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Abstract

In this thesis, short distance scaling limits of integrable quantum field theoretic models are ex-

plored. We consider an integrable model as a representation of two abstract Zamolodchikov-

Faddeev algebras on an S-symmetric Fock space which are related in a specific manner.

The defining datum of such an algebra is an R-matrix, namely an involutive, unitary solu-

tion of the Yang-Baxter equation with spectral parameters. We show how such R-matrices

S (on the tensor product of Hilbert spaces H⊗H) and R (on K⊗K) can be combined

into a box-sum S ⊞ R and how this operation is reflected on the level of the Fock spaces

FS(H),FR(K),FS⊞R(H⊕K). The construction of chiral models as the short-distance scal-

ing limit of such integrable models is outlined and the implications of such equivalences are

discussed in this one-dimensional setting. In particular, we investigate the local observable

content of the resulting chiral models. It is shown how the R-matrix relates to an algebra of

observables localised at infinity, and how this algebra encodes the local observable content.

In a specific example, we show how a deformation procedure produces strongly non-local

models without strictly local observables.
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Chapter 1

Introduction

In recent years the landscape of quantum field theory (QFT) research has grown in breadth.

Results in mathematics from seemingly unrelated fields are being realised as relevant to the

study of high energy physics. The application of abstract group theory provides interesting

insights into the underlying data of scattering theory [CL21,LPW19], while free probability

theory yields applications to abstract algebraic formulations of QFT.

It is true that the predictions of QFT thus far seem to be accurate when compared to

experimental results. However, it hasn’t yet been settled the most convenient manner in

which to describe and construct a framework for QFT, though currently many exist and are

frequently exploited. The most common is reminiscent of a classical mechanical approach

whereby a Lagrangian is studied. Though, this methodology is rife with problems that have

plagued physicists for many years, a prominent one being the divergence of a perturbative

series arising from the expansion of a Lagrangian.

The algebraic approach is one that is more recent [HK64,Haa96] which we will exploit in

this current work. To condense the finer points for now, the system works by considering an

inverse scattering problem (in a similar fashion to other constructive QFT processes such as

the Form Factor program [KTTW77,BKW79,KW78]). We then characterise observables as

self-adjoint elements of algebras given by a local net which assigns to each bounded region

of the chosen spacetime an algebra of operators.

The model described via any framework is open to scrutiny in many directions. A relevant

analysis is the ultraviolet scaling limit of the resulting theory, importantly profiting answers

to asymptotic freedom of quantum chromodynamics (QCD). First proposed in the algebraic

framework in [BV95] then advanced in [BDM09, BDM10] (with further applications found
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in [DM06,DMV04]) a scaling limit of a QFT model can be calculated via the function λ→ Aλ

of scaling algebras. The resulting theory is described by the GNS representation of the algebra

generated by the scaling limit of the vacuum state on the starting algebra at a finite scale.

As previously mentioned, the property of asymptotic freedom was shown for QCD via such

scaling limits (though not in the algebraic framework) and it is then natural to wonder if the

same may be shown for other models. The most prominent of which perhaps is the O(N) σ-

models which thus far have only hinted asymptotic freedom in generality [AFPT10], although

not yet proved. This analysis is not purely restricted to the algebraic setting, however, with

relations to the Lagrangian description being found in [BDM09].

The existence of locally measurable observables in a theory is another problem one may

face in the constructive process for any program, though some headway has been made in

this direction in recent years [Lec08,BC15,BDL90]. The question is equivalent to the size of

an algebra A(O) of a bounded region of spacetime generated by the net O ↦ A(O) in the

algebraic framework. Furthermore, this can be written as a problem in abstract algebra, in

particular relative commutants of von Neumann algebras [Wie93, GLW97, BL04]. Examples

have been constructed (Poincaré covariant models, and also chiral conformal models on the

real line) where the algebras A(O) are isomorphic to the unique hyperfinite factor type

III1 [Lec05, BDF87]. As we will later describe, this is not the only possibility [BLM11],

though it is the most desirable. The opposite extreme is that of a singular inclusion, meaning

that the algebra A(O) = C1 with 1 is the identity. This case is actually pathological from

a quantum field theoretic perspective, implying that there are no measurable observables,

but it is a fruitful area of investigation in the context of half-sided modular inclusions of von

Neumann algebras. The existence of such a trivial object was only theorised until recently

when in [LTU19] the authors constructed such a singular inclusion by exploiting the methods

of free probability.

In the present work, we analyse the problems discussed above in the context of integrable

models, and chiral models on the light ray. This thesis is organised as follows. In Chapter

2 we start from the definition of a two-particle scattering (S-)matrix S and construct an

integrable QFT on two dimensional Minkowski space mirroring those described in more

detail in [LS12]. In contrast to Lechner and Schützenhofer however, we suppress discussions

of gauge symmetries which we briefly describe in Appendix (B). This description will serve

as a brief overview of constructive quantum field theory, as well as describing the types of
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models under consideration for our short distance scaling procedure later on.

In Chapter 3 we define an abstract Zamolodchikov-Faddeev (ZF) algebra [ZZ79, SF78]

and discuss the case of constant S-matrices. Applying results found in [LPW19, CL21] we

show that S-matrices can exhibit a natural equivalence arising from representations of the

symmetric group. This then induces an isomorphism between the representations governed

by two equivalent S-matrices. The material here is found in the joint work [LS20] previously

published with G. Lechner.

Chapter 4 is concerned with the scaling limits of the integrable models outlined in Chapter

2, a problem considered in the scalar case in [BLM11]. In particular, we first consider the

limits of two-particle S-matrices where the limit values (constant matrices) can be thought

of as similar objects to the constant S-matrices analysed in Chapter 3. Moving further,

we construct a chiral theory on the light ray, expanding on the constructions in [BLM11]

by considering multiple particle species. We then define multi-component fields that are

localised in only the wedge-local sense. The fields we build are then used to derive potential

obstructions to the existence of local observables. That is, we calculate operators that lead

to a sufficient condition on the size of the local algebras A(O) showing that in the setting

we find ourselves in, the spectrum of possibilities is greater than that in the scalar case.

In Chapter 5 we take the idea of obstructions to local operators as inspiration and describe

this in the abstract setting via the algebra at infinity. In the context of von Neumann algebras

and half-sided modular inclusions, we recall the notion of a Borchers triple in both one and two

dimensions and how this relates to quantum field theory as a Hilbert space representation.

Via a two dimensional Borchers triple, we illustrate a natural deformation procedure first

introduced in [GL07] and extended in [BS08, BLS10] known as warped convolution. In the

representation, the von Neumann algebras of a Borchers triple play the role of our algebra of

observables and we analyse the continuity of such objects under deformation. We illustrate

examples of discontinuity with respect to the algebra of observables and outline a framework

for constructing a singular inclusion, providing further examples to the one existing already

in the literature in an arguably simpler fashion. The results in this Chapter appear in the

joint publication [LS22] with G. Lechner.

The results presented in this thesis and the cited joint articles with G. Lechner have

already provided inspiration for further research in this area, for example in [dSL22].
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Chapter 2

Operator Algebraic Quantum Field

Theory

In this chapter, we will describe and construct a general two-particle S-matrix and use it to

build a suitably symmetrised Fock space. Closely following the constructions in [LS12], we

define data on such a Fock space and illustrate the relations they satisfy before showing how

this relates to the operator algebraic formulation. The latter is described by the intersections

of von Neumann algebras and may be split into three possible scenarios concerning the relative

size of these algebras. We briefly outline these possibilities to give an overview of the subject

matter under analysis in this work.

2.1 Two-Particle S-Matrices and S-Symmetric Fock Spaces

We restrict ourselves to two (1 + 1) dimensional Minkowski Space, on which we identify the

single particle space for a fixed species as L2(R, dµ(p)), where µ(p) = (p2 + m2)−1/2dp is

the usual Lorentz invariant measure (see Appendix A for a description of Minkowski space

geometry). However, it is more convenient to describe wavefunctions of particles in terms

of the rapidity θ which is a parameterisation of the one dimensional upper mass shall H+ ∶=
{((p2 +m2)−1/2, p), p ∈ R} for m > 0. The rapidity is then related to the on-shell momentum

by

p(θ) ∶=m
⎛
⎜
⎝

cosh(θ)
sinh(θ)

⎞
⎟
⎠
. (2.1)
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Let H̃ be a finite dimensional Hilbert space of dimension dH̃, then our single particle space

for several particle species is given by

H ∶= L2(R,dθ) ⊗ H̃ ≅ L2(R→ H̃,dθ).

On L2(R,dθ), we have a spacetime symmetry given by an irreducible, unitary representation

of the proper, orthochronus Poincaré group P↑+ [LS12]

(Ũ1(a, λ)ψ) (θ) ∶= eip(θ)⋅aψ(θ − λ), (a, λ) ∈ P↑+.

As one may observe, the action of Ũ1(a, λ) is to act by a translation a ∈ R2 and boost λ ∈ R.

The extension to a representation on H is natural:

U1(a, λ) ∶= Ũ1(a, λ) ⊗ 1H̃.

We choose an orthonormal basis eα, α ∈ {1, . . . , dH̃} of H̃ then denote components of

vectors Ψ1 ∈ H by θ → Ψα
1 (θ). Moreover, our conventions for multi-index notation is

vα = ⟨eα1 ⊗⋯⊗ eαn , v⟩H̃, α = (α1, . . . , αn)

for vectors v ∈ H̃⊗n
. Throughout this work, we will denote by B(H) the set of bounded linear

operators over a Hilbert space H, then for a tensor R ∈ B (H̃⊗n) (n ∈ N), we write its matrix

elements as

Rα
β = ⟨eα1 ⊗⋯⊗ eαn ,R eβ1 ⊗⋯⊗ eβn⟩H̃.

In addition, for linear operators R ∈ B(H̃⊗n) we will use the shorthand notation Rk,n ∶=
1⊗k−1
H̃ ⊗R⊗ 1⊗n−k−1

H̃ .

The single particle structure is fully understood with the description of the TCP oper-

ator J1 on H. This is product of a space-time reflection acting by complex conjugation on

L2(R,dθ) and an index conjugation on H̃, that is we have an involutive automorphism α ↦ α

for α ∈ {1, . . . , dH̃}. Therefore, the TCP operator reads

(J1Ψ1)α (θ) ∶= Ψα
1 (θ)

and one can easily see this is an antiunitary involution which extends the representation U1

to the proper Poincaré group with the space-time reflection j(x0, x1) ∶= (−x0,−x1) by setting

U1(j) ∶= J1 [LS12].

We now wish to describe the notion of an S-matrix. In massive integrable models, an

S-matrix is a bounded linear operator which describes the scattering of two particles in

8



interactions. The example of a factorising S-matrix describes interactions of two incoming

and two outgoing particles where momenta are preserved. To aid the following definition,

we use the notation S(a, b) ∶= {z ∈ C ∶ a < Im(z) < b} for strips in the complex plane.

Furthermore, we denote by S(a, b) ∶= {z ∈ C ∶ a ≤ Im(z) ≤ b} the closure of the set.

Definition 2.1. An S-matrix is a continuous bounded function S ∶ S(0, π) → B(H̃⊗H̃)
which is analytic in the interior of the strip and satisfies for arbitrary θ, θ′ ∈ R and α,β, δ, γ ∈
{1, . . . , dH̃},

i) Unitarity:

S(θ)∗ = S(θ)−1,

ii) Hermitian Analyticity :

S(θ)−1 = S(−θ),

iii) Yang-Baxter Equation:

(S(θ) ⊗ 1H̃)(1H̃ ⊗ S(θ + θ′))(S(θ′) ⊗ 1H̃) = (1H̃ ⊗ S(θ′))(S(θ + θ′) ⊗ 1H̃)(1H̃ ⊗ S(θ)),

iv) TCP Invariance:

Sαβδγ (θ) = Sγδ
βα

(θ),

v) Crossing Symmetry:

Sαβδγ (iπ − θ) = Sγα
δβ

(θ),

vi) Translational Invariance:

[S(θ), U1(a, λ) ⊗U1(a, λ)] = 0, for all a ∈ R2, λ ∈ R.

The family of all S-matrices on H̃ will be denoted by S(H̃).

Physically, we interpret the S-matrix as an operator that describes the scattering be-

haviour of particles. Indeed, particles are described by their states which may change upon

interaction with another particle. The incoming states before an interaction are connected

to the outgoing states after an interaction by the scattering matrix of the theory. As we

are exclusively working in the integrable setting with a factoring S-matrix, multi-particle

interactions can be described by numerous two-particle interactions with the multi-particle

S-matrix decomposing into a product of two-particle S-matrices (as is defined in Definition
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(2.1)). With momentum and particle number conserved through an interaction of two par-

ticles, the transition between in(coming) and out(going) states is completely described via

S.

It is worth noting that though we have described the properties above in a basis-dependent

manner, it is possible to define the same operator on the same Hilbert space in a manifestly

basis-independent manner [AL17]. For a full analysis and description of the physical reasoning

behind the properties outlined above, we refer the interested reader to [Iag76,AAR01].

For dH̃ > 1 the general solution to Definition (2.1) is unknown, however for the scalar case

dH̃ = 1 the solutions are all known [BLM11]. In the case of dH̃ > 1 there do however exist

model-specific examples. A simple one would be

S(θ)αβδγ = ω(θ)δαγ δβδ

where the function ω(θ) is a solution to Definition (2.1) with dim(H̃) = 1 (a scalar scattering

function). Again, this may take many forms such as that governing the Sinh-Gordon model

with coupling constant g ∈ R [AFZ79]

ω(θ) =
sinh(θ) − i sin ( πg2

4π+g2)

sinh(θ) + i sin ( πg2

4π+g2)
.

We consider n-fold tensor products H⊗n of the single particle space H and introduce the

permutation operators ρSn,k ∶ H
⊗n →H⊗n

(ρSn,kΨn)(θ) ∶= S(θk+1 − θk)n,kΨn(θ1, . . . , θk+1, θk, . . . , θn) (2.2)

where n ∈ N, k ∈ {1, . . . , n − 1}, Ψn ∈ H⊗n and θ = (θ1, . . . , θn).
Nearest neighbour transpositions τk swapping the k and (k+1)-th elements are generating

elements for the symmetric group Sn of n letters, and for arbitrary i1 . . . , ir ∈ {1, . . . , n − 1}
we define

ρSn(τi1⋯τir) ∶= ρSn,i1⋯ρSn,ir (2.3)

which is a unitary representation of Sn on H⊗n [LM95].

The operator P S
n ∶= 1

n! ∑π∈Sn
ρSn(π) is then the orthogonal projection onto the ρn invariant

subspace and we define the S-symmetric Fock space FS(H) over H as

FS(H) ∶=
∞
⊕
n=1

Hn, Hn ∶= P S
n H⊗n, n ≥ 1, H0 ∶= C.
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Elements of the Fock space FS(H) are then sequences Ψ = (Ψ0,Ψ1, . . .), where Ψn ∈ H⊗n

which is subject to the symmetry

Ψα
n (θ) = Sαkαk+1βkβk+1 (θk+1 − θk)Ψα1⋯αk−1βkβk+1αk+2⋯αn

n (θ1, . . . , θk+1, θk, . . . , θn), (2.4)

with norm

∥Ψ∥2 =
∞
∑
n=0
∫ dnθ Ψα

n (θ)Ψα
n (θ) < ∞.

We will occasionally make reference to the orthogonal projection P S ∶ ⊕nH⊗n → FS(H),
and the subspace DS ⊂ FS(H) of finite particle number where for Ψ ∈ DS, the sequence

(Ψ0,Ψ1, . . .) terminates for some finite n.

The space FS(H) can be equipped with the second quantisation of the operators U1, J1

which leave it invariant [LS12] and take the natural definiton:

(U(a, λ)Ψ)αn (θ) ∶= exp(i
n

∑
j=1

p(θj) ⋅ a)Ψα
n (θ1 − λ, . . . , θn − λ), (2.5)

(JΨ)αn (θ) ∶= Ψαn⋯α1
n (θn, . . . , θ1) (2.6)

for Ψ ∈ DS and (a, λ) ∈ P↑+. It is straightforward to notice that JU(a, λ)J = U(−a, λ) from

these definitions.

On FS(H) we have the unique (up to scalar multiplication) U -invariant vector ΩS =
(1,0,0, . . .) which we call the vacuum vector (so called as it represents the physical, empty

vacuum of particle number zero).

On the unsymmetrised (Boltzmann) Fock space Ĥ ∶= ⊕nH⊗n, we have creation/annihilation

operators a†(ϕ), a(ϕ) (ϕ ∈ H) which raise and lower the particle number by one, respectively,

and they are linearly extended from

a†(ϕ)ψ1 ⊗⋯⊗ ψn ∶=
√
n + 1 ϕ⊗ ψ1 ⊗⋯⊗ ψn,

a(ϕ)ψ1 ⊗⋯⊗ ψn ∶=
√
n ⟨ϕ,ψ1⟩H ψ2 ⊗⋯⊗ ψn, a(ϕ)ΩS ∶= 0.

for ψ1, . . . , ψn ∈ H to Hn and then to the subspace of finite particle number DS where they

satisfy a(ϕ)∗ ⊃ a†(ϕ).
The projections of the creation/annihilation operators onto FS(H) are denoted by

z†
S(ϕ) ∶= P Sa†(ϕ)P S and zS(ϕ) ∶= P Sa(ϕ)P S, (ϕ ∈ H).

Their explicit action on Ψ ∈ DS is given by

[z†
S(ϕ)Ψ]α

n
(θ) = 1√

n

n

∑
k=1

ρSn(σk)αβδ1⋯δn−1ϕ(θk)
βΨδ1⋯δn−1

n−1 (θ1, . . . , θ̂k, . . . , θn) (2.7a)
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[zS(ϕ)Ψ]αn (θ) =
√
n + 1∫ dθ′ϕβ(θ′)Ψβα

n+1(θ′,θ), (2.7b)

where θ̂k indicates that this variable is omitted, and the permutations σk ∈ Sn is defined as

τk−1τk−2⋯τ1 for k ≥ 1 and σ1 = id.

From the above, we can also read off the explicit action of the respective distributional

kernels

z†
S(ϕ) = ∫ dθz†

S,α(θ)ϕα(θ) and zS(ϕ) = ∫ dθzS,α(θ)ϕα(θ) (2.8)

as

[z†
S,β(θ′)Ψ]α

n
(θ) = 1√

n

n

∑
k=1

ρSn(σk)αµδ1⋯δn−1δ
β
µδ(θ′ − θk)Ψδ1⋯δn−1

n−1 (θ1, . . . , θ̂k, . . . , θn) (2.9a)

[zS,β(θ′)Ψ]αn (θ) =
√
n + 1Ψβα

n+1(θ′,θ). (2.9b)

The projected creation/annihilation operators z†
S, zS together with the identity 1H and their

polynomials form an algebra denoted by PS.

Lemma 2.2. [LS12] The distributional kernels z#
α (θ) satisfy

zS,α(θ)zS,β(θ′) = Sβαδγ (θ − θ′)zS,γ(θ′)zS,δ(θ) (2.10a)

zS,α(θ)z†
S,β(θ′) = S

αγ
βδ (θ′ − θ)z

†
S,γ(θ′)zS,δ(θ) + δαβ δ(θ′ − θ) ⋅ 1H (2.10b)

for all α,β ∈ {1, . . . , dH̃}.

Remark 1. These relations are similar to those that define the Zamolodchikov-Faddeev alge-

bra [ZZ79] however here a spectral parameter is included. We will describe this algebra in

more detail in the scalar case in the next chapter.

As an aside and for use later on, we also define the TCP-reflected creation/annihilation

operators on FS(H)

z†
S(ϕ)′ ∶= Jz

†
S(J1ϕ)J, zS(ϕ)′ ∶= JzS(J1ϕ)J. (2.11)

We refer the reader to [LS12] for a deeper analysis into these operators and the proof of the

following results.

Lemma 2.3. [LS12] Let ϕ,ψ ∈ H, Ψ ∈ DS and n ∈ N0. Then

a) For (a, λ) ∈ P↑+ we have

U(a, λ)zS(ϕ)U(a, λ)∗ = zS(U1(a, λ)ϕ)

and similarly for z†
S and their TCP reflected versions.
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b)

[zS(ϕ)′, zS(ψ)]Ψn = 0, (2.12a)

[z†
S(ϕ)′, z

†
S(ψ)]Ψn = 0, (2.12b)

[zS(ϕ)′, z†
S(ψ)]Ψn =Kϕ,ψ

n Ψn, (2.12c)

[z†
S(ϕ)′, zS(ψ)]Ψn = Lϕ,ψn Ψn, (2.12d)

where the multiplication operators Kϕ,ψ
n , Lϕ,ψn on Dn have the action

Kϕ,ψ
n (θ)αβ = +∫ dθ′ϕγ(θ′)ρSn+1(σn+1)αγδβψδ(θ′), (2.12e)

Lϕ,ψn (θ)αβ = −∫ dθ′ϕγ(θ′)ρSn+1(σn+1)βγδαψδ(θ′), (2.12f)

Proposition 2.4. The vacuum vector ΩS is cyclic for the algebra PS. That is, PSΩS is dense

in FS(H).

Proof. Assume Ψ ∈ FS(H) is orthogonal to PSΩS. For any n ∈ N0 and f1, . . . , fn ∈ H, we have

0 = ⟨Ψ, z†
S(f1)⋯z†

S(fn)ΩS⟩

=
√
n!⟨Ψ, P S

n (f1 ⊗⋯⊗ fn)⟩

=
√
n!⟨Ψ, f1 ⊗⋯⊗ fn⟩

where we have used the fact that the projections P S
n are self-adjoint, and the vector Ψ is

symmetrized as in (2.4). Now, since f1 ⊗⋯⊗ fn forms a total set in H⊗n we must conclude

that Ψ = 0.

2.2 Multi-Component Fields and Algebraic QFT

Now that we have an understanding of the data available in an S-symmetric Fock space,

we advance further to the definition of two quantum fields φ and φ′ on two dimensional

Minkowski space and discuss the algebraic aspects of this construction.

We take test functions f ∈ S (R2) ⊗ H̃ having several components fα(x) ∶= (eα, f(x)).
Their positive and negative frequency wave functions in rapidity space are given in terms of

a Fourier transform:

f±α(θ) ∶= f̃α(±p(θ)) =
1

2π ∫ d2x fα(x)e±ip(θ)⋅x (2.13)
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Clearly, the above expression is a linear and well-defined transformation, moreover, the com-

ponent functions f±α are in L2(R,dθ) for fα ∈ S (R2).
We then define our quantum fields for f ∈ S (R2) ⊗ H̃ by

φS(f) ∶= z†
S(f+) + zS(J1f

−), (2.14)

φ′S(f) ∶= z†
S(f+)′ + zS(J1f

−)′. (2.15)

Proposition 2.5. [LS12] Let f ∈ S (R2) ⊗ H̃ and Ψ ∈ DS. Then

a) The map f ↦ φS(f)Ψ is linear and continuous.

b) All vectors in DS are entire analytic for φS(f). For f = f∗ (where (f∗)α(x) ∶= fα(x)),

the operator φS(f) is essentially self-adjoint.

c) φS transforms covariantly with P↑+, that is

φS(U1(a, λ)f)Ψ = U(a, λ)φS(f)U(a, λ)∗Ψ, (a, λ) ∈ P↑+.

d) φS(J1f) = Jφ′S(f)J .

e) The vacuum vector ΩS is cyclic for φS.

f) φS is local if and only if S = F .

All statements are analogous for the reflected field φ′S.

As stated above, the fields φS, φ′S are local in the usual sense for the free case, however

it can be shown that they are relatively wedge-local as in the scalar case [Lec03, LS12]. We

recall the definition of the right wedge region in Minkowski space

WR ∶= {x ∈ R2 ∶ x1 > ∣x0∣} (2.16)

and the set of all wedges are denoted by W which consist of all wedges produced by the

orbit of WR under the natural action of P+ on R2. It is clear by the definition of WR that

is invariant under boosts and hence W consists of all translations of WR and the left wedge

WL ∶= jWR = −WR.

Since a point localisation is not possible, we instead show that the fields φS, φ′S are localised

in these wedge regions by assigning φ′S(f) the localisation region (WR + supp(f))′′ where the

dash indicates the causal complement - this region amounts to the smallest wedge region con-

taining the support of f . Similarly, we assign φS(g) the localisation region (WL + supp(g))′′.
The relevant locality property is described below.
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Theorem 2.6. [LS12] The fields φS and φ′S are relatively wedge-local. That is, for any

a ∈ R2, f ∈ S (WR + a) ⊗ H̃, g ∈ S (WL + a) ⊗ H̃ and Ψ ∈ DS we have

[φ′S(f), φS(g)] = 0. (2.17)

With these notions in hand we may begin to connect this construction with the ideas

of the algebraic framework of quantum field theory as described in Appendix A. The wedge

regions in W will act as our regions O and we can construct von Neumann algebras from

them. For any x ∈ R2:

AS(WL + x) ∶= {eiφS(f) ∶ f = f∗ ∈ S (WL + x) ⊗ H̃}′′ , (2.18)

AS(WR + x) ∶= {eiφ′S(f) ∶ f = f∗ ∈ S (WR + x) ⊗ H̃}′′ . (2.19)

In the context of algebras the dash indicates the commutant with respect to B(H), and by

the Double Commutant Theorem [Arv76], the double commutant A′′ of an algebra A is a

von Neumann algebra. So, to any wedge region W ∈ W, we associate a von Neumann algebra

AS(W ) which has a number of basic properties.

Proposition 2.7. [LS12] Let S ∈ S(H) and W1,W2 ∈ W. Then

a) Isotony: AS(W ) ⊂ AS(W2) for W1 ⊂W2,

b) Covariance: U(a, λ)AS(W1)U(a, λ)∗ = AS(ΛλW1 + a), (a, λ) ∈ P↑+,

c) Locality: AS(W1) ⊂ A(W2)′ for W1 ⊂W ′
2,

d) Cyclicity: The vacuum vector ΩS is cyclic and separating for AS(W ).

Given this understanding of defining algebras of observables localised in wedge regions, it

is natural to question how to construct an algebra of observables that are localised in smaller

regions O of spacetime, and to do so we consider a double cone Ox,y ∶= (WL + x) ∩ (WR + y)
for x − y ∈WR (to ensure a non-empty intersection). We then take

AS(Ox,y) ∶= AS(WL + x) ∩ AS(WR + y) (2.20)

and define algebras associated with arbitrary regions O ⊂ R2 by additivity of those above.

This construction then defines a local net O ↦ AS(O) on R2.

The relative size of the algebras AS(O) for general S is an open question, however progress

has been made in this direction [BL04,Lec08]. There are three cases surrounding this ques-

tion:
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1) “The cyclic case”: The vacuum vector ΩS is cyclic for AS(O), and therefore the algebra

is non-trivial.

2) “The intermediate case”: AS(O) is non-trivial, but it does not have ΩS as a cyclic vector.

3) “The singular case”: AS(O) is trivial, that is AS(O) = C ⋅ 1.

The first case is what one would find in a local field theory, examples include [Jos65, Ara].

The nuclear modularity condition [BL04, Lec08] is a sufficient condition for a field theory

to belong to this class, however, the calculations are difficult to carry out for theories that

are less simplistic. The second case has been observed in local theories with gauge charges

[BF82]. The third case is pathological and not something one would observe in a local field

theory. Such an example has been constructed previously by applying free probabilities

[LTU19]. Though this scenario is not desirable, it has applications and intrigue in its own

right, particularly in the analysis of half-sided modular inclusions. In Chapter 5 we construct

further examples of these singular cases.
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Chapter 3

Constant S-matrices and Isomorphic

ZF Algebras

In the previous chapter, we dealt with the general construction that appears in the Fock

representation of a ZF algebra (on a Hilbert space). In particular, we had the presence of a

spectral parameter θ as an independent variable of an S-matrix S understood as the rapidity

of a particle. Though a number of interesting and physically relevant examples are indeed

described by a θ-dependent S-matrix, one may also consider a constant S. The constant cases

provide more simple examples of quantum field theories. On the other hand, the matrices

themselves can instead be thought of as specific constant values of a θ-dependent version,

in particular, the value S(0) and the limits limθ→±∞ S(θ) which play roles in the scaling

limits of integrable models. In their own right, it has been shown that rapidity independent

S-matrices have been derived as results of the Yang-Baxter equation with defects [CAFG02].

The results in this chapter are the central discussion in the joint work [LS20] with G.

Lechner.

3.1 An Abstract ZF Algebra

We begin by abstractly defining a version of the well-known Zamolodchikov-Faddeev (ZF)

algebra (cf. [ZZ79,Fad95]). Let L be a separable Hilbert space (of arbitrary dimension) and

S a set of d4 (d ∈ N) complex numbers whose elements are labelled by the symbols Sαβδγ

where α,β, δ, γ ∈ {1, . . . , d}. The symbols 1Z(S,L), Z1(f), Z2(f), . . . , Zd(f) (f ∈ L) generate
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the unital ∗-algebra Z(S,L) and obey the following exchange relations:

Zα(f)Zβ(g) = Sβαδγ Zγ(g)Zδ(f), (3.1)

Zα(f)Z∗
β(g) = Sαγβδ Z∗

γ (g)Zδ(f) + δαβ ⋅ ⟨f, g⟩L ⋅ 1Z(S,L), (3.2)

where we adopt Einstein summation convention over the repeated indices.

Remark 2. To connect with the discussions of the previous chapter, we could instead consider

the single particle Hilbert space to be a finite dimensional Hilbert space H̃ (i.e., the scalar

case). Then S can be viewed as a linear map over H with dimension d. The numbers

Sαβδγ are the matrix elements ⟨eα ⊗ eβ, S(eδ ⊗ eγ)⟩ if (eα)
dH̃
α=1 is an orthonormal basis of H̃.

ZF algebras are relevant to many areas of mathematics, in particular integrable models of

quantum field theory, see for example [LS12]. A variation of this algebra can be defined

by omitting (3.2), which is known as a Wick algebra. Their representations have also been

studied in [KOP+22,JSW94,DVL18].

There is no implication from this abstract definition that there exists a Hilbert space

representation of Z(S,L). For example, in [JSW94, p. 18] it is shown that S can be chosen

in such a way that the generated Wick algebra admits no Hilbert space representation. It will

become clear that properties of S indicate whether or not a GNS representation of Z(S,L)
can be constructed.

Wick ordering (also referred to as “normal” ordering in some works) is useful in the

analysis of algebras of this type. For an arbitrary element X ∈ Z(S,L), the relations (3.1)

and (3.2) allow one to shift the ordering of the individual generating elements of Z(S,L) in

X. Repeatedly doing so transforms X into Wick ordered form with an additional additive

constant:

∑
η,ξ

ζη,ξZ
∗
η(fη)Zξ(gξ) + σ ⋅ 1Z(S,L) (3.3)

where ζη,ξ ∈ C and σ ∈ C. The multi-index notation we have adopted here can be read as, for

example,

Z∗
η(fη) = Z∗

η1(fη1)Z∗
η2(fη2)⋯Z∗

ηN
(fηN ),

where all fηn ∈ L and ∣η∣ = N ∈ N. Note that every element of Z(S,L) can be written in

the form (3.3). The Wick ordered form is typically not unique; if there exist multiple Z or

Z∗ elements in a product, the application of (3.2) gives a distinct, but equally Wick ordered

element. However, the term with ∣η∣ = ∣ξ∣ = 0 is unique.

18



To complete the description of the algebra Z(S,L), we describe a linear functional over

it.

Definition 3.1. We define a normalised linear functional ω ∶ Z(S,L) → C by the properties

i)

ω(1Z(S,L)) = 1, (3.4)

ii)

ω(Z∗
α(f) ⋅X) = 0, (3.5)

iii)

ω(X ⋅Zα(f)) = 0, (3.6)

for all α ∈ {1, . . . , d}, f ∈ L any X ∈ Z(S,L).

Defining a second functional as λ(X) ∶= ω(X∗) and applying uniqueness, we see that ω

is Hermitian, but it is not positive.

Examples 3.1. We consider here some simple examples of Z(S,L).
Choosing Sβαδγ = ±δαδ δ

β
γ (the tensor flip in finite dimensions), where δ is the Kronecker

delta, the relations (3.1) and (3.2) now read (for f, g ∈ L)

Zα(f)Zβ(g) = ±Zβ(g)Zα(f), (3.7)

Zα(f)Z∗
β(g) = ±Z∗

β(g)Zα(f) + δαβ ⋅ ⟨f, g⟩L (3.8)

Let (eα)dα=1 be an orthonormal basis of Cd, then we may realise that

Zα(f) =∶ a(eα ⊗ f)

satisfy the governing relations of the CCR(Cd⊗L) (+) and CAR(Cd⊗L) (−) algebras [BR81,

EK98], respectively. In the Fock representation, these correspond to the Bose (+) and Fermi

(−) Fock spaces.

If instead we choose Sαβδγ = −δαδ δ
β
γ , we have

Zα(f)Zβ(g) = −Zα(g)Zβ(f) (3.9)

Zα(f)Z∗
β(g) = δαβ (−∑

δ

Z∗
δ (g)Zδ(f) + 1Z(1,L)) . (3.10)

This example is explored in detail for the case of L = C in [JSW94, p. 48] in a Wick algebraic

setting where it is known as a “degenerate case”.
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3.2 Constant S-matrices and Binary Operations

Definition (2.1) outlines the properties of a θ-dependent S-matrix, which indicates how we

may define a constant analogue. Throughout this work we will use a tilde to denote finite

dimensional Hilbert spaces such as H̃ and K̃ (with no tilde indicating a more general space),

and also operators over these spaces such as S̃ and R̃.

Definition 3.2. A constant S-matrix S̃ ∈ B(H̃⊗ H̃) is a constant dH̃ × dH̃ matrix which for

all α,β, δ, γ ∈ {1, . . . , dH̃} satisfies:

i) Unitarity:

S̃∗ = S̃−1,

ii) Involutivity:

S̃−1 = S̃,

iii) Yang-Baxter equation:

(S̃ ⊗ 1H̃) (1H̃ ⊗ S̃)(S̃⊗1H̃) = (1H̃ ⊗ S̃)(S̃⊗1H̃)(1H̃ ⊗ S̃),

iv) TCP Invariance :

S̃
αβ

δγ = S̃ γ̄δ̄β̄ᾱ,

v) Crossing Symmetry:

S̃
αβ

δγ = S̃ γ̄αδβ̄ .

The family of all constant S-matrices on H̃ will be denoted by Sc(H̃).

It is worth remarking that if a matrix is crossing symmetric, it is also then TCP invariant

by the above definition. The latter is the result of applying the crossing symmetry relation

twice, however, due to their physical interpretations, we make specific mention of each.

We recall that an R-matrix is a unitary solution to the (quantum) Yang-Baxter equa-

tion and here we denote the family of R-matrices on H̃ as R(H̃) and the set of involutive

R-matrices as R0(H̃) ⊂ R(H̃). A constant S-matrix is therefore an involutive R-matrix

satisfying additional symmetries implying that Sc(H̃) ⊂ R0(H̃).
On these sets we can define two binary operations [LPW19] which we recall below.
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Definition 3.3. Let H,K be Hilbert spaces and let S ∈ B(H⊗H), R ∈ B(K⊗K). Then we

define

i) S ⊞R ∈ B((H⊕K) ⊗ (H⊕K)) as

S ⊞R = S ⊕R⊕ F on (H⊕K) ⊗ (H⊕K) = (H⊗H) ⊕ (K⊗K) ⊕ (H⊗K) ⊕ (K⊗H),

where the operator F = F(H⊗K)⊕(K⊗H) is the tensor flip, and in the case above acts

on the space (H⊗K) ⊕ (K⊗H). More explicitly we may describe this operator as

F(H⊗K)⊕(K⊗H) = F(H⊗K) ⊕ F(K⊗H).

ii) S ⊠R ∈ B(H⊗K⊗H⊗K) as

S ⊠R = F2(S ⊗R)F2

where F2 is a tensor flip acting on the second and third tensor slots.

We remark here that the S-matrix on H = L2(R)⊗H̃ considered in Chapter 2 can actually

be written more explicitly as S = F ⊠ S̃ where F is the tensor flip on L2(R) and S̃ ∈ Sc(H̃).
These two operations give a notion of addition and multiplication for involutiveR-matrices

and in analogy to that of scalar operations, we have the distributivity property of multipli-

cation across a sum.

Lemma 3.4. Let H,K,L be Hilbert spaces, S ∈ B(H⊗H),R ∈ B(K⊗K), and FL be the tensor

flip on L⊗L. Then

FL ⊠ (S ⊞R) = (FL ⊠ S) ⊞ (FL ⊠R) . (3.11)

Proof. We first note that the domains of the left and right of (3.11) are isomorphic:

D(FL ⊠ (S ⊞R)) = (L⊗(H ⊕K))⊗2

≅ ((L⊗H) ⊕ (L⊗K))⊗2 = D((FL ⊠ S) ⊞ (FL ⊠R)),

whereby D(S) we mean the domain of S.

In order to check that each side of (3.11) does indeed map to the same vector from a vector

in their respective domain, we analyse each orthogonal component of their domains and check

how each operator acts. These separate components are (L⊗H)⊗2, (L⊗K)⊗2,L⊗H ⊗ L⊗K
and L⊗K ⊗L⊗H.

Let h1, h2 ∈ H, k1, k2 ∈ K, l1, l2 ∈ L and we firstly consider the case of (L⊗H)⊗2. The left

hand side of (3.11) acts as

(FL ⊠ (S ⊞R)) ((l1 ⊗ h1) ⊗ (l2 ⊗ h2)) = (FL ⊗ (S ⊞R)) ((l1 ⊗ l2) ⊗ (h1 ⊗ h2))

= (l2 ⊗ l1) ⊗ S(h1 ⊗ h2).
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Similarly for the right hand side of (3.11) we note that by definition of the box-sum, the

FL ⊠R) term drops out and we calculate

(FL ⊠ S) (l1 ⊗ h1 ⊗ l2 ⊗ h2) = (FL ⊗ S) (l1 ⊗ l2 ⊗ h1 ⊗ h2)

= (l2 ⊗ l1) ⊗ S(h1 ⊗ h2).

In this case, we can see we have equality between the two operators.

For the space (L⊗K)⊗2 the arguments are identical by taking S → R,h1 → k1, h2 → k2.

The “mixed” cases are those remaining: L⊗H ⊗ L⊗K and L⊗K ⊗ L ⊗ H. Due to the

presence of only oneH and K factor in both spaces, by definition of the box-sum, the operators

reduce to a series of tensor flips and it is easy to realise that we have

F2(FL ⊗ FH⊕K)F2 = F(L⊗H)⊗(L⊗K) and F2(FL ⊗ FK⊕H)F2 = F(L⊗K)⊗(L⊗H).

Both sides of (3.11) then act in the same way on each orthogonal part of their isomorphic

domains, therefore they are equal.

In the specific case at hand of finite-dimensional R-matrices, these operations also preserve

a number of desirable properties.

Proposition 3.5. Let H̃, K̃ be finite dimensional Hilbert spaces and let S̃ ∈ Sc(H̃), R̃ ∈ Sc(K̃).

Then

i) S̃ ⊞ R̃ ∈ Sc(H̃⊕ K̃),

ii) S̃ ⊠ R̃ ∈ R0(H̃⊗ K̃).

Proof. i) Unitarity and involutivity (and therefore also self-adjointness and invertibility) all

follow once one realises that F possesses all of these properties and the flip on (H̃⊗ K̃)⊕
(K̃⊗ H̃) leaves its domain and the spaces H̃⊗ H̃ and K̃ ⊗ K̃ invariant. The inheritance

of crossing symmetry (and therefore TCP symmetry) is also clear given that S ⊞ R is

crossing symmetric in each part of its domain. Finally, [LPW19, Prop 4.3] shows that

S ⊞R as defined here solves the Yang-Baxter equation.

ii) Similarly to the previous part, unitarity, self-adjointness, involutivity and invertibility

are inherited from the box product, moreover the Yang-Baxter equation is stable under

tensor products and conjugation by the self-adjoint tensor flip F2 [LPW19].
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It is worth noting that it is not true in general that S ⊠ R ∈ Sc(H̃⊗ K̃) – as a counter-

example, one may take S,R = F , then

1 = S12
21R

11
11 ≠ S11

12R
11
21 = 0

violating crossing symmetry.

3.3 Equivalences of S-matrices and Induced Isomor-

phisms

With an understanding of constant S-matrices, R-matrices and the operations on them, we

now analyse equivalences that arise between such objects. From motivations originating in

[Tho64], it was discussed in [AL17] and later more concretely examined in [LPW19,CL21] that

involutive R-matrices exhibit a natural equivalence. The derivation of such an equivalence is

outside the subject matter of this thesis, but we refer the interested reader to [LPW19,CL21]

for a detailed analysis of this.

In the case of R-matrices over H̃ for dim(H̃) = 2, all equivalence relations are known

and understood [LPW19] and can be described by three types (which we define later). The

results in this direction can be compared and verified with that of [Hie92] where all solutions

to the Yang-Baxter equation in this two-dimensional setting were calculated and one may

easily further restrict to the involutive setting from this.

For arbitrary dimension, these three types of equivalence relations still remain valid, and

one may use them to generate equivalence classes of involutive R-matrices, however, it is not

yet understood if there exists other forms of equivalence relations beyond these three types.

Before describing the nature of this equivalence, we first make note of a particular form

of R-matrix which will form a basis of such for the set of equivalence classes we will generate.

For the following, we will write 1a2 for the identity on a vector space of dimension a.

Definition 3.6. Let H̃ be a finite dimensional Hilbert space of dimension dH̃, n ∈ N0 and

εi = {−1,+1} for i ∈ {1, . . . , n}. Then a normal form R-matrix N is of the form

N ∶=
n⊞
i=1
εi1d2i (3.12)

where ∑n
i=1 d

s
i = d2

H̃.
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We will mainly concern ourselves with three forms of equivalences which we may work

with explicitly by considering the representations of the symmetric group generated by the

R-matrix under consideration. Similarly to the parameter dependent case in (2.2), (2.3) a

representation of the symmetric group of n letters ρS̃n is defined on the generating transposition

elements τi for 0 < i < n by

ρS̃n(τi) ∶= 1⊗i−1 ⊗ S̃⊗1n−i−1.

Definition 3.7. Let H̃, K̃ be finite dimensional Hilbert spaces and S̃ ∈ R0(H̃), R̃ ∈ R0(K̃),
then S̃ and R̃ are said to be equivalent, denoted as S̃ ∼ R̃, if and only if for each n ∈ N the

representations ρS̃n and ρR̃n are unitarily equivalent.

In a more specific description, for S̃ ∈ R0(H̃) and R̃ ∈ R0(K̃), if S̃ ∼ R̃, the definition says

that for all n ∈ N there exists a unitary intertwining operator Y S̃,R̃
n ∶ H̃n → K̃n such that

Y S̃,R̃
n ρS̃n(π) = ρR̃n (π)Y S̃,R̃

n , (π ∈Sn). (3.13)

The second quantisation of the above we denote as Y S̃,R̃ = ⊕n≥0 Y
S̃,R̃
n .

In the general case, the form of Y S̃,R̃
n is unknown, however as mentioned previously, there

are some known examples which we will describe - the following three types of equivalences

also generate the full set of equivalence relations for the case of dim(H̃) = dim(K̃) = 2.

• Type 1: There exists a unitary operator U on H̃ such that (U ⊗ U) S̃(U∗ ⊗ U∗) = R̃.

Then S̃ ∼ R̃ and we may choose

Y S̃,R̃
n = U⊗n.

• Type 2: There exists a unitary U on H̃ whose tensor square commutes with S̃, i.e.

[S̃, U ⊗U] = 0, and (1⊗U) S̃(1⊗U∗) = R̃. Then S̃ ∼ R̃ and we may choose

Y S̃,R̃
n = 1⊗U ⊗⋯⊗U⊗n−1.

• Type 3: Let FH̃ be the tensor flip on H̃ such that FH̃ S̃ FH̃ = R̃. Then S̃ ∼ R̃ and we

may choose

Y S̃,R̃
n = ρFH̃ S̃ FH̃n (ι−1

n )ρS̃n(ιn),

where ιn is the total inversion permutation of n letters.
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In two dimensions, any involutive R-matrix is equivalent to a normal form R-matrix by

either types 1,2 or 3 [LPW19] and as mentioned, further examples of equivalences in higher

dimensions and the description of the full set R0(H̃) is not known.

In Chapter 1 we saw how a parameter dependent S-matrix governed the exchange relations

for a ZF algebra and was deeply imprinted in the data produced by a Fock representation. We

consider now finite dimensional Hilbert spaces H̃, K̃ with dimensions dH̃, dK̃, respectively, and

a more general (separable) Hilbert space L (as in Chapter 2, one may identify this specifically

with L2(R), however for our needs here it is not necessary to specify this space). We take

S̃ ∈ Sc(H̃) and R̃ ∈ Sc(K̃) such that S̃ ∼ R̃ and define Sc(H) ∋ S ∶= F ⊠ S̃, Sc(K) ∋ R ∶= F ⊠ R̃
on H ∶= L⊗H̃ and K ∶= L⊗K̃, respectively, where we now write F to be the tensor flip on L
dropping the subscript for simplicity.

To show the stability of our notion of equivalence over a box-multiplication, we introduce

the following operator Fn ∶ H⊗n → L⊗n⊗H̃⊗n
acting explicitly by

Fn (
n

⊗
i=1

(fi ⊗ hi)) = (
n

⊗
i=1

fi) ⊗ (
n

⊗
i=1

hi) , fi ∈ L, hi ∈ H̃ . (3.14)

It should be clear from the above expression that Fn is a product of unitary, involutive

operators Fi,j and is therefore unitary itself for any n. Moreover, we define the second

quantisation of Fn:

F ∶= ⊕
n≥0

Fn. (3.15)

Lemma 3.8. Let H,K be separable Hilbert spaces, and S ∈ R0(H),R ∈ R0(K). Then the

representation of the symmetric group, ρS⊠Rn , generated by S ⊠ R is unitarily equivalent to

ρSn ⊗ ρRn for any n ∈ N.

Proof. It is enough to show the result for the generating elements τk of Sn and the rest

follows by the properties of a representation. Let (hα)α∈N and (kβ)β∈N be orthonormal bases

of H and K respectively then by employing the permutation operator Fn an element in the

domain of ρS⊠Rn is mapped to an element in the domain of ρSn ⊗ ρRn . The action of the latter

operator is given by

ρSn(τk) ⊗ ρRn (τk)(
n

⊗
i=1

hαi) ⊗ (
n

⊗
i=1

kβi)

= Sαkαk+1δγ Rβkβk+1
ηξ ((

k−1

⊗
i=1

hαi) ⊗ hδ ⊗ hγ ⊗ (
n

⊗
i=k+2

hαi))

⊗ ((
k−1

⊗
i=1

kβi) ⊗ kη ⊗ kξ ⊗ (
n

⊗
i=k+2

kβi)) ,
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where the implicit sums converge in the norm topology. Applying F∗n and its linearity gives

the action of ρS⊠Rn as stated.

Proposition 3.9. Let H1,H2,K1,K2 be Hilbert spaces and S1 ∈ R0(H1), S2 ∈ R0(H2),R1 ∈
R0(K1),R2 ∈ R0(K2) such that S1 ∼ S2 and R1 ∼ R2. Then S1 ⊠ R1 ∼ S2 ⊠ R2 with an

intertwiner Y S1⊠R1,S2⊠R2 which is given by

Y S1⊠R1,S2⊠R2 = F∗ (Y S1,S2 ⊗ Y R1,R2)F.

Proof. This is clear from the definition of Fn and Lemma (3.8).

Returning for the moment to the discussion of representations as in Chapter 2, one may

show how these equivalences interact in the representation.

Example 3.1. Let H̃, K̃ be finite dimensional Hilbert spaces and S̃ ∈ R0(H̃), R̃ ∈ R0(K̃) such

that S̃ ∼ R̃ in the type 1 sense. We may then choose their intertwiner to be of the form

Y S̃,R̃
n = (Y S̃,R̃

1 )
⊗n
. (3.16)

For a separable Hilbert space L we write H = L⊗H̃,K = L⊗ R̃ and S = F ⊠ S̃,R = F ⊠ R̃ and

we then have an expression for the intertwiner Y S,R
n from Proposition (3.9). Then

Y S,RπS(Zα(f)) (Y S,R)∗ = πR (Y S,R
1 Zα(f)) . (3.17)

We can verify this by calculation - let f ∈ L, then

F∗ (Y S̃,R̃ ⊗ 1)FzS,α(f)F∗ ((Y S̃,R̃)
∗
⊗ 1)F

= F∗ (Y S̃,R̃ ⊗ 1) zS̃(eα) ⊗ zF (f) ((Y S̃,R̃)
∗
⊗ 1)F

= F∗ (Y S̃,R̃zS̃(eα) (Y S̃,R̃)
∗
⊗ zF (f))F

It remains to calculate the action of Y S̃,R̃zS̃(eα) (Y S̃,R̃)∗. Let ψ ∈ FS(H) then

Y S̃,R̃
n+1 z

∗
S̃
(eα) (Y S̃,R̃

n )
∗
ψn = Y S̃,R̃

n+1 P
S
n+1eα ⊗ ([Y S̃,R̃

1 ]
∗
)
⊗n
ψn

= PR
n+1 (Y S̃,R̃

1 )
⊗(n+1)

(eα ⊗ ([Y S̃,R̃
1 ]

∗
)
⊗n
ψn)

= PR
n+1 (Y S̃,R̃

1 eα) ⊗ ψn

= z∗
R̃
(Y S̃,R̃

1 eα)ψn.

Thus the intertwiner Y S̃,R̃ also acts as an isomorphism between elements of the polynomial

algebras PS,PR.
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Though the above illustrates how a type 1 equivalence gives rise to an isomorphism of

representations, it is not true that any equivalence type gives rise to such an isomorphism

between representations. As a counter-example, consider S = −FH ∼ −1 ⊞ −1 = R in the two

dimensional setting which are type 2 equivalent. In the Fock representation of Z(S,H), we

have anti-commutation between all annihilation operators as in the Fermi case [Lec03], i.e.

{zS̃,α(f), zS̃,β(g)} = 0

for α,β ∈ {1,2} and all f, g ∈ L. Such an anti-commutation should be preserved if there

were to exist an isomorphism between the representations πS, πR, however, the definition of

R implies this is not the case. For some choices of α and β, we actually have commutation

between πR(Zα(f)), πR(Zβ(g)), for example:

[zR̃,1(f), zR̃,2(g)] = 0

for all f, g ∈ L. Clearly the product zR̃,1(f)zR̃,2(g) is not zero and thus the representations

πS̃, πR̃ are not isomorphic in this case.

3.4 Exponential Relations and Generalisations

In addition to a natural isomorphism arising via equivalentR-matrices, the box-sum operation

indicates a generalisation to the well-known relation [BPS97]

FFH̃⊕ K̃(H̃⊕ K̃) ≅ FFH̃(H̃) ⊗ FFK̃(K̃) (3.18)

for finite dimensional H̃, K̃ which extends to an isomorphism of the representing data. In

particular, we find that for Hilbert spaces H,K and S ∈ R0(H),R ∈ R0(K) that

FS⊞R(H⊕K) ≅ FS(H) ⊗FR(K) (3.19)

where as before the isomorphism extends to one between the data on each space.

The representation of the Zamolodchikov algebra Z(S ⊞R,H⊕K) on the left hand side

of (3.19) is already described in Chapter 2 via the GNS construction (more transparently

by applying the distributivity property of the box-times over the box-sum as in Lemma

(3.4)). This comes with a pre-equipped vacuum vector ΩS⊞R upon which we can generate a

polynomial algebra PS⊞R from the identity element 1H⊕K and creation/annihilation operators

z†
S⊞R, zS⊞R. The latter obey exchange relations according to the following

zS⊞R,α(f ⊕ 0)zS⊞R,β(g ⊕ 0) = Sβαδγ zS⊞R,γ(g ⊕ 0)zS⊞R,δ(f ⊕ 0), (3.20)
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zS⊞R,α(f ⊕ 0)z†
S⊞R,β(g ⊕ 0) = Sαγβδ z

†
S⊞R,γ(g ⊕ 0)zS⊞R,δ(f ⊕ 0) + δαβ ⟨f, g⟩ ⋅ 1H⊕K, (3.21)

zS⊞R,ξ(0⊕ f)zS⊞R,η(0⊕ g) = Rηξ
επzS⊞R,π(0⊕ gπ)zS⊞R,ε(0⊕ f), (3.22)

zS⊞R,ξ(0⊕ f)z†
S⊞R,η(0⊕ g) = Rξπ

ηεz
†
S⊞R,π(0⊕ g)zS⊞R,ε(0⊕ f) + δξη⟨f, g⟩ ⋅ 1H⊕K, (3.23)

zS⊞R,α(f ⊕ 0)zS⊞R,η(0⊕ g) = zS⊞R,η(0⊕ g)zS⊞R,α(f ⊕ 0), (3.24)

zS⊞R,α(f ⊕ 0)z†
S⊞R,η(0⊕ g) = z

†
S⊞R,η(0⊕ g)zS⊞R,α(f ⊕ 0). (3.25)

This data provides us with the natural representation πS⊞R ∶ Z(S ⊞R,H⊕K) → PS⊞R.

Consider now the tensor product

FS(H) ⊗FR(K)

where on the individual Fock spaces FS(H),FR(K) there act creation/annihilation operators

z†
S, zS, z

†
R, zR (endomorphically on the spaces of finite particle number DS,DR) and there exist

unique vacuum vectors ΩS,ΩR.

Using this prerequisite data, we may define analogous operators to zS⊞R and z†
S⊞R on the

space FS(H) ⊗FR(K):

zS,R (fα ⊕ gξ) ∶= zS,α(f) ⊗ 1K + 1H ⊗ zR,ξ(g), f, g ∈ L, (3.26)

ΩS,R ∶= ΩS ⊗ΩR. (3.27)

As before, the polynomial algebra PS,R is then defined as the algebra generated by the

identity element 1H ⊗ 1K and the creation/annihilation operators z†
S,R, zS,R.

Lemma 3.10. The vacuum vector ΩS,R is cyclic for the polynomial algebra PS,R. That is,

PS,RΩS,R is dense in FS(H) ⊗FR(K).

Proof. Let ψ ∈ FS(H)⊗FR(K) be orthogonal to PS,RΩS,R. Then for any i, j ∈ N0 and vectors

f1, . . . , fi ∈ H, g1, . . . , gj ∈ K

⟨ψi,j , z†
S,R(f1 ⊕ 0)⋯z†

S,R(fi ⊕ 0)z†
S,R(0⊕ g1)⋯z†

S,R(0⊕ gj)ΩS ⊗ΩR⟩

=
√
i!j!⟨ψi,j , P S

i ⊗ PR
j (f1 ⊗⋯⊗ fi ⊗ g1 ⊗⋯⊗ gj)⟩

=
√
i!j!⟨ψi,j , f1 ⊗⋯⊗ fi ⊗ g1 ⊗⋯⊗ gj⟩

where ψi,j is the i, j-th component of ψ and each index corresponds to the particle number in

each tensor slot in FS(H)⊗FR(K) and we have used the self-adjoint property of P S⊗PR and

that the vector ψ is invariant under this projection. Vectors of the form f1⊗⋯⊗fi⊗g1⊗⋯⊗gj
form a total set in H⊗i⊗K⊗j and hence we conclude that ψ = 0.
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Finally, we are now able to construct a representation of the algebra Z(S ⊞R,H⊕K) on

FS(H) ⊗FR(K) and prove the relation (3.19).

Theorem 3.11. Let H̃, K̃ be Hilbert spaces of finite dimensions dH̃, dK̃, respectively, and

S ∈ R0(H),R ∈ R0(K), then:

a) The map πS,R ∶ Z(S ⊞R,H⊕K) → PS,R

πS,R (1Z(S⊞R,L)) ∶= 1H⊗K,

πS,R(Zα(f)) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zS,R(fα ⊕ 0), α ∈ {1, . . . , dH̃}

zS,R(0⊕ fα−dH̃), α ∈ {dH̃ + 1, . . . , dH̃ + dK̃}

extends to a unital ∗-representation of Z(S ⊞R,L) on F0
S(H)⊗F0

R(K) with cyclic vector

ΩS,R and

ωS,R(X) = ⟨ΩS,R , πS,R(X)ΩS,R⟩, X ∈ Z(S ⊞R,H⊕K). (3.28)

b) There exists a unitary operator V ∶ FS⊞R(H⊕K) → FS(H) ⊗FR(K) such that

V ΩS⊞R = ΩS,R, V πS⊞R(X)V ∗ = πS,R(X), X ∈ Z(S ⊞R,H⊕K). (3.29)

Proof. a) We show first that the operators z†
S,R, zS,R satisfy the same relations as z†

S⊞R, zS⊞R

as outlined in (3.20)-(3.25), firstly noting that

zS,R(fα ⊕ 0) = zS,α(f) ⊗ 1K, zS,R(0⊕ fξ) = 1K ⊗ zR,ξ(f), (f ∈ L),

and similarly for z†
S,R.

A priori, the operators z†
S, zS and z†

R, zR and their distributional kernels satisfy exchange

relations (2.10a), (2.10b) governed by S and R, respectively. Let f, g ∈ L then

zS,R(fα ⊕ 0)zS,R(gβ ⊕ 0) = zS,α(f)zS,β(g) ⊗ 1K

= Sβαδγ zS,γ(g)zS,δ(f) ⊗ 1K

= Sβαδγ zS,R(gγ ⊕ 0)zS,R(fδ ⊕ 0),

which gives (3.20). The relation (3.22) follows in an analogous way. Similarly

zS,R(fα ⊕ 0)z†
S,R(gβ ⊕ 0) = zS,α(f)z†

S,β(g) ⊗ 1K

= Sαγβδ z
†
S,γ(g)zS,δ(f) ⊗ 1K + δαβ ⟨f, g⟩1H ⊗ 1K

= Sαγβδ z
†
S,R(gγ ⊕ 0)zS,R(fδ ⊕ 0) + δαβ ⟨f, g⟩1H ⊗ 1K.
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As for (3.24), (3.25) we see that since zS,R(fα ⊕ 0) and zS,R(0 ⊕ gη) operate on different

tensor slots, they commute. Lemma (3.10) and the action of the annihilation operator zS,R

on ΩS,R implies that the functional ωS,R as defined in (3.28) satisfies i)-iii) in Definition

(3.1) and this coincides with ω.

b) Let X ∈ Z(S ⊞R,H⊕K). Then

∥πS,R(X)ΩS,R∥2 = ⟨πS,R(X)ΩS,R, πS,R(X)ΩS,R⟩

= ⟨ΩS,R, πS,R(X∗X)ΩS,R⟩

= ω(X∗X)

= ∥πS⊞R(X)ΩS⊞R∥2.

This shows that the map V ∶ PS⊞RΩS⊞R → PS,RΩS,R, V πS⊞R(X)ΩS⊞R ∶= πS,R(X)ΩS,R

(X ∈ Z(S⊞R,H⊕K)) is well-defined and isometric. Moreover, for X,Y ∈ Z(S⊞R,H⊕K)

V πS⊞R(X)V ∗πS,R(Y )ΩS,R = V πS⊞R(X)πS⊞R(Y )ΩS⊞R

= V πS⊞R(XY )ΩS⊞R

= πS,R(XY )ΩS,R

= πS,R(X)πS,R(Y )ΩS,R.

Cyclicity of ΩS⊞R,ΩS,R for the representations πS⊞R and πS̃,R̃, respectively, indicates that

V extends to a unitary FS⊞R(H⊕K) → FS(H) ⊗FR(K) satisfying (3.29).

For simple R-matrices, this result decomposes Fock spaces over higher dimensional Hilbert

spaces into a tensor product of many Fock spaces over smaller dimensional Hilbert spaces.

This is, in particular, applicable to matrices in normal form (3.12).

Corollary 3.12. Let H̃ = ⊕n
i=1 H̃i, dim(H̃i) = di and let ⊞n

i=1 εi1d2i = N ∈ R0(H) be an

involutive R-matrix in normal form. Then there exists a unitary

V ∶ FS(H) →
n

⊗
i=1

Fεi(Hi).

As in Chapter 2 where we have the specific choice of L = L2(R), the Definitions (2.13),

(4.41) provides us with a definition of fields φS⊞R. The isomorphism is now of relevance in

this context and we have the necessary data to construct a field operator unitarily equivalent

to φS⊞R

φS,R(f ⊕ g) = φS(f) ⊗ 1K + 1H ⊗ φR(g),
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for f ∈ S (R2)⊗H̃ and g ∈ S (R2)⊗K̃. By definition, it should be clear that this field inherits

many properties from φS⊞R as in Proposition (2.5). Moreover, defining the reflected field as

φ′S,R(f ⊕ g) = φ′S(f) ⊗ 1K + 1H ⊗ φ′R(g),

it is straightforward to see that the fields φS,R, φ′S,R are relatively wedge local given the correct

localisation properties of their arguments as in Theorem (2.6). Moving to the algebraic aspect,

we recall these form part of a definition of von Neumann algebras, in particular for any x ∈ R2

AS⊞R(WL+x) ∶= {eiφS⊞R(f⊕g) ∶ f = f∗ ∈ S (WL + x) ⊗ H̃, g = g∗ ∈ S (WL + x) ⊗ K̃}
′′
, (3.30)

AS⊞R(WR+x) ∶= {eiφ′S⊞R(f⊕g) ∶ f = f∗ ∈ S (WR + x) ⊗ H̃, g = g∗ ∈ S (WR + x) ⊗ K̃}
′′
, (3.31)

with these being subject to the same properties as in Proposition (2.7). Moreover we define

AS,R(WL + x) ∶= {eiφS,R(f⊕g) ∶ f = f∗ ∈ S (WL + x) ⊗ H̃, g = g∗ ∈ S (WL + x) ⊗ K̃}
′′

(3.32)

AS,R(WR + x) ∶= {eiφ′S,R(f⊕g) ∶ f = f∗ ∈ S (WR + x) ⊗ H̃, g = g∗ ∈ S (WR + x) ⊗ K̃}
′′
. (3.33)

The latter algebras are generated by exponentials of fields which have the form of a sum

of operators which clearly commute, in particular

eiφS,R(f⊕g) = ei(φS(f)⊗1K+1H⊗φR(g)) = ei(φS(f)⊗1K)ei(1H⊗φR(g))

by standard properties of the exponential.

Lemma 3.13. Let H,K be Hilbert spaces and A ∈ B(H),B ∈ B(K). Then

i) eA⊗1K = eA ⊗ 1K,

ii) e1H⊗B = 1H ⊗ eB.

Proof. We proceed by calculation

eA⊗1K =
∞
∑
n=0

(A⊗ 1K)n
n!

=
∞
∑
n=0

(An ⊗ 1K)
n!

= (
∞
∑
n=0

An

n!
) ⊗ 1K = eA ⊗ 1K

The proof for ii) follows in an identical way.

This idea can also be extended to the operators ei(φS(f)⊗1K), ei(1H⊗φR(g)) by the properties

listed in Proposition (2.5). In particular, we note that on the subspaces of finite particle

number DS ⊂ FS(H),DR ⊂ FR(K) the field operators φS(f), φR(g) are essentially self-adjoint

for the choice of input vectors f = f∗, g = g∗ as in (3.32). Moreover, the elements of DS,DR
contain entire analytic vectors for φS(f), φR(g), respectively, on which the expressions in

Lemma (3.13) converge.
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Theorem 3.14. Let S ∈ Sc(H̃),R ∈ Sc(K̃), x ∈ R2 and the von Neumann algebra AS⊞R(WL +
x) be defined as in (3.30). Then

AS⊞R(WL + x) ≅ AS(WL + x) ⊗AR(WL + x).

Proof. Clearly the algebras AS⊞R(WL+x),AS,R(WL+x) are isomorphic given that the gener-

ating fields φS⊞R, φS,R are unitarily equivalent. Lemma (3.13) then provides the isomorphism

between AS,R(WL + x) and the tensor product AS(WL + x) ⊗AR(WL + x).

This theorem with corollary (3.12) implies that given a model described by a tensor

product of Bose/Fermi spaces the resulting local algebra is nothing more than an algebraic

tensor product of better understood algebras [Lec07] simplifying matters greatly.

In conclusion for this Chapter, we have outlined a possible simplification for potentially

complicated quantum field theories - beginning with a constant S-matrix that is type one

equivalent to its normal form, by isomorphisms we may describe the theory on a tensor

product of Bose/Fermi Fock spaces. Though this hints towards the method of [Luk95], our

method is slightly more natural arising only from isomorphisms of R-matrices.
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Chapter 4

Scaling Limits of Integrable Models

Having discussed simplistic constant S-matrices in the previous chapter, we advance to the

more general situation touched upon briefly in Chapter 2 of rapidity dependent S-matrices as

in Definition (2.1). Though many specific examples of integrable models in (1+1)-dimensions

are known [BR18, BFK05, BK03], in some cases the details of the resulting theory are ill

understood and open questions surround them.

A fruitful area of discussion in this direction is in analysing the ultraviolet scaling limit of

a model. A well studied application of such investigations is the proof of asymptotic freedom

of the theory of Quantum Chromodynamics (QCD) [GW73] which is now accepted as the

theory of strong interactions. Though there exist many methods to calculate a scaling limit

depending on the description of the theory presented, we will study the scaling algebras, and

in particular the scaling of the generating wedge-local field operators. That is, the algebra

generated by functions λ ↦ Aλ of the scaling parameter λ whose values take on that of

observables of the base theory. The scaling limit of the theory is then identified as the GNS

representation of the scaling algebra generated from the scaling limit of the vacuum state on

the unscaled algebra.

4.1 Limits of S-matrices

In the general analysis of quantum field theories the limits of the governing S-matrix is not

necessary data, nor particularly informative. However, in the context of the short distance

scaling limit it becomes an important quantity describing the twisting between the tensor

product of chiral components and their structure [BLM11].
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Scaling distances in Minkowski space as x ↦ λx momenta are then scaled as p ↦ λ−1p

and hence the rapidity variable (the dependent parameter of an S-matrix in our description)

scales according to θ = sinh−1( pm) ↦ sinh−1( p
λm) which implies we are concerned with the

limits S± ∶= limθ→∞ S(θ) in our analysis.

Throughout this chapter, we will again consider a Hilbert space H ∶= L2(R)⊗H̃ where we

identify the previously more general and separable Hilbert space L with L2(R) for simplicity

and H̃ is of finite dimension.

Definition 4.1.

a) An S-matrix S ∈ S(H̃) is called regular if there exists a κ > 0 such that S (and its

constituent elements) continues to a bounded analytic function in the strip S(−κ,π + κ).
The subset of all regular S-matrices is denoted by Sreg(H̃) ⊂ S(H̃).

b) A regular S-matrix S ∈ Sreg(H̃) is called an S-matrix with a limit if the two limits S± ∶=
limθ→±∞ S(θ) exist. The set of all S-matrices with a limit is denoted by Slim(H̃) ⊂ Sreg(H̃).

The question of the size of Slim(H̃) is not a trivial one in the higher dimensional (in terms

of the S-matrix) case we consider here. In the scalar case, this is already settled - in fact,

one may write down the complete set Slim(C) and show a number of further results, such as

the limits of any such function having coinciding limits [BLM11]. For the higher dimensional

case, we have no such clear cut result and the situation is a much richer one.

For reference, we note that the definition of a scalar scattering function can be retrieved

from Definition (2.1) by setting H̃ = C. The properties of a scalar scattering function can be

written in one line as:

S(θ) = S(θ)−1 = S(θ + iπ) = S(−θ), θ ∈ R. (4.1)

We state the following result already alluded to.

34



Proposition 4.2. [BLM11]

a) The set Slim(C) consists precisely of the functions

S(z) = ε ⋅
N

∏
k=1

sinh(z) − sinh(bk)
sinh(z) + sinh(bk)

, z ∈ S(0, π), (4.2)

where ε = ±1,N ∈ N0 and {b1, . . . , bN} is a set of complex numbers in the strip 0 <
Im(b1), . . . , Im(bN) < π

2 such that for each bk, also −bk is also contained in {b1, . . . , bN}.

b) For each S ∈ Slim(C), the two limits S−, S+ coincide and are equal to ±1.

An analogous result for any finite dimensional H̃ and arbitrary S ∈ Slim(H) is unknown

and would be a difficult feat given that the Yang-Baxter equation results in a set of (dH̃)6

cubic equations for the elements of S. Instead, we consider a simple, but non-trivial form of

S-matrices, the so-called diagonal ones.

Definition 4.3. A diagonal S-matrix SD is of the form

SD(θ)αβγδ = ωαβ(θ)δαδ δβγ , (4.3)

(with no summation over α and β). The continuous, bounded functions ωαβ ∶ S(0, π) → C

are analytic in the interior of the strip and satisfy

ωαβ(θ) = ωαβ(θ)−1 = ωβα(−θ) = ωβα(θ + iπ). (4.4)

It has been shown that matrices of this form solve the Yang-Baxter equation with no

further restriction on the functions ωαβ [AL17], hence these are really examples of S-matrices

as defined by Definition (2.1).

For α = β we see that (4.4) read exactly (4.1), however for the remaining cases we have a

slightly different set of symmetry conditions which we now discuss.

Definition 4.4. The set of functions Glim is the set of regular, bounded and continuous

functions G ∶ S(0, π) → C that are analytic in the interior of the strip and satisfy for all θ ∈ R:

∣G(θ)∣ = 1, G(θ) = G(iπ + θ), lim
θ→±∞

G(θ) exist. (4.5)

As it turns out, these functions can also be completely classified in a similar fashion to

the scalar scattering functions.
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Proposition 4.5. The set Glim consists precisely of the functions

G(z) = ε
N

∏
k=1

ez − ebk
ez − ebk

⋅ e
z − ebk+iπ
ez − ebk−iπ , (4.6)

where ε = ±1, N ∈ N0 and {b1, . . . , bN} is a set of complex numbers in the strip 0 < Im(b1), . . . , Im(bN) ≤
π/2.

Moreover, for each G ∈ Glim we have that limθ→∞G(θ) = limθ→−∞G(θ) = ±1, θ ∈ R.

Proof. For z ∈ R each factor

gbk ∶ ζ ↦ ±e
z − ebk
ez − ebk

⋅ e
z − ebk+iπ
ez − ebn−iπ

satisfies ∣gbk(z)∣ = 1 (which is trivial to see) and also gbk(z) = gbk(iπ + z). Indeed,

gbk(iπ + z) = ±
−ez − ebk
−ez − ebk

⋅ −e
z − ebk+iπ

−ez − ebn−iπ

= ±e
z + ebk
ez + ebk

⋅ e
z + ebk+iπ
ez + ebn−iπ

= ±e
z − ebk−iπ
ez − ebk+iπ

⋅ e
z − ebk
ez − ebn = gbk(z).

Given the location of the poles in the above expression, we can surmise that for a sufficiently

small δ > 0, the factor gzk is analytic and bounded in the strip S(−Im(zk)+δ, π+ Im(zk)−δ) ⊃
S(0, π). The product (4.6) is finite, so there exists a κ > 0 such that G is analytic and

bounded in the strip S(−κ,π + κ). Clearly the limits limθ→∞G(θ), limθ→−∞G(θ) coincide

from the expression which shows that G ∈ Glim.

Now we pick an arbitrary G ∈ Glim and show that it is of the form (4.6). Let ε1 ∶=
limθ→∞G(θ), ε2 ∶= limθ→−∞G(θ), then from the regularity properties of G, we have that

G(θ + iλ) → ε1 as θ → ∞ uniformly in λ ∈ [0, π] [Tit39] and similar for the opposite limit

given that the strip S(0, π) is biholomorphic to the unit disc. Moreover, since ∣G(θ)∣ = 1 for

all real θ, then ∣ε1∣ = 1, but since G(θ) = G(iπ + θ) also, it must mean that ε1 = ±1 since

limθ→∞G(iπ + θ) = limθ→∞G(iπ + θ).
The function G is continuous on the closed strip S(0, π) and of unit modulus on the

boundary a priori. These properties together with the uniformity of the limit throughout

the strip allows us to conclude that G has only finitely many zeroes in S(0, π) [Fat23]. Let

b1, . . . , bN be the zeroes of G whose imaginary parts µ satisfy 0 < µ ≤ π
2 then for every zero

bi, there is also a corresponding zero bi + iπ. We construct the finite Blaschke product

B(z) = ε1

N

∏
k=1

ez − ebk
ez − ebk

⋅ e
z − ebk+iπ
ez − ebn−iπ
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and note that it has precisely the same number of zeroes as G and also B(θ + iλ) → ε1 for

θ → ±∞ uniformly in λ ∈ [0, π].
Now define a new function F by

F = G ⋅B−1.

Clearly F has no zeroes in S(0, π) and also F (θ + iλ) → 1 for θ →∞ uniformly for λ ∈ [0, π]
as regularity is clearly inherited by this product. As F is continuous on S(0, π) and of unit

modulus on the boundary of the strip (these two properties hold for G and B−1, hence also

holds for their product) so it is bounded above and below, and there exists a K > 0 such

that K < ∣F (θ)∣ < 1 for θ ∈ S(0, π). We may meromorphically extend F , however since F

has no zeroes in S(0, π) it is actually an analytic continuation. On this continuation, the

boundedness of F on S(0, π) it implies that it also holds that ∣F (ζ)∣ < K−1 < ∞ for all

ζ ∈ S(−π,π). Taking θ ↦ θ − iπ in (4.5) we have that

G(θ − iπ) = G(θ + iπ)

for θ ∈ R and the same clearly holds for B−1. Hence F extends to a 2πi-periodic, entire

function which is bounded and so constant by Liouville’s Theorem1. Thus we have that

F (θ) = limθ→∞F (θ) = 1, so G = FB = B.

As one can see, the sets Slim(C), Glim are somewhat comparable in that they both consist

entirely of functions in the form of finite Blaschke products. Furthermore, given the symme-

tries satisfied by the functions belonging to each set, we can observe that Slim(C) ⊂ Glim.

Theorem 4.6. The limits limθ→∞ SD(θ), limθ→−∞ SD(θ) exist if and only if ωαα ∈ Slim(C)
and ωαβ ∈ Glim (α ≠ β,ωαβ(θ) = ωβα(−θ)) for all α,β.

Proof. The conditions in (4.4) for α = β read

ωαα(θ) = ωαα(θ)−1 = ωαα(−θ) = ωαα(θ + iπ), (θ ∈ R)

which with the existence of the limits limθ→∞ ωαα(θ), limθ→−∞ ωαα(θ) implies that ωαα must

belong to Slim(C).
For α ≠ β we have in particular

ωαβ(θ) = ωβα(iπ − θ) = ωβα(−θ),
1Liouville’s Theorem states that any bounded, entire function must be constant.
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hence we have functions that satisfy

∣ωαβ(θ)∣ = 1, ωαβ(θ) = ωαβ(iπ + θ)

for θ ∈ R. Since the limits limθ→∞ ωαβ(θ), limθ→−∞ ωαβ(θ) exist, they have the form of (4.6).

The opposite direction is trivial by the definition of functions in Slim(C) and Glim.

This analysis of diagonal S-matrices can be viewed as a generalisation to the previous

results in the scalar case as they are simple, but non-trivial examples of an S-matrix. An

example of a more complex form would be the S-matrix Sσ,N governing the O(N) σ-models

which has the explicit form

Sσ,N(θ)α1α2

β1β2
∶= σ1(θ)δα1

α2
δβ1β2 + σ2(θ)δα1

β2
δα2

β1
+ σ3(θ)δα1

β1
δα2

β2
, (4.7)

with the functions

σ2(θ) ∶= Q(θ)Q(iπ − θ), Q(θ) ∶=
Γ ( 1

N−2 − i θ2π)Γ (1
2 − i θ2π)

Γ (1
2 + 1

N−2 − i θ2π)Γ (−i θ2π)
,

σ1(θ) ∶= −
2πi

(N − 2)
σ2(θ)
iπ − θ ,

σ3(θ) ∶= σ1(iπ − θ) = −
2πi

(N − 2)
σ2(θ)
θ

where Γ denotes the complex Gamma function.

It is well known that this S-matrix satisfies our definition, and in particular the Yang-

Baxter equation and one may also calculate its limiting behaviour since it is regular in our

sense [LS12].

Before proceeding, we recall that for z ∈ C/Z− (where Z− denotes all non-positive integers)

Γ(z + 1) = zΓ(z), Γ(z)Γ(z + 1

2
) = 21−2z

√
πΓ(2z).

Moreover, for large enough ∣z∣ and ∣arg(z)∣ < π − ε (ε > 0) then we have Stirling’s formula:

Γ(z) ∼
√

2π

z
(z
e
)
z

,

where ∼ indicates that the ratio of both sides converges to one or asymptotically converges.
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Proposition 4.7. Let Sσ,N be defined as in (4.7) for any N > 2, then

lim
θ→±∞

Sσ,N(θ) = FH.

Proof. Let z ∶= 1
N−2 + i θ2π and w = i θ2π = iIm(z), then

σ2(θ) =
Γ(z)Γ (1

2 +w)Γ (1
2 + z)Γ(1 +w)

Γ (1
2 + z)Γ(w)Γ(1 + z)Γ (1

2 +w)

=
Γ(z)Γ (1

2 +w)Γ (1
2 + z)wΓ(w)

Γ (1
2 + z)Γ(w)zΓ(z)Γ (1

2 +w)

= Γ(z)
zΓ(z)

wΓ(w)
Γ(w)

Γ (1
2 + z)

Γ (1
2 + z)

Γ (1
2 +w)

Γ (1
2 +w)

= (Γ(z))2

z (Γ(z))2

w (Γ(w))2

(Γ(w))2

21−2zΓ(2z)
21−2zΓ(2z)

21−2wΓ(2w)
21−2wΓ(2w)

= (Γ(z))2

z (Γ(z))2

w (Γ(w))2

(Γ(w))2

24wΓ(2z)
Γ(2z)

24wΓ(2w)
Γ(2w)

= (Γ(z))2

z (Γ(z))2

w (Γ(w))2

(Γ(w))2

Γ(2z)
Γ(2z)

Γ(2w)
Γ(2w)

∼
( z
e
)2z

z ( ze)
2z

w (w
e
)2w

(w
e
)2w

√
z (2z

e
)2z

√
z (2z

e
)2z

√
w (2w

e
)2w

√
w (2w

e
)2w

= ∣w∣2−2z+2z2−2w+2w

∣z∣

= ∣w∣
∣z∣ =

∣θ∣√
4π2

(N−2)2 + θ2
→ 1 (θ → ±∞).

From the definitions of σ1, σ3 given in terms of σ2, it is then straightforward to see that

σ1(θ), σ3(θ) → 0 (θ → ±∞).

The complex seeming nature of the model defined by Sσ,N therefore has a very simple

limiting behaviour implying that their ultraviolet scaling limit is simpler in some respects. In

particular, we can deduce that the resulting model of a short distance scaling limit results in

an untwisted tensor product of chiral models. Despite this example having coinciding limits,

it is not immediately clear that this is always the case, however generally speaking the limit

values S+, S− enjoy a number of symmetries.
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Proposition 4.8. Let S ∈ Slim(H) and S± ∶= limθ→±∞ S(θ) then

i) S∗± = S∓,

ii) Sc± = S∓, where (Sc)αβδγ = Sδα
γβ

,

iii) (S±)αβδγ = (Sl±)
αβ
δγ ∶= (S±)γβδα , (S±)αβδγ = (Sr±)

αβ
δγ ∶= (S±)αδβγ,

in addition to being unitary solutions to the Yang-Baxter equation.

Proof. By definition, S is unitary on the real line. That is, S(θ)∗ = S(θ)−1 for θ ∈ R and

in the limit θ → ±∞ this property remains for both S±, clearly. Similarly, S satisfies the

Yang-Baxter equation:

(1⊗ S(θ))(S(θ + θ′) ⊗ 1)(1⊗ S(θ′)) = (S(θ′) ⊗ 1)(1⊗ S(θ + θ′))(S(θ) ⊗ 1)

for θ, θ′ ∈ R. We’re free to take θ = θ′ for example, and in this case, the above now reads

(1⊗ S(θ))(S(2θ) ⊗ 1)(1⊗ S(θ)) = (S(θ) ⊗ 1)(1⊗ S(2θ))(S(θ) ⊗ 1)

which in the limit θ → ±∞ becomes

(1⊗ S(±∞))(S(±∞) ⊗ 1)(1⊗ S(±∞)) = (S(±∞) ⊗ 1)(1⊗ S(±∞))(S(±∞) ⊗ 1)

showing that S± also solve the Yang-Baxter equation.

Unitarity and Hermitian analyticity of S culminate to S(θ)∗ = S(−θ) which gives (i) in

the limit θ → ±∞.

The crossing symmetry of S reads as S(θ) = Sc(iπ − θ) and now by regularity in the limit

we arrive at

S± = lim
θ→±∞

S(θ) = lim
θ→±∞

Sc(iπ − θ) = lim
θ→±∞

Sc(−θ)

showing (ii).

Part (iii) is a direct consequence of parts (i) and (ii) and can be easily retrieved by

calculating (Sc±)∗.

Corollary 4.9. Let S ∈ Slim and S± ∶= limθ→±∞ S(θ) then the following statements are equiv-

alent.

i) S± is involutive,

ii) S± is crossing symmetric, i.e. Sc± = S±,
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iii) S+ = S−.

Proof. i) Ô⇒ ii): If S+ is involutive, together with unitarity implies that S± = S∗±, which

combining parts i), ii) of Proposition (4.8) gives S± = Sc±.

ii)Ô⇒ iii): This follows immediately from Proposition (4.8) ii).

iii)Ô⇒ i): Since S± is self-adjoint and unitary, this immediately follows.

We denote the set of all constant R-matrices R such that R = limθ→∞ S(θ) for some

S ∈ Slim(H) as Rlim(H̃). Of course, this also includes the opposite limit of S as θ → −∞ if we

note that also S− ∈ Slim(H).

In preparation for calculating the short distance scaling behaviour of quantum fields, we

must note the behaviour of the space-time scaling x ↦ λx on an element S ∈ Slim(H). For

such data, it is easier to work with the momenta p = m sinh(θ), q = m sinh(θ′) as arguments

for S rather than the rapidities which more clearly maintains a mass dependency. Indeed,

θ − θ′ = sinh−1 ( p
m

) − sinh−1 ( q
m

) = sinh−1 (
pωmp − qωmp

m2
)

where we define the energies ωmp ∶=
√
p2 +m2, ωmq ∶=

√
q2 +m2. Now, for any m > 0 and

S ∈ Slim(H) we have a modified matrix-valued function Sm ∶ R2 → B(H̃⊗H̃)

Sm(p, q) ∶= S (sinh−1 (
pωmp − qωmp

m2
)) .

The properties of Sm are irrelevant to our needs, however, we do note that clearly, we have

the scaling relation

Sm(λ−1p, λ−1q) = Sλm(p, q), λ > 0. (4.8)

The mass zero limit can be calculated in precisely the same manner as in the scalar case

[BLM11] when each element of Sλm is considered individually, however, care must be taken

with the potential for distinct limits at each infinity unlike the scalar case.

Proposition 4.10. Let S ∈ Slim(H) and m > 0. Then for p, q ∈ R:

S0(p, q) ∶= lim
λ→0

Sλm(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(log(p) − log(q)) , p > 0, q > 0;

S(log(−q) − log(−p)) , p < 0, q < 0;

S(0) , p = q = 0;

S+ , p > 0, q = 0, p = 0, q < 0, or p < 0, q > 0;

S− , p > 0, q = 0, p = 0, q > 0 or p > 0, q < 0.

(4.9)
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Proof. For any p, q ∈ R, we have the limit

lim
λ→0

(pωλmq − qωλmp ) = p∣q∣ − q∣p∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2pq , p < 0, q > 0;

−2pq , p > 0, q < 0;

0 , p ⋅ q ≥ 0.

Hence

(λ2m2)−1(pωλmq − qωλmp ) →
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∞ , p < 0, q > 0;

∞ , p > 0, q < 0

for λ → 0 and the limit for Sλm for this configuration of momenta is justified. For the

remaining cases, we apply l’Hospital’s rule to calculate the limit

lim
λ→0

pωλmq − qωλmp
λ2m2

= lim
λ→0

pλm2

ωλmq
− qλm2

ωλmp

2λm2
= 1

2
lim
λ→0

( p

ωλmq
− q

ωλmp
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , p = q = 0;

sign(p) ⋅ ∞ , p ≠ 0, q = 0;

− sign(q) ⋅ ∞ , p = 0, q ≠ 0;

1
2 ( p

∣q∣ −
q
∣p∣) , p ⋅ q > 0.

Inputting these expressions into the composite function S ○ sinh−1 gives the result.

The limit S0 is clearly not independent of S and from this, we deduce that the short

distance limit behaviour of the model will depend on the original scattering matrix.

Following a similar structure as was described in Chapter 2, we again may rewrite all

data in terms of momenta to track the mass m, in particular for ϕ ∈ H,Ψ ∈ DS

[ym,S(ϕ)Ψ]αn (p) ∶=
√
n + 1∫

dq

ωmq
ϕδ(q)Ψδα

n+1(q,p)

and similarly for y†
m,S(ϕ) = ym,S(J1ϕ)∗.

Remark 3. We note that the operators defined above are related to the operators zS, z
†
S by

ym,S(ϕ) = zS(ϕ).

As is the case in rapidity space, the distributional kernels are related to these operators

by integrating against a function

ym,S(ϕ) = ∫
dp

ωmp
ym,S,α(p)ϕα(p), y†

m,S(ϕ) = ∫
dp

ωmp
y†
m,S,α(p)ϕα(p)

For completeness, we write down the exchange relations obeyed by these operators in mo-

mentum space as an analogy to those in (2.10a), (2.10b):
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ym,S,α(p)zm,S,β(q) − Sm(p, q)βαδγ ym,S,γ(q)ym,S,δ(p) = 0 (4.10a)

ym,S,α(p)y†
m,S,β(q) − Sm(p, q)αγβδ y

†
m,S,γ(q)ym,S,δ(p) = ωmp δαβ δ(p − q) ⋅ 1H (4.10b)

We also rewrite our transformations of test functions (2.13) for f ∈ S (R2) ⊗ H̃ as

fm±α (p) ∶= 1

2π ∫ d2xfα(x)e±i(ω
m
p ,p)⋅x

and our explicitly mass-dependent field operator is given by

φm,S(f) = y†
m,S(fm+) + ym,S(fm−).

In a similar approach to [BLM11] we wish to analyse the effect of a short distance scaling on

quantum fields and consider the rescaled, unsmeared field operators

φm,S(λx)

and evaluate on a scaled test function fλ,

fλα(x) ∶= λ−2fα(λ−1x), λ > 0, x ∈ R2.

In momentum space the scaling has the effect of scaling the mass and the momentum:

fm±λ,α = fλm±α (λp).

It is relevant now to consider the n-point functions of these rescaled fields

W n,λ
m (f1, . . . , fn) ∶= ⟨ΩS, φm,S((f1)λ)⋯φm,S((fn)λ)ΩS⟩ (4.11)

for f1, . . . , fn ∈ H. By the reconstruction theorem [SW00] one may completely recover a field

theory from the n-point functions defined above, hence the short distance scaling limit of

these then provides an indication of the state of the scaling limit of the model, prompting

the following result.

Theorem 4.11. Let m > 0, S ∈ Slim(H̃) and f1, . . . , fn ∈ S (R2 → H̃) with (fj)0±
α (0) = 0 for

all j ∈ {1, . . . , n} and α ∈ {1, . . . , dH̃}. Then

lim
λ→0

W n,λ
m (f1, . . . , fn) = W n,1

0 (f1, . . . , fn).

The same result holds for the n-point functions generated by the reflected fields φ′m,S, φ
′
0,S.
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Proof. The field operators φm,S, φ0,S are both defined as sums of creation/annihilation opera-

tors which raise and lower the particle numbers by one, respectively. As such, a product of an

odd number of field operators gives a vacuum expectation value of zero, hence we may assume

that n = 2k for some k ∈ N0. Moreover, we first consider a product of 2k creation/annihilation

operators ordered in reverse Wick ordered form [Wic50] - that is, all annihilation operators

on the left, and all creation on the right. Recalling that the projection P S is self-adjoint, we

compute

⟨ΩS, ym,S((f1)m−λ )⋯ym,S((fk)m−λ )y†
m,S((fk+1)m+λ )⋯y†

m,S((f2k)m+λ )ΩS⟩FS(H)

= ⟨y†
m,S(J1(fk)m−λ )⋯y†

m,S(J1(f1)m−λ )ΩS, y
†
m,S((fk+1)m+λ )⋯y†

m,S((f2k)m+λ )ΩS⟩FS(H)

= k!⟨(fk)m−λ ⊗⋯⊗ (f1)m−λ , P Sm
k ((fk+1)m+λ ⊗⋯⊗ (f2k)m+λ )⟩H

= k!∫
dp1

ωmp1
⋯dpk
ωmpk

((fk)m−λ ⊗⋯⊗ (f1)m−λ ) (λpk, . . . , λp1)(P Sm
k ((fk+1)m+λ ⊗⋯⊗ (f2k)m+λ ))(λp1, . . . , λpk)

We have the relation (4.8) for the scaling of Sm and also that dλp

ωλm
λp

= dp
ωλmp

we proceed by a

change of variables λpj → pj:

⟨ΩS, ym,S((f1)m−λ )⋯ym,S((fk)m−λ )y†
m,S((fk+1)m+λ )⋯y†

m,S((f2k)m+λ )ΩS⟩H

= k!∫
dp1

ωλmp1
⋯ dpk
ωλmpk

((fk)λm− ⊗⋯⊗ (f1)λm−) (pk, . . . , p1)(P Sm
k ((fk+1)λm+ ⊗⋯⊗ (f2k)λm+))(p1, . . . , pk)

We look to apply Lebesgue dominated convergence to compute this limit, and as such we first

apply the triangle inequality and consider the boundedness of one of the integrands in the

above sums. We further note that the integrand tends to the same expression for m = 0 in the

limit - the divergence from the contributions of the reciprocals of the energy quantities ωλmpj

in this limit are corrected by our assumption on the test functions. In particular, for m = 0

the energy expression ωmpi simplifies to ∣pi∣ which vanishes at zero. However, we assume that

each component of the test functions also vanishes at zero and so we avoid any divergence.

The Schwartz class of functions come with an a priori λ-independent bound, the S-matrix

S is unitary, and hence all components are bounded by at most 1. Finally, noting that

∣ωλmj ∣ ≥ ∣pj ∣ we can produce a λ-independent bound on the integrand and apply dominated

convergence to conclude

lim
λ→0

⟨ΩS, ym,S((f1)m−λ )⋯ym,S((fk)m−λ )y†
m,S((fk+1)m+λ )⋯y†

m,S((f2k)m+λ )ΩS⟩H

= ∫
dp1

∣p1∣
⋯dpk

∣pk∣
((fk)0− ⊗⋯⊗ (f1)0−) (pk, . . . , p1)(P Sm

k ((fk+1)0+ ⊗⋯⊗ (f2k)0+))(p1, . . . , pk)

= ⟨ΩS, y0,S((f1)0−)⋯y0,S((fk)0−)y†
0,S((fk+1)0+)⋯y†

0,S((f2k)0+)ΩS⟩H.

(4.12)
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In general, an element of the 2k point function will not have this particular ordering, however,

the creation/annihilation operators obey specific exchange relations that we may invoke to

reshuffle these operators into a form similar to the above. Starting from the general 2k point

function

W 2k,λ
m (f1, . . . , f2k) = ⟨ΩS, (ym,S((f1)m−λ )+y†

m,S((f1)m+λ ))⋯(ym,S((f2k)m−λ )+y†
m,S((f2k)m+λ ))ΩS⟩.

Expanding out and applying linearity of the scalar product, this amounts to a sum of 22k

expectation values, each involving a product of 2k creation/annihilation operators. Clearly,

those which do not contain an identical number of both creation and annihilation operators

give zero in the vacuum expectation (this should be obvious given that the annihilation

operator acting on the vacuum gives zero), hence we need only consider the cases where we

have k many creation operators and k many annihilation operators in no particular order.

Focusing on one of these terms, we recall the exchange relations these operators obey

(4.10a), (4.10b) allowing us to shuffle the order until we arrive at a product in reverse Wick

ordered form. Each exchange as in (4.10a) introduces a multiplicative S term (which is

bounded by at most one by the unitarity of the S-matrix) and a reshuffling of indices and

momenta. As already discussed, the former can be bounded independently of λ and is of

no concern to the dominated convergence argument, and the latter simply introduces a sum

over many terms, all of which can be bounded in the same way as those previously and

these indices and momenta orderings remain unchanged in the expression for both m > 0 and

m = 0. Therefore, neither of these disrupts the conditions for dominated convergence as in

the previous argument.

Applying the relation (4.10b) introduces a similar multiplicative S factor and further

reshuffling of indices and momenta, however, we further gain an additive contraction term

of the form ωmp δ
α
β δ(p − q) ⋅ 1H. These extra integrations are subject to the same bounding

conditions as those considered previously and hence we may apply dominated convergence

to these inner integrals in the same fashion. Thus, the limit (4.12) applies analogously to the

arbitrarily ordered products of ym,S and y†
m,S and the assertion holds.

This result indicates that the short distance scaling limit of the n-point functions of the

finite scale fields φm,S is given by the n-point functions of the fields φ0,S and hence by the

reconstruction theorem, the scaling limit of the (m,S) model is really the (0, S) model.

The proceeding discussion here is identical to the scalar case in [BLM11] so we keep things
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φ0,S(x)

φ′0,S(y)

x

yxr

xl

yl

yr

ϕr,S(xr)

ϕ′l,S(xl)

ϕl,S(yl)

ϕ′r,S(yr)

Figure 4.1: The fields φ0,S, φ′0,S and their localisation regions which then decompose into

half-line localised chiral fields.

brief, outlining our motivation for the following section.

As in the scalar case the wedge-localised fields φ0,S obtained via the scaling limit are chiral

and split into sums of half-line localised fields on the light ray which we illustrate in Figure

(4.1).

In Figure (4.1), the subscripts of r, l indicate right/left moving field components. As

in [BLM11] the field φ0,S written in terms of its operator valued distributional form can be

written as a sum of the fields illustrated above, in particular

φ0,S(x) =
1√
2π

(ϕr(xr) + ϕ′l(xl)) (4.13)

where xl = x0 + x1, xr = x0 − x1 are the left/right components of the coordinate x = (x0, x1)
and the chiral fields

ϕr,S(xr) ∶= ∫
∞

0

dp√
2πp

(eipxry†
0,S(p) + e−ipxry0,S(p)) , (4.14a)

ϕ′l,S(xl) ∶= ∫
∞

0

dp√
2πp

(eipxly†
0,S(−p) + e−ipxlyy0,S(−p)) (4.14b)

are one-dimensional and are localised on the right/left light ray components on two-dimensional

Minkowski space. In calculations later needed for these fields, one should consider the deriva-

tive of these field distributions to avoid the infrared divergence arising from the 1/p terms

in the integrands. In the proceeding section, we will do just that but for now, we content

ourselves with the above definitions.
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Previously having calculated the limit of S in momentum space (4.9) and recalling the

exchange relations outlined in (4.10a) and (4.10b), it is easy to see that

y0,S,α(−p)y0,S,β(q) − (S+)βαδγ y0,S,γ(q)y0,S,δ(−p), (4.15a)

y0,S,α(−p)y†
0,S,β(q) − (S−)αγβδ y

†
0,S,γ(q)y0,S,δ(−p). (4.15b)

A significant difference we can notice to the scalar case here is that the relations are no longer

governed by the same quantity - instead the first involves the positive limit S+ and the second

its adjoint S−, the opposite limit. In the case of an involutive limit, we know that these are

one and the same (Corollary (4.9)) and we are in a similar situation. Moreover, for the cases

of S± = FH, S± = −FH we see that the above relations are nothing more than the CCR/CAR

relations, respectively implying that the fields ϕ′l,S, ϕr,S commute/anticommute.

For the latter, simple cases we arrive at the same conclusion as for the scalar case - the

scaled model can be written as the (twisted for S± = −FH) tensor product of two chiral models

defined as a representation of a ZF algebra. For other involutive limits, we can apply the

results of Chapter 2 to see that such an argument may still be possible if the limit S+ is Type

1 equivalent to its normal form - in which case, the tensor product decomposition constructed

previously holds and we may consider again these chiral models as a further step on each

tensor slot.

For more complicated limit values that are not involutive, very little is known and will

therefore not be discussed.

4.2 Constructing a Chiral Theory for a General S-matrix

Independently of previous discussions, we construct a one dimensional model on the real

line which largely mirrors that of the two-dimensional case constructed in Chapter 2. There

are, however, changes to the structure - for example, we will see that we gain a translation-

dilation covariant model, and the localisation regions of the fields and algebras will instead

be half-lines and intervals as opposed to wedges and double cones.

Our starting data is a finite dimensional Hilbert space H̃ of dimension dH̃, a single particle

Hilbert space

H ∶= L2(R,dβ) ⊗ H̃
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where the variable β is related to the momentum by

p = eβ

and an S-matrix S ∈ Slim(H). On L2(R,dβ) we have a representation Ṽ1 of the affine group

G0 which consists of translations and dilations on the real line, i.e. for a group element

ga,b ∈ G0, a, b ∈ R a point is transformed by x↦ eax + b. The action of the representation is

(Ṽ1(ga,b)f)(β) ∶= eibe
β ⋅ f(β + a), (4.16)

where ga,b ∈ G0.

To see this is indeed a representation, we check that the group law is preserved. To this

end, let gc,d ∈ G0 with c, d ∈ R, then

(Ṽ1(ga,b)Ṽ1(gc,d)f)(β) = eibe
θ(Ṽ1(gc,d)f)(β + a)

= eibeβeieadeβf(β + a + c)

= ei(b+ead)eβf(β + a + c)

= (Ṽ1(ga+c,ead+b)f)(β).

(4.17)

Lemma 4.12. The representation of G0 defined in (4.16) on L2(R,dβ) is strongly continuous,

irreducible, unitary and the restriction to only translations has a generator with spectrum

within R+ (positive energy).

Proof. First we prove the unitarity: Let f, g ∈ S (R) and ga,b ∈ G0, then we compute

⟨f, Ṽ1(ga,b)g⟩ = ∫
R

dβf(β)(Ṽ1(ga,b)g)(β)

= ∫
R

dβf(β)eibeβg(β + a)

= ∫
R

dβe−ibeβf(β)g(β + a)

= ∫
R

dβ′e−ibeβ
′−af(β′ − a)g(β′) =∶ ⟨Ṽ ∗

1 (ga,b)f, g⟩.

Thus we can see that the adjoint acts as

Ṽ ∗
1 (ga,b) = Ṽ1 (g−a,−be−a) = Ṽ1(g−1

a,b).

By the group law, we observed in equation (4.17) we conclude we have unitarity.

Next, we prove the strong continuity, but note that a unitary representation is strongly

continuous if and only if it is weakly continuous [Cas13]. Let G0 ∋ gan,bn → ga,b ∈ G0 (n→∞),
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then for any f, g ∈ S (R)

lim
n→∞

⟨f, Ṽ1(gan,bn)g⟩ = lim
n→∞∫R

dβf(β)eibneβg(β + an)

= ∫
R

dβ lim
n→∞

f(β)eibneβg(β + an)

= ∫
R

dβf(β)eibeβg(β + a)

= ⟨f, Ṽ1(ga,b)g⟩,

where we have used Lebesgue’s dominated convergence theorem with ∣eibneβ ∣ = 1 and an a

priori bound on the functions f, g as they are both of Schwartz class. In particular, we may

pick

∣g(β)∣ ≤ C1

1 + β2
, ∣f(β + an)∣ ≤ C2,

for C1,C2 ∈ R, and the resulting product of bounds is integrable and we may exchange the

limit and integral. This now holds on a dense set of functions in L2(R,dβ) and hence the

representation is weakly continuous and thus strongly continuous.

Irreducibility for this particular representation on this Hilbert space is shown in [Vil68]

but we outline the proof here. A unitary representation on L2(R,dβ) is irreducible if and

only if the only bounded linear operators on L2(R,dβ) that commute with all Ṽ1(ga,b) are

multiples of the identity [BdlH19]. Now, let A ∈ B(L2(R,dβ)) and we note that to commute

with all Ṽ1(ga,b) for all ga,b ∈ G0, it means that it must commute with both Ṽ1(g0,b), b ∈ R and

Ṽ1(ga,0), a ∈ R. Focusing on the former initially, we have that for any f ∈ L2(R,dβ)

(AṼ1(g0,b)f) (β) = (Ṽ1(g0,b)Af) (β).

By definition, Ṽ1(g0,b) acts by multiplying by the function eibe
β
, and for an arbitrary operator

A to commute with all multiplication operators of this form, A itself must be a multiplication

operator [Nas82], acting as (Af) (β) = z(β)f(β) for some z ∈ L∞(R). Commuting with the

translations then implies

z(β)f(β + a) = z(β + a)f(β + a) ∀f ∈ L2(R,dβ).

This indicates that z(β) = z(β + a) for all a ∈ R, implying that z must be constant and

moreover, A acts by multiplying by a constant and so it is simply a multiple of the identity.

So we conclude that the only operators commuting with all Ṽ1(ga,b) are multiples of the

identity and hence the representation is irreducible.
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To see that we have positivity of the generator of translations, we again note that trans-

lations (denoting this restriction of Ṽ1(ga,b) to translations as Ṽ1(g0,x) = Ṽ τ
1 (x)) act as a

multiplication operator

(Ṽ τ
1 (x)f)(β) = eixeβf(β),

from which we can identify the generator as being the multiplication operator that operates

by multiplying by eβ which is positive.

This symmetry representation can be extended to the full single particle Hilbert space H
by way of a tensor product

V1(ga,b) ∶= Ṽ1(ga,b) ⊗ 1H̃, ga,b ∈ G0 (4.18)

which clearly retains all features of Ṽ1 as stated in Lemma (4.12).

We retain the same conventions as in Chapter 2 index notation - choosing an orthonormal

basis eα for α ∈ {1, . . . , dH̃} of H̃ and denote components of vectors Ψ1 ∈ H by β ↦ Ψα
1 (β)

and similarly for multi-index notation of vectors and tensors.

We can implement a reflection in the affine symmetry with j(x) ∶= −x which acts antiu-

nitarily on H
(V1(j)Ψ)α1 (β) ∶= (J1Ψ)α1 (β) = Ψα

1 (β), Ψ1 ∈ H1 .

This can be seen to act reflectively by its commutation relations with the translations,

i.e. for f ∈ H, a ∈ R

(V1(j)V τ
1 (a)V1(j)f)α1 (β) = (V τ

1 (a)V1(j)f)α1 (β)

= eiaeβ(V1(j)f)α1 (β)

= e−iaeβfα1 (β)

= (V τ
1 (−a)f)α1 (β).

On the n-fold tensor space Hn ∶= H⊗n = L2(Rn,dβ) ⊗ H̃⊗n
for n > 1 we can naturally

extend this representation by defining

[V (ga,b)Ψ]αn (β) ∶= eib∑nj=1 e
βj

Ψα
n (β1 + a, . . . , βn + a)

and the reflection

[JΨ]αn (β) ∶= Φαn⋯α1
n (βn, . . . , β1).
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Our chosen S-matrix defines a representation of the symmetric group on n letters Sn

defined first on the generating transposition elements τk for 0 < k < n which swap the k and

(k + 1)-th elements

(ρSn(τk)Ψ)αn (β) = S(βk+1 − βk)αkαk+1ξkξk+1 Ψα1⋯ξkξk+1⋯αn
n (β1, . . . , βk+1, βk, . . . , βn).

As before, this produces a unitary representation of Sn on Hn. Since any β-dependence is

suppressed in the notation of the left hand side, in future calculations we will explicitly write

(ρSn(π)Ψ)n(β) = Sπn(β) for transparency, but for constant S we retain the former notation.

We also note the following useful result.

Lemma 4.13. [LS12]

Let n ∈ N and k ∈ {1, . . . , n}. Then

Sσkn (β)αν = ∑
η1,...,ηk

δαkηk δ
ν1
η1

k−1

∏
l=1

Sαlηl+1ηlνl+1 (βk − βl) ⋅ δ
αk+1
νk+1 ⋯δ

αn
νn . (4.19)

Proof. We proceed by induction in k and begin with the base step of k = 1. Here we have

that σ1 = id implying that ρSn(σ1) = 1 and so Sσ1n (β) = 1n. Checking this against (4.19) we

see that

Sσ1n (β)αν = ∑
η1

δα1
η1 δ

ν1
η1δ

α2
ν2 ⋯δαnνn = δα1

ν1 ⋯δαnνn = (1H)αν .

We move to the induction step and assume the formula (4.19) holds for some k, taking into

account that σk+1 = τkσk we calculate on some Ψn ∈ Hn.

[ρSn(σk+1)Ψn]
α (β)

= Sαkαk+1ξνk+1 (βk+1 − βk) [ρSn(σk)Ψn]
α1⋯αk−1ξνk+1⋯αn (β1, . . . , βk+1, βk, . . . , βn)

= Sαkαk+1ξνk+1 (βk+1 − βk) ∑
η1,...,ηk

δξηkδ
ν1
η1

k−1

∏
l=1

Sαlηl+1ηlνl+1 (βk+1 − βl)Ψν1...νk+1αk+2...αn
n (βk+1, β1, . . . , β̂k+1, . . . , βn)

= ∑
η1,...,ηk

δαk+1ηk+1 δ
ν1
η1S

αkηk+1
ηkνk+1 (βk+1 − βk)

k−1

∏
l=1

Sαlηl+1ηlνl+1 (βk+1 − βl)Ψν1...νk+1αk+2...αn
n (βk+1, β1, . . . , β̂k+1, . . . , βn)

= ∑
η1,...,ηk

δαk+1ηk+1 δ
ν1
η1

k

∏
l=1

Sαlηl+1ηlνl+1 (βk+1 − βl)Ψν1...νk+1αk+2...αn
n (βk+1, β1, . . . , β̂k+1, . . . , βn),

which coincides with formula (4.19).

Defining the orthogonal projection P S ∶= 1
n! ∑π∈Sn ρ

S
n(π) onto the S-symmetric subspace

of Hn we construct the S-symmetric Fock space FS(H) over H as

FS(H) ∶=
∞
⊕
n=1

P S
n Hn, H0 ∶= C

51



on which we have a V1 invariant vacuum vector ΩS = 1 ⊕ 0 ⊕ 0 ⊕ ... and the space of finite

particle number DSn (the space of terminating sequences (Ψ0,Ψ1, . . . ,Ψn,0,0, . . .) for some

n > 0).

Elements of this Fock space are subject to the symmetry condition

Ψα
n (β) = Sαkαk+1ξkξk+1 (βk+1 − βk)Ψα1⋯ξkξk+1⋯αn

n (β1, . . . , βk+1, βk, . . . , βn),

and having finite norm

∥Ψ∥2 =
∞
∑
n=0

∑
α
∫ dnβ ∣Ψα

n (β)∣
2 < ∞.

In this mode the S-symmetrised creation and annihilation operators yS, y
†
S take a similar

form to those discussed previously, but we define them fully here. For ϕ ∈ H and Ψ ∈ DSn they

act as

(y†
S(ϕ)Ψ)n ∶=

√
nP S

n (ϕ⊗Ψn−1). yS(ϕ) ∶= y†
S (ϕ)∗ , (4.20)

with explicit action given by [LS12]:

[yS(ϕ)Ψ]αn (β) =
√
n + 1∫ dβ′ϕδ(β′)Ψδα

n+1(β′,β), (4.21)

[y†
S(ϕ)Ψ]α

n
= 1√

n

n

∑
k=1

Sσkn (β)αδξ1⋯ξn−1ϕ
δ(βk)Ψξ1⋯ξn−1

n−1 (β1, . . . , β̂k, . . . , βn) (4.22)

for n ≥ 1, where β̂k indicates this variable is omitted and the permutations σk ∈Sn are defined

as σk ∶= τk−1τk−2⋯τ1 and σ1 = 1. For n = 0,

[y†
S(ϕ)Ψ]

0
= 0.

The distributional kernels z#
α (β) related to these operators by

y†
S(ϕ) = ∫ dβ ϕα(β)y†

S,α(β) , yS(ϕ) = ∫ dβ ϕα(β)yS,α(β) (4.23)

and by comparing these to expressions (4.21), (4.22) we can see the explicit action of the

distributional kernels:

[yS,α(β̃)Ψ]ξ
n
(β) =

√
n + 1Ψαξ

n (β̃,β), (4.24)

[y†
S,α(β̃)Ψ]ξ

n
(β) = 1√

n

n

∑
k=1

Sσkn (β)ξδγ1⋯γn−1δ
α
δ δ(β̃ − βk)Ψγ1⋯γn−1

n−1 (β1, . . . , β̂k, . . . , βn) (4.25)
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From these expressions, it is easy to see that these operators transform covariantly under

the symmetry V . Indeed, let ga,b ∈ G0 and Ψn ∈ DSn , then

[V (ga,b)yS(ϕ)V (ga,b)∗Ψ]αn (β) = eib∑
n
j=1 e

βj [yS(ϕ)V (ga,b)∗Ψ]αn (β1 + a, . . . , βn + a)

=
√
n + 1eib∑

n
j=1 e

βj

∫ dβ′ϕδ(β′) [V (ga,b)∗Ψ]δαn+1 (β′, β1 + a, . . . , βn + a)

=
√
n + 1∫ dβ′e−ibe

β′
ϕδ(β′)Ψδα

n+1(β′ − a,β)

=
√
n + 1∫ dβ′eibeβ

′
ϕδ(β′ + a)Ψδα

n+1(β′,β)

= [yS(V1(ga,b))Ψ]αn (β).

Covariance of y†
S follows by taking the adjoint.

Proposition 4.14. The distributional kernels y#
α (β) satisfy

yS,α(β)yS,ξ(β′) − Sξαδγ (β − β′)yS,γ(β′)yS,δ(β) = 0, (4.26)

y†
S,α(β)y

†
S,ξ(β′) − S

γδ
αξ(β − β′)y

†
S,γ(β)y

†
S,δ(β′) = 0 (4.27)

yS,α(β)y†
S,ξ(β′) − S

αγ
ξδ (β′ − β)y

†
S,γ(β)yS,δ(β′) = δαξ δ(β − β′) ⋅ 1H. (4.28)

Proof. Let Ψ ∈ DS, then

[yS,α(β)yS,ξ(β′)Ψ]νn (β̃) =
√
n + 2

√
n + 1Ψξαν

n+2(β′, β, β̃)

=
√
n + 2

√
n + 1Sξαδγ (β − β′)Ψ

δγν
n+2(β, β′,β)

= Sξαδγ (β − β′) [yS,γ(β′)yS,δ(β)Ψ]νn (β̃)

which shows (4.26). By taking adjoints of (4.26) and applying the Hermitian analyticity and

unitarity of S one can easily show (4.27).

Similarly, we proceed by calculation for (4.28)

[yS,α(β)y†
S,ξ(β′)Ψ]ν

n
(β̃) − [Sαγξδ (β′ − β)y

†
S,γ(β′)yS,δ(β)Ψ]ν

n
(β̃)

=
√
n + 1 [y†

S,ξ(β′)Ψ]αν
n+1

(β, β̃)

− 1√
n
Sαγξδ (β′ − β)

n

∑
k=1

Sσkn (β̃)νµζ1⋯ζn−1δ
µ
γ δ(β′ − β̃k) [yS,δ(β)Ψ]ζ1⋯ζn−1n−1 (β̃1, . . . ,

̂̃
βk, . . . , β̃n)

= δαξ δ(β′ − β)Ψν
n(β̃) +

n+1

∑
k=2

Sσkn+1(β, β̃)ανµζ1⋯ζnδ
µ
ξ δ(β′ − β̃k−1)Ψζ1⋯ζn

n (β, β̃1, . . . ,
̂̃
βk−1, . . . , β̃n)

− Sαγξδ (β′ − β)
n

∑
k=1

Sσkn (β̃)νµζ1⋯ζn−1δ
µ
γ δ(β′ − β̃k)Ψδζ1⋯ζn−1

n (β, β̃1, . . . ,
̂̃
βk, . . . , β̃n).

(4.29)
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We may shift the index in the first sum by extracting the first permutation term. This means

that
n+1

∑
k=2

ρSn+1(σk) = (
n

∑
k=1

1⊗ ρSn(σk))ρSn+1(τ1).

Applying this to the first sum in the final line of the above, we have

n+1

∑
k=2

Sσkn+1(β, β̃)ανµζ1⋯ζnδ
µ
ξ δ(β′ − β̃k−1)Ψζ1⋯ζn

n (β, β̃1, . . . ,
̂̃
βk−1, . . . , β̃n)

= Sαζ1ξδ (β′ − β)
n

∑
k=1

Sσkn (β̃)νγζ2⋯ζnδ
γ
ζ1
δ(β′ − β̃k)Ψδζ2⋯ζn

n (β, β̃1, . . . ,
̂̃
βk−1, . . . , β̃n).

One can see the position of the indices in the above match with that of the final term in

(4.29) and they cancel leaving just the contraction term δαξ δ(β′ − β) ⋅ 1H as required.

We also define TCP-transformed creation and annihilation operators by employing the

operator J :

y†
S(ϕ)′ = Jy

†
S(Jϕ)J, yS(ϕ)′ = JyS(Jϕ)J. (4.30)

We observe the explicit action of these operators before proceeding with their relative

commutation relations. Let Ψn ∈ Hn and f ∈ H then

[y†
S(ϕ)′Ψ]α

n
(β) = [Jy†

S(Jϕ)JΨ]α
n
(β)

= [y†
S(Jϕ)JΨ]αn...α1

n
(βn, . . . , β1)

= 1√
n
(
n

∑
k=1

Sσkn (β)αn...α1

γηn−1...η1(Jϕ)γ(βk) [JΨ]ηn−1...η1n−1 (βn, . . . , β̂k, . . . , β1))

= 1√
n
(
n

∑
k=1

Sσkn (β)αn...α1

γηn−1...η1ϕγ(βk)Ψ
η1...ηn−1
n−1 (β1, . . . , β̂k, . . . , βn))

and

[yS(ϕ)′Ψ]αn (β) = [JyS(Jϕ)JΨ]αn (β)

= [yS(Jϕ)JΨ]αn...α1

n (βn, . . . , β1)

=
√
n + 1∫ dβ′(Jϕ)ξ(β′) [JΨ]ξαn...α1

n+1 (β′, βn, . . . , β1)

=
√
n + 1∫ dβ′ϕξ(β′)Ψαξ

n+1(β, β′).

In analogy to the massive model previously described, we can see that these operators cre-

ate/annihilate “from the right” as opposed to the left. The description of these operators

working in opposite directions motivates us to calculate their commutation relations.
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Proposition 4.15. Let f, g ∈ H1 and Ψn ∈ Hn. Then

[yS(f)′, yS(g)]Ψn = 0, (4.31)

[y†
S(f)′, y

†
S(g)]Ψn = 0, (4.32)

[yS(f)′, y†
S(g)]Ψn =Kf,g

n Ψn, (4.33)

[y†
S(f)′, yS(g)]Ψn = Lf,gn Ψn. (4.34)

where Kf,g
n and Lf,gn are multiplication operators which multiply by the tensors

(Kf,g
n )α

γ
= ∫ dβ′fξ(β′)Sσn+1n+1 (β, β′)αξδγ gδ(β′), (4.35)

(Lf,gn )α
γ
= −∫ dβ′fξ(β′)Sσn+1n+1 (β)γξδαgδ(β′) (4.36)

Proof. From the explicit actions of yS(f), yS(f)′ it is clear they commute, but we compute

for clarity - let Ψn ∈ Hn and f, g ∈ H, then

[yS(f)′yS(g)Ψ]αn (β) − [yS(g)yS(f)′Ψ]αn (β)

=
√
n + 1∫ dβ′fξ(β′) [yS(g)Ψ]αξn+1 (β, β′) −

√
n + 1∫ dβ̃gγ(β̃) [yS(f)′Ψ]αγn+1 (β̃,β)

=
√
n + 1

√
n∫ dβ′dβ̃fξ(β′)gγ(β̃)Ψγαξ

n+2(β̃,β, β′)

−
√
n + 1

√
n∫ dβ̃dβ′gγ(β̃)fξ(β̃)Ψγαξ

n+2(β̃,β, β′) = 0

Clearly, all functions in the integrand are measurable and hence Fubini’s theorem allows us

to exchange the order of integration giving (4.31) and taking adjoints gives (4.32).

For (4.33) we calculate

[yS(f)′y†
S(g)Ψ]α

n
(β) − [y†

S(g)yS(f)′Ψ]α
n
(β)

=
√
n + 1∫ dβn+1fξ(βn+1) [y†

S(g)Ψ]αξ
n+1

(β, βn+1)

− 1√
n

n

∑
k=1

Sσkn (β)αδγ1⋯γn−1gδ(βk) [yS(f)
′Ψ]γ1⋯γn−1n−1 (β1, . . . , β̂k, . . . , βn)

= ∫ dβn+1fξ(βn+1)
n+1

∑
k=1

Sσkn+1(β, β′)
αξ
δγ gδ(βk)Ψγ

n(β1, . . . , β̂k, . . . , βn, βn+1)

−
n

∑
k=1

Sσkn (β)αδγ1⋯γn−1gδ(βk)∫ dβn+1fγn(βn+1)Ψγ
n(β1, . . . , β̂k, . . . , βn, βn+1).

The permutation σk for k < n + 1 is a permutation of at most n letters, so we can view

it as leaving the (n + 1)-th letter fixed while permuting the others with Sσkn+1(β, βn+1)αξδγ =
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δξγnS
σk
n (β)αδγ1⋯γn−1 hence all terms in the first sum with k ≤ n get cancelled by the second

sum. This leaves

([yS(f)′, y†
S(g)]Ψ)α

n
(β) = ∫ dβn+1fξ(βn+1)Sσn+1n+1 (β, βn+1)αξδγ gδ(βn+1)Ψγ

n(β1, . . . , βn)

=∶ (Kf,g
n Ψ)α

n

For the final commutation relation, we observe that y(f)∗ ⊃ y†(f) and y(f)′∗ ⊃ y†(f)′ [LS12],

hence, by taking the adjoint of (4.33):

([y†(f)′, y(g)]Ψ)α
n
(β) = ([y(f)′, y†(g)]∗ Ψ)

α

n
(β) = −(Kf,g

n (β)∗)α
γ

Ψγ
n(β) = −Kf,g

n (β)γαΨγ
n(β),

so we have Lf,gn (β)αγ = −Kf,g
n (β)γα which we can read off the multiplication operator Lf,gn .

Remark. Note that in the above we have found an explicit formula for the tensors appearing

in (4.35) and (4.36):

Sσn+1n+1 (β, β′)αξδγ = ∑
η1,...,ηn+1

δξηn+1δ
δ
η1

n

∏
l=1

Sαlηl+1ηlγl
(β′ − βl). (4.37)

4.3 Multi-Component Fields

Before constructing a chiral field, we define two maps and discuss their properties. Let

f ∈ S (R) ⊗ H̃ and ψ ∈ C∞
0 (R) ⊗ H̃ (where C∞

0 (R) is the space of complex-valued, smooth

functions with compact support), then

(F ±f)α(β) ∶= ±ieβ f̃α(±eβ) = ±
ieβ√
2π
∫
R

dx fα(x)e±ixe
β

, (4.38)

(G±ψ)α(ξ) ∶= ∓
i√
2π
∫
R

dx ψα(x)e∓ie
xξ (4.39)

where f̃ is the usual Fourier transform of f .

Lemma 4.16.

a) F ± ∶ S (R) ⊗ H̃ → H is linear and well-defined,

b) F ± is injective,

c) F ±∣
C∞

0 (I)
has dense range for any interval I ⊂ R.

Proof. All proofs will be for F + since the statements for F − are analogous.
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a) Linearity is obvious by linearity of the integral. To show the transform is well-defined,

we must show that F does indeed map into H1. Let f ∈ S (R) ⊗ H̃, then by applying the

substitution p = eβ

2π∥(F +f)α∥2 = ∫
R+
dp/p ∣ipf̃α(p)∣

2 = ∫
R+
dp p ∣f̃α(p)∣

2 < ∞.

The last integral is finite since the Fourier transform is bijective on S (R). That is, f̃α is

more rapidly decreasing than polynomials of any order, hence there exists a C > 0 such

that for all p ∈ R+ we have

∣f̃α(p)∣ <
C

1 + p2
,

and so we can see that ∥(F +f)α∥ < ∞. Thus F +f ∈ H for any f ∈ S (R) ⊗ H̃.

b) To show injectivity, assume that F +f = 0. This implies that f̃α(p) = 0 for p > 0 and all α.

However for fα ∈ C∞
0 (R) the transformed function f̃α is entire, and so we can conclude

that f̃α is constant for each α [McM13] and since it vanishes on the positive real half-line,

it must vanish everywhere. It follows for all fα ∈ S (R) since C∞
0 (R) is dense in S (R).

Finally, injectivity of the Fourier Transform implies f = 0.

c) We proceed by contradiction and let I ⊂ R and ψ ∈ H be non-zero such that ⟨ψ,F +f⟩H = 0

for all f ∈ C∞
0 (I) ⊗ H̃. Then set ϕ(β) = H(β)ψ(β) (H the Heaviside function) we can

apply the Plancherel theorem for distributions:

0 = 2π⟨ψ,F +f⟩H = ∑
α
∫
R+

dp ψα(p)if̃α(p) = ∑
α
∫
R

dp ϕα(p)if̃α(p) = ∑
α

i∫
R

dp ϕ̂α(p)fα(p),

where ϕ̂ denotes the inverse Fourier transform of ϕ. Since fα has compact support, say

on the interval I = [a, b], the last integral then reduces to

∫
a

b
dp ϕ̂α(p)fα(p) = 0,

from which we can see that ϕ̂ must vanish on the interval [a, b]. The inverse Fourier

transform of ϕ (by our conventions) is given by

ϕ̂α(x) = ∫
∞

−∞
dp ϕα(p)eie

px = ∫
R+

dp ψα(p)eie
px,

which we can analytically extend to the upper complex half plane. The Caley transform

g(z) = z−i
z+i biholomorphically maps the upper half plane to the unit disc, and hence the

function g○ϕ̂ is analytic in the unit disc and vanishes on some finite interval. By Liouville’s

theorem, we conclude that ϕ̂ = 0 and thus ψ = 0. We have reached a contradiction and

F +∣
C∞

0 (I) has dense range.
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From now on we simplify notation by setting F ±f =∶ f±, and describe more analytic

properties of both of the transforms defined.

Lemma 4.17.

a) Let fa,bα (x) ∶= fα(e−a(x − b)) and f jα(x) ∶= fα(−x), then

(fa,b)±α(β) = e±ibe
β

f±α(β + a), (f j)±α(β) = −f±α(β). (4.40)

b) Let f, g ∈ S (R) ⊗ H̃ with supp(fα) ⊂ R+, supp(gα) ⊂ R− for all α. Then f+α and g−α

have bounded analytic extensions to the strip S(0, π) and ∣f+α(β + iα)∣, ∣g−α(β + iα)∣ → 0 as

β → ±∞. The boundary values are given by

f+α(β + iπ) = f−α(β), g−α(β + iπ) = g+α(β), β ∈ R.

c) Let ψ ∈ C∞
0 (R) ⊗ H̃, then

(G±ψ)±α = ψα, (G±ψ)∓α = 0.

Proof. a) We show by calculation:

√
2π(fa,b)±α(β) = ±ieβ ∫

R
dx fα(e−a(x − b))e±ixe

β

= ±ieβ ∫
R

dx eafα(x)e±i(e
ax+b)eβ

= ±ieβ+ae±ibeβ ∫
R

dx fα(x)e±ixe
β+a

=
√

2πe±ibe
β

f±α(β + a).

and

√
2π(f j)±α(β) = ±ieβ ∫

R
dx fα(−x)e±ixe

β

= ∓ieβ ∫
−∞

∞
dx fα(x)e∓ixe

β

= ∓ieβ ∫
−∞

∞
dx fα(x)e±ixeβ

= −f±α(β).

b) We will prove all statements for f+ only as the proofs for g− are analogous by taking

fα(x) ∶= gα(−x). We can make an appropriate estimate to bound each component function
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f+α in the strip:

∣f+α(β + iµ)∣ = ∣ieβ+iµ∫
R

dx fβ(x)eixe
β+iµ ∣

= ∣∫
R+

dx fα(x)
∂

∂x
eixe

β+iµ ∣

= ∣∫
R+

dx ( d

dx
fα(x)) eixe

β+iµ ∣

≤ ∫
R+

dx ∣f ′α(x)∣ e−xe
β sin(µ)

≤ ∥f ′α∥1.

In the last line, we have used that x > 0 and that 0 ≤ µ ≤ π. Finally, since each fα ∈ S (R)
it certainly has a bounded derivative and hence f+α is bounded in the strip. We also have

analyticity of f+α in the strip S(0, π) since the transform fα ↦ f+α amounts to multiplying

the Fourier transform of fα with eθ. Moreover, the boundary values at µ = π are easy to

see by computation.

From this we conclude that since f+α(β) converges to zero for β → ±∞ on the two bound-

aries of the strip and that it is bounded and analytic in the interior, it then follows that

∣f+α(β + iµ)∣ → 0 as β → ±∞ for all µ ∈ [0, π].

c) Let ψ ∈ C∞
0 (R) ⊗ H̃. We compute by substitution

(G±ψ)±α (β) = eβ

2π ∫R2
dxdξ ψα(x)e±iξe

β

e∓ξe
x

= eβ

2π ∫R2
dxdξ ψα(x)eiξ(±e

β∓ex)

= eβ

2π ∫R
dxdξ ψα(x)∫

R
eiξ(±e

β∓ex)

= eβ ∫
R

dx ψα(x)δ(±eβ ∓ ex).

This quantity equals zero for all values of β and x except when β = x and so the first

relation follows. Similarly for the second relation

(ψ̂±)∓
α
(β) = − e

β

2π ∫R2
dxdξ ψα(x)e∓iξe

β

e∓ξe
x

= − e
β

2π ∫R2
dxdξ ψα(x)eiξ(∓e

β∓ex)

= − e
β

2π ∫R
dxdξ ψα(x)∫

R
eiξ(∓e

β∓ex)

= −eβ ∫
R

dx ψα(x)δ(∓eβ ∓ ex)

= ∫
R

dx ψα(x)δ(x − β).
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This equation always is equal to zero for every β and x since it can never happen that eβ

is equal to −ex by positivity of the exponential.

We now define two field operators φS, φ′S on FS(H) for f ∈ H

φS(f) = y†
S(f+) + yS(J1f

−), (4.41)

φ′S(f) = y†
S(f+)′ + yS(J1f

−)′ (4.42)

which are both well-defined by Lemma (4.16) and act covariantly under the symmetry V

given that the constituent creation/annihilation operators have the same property.

In Chapter 2 we saw that analogously defined massive fields in two spacetime dimensions

were not generally local in the usual sense, and instead, we found that they were wedge-local,

taking their localisation regions as wedges in Minkowski space. Similarly, here we find we

again have locality only in a specific sense.

Theorem 4.18.

a) The map f ↦ φS(f) is an operator valued tempered distribution with DS contained in the

domain of φS(f) for all f ∈ S (R) ⊗ H̃. For f = f∗ the operator φS(f) is essentially

self-adjoint and has all elements of DS as entire analytic vectors.

b) The operator φS is covariant with respect to the representation V , i.e.

V (ga,b)φS(f)V (ga,b)∗ = φS(fa,b).

c) The fields φS and φ′S are relatively half-local in the following sense: For any a ∈ R, let

f ∈ S ((a,∞)) ⊗ H̃, g ∈ S ((−∞, a)) ⊗ H̃ and Ψ ∈ DSn . Then

[φS(f), φ′S(g)]Ψ = 0 (4.43)

d) Let f, g ∈ H with supp(fα) ∩ supp(gα) = ∅ for all α, then φF is local, i.e.

[φF (f), φF (g)] = 0.

e) The Fock vacuum ΩS is cyclic for the field φS, i.e. for any open interval I ⊂ R, the

subspace

DI ∶= span{φS(f1)⋯φS(fn)ΩS ∶ f1, . . . , fn ∈ H, supp(fα) ⊂ I ∀α,n ∈ N}

is dense in FS(H).
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All of the above statements hold also for φ′S.

Proof. a) The proof for this is identical to the scalar case [BLM11].

b) This is a direct consequence of the linearity of the representation V , the covariance of

yS, y
†
S under V and Lemma (4.17).

c) By applying (4.31)-(4.34) we can see that the commutator between the two fields reduces

to

[φ′S(f), φS(g)]Ψn = [y†
S(f+)′, yS(J1g

−)]Ψn+[yS(Jf−1 )′, y†
S(g+)]Ψn = Lf

+,J1g−
n Ψn+KJ1f

−,g+
n Ψn.

What needs to be shown is that

KJ1f
−,g+

n (β)αγ = ∫ dβ′f−
ξ
(β′) ∑

η1,...,ηn+1
δξηn+1δ

δ
η1

n

∏
l=1

Sαlηl+1ηlγl
(β′ − βl) ⋅ g+δ (β′) (4.44)

coincides with

−Lf+,J1g−n (β)αγ = ∫ dβ′f+ξ (β′) ∑
η1,...,ηn+1

δξηn+1δ
δ
η1

n

∏
l=1

Sγlηl+1ηlαl (β′ − βl) ⋅ g−δ (β
′). (4.45)

Due to the support properties of the components of f and g, by [Lec03, pg. 13] and [MR75]

and their Fourier transforms continue to analytic functions in the upper-half complex

plane, and moreover the composition of this with the exponential function implies the

functions f± and g± are entire analytic in each component. Furthermore, by (4.17) these

extensions are bounded in the strip S(0, π) and f−αn(β′+iµ) and g+ξ (β′+iµ) decay rapidly as

β′ → ±∞ in the strip µ ∈ [0, π] with the boundary values given by f−
ξ
(β′+ iπ) = f+

ξ
(β′) and

g+δ (β′ + iπ) = g−δ (β′). Applying the analyticity properties of S and also crossing symmetry,

we shift the contour of integration from R to R + iπ which now reads

KJ1f
−,g+

n (β)αγ = ∫ dβ′f+
ξ
(β′) ∑

η1,...,ηn+1
δξηn+1δ

δ
η1

n

∏
l=1

Sηlαlγlηl+1(βl − β
′) ⋅ g−δ (β′)

= ∫ dβ′f+ξ (β′) ∑
η1,...,ηn+1

δξηn+1δ
δ
η1

n

∏
l=1

Sηlαlγlηl+1(βl − β
′) ⋅ g−

δ
(β′).

By Hermitian analyticity, we finally have that Sηlαlγlηl+1(βl − β′) = Sγlηl+1ηlαl (β′ − βl) and the

proof is finished.
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d) By standard commutation relations we have that

[φF (f), φF (g)] = ⟨f−, g+⟩H − ⟨g−, f+⟩H

= ∑
α
∫
R

dθ f−α(θ)g+α(θ) − ∫
R

dθ g−α(θ)f+α(θ)

= ∑
α
∫
R

dxdydθ
e2θ

2π ∫R2
fα(x)gα(y) (eie

θ(y−x) − e−ieθ(y−x))

= 1

2π
∑
α
∫
R2

dxdy fα(x)gα(y)∫
∞

0
dp p (eip(y−x) − e−ip(y−x))

= 1

2π
∑
α
∫
R2

dxdy fα(x)gα(y)∫
∞

0
dp peip(y−x) − pe−ip(y−x)

= 1

2π
∑
α
∫
R2

dxdy fα(x)gα(y)∫
R

dp peip(y−x)

= ∑
α
∫
R2

dxdy fα(x)gα(y)(−iδ′(y − x))

= −i∑
α
∫
R

dxdy fα(x)gα(x)dx.

We can see that this disappears if supp(fα)∩ supp(gα) = ∅.

e) Let PS(I) denote the algebra generated by all polynomials in the field φS(f) with supp(fα) ⊂
I for all α. We look to apply a Reeh Schlieder type argument and assume that PS(I)ΩS

is not dense in H and so ΩS is not cyclic for PS(I). By positivity of its generator, we can

consider translations V τ(z) for z in the upper half-plane, so define a function

h(x) ∶= ⟨u,V τ(z)φS(f)ΩS⟩H,

which is holomorphic in the upper half-plane. We can then also define a function for some

u ∈ H by

g(z) ∶= h(z),

to be holomorphic on the lower half-plane and also g(x) = f(x) for x ∈ R, i.e. the two

complex values functions agree on the real line. Let ψ ∈ FS(H) be such that

⟨ψ,V τ(z)φS(f)Ω⟩ = 0,

for all φS(f) ∈ PS(I). In particular, if we take the interval I0 ⊂ I such that I0 + ε = I for

some small positive ε. Then for all φS(f0) ∈ PS(I0) and x ≤ ε

h(x) = ⟨ψ,V τ(x)φS(f0)ΩS⟩ = ⟨ψ,V τ(x)φS(f0)V τ(x)∗Ω⟩ = 0.

We can see from the consideration made previously that there is a holomorphic function

in the upper half complex plane and also another in the lower half complex plane which
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coincide on the real line, vanish on an interval on that line and so must vanish everywhere

by the Edge-Of-The-Wedge theorem [Rud71]. Hence we can conclude that the above

actually holds for arbitrary translations V τ(x), x ∈ R so it must be that ⟨ψ,φS(f)ΩS⟩ = 0

for supp(fα) = R for all α, but since PS(R)ΩS is dense in FS(H) we have a contradiction

and thus PS(I)ΩS is dense in FS(H) if and only if PS(R)ΩS is dense.

With the definition of these fields and an understanding of their locality properties, we

now look to the algebraic formulation and in particular the von Neumann algebras generated

by the exponentiated version of these fields. To this end, we denote the self-adjoint closures

of φS(f) and φ′S(f) (for f = f∗) by the same symbols and define the following

AS(R+) ∶= {eiφS(f) ∶ f = f∗ ∈ S (R+) ⊗ H̃}′′

AS(R−) ∶= {eiφ′S(f) ∶ f = f∗ ∈ S (R−) ⊗ H̃}′′.

Proposition 4.19. Let S ∈ Slim(H), then the algebras AS(R+),AS(R−) have the following

properties:

a) For a ≥ 0, b ∈ R
V (ga,b)AS(R+)V (ga,b)∗ ⊂ AS(R+).

b) The vacuum vector ΩS is cyclic and separating for AS(R+).

Proof. a) The algebra AS(R+) is generated by the elements eiφS(f) (for f = f∗ ∈ S (R+))
which by linearity of the representation V and Theorem (4.18) transforms as V (ga,b)eiφS(f)V (ga,b)∗ =
eiφS(f

a,b). Since it is clear that fa,b ∈ S (R+) ⊗ H̃ the result follows.

b) As we have taken the self-adjoint closure of φS(f) the cyclicity of ΩS for AS(R+) follows

from standard Reeh-Schlieder type arguments (as in, for example, [BY90]) together with

the cyclicity of ΩS for φS(f) given by Theorem (4.18) (e).

Given the commutation relations between φS(f) and φ′S(g) as in Theorem (4.18) (c) for

f ∈ S (R+) ⊗ H̃ and g ∈ S (R−) ⊗ H̃, hence the unitaries eiφ∣S(f), eiφS ;(g) commute for the

same f, g implying that AS(R−) ⊂ AS(R+)′. Since ΩS is cyclic for AS(R−) by the same

arguments as above, it is then separating for AS(R+)
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4.4 Local Operators

Here we look into the question of the size of the local algebras A(I) for an interval I ⊂ R. It

will become increasingly clear that the size of A(I) depends on the limit values of S.

One may wonder for which cases these interval algebras are trivial (where only multiples

of the identity exist), if they contain a richer spectrum of observables, or even if they are

isomorphic to interval algebras present in a free field theory.

The local algebras AS(I) are analogous to the algebras generated by double cones con-

structed in Chapter 2, however with the geometry altered in this setting, we consider the

algebras on intervals instead. However, we define them in a similar way:

AS(a, b) ∶= V τ(a)AS(R+)V τ(−a) ∩ V τ(b)AS(R−)V τ(−b). (4.46)

For more general subsets, we construct by additivity. To assess the size of these algebras,

we look to derive potential obstructions to the existence of local operators and analyse the

results.

Firstly, we recall the notion of a partial trace of finite dimensional operators - an operation

prevalent in quantum mechanics (and particularly quantum computing) where it is used to

calculate reduced density matrices in multi-partite systems, thereby formulating a method

of decoherence in quantum measurements. We refer the interested reader to [Maz16, Par12,

NC00] for more in-depth discussions on the partial trace and its applications.

Definition 4.20. Let H̃, K̃ be finite dimensional Hilbert spaces and A ∈ B(H̃),B ∈ B(K̃).
Then we define the left partial trace ptL ∶ B(H̃⊗ K̃) → B(K̃) as the unique linear map

satisfying

ptL(A⊗B) = Tr(A)B,

or similarly the right partial trace ptR ∶ B(H̃⊗ K̃) → B(H̃) as

ptR(A⊗B) = Tr(B)A.

A subscript of “L” and “R” simply indicates which tensor slot we apply the trace operation

to. In other literature, it is common to see a subscript of the space involved, such as ptH̃,

but we will be concerning ourselves with tensor products of a single Hilbert space this would

lead to ambiguity.
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For arbitrary tensor powers of finite dimensional Hilbert spaces, it may be unclear how

to extend this idea - many possibilities exist, all of which give rise to other well-defined

operations. We fix our conventions with the following.

Definition 4.21. Let H̃ be a finite dimensional Hilbert space, Ai ∈ B(H̃) for i ∈ {1, . . . , n}
and some n ∈ N. Then we define the partial trace ptL ∶ B(H̃

⊗n) → B(H̃⊗(n−1)) as the linear

extension

ptL (
n

⊗
i=1

Ai) = Tr(A1)
n

⊗
i=2

Ai

and similarly ptR ∶ B(H̃
⊗n) → B(H̃⊗(n−1)):

ptR (
n

⊗
i=1

Ai) = Tr(An)
n−1

⊗
i=1

Ai.

We furthermore define a helpful map for future discussions.

Definition 4.22. The sesquilinear map m ∶ H×H →M(dH̃,C) (the space of dH̃×dH̃ complex

valued matrices) is defined component-wise by

(m(f, g))αβ = ⟨fα, gβ⟩L2(R).

Some simple properties of this map can be spotted from the definition - for example,

Tr(m(f, g)) = ⟨f, g⟩ and m(f, g) is self-adjoint if f = g. It is also possible to choose vector-

valued functions f, g to give specific m(f, g) - for example, if we take f = g such that {fα} is

an orthonormal set then m(f, f) = 1, the identity matrix.

With this map, we define an operator we will later show produces an obstruction to the

existence of local observable in the interval algebras AS(I) - an operator which is dependent

on the limits S±.

Definition 4.23. Let S− ∈ Rlim(H̃) and f, g ∈ H. Then we define an operator Sf,gn on H̃⊗n

(n ∈ N0)
Sf,gn = ptL[ (m(f, g) ⊗ 1⊗n)ρn+1

F (σ−1
n+1)ρn+1

S− (σn+1)]. (4.47)

With Sf,gn defined for all n, we take its direct sum over all n:

Sf,g ∶= ⊕
n≥0

1⊗n
L2(R) ⊗ S

f,g
n .

Lemma 4.24. Let ψ1, ψ2 ∈ S (R) ⊗ H̃ and n ∈ N0. The following operators converge to zero

in the weak operator topology as λ→∞.

Pn−2yS(V1(0, λ)ψ1)JyS(V1(0, λ)ψ2)Pn (4.48)
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Pn+2y
†
S(V1(0, λ)ψ1)Jy†

S(V1(0, λ)ψ2)Pn (4.49)

Pny
†
S(V1(0, λ)ψ1)JyS(V1(0, λ)ψ2)Pn (4.50)

[yS(V1(0, λ)ψ1), y†
S(V1(0, λ)ψ2)′] − Sψ1,ψ2 . (4.51)

Proof. Let Ψn ∈ Hn ∩S (Rn)⊗ H̃⊗n
then using the definition of the annihilation operator we

find that for k = 1,2, and ∣α∣ = n − 1,

∥yS(V1(0, λ)ψk)Ψn∥2 = ⟨yS(V1(0, λ)ψk)Ψn, yS(V1(0, λ)ψk)Ψn⟩

= n ∑
α0,γ0

⟨∫ dβ0ψ
α0

k (β0 + λ)Ψα0α
n (β0,β),∫ dβ′0ψ

γ0α
k (β′0 + λ)Ψγ0α

n (β′0,β)⟩

= n ∑
α0,γ0,α

∫ dβ0dβ′0dβψ
α0

k (β0 + λ)ψγ0k (β′0 + λ)Ψα0α
n (β0,β)Ψγ0α

n (β′0,β).

Pointwise, the integral goes to zero as λ → ∞ due to the properties of the Schwartz class

functions. Moreover, since all functions are of this class, we may apply dominated convergence

(for every index) to show that yS(V1(0, λ)ψk)Ψn → 0 in the Hilbert space norm. In addition,

we always have the norm bound ∥yS(V1(0, λ)ψk)Pn∥ ≤ √
n∥ψk∥ independent of λ, hence

yS(V1(0, λ)ψk)Pn tends to 0 as λ → ∞ in the strong operator topology. This together with

∥J∥ = 1 implies that (4.48) does indeed vanish in the strong operator topology. (4.49) differs

from the adjoint of (4.48) by only redefinitions of the involved functions, and so we can

immediately conclude that it vanishes in the weak operator topology. To show that (4.50)

vanishes in the weak operator topology we look to the scalar product

⟨y†
S(V1(0, λ)ψ1)JyS(V1(0, λ)ψ2)PnΨn, Φn⟩ = ⟨JyS(V1(0, λ)ψ2)PnΨn, yS(V1(0, λ)ψk)PnΦn⟩

for Ψn ∈ Hn ∩S (Rn) ⊗ H̃ which converges to 0 as λ → ∞ on account of yS(V1(0, λ)ψk)Pn
vanishing strongly.

For the final operator, we note that we know the value of the commutator from (4.34) so

we expand the scalar product for Φn,Ψn ∈ Hn ∩S (Rn) ⊗ H̃⊗n

⟨Φn, ([yS (V1(λ,0)ψ1) , y†
S (V1(λ,0)ψ2)′] − Sψ1,ψ2

n )Ψn⟩

= ∑
α
∫ dnβdβ′Φα

n (β) (ψγ2(β′ + λ)Sσn+1n+1 (β, β′)ηγδαψδ1(β′ + λ) − Sψ1,ψ2
n )Ψη

n(β)

= ∑
α
∫ dnβdβ′Φα

n (β) (ψγ2(β′)Sσn+1n+1 (β, β′ − λ)ηγδαψδ1(β′) − Sψ1,ψ2
n )Ψη

n(β)

where we have used a substitution in the functions’ arguments.

We again apply dominated convergence for the limit λ → ∞; as argued previously, the

functions Φn, ψ1, ψ2 are of Schwartz class and so have bounded norm. The tensor Sσn+1n+1 (β, β′−
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λ) is unitary and so have unit norm. Similarly Sψ1,ψ2
n is a partial trace of products of unitary

representations of Sn and a finite scalar product and so clearly has bounded norm, also.

With the requirements of dominated convergence satisfied, what remains to be shown is that

lim
λ→∞∫ dβ′ψγ2(β′)Sσn+1n+1 (β, β′ − λ)ηγδζ ψδ1(β′)Ψζ

n(β) = (Sψ1,ψ2
n Ψn)ζ(β).

Evaluating the limit by dominated convergence and expanding the left hand side according

to (4.37) gives

∫ dβ′ψγ2(β′)ρn+1
S− (σn+1)ηγδζ ψδ1(β′)Ψη

n(β)

= ∫ dβ′ψγ2(β′) ∑
ξ1,...,ξn+1

δγξn+1δ
δ
ξ1

n

∏
l=1

(S−)ηlξl+1ξlζl
ψδ1(β′)Ψη

n(β).
(4.52)

We can read off here the expression for n = 0 easily:

Sψ1,ψ2

0 ΩS = ⟨ψ1, ψ2⟩ΩS.

For n > 0, by (4.8) iii) we can simplify slightly by applying (S−)ηlξl+1ξlζl
= (S−)ζlξl+1ξlηl

:

ρn+1
S− (σn+1)ηγδζ = ∑

ξ1,...,ξn+1
δγξn+1δ

δ
ξ1

n

∏
l=1

(S−)ηlξl+1ξlζl

= ∑
ξ1,...,ξn+1

δγξn+1δ
δ
ξ1

n

∏
l=1

(S−)ζlξl+1ξlηl

= ρn+1
S− (σn+1)ζγδη

With this cosmetic simplification in mind, we illustrate the action of Sψ1,ψ2
n to realise it

coincides with that of (4.52). Let Ψn+1 ∈ Hn+1 ∩S (Rn+1) ⊗ H̃⊗n+1
then

((m(ψ1, ψ2) ⊗ 1⊗n)ρn+1
F (σ−1

n+1)ρn+1
S− (σn+1)Ψn+1)

α (β)

= ⟨ψα1
1 , ψτ2 ⟩L2(R) (ρn+1

F (σ−1
n+1)ρn+1

S− (σn+1)Ψn+1)
τα2⋯αn+1 (β)

= ⟨ψα1
1 , ψτ2 ⟩L2(R) (ρn+1

S− (σn+1)Ψn+1)
α2⋯αn+1τ (β)

= ⟨ψα1
1 , ψτ2 ⟩L2(R)ρ

n+1
S− (σn+1)α2⋯αnτ

γ1⋯γn+1Ψ
γ
n+1(β).

The partial trace introduces a δα1
γ1 term, and (4.37) gives the full expression for (S−)σn+1n+1 (β, β′) =

ρn+1
S− (σn+1) to coincide with (4.52).

Proposition 4.25. Let A ∈ A(I) for some bounded interval I = (a, b), S ∈ Slim(H̃), then

[A,SJ1g−,g′+] = 0 for any g ∈ S (b,∞)⊗ H̃, g′ ∈ S (−∞, a) ⊗ H̃.
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Proof. Set f [′] = (g[′])0,λ for λ ≥ 0. Then the closed field operator φS(f) is affiliated with

V τ(b)AS(R+)V τ(b)∗ and φ′(f ′) with V τ(a)AS(R−)V τ(a)∗. This implies that their product

φS(f)φ′S(f ′) must commute with

AS(I) = V τ(a)AS(R+)V τ(a)∗ ∩ V τ(b)AS(R−)V τ(b)∗.

We have

φS(f)φ′S(f ′) = y†
S(f+)y

†
S(f ′+)′ + y

†
S(f+)yS(Jf ′−)′

+ y†
S(f ′+)′yS(J1f

−) + yS(J1f
−)zS(Jf ′−)′

+ [yS(J1f
−), y†

S(f ′+)′] .

By (4.24) we know that the first four terms vanish in the weak operator topology, and we

are left with SJ1g
−,g′+ as claimed.

This gives us some insight into the size of these interval algebras, though the problem

is still not transparent. The above commutation relation between algebra elements and the

obstruction operator is a necessary condition, but not a sufficient one and in addition, Sf,gn

may be an extremely complicated operator - though its action is purely on (the tensor powers

of) the finite dimensional space H̃. We can, of course, immediately construct operators that

commute with Sf,gn . For example, let An ∈ B(L2(R⊗n) for all n > 0 and take A0 = 1L2(R), then

the operator

A =⊕
n≥0

An ⊗ 1⊗nH̃

commutes with Sf,gn .

We can also consider simple examples of Sf,gn - the case of S− = F (as is the case for the

O(N) σ-models, for example) the obstruction reduces to Sf,gn = ⟨f, g⟩ ⋅ 1H for all n. This is

analogous to the findings in [BLM11] for the free Bose case where such an obstruction is no

longer present. In [BLM11] it is found to always be the case that S+ = S− in the scalar case,

but for d ≥ 2 this is no longer necessarily the case by the definition of S and we so far have

seen a possible obstruction involving S−, but S+ has not played a role. It would be natural to

wonder if there exists a similar obstruction governed by the opposite limit. Part (i) of (4.8)

offers help in this direction and we insert this relation into (4.52) for Ψn ∈ Hn∩S (Rn)⊗H̃⊗n

∫ dβ′ψγ2(β′) ∑
ξ1,...,ξn+1

δγξn+1δ
δ
ξ1

n

∏
l=1

(S−)ηlξl+1ξlζl
ψδ1(β′)Ψη

n(β)

= ∫ dβ′ψγ2(β′) ∑
ξ1,...,ξn+1

δγξn+1δ
δ
ξ1

n

∏
l=1

(S+)ξlζlηlξl+1ψ
δ
1(β′)Ψη

n(β).
(4.53)
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Definition 4.26. Let S+ ∈ Rlim(H̃), with f, g ∈ H. For n ∈ N0 we define the operator S̃f,gn on

H̃⊗n
:

S̃f,gn ξn = ptR[ (1⊗n ⊗m(g, f))ρn+1
F (σn+1)ρn+1

S+ (σ−1
n+1)]ξn. (4.54)

We briefly compare S̃f,gn to Sf,gn to point out the subtle differences - firstly we take a

partial trace in a different tensor slot, which is reflected in the change of position of m in the

formula. Moreover, the arguments of m undergo an exchange in position and gain an extra

conjugation. Finally, the arguments of both ρn+1
F and ρn+1

S+ are inverted.

Analogously to Sf,g we take the direct sum of S̃f,gn over all n

S̃f,g ∶= ⊕
n≥0

1⊗n
L2(R) ⊗ S̃

f,g
n

and we now show that Sf,gn does indeed coincide with the expected (4.53).

Corollary 4.27. Let S+ ∈ Rlim(H̃), f, g ∈ L2(R) ⊗ H̃ then

(S̃f,gn Ψn)
α (β) = ∫ dβ′gγ(β′) ∑

ξ1,...,ξn+1
δγξn+1δ

δ
ξ1

n

∏
l=1

(S+)ξlζl+1ηlξl+1f
δ(β′)Ψη

n(β), Ψn ∈ Hn .

Proof. To show this, we will analyse the operator (4.54), in particular the quantity within

the partial trace. To this end, let Ψn ∈ Hn, then

[ (1⊗n ⊗m(f, g))ρn+1
F (σn+1)ρn+1

S+ (σ−1
n+1)Ψn+1]

α

(β)

= ⟨gαn+1 , f δ⟩L2(R)[ρn+1
F (σn+1)ρn+1

S+ (σ−1
n+1)Ψn+1]

α1...αnδ

(β)

= ⟨gαn+1 , f δ⟩L2(R)[ρn+1
S+ (σ−1

n+1)Ψn+1]
δα1...αn

(β)

= ⟨gαn+1 , f δ⟩L2(R)ρ
n+1
S+ (σ−1

n+1)δα1...αn
η1...ηnγ Ψη1...ηnγ

n+1 (β).

Taking the partial trace in the right-most tensor slot introduces a δαn+1γ term which proves

the assertion.

As mentioned briefly before, these obstruction operators provide a necessary condition on

the size of the interval algebras AS(I), I ⊂ R, but the commutativity condition is not entirely

transparent for the even the simplest cases and would prove incalculable in generality.

In some cases of S−, the obstruction operator Sf,g has a much simpler form.

Proposition 4.28. Let A,B ∈ B(H̃) be commuting involutive, orthogonal matrices. Then

R ∶= F (A⊗B) is a unitary R-matrix and R∗ = Rc.
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Proof. We begin by showing that R satisfies the Yang-Baxter equations which reads

(R⊗ 1)(1⊗R)(R⊗ 1) = (1⊗R)(R⊗ 1)(1⊗R). (4.55)

Focusing attention first on the left hand side, we can rewrite it as

(R⊗ 1)(1⊗R)(R⊗ 1) = (F (A⊗B) ⊗ 1)(1⊗ F (A⊗B))(F (A⊗B) ⊗ 1)

= (F ⊗ 1)(1⊗ F )(F ⊗ 1)(A⊗B ⊗ 1)(1⊗A⊗B)(A⊗ 1⊗B)(A⊗B ⊗ 1)

= (F ⊗ 1)(1⊗ F )(F ⊗ 1)(A2 ⊗AB ⊗B2).

Repeating the same procedure for the right hand side we have the similar expression

(1⊗R)(R⊗ 1)(1⊗R) = (1⊗ F )(F ⊗ 1)(1⊗ F )(A2 ⊗BA⊗B2).

It is well known that the tensor flip solves the Yang-Baxter equation in any dimension, and

given that it is involutive (4.55) simplifies to

A2 ⊗AB ⊗B2 = A2 ⊗BA⊗B2

which is satisfied by the commutativity condition between A and B.

Unitarity of R follows from A,B being orthogonal and F being unitary and self-adjoint.

From Proposition (4.8) the condition R∗ = Rc is equivalent to Rl = Rr = R which we can

compute with matrix operations more explicitly. Indeed

Rl = F (A∗ ⊗B) = F (A⊗B),

since A is involutive and orthogonal (implying it is self-adjoint) and B being real-valued due

to orthogonality. In an identical fashion, we find also Rr = R.

The above shows that given certain conditions on A,B the matrix F (A⊗B) is a feasible

limit of a rapidity-dependent S-matrix. We define the subset R′
lim(K) ⊂ Rlim(K) to be the

elements R ∈ Rlim(K) which can be written as R = F (A ⊗ B) for commuting involutive,

orthogonal matrices A,B ∈ B(K).

Proposition 4.29. Let F (A⊗B) =∶ S− ∈ R′
lim(K) then

Sf,gn = Tr (m(f, g)A)A⊗n−1 ⊗Bn for all f, g ∈ L2(R) ⊗K, n ≥ 1.
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Proof. The result follows from the expression (4.47) once we show that

ρn+1
F (σ−1

n+1)ρn+1
S− (σn+1) = A⊗n ⊗Bn (4.56)

and we proceed by induction on n. For n = 0, σ1 = id and the statement is trivial. We assume

(4.56) holds for some n = k and approach the case of n = k + 1.

The representations ρF , ρS− decompose according to the following expression

ρjF (σi,k+2) = 1⊗i−1 ⊗ ρj−iF (σk+2−i),

and similarly for ρS− . For i < k + 2 yielding the simplification

ρk+2
F (σ−1

k+2)ρk+2
S− (σk+2) = ρk+2

F (σ−1
2,k+2τ1)ρk+2

S− (τ1σ2,k+2)

= ρk+2
F (σ−1

2,k+2)(F ⊗ 1⊗k)(F (A⊗B) ⊗ 1⊗n)ρk+2
S− (σ2,k+2)

= (1⊗ ρk+1
F (σ−1

k+1)) (A⊗B ⊗ 1⊗n) (1⊗ ρk+1
S− (σk+1))

= (A⊗ 1⊗n ⊗B) (1⊗ ρk+1
F (σ−1

k+1)ρk+1
S− (σk+1))

= (A⊗ 1⊗n ⊗B)(1⊗A⊗n ⊗Bn)

= A⊗n+1 ⊗Bn+1

and so it follows for all n. Inserting this into (4.47) we now reach the assertion.

So far, this description has been heavily dependent on general test functions, whereas the

operator Sf,gn itself is a multiplication operator acting on the finite dimensional Hilbert space

H̃. For a more general expression, one may formulate in a function-independent manner

which motivates the following preparatory result.

Lemma 4.30. Let g ∈ S (−∞,−1) be non-negative. Then

⟨g+, g+⟩L2(R) ≠ 0.

Proof. Initially, we expand the scalar product and express g+ in terms of g by (4.38):

2π⟨g+, g+⟩L2(R) = −∫
R
e2β ∫

−1

−∞
∫

−1

−∞
dxdydβ g(x)g(y)eieβ(x+y)

= −∫
−1

−∞
∫

−1

−∞
dxdy g(x)g(y)∫

R
dβ e2βeie

β(x+y).

All functions appearing in the integrand are measurable, hence we may invoke Fubini’s Theo-

rem followed by the substitution p = eβ. Prior to continuing calculations, recall the definition
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of the Heaviside function

H(p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, p ≥ 0,

0, otherwise

whose Fourier transform is well-documented (see, for example [Bel19]) and has a distribu-

tional expression:

H̃(ξ) = πδ(ξ) − 1

iξ

where 1
iξ is understood as the principle value.

Now

2π⟨g+, g+⟩L2(R) = −∫
−1

−∞
∫

−1

−∞
g(x)g(y)∫

∞

0
peip(x+y)dpdxdy

= −∫
−1

−∞
∫

−1

−∞
g(x)g(y)∫

∞

−∞
H(p)peip(x+y)dpdxdy

= −∫
−1

−∞
∫

−1

−∞
g(x)g(y) d

d(x + y) (πδ(x + y) − 1

i(x + y) .)dxdy

Given the support of f , the contribution given by the delta distribution vanishes leaving just

⟨g+, g+⟩L2(R) = −
i

2π ∫
∞

1
∫

∞

1
g(x)g(y) 1

(x + y)2
dxdy.

The kernel appearing is always positive, and g is a positive function thus ⟨g+, g+⟩L2(R) ≠ 0.

Lemma 4.31. Let M ∈ B(H̃) and S− ∈ Rlim(H̃) then the operator X(M) ∶ H̃ → H̃ defined by

X(M) =⊕
n≥0

Xn(M),

X0(M) = 0,

Xn(M) = ptL [(M ⊗ 1⊗n)ρn+1
F (σ−1

n+1)ρn+1
S− (σn+1)] −Tr(M)1.

(4.57)

is an element of AS(I)′.

Proof. Fix I = (−1,1) without loss of generality, and let f ∈ S (−∞,−1)⊗H̃, g ∈ S (1,∞)⊗H̃.

Then the operator Xn(M) differs from that of SJ1f
−,g+

n by a −Tr(M)1 term, and the labelled

matrix M . Note that we can write X0(M) = Tr(M)1 −Tr(M)1 so the previous observation

is true for n ≥ 0.

Let the functions f, g now be real-valued, positive functions such that fν(−x) = gµ(x) for

fixed ν,µ ∈ {1, . . . dH̃} and all other components zero. Now m(J1f−, g+) = ⟨g+µ, g+µ⟩L2(R)Eν
µ,

where Eν
µ has only the ν,µ-th entry equal to one, and everywhere else zero. Suitable nor-

malisation of gµ can be chosen such that ⟨g+µ, g+µ⟩L2(R) = 1 and such m(J1f−, g+) then form an
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orthonormal basis for B(H̃). Linearity of the trace and the closure of AS(I)′ under linear

combinations implies that we may write any M ∈ B(H̃) as a linear combination of suitably

chosen m(J1f−, g+) and hence X(M) ∈ AS(I)′ for M ∈ B(H̃).

This now gives us the freedom to consider X(M) as a potential obstruction to local

operators for any M ∈ B(H̃) which needs no reference to analyticity properties of functions.

A cyclic vacuum vector is the ideal situation we would find ourselves in for a local algebra.

With the definition of X(M) we find a restriction on potential values of S± for this to be the

case.

Theorem 4.32. Let S ∈ Slim(H̃) and I ⊂ R, then if ΩS is cyclic for AS(I), S± = F.

Proof. Let ΩS be cyclic for AS(I), then in particular it is separating for AS(I)′. By definition

X(M)ΩS = 0 for any M , and hence Xn(M) must vanish for all n. Let S− ∈ Rlim(H̃), and

choose M = Eν
µ for any ν,µ ∈ {1, . . . , dH̃} then

X1(M)αβ = Ea
b (FS−)µανβ − δνµδαβ = 0

We read off that (S−)ανµβ = δνµδαβ which is precisely S− = F .

With ΩS cyclic for AS(I) it is known that AS(I) is isomorphic to a unique hyperfinite

Type III1 factor for any I [BL04, BDF87]. This is one possible case for AS(I), and is the

case where we find the largest possible algebra. The opposite extreme is when AS(I) contains

only multiples of the identity which is now the direction of focus.

In the abstract algebraic setting, the notion of obstructions to local observables can be

described by projections onto certain subspaces. Analysis of such projections is an equiv-

alent problem to analysis of obstruction operators. We can consider the intersection of all

commutants of interval algebras AS(I)′ and define what we will refer to as an algebra at

infinity :

A∞S ∶= ⋂
I∈R
AS(I)′.

We describe this in much more detail in the following Chapter.
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Chapter 5

Deformations of Chiral Theories and

Trivial Inclusions

In the previous chapter, we alluded to the possibility of a trivial local algebra - that is, an

algebra where the only local observables for the model that exist are multiples of the identity.

Though this case is pathological for a physically relevant quantum field theory, the problem

is a relevant one in other contexts. In particular, this idea is deeply rooted in the analysis

of half-sided modular inclusions (which we will formally define in the next section) in which

context they are referred to as a singular inclusion.

The first example of a singular inclusion was found recently by [LTU19] in the context of

free probability. However, we present here the findings as in [LS22] using simpler tools in the

context of field theory deformations, and in particular warped convolutions. We will speak

of a Hilbert space H (for now remaining general) with a (vacuum) vector Ω.

5.1 Half-Sided Modular Inclusions

We begin by defining a half-sided modular inclusion in its own right together with the notion

of a Borchers triple, before aligning it with our understanding of the chiral models we have

previously constructed. The results presented here are some of those that have been published

in the joint paper [LS22] with G. Lechner.

We begin with preliminary definitions in our abstract setting, in particular, we use the
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shorthand notation

σt(⋅) ∶= ∆it(⋅)∆−it

where ∆ is the modular operator associated with a von Neumann algebra M (for more on

Tomita-Takesaki theory, see Appendix D).

Definition 5.1. For von Neumann algebras M,N on H with Ω a cyclic and separating

vector, the inclusion N ⊂M is called half-sided modular if σt(N) ⊆ N for all t ≤ 0.

Definition 5.2. A one-dimensional Borchers triple (M, V τ ,Ω) consists of a von Neumann

algebra M, a strongly continuous, unitary one-parameter group V τ with positive generator

such that

V τ(x)MV τ(x)−1 ⊂M, for x ≥ 0

and a vector Ω which is cyclic and separating forM and invariant under V τ , that is V τ(x)Ω =
Ω for all x ∈ R.

We recall that for a one-dimensional Borchers triple (M,V τ ,Ω) Borchers theorem [Bor92]

says that

∆itV tau(x)∆−it = V τ(e−2πx), JV τ(x)J = V τ(−x), t, x ∈ R

where J,∆ are the modular data ofM (see Appendix D). Thus V τ extends to an anti-unitary

representation of the affine group.

To link with previous discussions in Chapter 3, we can realise the von Neumann algebraM
as the half-line algebra AS(R+), the unitary group V τ as the restriction of the representation

V of the affine group to the translations, and the vector Ω as the vacuum ΩS. We then realise

that in this model we have a Borchers triple, with an example of a half-sided modular inclusion

given by AS(1,∞) ⊂ AS(R+). The results in this Chapter will be described in the former

context of a more abstract algebraic structure, but as we can see they are still applicable to

the specific quantum field theoretic setting we have previously analysed. Moreover, we will

be restricting our setting by tacitly choosing the finite dimensional component H̃ = C (the

scalar case) and dropping any explicit dependence on an underlying S-matrix S.

Similarly to (4.46) we define

A(a, b) ∶= V τ(a)MV τ(a)−1 ∩ V τ(b)M′ V τ(b)−1 (5.1)

and call the mapping R ⊃ I ↦ A(I) ∈ B(H) the “local net associated with (M, V,Ω)”. It is

clear from the definition that Ω is separating for A(a, b), however, cyclicity is not inherited

and hence we have no immediate notion of size.
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We define the “local subspace”

Hloc ∶= A(I)Ω ⊂ H, I ⊂ R

which is the smallest space on which we have cyclicity of Ω by definition.

Lemma 5.3. [LS22] The subspace Hloc is independent of the choice of I.

As discussed in Chapter 2 for the analogous case for massive integral models and the

von Neumann algebras (2.20), there are three possibilities we consider for the size of the

algebras A(I) and we describe these in this context by way of the projection Ploc onto the

local subspace Hloc and the projection PΩ onto CΩ:

1) “The Standard Case”: Ploc = 1,

2) “The Intermediate Case”: PΩ ≨ Ploc ≨ 1,

3) “The Singular Case”: Ploc = PΩ.

By (4.46) and Lemma (5.3) we can see that the algebraA(0,1) and the relative commutant

N ′ ∩M coincide, and so the three cases above can also be described in terms of the commutant

N ′ ∩M. In particular, these descriptions coincide with those for cases 1)−3) listed in Chapter

2 when AS(O) is replaced by N ′ ∩M.

In the previous Chapter, we derived an expression (4.57) for an obstruction operator

X(M) taking arguments in the space of complex valued matrices. By calculating the short

distance scaling limit of a certain product of field operators, it was shown that all local

observables must commute with such an operator, and in an abstract algebraic setting we

describe this by the notion of an “algebra at infinity” [BR87]. This may be defined in a

number of ways, but we choose the following.

Definition 5.4. Let N ⊂ M be a half-sided modular inclusion and I ↦ A(I) (I ⊂ R) the

local net associated to it. The algebra at infinity is then the von Neumann algebra

A∞ ∶= ⋂
I⊂R
A(I)′ (5.2)

The relevance of A∞ comes into play when one considers its elements, and its relative size

to A(I). Any element X ∈ A∞ can be interpreted as an obstruction to local observables, and

it may then be concluded that the operator X(M) defined in (4.57) belongs to the algebra

at infinity. As we look to analyse the singular case, we note the following result.

76



Proposition 5.5. Let N ⊂M be a half-sided modular inclusion and its algebra at infinity be

A∞. Then the following statements are equivalent:

i) The inclusion N ⊂M is singular, i.e. Ploc = PΩ.

ii) The algebra at infinity contains all bounded linear operators on H, i.e. A∞ = B(H).

iii) PΩ ∈ A∞.

Proof. i)⇒ii) In the singular case the interval algebras are trivial (that is, they consist only

of constant multiples of the identity), and hence A(I)′ = (C1H)′ = B(H). By definition then

it is clear that A∞ = B(H).
ii)⇒iii): Given that all orthogonal projections are naturally bounded, this is trivial.

iii)⇒i): As previously mentioned the relative commutant N ′ ∩M and the algebra AS(I)
coincide, so let A ∈ AS(I). Moreover, given that PΩ ∈ A∞, then PΩ ∈ A(0,1)′ and we calculate

AΩ = APΩΩ = PΩAΩ = ω(A)Ω.

The vector Ω is separating for A(I) a priori, so we conclude that A = ω(A)1H which implies

i) since all local observables are trivial.

The procedure to derive the obstruction operator Sf,g considered previously can be re-

formulated to suit this more abstract setting. In general, we begin by taking an operator

A ∈ N ∨J N J which by definition is localised in the region (−∞,−1] ∪ [1,∞). Similar to the

short distance scaling limits formerly implemented, we scale by modular action to operators

σt(A) which are then localised in the region (−∞,−e2πt] ∪ [e−2πt,∞) and then consider the

limit t→ −∞, resulting in elements of A∞.

Before proceeding we note first that any strongly continuous one-parameter group W

whose generator has a purely absolutely continuous spectrum satisfies w-lim
x→±∞

W (x) = 0 [Yaf92,

Page 30], which implies

w-lim
x→±∞

V τ(x) = PΩ. (5.3)

The von Neumann algebra M is also type III1 [Wie93], which via the Connes’ char-

acterisation implies that the spectrum of log(∆) is purely absolutely continuous up to an

eigenvalue 0 with eigenspace CΩ which further implies that

w-lim
x→±∞

∆it = PΩ (5.4)
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by the same arguments as the previous assertion. We now collect some results on these weak

limits and the operators in A∞.

Lemma 5.6. Let A ∈ N ∨J N J and L ∈ B(H) be such that

w-lim
t→−∞

σt(A) = L.

Then:

i) L ∈ A∞,

ii) [L,∆it] = 0 for all t ∈ R,

iii) LΩ = ω(A)Ω.

Proof. i) For a fixed t ∈ R the shifted operator σt(A) is an element of the shifted algebra

σt(N ∨J N J), but the latter is no more than

V (e−2πt)MV (e−2πt)∗ ∨ V (−e−2πt)M′ V (−e−2πt)∗ =∶ Mt .

Clearly we have Mt ⊂ Ms for all t < s so the limit t → −∞ is equivalent to ⋂
t<0
Mt = A∞

which implies L ∈ A∞.

ii) By assumption w-lim
t→−∞

(σt(A)) = L, and so for fixed s ∈ R it is also true that σt+s(A) → L

in the weak sense as t → −∞. But by definition σt+s(A) = ∆isσt(A)∆−is → σs(L) as

t→ −∞ from which we conclude that σs(L) = L.

iii) Taking into account the assumption of the weak limit of σt(A) and the invariance of Ω

under V τ we see that ∆itAΩ = ∆itA∆−itΩ = σt(A)Ω→ LΩ weakly as t→ −∞. In parallel,

the application of (5.4) implies that ∆−tAΩ→ PΩAΩ = ω(A)Ω. The separating property

of Ω being inherited by intersections gives us the required conclusion that LΩ = ω(A)Ω.

Having now discussed the algebra at infinity and analysed properties of its elements, we

now move on to describe our framework for constructing an example of a singular inclusion.

This construction will be similar to those considered previously in chiral field theory models,

however, we will restrict ourselves to the scalar case, but the extension to more complicated

settings could be possible in future investigations.
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5.2 Model Deformations and Warped Convolutions

In this section we present our description of a deformation of a half-sided modular inclusion,

and in particular that of a warped convolution [BLS10, BS08]. To do so, we first describe

the previous data of a Borchers’ triple in terms of a standard subspace before moving to

the Hilbert space representation which is linked closely to the chiral models in the previous

Chapter.

Definition 5.7. Let H be a Hilbert space, then a standard pair (V τ
1 ,H) over H is both

i) a closed real standard subspace H ⊂ H. That is, H is cyclic for H: H + iH is dense in

H, and H is separating for H: H ∩ iH = {0}.

ii) a strongly continuous one-parameter group V τ
1 (x) with positive generator P , with ker(P ) =

{0} such that V τ
1 (x)H ⊂H for all x ≥ 0,

A standard pair may give rise to a one-dimensional Borchers triple by second quantisation.

To see this we consider the standard Bose Fock space F(H) over H on which we have a

vacuum vector Ω. The Weyl unitaries W (h), h ∈H generate a von Neumann algebra M(H)
by double commutant

M(H) ∶= {W (h) ∶ h ∈H}′′

which aligns with our previous definition of AS(R+) where the exponentiated field op-

erators play the role of Weyl operators. This algebra, together with the second quan-

tised translational operators V τ and the vacuum Ω form a one-dimensional Borchers triple

(M(H), V τ ,Ω). Furthermore, we may construct modular data J,∆ for (M(H), V τ ,Ω) by

taking the second quantisation of the modular data J1,∆1 of H which is defined in the usual

way by polar decomposition of the operator S1 ∶H + iH ↦H + iH,S1(h + ih) = h − ih.

If the one-parameter groups V τ
1 (x),∆it are irreducible, then the standard pair (V τ

1 (x),H)
is also called irreducible and it is unique up to a unitary equivalence. To align with our

previous constructions, we may present this data in the following way [LL15].

We take a specific Hilbert space in rapidity space, and note the explicit action of the one-

parameter group V τ
1 (x) as translations in position space acting by multiplication in rapidity

space similar to (4.16):

H = L2(R,dθ), (V τ
1 (x)ψ)(θ) = eixeθψ(θ).
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In this case, the standard subspace H has the explicit form

H = {ψ ∈ H2(S(0, π)) ∶ ψ(θ + iπ) = ψ(θ) a.e.}

where

H2(S(0, π)) = {ϕ ∶ S(0, π) → C analytic ∣ sup
0<λ<π

∫
R

dθ ∣ϕ(θ + iλ)∣2 < ∞}

then an ψ ∈H are boundary values of some ϕ ∈ H2(S(0, π)).
Recalling the definitions of the creation/annihilation and field operators in the massive

case (2.7b) in Chapter 2 setting S = F and taking H̃ = C, we introduce a deformation

parameter κ and restrict to the scalar setting. That is, we consider the annihilation operator

zκ as a linear map on the space of finite particle number D ⊂ F(H) defined explicitly as

(zκ(ϕ)Ψ)n(θ) =
√
n + 1∫

R
dθ ϕ(θ)

n

∏
j=1

eiκ sinh(θ−θj)Ψn(θ,θ) (5.5)

for ϕ ∈ H, and similarly the creation operator z†
κ which here coincides with the adjoint of zκ.

Moreover, we define the field operator

φκ(ξ) = z†
κ(ξ) + zκ(J1ξ), ξ ∈H + iH.

Similarly to Theorem (4.18), the field φκ is essentially self-adjoint and we denote its closure

by the same symbol. Moreover, φκ transforms covariently under the symmetry V and the

conjugation operator acts by Jφκ(ξ)J = φ−κ(J1ξ). For κ ≥ 0 we have [eiφκ(ξ), eiφ−κ(ξ′)] = 0 for

ξ ∈H,ξ′ ∈H ′ and finally Ω is cyclic for the polynomial algebra generated by φκ.

We note the following proposition from [LS22].

Proposition 5.8. Let κ ≥ 0 and

Mκ ∶= {eiφκ(h) ∶ h ∈H}′′ ⊂ B(H) (5.6)

Then (Mκ, V,Ω) is a one-dimensional Borchers triple with unique vacuum vector Ω on the

Bose Fock space F(H). For κ = 0 we have M0 = M(H), the second quantisation of the

irreducible standard pair (V τ
1 ,H).

Following this we will use similar notation of a subscript κmeaning the “deformed version”

throughout - particularly the subalgebra N κ = T (1)Mκ T (−1), the algebra at infinity Aκ,∞
etc.
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Having described a one-dimensional Borchers triple depending on a deformation param-

eter we require more to apply a suitable deformation scheme, in particular a warped convo-

lution [BS08]. In this direction we now look to construct a two-dimensional Borchers triple,

which can be viewed as a one-dimensional Borchers triple [LST13,BT13].

Analogously to the one-dimensional case, a two-dimensional Borchers triple (M, T,Ω)
consists of a von Neumann algebra M over a Hilbert space H with standard vector Ω and

a two-parameter unitary representation T of the translation group which leaves Ω invariant.

The algebra M acts under translations as

T (x, y)MT (x, y)∗ ⊂M

for x ≥ 0, y ≤ 0 and both one-parameter groups T (x,0) and T (0, y) have positive generators.

Geometrically, the parameters x, y are light-ray coordinates of general vectors ξ ∈ R2 which

decomposes as x = 1
2(ξ0 + ξ1) and y = 1

2(ξ0 − ξ1) where ξ0 is the temporal coordinate, and ξ1

the spatial.

Restricting T to a one-parameter group by choosing V τ(x) ∶= T (x,0) gives rise to a one-

dimensional Borchers triple, and similarly one may also construct a two-dimensional Borchers

triple from a one-dimensional one by taking the simple definition T (x, y) ∶= V τ(x).

Lemma 5.9. [LS22]

i) The unitary R2-representation on L2(R,dθ) given by

(T1(ξ)ψ)(θ) = eip(θ)⋅ξψ(θ), ξ ∈ R2, p(θ) ∶= (cosh(θ), sinh(θ)) (5.7)

has positive energy and satisfies

T1(ξ)H ⊂H, ξ ∈WR.

ii) The second quantisation T of T1, the von Neumann algebraM(H) and the Fock vacuum

Ω form a two-dimensional Borchers triple.

The representation T and the modular operator ∆it, t ∈ R together form a representation

of the Poincaré group on two dimensional Minkowski space, precisely the representation used

in Chapter 2.

Within the context of a two-dimensional Borchers triple, we are now able to consider a

more specific deformation procedure, in particular, that of a warped convolution which was
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first introduced in [BS08]. We concern ourselves with smooth operators which are defined as

operators A ∈ B(H) such that the map x ↦ T (x)AT (−x) is smooth in the strong topology.

Similarly, we say a vector ψ ∈ H is smooth if x↦ T (x)ψ in norm.

We label by Qκ a 2×2 matrix that is antisymmetric with respect to the Minkowski scalar

product, conditions which fix the form to

Qκ =
⎛
⎜
⎝

0 κ

κ 0

⎞
⎟
⎠
, κ ∈ R

and then take elements of the von Neumann algebra

Mκ = {Aκ ∶ A ∈ M smooth}′′

to be the oscillatory integrals

AκΨ ∶= 1

(2π)2 ∫ dxdy e−iy⋅xT (Qκy)AT (−Qκy)T (x)Ψ. (5.8)

It is straightforward to immediately notice that A0 = A: With κ = 0 the translations T (Q0y) =
T (−Q0y) = T (0) = 1H by definition of Qκ and the remaining integral we calculate using (5.7).

A0Ψ = 1

(2π)2 ∫ dxdy e−iy⋅xAT (x)Ψ = 1

(2π)2 ∫ dxdy e−iy⋅xAeip(θ)⋅xΨ = AΨ
1

(2π)2 ∫ dxdy ei(p(θ)−y)⋅x

which then equals AΨ after we note the remaining integral evaluates to 1 by applying

∫ dx eiyx = 2πδ(y)

where δ is the dirac delta function.

A second simple property is AκΩ = AΩ for all κ ∈ R. Noting the translational invariance

of the vacuum Ω (5.8) reduces to

AκΩ = 1

(2π)2 ∫ dxdy e−iy⋅xT (Qκy)AΩ = 1

(2π)2 ∫ dxdy e−iy⋅xeip(θ)⋅QκyAΩ

and the explicit form of Qκ and the Minkowski scalar product implies we may rewrite the sec-

ond exponential as eiy⋅Qκp(θ) and the assertion follows with similar arguments to the previous

property. For further properties, we refer the reader to [BLS10].

With this definition in hand, we now turn back to the context of Borchers triples and

construct data in a more concrete way. In particular, for a triple (M, T,Ω) we define the

deformed von Neumann algebra

Mκ ∶= {Aκ ∶ A ∈ M is smooth}′′. (5.9)
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Proposition 5.10. Let (M, T,Ω) be a Borchers triple, then Ω is standard (cyclic and sepa-

rating) for Mκ for κ ≥ 0.

Proof. Since AκΩ = AΩ and Ω is cyclic for M, cyclicity for Mκ follows immediately. For

the separating property, let A ∈ M and A′ ∈ M′, then for all x ∈ WR and y ∈ WL we have

[T (x)AT (x)∗, T (y)A′T (y)∗] = 0. The positivity of the spectrum of T and the assumption

that κ ≥ 0 implies that Qκspectrum(T ) ⊂WR and thus by [BLS10, Prop 2.10] it follows that

[Aκ,A′
−κ] = 0 from which we can conclude that (M′)−κ ⊂ (Mκ)′. Cyclicity of Ω for M′

together with AκΩ = AΩ implies that Ω is also cyclic for (M′)−κ and thus since (M′)−κ ⊂
(Mκ)′ it is also cyclic for the latter showing that Ω is separating for its commutantMκ.

Noticing that this deformation procedure does not affect the group T , it is clear from

Proposition (5.9) that the triple (Mκ, T,Ω) is a Borchers triple. Moreover, the deformed

operators zκ initially defined independently of the deformation procedure (5.8) is the result

of deforming the operator z0:

(z0(ϕ)κΨ)n(θ) =
√
n + 1

(2π)2 ∫ dxdxdθ′e−y⋅xei∑
n
j=1 p(θj)⋅Qκyϕ(θ′)e−i(p(θ′)⋅Qκy+∑nj=1 p(θj)⋅Qκy)ei∑nj=1 p(θj)⋅xΨn(θ′,θ)

= 1

2π ∫ dxdθ′
n

∑
j=1

δ(p(θj) − y)e−ip(θ
′)⋅Qκyϕ(θ′)Ψn(θ′,θ)

= ∫ dθ′
n

∏
j=1

e−ip(θ
′)⋅Qκp(θj)ϕ(θ′)Ψn(θ′,θ)

= ∫ dθ′
n

∏
j=1

eiκ sinh(θ′−θj)ϕ(θ′)Ψn(θ′,θ)

= (zk(ϕ)Ψ)n(θ)

where we have used that

p(θ′) ⋅Qκp(θj) = κ sinh(θj) cosh(θ′) − κ sinh(θ′) cosh(θj) = −κ sinh(θ′ − θj)

and setting m = 1 (the mass is of no importance to our current discussions).

In analogy to the one-dimensional setting, we can generate elements of the standard

subspace H via test functions S (R2) ∋ f ↦ f± ∈ H:

f±(θ) = ∫
R2

dx f(x)e±ip(θ)⋅x.

We then define the field operator φ0 as

φ0(f) ∶= z†
0(f+) + z0(f−)
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which is affiliated with the algebra M and moreover if interpreted as the free scalar field

of unit mass on two-dimensional Minkowski space. The deformed version φκ(f) for κ > 0

is then affiliated with the algebra Mκ - the quantum field theory built from such data we

then consider as being restricted to the chiral light ray, a context we examined for closely in

Chapter 4.

5.3 Deformed and Singular Inclusions

We now look to proving the main result of this Chapter which we state here, and the proof

will come in a number of parts.

Theorem 5.11. Let (Mκ, T,Ω) be the Borchers triple as defined in (5.6) for κ ≥ 0. Then

for κ = 0, the inclusion is standard (case 1), and for any κ > 0 the inclusion is singular (case

3).

As a preliminary step, we consider some properties of the field φκ to facilitate further

calculations (more can be found in [GL08]). We make use of the kernel theorem by taking

vectors Ψ(F ) for F ∈ S ((R2)n) and taking their definitions to be the linear and continuous

extensions of a product of free scalar fields acting on the vacuum, that is

Ψ(f1 ⊗⋯⊗ fn) ∶= φ0(f1)⋯φ0(fn)Ω (5.10)

for f1, . . . , fn ∈ S (R2).
On these vectors, we can more easily write down the explicit action of the deformed fields,

and in particular keep track of all multiplicative factors that arise as in (5.5). Explicitly, we

write the action of φκ as [Sol08,GL08]

ψκ(g)Ψ(F ) = Ψ(g ⊗κ F ), g ∈ S (R2), F ∈ S (R2n), (5.11)

where the deformed tensor product ⊗κ is a variation of the Moyal tensor product [GL08]

accounting for every necessary exponential factor between momenta. For F ∈ S (R2n),G ∈
S (R2m) we define it in momentum space as

(G̃⊗κ F )(p1, . . . , pm; q1, . . . , qn) = ei∑
m
j=1 pl⋅Qκ∑nk=1 qkG̃(p1, . . . , pm)F̃ (q1, . . . , qn). (5.12)

It is clear from the above definition that the deformed tensor product ⊗κ is invariant under

Poincaré group transformations - translations follow immediately, whereas boosts are clear
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once it is noted that a matrix boost transformation of parameter λ

λ↦
⎛
⎜
⎝

cosh(λ) sinh(λ)
sinh(λ) cosh(λ)

⎞
⎟
⎠

commutes with any Qκ. This in particular, together with the translational invariance of the

vacuum state, implies that

ω(F ⊗κ G) = ω(F ⊗G).

By Wick’s theorem [Wic50], the vacuum state is described in terms of the n-point functions

of the theory, and the reconstruction theorem illustrates how all information of a model is

encoded in such functions. In particular, we have

⟨Ω,Ψ(F )⟩ = ⟨Ψ(F ∗),Ω⟩ =Wn(F ), FS (R2n),

where F ∗(x1, . . . , xn) = F (xn, . . . , x1) and the n-point functions Wn ∈ S (R2n) can be written

in terms of a product of two-point functions in momentum space:

W̃n(p1, . . . , pn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, n odd,

∑λ,µ∏n/2
k=1 W̃2(pλk , pµk), n even

(5.13)

where the two-point functions are given by

W̃2(p, q) =
1

ε(p1)δ(p
0 − ε(p1)) δ(p + q), ε(p1) =

√
(p1)2 + 1 (5.14)

for p = (p0, p1), q = (q0, q1). The above sum ∑(λ,µ) runs over all partitions (λ,µ) of {1, . . . , n}
which is split into n/2 disjoint pairs (λk, µk) for k = 1, . . . , n/2 and λk < µk. These partitions

are referred to here as “contractions” as a reference to the delta distributions present in (5.14)

contracting momenta.

We now deal with these n-point functions in a specific weak limit.

Theorem 5.12. [LS22]

Let κ ≠ 0, X be a polynomial in the field operators φκ(f) (f ∈ S (R2)) and Y ′ a polynomial

in the field operators φ−κ(g) (g ∈ S (R2)). Then, for any vectors Ψ,Ψ′ of finite particle

number

lim
t→±∞

⟨Ψ′, σt(XY ′)Ψ⟩ = ⟨Ψ′, (ω(XY ′)PΩ + ω(X)ω(Y ′)P ⊥Ω)Ψ⟩. (5.15)

Proof. The equation (5.15) is linear in both X and Y ′ on both sides, and hence it is sufficient

to consider monomials in the field, that is we may choose X and Y ′ to be of the form

X = φκ(f1)⋯φκ(fn), Y ′ = φ−κ(g1)⋯φ−κ(gm),
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for any n,m ∈ N0 and functions f1, . . . , fn, g1, . . . , gm ∈ C∞
0 (R). Via the same arguments as

Lemma (3.10) one can show that vectors of the form (5.10) form a dense subspace of the

n-particle space H⊗n, and hence it is sufficient to choose

Ψ′ = Ψ(l∗), Ψ = Ψ(r)

for l ∈ S (R2a), r ∈ S (R2b) and arbitrary a, b ∈ N0.

To expand out and simplify the left hand side of (5.12) we first introduce the following

compact notation

fκ,t ∶= Λ∗
t f1 ⊗κ⋯⊗κ Λ∗

t fn, g−κ,t ∶= Λ∗
t g1 ⊗−κ⋯⊗−κ Λ∗

t gm

which with (5.11) allows us to calculate

⟨Ψ′, σt(XY ′)Ψ⟩ = ⟨Ψ(l∗), φκ(Λ∗
t f1)⋯φκ(Λ∗

t fn)φ−κ(Λ∗
t g1)⋯φ−κ(Λ∗

t gm)Ψ(r)⟩

=Wn+m+a+b(l ⊗ (fκ,t ⊗κ (g−κ,t ⊗−κ r)))

=Wn+m+a+b((l ⊗κ fκ,t) ⊗ (g−κ,t ⊗−κ r))).

(5.16)

By the definition of W in (5.13), we can immediately see that this vanishes when N ∶=
n+m+a+ b is odd, and the right hand side may also vanish for some choices of n,m,a, b: for

example, for m = 0, then the right hand side reduces to

⟨Ψ′,Ω⟩⟨Ω,Ψ⟩ω(X)

which is non-zero if all of n, a, b are even which is not the case if N is odd.

To more easily keep track of momenta and their affiliated functions in further calculations,

we use the shorthand notation for their sums:

p(l) =
a

∑
k=1

pk, p(f) =
a+n
∑
k=a+1

pk, p(g) =
a+n+m
∑

k=a+n+1

pk, p(r) =
N

∑
k=a+n+m+1

pk. (5.17)

Implementing now (5.13) and its explicit form in terms of a sum over contractions in mo-

mentum space, we reformulate (5.16) for the case of even N

⟨Ψ, σt(XY ′)Ψ′⟩ = ∑
(λ,µ)

W(λ,µ)(t)

where

W(λ,µ)(t) ∶= ∫
R2N

dp l̃(p1, . . . , pa)f̃κ(Λtpa+1, . . . ,Λtpa+n)g̃−κ(Λtpa+n+1, . . . ,Λtpa+n+m)

× r̃(pa+n+m+1, . . . , pN) eip(l)⋅Qκp(f)e−ip(q)⋅Qκp(r)
N/2
∏
k=1

W̃2(−pλk ,−pµk).
(5.18)
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We can immediately see that the integrand above vanishes pointwise in the limit t→ ±∞
due to the compact support properties of f and g together with the non-divergence of the

remaining factors. The dependence on t in the integrals differs between partitions (λ,µ), and

in order to apply a dominated convergence argument we must analyse these individually and

so we introduce specific index sets

I(l) ∶= {1, . . . , a},

I(f) ∶= {a + 1, . . . , a + n},

I(g) ∶= {a + n + 1, . . . , a + n +m},

I(r) ∶= {a + n +m + 1, . . . ,N}

which correspond to the indices on the momenta of l̃, f̃κ, g̃−κ and r̃, respectively. We now list

our criterion for four types of contractions distinguished using the above index sets.

(I) A contraction (λ,µ) is of type (I) if there exists a k ∈ {1, . . . ,N/2} such that either of

the indices λk, µk lie in the union I(l) ∪ I(r), but not both. In this case, a variable of

either f̃κ, g̃−κ is contracted with a variable of either l̃, r̃.

(II) A contraction (λ,µ) is of type (II) if it is not of type (I) and for all k ∈ {1, . . . ,N/2}
the indices λk, µk are both elements of either I(f) or I(g). In this case we call the

contraction (λk, µk) “f -internal” or “g-internal”, respectively.

(III) A contraction (λ,µ) is of type (III) if it is not of type (I) or (II) and if there exists a

k ∈ {1, . . . ,N/2} such that λk ∈ I(l) and µk ∈ I(r). In this case, the contraction (λ,µ)
contracts between f̃κ and g̃−κ, and also between l̃, r̃, but there are no contractions

between deformed functions f̃κ, g̃−κ and undeformed functions l̃, r̃ as in type (I).

(IV) A contraction (λ,µ) is of type (IV) if it is not of type (I), (II) or (III). In this remaining

case, (λ,µ) contracts variables between f̃κ and g̃−κ, but all variables of l̃ are contracted

with each other, and similarly for r̃.

These four cases exhaust all possibilities for contractions.

(I): For this case we wish to show that

lim
t→±∞

W(λ,µ)(t) = 0, (λ,µ) of type (I). (5.19)
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The expression for the two-point functions in momentum space contain a delta distribution,

namely W̃2(p, q) = ε(p1)−1δ(p0 − ε(p1))δ(p + q) - the second delta is responsible for the case-

specific contraction which set pλk = −pµk , while the first restricts pµk to the upper-mass shell.

This latter transformation means that the momentum pµk = (ε(p1
µk
, p1
µk

) from which we may

make the substitution sinh(θk) ∶= p1
µk
,

dp1µk
dθk

into rapidity space. Here the boosts Λt act as

translations in θk and hence by applying the triangle inequality we may write

∣W(λ,µ)(t)∣ ≤ ∫
RN

dθλkdθµk F (θ,θ′ − t,θ′′ − t,θ′′′)
N/2
∏
k=1

δ(θλk − θµk) (5.20)

where F ∈ S (RN) and the rapidities θ = (θ1, . . . θa) (and similarly for θ′,θ′′,θ′′′) are the trans-

formed variables of l̃ (and f̃κ, g̃−κ, r̃), respectively) and also the notation θ′−t ∶= (θ′1, . . . , θ′n−t)
has been introduced.

With F being a Schwartz function, it a priori comes equipped with a bound formed by

seminorms allowing us to write

∣W(λ,µ)(t)∣ ≤ C ∫
RN/2

dθ ∏
α

(1 + θ2
a)−1(1 + (θα − t2)−1∏

β

(1 + θ2
β)−2

where the first product is a result of the contraction (λk, µk) of type (I), linking a t-

dependent variable with a t-independent one. The second product is the remaining contribu-

tions from the contractions (λk, µk) which link two variables that are both either t-dependent

or t-independent (for the former, a change of variables can leave the resulting term completely

t-independent). Clearly, this is sufficient to employ Lebesgue’s dominated convergence and

(5.19) holds.

(II): For this case we show that W(λ,µ)(t) is independent of t. By definition, the variables

of f̃κ are contracted amongst themselves and similarly for g̃−κ, whereas the variables of l̃, r̃

are contracted in any combination and do not matter to this argument.

The delta distribution δ(p + q) in the formula for the two-point functions W̃2 imply that

two variables, say pλk , pµk , of f̃κ are then related by pλk = −pµk (and similarly for g̃−κ). Since

only variables of f̃κ are contracted with other variables of f̃κ, we conclude that the sums of

momenta p(f), p(g) vanish and the exponential factors in the integrand of (5.18) drop out.

Given the description of contractions in type (II), the product of two point functions

∏N/2
k=1 W̃2(pλk , pµk) can be split between a distinct product of contractions for the three func-
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tions l̃ ⋅ r̃, f̃κ and g̃−κ giving

W(λ,µ)(t) = ∫ dpλkdpµk l̃(p1, . . . , pa)r̃(pa+n+m+1, . . . , pN) ∏
k,{λk,µk}∈I(l)∪I(r)

W̃2(−pλk ,−pµk)

× ∫ dpλkdpµk f̃
κ(pa+1, . . . , pa+n) ∏

k,{λk,µk}⊂I(f)
W̃2(−pλk ,−pµk)

× ∫ dpλkdpµk g̃
κ(pa+n+1, . . . , pa+n+m) ∏

k,{λk,µk}⊂I(g)
W̃2(−pλk ,−pµk)

The above expression indicates that W(λ,µ)(t) for the case of type (II) contractions reduces

to the product of three sums - the first of these sums is of the contractions over I(l) ∪ I(r).
By Wick’s theorem [Wic50] this coincides with ω(φ0(l)φ0(r)) = ⟨Ψ(l∗),Ψ(r)⟩. Similarly, the

second sum is of the contractions over I(f) which coincide with ω(φκ(f1)⋯φκ(fn)) = ω(X),
and also analogously for the final sum over I(g) which coincides with ω(Y ′).

Thus we arrive at the compact expression

∑
(λ,µ) type (II)

W(λ,µ)(t) = ω(X)ω(Y ′)⟨Ψ′,Ψ⟩ (5.21)

(III): As in case (III) we claim that

lim
t→±∞

W(λ,µ)(t) = 0, (λ,µ) of type (III). (5.22)

Similarly to case (II) we may remove the t-dependence of f̃κ and g̃−κ by making the substi-

tution Λ∗
t pk ↦ pk - as a result the exponential factors gain t-dependence. Moreover, since the

variables pk ∈ I(f)∪I(g) are contracted amongst each other, the support of the delta distri-

butions imply that we have p(f) + p(g) = 0, and also p(l) + p(r) = 0. With the antisymmetry

of Qκ, we calculate the resulting exponential factors:

eip(l)⋅Qκp(f)e−ip(q)⋅Qκp(r) = eip(l)⋅QκΛ−tp(f)e−iΛ−tp(g)⋅Qκp(r) = e2ip(l)⋅QκΛ−tp(f).

As in the argument for case (I) we make the appropriate substitutions to the rapidity

formulation obtaining

W(λ,µ)(t) = ∫ dθdθ′L (θ1, . . . , θa+b
2
)F (θ′1, . . . , θ′n+m

2
)∏
j,k

e2iκ sinh(θj−θ′k+t). (5.23)

The functions L ∈ S (Ra+b
2 ), F ∈ S (Rn+m

2 ) are concatenated versions of the functions l̃ ⊗ r̃
and f̃κ, g̃−κ, respectively, in the rapidity parameterisation and accounting for the support of

the delta distributions in the two-point functions.
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The remaining exponential factor arises from noting that any f -internal contractions

(λk, µk) mean that the pλk + pµk contributions in the sum p(f) vanish, and similarly for p(l).
For the remaining contractions that are specifically not f - or l-internal, we relabel their sums

p(f)′, p(l)′.
The previous calculation of p(θ) ⋅QκΛ−tp(θ′) = κ sinh(θ−θ′− t) the product sums over j, k

for the remaining contractions.

Thus far, the arguments are the same for both cases (III) and (IV), but we now distinguish

the two by noting that for case (III) the product over j is non-empty and we claim that

lim
t→±∞

W(λ,µ)(t) = 0, (λ,µ) of type (III). (5.24)

Fixing a j in the product in (5.23) we rewrite the integral, apply integration by parts and

estimate via the triangle inequality

∣W(λ,µ)(t)∣ =
RRRRRRRRRRRRRR
∫ dθdθ′

L (θ1, . . . , θa+b
2
)F (θ′1, . . . , θ′n+m

2

)

∑k 2iκ cosh(θj − θ′k + t)
∂

∂θj
∏
j,k

e2iκ sinh(θj−θ′k+t)

RRRRRRRRRRRRRR

≤ ∫ dθdθ′
RRRRRRRRRRRRRR
F (θ′1, . . . , θ′n+m

2
) ∂

∂θj

L (θ1, . . . , θa+b
2
)

∑k 2iκ cosh(θj − θ′k + t)

RRRRRRRRRRRRRR
.

Applying the product rule for the derivative, and taking the estimate

RRRRRRRRRRRRRR

∂

∂θj

L (θ1, . . . , θa+b
2
)

∑k 2iκ cosh(θj − θ′k + t)

RRRRRRRRRRRRRR
≤ 1

cosh(θj − θk + t)

it is clear that the integrand vanishes pointwise for t → ±∞. Furthermore, with the lower

bound cosh(x) ≥ 1 the assumptions for dominated convergence are satisfied and we have the

limit as claimed.

(IV): Following the arguments for case (III) to (5.23), we remark that the product over j, k

drops out considering there are no contractions between l̃ and r̃ in this case. The remaining

integrand is t-independent and as in case (II) we split the result into three sums of distinct

contractions: The sum of contractions over l̃ clearly results in

ω(φ0(l1)⋯φ0(la)) = ⟨Ψ(l∗),Ω⟩ = ⟨Ψ′,Ω⟩.

In analogy, the sum of contractions over r̃ gives ⟨Ω,Ψ(r)⟩ = ⟨Ψ,Ω⟩.
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The final sum is over contractions between f̃κ and g̃−κ, but in particular not those that

are f - or g-internal. Thus, by accounting for the missing contractions we have

ω(φκ(f1)⋯φκ(fn)φ−κ(g1)⋯φ−κ(gm)) − ω(φκ(f1)⋯φκ(fn)) ⋅ ω(φ−κ(g1)⋯φ−κ(gm))

= ω(XY ′) − ω(X)ω(Y ′),

then summing over all type (IV) contractions

∑
(λ,µ) type (IV)

W(λ,µ)(t) = (ω(XY ′) − ω(X)ω(Y ′))⟨Ψ,Ω⟩⟨Ω,Ψ′⟩.

With each case accounted for, we sum over them all to arrive at the assertion

lim
t→±∞

⟨Ψ′, σt(XY ′)Ψ⟩ = ⟨Ψ′, ((ω(XY ′) − ω(X)ω(Y ))PΩ + ω(X)ω(Y ′)1H)Ψ⟩

= ⟨Ψ′, (ω(XY ′)PΩ + ω(X)ω(Y ′)P ⊥Ω)Ψ⟩.

We remark that though we employed functions f and g as arguments for the scaled field

operators, their support properties were irrelevant and not mentioned - in the context of

scaling limits of integrable models in Chapter 3, the derivation of the obstruction operator

paid particular heed to the support of the function arguments involved. Furthermore, the

previous construct employed the one-sided limit t→ −∞ which corresponds to scaling points

x ∈ R/{0} to ∞ and the support of the function arguments in the same direction. The

opposite limit t→∞, also calculated in the above result taking points x to 0, is not one that

has a geometric sense but for the abstract setting provides additional information.

Next, we extend this result to arbitrary elements of the von Neumann algebrasMκ,M′
κ.

Theorem 5.13. Let the Borchers triple Mκ, T,Ω) (κ > 0) be defined as in (5.6). Then for

any A ∈ Mκ,B ∈ M′
−κ

w-lim
t→±∞

σt(AB) = ω(AB)PΩ + ω(A)ω(B)P ⊥Ω. (5.25)

Proof. We will write ΨA = AΩ and PAB = ω(AB)PΩ + ω(A)ω(B)P ⊥Ω as shorthand notation,

and similarly for other operators. We consider vectors of the form Ψ′ = ΨL∗ ,Ψ = ΨR where

L and R are closed operators affiliated to the left and right algebras M′
κ and Mκ, respec-

tively. The domains D(L),D(R) of R and L, respectively, are such that Ω ∈ D(L∗) ∩ D(R).
The algebras Mκ and M′

κ are stable under the action of the modular group, meaning that

σt(A∗)Ω ∈ D(L∗), σ(B) ∈ D(R) and

L∗σt(A∗)Ω = σt(A∗)L∗Ω, Rσt(B)Ω = σt(B)RΩ.
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Consequently, we may simplify the scalar product appearing in the limit on the left hand

side of (5.25)

⟨ΨL∗ , σt(AB)ΨR⟩ = ⟨ΨL∗ , σt(A)σt(B)ΨR⟩

= ⟨σt(A∗)ΨL∗ , σt(B)ΨR⟩

= ⟨L∗σt(A∗)Ω,Rσt(B)Ω⟩

= ⟨σ−t(L∗)ΨA∗ , σ−t(R)ΨB⟩.
Comparing the second and fourth lines in the above we see a symmetry between A and L,

and also between B and R, one which can be replicated for the right hand side of (5.25) in

scalar product

⟨ΨL∗ , PABΨR⟩ = ω(AB)ω(L)ω(R) + ω(A)ω(B)ω(LR) − ω(A)ω(B)ω(L)ω(R)

= ⟨ΨA∗ , PLRΨB⟩.
Then

⟨σt(A∗)ΨL∗ , σt(B)ΨR⟩ − ⟨ΨL∗ , PABΨR⟩ = ⟨σ−t(L∗)ΨA∗ , σ−t(R)ΨB⟩ − ⟨ΨA∗ , PLRΨB⟩. (5.26)

The implied symmetry in the above formula suggests that if the limit (5.25) holds for t→ −∞
then it also holds for t→∞ and vice versa.

We will first show that the right hand side of (5.26) vanishes as t→ ±∞ for specific choices

of L,R,A and B. In particular, we take L and R to be arbitrary polynomials of field operators

φκ as in Theorem (5.12), each taking functions as arguments (smearing) with supports on

the left and right, hence the operators L and R are affiliated with the algebras M′
κ and

Mκ respectively. We also choose A,B to be bounded and smooth, hence A ∈ M∞
κ ,B ∈ M′∞

κ ,

which will generalise Theorem (5.12) to vectors Ψ,Ψ′ that are not necessarily of finite particle

number but instead Ψ′ = ΨA∗ ,Ψ = ΨB. Moreover, denote by Qn ∶= P1 ⊕ P2 ⊕ ⋯ ⊕ Pn the

orthogonal projection onto the particle space of at most n in the Fock space F(H). Given

the chosen form of L, the complement Q⊥n leaves the domain of L∗ invariant - this is the result

of a field operator only changes the particle number by one, and hence a finite polynomial of

such operators alters the particle number by a finite amount. Hence there exists an m ∈ N
such that for all n ∈ N, t ∈ R

∣⟨σt(L∗)ΨA∗ , σt(R)ΨB⟩ − ⟨ΨA∗ , PLRΨB⟩∣

≤ ∣⟨QnΨA∗ , σt(LR − PLR)ΨB⟩∣ + ∣⟨Q⊥nΨA∗ , (σt(LR − PLR)ΨB⟩∣

= ∣⟨QnΨA∗ , σt(LR − PLR)Qn+mΨB⟩∣ + ∣⟨Q⊥nΨA∗ , σt(LR − PLR)Q⊥n−mΨB⟩∣

≤ ∣⟨QnΨA∗ , σt(LR − PLR)Qn+mΨB⟩∣ + ∥σt(L∗)Q⊥nΨA∗∥∥σt(R)Q⊥n−mΨB∥ + ∥Q⊥nΨA∗∥∥PLR∥∥Q⊥n−mΨB∥.

92



With the presence of the projection Qn,Qn+m in the first term, the vectors are of finite particle

number and thus this term vanishes in the limit by Theorem (5.12). Clearly the complements

Q⊥n,Q
⊥
n−m → 0 strongly in the limit n → ∞ and as an immediate consequence the third term

above vanishes in this limit.

All that remains is to show that the two norms ∥σt(L∗)Q⊥nΨA∗∥, ∥σt(R)Q⊥n−mΨB∥ vanish

uniformly in t ∈ R for n → ∞. Both A,B are smooth, and hence the vectors ΨA∗ ,ΨB are

elements of ⋂k≥0D(P k
0 ) (the intersection over all k of the domain of the k-th power of the

generator of the time translations P0 - the second quantisation of 1
2(P + P −1) ≥ 1). The

particle number operator N is the second quantisation of the identity operator and it then

follows that P0 ≥ N which in turn implies ΨA∗ ,ΨB ∈ ⋂k≥0D(Nk).
For each field operators φ±κ(f), f ∈ S (R2) we have that the norm ∥φ±κ(f)N−1/2∥ is

finite [Lec03,Lec12] and so there exists a k ∈ N such that L∗N−k and RN−k are bounded. In

addition, it is clear that Q⊥n and ∆it commute with N for all n ∈ N, t ∈ R (given that neither

affects the particle number), choosing a large enough k we may make the estimate

∥σt(L∗)Q⊥nΨA∗∥ = ∥L∗N−k∆−itQ⊥nN
kΨA∗∥ ≤ ∥L∗N−k∥∥Q⊥nNkΨA∗∥

which vanishes as n →∞ uniformly in t as required. The second norm ∥σt(R)Q⊥n−mΨB∥ can

be estimated in an analogous way.

Noting that ΨA∗ ,ΨB range over dense subspaces of F(H) we may apply similar Reeh-

Schlieder arguments to those we have applied in previous results, together with the fact

that σt(AB − PAB) is uniformly bounded in norm for all t ∈ R to conclude the weak limit

σt(AB) → PAB for smooth A and B.

To generalise further we again consider smooth A,B but now an L ∈ M′
κ,R ∈ Mκ which

are bounded but not necessarily smooth. We know that the left hand side of (5.26) goes to

zero in the limit t → ±∞ and thus the desired limit ⟨ΨA∗ , σ−t(LR − PLR)ΨB⟩ → 0 holds too.

Now, the smooth algebrasM′∞
κ ⊂M′

κ,M∞
κ ⊂Mκ are strongly dense, they have Ω as a cyclic

vector and we conclude that the limit also holds for arbitrary vectors in the left and right

hand sides of the scalar product.

The singularity of the inclusion N ′
κ ∩Mκ then follows from the following Lemma.

Lemma 5.14. [LS22]

Let H be a Hilbert space of dimensional dim(H) > 1 and N ⊂ M a half-sided modular

inclusion on H. Then ω(⋅) = ⟨Ω, ⋅Ω⟩ is not a product state on N ∨J N J . That is, ω(AB) ≠
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ω(A) ⋅ ω(B) for A,B ∈ N ∨J N J .

Proof. Assume that ω is a product state and let A ∈ N ,B ∈ J N J . Then T (x)AT (x)−1 ∈ N
for all x > 0 also. Thus

⟨A∗Ω, T (−x)BΩ⟩ = ω(T (x)AT (−x)B) = ω(A)ω(B) = ⟨A∗Ω, PΩBΩ⟩

for x > 0. Since Ω is cyclic, this implies that T (−x) = PΩ which is only possible if PΩ = 1, i.e.

F(H) = CΩ is one dimensional which is a contradiction.

Finally, we return to the proof of our main result.

Proof of Theorem (5.11). The case of κ = 0 follows immediately from the second quantisation

of M=M(H). For κ > 0, let A ∈ N κ,B ∈ J N κ J , then by Theorem (5.13) and Lemma (5.6)

part (i)

PAB = (ω(AB) − ω(A)ω(B))PΩ + ω(A)ω(B)1H ∈ Aκ,∞.

We have freedom (by virtue of Lemma (5.14)) to chooseA,B such that ω(AB)−ω(A)ω(B) ≠
0, and then

S = AB − ω(A)ω(B)1H
ω(AB) − ω(A)ω(B) ∈ N κ ∨J N κ J

is such that σt(S) → PΩ weakly as t → −∞. This weak limit lies in Aκ,∞ by Lemma (5.6)

which implies that the inclusion N κ ⊂Mκ by Proposition (5.5).
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Chapter 6

Conclusion

In the present work, we have covered a number of topics in the area of quantum field theory,

and in particular, paying close attention to our understanding of the structure of models

with particular starting data. Having already a firm grasp on general models and how they

are realised as a representation of abstract ZF algebras, we have formulated and illustrated

a method whereby (for favourable, simple conditions) we may write the underlying data of a

model in a much simpler fashion.

Having already a great many resources for the description of the Bose/Fermi models in

the existing literature, our methodology presents a natural process to realise potentially more

complicated systems as a tensor product of these more well-understood ones. Though the

conditions under which this is possible are fairly limited in the general case, it seems it is

most relevant on the subject of short distance scaling limits of integrable models.

As in the scalar case [BLM11], the scaling limit results in the unscaled fields splitting

into a tensor product of chiral fields on the real line - the interplay of these one-dimensional

models is governed by the limit at the infinities of the S-matrix governing the unscaled model.

On the one hand, this limit may fall under the umbrella of constant S-matrix examples where

our previous discussions become relevant, in which case we may pass through our discussed

processes to read the scaling limit in a more transparent way. On the other hand, these chiral

models are still able to be described and examples of half-line local fields constructed within

them.

As in the massive case, we realise that not much can be said about the size of the resulting

local algebras in the general case, however, we can at least provide a sufficient condition for

operators to lie in these algebras by way of a commutation condition with an obstruction
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operator. Due to the involved nature of this operator, it is difficult to draw more conclusions

from this data alone, though it goes some way to highlight the vastly more complicated

nature of this setting in comparison to the scalar case.

In the quantum field theoretic setting, the most favourable result is to have a very large

local algebra containing many physically relevant observables. The opposite extreme of a

trivial algebra is less desired and actually pathological. In the context of half-sided mod-

ular inclusions and von Neumann algebras however it is a most prevalent question of the

existence of such objects. Though only a single example came through recently in [LTU19],

we have shown here many more examples as in [LS22] arising via our motivation from one-

dimensional chiral models. By applying a deformation procedure on models constructed from

two-dimensional Borchers triples it was shown that the result actually produces a singular

inclusion in a specific limit. It is also clear that half-sided modular inclusions can vary in a

discontinuous manner with deformations, perhaps motivating further discussions with defor-

mation procedures. Though this result does not provide constructive examples of quantum

field theories, it might inform us of methods that exclude the singular case.

The investigations we have undertaken may be viewed in a disjoint manner with each

Chapter providing further insights into areas of quantum field theory with problems in their

own right, or with each moving forward in the understanding of scaling limits of quantum

fields and their resulting models from varying standpoints and contexts. A full comprehension

of such an idea would be most enlightening for answers to questions surrounding QFT in

general, such as asymptotic freedom of models, but the results outlined here provide headway

in this direction.
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Appendix A

Minkowski Space Geometry

We work in 1+1 dimensional Minkowski space as an analogue of the real plane R2 endowed

with the Minkowski inner product with signature (+,−) meaning the scalar product of coor-

dinates x = (x0, x1), y = (y0, y1) is given by x ⋅ y = x0y0 − x1y1.

The plane may be separated into disjoint regions described by the inner product, in

particular, a point x ∈ R2 is called

• timelike if x ⋅ x > 0

• lightlike if x ⋅ x = 0

• spacelike if x ⋅ x < 0.

This inner product is invariant under transformations of the Poincaré group P generated

by translations τa acting as x↦ x + a for a ∈ R2 and the boost transformations

Λ(λ) ∶ x↦
⎛
⎜
⎝

cosh(λ) sinh(λ)
sinh(λ) cosh(λ)

⎞
⎟
⎠
x, λ ∈ R,

and the reflections j ∶ x↦ (−x0, x1) and −j ∶ x↦ (x0,−x1).
The Poincaré group may be split into a number of subgroups, the first of mention being

the proper Poincaré group P+ which is generated by the same translations and boosts, but

also the total reflection −1 ∶ x↦ −x.

The final subgroup we mention is the one used throughout this work on the subject

of massive integrable models - the proper orthochronous Poincaré group generated by the

translations and boosts only.
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Figure A.1: The overlap of the wedges WL(y) and WR(x) describe the double cone region

Ox,y.

We move on to the description of relevant regions in this spacetime and recall our definition

of a right wedge as

WR = {x ∈ R2 ∶ x1 > ∣x0∣}

and the left wedge WL = −WR. The set of all wedges is denoted by W.

The wedges WL,WR are invariant under the action of the boost transformations since the

eigenvectors of Λ(λ) are lightlike.

A double cone Ox,y is the intersection of two overlapping wedges centred at x, y ∈ R2,

being defined as a set intersection as

Ox,y = (WR + x) ∩ (WL + y)

which is non-empty for x − y ∈ WL and x1 < y1. Geometrically, this is illustrated in Figure

(A.1).
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Appendix B

Gauge Groups and Internal

Symmetries

The model described in Chapter 2 is described on the Hilbert space H = L2(R2) ⊗ H̃ where

H̃ is some finite dimensional Hilbert space. To further enrich the physical interpretation

of this model, one may consider a compact Lie group G as the global gauge group and

identify charges of particles with equivalences classes q of irreducible representations of G as

in [Lec07].

We consider a set of a finite number of possible charges labelled by Q and to account for

antiparticles whose charges are given by q according to some conjugacy class, we assume this

conjugation leaves Q invariant.

In addition to the symmetry described by the Poincaré group as in Chapter 2, we have the

additional “internal” symmetry W̃1 as a representation of the group G on H̃. This extends

to H in the usual way by trivial action on the L2(R2) component

W1(g) = 1L2(R2) ⊗ W̃1.

This additional structure is mainly cosmetic to the mathematics, but physically is most

relevant to the structure of particle interactions allowing for a richer spectrum of particles

under description. This finally gives rise to an additional property in the definition of an

S-matrix in definition (2.1) in this setting which is specific to the model under a chosen

gauge. It is referred to as gauge invariance:

[S(θ),W1(g) ⊗W1(g)] = 0, for all g ∈ G,θ ∈ R.
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For more on this subject we refer the reader to [Lec07,AL17] and references therein.

An example of a chosen gauge may be the orthogonal matrices of order N as in the

O(N) σ-models, or a non-abelian gauge theory taking a non-commutative group as a gauge

as is the case for Yang-Mills theory.
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Appendix C

Algebraic Quantum Field Theory

We now recall the framework for algebraic quantum field theory before applying what we have

described above and discussing its implications for this particular axiomatic paradigm. A

model in this context is described in terms of an algebra of local observables A over a Hilbert

Space H. This algebra A contains all subalgebras A(O) which is the algebra of all observables

localised in the region O ⊂ R2 of Minkowski space. It is usual to take A(O) ⊂ B(H) to be a

von Neumann algebra, that is a ∗-subalgebra closed in the weak topology.

Algebraic quantum field theory is then concerned with the net generated by the map

R2 ⊃ O ↦ A(O)

and the isotony axiom:

A(O1) ⊂ A(O2) for O1 ⊂ O2.

Relativity implies that two events that are space-like separated cannot interfere with each

other, a property known as causality. This physical phenomenon must be reflected in the

mathematical framework, and this is implemented by requiring that observables that are

localised in regions spacelike separated from each other must commute. That is

A(O1) ⊂ A(O2)′ O1 ⊂ O′
2.

The stronger condition of Haag duality [BW76] is known to hold in the specific case of O
a wedge region such as WR and the net is generated by Wightman fields [Mun01]:

A(O′) = A(O)′.
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Similar to what we have seen already we demand that there exists a representation U of

the proper orthochronus Poincare group P↑+ such that:

U(g)A(O)U(g)∗ = A(gO), for g ∈ P↑+.

The generators P µ of the translation group U(x) = eixµP
µ

(the subgroup of P↑+) are

interpreted as the energy and momentum operators of the theory, and we demand that the

joint spectrum of P µ be contained in the closed forward light cone V + ∶= {(p0, p1) ∈ R2 ∶ p0 ≤
∣p1∣} of Minkowski space - this is known as the condition of positive energy.

As we have already described, in the algebraic setup we must also have a vector that acts

as a representation of the physical vacuum, denoted previously as Ω ∈ H having zero energy

and momentum. The vector Ω is invariant under U and is unique up to a constant scalar

multiple. It is also cyclic and separating for the local algebras, that is

A(O)Ω = H, O ⊂ R2 open

i.e. cyclic, and AΩ = 0 for A ∈ A(O) if and only if A = 0, i.e. separating. This is known in

quantum field theory as the Reeh-Schlieder property.

If the net A ∶ O ↦ A(O) has all the properties (except perhaps Haag duality) it is known

as a local net on R2.
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Appendix D

Tomita-Takesaki Modular Theory

A well known area of operator algebra with applications to mathematical physics is Tomita-

Takesaki modular theory [Tak79,Tak03]. We briefly outline the general theory and describe

the data appearing here.

LetM be a von Neumann algebra on a Hilbert space H containing a cyclic and separating

vector Ω. We define the operator S1 on H as

S1AΩ = A∗Ω

for all A ∈ M. This operator can be extended to a closed and anti-linear operator S on a

dense subset of H which takes a polar decomposition

S = ∆−1/2J = J∆1/2.

The modular operator ∆ is unique, positive and self-adjoint and the modular conjugation J

is unique, involutive and anti-unitary. We say that these operators are associated with the

pair (M,Ω). Further to this, one may extend the operator ∆ by complex powers ∆it such

that the latter is a unitary operator for all t ∈ R and then {∆it ∶ t ∈ R} forms a strongly

continuous one-parameter group.

This leads to the following well-known result.

Theorem D.1. LetM be a von Neumann algebra with cyclic and separating vector Ω. Then

JΩ = Ω = ∆Ω and the following holds

JMJ =M′, ∆itM∆−it =M

where M′ is the commutant of M.
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By way of naturally defined operators, we can observe a simple relationship between the

elements of a von Neumann algebra and its commutant, proving invaluable in the discussion

of local algebras in a quantum field theoretic context.

To touch with quantum field theory and the previous data described in Chapter 2, it can

be shown in favourable conditions that the Bisognano-Wichmann theorem [BW76, Mun01].

For the von Neumann algebra (as in (2.19)) and vacuum vector pair (AS(WR),ΩS) and

modular operator ∆ associated with this pair we have

∆it = U(0,2πt), t ∈ R.
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