5.0

Weighted average 40±3.3 36 ±7.4 55 ±5.6 44 ±4.6

Table 4.6: Results for the Procedures → Disease category in terms of F1 (%)

averaged over three runs. Standard deviations (over the three runs) of the macro

and weighted average are also reported.



4.4 Experiments 55

C
lin

ic
al

B
E

R
T

B
io

B
E

R
T

Sc
iB

E
R

T

B
E

R
T

anemia 95 100 100 93

aortic valve stenosis 100 100 93 100

carotid artery stenosis 50 50 60 50

coronary atherosclerosis 79 79 76 79

type 2 diabetes mellitus 67 56 64 61

gerd 0 0 0 0

cardiac arrest 95 97 92 97

heart disease 100 100 93 80

heart failure 100 100 100 100

chf 19 37 35 36

hyperglycemic disorder 57 63 80 57

hypertensive disorder 84 87 90 84

acute renal failure synd. 67 67 58 61

end-stage renal disease 77 77 78 70

disorder of lung 89 76 70 52

copd 100 100 97 100

myocardial infarction 24 25 25 21

pancreatitis 33 0 22 33

pleural effusion 80 100 100 80

pneumonia 89 93 89 66

pulmonary edema 87 82 56 76

stroke 81 100 71 100

urinary tract infection 78 77 78 77

aaa 100 96 100 100

Macro-average 73 ±2.7 73±0.4 72±2.5 70±3.2

Weighted average 74±1.8 76 ±1.4 75 ±1.3 72±3.0

Table 4.7: Results for the terminological category in terms of F1 (%) averaged

over three runs. Standard deviations (over the three runs) of the macro and

weighted average are also reported.
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see that SciBERT achieves the best results, with a particularly wide margin on the

Procedures → Disease category. Finally, for the Treatments → Disease category, the

relatively poor performance of BERT stands out, which conforms with the aforemen-

tioned intuition that scientific articles put more emphasis on procedures, treatments

and tests. BioBERT achieves the best results, although the performance of the other

biomedical LMs is quite similar.

4.4.3 Discussion

4.4.3.1 Which LM model?

Several published works have found ClinicalBERT to outperform the other considered

biomedical LMs on biomedical NLP tasks [9, 92, 65]. In our results, however, SciBERT

achieves the most consistent performance, clearly outperforming ClinicalBERT on the

Procedures → Disease and Test → Disease categories, while performing similar to

ClinicalBERT on the remaining categories.

However, rather than providing a blanket recommendation for SciBERT, our fine-

grained analysis highlights the fact that different models have different strengths. The

most surprising finding, in this respect, is the performance of the standard BERT

model, which achieves the best results on the Symptoms → Disease category and

performs comparably to BioBERT on several other categories (with Treatments →

Disease being a notable exception).

4.4.3.2 Dataset Artefacts

As already reported by Romanov and Shivade [184], the original MedNLI dataset has a

number of annotation artefacts, which mean that hypothesis-only baselines can perform

well. In our dataset, we tried to address this by only using entailment examples, and

creating negative examples by corrupting these. However, without canonicalizing the
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Standard Hyp. only

full can full can

M
A

C
R

O

Symptoms → Dis. 48 ±0.7 46±3.0 47±4.9 23±0.5

Treatments → Dis. 64±4.7 60 ±6.1 65±2.5 29±2.1

Tests → Dis. 41±1.7 38±2.4 44±2.3 18±2.0

Procedures → Dis. 59 ±4.9 49 ±3.2 52±2.6 19 ±3.0

Terminological 71±2.3 73±2.7 39±1.3 25±0.4

W
E

IG
H

T
E

D

Symptoms → Dis. 54 ±2.9 49±3.1 53±4.7 23±1.3

Treatments → Dis. 62±2.8 51±5.3 60±7.1 24±1.0

Tests → Dis. 37±1.4 31±2.6 42±0.2 17±2.8

Procedures → Dis. 54±6.2 40±3.3 59±5.1 14±2.0

Terminological 71±1.1 74±1.8 41±2.7 22±0.4

Table 4.8: Comparison between a variant with the full hypothesis and the pro-

posed canonicalized version. Results are for the ClinicalBERT model in terms of

F1 (%) averaged over three runs. Standard deviations (over the three runs) of the

macro and weighted average are also reported.

hypotheses, we found that hypothesis-only baselines were still performing rather well.

This is shown in Table 4.8, which summarizes the results we obtained for a version of

our dataset without canonicalization, i.e. where the full hypotheses are provided, and

the canonicalized version, where the hypotheses were replaced by the disease name

only. The table shows results for the standard ClinicalBERT model, as well as for a

hypothesis-only variant, which is only given the hypothesis. As can be seen, without

canonicalization, the hypothesis only baseline performs similarly to the full model,

even outperforming it in a few cases, with the exception of the Terminological category

where a clear drop in performance for the hypothesis-only baseline can be seen. In

contrast, for the canonicalized version of the dataset, we can see that the hypothesis

only baseline, which only gets access to the name of the disease in this case, under-

performs consistently and substantially. Note that the hypothesis-only baseline still

achieves a non-trivial performance in most cases, noting that an uninformed classifier
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that always predicts true would achieve an F1 score of 0.167. However, this simply

shows that the model has learned to prefer frequent diseases over rare ones.

4.4.3.3 Adversarial Examples.

A key design choice has been to select negative examples from the diseases that are

most similar to the target disease. To analyse the impact of this choice, we carried out

an experiment in which negative examples were instead randomly selected. As before,

we only consider diseases that are present in the dataset, and we ensure that negative

examples are not ancestors or descendants of the target disease in SNOMED CT. The

results are presented in Table 4.9. As expected, the results are overall higher than those

from the main experiment. More surprisingly, this easier setting benefits some mod-

els more than others. The relative performance of ClinicalBERT in particular is now

clearly better, with this model achieving the best results for Symptoms → Disease. Fur-

thermore, the standard BERT model now clearly underperforms the biomedical LMs,

except for Procedures → Disease where it outperforms ClinicalBERT and BioBERT.

4.5 Conclusion

In this chapter, we have proposed DisKnE, a new benchmark for analysing the extent

to which biomedical LMs capture knowledge about diseases. Positive examples were

obtained from MedNLI and MEDIQA-NLI, by manually identifying and categorizing

hypotheses that express that the patient has some disease. Negative examples were se-

lected to be similar to the target disease. To prevent shortcut learning, the hypotheses

were canonicalized, such that models only get access to the name of the disease that is

inferred. Our empirical analysis shows that existing biomedical language models par-

ticularly struggle with cases that require medical knowledge. The relative performance

on the different categories suggests that different (biomedical) LMs have complement-

ary strengths. In the next chapter, we will focus on improving the performance of these
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Symptoms → Dis. 66±4.0 56±3.2 57±5.2 56±4.1

Treatments → Dis. 69±4.3 70±2.0 76±4.5 55±4.8

Tests → Dis. 53±0.9 49±3.3 52±1.0 47±0.6

Procedures → Dis. 60 ±1.8 56±0.8 76±2.6 60±4.5

Terminological 77±0.9 77±0.6 74±0.6 76±1.0
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Symptoms → Dis. 66 ±5.2 59±3.5 59±4.1 56±4.6

Treatments → Dis. 64±6.2 59±3.6 68±4.8 46±3.1

Tests → Dis. 53 ±0.6 51±2.4 54±1.6 43±4.0

Procedures → Dis. 65±3.0 58±1.0 76±0.4 67±4.5

Terminological 76 ±1.6 77±1.0 75 ±0.4 72 ±0.7

Table 4.9: Results for a variant of our benchmark, in which negative examples

were selected at random, in terms of F1 (%) averaged over three runs. Standard

deviations (over the three runs) of the macro and weighted average are also re-

ported.

LMs while specifically targeting medical knowledge. In particular, we will use the

DisKnE medical knowledge variant along with other datasets to evaluate our proposed

approach.
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Chapter 5

Interpreting Patient Descriptions

using Distantly Supervised Similar

Case Retrieval

5.1 Introduction

The previous chapter has shown that existing biomedical LMs often struggle with med-

ical reasoning tasks, such as linking symptoms to diseases. Moreover, it found that the

standard BERT model was remarkably competitive with specialised biomedical LMs

for inferring diagnoses from patient case descriptions. Therefore, in this chapter, we

intend to improve the medical reasoning abilities of these LMs. In general, many

techniques have been proposed to enhance the performance of pre-trained LMs using

unstructured text. Although the biomedical domain has vast volumes of unstructured

text data, annotation is costly. This hinders the ability to fully explore and thereby be-

nefit from the rich information in the biomedical literature to enhance the LMs. Thus,

we also aim to address this annotated data scarcity problem with a distant supervision

strategy.

One possible approach to enhance the predictions of LMs with unstructured data is by

augmenting the LM model input with retrieved sentences, which could sometimes be

sufficient to fill the gap with the needed knowledge. However, previous work [204] has
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shown the limitation of this approach for the biomedical domain. Therefore, instead of

retrieving explicit medical knowledge, in this chapter, we rely on a nearest neighbour

strategy.

The remainder of the chapter is organised as follows. Section 5.2 provides our motiv-

ation and the overall proposed strategy. Subsequently, Section 5.3 reviews the relevant

work to this study. After that, Section 5.4 describes in detail the proposed method.

Section 5.5 presents our experimental results along with considered datasets, external

text corpora and analysis. Finally, Section 5.6 concludes the chapter.

5.2 Motivation & Overall Strategy

To alleviate the limitations of biomedical LMs, a natural strategy would be to aug-

ment patient case descriptions with sentences expressing relevant knowledge, which

are retrieved from some text corpus. Similar strategies have already proven useful for

factual and commonsense question answering [137, 87, 194]. When it comes to inter-

preting patient case descriptions, however, the potential of such strategies is less clear.

For instance, Sushil et al. [204] used an information retrieval engine to find relevant

sentences in biomedical corpora, which were then added to the premise of Natural

Language Inference (NLI) instances. In experiments on MedNLI [183], they found no

statistically significant improvements as a result of this augmentation strategy. While

retrieved sentences can be helpful to clarify the meaning of an unusual term, or to

provide specific knowledge, it is unlikely that we would find a sentence that captures

the specific knowledge that is needed to infer a diagnosis, or recommend a particu-

lar treatment, from a given patient case description. Indeed, such inferences are often

a matter of clinical judgement, more than the application of rule-like knowledge that

could be expressed in a sentence [187, 237].

Rather than searching for sentences that directly express medical knowledge, we aim to

find passages that are similar to the given patient case description itself. The underlying
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intuition is that such passages are likely to describe patients in similar situations, and

that whatever is true for these patients is likely to be true for the patient from the

given description as well. We specifically focus on passages that also mention some

hypothesis of interest, e.g. an answer candidate in the context of question answering

(QA). We then estimate the likelihood that this hypothesis holds based on the similarity

between the given patient case description and the retrieved passages. Figure 5.1 shows

an overview of the overall strategy. The use of similar cases plays an important role

in clinical decision making [21, 15, 213, 139], hence the use of a nearest neighbour

strategy is natural and conceptually straightforward. Moreover, the idea of retrieving

similar cases is also appealing from an application perspective, as these cases can be

used as supporting evidence for a given prediction. This is particularly important for

the biomedical domain, where explainability and transparency are clearly paramount.

However, the success of such a nearest neighbour strategy critically hinges on our

ability to identify the commonalities between different patient case descriptions in a

suitable way, which is in itself a challenging problem. For instance, even if two pa-

tients experienced a similar situation, the details of their cases are likely to differ in

many respects, some of which may or may not matter. Moreover, the patient case de-

scriptions may differ in the level of detail they provide, as well as their overall writing

style. To illustrate these issues, Table 5.1 shows the top passage that was retrieved by

our model for a given question from the MedQA benchmark [82]. As can be seen,

both patient case descriptions refer to the sudden development of unusual behaviour

shortly after experiencing bereavement. Beyond this central correspondence, however,

the details of the two descriptions differ substantially. Identifying relevant patient case

descriptions is thus a non-trivial problem, which requires specialised clinical know-

ledge. Given these challenges, off-the-shelf models for estimating textual similarity

are clearly insufficient for identifying relevant patient case descriptions. Moreover, to

the best of our knowledge, there are no labelled datasets that can be used for training

a supervised model. This makes the problem of interpreting patient case descriptions

inherently different from settings such as open-domain QA, where gold annotations of
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Question: A 20-year-old woman is brought in for a psychiatric consultation by her mother

who is concerned because of her daughter’s recent bizarre behavior. The patient’s father

died from lung cancer 1 week ago. Though this has been stressful for the whole family, the

daughter has been hearing voices and having intrusive thoughts ever since. These voices have

conversations about her and how she should have been the one to die and they encourage her

to kill herself. She has not been able to concentrate at work or at school. She has no other

history of medical or psychiatric illness. She denies recent use of any medication. Today,

her heart rate is 90/min, respiratory rate is 17/min, blood pressure is 110/65 mm Hg, and

temperature is 36.9°C (98.4°F). On physical exam, she appears gaunt and anxious. Her heart

has a regular rate and rhythm and her lungs are clear to auscultation bilaterally. CMP, CBC,

and TSH are normal. A urine toxicology test is negative. What is the patient’s most likely

diagnosis?

Answer candidate: Brief psychotic disorder

Retrieved passage: Brief psychotic disorder associated with bereavement in a patient with

terminal-stage uterine cervical cancer: a case report and review of the literature. We report

here a terminally ill patient with uterine cervical cancer who developed a brief psychotic dis-

order after bereavement following the loss of three close friends also suffering from gynecolo-

gical cancer. A 49-year-old housewife, who was diagnosed as having uterine cervical cancer

and was receiving palliative care was referred for psychiatric consultation because of an ab-

rupt onset of delusions, bizarre behavior, disorganized speech, and catatonic behavior. On

psychiatric examination, she showed delusional thought and catatonic behavior. Laboratory

data were unremarkable, as was brain MRI. She had no history of psychiatric illness or drug

or alcohol abuse. After receiving haloperidol, psychiatric symptoms disappeared, and she re-

turned to the previous level of functioning after 3 days. The patient explained that the death

of three of her friend due to gynecological cancer was shocking event for her. She focused

her attention on her own fears of dying from the same disease. Brief psychotic disorder in

cancer patients is rare in the literature. However, our report of brief psychotic disorder as-

sociated with bereavement may highlight possible precipitating factors, which have not been

adequately emphasized in the literature to date.

Table 5.1: Example of a question from MedQA, along with the top-retrieved pas-

sage by our model for the answer candidate brief psychotic disorder.
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relevant passages are often available and systems can rely on transfer learning from

closely related tasks.

In this study, we propose a distant supervision strategy to address these challenges. We

start from the intuition that interpreting patient case descriptions is easier than open-

domain QA in one important aspect: the presence of a hypothesis (or answer candidate)

in a context passage makes it highly likely that this passage is at least somewhat rel-

evant, which is related to the fact that we are looking for similar cases rather than

for specific knowledge. For instance, most patient case descriptions mentioning brief

psychotic disorder would tell us something about the likelihood that this is the correct

diagnosis for the question in Table 5.1. In contrast, passages mentioning Paris may

be completely irrelevant to a question asking about the capital of France. Our central

hypothesis is that this aspect of patient case descriptions can compensate for the lack

of relevant supervision data for learning to identify similar cases. In particular, we

propose a strategy to train a cross-encoder for comparing patient case descriptions, i.e.

a fine-tuned language model which takes two patient case descriptions as input and

estimates their degree of similarity. To this end, we generate a distantly supervised

training set, by using a baseline model to rank candidate passages and relying on the

assumption that such a passage is relevant if it mentions a hypothesis that can be in-

ferred from the target patient case description. Conceptually, this is similar in spirit to

distant supervision strategies for open-domain QA (see Section 5.3). A key difference,

however, lies in the fact that we cannot use standard retrieval models for ranking the

candidate passages. Our solution relies on the following two steps:

• We train an unsupervised text encoder on a set of patient case descriptions. This

encoder is used to select an initial set of candidate passages. It has two primary

advantages: (i) it allows for efficient dense retrieval of a small set of candidate

passages and (ii) it can rely on some clinical knowledge of patient case descrip-

tions because it was trained on this domain.

• The initial set of candidate passages is then ranked using a pre-trained cross-
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encoder. We initialise this cross-encoder from a biomedical LM and pre-train

it on a standard textual similarity dataset. Despite not being trained on patient

case descriptions, we anticipate that this re-ranking step will improve the ef-

fectiveness of our approach. Intuitively, an out-of-domain cross-encoder can be

effective because all of the candidate passages are (at least somewhat) relevant.

The model can thus focus on identifying more particular commonalities, which

may not require as much clinical knowledge.

Patient description Hypothesis

A 20-year-old woman is brought in for a psychiatric 
consultation by her mother who is concerned because of her 
daughter’s recent bizarre behavior. The patient’s father died 
from lung cancer 1 week ago. Though this has been stressful 
for the whole family, the daughter has been hearing voices and 
having intrusive thoughts ever since.… Brief psychotic 

disorder

Brief psychotic disorder associated with bereavement in a 
patient with terminal-stage uterine cervical cancer: a case 
report and review of the literature. We report here a 
terminally ill patient with uterine cervical cancer who 
developed a brief psychotic disorder after bereavement 
following the loss of three close friends also suffering from 
gynecological cancer. A 49-year-old housewife, who was 
diagnosed as having uterine cervical cancer and was receiving 
palliative care was referred for psychiatric consultation….

?

Our model

Figure 5.1: Overview of the overall strategy.

5.3 Related Work

Distant Supervision in IR. The application of distant supervision strategies has seen

considerable success in scenarios where gold-annotated data is scarce, e.g., in open
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question answering or dense retrieval. Most relevant to our study, several retrieval

models that combine distant supervision with BERT-based encodings have been pro-

posed in recent years. For instance, Karpukhin et al. [91] trained a dual encoder (i.e.

separate passage and question encoders) for open question answering, which uses dis-

tantly labelled question-passage pairs for those datasets where gold annotations are not

available. To obtain positive examples, for a given question, they then select those pas-

sages which contain the answer and are ranked highest using BM25 [182]. They use

several strategies for selecting negative passages, e.g. taking the top retrieved passages

that do not mention the answer. Our model similarly obtains positive examples from

top-ranked passages, but given the challenging nature of patient case descriptions, we

found that relying on BM25 for generating pseudo-labels was not sufficient and that

the use of a cross-encoder for the final model was essential. The use of cross-encoders

for open-domain QA has also been extensively explored. However, different from our

setting, most works rely on gold annotations of passage relevance [243, 173]. These

gold labels are used to train the cross-encoder, which is used to generate pseudo-labels.

These pseudo-labels are then in turn used for training an improved dual encoder model.

In other words, these works are using a supervised cross-encoder to generate pseudo-

labels, whereas our focus is on generating pseudo-labels for training the cross-encoder

itself. Rather than using a cross-encoder, Khattab et al. [95] start from a pre-trained

ColBERT model [94] to get an initial ranking of passages that are similar to the ques-

tion. ColBERT separately encodes the passages and question, but rather than rep-

resenting these text fragments as single vectors, they are represented as sequences of

token-level vectors, which enables a finer-grained interaction than standard dual en-

coders. Given the ColBERT ranking, they assume that the top-k passages are positive

examples if they contain the answer candidate and negative examples otherwise. Based

on these pseudo-labels, the ColBERT model is then fine-tuned. This process is repeated

a few times to iteratively improve the model. The ability to pre-train ColBERT on a

relevant supervised task is crucial to this approach, however, hence a similar strategy

cannot straightforwardly be applied to the setting of patient case descriptions. The
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aforementioned methods rely on a baseline retrieval model to generate pseudo-labels,

which is also the approach we follow in this work. As an alternative, some authors

have also proposed models in which the retrieval model is jointly optimised with the

rest of the QA model [105, 63]. However, these approaches involve computationally

intensive language model pre-training tasks, which makes them difficult to implement

and analyse. More widely, distant supervision is also commonly used for span selec-

tion in open-domain QA [73] and for ad-hoc document retrieval [126], among many

others.

Similar Case Retrieval. Within NLP, similar case retrieval has primary been applied

to the analysis of legal cases. For instance, Westermann et al. [238] proposed a strategy

for finding legal cases that are similar to a given one, which involved an initial filtering

step to eliminate cases that are unlikely to be related, followed by the use of an SVM

model for making the final prediction. Shao et al. [190] introduced BERT-PLI. Given

a query case, they first retrieve potentially relevant cases from a corpus of legal cases

using BM25. Subsequently, they use a BERT model that was fine-tuned on a legal

entailment dataset. This model is applied to individual paragraphs from the query

and candidate cases, with the final score being obtained by aggregating the paragraph-

level interactions. Shao et al. [189] combine the features extracted from BERT-PLI

with traditional bag-of-words features, and then use RankSVM to rank the considered

cases. Summarizing the retrieved cases before ranking them has been investigated as

well, as a strategy to deal with documents that are longer than the language model can

handle [10].

Beyond the legal domain, the idea of exploiting similar cases has recently been used for

question answering [176], semantic parsing [246], text generation [214] and language

modelling [93] among many others. Within the biomedical domain, one relevant line

of research aims to capture the similarity between different patients to predict, for

example, a diagnosis or treatment [78, 143, 71], usually by learning a dense vector

representation of each patient. Another related line of research has focused on linking
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patient records to relevant articles from the biomedical literature [181, 180].

5.4 Proposed Method

We are interested in the problem of interpreting patient case descriptions. More spe-

cifically, given a patient case description D and a hypothesis H , we are interested in de-

termining whether H can be inferred from D, i.e. whether D entails H . For instance, H

could be a diagnosis or a recommended treatment, diagnostic test or procedure. In the

example displayed in Table 5.1, the question corresponds to the patient case descrip-

tion D while the given answer candidate (i.e. brief psychotic disorder) corresponds to

the hypothesis H .

To determine whether D entails H , we search for a text fragment CH , from a given

corpus, which (i) mentions H and (ii) is as similar as possible to D. We then use

the similarity between D and CH to assess the likelihood that H is entailed by D. The

underlying intuition is that CH and D are both presumed to be patient case descriptions,

and moreover, that the fact that H is mentioned in CH means that H can be inferred

from that patient case description.

Our central aim is to demonstrate the strong potential of nearest neighbour strategies

for interpreting patient case descriptions, and to show how the main technical obstacles

can be overcome, in particular the lack of training data for learning to recognise sim-

ilar patient case descriptions. To focus the empirical analysis on these key aims, we

keep our overall model as simple as possible. To this end, we rely on the following

simplifying assumptions:

• We assume that there will exist relevant text fragments that literally mention the

hypothesis H .

• We assume that text fragments which are similar to the patient case description

D will themselves also be patient case descriptions.
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• We take the fact that H is mentioned in the text fragment CH as evidence that H

applies to the patient being described.

In principle, it is possible to weaken some of these assumptions. For instance, rather

than looking for literal mentions of H , we could use a medical concept normalisation

method such as MetaMap [16] or QuickUMLS [196] to identify phrases with the same

meaning. Similarly, rather than simply looking for passages that mention H , we could

use a baseline NLI model to check whether H can be entailed from CH . However, such

solutions may themselves introduce errors. Furthermore, as we will see, sometimes

passages are retrieved that are not patient case descriptions but which nonetheless help

the model to make the correct prediction. We can often think of such passages as being

generic patient case descriptions, e.g. discussing how a given illness in general presents

itself, hence specifically restricting the retrieved passages to actual patient case descrip-

tions may not always be helpful. We leave a detailed study of these considerations for

future work.

We next present a more detailed overview of our approach. In Section 5.4.2 we then

describe our strategy for generating a distantly supervised training set, which will allow

us to train the cross-encoder that sits at the heart of our model. Finally, Section 5.4.3

describes how the cross-encoder is used as part of our overall model.

5.4.1 Overview of the Nearest Neighbour Strategy

Let D be a patient case description and let CH be a text fragment mentioning some

hypothesis of interest H . We want to train a model that allows us to predict whether

CH is sufficiently similar to D to plausibly infer that H can be entailed from D. We

use a cross-encoder to this end, i.e. we fine-tune a language model to predict similarity

scores, where the concatenation of D and CH (separated by the special <sep> token)

is used as the input. Cross-encoders are able to measure similarity in a more intric-

ate way than strategies that rely on comparing sentence embeddings, but the latter are
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Figure 5.2: Overview of the application of our proposed model for answering

multiple-choice questions.

more scalable. For this reason, in line with the standard usage of cross-encoders as

re-rankers in information retrieval [37, 151, 112], we first use sentence embeddings to

identify the 50 most similar text fragments containing H and then use the fine-tuned

cross-encoder for identifying the most similar text fragment among these. Figure 5.2

illustrates how the overall process can be applied to multiple-choice question answer-

ing. In this case, for each of the answer candidates A,B,C,D we retrieve an initial

set of 50 text fragments and then use the cross-encoder to find the single most similar

document from each set. Let us call these documents CA, CB, CC and CD. For instance,

CA is assumed to be the text fragment which is most similar to D, among all those

mentioning A. The model would then, for instance, predict answer candidate A if CA
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is estimated to be more similar to D than CB, CC and CD.

5.4.2 Obtaining Similarity Labels

We assume that we are given a set of positive examples E+ of the form (D, H), where

D is a patient case description and H is a hypothesis that can be inferred from D.

Similarly, we assume we have a set of negative examples E− of the form (D, H), where

H cannot be inferred from D. For instance, in the setting of multiple-choice question

answering, E+ would be constructed from the correct answer candidates whereas E−

would be constructed from the incorrect answer candidates. Similarly, the sets E+ and

E− can be straightforwardly obtained from NLI training data.

To allow us to train the cross-encoder, we derive a synthetic training set S+ ∪ S− from

E+ and E−. This training set consists of pairs (D, CH), where CH is a passage that

was retrieved, by an unsupervised retrieval model, as one of the top-k most similar text

fragments to D containing the hypothesis H . In particular, the set of positive examples

S+ contains those pairs (D, CH) for which (D, H) ∈ E+, whereas S− contains those

pairs for which (D, H) ∈ E−. Note how this overall strategy is somewhat reminiscent

of pseudo-relevance feedback [32, 242, 31, 102], in the sense that we rely on the as-

sumption that the top-k retrieved passages are relevant. However, rather than trying

to improve a ranked list of passages, our aim is to train a cross-encoder to distinguish

between passages that contain valid hypotheses and those that do not. In principle,

this could be done without a retrieval model, by simply assuming that passages CH are

similar to D if and only if the hypothesis H they contain can be inferred from D. Our

purpose in restricting the training data S+ ∪ S− to the top-k retrieved passages is to

denoise the supervision labels as much as possible.

The quality of the training set S+ ∪ S− crucially relies on the retrieval model that is

used to select the top-k passages. To obtain these passages, we rely on a two-step

process. First, an unsupervised sentence embedding model is used to select the top-50
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Figure 5.3: Overview of how the distantly supervised examples for training the

cross-encoder are obtained (shown for k = 5).

most similar passages. Subsequently, we use a pre-trained cross-encoder to select the k

most similar passages among these 50 (with k < 50). We now describe these two steps

in more detail. The overall process for generating the training set S+∪S− is illustrated

in Figure 5.3 .
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5.4.2.1 Initial Retrieval Step

Given a pair (D, H) we first use Elasticsearch [59] to retrieve all text passages men-

tioning H . For efficiency reasons, in our experiments we retrieve a maximum of 1000

passages. We then use an unsupervised sentence embedding model to encode each of

the selected passages, as well as the patient case description D itself. We use these

embeddings to select the 50 passages that are most similar to D in terms of cosine sim-

ilarity. Specifically, we use the Tranformer-based Denoising AutoEncoder (TSDAE)

approach [228] to train a sentence embedding model for the clinical domain.

We initialize this model from ClinicalBERT and use MIMIC-III [86] discharge sum-

maries as input fragments for training. Due to the noisy nature of these summaries,

rather than working at the sentence level, we split the documents in passages of up to

250 words, while respecting sentence boundaries.

5.4.2.2 Reranking with a Pre-Trained Cross-Encoder

We rely on a pre-trained cross-encoder to identify the most relevant passages, among

the 50 that were selected based on their TSDAE embeddings. We experiment with

cross-encoders that are trained on one of the following tasks:

• Semantic Textual Similarity Benchmark (STS-B) [34]: An open-domain bench-

mark where the goal is to determine the semantic relatedness between two sen-

tences as a score from 1 to 5.

• Recognizing Question Entailment (RQE) [1]: Given a pair of health-related

questions, this binary classification dataset aims to identify whether the answer to

the second question is also a complete or partial answer to the first. The question

pairs were retrieved from Frequently Asked Questions on the National Institutes

of Health (NIH) websites, as well as consumer health questions collected by the

National Library of Medicine.
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• HealthQA [259]: A set of question and answer pairs annotated with relevance

labels. The answers were collected from the Patient website 1 and questions were

provided by human annotators.

STS-B and RQE have already been found useful for improving semantic similarity

tasks, including in the clinical domain [122]. We also include HealthQA because of its

structural similarity with our considered setting. Note that none of these pre-training

tasks involve patient case descriptions, while STS-B is not even focused on the bio-

medical domain.

5.4.3 Training and Using the Cross-Encoder

We use the training set S+ ∪ S− to fine-tune our cross-encoder. We initialise the model

with the pre-trained cross-encoder that was used for the reranking step in Section

5.4.2.2. To use the resulting model, e.g. for QA or NLI, we again use the TSDAE

sentence encoder to select the top-50 most similar passages for each hypothesis of in-

terest. We then use the fine-tuned cross-encoder to select the most similar passage. For

instance, to answer a multiple-choice question, where D is the question and H1, ..., Hm

are the possible answers, we use the fine-tuned cross-encoder to select for each candid-

ate Hi the most relevant passage CHi
. We predict the answer candidate Hi for which

the similarity between D and CHi
, as estimated by the fine-tuned cross-encoder, is max-

imal. In cases where a hypothesis Hi does not appear in the corpus at all, we simply

set CHi
= Hi, i.e. we compute the similarity between D and Hi instead.

5.5 Experimental Results

In this section, we present our experimental analysis. Apart from assessing the over-

all effectiveness of our proposed strategy, we are interested in the following research
1https://patient.info/
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questions:

• Is the use of an unsupervised sentence embedding model (i.e. TSDAE) viable as

the primary retrieval strategy? Can such an approach overcome the limitations

of BM25 for identifying potentially relevant cases?

• Can the use of a cross-encoder that is pre-trained on an out-of-domain task (e.g.

STS-B) lead to meaningful improvements?

• How sensitive is the model to the value of k and to the chosen pre-training task

for the cross-encoder? Are there any differences across different biomedical

LMs and datasets?

5.5.1 Evaluation Datasets

We evaluate our method on the MedQA, DisKnE and HeadQA datasets. We include

HeadQA dataset because it allows us to explore to what extent the proposed methodo-

logy can be effective in a broader setting than for interpreting patient case descriptions.

5.5.2 Corpora

The choice of the external corpus, from which the text passages are retrieved, is an

important factor for the effectiveness of our method. Given the aims of this work, we

focus on corpora that contain patient case descriptions. We have, in particular, used the

following two corpora, both of which are widely used in biomedical NLP.

5.5.2.1 WikiMed and PubMedDS (Wiki-PubMed) [216]

We split the documents in this corpora into text passages of up to 250 words, respecting

sentence boundaries. This resulted in a total of 14,582,089 passages. While this corpus
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covers a wide variety of documents, many PubMed abstracts correspond to patient case

descriptions (i.e. the abstracts of medical case reports). This corpus thus allows us to

analyse to what extent our method is able to identify patient case descriptions and to

what extent it is able to exploit generic descriptions.

5.5.2.2 MIMIC-III discharge summaries [86]

To split the discharge summaries into text passages, we first split them according to

the section headers and then split the resulting sections into passages of up to 250

words. This allows us to go beyond the sentence level, while keeping in mind that the

concatenation of the question and a retrieved passage can be at most 512 tokens, given

the limitations of the considered transformer-based language models. We obtained

a total of 3,623,209 passages from 59,652 discharge summaries, although it should

be noted that many of these passages are short and uninformative (e.g. the passage

obtained from the admission date section). MIMIC-III has the advantage that it consists

entirely of patient case descriptions. The main drawbacks are that summaries are often

noisy (e.g. not always containing well-structured sentences) and that they are limited to

descriptions of critical care patients. Given this latter point, MIMIC-III is particularly

suitable for DisKnE, whose patient case descriptions are also taken from the MIMIC-

III corpus. This allows us to experiment with a setting where the corpus contains

patient case descriptions that are written in a similar style as the target description.

Note, however, that the patient case descriptions from DisKnE themselves are never

retrieved by our method, as the corresponding hypotheses are not mentioned in the

original notes.

5.5.3 Pre-trained Language Models

We experiment with four pre-trained LMs to initialize the cross-encoder: the cased

version of BERTbase [42]; the version of ClinicalBERT [8] that was initialized from
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BioBERT [104] and further pre-trained on MIMIC-III; the cased version of SciBERT

[24]; and the released version of PubMedBERT [61] .

5.5.4 Baselines

We consider the following baselines.

5.5.4.1 Standard Fine-tuning (FT)

We fine-tune a pre-trained language model to predict whether a given hypothesis can

be entailed from a patient case description, as in standard NLI models. Specifically,

we concatenate the patient case description and the hypothesis, separated by a [SEP]

token, and fine-tune this model using binary cross-entropy. We refer to this model as

BERT-FT in the case BERT is used, and similar for the other LMs.

5.5.4.2 Definitions

We use QuickUMLS [196] to identify the UMLS CUI codes of the medical concepts

mentioned in the hypothesis. We then use these CUI codes to retrieve the definition(s)

of the corresponding concepts from UMLS. These definitions, if they exist, are concat-

enated to the hypothesis. We then fine-tune a language model on the augmented input.

This follows the strategy proposed by [191] for improving LSTM-based models. We

refer to this strategy as BERT-Def, and similar for the other LMs.

5.5.4.3 Unsupervised Retrieval

Finally, we also report results for unsupervised retrieval models. In this case, we simply

compute the similarity degree between the patient case description and the most similar

passage, for each hypothesis. We test this strategy with two retrieval models: (i) BM25
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and (ii) dense retrieval with the TSDAE embeddings that are also used for our main

model.

5.5.5 Evaluation Metrics

For MedQA and HeadQA, we solve the standard multiple-choice QA task as explained

in Section 5.4.3, reporting results in terms of accuracy. In addition, we have included

experiments where MedQA and HeadQA are treated as ranking tasks. We then rank

all (question, answer candidate) pairs, across all questions and answer candidates, and

report the results in terms of average precision (AP). This essentially allows us to assess

to what extent our model is able to recognise valid hypotheses in isolation, instead

of selecting the most plausible answer candidate among a small set of choices. We

similarly treat DisKnE as a ranking task, rather than a binary classification task. In

this case, we obtain the average precision score for each training-test split (i.e. for each

of the considered diseases). The AP scores for each split are then averaged to get the

overall Mean Average Precision (MAP).

5.5.6 Training Details

Across all datasets and language models, we use the same settings and hyper-parameters.

For the baselines, and when pre-training and fine-tuning the cross-encoders, we set the

batch size to 8, the number of epochs to 4 and the learning rate set to 2e-5. The

cross-encoders are pre-trained and fine-tuned using binary cross-entropy (where sim-

ilarity scores are normalised between 0 and 1 for STS-B). We use the standard train-

ing/validation/test splits, with the exception of HeadQA, where we have removed all

questions involving images.
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MedQA HeadQA DisKnE

AP Acc AP Acc MAP

BERT-FT 26.8 27.8 28.1 28.8 57.0

ClinicalBERT-FT 27.7 29.1 28.5 29.3 67.5

SciBERT-FT 28.6 29.2 29.5 32.8 69.2

PubMedBERT-FT 32.8 35.5 35.4 39.5 69.7

BERT-Def 27.8 27.7 27.9 30.4 50.5

ClinicalBERT-Def 28.2 29.5 27.8 30.2 59.3

SciBERT-Def 29.7 30.8 30.3 34.5 56.2

PubMedBERT-Def 30.1 32.9 35.2 38.3 65.2

TSDAE Wiki-PubMed 26.2 29.3 26.7 31.1 27.8

TSDAE MIMIC-III 25.0 25.1 26.0 28.3 32.7

BM25 Wiki-PubMed 25.3 26.8 25.6 25.9 22.3

BM25 MIMIC-III 25.0 23.8 25.0 23.8 22.5

Table 5.2: Baselines results for all datasets. We report DisKnE in terms of Mean

Average Precision (MAP), MedQA and HeadQA in terms of Average Precision

(AP) and Accuracy (Acc). The best results are shown in bold.

5.5.7 Results

The experimental results are summarized in Table 5.3 for MedQA, Table 5.4 for DisKnE

and Table 5.5 for HeadQA. We write CE-k for our method, where the cross-encoder is

fine-tuned using k passages per (D, H) pair. The baseline results are reported in Table

5.2.

For MedQA (Table 5.3), the results for Wiki-PubMed (abbreviated as Wiki-PM) clearly

outperform those for MIMIC-III (abbreviated as MIM-III), which is as expected given

the aforementioned limitations of MIMIC-III. Focusing on the results for Wiki-PubMed,

we can see that for each of the language models, the results in Table 5.3 consistently

outperform the baseline results (for these language models) in Table 5.2, across all

choices of k and each of the three pre-training tasks. The results also clearly outper-
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STS-B RQE HealthQA

MIM-III Wiki-PM MIM-III Wiki-PM MIM-III Wiki-PM

AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc

BERT

CE-1 26.7 26.8 29.9 32.4 25.3 24.1 28.5 31.5 25.8 25.3 28.9 32.2

CE-5 25.1 25.0 31.7 35.5 25.0 26.3 31.5 33.6 28.8 27.8 27.9 29.8

CE-10 25.3 23.4 30.5 34.0 25.1 26.9 30.8 32.9 25.5 24.6 25.2 26.7

ClinicalBERT

CE-1 25.9 25.3 33.2 35.4 27.6 28.2 30.4 32.2 25.6 25.6 31.3 34.0

CE-5 27.8 28.8 33.4 35.4 27.9 29.4 35.1 38.0 24.9 24.7 32.9 35.5

CE-10 25.3 26.8 31.5 33.6 26.7 27.0 31.5 36.2 25.7 23.4 32.1 37.4

SciBERT

CE-1 25.2 24.3 32.4 34.5 27.2 28.9 32.7 33.8 25.2 24.7 32.3 34.5

CE-5 25.8 25.7 30.5 35.1 27.6 28.7 31.0 33.8 28.1 29.2 33.0 37.6

CE-10 24.7 24.0 30.1 34.5 25.4 25.3 31.2 32.7 23.9 22.2 32.3 35.3

PubMedBERT

CE-1 30.5 32.3 36.0 39.3 24.9 26.6 32.8 35.8 27.4 28.6 34.0 39.3

CE-5 29.1 30.5 33.1 35.8 26.1 26.7 31.6 37.2 26.8 26.6 34.4 36.4

CE-10 31.2 34.8 33.8 37.7 30.8 32.6 32.8 38.0 29.5 31.3 33.4 37.3

Table 5.3: Results for MedQA in terms of Average Precision (AP) and Accuracy

(Acc). The best results for each language model are shown in bold.

form the unsupervised retrieval baselines. Comparing the different language models,

PubMedBERT achieves the best results. With regards to the choice of k, we find that

k = 5 is generally the best choice, with the exception of PubMedBERT where k = 1

performs much better. This appears to be related to the fact that PubMedBERT it-

self performs better than the other LMs. In general, larger values of k leads to more,

but noisier training data. Since PubMedBERT is better at selecting the most relev-

ant paragraphs, even when using the pre-trained encoder, this problem of training data

becoming noisier for larger values of k is more pronounced.

Regarding the pre-training tasks, STS-B and HealthQA lead to the best results in most

cases, with the exception of ClinicalBERT. To the best of our knowledge, the best re-

ported results in the literature at the time of the publication for MedQA are those from

Meng et al. [131], where an accuracy of 38.02 was obtained for their best-performing

configuration, using a large biomedical knowledge graph to augment the PubMed-

BERT model. This contrasts to an accuracy of 39.3 for the best-performing model in
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STS-B RQE HealthQA

MIM WPM MIM WPM MIM WPM

BERT

CE-1 47.5 36.6 46.6 34.1 45.6 37.4

CE-5 66.0 48.7 65.4 43.2 59.5 44.1

CE-10 67.1 55.4 70.4 54.9 61.7 48.0

ClinicalBERT

CE-1 51.4 50.9 53.4 50.7 52.0 53.4

CE-5 63.9 59.7 66.0 57.4 65.4 53.9

CE-10 62.1 59.7 67.7 63.7 67.8 58.5

SciBERT

CE-1 60.7 45.4 54.4 46.8 58.0 50.4

CE-5 69.6 59.6 65.4 56.4 65.6 54.2

CE-10 73.2 65.1 67.3 59.5 72.8 61.9

PubMedBERT

CE-1 63.3 60.0 63.6 54.1 57.4 52.3

CE-5 71.6 64.6 69.1 59.0 64.6 58.3

CE-10 69.0 67.1 70.3 61.7 67.6 63.7

Table 5.4: Results for DisKnE in terms of Mean Average Precision (MAP). The

best results for each language model are shown in bold.

Table 5.3. Since then better results have been reported as well in [245, 244]. We also

report improved results in Chapter 6 [7].

For HeadQA (Table 5.5), as expected we again find that Wiki-PubMed leads to much

better results than the MIMIC-III corpus. Moreover, we can again see that the use

of the cross-encoder consistently leads to better results than when using the baseline

fine-tuned language model, across all values of k and all pre-training tasks. The best

results are again obtained with PubMedBERT. However, here we see that RQE is the

most suitable pre-training task for most configurations. This can be explained by the

observation that HeadQA primarily consists of factual questions, which clearly makes

RQE the most closely related pre-training task. Overall, the choice of k = 5 gener-

ally performs best. The improvements for HeadQA are remarkable, since many of the

questions in this dataset are not about patient case descriptions. To explore this further,

we manually split the test set into those questions which are about patient case descrip-



5.5 Experimental Results 82

STS-B RQE HealthQA

MIM-III Wiki-PM MIM-III Wiki-PM MIM-III Wiki-PM

AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc

BERT

CE-1 27.2 28.2 32.6 33.4 27.4 29.3 30.0 32.6 27.2 29.2 32.3 33.3

CE-5 27.4 29.0 34.2 36.1 27.6 30.2 34.9 38.0 26.4 28.2 32.4 34.8

CE-10 26.8 28.2 33.7 36.6 27.1 29.1 33.5 37.1 26.8 28.6 31.3 34.4

ClinicalBERT

CE-1 28.7 29.4 33.8 34.8 26.5 27.0 31.3 32.8 27.8 30.8 33.0 33.1

CE-5 27.3 29.6 33.8 36.4 27.4 28.1 32.8 36.9 27.9 29.6 33.7 35.7

CE-10 27.4 30.5 33.6 36.7 27.8 29.6 32.5 35.9 27.1 29.3 32.0 35.8

SciBERT

CE-1 29.9 32.2 33.9 35.7 30.3 34.2 32.8 33.0 29.0 32.9 34.4 35.0

CE-5 29.2 29.5 35.3 39.8 28.8 32.1 33.2 37.0 28.5 31.9 33.3 35.8

CE-10 29.3 32.4 33.1 35.6 28.5 33.2 33.4 37.6 28.8 31.5 32.4 34.9

PubMedBERT

CE-1 34.5 37.1 38.2 39.3 33.9 37.9 38.8 41.2 33.0 36.9 36.6 40.3

CE-5 32.7 36.4 38.4 41.2 33.7 37.0 38.7 42.3 32.1 33.0 35.9 39.8

CE-10 33.9 37.9 37.4 40.3 33.4 38.4 37.5 40.0 32.4 37.2 35.1 40.5

Table 5.5: Results for HeadQA in terms of Average Precision (AP) and Accuracy

(Acc). The best results for each language model are shown in bold.

Patient case descriptions Other questions

AP Acc AP Acc

SciBERT-FT 27.9 27.7 31.3 34.4

SciBERT-CE 29.6 32.4 33.8 38.2

PubMedBERT-FT 29.6 34.7 37.7 40.4

PubMedBERT-CE 32.3 35.6 38.5 41.3

Table 5.6: Analysis of HeadQA results, where test questions were split depending

on whether or not they are about patient case descriptions. Results are reported

in terms of average precision and accuracy.

tions (216 in total) and those which are not (2458 in total). Table 5.6 shows the results

obtained for these two sets of questions, for the SciBERT-FT and PubMedBERT-FT

baselines, as well as our proposed model, where we used the RQE pre-training task

and k = 5. As we can see, our model improves the results on both sets of questions.

This suggests that our proposed strategy could be beneficial for biomedical QA more
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generally. However, on its own, our approach is not sufficient to obtain state-of-the-

art results, which rely on methods that are specifically designed to enable the kind of

multi-hop reasoning that is often needed for this dataset [117].

For DisKnE (Table 5.4), as expected, the best results are obtained when MIMIC-III is

used as the corpus. For this choice, our method consistently outperforms the baselines

for all language models, provided that k ≥ 5. On average, the optimal value of k is

larger than what we found for MedQA and HeadQA. This suggests that identifying the

most relevant passages is more challenging for this dataset.

Comparing the baseline results in Table 5.2, we can clearly see the limited usefulness

of augmenting the inputs with definitions of medical concepts. For DisKnE, adding

these definitions actually has a detrimental effect. For MedQA and HeadQA, the un-

supervised retrieval baselines are remarkably competitive compared to the fine-tuned

language models. However, in the case of DisKnE these unsupervised models sub-

stantially underperform. We can also see that TSDAE consistently outperforms BM25.

This was expected, given the fact that comparing patient case descriptions intuitively

requires more than surface-level matching.

Given the required computational cost, it was not feasible to obtain results for multiple

runs for all configurations. We report in table 5.7 the averaged result over three runs

for MedQA’s best configuration (i.e. top-1 with PubMedBERT and STS-B as the pre-

training task).

AP Acc

PubMedBERT-FT 33.2 ±0.36 35.9 ±0.46

PubMedBERT-CE 35.9 ±0.37 39 ±0.24

Table 5.7: Results for the PubMedBERT model in terms of Average Precision

(AP) and Accuracy (Acc) for MedQA best configuration averaged over three runs.

Standard deviations (over the three runs) are also reported.
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MedQA HeadQA DisKnE

AP Acc AP Acc MAP

Pretrained CE 30.6 33.0 32.9 38.0 41.4

TSDAE-Selected 35.0 36.7 33.0 36.9 70.0

Full model 36.0 39.3 38.7 42.3 73.2

Table 5.8: Ablation analysis for all datasets. We report results for DisKnE in

terms of Mean Average Precision (MAP), MedQA and HeadQA in terms of Aver-

age Precision (AP) and Accuracy (Acc).

5.5.8 Analysis

5.5.8.1 Ablation Results

In Table 5.8, we show results for the following simplified versions of our model.

• Pretrained CE: Rather than fine-tuning a cross-encoder using our distant super-

vision strategy, we simply use the pre-trained cross-encoder to re-rank the top-50

passages selected by TSDAE. Note that this variant of our method does not rely

on the training data at all. This Pretrained CE model is illustrated in Figure 5.4

• TSDAE-Selected: When creating the distantly supervised training set for fine-

tuning the cross-encoder, we simply choose the k highest ranked passages ac-

cording to their TSDAE-embeddings, thus omitting the stage where we re-rank

the candidate passages using a pre-trained cross-encoder. TSDAE-Selected is

illustrated in Figure 5.5

In all cases, we used the best configurations from the main experiments (i.e. the optimal

value of k and pre-training task). For MedQA and HeadQA we used Wiki-PubMed as

the corpus while for DisKnE we used MIMIC-III. As can be seen in Table 5.8, the

Pretrained CE model outperforms the unsupervised baseline retrieval models from

Table 5.2. In fact, for MedQA and HeadQA, the results of this unsupervised model
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Figure 5.4: Illustration of Pretrained CE.

TSDAE
Pretrained 

CE
Fine-tuned 

CE

Figure 5.5: Illustration of TSDAE-Selected.

are almost in line with those of the fine-tuned PubMedBERT model. This clearly

shows the usefulness of the pre-trained cross-encoder, even when it cannot be fine-

tuned on task-specific data. This usefulness can furthermore be seen in the performance

of TSDAE-Selected. While this variant performs quite well, it clearly underperforms

the full model, showing the importance of the cross-encoder based re-ranking step.
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Question : A 38-year-old woman comes to the physician because of difficulty falling asleep for the past 2 months.

She wakes up frequently during the night and gets up earlier than desired. She experiences discomfort in her legs

when lying down at night and feels the urge to move her legs. The discomfort resolves when she gets up and

walks around or moves her legs. She has tried an over-the-counter sleep aid that contains diphenhydramine, which

worsened her symptoms. She exercises regularly and eats a well-balanced diet. She admits that she has been under a

lot of stress lately. Her brother has similar symptoms. The patient appears anxious. Physical examination shows no

abnormalities. A complete blood count and iron studies are within the reference range. Which of the following is the

most appropriate pharmacotherapy for this patient’s symptoms?

Answer candidate: Pramipexole

Retrieved Passage: Medications used include levodopa or a dopamine agonist such as pramipexole. RLS affects an

estimated 2. 5–15% of the American population. Females are more commonly affected than males and it becomes

more common with age. RLS sensations range from pain or an aching in the muscles, to "an itch you can’t scratch",

a "buzzing sensation", an unpleasant "tickle that won’t stop", a "crawling" feeling, or limbs jerking while awake.

The sensations typically begin or intensify during quiet wakefulness, such as when relaxing, reading, studying, or

trying to sleep. It is a "spectrum" disease with some people experiencing only a minor annoyance and others having

major disruption of sleep and impairments in quality of life. The sensations—and the need to move—may return

immediately after ceasing movement or at a later time. RLS may start at any age, including childhood, and is a

progressive disease for some, while the symptoms may remit in others. In a survey among members of the Restless

Legs Syndrome Foundation, it was found that up to 45% of patients had their first symptoms before the age of 20

years. - "An urge to move, usually due to uncomfortable sensations that occur primarily in the legs, but occasionally

in the arms or elsewhere".

Table 5.9: Example of a correctly answered question from the MedQA test set in

which the retrieved passage is not a patient description.

5.5.8.2 Qualitative Analysis

We manually analysed the retrieved passages for MedQA and HeadQA with Wiki-

PubMed (given that MIMIC-III notes and DisKnE examples cannot be shared without

access to a MedNLI license). Our main findings can be summarized as follows. First,

we found that in many cases, the retrieved passages were indeed patient case descrip-

tions. This is somewhat surprising, given that only a small fragment of Wiki-PubMed

consists of patient case descriptions (which appear as abstracts of published medical

case reports). Nonetheless, there are also many cases where the retrieved text passage

was a generic description (e.g. from Wikipedia). Often, however, such passages can

still be successfully exploited by the cross-encoder. An example illustrating such a
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case is presented in Table 5.9. In this example, the retrieved passage intuitively acts as

a generic description of how patients experience Restless Leg Syndrome (RLS). While

not referring to a particular case, such descriptions can intuitively act as prototypes of

actual patient case descriptions. Table 5.10 shows other examples where the retrieved

passages are still relevant, despite not corresponding to specific patient case descrip-

tions. For instance, some of the retrieved passages explicitly list some of the symptoms

described in the questions, such as in question #2. Other specific examples of questions

and retrieved text passages, covering different situations, are also provided. Table 5.11

shows examples where the retrieved passage corresponds to a similar case. In Table

5.12 we show examples where the correct answer was predicted with a high confid-

ence score, despite the fact that the usefulness of the retrieved text passage is unclear.

In Table 5.13, we show an example of a question where the correct answer was not

predicted correctly because the retrieved passages for several of the other answer can-

didates were also highly similar. Table 5.14 shows examples where the question does

not correspond to a patient case description, yet where the retrieved passages are still

meaningful. This shows that the effectiveness of the proposed method extends beyond

retrieving similar cases.
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Question #1 A 46-year-old man is brought to the emergency department for evaluation of altered mental status. He was

found on the floor in front of his apartment. He is somnolent but responsive when aroused. His pulse

is 64/min, respiratory rate is 15/min, and blood pressure is 120/75 mm Hg. On physical examination, an

alcoholic smell and slurred speech are noted. Neurological exam shows diminished deep tendon reflexes

bilaterally and an ataxic gait. His pupils are normal. Blood alcohol concentration is 0.04%. An ECG shows

no abnormalities. Which of the following is the most likely cause of this patient’s symptoms?

Answer Benzodiazepine intoxication

Retrieved Passage Hyporeflexia Hyporeflexia refers to below normal or absent reflexes (areflexia). It can be detected through

the use of a reflex hammer. It is the opposite of hyperreflexia. Hyporeflexia is generally associated with a

lower motor neuron deficit (at the alpha motor neurons from spinal cord to muscle), whereas hyperreflexia

is often attributed to upper motor neuron lesions (along the long, motor tracts from the brain). The upper

motor neurons are thought to inhibit the reflex arc, which is formed by sensory neurons from intrafusal fibers

of muscles, lower motor neurons (including alpha and gamma motor fibers) and appurtenant interneurons.

Therefore, damage to lower motor neurons will subsequently result in hyporeflexia and/or areflexia. Note

that, in spinal shock, which is commonly seen in the transection of the spinal cord (Spinal cord injury),

areflexia can transiently occur below the level of the lesion and can, after some time, become hyperreflexic.

Furthermore, cases of severe muscle atrophy or destruction could render the muscle too weak to show any

reflex and should not be confused with a neuronal cause. Hyporeflexia may have other causes, including

hypothyroidism, electrolyte imbalance (e.g. excess magnesium), drug induced (e.g. the symptoms of ben-

zodiazepine intoxication include confusion, slurred speech, ataxia, drowsiness, dyspnea, and hyporeflexia).

Question #2 A 31-year-old woman comes to the physician because of a 5-month history of intermittent flank pain. Over

the past 2 years, she has had five urinary tract infections. Her blood pressure is 150/88 mm Hg. Phys-

ical examination shows bilateral, nontender upper abdominal masses. Serum studies show a urea nitrogen

concentration of 29 mg/dL and a creatinine concentration of 1.4 mg/dL. Renal ultrasonography shows bi-

laterally enlarged kidneys with multiple parenchymal anechoic masses. Which of the following is the most

likely diagnosis?

Answer Autosomal dominant polycystic kidney disease

Retrieved Passage Autosomal dominant polycystic kidney disease: presentation, complications, and prognosis. Fifty-three

symptomatic adults with autosomal dominant polycystic kidney disease were studied retrospectively for

a mean follow-up of 12 years (range 10 months to 33 years). Diagnosis was confirmed by either x-ray,

ultrasound, laparotomy, or autopsy. Commonest presenting clinical findings were flank pain (30%), hy-

pertension (21%), symptomatic urinary tract infection (UTI) (19%), gross hematuria (19%), and palpable

masses (15%). A total of nine patients (17%) progressed to end-stage renal disease. Change in renal function

measured using the reciprocal of plasma creatinine plotted against time was linear for each individual patient

with a maximum functional decline of 0. 7 mg/dL/yr (slope = -0. 07). Past the age of sixty renal failure

was uncommon. Easily controlled hypertension developed in 64% attended by mild retinopathy. UTIs were

common (53%), often recurrent (61%), precipitated by instrumentation in 6 of 14 patients (43%), leading to

death in two (33%). Renal calculi were extremely common (34%) and had no defined metabolic cause. The

presence of hematuria (64%), gross or microscopic, bore no relationship to the decline in renal function.

Pregnancy was normal in these patients with no increase in fetal or maternal morbidity or mortality. We

conclude the following: Renal functional deterioration is linear, less than previously reported, and bears no

relationship to hematuria.

Table 5.10: Examples of correctly answered questions from MedQA test set in

which the retrieved passages informative in general.
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Question #1 A gunshot victim is brought to the Emergency Department and appears to be in shock. You note a penetrating

wound at the level of L3. Assuming the bullet remained at this level, which vascular structure might have

been injured?

Answer Inferior vena cava

Retrieved Passage Right ventricular gunshot wound with retrograde embolization. There have been numerous reports con-

cerning gunshot wounds to the heart over the years. Many reports discuss bullets that have embolized and

have migrated antegrade. However, there has never been a case reported on the retrograde embolization of

a bullet from the right ventricle into the inferior vena cava. This case report involves a 15-year-old boy who

was accidentally shot in the chest. The bullet entered at the mid-manubrial area, and penetrated the anterior

wall of the right ventricle causing a tamponade. A chest x-ray film confirmed a bullet in the right ventricle.

The patient was stabilized in the emergency department, and taken to the operating room for an emergent

mediastinal exploration with evacuation of pericardial tamponade and repair of the right ventricle. After

the tamponade was relieved, a Trans-Esophageal Echocardiogram was performed to locate the bullet, which

could not be found in the ventricle. Chest and abdominal radiography were performed to locate the bullet.

X-ray films confirmed that the bullet had migrated retrograde down into the inferior vena cava. Interven-

tional radiology and vascular surgery departments were consulted. The consensus was to snag the bullet

under fluoroscopic guidance, and pull it down into the right femoral vein for easy retrieval.

Question #2 A 32-year-old woman comes to the physician because of fatigue and joint pain for the past 4 months.

Examination shows erythema with scaling on both cheeks that spares the nasolabial folds and two 1-cm

ulcers in the oral cavity. Further evaluation of this patient is most likely to show which of the following

findings?

Answer Decreased lymphocyte count

Retrieved Passage [A case developing tetraplegia due to systemic lupus erythematosus which was remitted by a steroid]. The

case reported here was a 58-year-old woman who was diagnosed as having systemic lupus erythematosus

(SLE) in 1985 because she had erythema in the cheeks arthritis, a hematological abnormality (decreased

white blood cell count), an immunological abnormality (LE-positive cells), and a positive result of anti-

nuclear antibody test. Although the patient was once remitted by treatment with prednisolone (PSL) at 60

mg/day, and continuously received PSL at a maintenance dose of 2. 5 mg/day, she was admitted in June

1996 by our hospital with chief complaints of fever and decreased muscular strength in the four extremit-

ies. At admission, she had symmetrical tetraplegia, which was peripherally predominant and severer in the

lower extremities, and hypoesthesia accompanied by numbness. She was negative for anti-phospholipid an-

tibody and showed no abnormality in cerebrospinal fluid examination. No lesions responsible for tetraplegia

were detected at brain MRI, spinal MRI, or myelography. Because fever, multiple arthralgia, an increased

erythrocyte sedimentation rate, a decreased lymphocyte count, hypocomplementemia, and a high immune

complex level indicated the active stage of SLE (recurrence), she was given PSL at dose increased to 60

mg/day. After about 2 months, SLE was remitted and her tetraplegia and hypoesthesia was gradually im-

proved thereafter.

Table 5.11: Examples of correctly answered questions from MedQA test set in

which the retrieved passages represent similar cases.
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Question #1 A 13-year-old boy is brought to the physician because of progressive left leg pain for 2 months, which

has started to interfere with his sleep. His mother has been giving him ibuprofen at night for “growing

pains,” but his symptoms have not improved. One week before the pain started, the patient was hit in

the thigh by a baseball, which caused his leg to become red and swollen for several days. Vital signs are

within normal limits. Examination shows marked tenderness along the left mid-femur. His gait is normal.

Laboratory studies show a leukocyte count of 21,000/mm3 and an ESR of 68 mm/h. An x-ray of the left

lower extremity shows multiple lytic lesions in the middle third of the femur, and the surrounding cortex is

covered by several layers of new bone. A biopsy of the left femur shows small round blue cells. Which of

the following is the most likely diagnosis?

Answer Ewing sarcoma

Retrieved Passage Primary undifferentiated small round cell sarcoma of the deep abdominal wall with a novel variant of

t(10;19) CIC-DUX4 gene fusion. We experienced a 38-year-old Japanese male with t(10;19) CIC-DUX4

-positive undifferentiated small round cell sarcoma in the deep abdominal wall. Three months before his

first visit to our hospital, he noticed a mass in his right abdominal wall. Computed tomography on admission

revealed a solid abdominal tumor 70×53mm in size and multiple small tumors in both lungs. The biopsy

of the abdominal tumor revealed undifferentiated small round cell sarcoma, suggestive of Ewing sarcoma.

Under the clinical diagnosis of Ewing-like sarcoma of the abdominal wall with multiple lung metastases,

several cycles of ICE (ifosfamide, carboplatin and etoposide) therapy were performed. After the chemother-

apy, the lung metastases disappeared, while the primary lesion rapidly grew. Additional VDC (vincristine,

doxorubicin and cyclophosphamide) therapy was carried out without apparent effect. Although the surgical

removal of the primary lesion was done, peritoneal dissemination and a huge metastatic liver tumor appeared

thereafter. The patient died of disease progression two months after the surgery. The total clinical course

was approximately one year, showing that the tumor was extremely aggressive. The tumor cells of the sur-

gical specimen were positive for CD99, WT1, calretinin, INI1, ERG and Fli1 by immunohistochemistry.

Question #2 A 22-year-old man with sickle cell disease is brought to the emergency room for acute onset facial asym-

metry and severe pain. He was in school when his teacher noted a drooping of his left face. His temperature

is 99.9°F (37.7°C), blood pressure is 122/89 mmHg, pulse is 110/min, respirations are 19/min, and oxygen

saturation is 98% on room air. Physical exam is notable for facial asymmetry and 4/5 strength in the pa-

tient’s upper and lower extremity. A CT scan of the head does not demonstrate an intracranial bleed. Which

of the following is the most appropriate treatment for this patient?

Answer Exchange transfusion

Retrieved Passage Continuous monitoring of intracranial pressure in Reye’s syndrome–5 years experience. Monitoring of

intracranial pressure (ICP) and efforts to keep the ICP below the critical level are vital in the treatment

of Reye’s syndrome. Continuous monitoring of ICP was carried out in 21 cases of Reye’s syndrome who

were at or beyond stage III at the time of admission to the Veterans General Hospital, between January

1981 and August 1986. Seventeen had ICP ranging from 15 mmHg to 67 mmHg. Three patients died, 1 in

stage V with an ICP of 67 mmHg received a craniectomy, and 2 others were in stage IV with ICP’s of 66

mmHg and 25 mmHg, respectively. The fatality rate was 14% (3/21). Among 18 patients, 5 had moderate

psychomotor retardation (PMR), 4 had severe PMR and 2 had mild PMR. The remaining 7 patients survived

without sequelae. Blood exchange transfusion could further reduce ICP and seemed to improve neurologic

outcome. Blood ammonia higher than 400 micrograms% is indicative of a bad prognosis. Hyperventilation

was the most rapid and effective means of reducing moderate degrees of increased ICP. During intensive

supportive care, we also found that coughing, endotracheal intubation, seizures, asynchronous respiration to

an artificial respirator, suction of the airway and any painful stimulation caused further increases in ICP and

worsened the situation.

Table 5.12: Examples of correctly answered questions from MedQA test set in

which unclear how the retrieved passages are related.
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Question A 28-year-old woman presents following a suicide attempt 2 days ago. She says that her attempt was a result of a fight with

her boyfriend and that she slit her wrists in an attempt to keep him from breaking up with her. In the past, she has had many

turbulent relationships, both romantic and in her family life. Her family members describe her as being very impulsive

and frequently acting to manipulate people’s feelings. Since she was admitted to the hospital, she has spit at several staff

members and alternated between sobbing and anger. She has no significant past medical history. The patient denies any

history of smoking, alcohol use, or recreational drug use. Which of the following is the most likely diagnosis in this patient?

Answer Candidate A Histrionic personality disorder

Retrieved Passage Traumatic bonding can occur between the abuser and victim as the result of ongoing cycles of abuse in which the intermittent

reinforcement of reward and punishment creates powerful emotional bonds that are resistant to change and a climate of fear.

An attempt may be made to normalise, legitimise, rationalise, deny, or minimise the abusive behaviour, or blame the victim

for it. Isolation, gaslighting, mind games, lying, disinformation, propaganda, destabilisation, brainwashing and divide and

rule are other strategies that are often used. The victim may be plied with alcohol or drugs or deprived of sleep to help

disorientate them. Certain personality types feel particularly compelled to control other people. In the study of personality

psychology, certain personality disorders display characteristics involving the need to gain compliance or control over

others: - Those with antisocial personality disorder tend to display glibness, giving them a grandiose sense of self-worth.

Due to their callous and unemotional traits, they are well suited to con and/or manipulate others into complying with their

wishes. - Those with borderline personality disorder tend to display black-and-white thinking and no sense of self-worth.

- Those with histrionic personality disorder need to be the center of attention; and in turn, draw people in so they may use

(and eventually dispose of) their relationship.

Answer Candidate B Borderline personality disorder

Retrieved Passage These behaviors include greater expressed negativity (e.g. criticism, blaming, demanding, and disengagement) toward ro-

mantic partners, and negative feedback seeking. Excessive reassurance seeking is also a vulnerability factor for depression.

However, Marroquin (2011) proposes adaptive interpersonal emotion regulation as a mechanism of the positive effects of

social support. Social interaction that diverts attention away from self-referential negative thinking and promotes cognitive

reappraisal may help to alleviate depression. According to the biosocial model, individuals with borderline personality

disorder develop intense emotional expression in part because they have been reinforced throughout development. For in-

stance, a teenager with heightened emotional sensitivity is not taken seriously by her family until she threatens a suicide

attempt. If her family responds with attention to extreme emotional expressions, she will learn to continue to express emo-

tions in this way. Venting is another interpersonal emotion regulation strategy that is associated with personality disorder

symptoms. Certain types of psychotherapy target interpersonal factors to improve well-being. Dialectical behavioral ther-

apy, originally developed for individuals with borderline personality disorder, teaches clients interpersonal effectiveness,

which includes a variety of skills for communicating emotions in a clear and socially acceptable manner. Assertiveness

training is a behavioral intervention that teaches verbal and non-verbal assertiveness skills to inhibit anxiety.

Answer Candidate C Dependent personality disorder

Retrieved Passage Passive-Aggressive Personality Disorder was expanded somewhat as an official diagnosis in the DSM-III-R but then re-

legated to the appendix of DSM-IV, tentatively renamed ’Passive-Aggressive (Negativistic) Personality Disorder’. Millon

devised a set of widely acknowledged subtypes for each of the DSM personality disorders: - Sadistic (psychopathic) per-

sonality disorder subtypes - Self-defeating (masochistic) personality disorder subtypes - Schizotypal personality disorder

subtypes - Schizoid personality disorder subtypes - Paranoid personality disorder subtypes - Antisocial (sociopathic) per-

sonality disorder subtypes - Borderline personality disorder subtypes - Histrionic personality disorder subtypes - Narciss-

istic personality disorder subtypes - Dependent personality disorder subtypes - Obsessive-compulsive personality disorder

subtypes - Avoidant personality disorder subtypes - Passive-aggressive (negativistic) personality disorder subtypes - De-

pressive personality disorder subtypes - Exuberant/Hypomanic (turbulent) personality disorder subtypes - Decompensated

Personality Disorder - 1969: "Modern Psychopathology: A Biosocial Approach to Maladaptive Learning and Functioning",

Saunders - 1996: (with Roger D. Davis)...

Answer Candidate D Narcissistic personality disorder

Retrieved Passage "Sometimes he manipulates even me", admitted one psychiatrist. In the end, Lewis agreed with the majority: "I always tell

my graduate students that if they can find me a real, true psychopath, I’ll buy them dinner", she told Nelson. "I never thought

they existed . . . but I think Ted may have been one, a true psychopath, without any remorse or empathy at all". Narcissistic

personality disorder (NPD) has been proposed as an alternative diagnosis in at least one subsequent retrospective analysis.

On the afternoon before he was executed, Bundy granted an interview to James Dobson, a psychologist and founder of the

Christian evangelical organization Focus on the Family. He used the opportunity to make new claims about violence in the

media and the pornographic "roots" of his crimes. "It happened in stages, gradually", he said. "My experience with . . .

pornography that deals on a violent level with sexuality, is once you become addicted to it . . . I would keep looking for

more potent, more explicit, more graphic kinds of material. Until you reach a point where the pornography only goes so far

. . . where you begin to wonder if maybe actually doing it would give that which is beyond just reading it or looking at it".

Table 5.13: Example of incorrectly answered question from MedQA test set in

which answer candidates are different types of a particular disorder. The correct

answer is in bold and the predicted underlined.
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Question #1 The fibrocartilage is located in:

Answer Intervertebral discs

Retrieved Passage Intervertebral disc An intervertebral disc (or intervertebral fibrocartilage) lies between adjacent vertebrae in

the vertebral column. Each disc forms a fibrocartilaginous joint (a symphysis), to allow slight movement of

the vertebrae, to act as a ligament to hold the vertebrae together, and to function as a shock absorber for the

spine. Intervertebral discs consist of an outer fibrous ring, the annulus fibrosus disci intervertebralis, which

surrounds an inner gel-like center, the nucleus pulposus. The "annulus fibrosus" consists of several layers

(laminae) of fibrocartilage made up of both type I and type II collagen. Type I is concentrated toward the

edge of the ring, where it provides greater strength. The stiff laminae can withstand compressive forces. The

fibrous intervertebral disc contains the "nucleus pulposus" and this helps to distribute pressure evenly across

the disc. This prevents the development of stress concentrations which could cause damage to the underlying

vertebrae or to their endplates. The nucleus pulposus contains loose fibers suspended in a mucoprotein gel.

The nucleus of the disc acts as a shock absorber, absorbing the impact of the body’s activities and keeping

the two vertebrae separated. It is the remnant of the notochord. There is one disc between each pair of

vertebrae, except for the first cervical segment, the "atlas".

Question #2 The linear molecule of DNA associated with proteins is:

Answer Eukaryotic chromosome

Retrieved Passage DNA sequences of telomeres maintained in yeast. Telomeres, the ends of eukaryotic chromosomes, have

long been recognized as specialized structures. Their stability compared with broken ends of chromosomes

suggested that they have properties which protect them from fusion, degradation or recombination. Fur-

thermore, a linear DNA molecule such as that of a eukaryotic chromosome must have a structure at its ends

which allows its complete replication, as no known DNA polymerase can initiate synthesis without a primer.

At the ends of the relatively short, multi-copy linear DNA molecules found naturally in the nuclei of sev-

eral lower eukaryotes, there are simple tandemly repeated sequences with, in the cases analysed, a specific

array of single-strand breaks, on both DNA strands, in the distal portion of the block of repeats. In general,

however, direct analysis of chromosomal termini presents problems because of their very low abundance in

nuclei. To circumvent this problem, we have previously cloned a chromosomal telomere of the yeast Sac-

charomyces cerevisiae on a linear DNA vector molecule. Here we show that yeast chromosomal telomeres

terminate in a DNA sequence consisting of tandem irregular repeats of the general form C1-3A. The same

repeat units are added to the ends of Tetrahymena telomeres, in an apparently non-template-directed manner,

during their replication on linear plasmids in yeast.

Question #3 They are multinucleated cells:

Answer Osteoclasts

Retrieved Passage The osteoclast generation: an in vitro and in vivo study with a genetically labelled avian monocytic cell

line. Osteoclasts are multinucleate giant cells responsible for bone resorption. Osteoclast precursors are

hematopoietic mononucleate cells, which give rise to osteoclasts after fusion. Nevertheless, the precise stage

of differentiation where osteoclast precursors diverge from other hematopoietic lineages is still debated. We

describe here both in vitro and in vivo approaches to the study of the osteoclast differentiation pathway. We

used cells of the BM2 avian monocytic cell line, which are able to differentiate into macrophages both in

vitro and in vivo. In order to follow the progeny of BM2 monocytes, we have derived a BM2 cell clone

expressing the nlslacZ gene (BM2nlslacZ) which has still retained the main features of the parental cell line.

In vitro, when BM2nlslacZ cells were triggered toward macrophages, they participated in the formation of

multinucleate osteoclast-like cells as seen by their blue nuclei. Furthermore, when BM2nlslacZ cells were

injected into the blood stream of chicken embryos, they could give rise to blue nucleate macrophages in

the bone marrow, as well as to osteoclasts with blue nuclei in bone. Finally, we have shown that fusion of

tagged mononucleate precursor cells not only occurs with other mononucleate precursor cells but also with

mature multinucleate osteoclasts.

Table 5.14: Examples of correctly answered from HeadQA dataset, where ques-

tions represent general knowledge rather than patient case descriptions.
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5.6 Conclusions

In this chapter, we have proposed a nearest neighbour strategy for interpreting patient

case descriptions. Crucial to our solution is the use of a distantly supervised training

set for fine-tuning the cross-encoder. Experimental results showed this strategy to per-

form well across three challenging benchmarks. Our results suggest that the lack of

gold-annotated patient case descriptions can be overcome, at least to some extent, by

using distant supervision strategies. We highlighted, in particular, that the setting of

patient case descriptions allows us to avoid some of the usual pitfalls of distant super-

vision, as the presence of a disease or treatment name in two patient case descriptions

provides us with reasonably reliable evidence that these descriptions are similar. Des-

pite the fact that this method is highly effective, it requires a number of steps to reach

good performance. In the next chapter, we will explore the possibility of using the con-

sidered PubMed corpus as an intermediate fine-tuning task to boost the performance

of these LMs as a simpler solution.
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Chapter 6

Self-Supervised Intermediate

Fine-Tuning of Biomedical Language

Models for Interpreting Patient Case

Descriptions

6.1 Introduction

The baseline results from the previous chapter show that the basic fine-tuning perform-

ance of the state-of-the-art biomedical LMs remains rather low for benchmarks such

as MedQA. However, we observed that reformulating the task of interpreting patient

case descriptions in a way that relies on similar patient cases boosted the performance.

We argue that this can, to some extent, be explained by the fact that interpreting pa-

tient case descriptions is a paragraph-level task, whereas the standard masked language

modelling objective encourages the model to primarily focus on sentence-level context.

Ideally, biomedical language models for interpreting patient case descriptions would

be pre-trained on a task that involves predicting diagnoses, or other salient aspects of

these patient cases. Unfortunately, beyond the training fragment of benchmarks such

as MedQA, such labelled data is not readily available. As an alternative, in this chapter,

we propose to generate a pseudo-labelled dataset, based on the heuristic that whenever
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a case description mentions a disease, it is likely (although by no means guaranteed)

that this disease is a valid diagnosis, and similar for other medical concepts such as

treatments. We then use this generated dataset for fine-tuning the LM on the proposed

task, before finally fine-tuning it on our downstream task.

To get access to a large set of case descriptions, we rely on abstracts of published case

reports. In particular, starting from a collection of PubMed abstracts, we first use a

simple heuristic to identify those that are likely to correspond to case reports. Given

a case report that mentions some disease, we then fine-tune the pre-trained LM on the

task of predicting that disease. Note that the target disease is masked, as the task would

otherwise be trivial. The pre-training task is formulated as a binary classification prob-

lem, i.e. given a patient description and a disease, is that disease the correct diagnosis

(or more precisely, is it the disease that was masked). This formulation has the advant-

age that the input format is similar to that of multiple-choice question answering (QA)

and natural language inference (NLI). Beyond diseases, we also experiment with pre-

dicting masked treatments. Similar to the usual masked language modelling objective,

our pre-training task involves making predictions about masked text spans. However,

due to the fact that we specifically mask diseases and treatments, we hypothesize that

this will improve the model’s ability to take the whole case description into account

when making predictions. Nevertheless, diseases can be mentioned for two common

reasons: (i) because the patient has been diagnosed with that disease, which is the case

that underpins the intuition behind our proposed approach, or (ii) because the disease is

relevant to the medical history of the patient. In the latter case, only a small part of the

abstract may be relevant to the disease, which hampers the extent to which the model

learns to focus on the case description as a whole. To address this issue, we propose

to split abstracts in which multiple diseases are mentioned. As an alternative, we also

propose a strategy where we consider case descriptions mentioning only one disease.

The rest of this chapter is organised as follows. Section 6.2 reviews the related work to

this chapter. After that, Section 6.3 describes in detail our proposed method and each
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of the strategies. Subsequently, Section 6.4 lists the experiments, results, and ablation

with some further strategies for analysis. Finally, Section 6.5 summarises our findings.

6.2 Related Work

More closely related to our approach, He et al. [67] propose a strategy which relies

on the structure of Wikipedia to infuse knowledge about diseases. For instance, to

teach the model about how diseases are treated, they rely on the fact that disease-

centric Wikipedia articles tend to have a section called Treatment. They then combine

the content of that section with a generated question-style sentence mentioning the

aspect considered (i.e. treatment in this case) and a masked disease. However, rather

than infusing encylopedic knowledge, our aim is to teach LMs to interpret patient

case descriptions. Another related approach was introduced by Pergola et al. [161],

who propose to fine-tune a biomedical language model by using a masked language

modelling objective which is modified such that only biomedical concepts are masked.

This approach has some similarities with our work, e.g. the idea of masking biomedical

concepts as an intermediate fine-tuning task, but there are also some clear differences.

First, we formulate our task as a binary classification problem, rather than masked

language modelling. Moreover, we specifically target diseases and treatments, and we

only mask one concept at a time (although all occurrences of that concept are masked).

Finally, since we focus on paragraph-level understanding, we pay particular attention

to how these input paragraphs can be selected. As we will see, each of these differences

has a clear impact on the empirical results.

6.3 Proposed Method

We consider the problem of making predictions from patient case descriptions. For

instance, given a description that lists symptoms and other information about the pa-
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tient (e.g. gender, age, and medical history), we would like to infer the corresponding

diagnosis or to recommend suitable treatments. We are specifically interested in the

potential of using freely available case reports from the medical literature to improve

the ability of standard biomedical LMs to make such predictions. In Section 6.3.1,

we first explain our overall strategy. Subsequently, in Section 6.3.2 we describe the

specific variants that we included in our analysis.

6.3.1 Overall Strategy

Our aim is to design an intermediate fine-tuning task for specialising biomedical LMs

towards the task of interpreting patient case descriptions. This fine-tuning task relies

on passages from PubMedDS [216], a corpus which primarily consists of abstracts

from PubMed. First, we split the abstracts into passages of up to 250 words, to ad-

dress the limitations on input length of BERT-based LMs. Next, we aim to identify

those passages that contain a case report, describing a specific patient rather than more

general findings. To this end, we rely on the simple but effective heuristic that case

reports often mention the age of the patient. In particular, we select those passages that

contain at least one keyword from the following list: year-old male, year-old female,

year-old boy, year-old girl, year-old woman, year-old man. Let us write D for the

resulting corpus, i.e. the set of passages that contain at least one of the aforementioned

keywords.

Extract Medical 

Concepts

PubMed 

Abstracts

Filter to Case 

Reports

Figure 6.1: Preprocessing steps.

Subsequently, we determine which medical concepts are mentioned in the passages

from D. To this end, we use QuickUMLS [196] with UMLS-2020AA to identify both

the spans and the semantic types (e.g. diseases, treatments) of the mentioned concepts.
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Figure 6.1 shows a general overview of the preprocessing steps. Finally, we create

positive training examples of the form (P,C), where C is a medical concept, and P is

a passage from D in which all mentions of C have been replaced by a single <mask>

token.

To generate negative training examples, we simply replace the medical concept C by

another concept, as explained below. A given example (passage,concept) is encoded

as follows: “<cls> passage <sep> concept”, mimicking the input format that is typ-

ically used for question answering and natural language inference models. Figure 6.2

illustrate this process. The LM is fine-tuned on these examples using a standard cross-

entropy loss.

Replace CT

by [Mask] in P

_

[CLS] P [SEP] CT [SEP] 

[CLS] P [SEP] CR [SEP] 

+

P: Case report, CT : Target Concept , CR: Random Concept 

Proposed 
Training 

Strategies

Figure 6.2: General overview of generating training examples process.

6.3.2 Training Strategies

We now describe the different variants that we considered. These variants primarily

differ in the kinds of medical concepts that are selected as target concepts. Across all

variants, we never mask the concept disorder, as constructing training examples from

such mentions was found to be highly detrimental, given its prevalence and generic

meaning. For all variants, we attempt to balance the number of positive and negative

examples. Table 6.1 provides an overview of the total number of training examples

arising from each of the following strategies.
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#

AnyType 1,011,482

SpecificType

– diseases 160,534

– treatments 2,460

SplitDis 100,225

OneDis 3,310

Table 6.1: The total number of training examples for each of the intermediate

fine-tuning tasks (#).

AnyType We create a positive example for every medical concept that is found (with

the exception of disorder). Note that passages typically mention several concepts,

hence this strategy allows us to derive multiple positive examples from the same pas-

sage, each time masking a different concept. To construct negative examples, we cor-

rupt positive examples by randomly selecting a concept from those that have been

identified in the corpus, regardless of the semantic type.

SpecificType In this variant, we only construct training examples from medical con-

cepts of particular types. Specifically, we have experimented with diseases and treat-

ments. Negative examples are constructed by replacing the target concept with another

concept of the same semantic type, i.e. diseases are replaced by diseases, and treat-

ments are replaced by treatments.

SplitDis Many passages contain more than one disease, which may confuse the

model. For instance, diseases which are mentioned as part of the patient history may

only be loosely related to the rest of the case report. Since our aim is to train the

model to make predictions based on the whole case description, in this variant, pas-

sages containing more than one disease are split into sub-passages. In particular, when
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constructing a positive example for a target disease d, we select the sub-passage which

begins with the first sentence in which d is mentioned, and includes all the subsequent

sentences, until we reach a sentence that mentions another disease (where this final

sentence is excluded from the selected sub-passage). If the target disease is mentioned

in a sentence that also contains another disease, it is excluded altogether. For illustra-

tion, training examples that were obtained with the SplitDis strategy are presented in

Table 6.2.

OneDis Instead of splitting passages mentioning more than one disease into sub-

passages, as with SplitDis, here we simply discard such passages. This results in a

much smaller number of positive examples, but with stronger guarantees that the dis-

ease being masked is salient. In both this and the SplitDis method, negative examples

are obtained by using randomly selected diseases.

6.4 Experiments

In this section, we empirically analyse the different variants of the intermediate fine-

tuning strategy.

Evaluation Datasets We mainly focus on two benchmarks that are specifically fo-

cused on interpreting and reasoning about patient cases. First, we use the English

version of MedQA [82]. Results for this benchmark are reported in terms of accur-

acy (Acc). Second, we use DisKnE, in which we consider the task of ranking all test

cases, according to our confidence that the given target disease is a valid diagnosis.

The results are averaged across all diseases and are reported in terms of Mean Average

Precision (MAP). In addition, we also consider the English version of HeadQA [219],

as a more general healthcare-oriented QA dataset.
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SpecificType-

treatments

The role of [MASK] in the treatment of a patient with a pure silent pituitary somatotroph carcinoma. To

describe a case of a pure silent somatotroph pituitary carcinoma. We describe a 54-year-old female with

a clinically nonfunctioning pituitary macroadenoma diagnosed 15 years earlier. The patient underwent

transsphenoidal surgery and no visible tumor remnant was observed for 6 years. A magnetic resonance

imaging (MRI) detected the recurrence of a 1.2 × 1.5 cm macroadenoma. The patient was submitted to

conventional radiotherapy (4500 cGy), and the tumor volume remained stable for 7 years. Then, an MRI

revealed a slight increase in tumor size, and 2 years later, a subsequent MRI detected a very large, invasive

pituitary mass. The patient was resubmitted to transsphenoidal surgery, and the histopathological exam-

ination showed diffuse positivity for growth hormone (GH). The nadir GH level during an oral glucose

tolerance test was 0. 06 ng/mL, and the pre- and postoperative insulin like growth factor type I (IGF-I)

levels were within the normal range. Abdominal, chest, brain, and spine MRI showed multiple small and

hypervascular liver and bone lesions suggestive of metastases. Liver biopsy confirmed metastasis of GH-

producing pituitary carcinoma. The patient has been treated with [MASK] and zoledronic acid for 7 months

and with octreotide long-acting release (LAR) for 4 months. → Temozolomide

SpecificType-

diseases

Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xantho-

matosis. Sitosterolemia is a rare, recessively inherited disorder characterized by increased absorption and

delayed removal of noncholesterol sterols, which is associated with accelerated atherosclerosis, premature

[MASK], hemolysis, and xanthomatosis. Treatments include low-sterol diet and bile salt-binding resins;

however, these often do not reduce the xanthomatosis. We examined the effects of the intestinal choles-

terol/phytosterol transporter inhibitor ezetimibe added to cholestyramine in a young female patient with

sitosterolemia and associated xanthomatosis. The patient was an 11-year-old female with sitosterolemia

presenting with prominent xanthomas in the subcutaneous tissue of both elbows who was receiving treat-

ment with cholestyramine 2 g once daily. Bilateral carotid bruits were audible, and a grade II/VI systolic

murmur was detected at the left upper sternal border. She also had a low platelet count of 111,000/microL.

Ezetimibe 10 mg once daily was added to the patient’s ongoing cholestyramine regimen, and she was eval-

uated for 1 year. The patient followed an unrestricted diet during the 1-year treatment period. After 1 year

of treatment with ezetimibe added to ongoing cholestyramine therapy, the patient’s plasma sitosterol and

campesterol levels decreased by approximately 50. → coronary artery disease

SplitDis After initial improvement artificial ventilation had to be be gun on day 3 because of an acute [MASK],

diagnosed both clinically and radiologically. Despite additional antiviral and intensive medical treatment he

died on day 11. → respiratory distress syndrome

Traumatic [MASK] present diagnostic and therapeutic challenges. Owing to their fragile nature, endovas-

cular intervention has become the first-line treatment; however, direct surgery has an advantage in certain

cases. → intracranial aneurysms

A fluoroscopic sniff test demonstrated diaphragmatic dysfunction and pulmonary function tests revealed

[MASK] with evidence of neuromuscular etiology. → restrictive pulmonary disease

Table 6.2: Examples obtained with the different variants of the proposed

strategies.
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Setup We use four pre-trained LMs for the baselines and main experiments:

• the cased version of the standard BERTbase [42];

• the cased version of SciBERT [24];

• the cased version of ClinicalBERT [8] that was trained on MIMIC-III while be-

ing initialized from BioBERT [104];

• the PubMedBERT model [61] that was trained from scratch on full-length PubMed

articles as well as abstracts.

As a baseline, we directly fine-tune the models on the training data from the down-

stream task. For the other configurations, we first fine-tune the models on the proposed

intermediate task.

We use the official training, validation, and test splits for each dataset, with the excep-

tion that we excluded questions with images for HeadQA.

Training Details We use the same settings and hyper-parameters for all datasets.

For fine-tuning the models on the target task, we set the batch size to 8, the number

of epochs to 4 and the learning rate to 2e-5. For the intermediate fine-tuning step,

we again set the batch size to 8 and the learning rate to 2e-5. Regarding the number

of epochs for intermediate fine-tuning, we note that the number of training examples

varies greatly across the different variants. For this reason, and to mitigate the potential

for catastrophic forgetting, we tuned the number of epochs, choosing from {2, 3, 4},

based on the development split of the downstream task.

Limitations Our method relies on an automated extraction tool for identifying the

target medical concepts, which will inevitably lead to some noisy training examples.

For example, SplitDis and OneDis rely on the assumption that we can detect all men-

tions of diseases in the text. More generally, regardless of performance, the predictions
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of a biomedical LM can clearly not be relied upon for diagnosing patients or recom-

mending treatments in a clinical setting. Our purpose in studying these models is rather

because a deeper understanding of patient records would make it possible to improve

retrieval systems (e.g. suggesting relevant case reports to a clinician handling an un-

usual patient) or to identify hypotheses for medical research (e.g. by inducing patterns

from large sets of case reports).

6.4.1 Results

Tables 6.3, 6.4 and 6.5 summarize our results. As can be seen, PubMedBERT clearly

outperforms the other language models. In general, most variants of the intermediate

fine-tuning tasks lead to clear improvements over the baselines. A clear and remarkable

conclusion that can be observed for all benchmarks is that the type of intermediate fine-

tuning data appears to be much more important than the number of training examples.

For instance, the version of SpecificType which only uses treatments achieves the best

overall results, outperforming the previous state-of-the-art for MedQA and achieving

among the strongest results for both DisKnE and HeadQA. This is surprising, both

because of the small number of training examples we can generate for this variant and

because of the focus on diseases in DisKnE and many of the MedQA and HeadQA

questions.

For MedQA, SpecificType with treatments outperforms the previous state-of-the-art

[253] by 1.9 percentage points, despite not relying on any structured knowledge graphs.

The OneDis variant performs well for DisKnE, despite the low number of corres-

ponding training examples. For MedQA, SplitDis outperforms SpecificType with dis-

eases (with the exception of BERT), which supports the idea that simply masking dis-

eases can lead to training examples that are too noisy. While HeadQA is not particu-

larly focused on patients case descriptions, we still see consistent improvements over

the baselines with SpecificType, SplitDis and OneDis, although the improvements are

somewhat smaller than those for MedQA and DisKnE.
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We can see that our proposed strategy outperforms the baselines for each of the differ-

ent language models, with the exception of SciBERT with DisKnE. However, there are

some differences between the language models in terms of which variant of our method

performs best. For MedQA, for instance, we can see that SpecificType with diseases

is highly competitive for BERT and ClinicalBERT (compared to the other variants for

these language models). As these are the language models that are least adapted to the

considered task, we can indeed expect that more pre-training data might be needed for

these models. This can explain the relative success of SpecificType with diseases and

SplitDis, given that these are associated with a larger number of training examples.

Due to the computational cost that is required to report the results of several runs for

all experiments, we average the results over three runs for MedQA’s best configuration

(i.e. PubMedBERT and SpecificType with treatments as the intermediate task). The

average for basic fine-tuning is 35.9, with a standard deviation of 0.46. The average

for SpecificType with treatments is 39.4, with a standard deviation of 1.08.

In general, compared to the distant supervision strategy in Chapter 5, we can observe

from the results of this chapter that the improvements in Chapter 5 for BERT and Clin-

icalBERT are more significant. We assume the reason behind this is that the LMs were

not completely reliant on the encoded knowledge but also on those external passages.

This, in turn, made their performance more independent from what these LMs had

already seen during pre-training. On the contrary, for DisKnE, we can observe that

using PubMed abstracts in Chapter 5 did not yield better results over the standard fine-

tuning, which could suggest that the proposed strategy in this chapter can somewhat

mitigate the issue of the different writing styles.

6.4.2 Analysis

Table 6.6 shows the results of some variants of the SpecificType with diseases and

SplitDis strategies, as explained next. We use PubMedBERT for these experiments, as
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Baseline 27.8 29.1 29.2 35.5

AnyType 28.2 31.2 32.7 36.5

SpecificType

– diseases 28.2 31.5 30.4 38.0

– treatments 27.8 31.0 34.5 40.4

SplitDis 27.7 31.8 33.4 38.7

OneDis 27.0 29.6 33.3 35.6

Table 6.3: Results for MedQA in terms of Accuracy.

this model achieved the best results in the main experiments. We focus on the MedQA

benchmark as this is the most representative benchmark for our problem setting.

Frequent vs Rare We analyze whether there is any advantage in focusing specific-

ally on common diseases, or conversely, in focusing on rare diseases. Table 6.6 shows

the results of two variants of SpecificType, called Most-Frequent and Least-Frequent.

The former only considers training examples, for the intermediate fine-tuning task,

involving the 50 diseases which are most common in our corpus of case reports. Simil-

arly, the Least-Frequent variant only considers the 5000 least frequent diseases. Least-

Frequent achieves the best result, despite involving far fewer training examples than

Most-Frequent. The results of both variants are either below or similar to those with

the full set of diseases in Table 6.3.

General vs Specific Rather than selecting diseases based on their number of oc-

currences, here we investigate the effect of choosing diseases based on whether they

are general or specific, in terms of the level at which they appear in the SNOMED CT
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Baseline 57.0 67.5 69.2 69.7

AnyType 64.2 71.6 68.8 71.9

SpecificType

– diseases 60.2 70.0 67.0 72.9

– treatments 57.5 67.5 68.3 73.6

SplitDis 58.3 74.1 68.1 72.2

OneDis 64.0 68.2 66.2 74.4

Table 6.4: Results for DisKnE in terms of Mean Average Precision (MAP).

hierarchies [199]. Specifically, for the Most-General variant, we only consider diseases

with fewer than 5 ancestors in SNOMED CT. For the Most-Specific variant, we only

consider diseases with at least 30 ancestors. We find that both variants of SpecificType

perform similarly.

Similar vs Different We explore a setting in which only case reports about diseases

similar to “heart disease” are provided during training. Specifically, we use cui2vec

[22] to identify the 50 most similar diseases that occur at least once in our corpus of

case reports. We then consider a variant of SplitDis where the only passages that are

used are those in which heart disease occurs. In addition to passages in which heart

disease occurs literally, we also include passages in which similar disease names are

mentioned. For example, heart failure, cardiovascular disease, and cerebrovascular

disease are among the considered diseases. Our aim in this experiment is to see whether

training on one type of diseases is sufficient to obtain good results. Furthermore, we

may also assume that because the resulting corpus only involves similar diseases, the

model is forced to focus on more subtle details in the paragraphs, and might thus
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Baseline 28.8 29.3 32.8 39.5

AnyType 29.3 30.0 31.7 39.1

SpecificType

– diseases 29.8 30.1 34.5 41.8

– treatments 30.3 31.1 35.7 41.0

SplitDis 29.8 29.6 32.6 40.7

OneDis 29.7 29.8 34.0 40.8

Table 6.5: Results for HeadQA in terms of Accuracy.

improve as a result. To test this hypothesis, we also consider the variant Least-Similar,

where we instead use the diseases that are least similar to heart disease. Rather than

fixing the number of diseases at 50, in this case we chose the number to ensure a similar

number of training examples as for Most-Similar. The results for both variants are

below those of the standard SplitDis variant. However, we can see that Most-Similar

clearly outperforms Least-Similar.

Adding Definitions We analyse the usefulness of UMLS definitions. Specifically,

we augment the SplitDis training examples with examples of the form (def, dis), where

def is the UMLS definition of a disease, and dis is the corresponding disease. Negative

examples are again created by replacing the target disease with a randomly chosen

other disease. The results in Table 6.6 show that adding definitions does not improve

the results.

Diseases in Treatment Cases The good performance of the SpecificType variant

with treatments, despite the small number of training examples we have for that setting,



6.4 Experiments 108

MedQA

# (Acc)

Sp
ec

ifi
cT

yp
e

Most-Frequent 49,816 36.8

Least-Frequent 8,466 38.0

Most-General 7,229 36.6

Most-Specific 8,778 36.9

Treatment-Case-Dis 6,934 38.2

Sp
lit

D
is

Most-Similar 1,858 37.7

Least-Similar 1,870 36.7

SplitDis+Def 105,952 37.7

Treatment-Case-Dis 2,430 38.4

Table 6.6: Analysis results for MedQA (Accuracy). We also report the total num-

ber of training examples for each of the intermediate fine-tuning tasks (#). Results

were obtained using PubMedBERT.

is one of the most surprising findings from the main experiments. Here we analyse

whether this might be related to the quality of the case reports that were selected in

that setting, i.e. the case reports that mention a treatment. To this end, we consider all

such case reports, but instead of using the treatments as the target concepts, we instead

focus on diseases. In other words, we use the SpecificType setting for diseases, but

applied to the case reports that mention treatments. We also consider a variant in which

the SplitDis setting is applied to these case reports. The results in Table 6.7, shown

as Treatment-Case-Dis, reveal that this variant still underperforms the SpecificCase

variant with treatments.
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MedQA

(Acc)

– SplitDis 38.7

– SpecificType: treatments 40.4

MLM-RandomMask

– SplitDis 36.4

– SpecificType: treatments 35.2

MLM-SpecificMask

– SplitDis 37.6

– SpecificType: treatments 38.5

Random-Abstracts

– SplitDis 38.2

– SpecificType: treatments 37.6

No Mask

– SplitDis 36.7

– SpecificType: treatments 37.8

Remove-Sent (treatments) 38.9

Table 6.7: Ablation results for MedQA in terms of Accuracy. Results were ob-

tained using PubMedBERT.

6.4.3 Ablation Experiments

In this section, we analyse the importance of a number of our design choices. We

again focus on PubMedBERT and MedQA. We specifically consider the SplitDis and

SpecificType with treatments, as these yielded the best results in the main experiments.

The results are summarized in Table 6.7.
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Masked Language Modelling We experimented with two variants of the masked

language modelling (MLM) objective for the intermediate fine-tuning task. For the

MLM-RandomMask variant, we randomly mask tokens, following the standard ap-

proach that is used for LM pre-training. For the MLM-SpecificMask variant, we spe-

cifically mask the tokens corresponding to diseases (for the SplitDis setting) or treat-

ments (for the SpecificType setting). The results show that our approach outperforms

both MLM strategies, while MLM-SpecificMask outperforms MLM-RandomMask.

Random Abstracts vs Case Reports We analyse the importance of specifically fo-

cusing on case reports. In the Random-Abstracts variant, rather than targeting abstracts

which are likely to correspond to case reports, we consider a set of 60,000 randomly

sampled abstracts from PubMedDS. We then use our SplitDis and SpecificType set-

tings to construct the examples. The results in Table 6.7 show that using randomly

chosen abstracts leads to worse results, compared to our standard setting.

Masking vs not Masking We consider a variant of the method in which the original

passage is used, i.e. where we do not replace occurrences of the target disease with

a <mask> token. The results in Table 6.7 clearly shows that masking is essential to

achieve the best results. Nonetheless, even without masking we obtain results that

are clearly better than those of the baseline (i.e. PubMedBERT without intermediate

fine-tuning).

Masking vs Removing Sentences Instead of replacing the target concept with a

<mask> token, here we remove the entire sentence in which this concept is mentioned.

For this variant, called Remove-Sent, we only consider the SpecificType setting (with

treatments), as using SplitDis would result in too few examples, given that several

SplitDis examples consist of a single sentence. The results show that removing the

sentence under-performs masking the concept.
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6.5 Conclusions

In this chapter, we have proposed a strategy for intermediate fine-tuning of biomedical

language models, to improve their ability to interpret patient case descriptions. The

core of our strategy is to exploit abstracts of case reports found in the literature, as a sur-

rogate of patient case descriptions, and to rely on the heuristic that diseases and treat-

ments that are mentioned in such abstracts are likely to correspond to diagnoses and

recommendations, respectively. Our observations suggested that the type and quality

of intermediate fine-tuning data hold greater significance than the quantity of training

examples. We performed a number of experiments to understand the impact of several

design choices. Specifically, we evaluated the effect of two standard MLM variants in-

stead of the binary classification settings for the intermediate fine-tuning task. In these

variants, tokens are randomly masked or specifically masked based on the semantic

type, such as diseases or treatments. We found that targeting specific types yielded

better performance. However, both underperformed our main settings. Furthermore,

we investigated the significance of focusing on case reports, showing that randomly

chosen abstracts achieved worse results. Additionally, the results demonstrated that

masking tokens is essential for achieving optimal results. Moreover, a comparison

between masking and removing sentences revealed that masking the concept outper-

forms removing the entire sentence. Despite its conceptual simplicity and without the

cost of manual annotation, this approach was found to lead to clear performance gains.
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Chapter 7

Conclusions and Future Work

7.1 Introduction

This chapter concludes the thesis by presenting a summary of the main research contri-

butions and key findings, coupled with a discussion of some possible future research.

First, we revisit the aims, hypothesis and the undertaken research in Section 7.2. After

that, we discuss the outcomes and the main findings related to the contributions, partic-

ularly by addressing each research question in Section 7.3. Subsequently, we suggest

some future research directions to build on our work in Section 7.4.

7.2 Thesis Summary and Contributions

Advancing text representation techniques is one of the fundamental research areas

within the NLP field, which has witnessed a boom since the introduction of the state-

of-the-art pre-trained LMs. To better understand pre-trained LMs’ strengths, a growing

body of literature has been investigating what type of knowledge these models can en-

capsulate. Interestingly, it has been observed that such models capture a significant

amount of world knowledge. However, the biomedical domain in general and, more

specifically, the problem of interpreting patient case descriptions, which is the focus

of this thesis, are understudied. This has several causes, including the scarcity of data.

Therefore, in this thesis, we aimed to investigate the capabilities of pre-trained LMs
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to interpret patient case descriptions while also proposing approaches to enhance their

performance using methods that obviate the need for additional human-labelled data-

sets.

The hypothesis of this thesis was presented in Chapter 1 as follows: Existing biomed-

ical LMs still struggle when it comes to interpreting patient case descriptions, which

can partly be explained by the limited amounts of relevant annotated data. We hypo-

thesize that the development of strategies that obviate the need for manual labelling

can at least partially alleviate this issue, allowing biomedical LMs to interpret patient

case descriptions with higher accuracy. In order to examine the research hypothesis,

we conducted several experiments, which are introduced in Chapter 4,5 and 6. We find

that all support this hypothesis.

We started Chapter 2 by briefly reviewing the progress of neural text representation

models prior to the introduction of pre-trained LMs. Subsequently, we explained the

concepts associated with these LMs, and then we listed some of the common pre-

trained LMs in the biomedical domain. After that, we summarised the related work to

this thesis. Finally, we defined the considered downstream tasks for the proposed ap-

proaches and the employed supervision strategies. Then, in Chapter 3, we pinpointed

the considered datasets for evaluating our work. Additionally, we presented the ex-

ternal resources and tools that were used to perform the experiments.

In Chapter 4, we introduced the Disease Knowledge Evaluation benchmark (DisKnE)

to assess disease-centred knowledge captured by pre-trained LMs. In this benchmark,

we obtain positive examples by organising the entailment pairs from the MedNLI and

MEDIQA-NLI datasets into categories, reflecting the type of reasoning that we want

to investigate. Then, we construct the negative examples in an adversarial way. We de-

velop training-test splits that avoid leakage of disease knowledge. Lastly, we analysed

the performance of several biomedical BERT variants for each category. We find that

all considered models struggle with examples that require medical disease knowledge.

We also observe that, without canonicalising the hypotheses, hypothesis-only baselines
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achieve high results in some categories. This shows that the original MedNLI dataset

suffers from annotation artefacts, even within the set of entailment examples.

As per our findings from Chapter 4, biomedical language models struggle with medical

reasoning tasks. Therefore, in Chapter 5, we attempted to improve the performance of

these LMs for such tasks by exploiting unstructured text. However, it is rare to find

sentences which express the exact type of knowledge that is needed for interpreting

a given patient description. For this reason, rather than attempting to retrieve explicit

medical knowledge, we instead proposed to rely on a nearest neighbour strategy to find

similar patient cases.

Nevertheless, identifying similar cases is challenging, as descriptions of similar pa-

tients may superficially look rather different, among others because they often contain

an abundance of irrelevant details. To address this challenge, we proposed a strategy

that relies on a distantly supervised cross-encoder. In general, we retrieved text pas-

sages that are similar to the given patient description, and are thus likely to describe

patients in similar situations, while also mentioning some hypothesis (e.g. a possible

diagnosis of the patient). We then judged the likelihood of the hypothesis based on the

similarity of the retrieved passages.

The overall pipeline for constructing the distantly supervised dataset for fine-tuning

the cross-encoder is as follows: the starting point for this strategy is to query a cor-

pus for passages that mention some hypothesis of interest ( e.g. a disease, treatment,

etc.). Each passage is then passed to a TSDAE model that we trained on MIMIC-III

notes along with the patient description to compute the similarity score between each

retrieved text passage and the given patient description. Subsequently, we used a cross-

encoder, which we initialised with a pre-trained LM and then further fine-tuned based

on labelled datasets for more or less related tasks. We then used this cross-encoder to

re-rank the top-50 passages that resulted from the TSDAE step. Among the re-ranked

50 passages, we chose the top-k passages for each given patient description. This re-

ranking step and the choice of k examples per patient description are used to construct
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our distantly supervised dataset. Finally, we fine-tuned our final cross-encoder with

this dataset. Despite its conceptual simplicity, we found this strategy to be effective in

practice.

In Chapter 6, we intended to improve the performance of LMs through a self-supervised

intermediate fine-tuning strategy based on PubMed abstracts. Our solution is built on

the observation that many of these abstracts are case reports, and thus essentially pa-

tient case descriptions. As a general strategy, we proposed to fine-tune biomedical lan-

guage models on the task of predicting masked medical concepts from such abstracts.

To achieve good results, we found that a careful selection of the target concepts is

needed. For instance, strong results are obtained when only masking medical treat-

ments. When masking diseases, the improvements over the baseline are sometimes

smaller. This is surprising, given that most questions in the considered benchmarks are

about diagnosing diseases. Upon closer inspection, the under-performance of strategies

that rely on masking diseases appears to be related to the fact that diseases can be men-

tioned for reasons other than being the diagnosis. To address this issue, we proposed

to split abstracts in which multiple diseases are mentioned. Despite the simplicity of

the overall approach, our fine-tuning strategies enabled significant improvements for

the considered evaluation datasets.

To conclude, the outcomes from the latest three chapters support the hypothesis. In

particular, we found that the considered LMs do struggle when it comes to tasks that

require medical reasoning, and we were able to construct datasets that enhanced their

capabilities without the need for manual annotations.

7.3 Research Questions

In this section, we revisit the research questions formulated in Section 1.2 and relate

each question to the work that was carried out in this thesis to answer it.
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Research Question 1: What kinds of medical knowledge do pre-trained LMs capture?

More specifically, are these models capable of performing medical reasoning such as

linking symptoms to diseases, or treatments to diseases?

Our results from Chapter 4 showed that all the considered LMs struggle with NLI ex-

amples that require medical knowledge. We also found that the relative performance of

the pre-trained models differs across medical categories (symptoms to diseases, treat-

ments to diseases, etc.), where the best performance is obtained by ClinicalBERT,

BioBERT, SciBERT or BERT depending on the category and experimental setting.

Conversely, for examples that are based on terminological knowledge, overall per-

formance is much higher, with relatively little difference between different pre-trained

models.

Research Question 2: Is it possible to use nearest neighbour strategies for enhan-

cing the LM’s interpretation of patient case descriptions (i.e. relying on similar patient

cases to drive the predictions)? Can we construct distantly supervised datasets to

compensate for the lack of annotated datasets to train the model on identifying similar

patient cases?

To answer this question, in Chapter 5, we constructed a distantly supervised dataset

using two main steps, in which we ultimately aim to obtain a set of pairs representing

similar patient cases. In particular, we used an unsupervised text encoder for the ini-

tial retrieval step from a considered set of passages and then a cross encoder for the

re-tanking step. We relied on the possibility that a mentioned medical concept, for

example, a disease, in a passage is likely to represent the diagnosis. Our experimental

results show that our overall approach is highly effective, improving the performance

of LMs in question answering and NLI tasks about patient descriptions.

Research Question 3: How, and to what extent, can we obtain self-supervised datasets

that serve as intermediate tasks for fine-tuning the LMs?

We addressed this question in Chapter 6, in which we designed intermediate fine-tuning
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strategies tailored for the task of interpreting patient case descriptions. We specifically

targeted case reports found in PubMed abstracts. The labels are obtained in a self-

supervised way, specifically by extracting the mentioned medical concepts, and the task

is then formulated as a binary classification. As input to the LM, we provided the case

report, in which we replaced the mentioned medical concept with a <Mask> token, and

the medical concept. This setting particularly corresponds to the construction of the

positive examples. The negative examples are obtained by randomly selecting another

concept. We find that this intermediate fine-tuning leads to substantial improvements

in downstream tasks, even when using a biomedical LM that was already pre-trained

on PubMed. To some extent, this comes from the fact that we specifically fine-tune

the model on case reports. However, this in itself is not sufficient. We found that the

success of this strategy crucially depends on the selection of the medical concepts to

be masked.

7.4 Future Work

In terms of future research, this section highlights possible directions to further refine

and investigate the capabilities of pre-trained biomedical LMs, with more focus on

aspects to build on our work.

Considering other sources of knowledge. The datasets in this thesis are constructed

based on free text only. However, the work could be extended to structured sources,

such as knowledge graphs. As shown by Meng et al. [131], biomedical knowledge

graphs can play an important role in interpreting patient descriptions. Hence, integrat-

ing such resources with the considered nearest neighbour strategy proposed in Chapter

5 is a natural direction to explore. For example, candidate answers with no retrieved

passages could be replaced by KG triples (converted into text) by taking into consid-

eration the relation between every medical concept mentioned in the case description



7.4 Future Work 118

(if any) and the answer candidate. Beyond that, the pre-trained LMs could potentially

serve as a source of knowledge once they achieve sufficient performance. As we have

seen in Chapter 4, the performance of the LMs differs across categories, suggesting that

distilling the knowledge from a set of LMs is also a possible future direction. One way

to employ such a strategy could be, for instance, through designing prompts (manually

or automatically) to construct synthesis examples, in which we query a model using a

piece of text, and the task is formulated as a fill-in-the-blank. These could be used as

additional examples for the proposed datasets in Chapter 6.

Summarisation. Previous work [204], and our experiments in Chapter 5 and Chapter

6, suggest that augmenting the knowledge with sentence-level context might not be

adequate for paragraph-level understanding tasks, namely in the case of interpreting

patient case descriptions. Whereas the use of text with longer length is useful for these

tasks, alternatives could be explored in further research for the sake of training more

efficient models. For instance, in Chapter 5, we used the top-k retrieved passages to

construct the distantly supervised dataset. A suggested future direction is to summarise

such passages. This could possibly be accomplished in two ways. One is to summar-

ise the case description itself or the retrieved passage focusing on text snippets that

are mostly related to the given case and the answer candidate. The other way is to

summarise a set of passages to have only the most informative sentences.

Meta-Learning. The findings of Chapter 4 suggested that the considered LMs have

complementary strengths. Several LMs could have been pre-trained on different textual

resources. Consequently, one pre-trained LM could possibly have superiority over the

other in solving a specific patient case. This can be seen in the case of LMs that have

been trained on a particular corpus, such as MIMIC-III notes. For instance, the know-

ledge about diseases learned from pre-training on MIMIC-III notes might be mostly

related to what is commonly seen in critical care units. In our work, we attempted to

improve each individual model. Nevertheless, the joint use of several pre-trained LMs
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is another possible area of future research. For example, this could be achieved by

developing a mixture of experts (MoE) model for the biomedical domain where each

expert (LM) specialises in a family of diseases or a particular text genre.

De-noising. The automation of label generation can inevitably lead to noisy instances.

To further enhance the results of the proposed strategies in this thesis, several de-nosing

techniques could be applied to distinguish informative from noisy examples. For in-

stance, in Chapter 5 and Chapter 6, we mainly assume that the mention of the medical

concept within a given passage (e.g. a disease or treatment) is associated with that par-

ticular patient case at that time. Yet, developing tools to specify whether the extracted

disease is the diagnosis or whether the treatment is what has been prescribed for that

case, may contribute to alleviating the noise issue.

Transfer Learning. Investigating and improving the ability of pre-trained LMs to

perform medical reasoning, such as linking a set of symptoms to a particular disease,

is helpful for several downstream tasks in the biomedical domain, such as relation

classification and extraction. Thus, the work in this thesis, or specifically the task of

interpreting patient case descriptions, could serve as an intermediate task to enhance

the inference abilities of pre-trained LMs for other target biomedical tasks.

Differential Diagnosis. Several diseases share or have closely related symptoms,

which makes it challenging for clinicians to provide a diagnosis before going through

a list of potential conditions. In this thesis, we used available datasets with various dis-

eases, many of which have distinct symptoms. Therefore, constructing a dataset that

is primarily concerned with diseases and conditions sharing similar symptoms, signs

or treatments to train and evaluate the models is a possible future direction. This, in

turn, could help healthcare providers prioritise or eliminate the list of possible causes,

saving time, cost and effort. Although in Chapter 4, we used similar diseases as negat-

ive, adversarial examples, we relied on cui2vec to identify the notion of similarity. A
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starting point could be to filter and organise the existing datasets utilised in this thesis

in categories based on the commonality of symptoms across different patient cases.

Explainability. Interpretability and explainability are necessary for adapting ma-

chine learning models to healthcare applications. Ideally, the predictions of pre-trained

LMs should only be relied upon with an explanation or evidence. Developing evidence-

based strategies improves the transparency and credibility of the decision-making pro-

cess. In Chapter 5, the predictions were mainly derived from computing the similar-

ity between a given patient’s case and other patients’ cases. Such a retrieval method

provides some degree of explainability. While there has been a surge of research in

this direction, additional future work for the biomedical domain should be explored to

understand the models’ reasoning behind the predictions.

Multi-Modality. In several cases, text alone is inadequate to build knowledge or

make a decision about a patient’s case. Images such as X-rays, CT-Scans, and even

pictures included in biomedical articles are sometimes essential for accurate results.

Therefore, fusing both modalities (i.e. text and images) to complement the needed

information is necessary for these situations. Advances in such methods would be

effective at the task of interpreting patient case descriptions and many other biomedical

tasks.

Rare Diseases. Using AI models in clinical settings would be particularly useful

when the target disease is rare and not frequently seen by doctors. Therefore, develop-

ing methods that are less dependent on the frequent occurrence of a medical concept

within the corpus is also a helpful and necessary direction for the biomedical domain.

In Chapter 5, we mainly relied on the similarity between text passages, which could be

an example of a strategy that somewhat contributes towards this aim. Further research

could be explored to develop models and find ways that take into consideration such

diseases.
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Other Languages. The work in this thesis is focused on the English language. How-

ever, extending this focus to other languages can bring several benefits, particularly

in the field of healthcare, which is a global concern for people from diverse cultures

who speak different languages. Some non-English speaking countries have their own

EHR systems, which imposes the necessity to adapt the biomedical models to such

languages. Nevertheless, several challenges still remain due to various factors. One

of the primary difficulties is the availability of resources in the target language. While

training models from scratch has its own benefits such as maintaining cultural sens-

itivities and local medical practices, that may not be always feasible due to the lack

of training data. One approach is to directly translate such resources from English,

which has abundant data. However, such direct translation to the target language may

result in the absence of cultural differences. Another approach involves developing

cross-lingual models that align with regional and cultural variations, thereby avoid-

ing biases. Additionally, generative LMs can be employed to synthesize training or

evaluation data, with the involvement of human experts to validate such models.
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