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Understanding Intracellular Biology to Improve mRNA
Delivery by Lipid Nanoparticles

Morag Rose Hunter,* Lili Cui, Benjamin Thomas Porebski, Sara Pereira, Silvia Sonzini,
Uchechukwu Odunze, Preeti Iyer, Ola Engkvist, Rebecca Louise Lloyd, Samantha Peel,
Alan Sabirsh, Douglas Ross-Thriepland, Arwyn Tomos Jones, and Arpan Shailesh Desai

Poor understanding of intracellular delivery and targeting hinders development
of nucleic acid-based therapeutics transported by nanoparticles. Utilizing a
siRNA-targeting and small molecule profiling approach with advanced imaging
and machine learning biological insights is generated into the mechanism
of lipid nanoparticle (MC3-LNP) delivery of mRNA. This workflow is termed
Advanced Cellular and Endocytic profiling for Intracellular Delivery (ACE-ID).
A cell-based imaging assay and perturbation of 178 targets relevant to
intracellular trafficking is used to identify corresponding effects on functional
mRNA delivery. Targets improving delivery are analyzed by extracting
data-rich phenotypic fingerprints from images using advanced image analysis
algorithms. Machine learning is used to determine key features correlating
with enhanced delivery, identifying fluid-phase endocytosis as a productive
cellular entry route. With this new knowledge, MC3-LNP is re-engineered
to target macropinocytosis, and this significantly improves mRNA delivery in
vitro and in vivo. The ACE-ID approach can be broadly applicable for optimizing
nanomedicine-based intracellular delivery systems and has the potential
to accelerate the development of delivery systems for nucleic acid-based
therapeutics.

1. Introduction

Therapeutic modalities such as nucleic acids require safe and ef-
fective delivery to specific intracellular locations to have an effect.
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Nanosized delivery systems have been
engineered to address the challenges of
protecting therapeutic nucleic acids from
degradation, avoiding clearance mech-
anisms, distribution to the target tis-
sue, cellular entry, and trafficking to
the target subcellular location.[1] Lipid
nanoparticles (LNP) are amongst the
most well-developed delivery systems,
exemplified by the approval of Onpat-
tro (patisiran), the first approved LNP-
based nanomedicine for delivery of nu-
cleic acids,[2] and the rapid clinical ad-
vancement of LNP-based mRNA vaccines
for influenza[3,4] and COVID-19.[5]

The type of LNP utilized in Onpat-
tro (MC3-based LNP) results in less
than 2% of the cargo reaching the cor-
rect subcellular location.[6] Newer LNP
designs have increased this to 15%,
however most of the cargo is still ef-
fectively wasted by being trapped in
degradative vesicles such as late en-
dosomes and lysosomes.[7] Due to a
limited understanding of the complex

underlying biology of intracellular nanoparticle transport,
progress has been largely driven by a materials-centric approach
involving high-throughput empirical screening for delivery

P. Iyer, O. Engkvist
Molecular AI
Discovery Sciences
R&D, Astrazeneca
Gothenburg 431 50, Sweden
R. L. Lloyd, S. Peel, D. Ross-Thriepland
Functional Genomics
Discovery Sciences
R&D, AstraZeneca
Cambridge CB4 0WG, UK
A. Sabirsh
Advanced Drug Delivery
Pharmaceutical Sciences
R&D, AstraZeneca
Gothenburg 431 50, Sweden
A. T. Jones
Cardiff School of Pharmacy and Pharmaceutical Sciences
Cardiff University
Cardiff CF10 3NB, UK

Small Methods 2023, 2201695 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2201695 (1 of 13)



www.advancedsciencenews.com www.small-methods.com

Figure 1. An assay for the functional delivery of mRNA by LNP. a) Functional delivery of mRNA by LNP requires several steps (green arrows), and
there are multiple mechanisms by which the delivery process can be disrupted (red arrows). b) Concentration–response of mRNA-LNP in NCI-H358
cells. Black line connects means of three technical replicates per concentration. Gray dashed lines show maximum observed mCherry fluorescence and
concentration used in subsequent screening experiments. c) The density of NCI-H358 cells affects the efficiency of mRNA delivery. d) Schematic of the
functional delivery screening assay workflow.

efficiency. The structure–activity relationships identified by this
work has resulted in movement toward more rational LNP
design. However, generating a greater degree of biological
understanding to inform these activities is an opportunity to
accelerate development of safe and effective systems.

Herein we describe a target biology-centric approach to the
optimization of MC3-LNP for mRNA delivery termed Advanced
Cellular and Endocytic profiling for Intracellular Delivery (ACE-
ID). ACE-ID is an approach inspired by modern phenotypic drug
discovery processes, in which we used established target identifi-
cation methodologies to understand key molecular targets, mech-
anisms, and pathways to exploit for improving the potency of
delivery systems. This was done by first treating a model can-
cer cell line (NCI-H358) with 178 siRNA or 233 small molecules
against molecular targets we hypothesized to be relevant for in-
tracellular delivery. We used an image-based functional mRNA
delivery assay to identify which molecular targets increase MC3-
LNP delivery. Then we designed four assays to measure the effect
of siRNA and small molecule treatments on nanoparticle uptake
and trafficking mechanisms, to identify specific mechanisms to
exploit for improving delivery. Advanced image analysis in com-
bination with machine learning was used to correlate the treat-
ments, which increase functional delivery of LNP with specific
phenotypic features in the mechanistic assays. From this we iden-
tified macropinocytosis as a target mechanism for improving de-
livery. Using this insight, we re–engineered the MC3-LNP for im-
proved delivery in vitro and in vivo, demonstrating how ACE-ID
can be utilized to optimize nanomedicines for intracellular deliv-
ery.

2. Results

The outcome of successful delivery of mRNA using LNP is the
production of the protein encoded by the introduced mRNA,
termed “functional delivery”. This is the net outcome of multi-
ple distinct processes: LNPs uptake into cells, escape of mRNA
from the endosomal system into the cytosol, and the efficiency of
mRNA translation to protein (Figure 1a). First, we performed an
in vitro screening assay for overall functional delivery, utilizing
mRNA encoding the mCherry fluorescent protein, formulated
into an MC3-based LNP.[8] Functional delivery of this mRNA re-
sults in cytosolic expression of the fluorescent protein, which was
imaged by automated confocal microscopy and mCherry expres-
sion per cell was quantified. Screens were performed in a cell
line, which had previously been identified as having some base-
line transfectability with MC3-LNP, enabling us to have a suit-
able assay window for screening.[9,10] Cells were treated with a
moderate concentration of LNP (20 ng per well, 0.4 μg mL−1), to
allow identification of treatments which increase functional de-
livery (Figure 1b).

We observed a correlation between cell density and the effi-
ciency of mRNA delivery by LNP, whereby cells at lower densi-
ties achieved higher mCherry expression per cell (Figure 1c). To
control for effects of siRNA treatments on cell density, mCherry
expression per siRNA-treated cell was normalized to cell density
(Figure 1d).

Phosphoinositides are known to regulate endocytosis[11] and
so a screen of 178 siRNA conditions targeting the phosphatidyli-
nositol pathway, plasma membrane receptors, endosomal and
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Figure 2. siRNA screening identifies targets throughout the endosomal system, which affects the functional delivery of mRNA by LNP. a) Results of
the siRNA screen for mRNA-LNP functional delivery, targeting proteins of the endosomal and phosphatidylinositol systems. Results were normalized
to a neutral control siRNA, with “neutral” performance in the screen defined as the 3 standard deviations surrounding the mean of this neutral control
siRNA (range defined by green lines), and siRNA treatment above this range classified as “increasing functional delivery” (blue box). The positive control
was cells transfected with neutral siRNA and treated with double the LNP concentration (red bars). For each targeting siRNA, four concentrations were
tested (1, 5, 10, 25 nm; gray bars). Bars show mean and standard deviation of each treatment condition. b) Distribution of biological activity of siRNA
targets tested in the siRNA screen. Compounds against this target were also positive hit in compound screen (bold). *Expression in NCI-H358 was not
confirmed by RT-qPCR. **Two active siRNA sequences were identified, while all others were used as pools of four siRNA. c) A screen for mRNA-LNP
functional delivery was performed with compounds predicted to target proteins previously identified by siRNA screening (black). DMSO was used as a
neutral control (green); and wells treated with endosomal escape enhancer UNC10217938A (red) or with double the LNP concentration per well were
used as a positive control (blue).

intracellular trafficking systems was performed in NCI-H358
cells (Figure 2a). Targets were considered to improve the func-
tional delivery of mRNA-LNP if mCherry fluorescence was at
least three standard deviations from the mean of a neutral control
siRNA that did not engage the RNA-induced silencing complex
(RISC-free). These screens identified 22 siRNA treatments (cov-
ering 21 genes), which repeatably increased functional delivery
(Figure 2b).

A series of 233 compounds were identified, which bound to
some of the protein targets identified in the siRNA functional
delivery screens (Figure 2c). The compounds were then tested in
a modified functional delivery screen, where cells were seeded
without siRNA transfection, and then a test compound and
mRNA-LNP were added to cells at the same time, incubated for
24 h, and imaged as per Figure 1d. This functional delivery assay
identified 14 compounds that were active in increasing mRNA
functional delivery, targeting APOB, PI4KA, PIP5K1A, PIK3CD,
PIK3CG, and ULK1 (Figure S1, Supporting Information). A se-
lection of previously published compounds (including EIPA, Dy-
nasore, Pitstop2, and UNC10217938A)[12] was found to have min-
imal effect on functional delivery at the maximum screening con-
centration (10 μm) (Figure S2, Supporting Information).

Thus far, phenotypic screening had identified 22 siRNA and 14
compound treatments, which increased functional delivery, but
with little insight into the mechanisms by which they do this.
A series of mechanistic assays were performed on cells treated
with these siRNA and compounds, along with 70 siRNA and
compound conditions with presumed biological activity but no
effect on mRNA-LNP functional delivery (defined as perform-
ing within three standard deviations of the neutral control in the
above siRNA or compound screens). For downstream analysis,
treatments were classified either as increasing functional deliv-
ery or as having no effect.

Three mechanistic assays were chosen to characterize the en-
docytic pathways of treated cells: endocytosis of fluorescently la-
beled mRNA in LNP; fluorescently labeled transferrin, which
binds to the transferrin receptor and is internalized by clathrin-
mediated endocytosis; and fluorescently labeled 70 kDa dex-
tran to detect nonselective fluid-phase endocytosis (including
macropinocytosis). The resulting confocal microscopy images
from these experiments were analyzed as mean fluorescence in-
tensity per cell, and total number of fluorescent spots per cell.

We observed that most of these endocytic measures were
somewhat sensitive to cell density (Figure 3a). The siRNA and
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Figure 3. Standard analyses used to describe mechanisms for mRNA–LNP functional delivery. a) Cell number variation in standard analyses of the (i)
Cy5-mRNA in LNP, (ii) transferrin, and (iii) 70 kDa dextran uptake assays. Spearman’s correlation with two-tailed P-value. b) Standard image analysis of
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compound treatments had, however, been classified as increas-
ing functional delivery independently of their effects on cell num-
ber, so any effects on LNP performance should be apparent re-
gardless of cell culture density.

We compared two groups of treatments: those with no effect
on mRNA-LNP functional delivery or treatments that increased
functional delivery. Statistically significant differences were only
found when spot counts in the transferrin and dextran endo-
cytosis assays were compared. Treatments that made LNP per-
form better increased the number of spots observed in both as-
says, while LNP uptake was unaffected (Figure 3b). To evaluate
this another way, we used a robust Z-score threshold of >3 to
identify treatments within each group that were quite different
from the neutral control. These results were tabulated to eval-
uate whether these changes could robustly describe differences
between the treatments that did or did not improve functional
delivery (Figure 3c).

Overall, we found that the traditional analyses of mRNA-LNP,
transferrin, and 70 kDa dextran uptake were not sufficient to
describe meaningful phenotypic differences that our panel of
siRNA and compound treatment conditions were producing. We
therefore sought to explore these treatment phenotypes using
an unbiased, data driven, multivariate approach. Using machine
learning we tested the hypothesis that there were more predictive
phenotypic features within these image sets.

A total of 850 phenotypic features for each siRNA- or
compound-treated cell population were extracted using advanced
image analysis. These features encompassed cell number, cell
and nuclear morphology, and the intensity and texture of the flu-
orescence of the assay marker within each cell and across the cell
population. The robust Z-scores for these measurements were
normalized to the neutral control in each assay (Figure 4a). In ad-
dition to the three endocytosis assays described above, this step
also included a fourth fluorescent imaging assay to measure the
rate/extent of protein synthesis.

Machine learning was then used to interrogate the normal-
ized phenotypic data set, with the goal of identifying which phe-
notypic features were most useful in predicting whether a treat-
ment would improve LNP functional delivery. Models were ini-
tially generated with all 850 available phenotypic features (Figure
S3, Supporting Information), however we found that we could
achieve similar accuracies and improve interpretability using just
ten of these features. These ten features were selected using re-
cursive feature elimination with a Gradient Boosted Tree model.
Three models (Random Forest, Gradient Boosted Tree, and K-
Nearest Neighbor) were subsequently trained using just these
features (Figure 4b). The produced models with an overall accu-
racy (F1 score) of 74–81%, and class-specific accuracy of 66–75%
in identifying treatments which increase functional delivery. Fea-
ture weightings were extracted from the Random Forest and Gra-

dient Boosted Tree models, with both utilizing the ten features in
a very similar pattern. Both models weighted nuclei stain features
heavily (Figure 4c), indicating that siRNA and compound treat-
ments that increase functional delivery of mRNA-LNP generally
cause the nuclei of cells to become larger, more rounded and over-
all more intensely stained by NuclearMask blue (Figure 4d(i–v)).

The next-heaviest weighted features in the models were from
the 70 kDa dextran uptake assay. These were both measures of
the fluorescent puncta of 70 kDa dextran in the cytosolic zone
closest to the nucleus, which was defined as spanning from the
nuclear boundary to 50% of the width of the cytoplasm. Treat-
ments with positive effects on functional delivery increased both
the total area of 70 kDa dextran spots and spot density, suggesting
that movement of vesicles into this area of the cell was a strong
indicator of improved functional delivery.

The lowest-ranked feature in both the Random Forest and Gra-
dient Boosted Tree models was from the transferrin assay, which
was the clustering of transferrin fluorescence intensity. On its
own, this feature of transferrin distribution is not statistically
significantly different between treatments that have positive and
neutral effects on functional delivery, indicating that this is not
a useful stand-alone feature to predict functional delivery perfor-
mance, but that it is valuable when integrated into a multivariate
model.

As multiple models identified that changes in features of fluid-
phase endocytosis were correlated with improved functional de-
livery of mRNA, we sought to test whether macropinocytosis may
be an efficient way to deliver mRNA-LNP to NCI-H358 cells. We
therefore adjusted the formulation process to generate larger-
diameter LNP (“120 nm-LNP”) with the same overall lipid com-
position and pKa to our standard LNP composition (“standard”)
(Figure 5a; Figure S4, Supporting Information). These particles
were designed to be slightly too large to fit into the internal di-
ameter of canonical clathrin-coated vesicles, which accept parti-
cles up to 80—100 nm in diameter,[13,14] and we hypothesized
that they would be predominantly internalized by macropinocy-
tosis. Indeed, although uptake of these particles was very similar
to our standard LNP (Figure S5, Supporting Information), the
120 nm-LNP delivered mCherry mRNA to NCI-H358 cells more
efficiently (Figure 5b,c), with a 6.3-fold improvement in protein
expression.

To confirm that the 120 nm-LNP were being internalized by
a nonselective fluid-phase mechanism, we systematically altered
the surface composition of LNP while maintaining the size dif-
ference between the standard and 120 nm-LNP formulations (70
and 120 nm, respectively; Figure 5c; Figure S4d, Supporting In-
formation). This was achieved by varying the relative percentages
of DSPC and cholesterol, while keeping MC3 and PEG-lipid per-
centages constant. This would be expected to modify the amount
of DSPC and cholesterol exposed on the LNP surface.[15,16] The

fluorescent marker uptake assays, separated by performance in the functional delivery assay. Each technical replicate was normalized by robust Z-score
to the siRNA neutral control (RISC-free siRNA) or compound neutral control (DMSO) as appropriate. Each spot represents one technical replicate,
with 2–4 technical replicates per treatment (siRNA or compound) condition. Unpaired t-test with Welch’s correction, two-tailed P-value of positive vs
neutral treatment populations; ns = not significant (p > 0.05). Black arrows mark the same outlier for siRNA treatment in both graphs. c) Identification
of phenotypic outliers in the transferrin and dextran uptake assays, as a method of identifying positive performance in the functional delivery assay. A
treatment was considered to increase dextran or transferrin spots if the treatment achieved a robust Z-score of >3 in at least one technical replicate.
This shows that there is a weak correlation between performance in the transferrin or dextran assays and functional delivery.
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Figure 4. Machine learning to identify cell phenotypic features important for productive delivery. a) Schematic of data preparation and machine learn-
ing workflow for ACE-ID. b) Machine learning models can differentiate between different classes of productive delivery performance, utilizing only 10
phenotypic features of endosomal/macropinosomal and protein synthesis activity. Accuracy as measured by F1 score. c) The weighted importance of
each of the 10 features utilized by random forest and gradient boosted models described in (b). d) Productive delivery class distribution of selected top
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smaller standard LNP showed a marked sensitivity to the sur-
face composition of the particles, with an optimal surface com-
position that elicits the most efficient functional delivery. For
standard-sized LNP, functional delivery was improved by mod-
erately increasing DSPC from 10% to 12%, which has also been
observed elsewhere.[17] This suggests these particles being inter-
nalized by a receptor-mediated mechanism, with a binding inter-
action, which is sensitive to changes in the particle surface. The
functional delivery efficiency of the larger-sized, 120 nm-LNP was
relatively insensitive to modifications to the particle surface com-
position, indicative of a nonselective endocytic mechanism con-
sistent with macropinocytosis.

Finally, mice were dosed intravenously with standard or 120
nm-LNP formulations containing mRNA encoding firefly lu-
ciferase (Fluc), such that each mouse received the same dose of

mRNA. Six hours after dosing, Fluc activity was predominantly
detected in the liver for all LNP formulations, with threefold more
luminescence activity detected for the 120 nm-LNP than the stan-
dard formulation (Figure 6).

3. Discussion

Empirical screening approaches centered around the delivery
materials have identified increasingly potent reagents for the de-
livery of nucleic acids. Examples include polyamine core lipidoids
(C12-200,[18] Ckk-E12,[19] 503013),[20] and DLinDMA derivative
lipids (DLin-MC3-DMA,[21] L319,[22] and Lipid 5[7] published by
Benenato and co-workers). When compared to small molecule
drugs, which are designed to treat known disease mechanisms,
we know relatively little about how nucleic acid delivery materials

phenotypic features that were identified by machine learning models, with normalization control marked with dotted line. Features were derived from
(i–v) nuclear stain, (vi, vii) 70 kDa dextran endocytosis assay, (viii) protein synthesis assay, (ix) endocytosis of Cy5-mRNA in LNP, and (x) transferrin
endocytosis. Unpaired t-test with Welch’s correction, two-tailed P-value of positive versus neutral treatment populations with correction for multiple
testing (Benjamini and Hochberg’s false discovery rate); ns = not significant (p > 0.05). e) Uptake of 70 kDa dextran (white) in selected siRNA-treated
cells (nuclei, blue). Scale bar: 20 μm.

Figure 5. Rational design of LNP for improved mRNA delivery in vitro. a) LNPs were formulated to the standard and 120 nm-LNP size, representative
data of LNP formulated with Fluc mRNA. b) In NCI-H358 cells, the 120 nm-LNP achieved higher protein production, (i) as quantified by integrated
fluorescence intensity in cells treated with 25 ng per well (0.5 μg mL−1), mean and standard deviation, n = 5; and (ii) example widefield images. c) The
surface composition of LNP was modified while keeping size constant. Cells were incubated with 25 ng per well of each LNP for 24 h. mCherry integrated
fluorescence intensity was measured by Incucyte in live cells. Lines connect mean of each series of surface compositions at a given size, error bars show
standard deviation of n = 3–5. Gray arrow, size, and surface composition of standard formulation. Black arrow, size, and surface composition of 120
nm-LNP formulation.
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Figure 6. Larger LNP improved mRNA delivery in vivo. Mice were dosed intravenously with 0.25 mg kg−1 standard or 120 nm-LNP containing mRNA
encoding for luciferase. 6 h after dosing, luciferase expression was assessed using a) an IVIS spectrum imager and b) average radiancy was measured,
showing that 120 nm-LNP resulted in more functional delivery to the mouse liver. One-way ANOVA with Tukey’s multiple comparisons test, n = 3–5.

Figure 7. Comparison of workflows for the development of nanomedicine delivery strategies. Empirical screening of delivery systems relies on iterative
cycles of high-throughput formulation testing. In the ACE-ID pipeline, effort is front-loaded into understanding the cellular target of the nanomedicine,
which then informs the generation and testing of a small number of formulations. Solid arrows, required workflow; dotted arrow, discretionary workflow
path.

function at an intracellular molecular level. Inspired by the target
biology-focused modern drug discovery paradigm, we designed a
biology-centered process to rationally design a nanomedicine de-
livery system. We applied this workflow to optimize the clinically
approved MC3-LNP delivery system termed ACE-ID (Figure 7).
The advantage of this approach is that delivery systems can be
optimized specifically for a particular route of entry, reducing the
likelihood of side effects and improving efficacy.

First, we sought to understand the biology relevant for im-
proved mRNA-LNP functional delivery, by treating a lung can-
cer cell line, NCI-H358, with 178 siRNA and 233 small molecule
compounds chosen to perturb biological processes hypothesized
to be relevant for intracellular delivery. It is well-established that
there are weak correlations between in vitro and in vivo perfor-
mance of LNPs,[23] however strong evidence is available that en-
dosomal entrapment is a bottleneck.[6] Therefore, to demonstrate
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the ACE-ID workflow, we utilized a cell line, which has been iden-
tified as exhibiting low transfection efficiencies due to a high level
of endosomal entrapment,[9] as it has previously been shown that
mRNA-LNP delivery can be improved by compounds that enable
endosomal escape.[12]

The effect of these perturbations on the functional delivery of
LNP loaded with mRNA encoding mCherry was then examined
using an image-based assay. 22 siRNA treatments were found
to enhance functional LNP delivery, revealing clues about what
mechanisms could be targeted to improve delivery. For example,
consistent with a previous observation that siRNA-containing
LNP were released from EEA1-negative, RAB5-positive endo-
somes in HeLa cells,[24] we found that knockdown of EEA1 in-
creased functional delivery of mRNA, and knockdown of RAB5C
(although not RAB5A or RAB5B) reduced functional delivery.

To understand the mechanisms of improved functional deliv-
ery further we performed three well-established in vitro assays
for profiling endocytic activity of cells. These were the endocyto-
sis of fluorescently labeled mRNA formulated into LNP, transfer-
rin, and 70 kDa dextran. These measurements were not very use-
ful in understanding the mechanisms by which our treatments
affected cell phenotype, in part because performance in all three
assays was affected by cell density (Figure 3a). Our data show that
it is vital to understand and account for how an assay read-out can
vary even with relatively minor changes in cell density.[25–27]

A second important observation from the standard endocyto-
sis assays used in the present work is that they often did not show
statistically significant differences between treatments which did
and did not affect functional delivery (Figure 3b). Including bi-
ologically active siRNA and compounds that do not affect func-
tional delivery in these assays enabled us to see how wide the
phenotypic variation can be without having any meaningful ef-
fect on functional delivery, which demonstrates how little utility
these measurements have in explaining the mechanism by which
a given treatment increases functional delivery of mRNA-LNP.
Indeed, approximately half of the treatment conditions identified
as increasing clathrin-mediated or fluid-phase endocytic activity
by either the transferrin or 70 kDa dextran assays actually had
no effect in the functional delivery assay (Figure 3c). Conversely,
30% of the treatments that we knew to increase functional deliv-
ery were not identified as increasing endocytic activity in either
of these mechanistic assays.

As these traditional mechanistic assays failed to identify cell
phenotypes which correlated with functional delivery, we ex-
panded our dataset to include a measure of the rate and subcel-
lular distribution of protein synthesis. Images from the three en-
docytic assays (mRNA-LNP, transferrin, and 70 kDa dextran up-
take) and a protein synthesis assay, along with the nuclei stains
utilized in every image set, were then analyzed.

Advanced image analysis algorithms were used to extract
850 phenotypic features from each treatment condition to gen-
erate in a rich data set of information about how specific
siRNA/small molecule treatments may be affecting nanoparti-
cle delivery. Aiming to identify the specific phenotypic features
correlating with siRNA treatments that improved LNP delivery,
we employed machine learning to generate unbiased multipara-
metric correlations. Multiple machine learning models yielded
similar insights into the phenotypes that correlated best with
improved productive delivery, demonstrating the robustness of

these findings. Models utilizing just 10 features reached sim-
ilar conclusions to those which utilized all 850 features: the
most important information on cellular phenotype is encoded
in, rather surprisingly, the nuclei stain, and also two readouts
from the fluid-phase endocytosis marker 70 kDa dextran, iden-
tifying spot proximity to the nucleus as an important feature.
The relationship between endosomal trafficking toward the nu-
cleus and mRNA-LNP functional delivery has previously been
observed by comparison across cell types.[9] On closer exami-
nation of our images, the spot size indicated that the marker
was primarily localized in relatively large vesicles, similar in
size to macropinosomes.[28] It has been reported before that
macropinosomes traffic to an area near the nucleus but do not
necessarily fuse with late endosomes/lysosomes.[29,30] In further
support of this, siRNA knockdown of several macropinosome-
related proteins was found to increase mRNA-LNP functional
delivery, perhaps by further slowing macropinosome matura-
tion/trafficking: ANKFY1 (Rabankyrin-5; which has previously
been shown to be important for LNP trafficking),[6,31–33] PI3
kinases,[34] RHOA,[35] and its effector ROCK1. Conversely, we ob-
served that knockdown of macropinocytosis regulators CDC42
and RAC1 were seen to slightly decrease functional delivery. In-
terestingly, these data are in agreement with previous studies
suggesting that siRNA-LNP formulated with different cationic
lipids and siRNA cargo also entered HeLa cells and fibroblasts
via this pathway, perhaps even inducing macropinocytosis.[6,36]

It has also recently been shown that siRNA delivery by Lipofec-
tamine could be improved by stimulating macropinocytosis and
inducing membrane lysis using a peptide conjugate of SN21 and
LK15.[37]

Because the observations of fluid-phase endocytosis were con-
sistent with these compartments being macropinosomes, we de-
signed an LNP that would predominantly be internalized by
macropinocytosis. We found that, unlike the standard 70 nm-
LNP, the mRNA delivery efficiency of the larger 120 nm-LNP
formulations was not dependent on particle surface composi-
tion, consistent with a nonreceptor-mediated endocytic mecha-
nism like macropinocytosis. This is consistent with other recent
work, whereby large LNPs made by an automatic pipetting sys-
tem were seen to be internalized by a mechanism consistent
with macropinocytosis.[38] Indeed, other studies have also indi-
cated that larger LNP sizes are capable, and may be favorable, for
mRNA delivery.[16,39] This is in contrast to siRNA, where smaller
LNP (similar to our “standard” formulation) have been found to
be optimal.[40–43] This may be due to the loading capacity of LNP
being able to accommodate fewer copies of mRNA molecules,
which can be 20- to 50-fold larger than siRNA. When LNP size
is increased, the loading capacity for mRNA is also increased, so
one LNP particle can deliver more mRNA copies to cells.[38,44]

Interestingly, although labeled mRNA encapsulated in both
standard and 120 nm-LNP formulations was observed to be taken
into cells at a similar level, the 120 nm-LNP resulted in more effi-
cient functional delivery of mRNA in NCI-H358 cell cultures and
also in vivo, where expression is primarily located in the liver. By
dosing matched quantities of mRNA, we effectively dosed fewer
120 nm-LNP particles compared to the standard formulation, due
to 120 nm-LNP having more mRNA loading capacity. Therefore
the improved functional delivery by 120 nm-LNP may be due to
a combination of a favorable LNP composition and conducive
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intracellular trafficking route, which enables more efficient deliv-
ery of mRNA for translation into protein. While it may seem un-
usual that a lung cancer cell line was able to predict liver delivery,
we believe this supports the utility of characterizing a large range
of cellular perturbations in order to select the most generalizable
features for delivery. When the ACE-ID workflow is applied to a
different in vitro cell model, we may find that the optimal LNP
formulation is different and selective for a different cell type in
vitro and in vivo.

Moving toward a biology-centered approach will enable the ra-
tional design of strategies for nucleic acid delivery systems. This
is an important step for the development of safer, more effec-
tive delivery systems for nucleic acid delivery. Previously, this has
been difficult due to the sheer complexity of the biology of intra-
cellular delivery. We have shown that strategic use of laboratory
automation, image analysis, and machine learning in the ACE-
ID workflow can be leveraged to identify specific mechanisms to
guide the design of nanoparticle-based intracellular delivery sys-
tems, and that this can be used to yield improved nucleic acid
drug delivery in vivo. Furthermore, this shows a target biology-
based modern drug discovery process can be used to optimize
delivery systems for intracellular delivery. We believe the applica-
tion of ACE-ID type approaches in the field of intracellular drug
delivery will ultimately accelerate the clinical progression of safe
and effective nucleic acid-based therapeutics.

4. Experimental Section
Cell Culture and siRNA Transfection: For cell phenotypic characteriza-

tion assays (LNP functional delivery screening, endocytosis, and protein
synthesis assays), NCI-H358 cells (ATCC) were grown in phenol red-free
RPMI-1640 (Sigma), supplemented with 10% v/v foetal calf serum (Life
Technologies) and 2 mm GlutaMAX-I (Life Technologies) (growth me-
dia), in a humidified 5% CO2 atmosphere at 37 °C. When testing LNP
formulations, NCI-H358 cells were grown either as above, or with RPMI-
1640 (Gibco, ThermoFisher) supplemented with 10% heat-inactivated FBS
(Gibco, ThermoFisher) and 2 mm GlutaMAX (Life Technologies).

When required, cells were reverse-transfected by pre–incubating 1–25
nm siRNA with Lipofectamine RNAiMAX (Invitrogen, cat. 13778150)
diluted in Optimem (Life Technologies, cat. 31985062) in CellCarrier Ultra
384-well plates (Perkin Elmer, cat. 6057308). NCI-H358 cells were then
seeded and incubated for 72 h in a humidified 5% CO2 atmosphere at
37 °C.

Alternatively, untransfected NCI-H358 cells were seeded in CellCarrier
Ultra 384-well plates (for confocal microscopy) or poly-d-lysine coated
black clear-bottom 384-well plates (Greiner; for widefield microscopy) and
incubated for 24 h before treatment with compounds, LNP and/or endo-
cytosis markers.

Lipid Nanoparticle Preparation: LNPs were prepared as described
previously.[16] DLin-MC3-DMA, DSPC, cholesterol, and DMG-PEG2000
were dissolved in ethanol and used at a 50:10:38.5:1.5 molar ratio for the
standard and 120 nm-LNP formulations. The lipid composition of LNPs
with varied surface compositions (results shown in Figure 5) is shown in
Figure S4c of the Supporting Information. Fluc mRNA or mCherry mRNA
(Trilink cleancap, 5MoU), or GFP Cy5-mRNA (Trilink, 5 meC, Ψ) were
dissolved in 50 mm citrate solution (pH 3). The lipids and mRNA were
mixed in a Nanoassemblr microfluidic device (Precision NanoSystems)
with weight ratio of lipids:mRNA 20:1. For standard LNP, a volume ratio
of lipids:mRNA 1:3 was used together with a mixing flow rate 12 mL min−1.
For 120 nm-LNPs, both volume ratio and flow rate were adjusted to meet
size criteria. For all the formulations, the resultant LNPs were dialyzed in
PBS overnight at 4 °C before use.

Lipid Nanoparticle Characterization: The hydrodynamic 𝜁 size of all
LNP was measured using a Malvern Zetasizer at a back scattering angle
of 173 °C. LNP were diluted 100× in PBS before Zetasizer measurement
and the resultant hydrodynamic intensity size and PDI were recorded. The
volume-weighted particle size distribution was exported for simulation of
DSPC surface of LNP. Encapsulation efficiency of mRNA by LNP was de-
tected by Invitrogen Ribogreen RNA assay kit (Thermo Fisher Scientific).

Size distribution of LNP was analyzed on a NanoSight NTA 3.0 instru-
ment (Malvern-Panalytics) using a red laser for light scattering acquisition.
LNP were diluted 1000–4000-fold in sterile PBS (0.02 μm filter) to obtain
50–200 particles per frame in the field of view. For measurements, each
sample was recorded for five times and 60 s per time with a syringe pump
infusion at 50 μL min−1. The camera level was set 11 and the analysis de-
tector threshold was 5. The acquisition and data analysis were performed
using Nanosight NTA 3.0 software (Malvern-Panalytics). Size distribution
was plotted as size versus normalized particle concentration (particle/mL)
using Prism (version 8, GraphPad) in order to compare the size distribu-
tion of standard LNP and 120 nm-LNP.

The surface pKa value of LNP were determined by using TNS assay (2-
(p-toluidinyl)naphthalene-6-sulfonic acid, sodium salt, Sigma-Aldrich).[21]

The assay was performed in a black 96-well plate by titrating buffers (10
mm sodium acetate or phosphate and 150 nm sodium chloride) to pH
value varying by 0.5 from 4.0 to 9.0. The LNP and TNS were diluted
into these buffers at a final concentration of 25 and 6 μm. Fluorescence
intensity was collected on a fluorescence plate reader (Envision, Perkin
Elmer) using excitation and emission of 323 and 435 nm. Data were
analyzed using GraphPad Prism assuming maximal fluorescence corre-
sponding to 100% protonation and minimal fluorescence corresponding
to 0% protonation. pKa was calculated as the pH corresponding to
50% protonation as fitted using nonlinear sigmoidal dose–response
(variable slope).

For experiments comparing the surface composition and size of LNP,
the DSPC surface of LNP was derived from their volume-weighted particle
size distribution as previously described.[16] Various molar ratios of DLin-
MC3-DMA, DSPC, cholesterol, and DMG-PEG2000 were used, as listed in
Figure S4D of the Supporting Information, and then combined with mRNA
by microfluidic mixing and the resulting LNPs were characterized as above.

For functional delivery screening, LNP were stored in 10% glycerol in
PBS at −20 °C and thawed immediately before use. Performance after
freeze/thawing was verified by comparing concentration–response ranges
(0–100 ng per well) of fresh LNP (less than one week after formulation) to
the same LNP batch that had been frozen overnight, and a different LNP
batch that had been frozen for 3 months. For assays which compared the
functional delivery of 120 nm-LNP in vitro and in vivo, formulations were
stored at 4 °C in PBS and used within one week.

siRNA and Compound Selection: Two siRNA libraries were utilized in
screening. One contained 103 targets involved in uptake and intracellular
trafficking pathways (siGenome, Dharmacon), while the other contained
58 kinases, phosphatases, and regulatory subunits of the PI pathway (ON-
TARGETplus, Dharmacon). Pools of four siRNA were utilized for to knock-
down majority of targets during screening and hit characterization. RISC-
free (siGenome, Dharmacon) was used as a neutral control treatment. A
list of the siRNA used can be found in Section S2 of the Supporting Infor-
mation.

Compounds were identified that were annotated to bind to a selection
of siRNA targets. All compounds with activity annotations for 34 siRNA
targets (21 repeatable targets, plus 13 nonrepeating siRNA conditions)
identified to increase mRNA-LNP functional delivery were collected from
the internal database.[45] The highest reported activity was retained for
compounds with multiple measurements. Applying a threshold of more
than 100 nm activity on the target provided 5205 compounds for 10 tar-
gets. Table S1 of the Supporting Information provides the distribution of
annotation compounds for these targets. Chemical clustering was per-
formed using extended-connectivity fingerprints with a width of 6 bonds
(ECFP6)[45] to select potent and structurally diverse subset for each target
with more than 100 compounds. Additionally, compounds with several
target annotations yet selective for those of interest and purity above 80%
were prioritized. A total of 200 compounds were identified for testing, with
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multiple synthesis batches available for some. A total of 233 compounds
were tested in 3-point (10 μm, 1 μm, 0.1 μm) concentration–response
screens. Compounds that increased functional delivery more than three
standard deviations above the mean of the DMSO control were then vali-
dated in a 10-point (10 μm –0.3 nm) concentration–response assay.

Other known compounds were included in functional delivery screens
and mechanistic assays: UNC10217938A, UNC4267, and UNC2383[12]

up to 10 μm; and 5-(N-ethyl-N-isopropyl)amiloride (EIPA; Sigma, cat.
A3085-25MG), Dynasore (Abcam, cat. ab120192), and Pitstop2 (Abcam,
cat. ab120687) up to 40 μm. MG-132 (Sigma, cat. 474791-1MG) and
cyclohexamide (Sigma, cat. 239765-1ML) were included as controls
for selected mechanistic assays. All compounds were dissolved in
DMSO.

mRNA-LNP Functional Delivery Screening Assays Using Automated Con-
focal Microscopy: Cells were reverse-transfected in 384-well plates with 1,
5, 10, and 25 nmol of each siRNA and incubated for 72 h. In the case of
cells treated with compounds, compounds dosing was performed by Echo
acoustic dispenser (model 555, Labcyte Inc.) to adherent cells immedi-
ately before addition of LNP. LNP containing mRNA encoding mCherry
were diluted in 10 μL per well growth media (containing FCS) and applied
to cells, dosing cells with 0.4 μg mL−1 (20 ng per well in a 384-well plate)
mRNA. Cells and LNP were then incubated for 24 h, then fixed with 4%
paraformaldehyde (PFA) in PBS and stained with Hoechst 33342 (Invitro-
gen, cat. H3570).

Samples were imaged on a Yokogawa CV8000 automated confocal mi-
croscope, using a 20× air objective (numerical aperture 0.75) at a single z-
plane. Functional delivery of mCherry mRNA was determined by the mean
cellular fluorescence of mCherry protein per cell.

Automated image analysis was performed as described below. For
siRNA screens, where cell density changes occurred before addition of
LNP, a normalization strategy was developed to account for the relation-
ship between cell density and mRNA functional delivery (see Section 2
and Figure 1c). For each assay, wells were seeded with a range of cell den-
sities (transfected with a neutral control siRNA, RISC-free), which allowed
a one-phase decay curve to be fitted using Prism (version 8, GraphPad)
that represented the relationship between cell number and functional de-
livery. Sample results were normalized using this curve (Tibco Spotfire),
with deviation representing an increase or decrease of mCherry expres-
sion, accounting for changes in cell density. For compound screens, no
normalization was required, as cell density was equal between all wells at
the time of LNP addition.

siRNA or compound treatments were classified as increasing functional
delivery if the mean of the technical replicates crossed the hit thresh-
old, defined as three standard deviations above the mCherry mean fluo-
rescence (raw or normalized) of the neutral control treatment (RISC-free
siRNA or DMSO, for siRNA and compound screens, respectively).

Endocytosis Assays: For all endocytosis assays, NCI-H358 cells were
either transfected with siRNA 72 h prior, or treated with compound imme-
diately before addition of the uptake marker.

Cells were incubated with LNP containing Cy5-labeled mRNA at a fi-
nal mRNA concentration of 1 μg mL−1 (50 ng per well) in growth media
for 2 h at 37 °C, with Hoechst 33342 in the final 10 min of incubation
time. LNP and media were then removed, cells were washed twice in room
temperature PBS, returned to fresh room temperature growth media and
then immediately imaged live at room temperature on a Yokogawa CV8000
automated confocal microscope, using a 60× water-immersion objective
(numerical aperture 1.2) at three z-planes 1 μm apart and saved as a max-
imum projection.

To measure transferrin receptor trafficking, cells were incubated with
8.3 μg mL−1 Alexa Fluor 647-transferrin (Invitrogen cat. T23366) in growth
media for 10 min at 37 °C and then fixed with 4% PFA. To measure inter-
nalization of 70 kDa dextran, cells were incubated with 50 μg mL−1 70 kDa
dextran labeled with Oregon Green (supplier, cat. D7173) in growth media
for 2 h at 37 °C, washed twice with PBS and then fixed with 4% PFA and
stained with Hoechst 33342 to label nuclei. Fixed samples were imaged on
a Yokogawa CV8000 automated confocal microscope, using a 60× water-
immersion objective (numerical aperture 1.2) at three z-planes 1 μm apart
and saved as a maximum projection.

Protein Synthesis Assay: The extent of protein synthesis was mea-
sured using the Click-iT HPG Alexa Fluor 488 Protein Synthesis Assay
Kit (Thermo Fisher, cat. C10428) according to the manufacturer’s in-
structions. Cells were transfected with siRNA or pre–incubated with
compounds for 2 h before and throughout the 30 min incubation with the
HPG reagent, followed by fixation and fluorescent labeling. Samples were
imaged on a Yokogawa CV8000 automated confocal microscope, using
a 40× water-immersion objective (numerical aperture 1.0) at a single
z-plane.

Confocal Image Analysis and Data Processing: Images (either a single
z-plane or as a maximum projection, as indicated above) were analyzed
in Columbus (version 2.8.2 and 2.8.3, Perkin Elmer), data processed in
GeneData Screener (version 15.0.6), Spotfire (version 7.9.2, TIBCO), and
Prism (version 8, GraphPad).

For all cell imaging experiments, cell nuclei and cytoplasm were identi-
fied, and parameters measured within the total cell area, or a region within
the cell area (nucleus, cytoplasm, or concentric zones radiating from the
nucleus to the plasma membrane).

850 parameters pertaining to cell shape, fluorescence intensity and tex-
ture, fluorescent puncta characterization, and the spacing/clustering of
cells were measured for multivariate analysis (see Methods section of the
Supporting Information for analysis scripts and annotated example im-
ages). The numerical results from high-throughput image analysis of the
endocytosis assays were normalized using the robust Z-score to the as-
say neutral control (RISC-free for siRNA, or DMSO for compounds) us-
ing Genedata Screener software. This normalization method compares
each assay technical replicate to the median and variation of the technical
replicates treated with the neutral control. For siRNA treatments, the neu-
tral control was the RISC-free siRNA control, and for compounds this was
DMSO.

Machine Learning: Data were aggregated for each technical replicate
identifier. For sample features with no measurements after aggregation,
these features had their values set to 0. Although this might not have
been ideal, the feature values were Z-score normalized against a neutral
control. This resulted in a total of 490 samples with 850 features. Data
were split into a stratified train/test split of 80/20%. The data classes were
imbalanced, even after stratification, so Synthetic Minority Over-sampling
Technique[46] was used in an attempt to correct the imbalance. This was
only applied to the training set using the python package Imbalanced-learn
v. 0.6.2.[47]

Multiple models (Logistic regression, Random Forest, Gradient
Boosted Tree, Support Vector Machines, Gaussian Process, K-Nearest
Neighbor, Ridge Classifier, and Naive Bayes classifier) were initially trained
on all 850 features using the python package Scikit-Learn v. 0.22.1.[48] This
yielded varying degrees of accuracies as measured by F1 score on the test
set. Typically tree-based models yielded the best overall accuracy across
both classes. When exploring models that exported feature importances
or feature coefficients, it was noticed that the tree-based models were uti-
lizing 20–50 of the 850 features. As it was dealing with high-dimensional
data, 850 features for 490 samples, it was attempted to make easier for
the models by removing features that were not predictive of functional
delivery. This was performed on the training set using recursive feature
elimination, n_features = 10 and a gradient boosted classifier as the esti-
mator.

After recursive feature elimination, models were retrained and validated
using the same train/test split, and the Random Forest, Gradient Boosted
Tree, and K-Nearest Neighbor models were interrogated.

Functional Delivery Assay Using Automated Widefield Microscopy: NCI-
H358 cells were seeded and grown for 24 h in 384-well plates and then
dosed with LNP by Echo acoustic dispenser and an additional 20 μL
of complete media was added (giving a total of 50 μL per well). The
mCherry expression and phase contrast images were acquired using an
Incucyte S3 (Essen Bioscience) widefield microscope with 10× objective
every 4 h for a total of 48 h. Image analysis was performed using the
integrated Incucyte S3 2019A software: fluorescence threshold level was
adjusted to a value above the background level (nontransfected cells)
in order to identify mCherry-expressing cells. mCherry total integrated
intensity and mean cell confluence were determined using segmenta-
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tion masks applied over the fluorescence and phase contrast images,
respectively.

Statistical Analysis: All measurements were taken from separate wells
on 384-well plates. Statistical analysis was performed in Prism (version 8,
GraphPad). Tests are described in the corresponding figure caption.

Cellular ATP Assay: Cell viability after siRNA transfection or 24 h com-
pound incubation was measured with the CellTitre Glo 2.0 cell viability as-
say (Promega, cat. G9241), scaling the manufacturer’s protocol to 384-well
plates and measuring luminescence with an Envision plate reader (Perkin
Elmer). Results are shown in Figure S6 of the Supporting Information.

RT-qPCR: Target knockdown was validated for a subset of siRNA us-
ing TaqMan RT-qPCR. Cells were reverse-transfected with siRNA as above
and lysed at 72 h using the Real Time Ready Cell Lysis Kit (Roche, cat.
05943523001). RT-qPCR was performed using TaqMan primers (listed in
Figure S7A, Supporting Information) and the Real-Time Ready RNA Virus
Master (Roche, cat. 05619416001), using the LightCycler 480 (Roche) for
detection. Results are shown in Figure S7B of the Supporting Information.

mRNA Functional Delivery In Vivo: All in vivo procedures were con-
ducted under the authority of a UK Project license which had been re-
viewed and approved by an Animal Welfare and Ethical Review Body in
compliance with EU Directive 2010/63/EU before any work was carried
out. Wild-type female BALB/c mice (6–8 weeks of age) were purchased
from Charles River, UK and housed at the AstraZeneca animal facility
(Babraham Research Campus). All work was carried out to Home Office
U.K. ethical and husbandry standards, under the authority of an appro-
priate project licence. Mice were randomized and grouped for treatment.
LNP formulations encapsulating luciferase mRNA were administered by
intravenous injection at a dose of 0.25 mg kg−1. Six hours post injection,
mice were administered 0.1 mL (15 mg mL−1) XenoLight d-Luciferin (Cat.
122799, Perkin Elmer) intraperitoneally, anaesthetized and imaged as av-
erage radiancy (p/s/cm2/sr) in an IVIS spectrum imager (Perkin Elmer)
(15 min after administration of d-Luciferin). Statistical analysis was car-
ried out using GraphPad Prism v.8.1.1. Difference in group mean radiance
was assessed by one-way ANOVA followed by a Tukey’s multiple compar-
ison test (significant p-value < 0.05).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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