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Abstract.   This study investigates the ability of a coupled finite element model to simulate Microbially 
Induced Calcium Carbonate Precipitation (MICP) and associated healing behaviour in cementitious 
samples. This recent coupled 3D model was first developed for simulating the behaviour of autonomic 
healing systems in cementitious structural elements. It employs a cohesive zone constitutive model for 
simulating the damage-healing behaviour of an embedded interface within 3D continuum elements. Fluid 
flow is simulated using a mass balance equation and Darcy’s law. Healing is computed via a generalised 
curing front model that simulates the accumulation of healed material within a crack. The research reported 
in this article demonstrates that the curing front model can be calibrated to predict healing from MICP in 
cementitious specimens with good accuracy.  

1 Introduction 
A comprehensive progress review of research on the 
numerical simulation of self-healing cementitious 
materials in 2018 [1] concluded that many models for 
self healing cementitious materials (SHCMs) had been 
validated using either limited sets of experimental data 
or no test data at all. It also highlighted the fact that 
relatively little work had been published on fully 
coupled models for biomimetic cementitious material 
that bring together reactive chemical transport and 
mechanical behaviour, with a few notable exceptions 
being [2,3,4]. In the final remarks, the review suggested 
that the journey towards the development of a set of 
comprehensive reliable models for self-healing 
cementitious materials was in its early stages.  

In the five years since this review was published, 
substantial progress has been made on the above issues. 
There have been some significant combined 
experimental-numerical studies aimed at developing 
models for SCHMs. Cibelli et al. [5] developed a new 
discrete hygro-thermo-chemical model for simulating 
the behaviour of enhanced autogenous healing systems. 
This was a further development of the formulation 
developed by Di Luzio et al. [3], which employed the 
lattice discrete particle model. In this model, healing is 
simulated via a curing function that accounts for crack 
opening and temperature effects, the latter using an 
Arrhenius type term. The model was developed, 
calibrated and validated using data from the authors’ 
group in Milan. The model predictions of the 
mechanical regain were found to be in good agreement 
with experimental results.  

    Romero Rodríguez et al. [6] explored the crack-
sealing behaviour of cementitious materials containing 
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superabsorbent polymers (SAPs) in a combined 
experimental–numerical programme of work. The 
authors used a meso-scale lattice model to simulate 
coupled transport and mechanical behaviour. Richard’s 
equation was employed to describe unsaturated moisture 
flow, with cracked elements having a higher diffusivity. 
An exponential equation was used to describe the 
hydraulic diffusivity as a function of moisture content in 
the cementitious matrix and a water absorption kinetics 
law was employed to simulate the sink term associated 
with the SAP particles. Cracking was modelled by 
element deactivation, using a standard lattice procedure 
for simulating fracture. The simulations predicted 
spatial moisture content distributions in the mortar 
matrix, and within the crack, along with the degrees of 
water absorption and SAP particle swelling. The results 
showed very agreement between the experimental 
measurements and the numerical results.  

The authors’ group made a detailed study of the 
processes governing the mechanical and transport 
behaviour of a vascular self-healing system in 
cementitious structural elements with cyanoacrylate 
(CA) as the healing agent. The experimental testing 
programme included mechanical tests on notched 
prismatic beams and notched cubes under direct tension 
[7]. The influence of the crack opening displacement 
(COD) and the curing time on the degree of healing were 
explored using tests with cracks that had fixed CODs 
during the healing period. The effect of the COD rate 
was examined using tests that had fixed COD rates and 
a continuous supply of healing agent. Another set of 
tests explored transport and curing properties [8]. The 
change in viscosity and meniscus angle were studied 
using a bespoke manometer. Curing was examined in a 
body of CA over a cementitious substrate. Sorption of 
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CA through a natural crack surface in a concrete prism 
was also studied. 

These experimental studies were used to guide the 
development of a new coupled finite element model for 
simulating structures formed from self-healing 
cementitious materials [9] [10] [11] [12]. The essential 
components of the model are described in Section 2 of 
this paper.   

  The approach was initially developed for 
simulating autonomic healing systems with CA as the 
healing agent but recently the range of problems to 
which the model is applicable has been broadened [12]. 
The problems considered in the most recent work 
include a vascular self-healing cementitious specimen 
with sodium silicate solution as the healing agent and 
autogenous healing within a cementitious specimen with 
and without crystalline admixtures. A first exploration 
of the ability of the model to simulate Microbially 
Induced Calcium Carbonate Precipitation (MICP) was 
also presented. The work reported in the present paper 
extends the previous work on modelling MICP to 
include a consideration of post-healed mechanical 
response. 

In the remainder of this paper, Section 2 provides an 
overview of the main governing equations and 
assumptions used in the coupled model; Section 3 
describes the curing front model and discusses its use for 
simulating of healing from MICP; Section 4 presents an 
example that considers healing derived from MICP in a 
set of ceramic specimens; and Section 5 draws some 
overall conclusions from the work.    

2 Model governing equations   
 The model described in references [9] to [12] 
comprises coupled mechanical and transport 
components. The essential constituent of the mechanical 
component is a damage-healing constitutive model that 
governs the traction (𝛔𝛔�) versus relative-displacement 
(𝐮𝐮�) behaviour of an embedded interface within a 
specialised 3D finite element, which is illustrated in 
Figure 1. The constitutive equations for the uncracked 
bulk material and the damage-healing interface are 
given in equations (1) and (2) respectively: 

                          𝛔𝛔 = 𝐃𝐃�(𝛆𝛆 − 𝛆𝛆�)                                        (1) 

                    𝛔𝛔� = (1 − 𝜔𝜔)𝐤𝐤� � 𝐮𝐮� + ℎ 𝐤𝐤� � (𝐮𝐮� − 𝐮𝐮��)           (2) 

where 𝛆𝛆 is the continuum strain tensor, 𝛆𝛆� is the 
strain in the continuum part of the element caused by the 
displacement jump at the discontinuity, 𝜔𝜔 ∈ [0,1] is the 
crack-plane damage variable, ℎ denotes the proportion 
of material that is healed at any one time, 𝐤𝐤� � is the elastic 
stiffness of the material in the crack band, 𝐤𝐤� � is the 
counterpart to 𝐤𝐤� � for healed material and 𝐮𝐮�� is the 
healing relative-displacement associated with cured 
material in open cracks.  

The approach used to simulate re-damage and re-
healing is explained in full in Reference [11]. This is 
based on equation (3): 

 
 

    ℎ = (1 − 𝜔𝜔�)ℎ�                               (3) 

in which the current degree of h is computed from 
the virgin damage variable (hv) and the proportion of hv 
which has re-damaged (h)  

Re-healing results in a reduction h. At each 
increment in the solution, the algorithm employs a 
damage sub-step, in which  and h are updated whilst 
hv is fixed, and then a healing step in which hv is updated 
and h reduced to account for any re-healing. 

The method used to compute ℎ for different healing 
systems is discussed in Section 3.    

 

 
  

Fig. 1. 3D finite element with embedded discontinuity 

Fluid transport processes are illustrated in Figure 2, 
and the associated main governing equations for flow 
within a discrete crack and within the surrounding 
matrix are given by equations (4a-d) and (5a-b) 
respectively: 
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where (4a & b) apply in the crack space (𝛺𝛺���), (4c) on 
the fluid surface (𝛤𝛤�), (4d) at the crack boundary where 
pressure (Papp) is applied, (5a) in the matrix bulk (𝛺𝛺���) 
and (5b) on the matrix boundary: 𝛽𝛽� and 𝛽𝛽� are 
meniscus and stick slip material parameters, 𝑃𝑃���  is the 
fluid pressure in the crack, v  is the fluid flow velocity,  
𝜌𝜌 is the fluid density, 𝐧𝐧��⃗  is a unit vector on the boundary; 
𝜌𝜌���� = 𝜌𝜌𝜌𝜌𝜌𝜌� is the phase averaged density, 𝑆𝑆� is the 
degree of fluid saturation and 𝐉𝐉� is the fluid flux. 
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 Darcy’s law is used to relate the flux to the 
pressure gradient, and  van Genuchten’s equation [13] is 
used for the 𝑆𝑆� v 𝑃𝑃� relationship. All of the other 
transport-related constitutive equations are given in 
references [9] and [11].  
 
 

 
Fig. 2. Flow processes of a cementitious healing system 

 

3 Curing, MICP and healing  
The sub-model developed for healing in an autonomic 
vascular system with cyanoacrylate as the healing agent 
simulates advancing curing fronts from opposing crack 
faces within the body of healing agent. The degree of 
healing is computed from the overlap between these 
diffuse curing fronts [11], as illustrated in Figure 3. This 
figure represents the degree of cure (), at a distance x 
from a crack for a curing front at position 𝑧𝑧𝑧, noting that 
𝑧𝑧𝑧 is the generalised curing front variable derived from 
equation (5), such that in the absence of re-damage and 
re-healing, 𝑧𝑧𝑧 𝑧 𝑧𝑧�. 
   The model was derived by examining the chemical 
curing kinetics of cyanoacrylate and using observations 
and measurements from a number of experiments that 
studied the curing of CA on a cementitious substrate [7] 
& [8]. The healing function derived from this work, 
which depends on both the CMOD and its rate according 
to equations (6) to (8), is as follows: 
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   where 𝑧𝑧𝑧 is the effective curing front variable derived 
from the curing front variable zf , zc0  is the critical curing 
depth, 𝑧𝑧�� is a wall factor,  𝑧𝑧�� is a diffusion constant,  
the static and dynamic factors are 𝑓𝑓����= 1 and 𝑓𝑓��� =
0.45  respectively, 𝑤𝑤�� = 10�� 𝜁𝜁� 𝜏𝜏�⁄  mm/s and 𝑤𝑤����= 
𝑤𝑤��/10. 

The idea of using the curing model to simulate 
healing in other types of healing system -and for a range 
of other healing agents- was discussed in Freeman et al. 
[12]. In the work described in the present paper, the 
approach is calibrated to simulate healing from MICP. 
In microbial healing, the healing material -usually 
calcium carbonate- grows from the crack walls. To 
predict this growth in detail, a kinetic bio-chemical sub-
model would be required; however, we show here that a 
tractable alternative to such a model is to calibrate the 
parameters of the curing front function such that it 
represents microbial induced healing. The idea to use 
the model stems from observations of nano-scale 
simulations and MICP experiments [14], which show 
that -during a healing period- the average density of 
precipitate within a crack decreases with the distance 
from the crack face. This was considered analogous to 
the degree of cure within a body of liquid healing agent.  

           
     Fig. 3. Curing fronts emanating from crack walls 

 

4 Example of MICP simulation   
To validate the model, we consider the experimental 
data presented by Xin et al. [15].  In Xin et al.’s work, 
ceramic prisms of dimension 24x8x2mm3 were pre-
soaked with bacterial solution before being loaded in 
three-point bending to failure. Following this, the 
resulting two halves were fixed together with an 
interfacial gap of 0.3mm and immersed in a urea-CaCl2 
solution for different healing periods, before being 
reloaded to failure. The model parameters can be seen in 
Table 1, whilst the comparison between the numerical 
predictions and the experimental results of Xin et al. can 
be seen in Figures 4 and 5. 

The curing front parameters (zc0 , zc1, zc2  and  )  were 
calibrated to provide a close match with the 
experimental volume fractions of cured material [12] at 
different curing times. The mechanical and strength 
parameters (E, , um , ft and fth) were either obtained 
directly from the experimental data [15] or, when not 
available, taken as typical values for the type of ceramic 
material used in the tests. 

These values would need to be calibrated separately 
for MICP in another host material, or for a system which 
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used different bacteria; however, the overall approach 
should be applicable to MICP systems in general. 

  
 

Table 1.  Model parameters 
Parameter Value Parameter Value 
𝐸𝐸 (𝑀𝑀𝑀𝑀𝑀𝑀) 175 𝑧𝑧�� (𝑚𝑚𝑚𝑚) 0.9 
𝐸𝐸� (𝑀𝑀𝑀𝑀𝑀𝑀) 290 𝑧𝑧�� (𝑚𝑚𝑚𝑚) 20 
𝜐𝜐, 𝜐𝜐� (−) 0.3 𝑧𝑧�� (𝑚𝑚𝑚𝑚) 0.00001 

𝑓𝑓�, 𝑓𝑓�� (𝑀𝑀𝑀𝑀𝑀𝑀) 1.94 𝜏𝜏 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 28 
𝑢𝑢� (𝑚𝑚𝑚𝑚) 0.0033 𝑤𝑤� (𝑚𝑚𝑚𝑚) 0.3 

 
It may be seen from the Figures that the model is able to 
accurately reproduce the experimental results both in 
terms of the healing strength ratio and the load-
deflection response for different healing periods. 
Representative contours of the predicted vertical 
displacements immediately prior to fracture for the 
different healing periods can be seen in Figure 6. 
 It is noted that the ceramic material is relatively 
brittle, which is why no stable post-peak response is 
shown in the numerical results.  
 

 
                          Fig. 4. Comparison of healing ratios  

 
 
 

 

Fig. 5. Comparison between predicted load-deflection 
responses and the experimental results 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
Fig. 6. Representative contours of vertical deflection prior to 
fracture after healing periods of a) 4, b) 6, c) 8 and d) 10 days 
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5 Conclusion 
The results of these preliminary simulations of MICP in 
ceramic samples suggest that the curing front formulation, 
within the coupled finite element model developed by the 
authors, is an effective and pragmatic way of simulating 
cracking and healing in microbial-based healing systems.  
 Future work is well-progressed on a more fundamental 
model for predicting healing from MICP, which is informed 
from nano scale simulations [14]. 
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