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a b s t r a c t

In this article, we use the generating functions of the Humbert polynomials to define
two types of Humbert generalized fractional differenced ARMA processes. We present
stationarity and invertibility conditions for the introduced models. The singularities for
the spectral densities of the introduced models are investigated. In particular, Pincherle
ARMA, Horadam ARMA and Horadam–Pethe ARMA processes are studied. It is shown
that the Pincherle ARMA process has long memory property for u = 0. Additionally,
we employ the Whittle quasi-likelihood technique to estimate the parameters of the
introduced processes. Through this estimation method, we attain results regarding the
consistency and normality of the parameter estimators. We also conduct a compre-
hensive simulation study to validate the performance of the estimation technique for
Pincherle ARMA process. Moreover, we apply the Pincherle ARMA process to real-world
data, specifically to Spain’s 10 years treasury bond yield data, to demonstrate its practical
utility in capturing and forecasting market dynamics.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The study of fractionally differenced time series by Granger and Joyeux (1980) [1] and Hosking in 1981 [2] provided
an impetuous to a new research direction in time series modeling. The fractionally differenced time series called the
autoregressive fractionally integrated moving average (ARFIMA) model generalizes the autoregressive (AR), moving
average (MA) and autoregressive moving average (ARMA) models defined respectively by Yule (1926) [3], Slutsky
(1937) [4] and Wold (1938) [5]. Also, the ARFIMA model is an extension of the autoregressive integrated moving average
(ARIMA) process defined by Box and Jenkins (1976) [6] to model non-stationary time series by assuming the order of
differencing ν ∈ R. The fractionally differenced time series is useful to model the data exhibiting long-range dependence
(LRD). The data exhibiting LRD behaviors or long memory have a high correlation after a significant lag. For large sample
inference for long-memory processes see Giraitis et al. [7]. Anh et al. [8] proposed some continuous time stochastic
processes with seasonal long-range dependence and these kinds of long memory processes have spectral pole at non-
zero frequencies. In subsequent years, Andel (1986); Gray, Zhang and Woodward (1989, 1994) introduced the concept of
Gegenbauer ARMA (GARMA) process. GARMA process also possesses seasonal long-range dependence [9]. The study on
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the usefulness of the Gegenbauer stochastic process is done by Dissanayake et al. [10]. The limit theorems for stationary
Gaussian processes and their non-linear transformations with covariance function

ρ(h) ≃
r
∑

k=1

Ak cos(hωk)h
−αk ,

r
∑

k=1

Ak = 1,

where Ak ≥ 0, αk > 0, ωk ∈ [0, π ), k = 1, . . . , r have been considered in [11]. For seasonal long memory process
Xt , the autocorrelation function for lag h denoted by ρ(h) behaves asymptotically as ρ(h) ≃ cos(hω0)h

−α as h → ∞
for some positive α ∈ (0, 1) and ω0 ∈ (0, π ) (see [12]). In literature, many tempered distributions and processes are
studied using the exponential tempering in the original distribution or process see e.g. and references therein [13–19].
The fractionally integrated process with seasonal components are studied and maximum likelihood estimation is done
by Reisen et al. [20]. The parametric spectral density with power-law behavior about a fractional pole at the unknown
frequency ω is analyzed and Gaussian estimates and limiting distributional behavior of estimate is studied by Giraitis
and Hidalgo [21]. The autoregressive tempered fractionally integrated moving average (ARTFIMA) process is obtained by
using exponential tempering in the original ARFIMA process [15]. The ARTFIMA process is semi LRD and has a summable
autocovariance function. In ARIMA process the fractional differencing operator (1 − B)ν, |ν| < 1 is considered instead of
(1−B), where B is the shift operator. In defining ARTFIMA model the tempered fractional differencing operator (1−e−λB)ν

is used where λ > 0 is the tempering parameter. The Gegenbauer process uses (1 − 2uB + B2)ν, |u| ≤ 1, |ν| < 1
2
as a

difference operator, which can be written in terms of Gegenbauer polynomials.
In this article, we study Humbert polynomials based time series models. The Gegenbauer and Pincherle polynomials

are the particular cases of Humbert polynomials. The Gegenbauer polynomials based time series model, namely GARMA
process, is already studied and has been applied in several real world applications emanating from different areas. These
processes possess seasonal long memory which helps to capture autocorrelation present in the data, leading to improved
forecasting accuracy. We introduce and study two types of Humbert autoregressive fractionally integrated moving average
(HARMA) models which are defined by considering Humbert polynomials and obtain the spectral density, stationarity and
invertibility conditions of the process. In particular, Pincherle ARMA, Horadam ARMA and Horadam–Pethe ARMA processes
are studied. This new class of time series models generalizes the existing models like ARMA, ARIMA, ARFIMA, ARTFIMA
and GARMA in several directions. The possible areas of applications of proposed model include sales forecasting in e-
commerce industries as it can capture seasonality, trends, and other patterns in historical sales data [22]. Also, the long
memory property can capture autocorrelation patterns observed in financial returns, volatility and other indicators. These
models can be applied to analyze environmental monitoring data, such as water quality parameters, air pollution levels,
and ecosystem dynamics [23]. Further, we also provide the Whittle quasi-likelihood estimation for HARMA processes and
applied on simulated data. Also, we applied the Pincherle ARMA model to Spain’s 10-year treasury bond yield data.

The rest of the paper is organized as follows. In Section 2, we introduce the Type 1 HARMA (p, ν, u, q) process, where
p and q are autoregressive and moving average lags respectively and ν is a differencing parameter. This section includes
the study of the stationarity property and spectral density of the introduced process. Also Section 2 includes the study
of a particular case of Type 1 HARMA(p, ν, u, q) process by taking m = 3, which is Pincherle ARMA (p, ν, u, q) process.
Moreover, the spectral density of the Pincherle ARMA (p, ν, u, q) process is obtained and it is shown that for u = 0 the
model exhibits seasonal long memory property. The Section 3 deals with the Type 2 HARMA process (p, ν, u, q). In this
section, the particular cases namely the Horadam ARMA process and the Horadam–Pethe ARMA process are discussed.
In Section 4, we provide the Whittle quasi-likelihood method to estimate the parameters of type 1 and type 2 HARMA
process and it is shown that the estimators are consistent. The simulation study of Pincherle ARMA and its applications are
discussed in Section 5. The last section concludes. Overall, our study contributes to the advancement of time series analysis
by introducing novel Humbert generalized fractional differenced ARMA models, investigating their properties, providing
parameter estimation techniques, and showcasing their efficacy through simulations and real data applications..

2. Type 1 HARMA(p, ν, u, q) process

In this section, we introduce a new time series model namely type 1 HARMA(p, ν, u, q) process with the help of
Humbert polynomials which we call hereafter type 1 Humbert polynomials. For Humbert polynomials and related
properties see e.g. [24–26]. A detailed discussion on special functions including Humbert polynomials is given in [25,27].

Definition 2.1 (Type 1 Humbert Polynomials). The Humbert polynomials of type 1 {Πν
n,m}∞n=0 are defined in terms of

generating function as

(1 − mut + tm)−ν =
∞
∑

n=0

Πν
n,m(u)t

n,m ∈ N, |t| < 1, |u| ≤ 1 and |ν| < 1

2
. (2.1)

For the table of main special cases of (2.1), including Gegenbauer, Legendre, Tchebysheff, Pincherle, Kinney polynomials,
see Gould (1965) [25]. In above definition, polynomial Πν

n,m(u) is explicitly can be written as follows [24]:

Πν
n,m(u) =

⌊ n
m ⌋
∑

k=0

(−mu)n−mk

Γ ((1 − ν − n) + (m − 1)k)(n − mk)!k! , where
⌊ n

m

⌋

is floor function.

2
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The hypergeometric representation of Πν
n,m(u) is given as follows:

Πν
n,m(u) = (ν)n(mu)n

n! mFm−1

[−n

m
,
−n + 1

m
, . . . ,

−n − 1 + m

n
;

−ν − n + 1

m − 1
,
−ν − n + 2

m − 2
, . . . ,

−ν − n + m − 1

m − 1
; 1

(m − 1)m−1um

]

.

For more properties and results on hypergeometric functions see Srivastava and Manocha (1984) [27]. The type 1 Humbert

polynomial satisfies the following recurrence relation

(n + 1)Πν
n+1,m(u) − mu(n + ν)Πν

n,m(u) − (n + mν − m + 1)Πν
n−m+1,m(u) = 0.

For m = 2 the Humbert polynomials reduces to Gegenbauer polynomials generally denoted as {Cνn (u)}∞n=0 and for

m = 3 the polynomials reduce to Pincherle polynomials {Pνn (u)}∞n=0, see Pincherle (1891) [28]. The generating function of

Pincherle polynomials have the following form

(1 − 3ut + t3)−ν =
∞
∑

n=0

Pνn (u)t
n,

where Pνn (u) has the following representation in terms of hypergeometric function [28]

Pνn (u) = (ν)n(3x)
n

n! 3F2

[−n

3
,
−n + 1

3
,
−n + 2

3
; −n − ν + 1

2
,
−n − ν + 2

2
; −1

4x3

]

,

where 3F2(a1, a2, a3; b1, b2; x) =
∑∞

k=0
(a1)k(a2)k(a3)k

(b1)k(b2)k

xk

k! and (a1)k = Γ (a1+k)

Γ (a1)
see e.g. [29].

Definition 2.2 (Type 1 HARMA Process). The type 1 HARMA(p, ν, u, q) process Xt is defined by

Φ(B)(1 − muB + Bm)νXt = Θ(B)ϵt , (2.2)

where ϵt is Gaussian white noise with variance σ 2, B is the lag operator, 0 ≤ u ≤ 2/m, and Φ(B), Θ(B) are stationary AR

and invertible MA operators respectively, defined as,

Φ(B) = 1 −
p
∑

j=1

φjB
j,Θ(B) = 1 +

q
∑

j=1

θjB
j, and Bj(Xt ) = Xt−j.

In next result, the stationarity and invertibility conditions of the type 1 HARMA process are given. Also, the Abel’s test

which will be used in next theorem is stated below as proposition.

Proposition 2.1 (Abel’s Tests [30]). If the series
∑∞

n=0 an is convergent and {bn} is monotone and bounded sequence then series
∑∞

n=0 anbn is also convergent.

Definition 2.3 (Asymptotically Equivalent Functions [31]). The functions f and g are said to be asymptotically equivalent

that is, f (h) ≃ g(h) as h → ∞ if limh→∞
f (h)

g(h)
= 1.

Theorem 2.1. Let {Xt} be the type 1 HARMA(p, ν, u, q) process defined in (2.2) and all roots of Φ(B) = 0 and Θ(B) = 0 lie

outside the unit circle then the HARMA(p, ν, u, q) process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤ 2/m.

Proof. Using (2.2), one can write

Xt = Θ(B)

Φ(B)
(1 − muB + Bm)−νϵt , where

Θ(B)

Φ(B)
=

∞
∑

j=0

ψjB
j.

Further,

(1 − muB + Bm)−ν =
∞
∑

n=0

(ν)n

n!
(

muB − Bm
)n
.

Then (2.2) can be written as

Xt =
∞
∑

j=0

∞
∑

n=0

ψj

(ν)n

n! (muB − Bm)nϵt−j−n

3
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=
∞
∑

j=0

∞
∑

n=0

ψj

(ν)n

n!

n
∑

r=0

(−1)r
(

n

r

)

(mu)n−rBmrϵt−n

=
∞
∑

j=0

∞
∑

n=0

ψj

(ν)n

n! (mu − 1)nϵt−n−mj.

The variance of the process Xt is given by

Var(Xt ) = σ 2

∞
∑

j=0

ψ2
j

∞
∑

n=0

(

(ν)n

n!

)2

(mu − 1)2n = σ 2

∞
∑

j=0

ψ2
j

∞
∑

n=0

(

Γ (ν + n)

Γ (ν)Γ (n + 1)

)2

(mu − 1)2n.

Let an = (mu−1)2n and {bn} =
(

Γ (ν+n)

Γ (ν)Γ (n+1)

)2

, then using Abel’s test
∑∞

n=0 an converges for 0 < u < 2
m

and using Stirling’s

approximation, for large n, bn ≃ n2ν−2

(Γ (ν))2
, which implies that the sequence is bounded for ν < 1

2
. We can write bn =

(

ν+n−1

n

)

and it is known that
(

n

x

)

is decreasing for x ≥ ⌊ n
2
⌋ this implies that {bn} is decreasing for ν ≤ 1. This indicates that the

sequence is bounded and monotone for ν < 1/2. Also,
∑∞

j=0 ψ
2
j is convergent, hence the Var(Xt ) converges for the defined

range. Similarly to prove the invertibility condition we define the process (2.2) as

ϵt = π (B)Xt ,

where π (B) = Φ(B)

Θ(B)
(1 − muB + Bm)ν and again using the same argument discussed above the π (z) will converge for

− 1
2
< ν < 1 and 0 < u < 2

m
. For u = 0 and u = 2

m
the variance can be defined as follows

Var(Xt ) = σ 2

∞
∑

n=0

(

Γ (ν + n)

Γ (ν)Γ (n + 1)

)2

= σ 2

N
∑

n=0

(

Γ (ν + n)

Γ (ν)Γ (n + 1)

)2

+
∞
∑

n=N+1

(

Γ (ν + n)

Γ (ν)Γ (n + 1)

)2

.

In the above equation, the first summation is finite and the terms inside the second summation behave like n2ν−2

Γ (ν)2
for large

n and it is bounded for ν < 1
2
. Hence, the HARMA process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤ 2

m
. □

Theorem 2.2. For a type 1 HARMA(p, ν, u, q) process defined in (2.2), under the assumptions of theorem 2.1 the spectral
density takes the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + m2u2 − 2mu(cos(ω) + cos((1 − m)ω)) + 2 cos(mω))−ν,

where z = e−ιω, ω ∈ (−π, π ).

Proof. Rewrite (2.2) as follows

Xt = Ψ (B)ϵt ,

where Ψ (B) = Θ(B)

Φ(B)
(1 − muB + Bm)−ν . Then using the definition of the spectral density of linear process, we have

fx(ω) = |Ψ (z)|2fϵ(ω), (2.3)

where z = e−ιω and fϵ(ω) is spectral density of the innovation term. The spectral density of the innovation process ϵt is
σ 2/2π . Then (2.3) becomes,

fx(ω) = σ 2

2π
|Ψ (z)|2 = σ 2

2π

|Θ(z)|2
|Φ(z)|2

⏐

⏐1 − mue−ιω + e−mιω
⏐

⏐

−2ν

=
σ 2|Θ(e−ιω)|2

⏐

⏐1 − mue−ιω + e−mιω
⏐

⏐

−2ν

2π |Φ(e−ιω)|2 .

Here,
⏐

⏐1 − mue−ιω + e−mιω
⏐

⏐

−2ν = (2+m2u2 −2mu(cos(ω)+ cos((1−m)ω))+2 cos(mω))−ν and the spectral density takes
the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + m2u2 − 2mu(cos(ω) + cos((1 − m)ω)) + 2 cos(mω))−ν . □ (2.4)

Definition 2.4 (Singular Point [31]). The point ω = ω0 is said to be singular point of function f if at ω = ω0, f fails to be
analytic, that is f (ω0) = ∞.

4
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Next, the definition of seasonal or cyclic long-memory is given, which is characterized by having a spectral pole at a
frequency κ ∈ R different from 0, see, e.g., [8,9].

Definition 2.5 (Seasonal Long Memory). The stationary time series {Xt} is said to have seasonal long memory if there exist
ω0 ∈ R and α ∈ (0, 1) such that

ρ(h) ≃ h−α cos(hω0), as h → ∞,

and cos(hω0) ̸= 1.

Theorem 2.3. Let {Xt} be the stationary type 1 HARMA(p, ν, u, q) process and all the assumptions of theorem 2.1 hold then
the spectral density of HARMA(p, ν, u, q) {Xt} has singular spectrum

(a) at u = 0 and ω = 4nπ±π
m

for −m±1
4
< n < m∓1

4
;

(b) at u = 2
m
(−1)n cos( 4nπ

m−2
) and ω = ± 2nπ

m−2
for m ̸= 2 and − (m−2)

4
< n <

(m−2)

4
;

(c) at ω = cos−1(u) for m = 2.

Proof. From (2.4), the spectral density of the process {Xt} is

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + m2u2 + 2 cos(mω) − 2mu(cos(ω) + cos((m − 1)ω)))−ν, where z = e−ιω.

We consider the denominator and find the zeros as follows,

2 + m2u2 + 2 cos(mω) − 2mu(cos(ω) + cos((m − 1)ω))

= 2 + 2 cos(mω) + [mu − {cos(ω) + cos((m − 1)ω)}]2 − [cos(ω) + cos((m − 1)ω)]2

= 4 cos2
[mω

2

]

+ [mu − {cos(ω) + cos((m − 1)ω)}]2 − 4 cos2
[mω

2

]

cos2
[

(m − 2)ω

2

]

= 4 cos2
[mω

2

]

sin2

[

(m − 2)ω

2

]

+
[

mu − 2 cos
(mω

2

)

cos

(

(2 − m)ω

2

)]2

.

We have the following two cases.

(a) The first term, 4 cos2
[

mω
2

]

sin2
[

(m−2)ω

2

]

≥ 0 for all m and −π < ω < π .

4 cos2
[mω

2

]

sin2

[

(m − 2)ω

2

]

= 0

if cos2
(mω

2

)

= 0 or sin2

(

(m − 2)ω

2

)

= 0 or both

⇒ cos
(mω

2

)

= 0 for ω1 = (4n ± 1)
π

m
, for all m ∈ N and

n = 0,±1,±2, . . . .

We find the condition of singularity by solving the second term,
[

mu − 2 cos
(

mω
2

)

cos
(

(2−m)ω

2

)]2
at ω1, which yields

u = 0.
Also, the singular point ω1 ∈ (−π, π ) for −m±1

4
< n < m∓1

4
.

Therefore, the type 1 HARMA(p, ν, u, q) process {Xt} will have singular points for u = 0 and ω1 = (4n± 1) π
m

for all

m and −m±1
4
< n < m∓1

4
.

This proves the part (a).

(b) Again the term

4 cos2
(mω

2

)

sin2

(

(m − 2)ω

2

)

= 0

when

sin2

(

(m − 2)ω

2

)

= 0

sin

(

(m − 2)ω

2

)

= 0 for ω2 = ±2nπ

m − 2
for all m ∈ N−{2}, and n = 0,±1,±2, . . . .

At ω2, the second term will become zero if and only if,
[

mu −
(

2 cos
(mω2

2

)

cos

(

(2 − m)ω2

2

))]2

= 0

5
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Fig. 1. Plot of the function U(ω) for different values of m ∈ {1, 2, 3, 4, 8, 9} and 0 ≤ u ≤ 2/m.

⇒ mu − 2(−1)n cos

(

± 4nπ

m − 2

)

= 0

⇒ u = 2(−1)n

m
cos

(

4nπ

m − 2

)

.

This proves the part (b).

(c) In (2.4) let U(ω) = (2 + m2u2 − 2mu(cos(ω) + cos((1 − m)ω)) + 2 cos(mω)). For different values of m = 1, 2, 3, 4

and 0 ≤ u < 2/m in Fig. 1, we observe that the function U(ω) does not attain 0 for ω ∈ (−π, π ). This signifies

that the spectral density defined by (2.4) has no singularity for m = 1, 3, 4 and 0 ≤ u < 2/m. For m = 2, the

spectral density is unbounded since U(ω) takes value 0 at ω = cos−1(u). Therefore, we conclude that for m = 2 the

singularities are at ω = cos−1(u). □

In Fig. 1, observe the behavior of function U(ω) for ω ∈ (−π, π ) and for different values of m and u. For m = 2, the

function U touches the x-axis for all values of u. Further, for m = 1 it touches the x-axis only for u = 0. For other cases

see Theorem 2.3.

6
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Definition 2.6 (Slowly Varying Function [32]). A function b(ω) is said to be slowly varying at ω0 if for δ > 0, (ω−ω0)
δb(ω)

is increasing and (ω− ω0)
−δb(ω) is decreasing in some right-hand neighborhood of ω0. Also, (ω− ω0)

δb(ω) is decreasing
and (ω − ω0)

−δb(ω) is increasing in some left-hand neighborhood of ω0.

We need the following lemma which is given in [32] to prove our next result.

Lemma 2.1 (Gray et al. [32]). Let R(τ ) =
∫ π

0
P(ω)dω where τ is an integer and P(ω) is spectral density. Suppose P(ω) can be

expressed as

P(ω) = b(ω)|ω − ω0|−β (2.5)

with 0 < β < 1
2
and ω0 ∈ (0, π ). Further, suppose that b(w) is non-negative and of bounded variation in (0, ω0−ϵ)∪(ω0+ϵ, π )

for ϵ > 0. Also suppose that b(ω) is slowly varying at ω0, then as τ → ∞
R(τ ) ≃ τ 2β−1cos(τω0).

Theorem 2.4. The stationary type 1 HARMA(p, ν, 0, q) process has seasonal long memory for 0 < ν < 1/2.

Proof. The spectral density of type 1 HARMA(0, ν, u, 0) process is given by

fx(ω) = σ 2

2π
(2 + m2u2 − 2mu(cos(ω) + cos((1 − m)ω)) + 2 cos(mω))−ν .

For u = 0 the spectral density has the form

fx(ω) = σ 2

2π
(2 + 2 cos(mω)). (2.6)

Also, the spectral density is unbounded at ω0 = (4n ± 1) π
m
,−m±1

4
< n < m∓1

4
. which implies that the covariance is not

absolutely summable for u = 0 at frequency ω0. To prove the process is seasonal long memory we use Lemma 2.1 defined
by Gray et al. [32]. Now (2.6) can be rewritten as

fx(ω) = σ 2(2 + 2 cos(mω))−ν |ω − ω0|−2ν

2π |ω − ω0|−2ν
.

Comparing the above equation with (2.5)

b(ω) = σ 2(2 cos(mω) + 2)−ν

2π |ω − ω0|−2ν
.

Now to show b(ω) is slowly varying at ω0, consider the case ω > ω0 and for δ > 0 define,

l(ω) = b(ω)(ω − ω0)
δ = σ 2

2π
(2 + 2 cos(mω))−ν(ω − ω0)

δ+2ν

and

l′(ω) = σ 2

2π
(ω − ω0)

δ+2ν−1(2 + 2 cos(mω))−ν−1((δ + 2ν)(2 + 2 cos(mω)) + 2νm sin(mω)(ω − ω0)).

For ω > ω0 the terms (ω − ω0)
δ+2ν−1, (δ + 2ν) and (2 + 2 cos(mw)) are positive. It can be easily shown that

lim
ω→ω0

(2νm sin(mω)(ω − ω0) + (δ + 2ν)(2 + 2 cos(mω))) > 0.

Thus in some right hand neighborhood of ω0, i.e. for ω → ω+
0 , l

′(ω) > 0 and (ω − ω0)
δb(ω) is increasing and similarly

(ω−ω0)
−δb(ω) is decreasing when ω → ω+

0 . Similarly, it can be easily shown that for ω < ω0, (ω−ω0)
δb(ω) is decreasing

and (ω − ω0)
−δb(ω) is increasing in some left hand neighborhood of ω0. Thus the function is slowly varying at ω0.

Also, it can be easily verified that the function b(w) has bounded derivative in (0, ω0 − ϵ) ∪ (ω0 + ϵ, π ), hence it is of
bounded variation in (0, ω0 − ϵ) ∪ (ω0 + ϵ, π ).

Using the above two results and Lemma 2.1 the autocorrelation function R(h) of the type 1 Humbert ARMA process
takes the following asymptotic form

R(h) ≃ h2ν−1 cos(hω0), as h → ∞. (2.7)

The result (2.7) implies that the process is seasonal long memory for 0 < ν < 1/2. □

2.1. Pincherle ARMA (p, ν, u, q) process

This section deals with the special case of the type 1 HARMA process for m = 3. The Pincherle polynomials are
polynomials introduced by Pincherle (1891) [28]. The Pincherle polynomials were generalized to Humbert Polynomials
by Humbert (1920) [24].

7
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Definition 2.7 (Pincherle Polynomials). The Pincherle polynomials Pνn (u) are defined as the coefficient of t in the expansion
of (1 − 3ut + tn)−ν . The Pincherle polynomials are defined by taking m = 3 in type 1 Humbert polynomials that is
Pνn (u) = Πν

n,3(u). Also, the generating function relation for Pincherle polynomials is given by

(1 − 3ut + tn)−ν =
∞
∑

n=0

Pn(u)t
n, |t| < 1, |ν| < 1/2, |u| ≤ 1.

The polynomials satisfy the following difference equation [33]

(n + 1)Pνn+1(u) − 3u(n + ν)Pνn (u) + (n + 3ν − 2)Pνn−2(u) = 0.

The coefficient of Pincherle polynomials can be written as Pν0 (u) = 1, Pν1 (u) = 3ν, Pν2 (u) = 9ν(ν + 1)u2/2 and the nth

coefficient takes the form [33]

Γ (n + ν)Γ (1/3)Γ (2/3)

Γ (ν)Γ ((n + 1)/3)Γ ((n + 2)/3)Γ ((n + 3)/3)
.

Definition 2.8 (Pincherle ARMA Process). The Pincherle ARMA (p, ν, u, q) process is defined by taking m = 3 in type 1
HARMA process defined in (2.2) and the process has the form defined below

Φ(B)(1 − 3uB + B3)νXt = Θ(B)ϵt , (2.8)

where ϵt is Gaussian white noise with variance σ 2, 0 ≤ u ≤ 2/3 and B, Φ(B) and Θ(B) are lag, stationary AR and invertible
MA operators respectively defined in definition 2.2.

Theorem 2.5. Let {Xt} be the Pincherle ARMA(p, ν, u, q) process defined in (2.8) and all roots of Φ(B) = 0 and Θ(B) = 0 lie

outside the unit circle then the Pincherle ARMA(p, ν, u, q) process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤ 2/3.

Proof. The proof can be easily done by taking m = 3 in the proof of theorem 2.1. □

Theorem 2.6. The stationary Pincherle HARMA(p, ν, 0, q) process has seasonal long memory for 0 < ν < 1/2 at ω0 = π/3.

Proof. According to theorem 2.3 the spectral density of the Pincherle ARMA process has singularity at u = 0 for ω0 = π/3.
Also, similar to the proof of theorem 2.4 the autocovariance function of Pincherle ARMA process γ (h) has the asymptotic
form R(h) ≃ h2ν−1 cos(hω0). This proves that the process has a seasonal long memory for 0 < ν < 1/2 at ω0 = π/3. □

Theorem 2.7. For a Pincherle ARMA(p, ν, u, q) process defined in (2.8), the spectral density takes the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) + D)−ν,

where z = e−ιω, C = 6 + 6u, and D = 2 + 6u + 9u2.

Proof. Taking m = 3 in (2.4) gives us the desired spectral density. □

Theorem 2.8. The autocovariance function for the Pincherle ARMA process takes the following form

γ (h) = σ 2

∞
∑

j=0

∞
∑

n=0

ψjψj+hP
ν
n (u)P

ν
n+h(u).

Proof. For lag h the autocovariance of the process {Xt} and {Xt+h} using the (2.8) is given by

Cov(XtXt+h) = E[XtXt+h],
where Xt can be written as

Xt =
∞
∑

j=0

∞
∑

n=0

ψjP
ν
n (u)ϵt−j−n

and

E[XtXt+h] = σ 2

∞
∑

j=0

∞
∑

n=0

ψjψj+hP
ν
n (u)P

ν
n+h(u). □

8
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3. Type 2 HARMA(p, ν, u, q) process

Milovovic and Dordevic (1987) [26] considered the following generalization of Gegenbauer polynomials, which we call
type 2 Humbert polynomials and are used to define the type 2 HARMA process.

Definition 3.1 (Type 2 Humbert Polynomials). The type 2 Humbert polynomials are defined by considering the polynomials
Q ν
n,m(u) defined by the following generating function

(1 − 2ut + tm)−ν =
∞
∑

n=0

Q ν
n,m(u)t

n, |t| < 1, |ν| < 1/2, |u| ≤ 1. (3.1)

Here Q ν
n,m(u) = Πν

n,m(
2u
m
) (see (2.1)).

The explicit form of the polynomials Q ν
n,m(u) is defined by

Q ν
n,m(u) =

[ n
m ]
∑

k=0

(−1)k
(ν)(n−(m−1)k)

k!(n − mk)! (2u)
n−mk,

where ν0 = 1 and (ν)n = ν(ν + 1) · · · (ν + n − 1).

Definition 3.2 (Type 2 HARMA Process). The type 2 HARMA process is defined by using the above-defined generation
function as follows

Φ(B)(1 − 2uB + Bm)νXt = Θ(B)ϵt , (3.2)

where ϵt is Gaussian white noise with variance σ 2, 0 ≤ u < 1, and B, Φ(B), Θ(B) are lag, stationary AR and invertible MA
operators respectively defined in definition 2.2.

For m = 2 the above polynomials in (3.1) is Gegenbauer polynomials and Q ν
n,2(u) = Cνn (u). Also, for m = 3 the

polynomials in (3.1) are known as Horadam–Pethe polynomials and for m = 1 they are known as Horadam polynomials,
see Gould (1965) [25], Horadam (1985) [34] and Horadam and Pethe (1981) [35].

Theorem 3.1. Let {Xt} be the type 2 HARMA(p, ν, u, q) process and all roots of Φ(B) = 0 and Θ(B) = 0 lies outside the unit
circle then the HARMA(p, ν, u, q) process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤ 1.

Proof. The process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤ 1 can be easily proved using the proof for the
stationarity of type 1 HARMA process defined in 2.1. □

Theorem 3.2. For a type 2 Humbert ARMA(p, ν, u, q) process defined in (3.2), under the assumptions of theorem 3.1 the
spectral density takes the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos((1 − m)ω)) + 2 cos(mω))−ν, (3.3)

where z = e−ιω .

Proof. Rewrite (3.2) as follows

Xt = Ψ (B)ϵt ,

where Ψ (B) = Θ(B)

Φ(B)
∆ν and ∆ν = (1 − 2uz + zm)−ν . The spectral density of the innovation process ϵt is given by σ 2/2π ,

which implies

fx(ω) = σ 2

2π
|Ψ (z)|2 = σ 2

2π

|Θ(z)|2
|Φ(z)|2

⏐

⏐1 − 2uz + zm
⏐

⏐

−2ν
,

where z = e−ιω . Furthermore,
⏐

⏐1 − 2ue−ιω + e−mιω
⏐

⏐

−2ν = (2 + 4u2 − 4u(cos(ω) + cos((1 − m)ω)) + 2 cos(mω))−ν,

and the spectral density takes the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos((1 − m)ω)) + 2 cos(mω))−ν . □

Theorem 3.3. Under the assumption of theorem 3.1 let {Xt} be the type 2 HARMA(p, ν, u, q) process then the spectral density
of HARMA(p, ν, u, q) process has singularities

9
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(a) at u = 0 and ω = 4nπ±π
m

for −m±1
4
< n < m∓1

4
.

(b) at u = (−1)n cos( 4nπ
m−2

) and ω = ± 2nπ
m−2

for m ̸= 2 and − (m−2)

4
< n <

(m−2)

4
.

Proof. The spectral density of the type 2 HARMA process is

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos((1 − m)ω)) + 2 cos(mω))−ν .

Similar to the proof in Theorem 2.3, we find the zeros by writing the denominator as follows

2 + 4u2 − 4u(cos(ω) + cos((1 − m)ω)) + 2 cos(mω) =

4 cos2
[mω

2

]

sin2

[

(m − 2)ω

2

]

+
[

2u − 2 cos
(mω

2

)

cos

(

(2 − m)ω

2

)]2

(3.4)

The proof of part (a) is the same as the part (a) of theorem 2.3. To prove the part (b) the term 4 cos2
[

mω
2

]

sin2
[

(m−2)ω

2

]

= 0

at ω0 = ±2nπ
m−2

. For this ω0 the second term of (3.4) is zero for u = (−1)n cos( 4nπ
m−2

) for all m ∈ N−{2} and − (m−2)

4
< n <

(m−2)

4
. □

The particular cases of the type 2 Horadam ARMA process is discussed as follows:

3.1. Horadam ARMA(p, ν, u, q) process

Definition 3.3 (Horadam Polynomials). In (3.1) by taking m = 1 the reduced polynomials are known as Horadam

polynomials. The Horadam polynomials is defined as the coefficient of t in the expansion of (1−2ut+t) and the generating

function relation is given as follows

(1 − 2ut + t)−ν =
∞
∑

n=0

Q ν
n,1(u)t

n, |t| < 1, |ν| < 1/2, |u| ≤ 1.

Definition 3.4 (The Horadam ARMA Process). The time series process defined using the generating function of Horadam

polynomials are defined by the Horadam ARMA process, which is a special case of type2 HARMA process for m=1 and the

process takes the following form

Φ(B)(1 − 2uB + B)νXt = Θ(B)ϵt , (3.5)

where ϵt is Gaussian white noise with variance σ 2, 0 ≤ u ≤ 1, and B, Φ(B), Θ(B) are lag, stationary AR and invertible

MA operators respectively defined in definition 2.2.

Theorem 3.4. For a Horadam ARMA(p, ν, u, q) process defined in (3.5), the spectral density takes the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))−ν, z = e−ιω. (3.6)

Proof. This can be easily proved by taking m = 1 in the spectral density of type 2 HARMA process defined in (3.3). □

3.2. Horadam–Pethe ARMA(p, ν, u, q) process

Taking m = 3 in (3.1) the reduced form of the polynomials is known as Horadam–Pethe polynomials and the corre-

sponding time series defined using the generating function of Horadam–Pethe polynomials is known as Horadam–Pethe

ARMA process defined as follows

Φ(B)(1 − 2uB + B3)νXt = Θ(B)ϵt , (3.7)

where (1 − 2uB + B3)−ν =
∑∞

n=0 Q
ν
n,3(u)t

n.

Theorem 3.5. Under the assumptions of theorem 3.1 for a Horadam–Pethe ARMA(p, ν, u, q) process defined in (3.7), the

spectral density takes the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))−ν,

where z = e−ιω .

10
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Fig. 2. Trajectory plots for Pincherle, Horadam, Horadam–Pethe and Gegenbauer ARMA processes for p = 1, q = 0, ν = 0.3 and u = 0.1.

Remark 3.1. Taking m = 2 the polynomials in (3.1) reduced to Gegenbauer polynomials and Q ν
n,2(u) = Cνn (u).

Moreover, the corresponding time series using the generating function of Gegenbauer polynomials namely the Gegenbauer
Autoregressive Moving Average (GARMA) process is studied by Gray and Zhand in 1989 (see [32]).

Remark 3.2. The stationarity and invertibility condition for Horadam ARMA and Horadam–Pethe ARMA process is the
same as the type 2 HARMA process, which is the process is stationary and invertible if all roots of Φ(B) = 0 and Θ(B) = 0
lies outside the unit circle and |ν| < 1/2 and 0 ≤ u < 1.

The time series plots for simulated Pincherle, Horadam, Horadam–Pethe and Gegenbauer ARMA processes are given
in Fig. 2. We simulated time series of size 1000 from each process. All these series have in theory infinite differencing
terms. We consider only finite terms by truncating the binomial expansions of the different shift operators. For Pincherle
ARMA process the relation defined in (2.8) is used, that is

Xt = Θ(B)

Φ(B)
(1 − 3uB + B3)−νϵt . (3.8)

The series Zt = (1 − 3uB + B3)−νϵt is generated using the simulated innovation series ϵt ∼ N (0, σ 2). Further, we
approximate Zt by considering first 4 terms in the binomial expansion of (1 − 3uB + B3)−ν , which is

Zt = (1 − 3uB + B3)−νϵt =
∞
∑

n=0

n
∑

j=0

(−1)j
(ν)n

n!

(

n

j

)

(3u)n−jB2j+nϵt

≈
4
∑

n=0

n
∑

j=0

(−1)j
(ν)n

n!

(

n

j

)

(3u)n−jϵt−n−2j.

11
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Now by generating the series Zt Eq. (3.8) takes the following form

Xt = Θ(B)

Φ(B)
Zt ,

which is nothing but the ARMA process which is simulated using the ‘‘nloptr’’ library in R by passing the Zt as innovation

series. Using the same approach, we simulate the Horadam, Gegenbauer and Horadam Pethe ARMA processes by taking

the binomial expansion of (1 − 2uB + Bm)−ν , for m = 1, 2 and 3 respectively.

4. Parameter estimation

In this section, we introduce the Whittle quasi-likelihood estimation method for the type 1 and type 2 Humbert

ARMA Processes. The Whittle quasi-likelihood technique leverages the empirical spectral density and theoretical spectral

density to estimate the model parameters of the time series Xt , where t ∈ {0, 1, . . . , n} and n denotes the sample

size. The estimation process involves minimizing the likelihood function. Consider the set of harmonic frequencies

ωj, j = 0, 1, . . . , n/2. These frequencies are selected to define the empirical spectral density, which plays a crucial role

in the Whittle quasi-likelihood estimation. The empirical spectral density provides a representation of the distribution

of frequencies in the time series data. The estimation process starts by calculating the empirical spectral density. This

involves computing the periodogram, which is a commonly used estimator of the spectral density expressed as follows

Ix(ωj) = 1

2π
{R(0) +

n−1
∑

s=1

R(s) cos(sωj)}, ωj = 2π j

n
, j = 0, 1, . . . , n/2, (4.9)

where R(s) = 1
n

∑n−s

i=1 (Xi − X̄)(Xi+s − X̄), s = 0, 1, . . . , (n − 1), is the sample autocovariance function with sample mean

X̄ . The Whittle quasi-likelihood estimation method aims to find the model parameters that minimize the discrepancy

between the empirical and theoretical spectral densities that is Ix(ωj) and fx(ωj) respectively. This is achieved by optimizing

the likelihood function

Wn(θ ) =
n
∑

j=1

(

Ix(ωj)

fx(ωj)
+ log(fx(ωj))

)

where θ represents unknown parameters θ = (ν, u), which is a row vector for both type 1 and type 2 HARMA processes.

We estimate the parameters by minimizing the likelihood function Wn(θ ) with respect to unknown parameter θ .

Pincherle ARMA Process: Let us assume S = {ν, u : |ν| < 1/2, 0 ≤ u ≤ 2/3} and S0 ⊂ S is a compact set. From theorem

2.7, the spectral density of Pincherle ARMA process is

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) + D)−ν,

where z = e−ιω, C = 6 + 6u, and D = 2 + 6u + 9u2 and empirical spectral density can be calculated using (4.9). The

estimate of θ is given by

θ̂n = argmin
θ

Wn(θ ), θ ∈ S0.

Horadam and Horadam–Pethe ARMA Process: To estimate the parameters of Horadam and Horadam–Pethe ARMA

processes we assume S ′ = {ν, u : |ν| < 1/2, 0 ≤ u ≤ 1} and S ′
0 ⊂ S ′ is a compact set. From theorem 3.2 the

spectral density for the Horadam process takes the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))−ν, z = e−ιω.

From theorem 3.5 the spectral density for the Horadam–Pethe ARMA process has the following form

fx(ω) = σ 2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))−ν .

The estimate of θ is obtained by minimizing the likelihood

θ̂n = argmin
θ

Wn(θ ), θ ∈ S ′
0.

Theorem 4.1. Assume the conditions of theorem 2.5 holds, then the Whittle quasi-likelihood estimators for the Pincherle

ARMA process are consistent. That is, lim
n→∞

θ̂n = θ a.s.

12
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Proof. To prove the consistency of the Whittle quasi-likelihood method we use the result defined by Hannan (see theorem

1 in [36]). Assume that the parameters lies in the compact space S0. We can rewrite the spectral density of the Pincherle

ARMA process defined in theorem 2.7 as, fx(ω) = σ2

2π
K (ω) and K (ω) is given as follows

K (ω) = |Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) + D)−ν,

where z = e−ιω, C = 6+6u, and D = 2+6u+9u2. First, we prove that the time series defined in (2.8) can be represented

as Xt =
∑∞

k=0 akϵn−k, where
∑∞

k=1 a
2
k < ∞ and a0 = 1. The (2.8) can be stated as

Xt =

⎛

⎝

∞
∑

j=0

ψjB
j

⎞

⎠

( ∞
∑

n=0

∞
∑

r=0

(−1)r
Γ (ν + n)

Γ (n + 1)Γ n

(

n

r

)

(3v)n−rBn+2r

)

ϵt

=

⎛

⎝

∞
∑

j=0

ψjB
j

⎞

⎠

( ∞
∑

i=0

ρiB
i

)

ϵt ,

where

ρi = Γ (ν + i)(3u)i

Γ (ν)Γ (i + 1)
− Γ (ν + i − 2)(3u)i−3

Γ (ν)Γ (2)Γ (i − 2)
. (4.10)

In the following way, Xt can be reformulated

Xt =
∞
∑

k=0

akB
kϵt =

∞
∑

k=0

akϵt−k,

where ak =
∑k

s=0 ψk−sρs and a0 = 1. To prove
∑∞

k=0 a
2
k < ∞ we can show

∑∞
k=0 |ak| < ∞. The operators Θ(B)

and Φ(B) can be characterized as stationary autoregressive and invertible moving average operators, respectively. Their

corresponding polynomial representations Θ(z)

Φ(z)
=
∑∞

j=0 ψjz
j, where the series

∑∞
j=0 |ψj| < ∞ for |z| ≤ 1+ϵ. Consequently,

we can deduce that the absolute values of the coefficients ψj decrease exponentially with increasing j, bounded by the
inequality |ψj| < C(1 + ϵ)−j, where C represents a constant. Also, in (4.10) for large i using Stirling’s approximation ρi
can be approximated as follows

ρi ∼ iν−1(3u)i − (i − 2)ν−1(3u)i−3,

which clearly indicates that the
∑∞

i=0 |ρi| < ∞ for |ν| < 1/2 and 0 ≤ u ≤ 2/3. Further,

∞
∑

k=0

|ak| ≤
∞
∑

k=0

k
∑

s=0

|ψk−s||ρs| =
∞
∑

s=0

∞
∑

k=s

|ψk−s||ρs| =
∞
∑

s=0

∞
∑

r=0

|ψr ||ρs|. (4.11)

Since, we have proved that
∑∞

i=0 |ρi| is finite which implies
∑∞

k=0 |ak| < ∞.

Next we show 1
a+K (ω)

is continuous for ω ∈ (−π, π ) and for all a > 0. Observe that

1

a + K (ω)
=

|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) + D)ν

a
|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) + D)ν + 1

.

It is easy to see that (8 cos3(ω)− 12u cos2(ω)− C cos(ω)+D)ν is continuous for 0 < ν < 1/2. Hence, 1
a+K (ω)

is continuous

ω ∈ (−π, π ), |ν| < 1/2 and 0 ≤ u ≤ 2/3 for all a > 0. Also, for θ ∈ S0 and ω ∈ (−π, π ), the spectral density fx(ω)

is uniquely defined. Therefore, we conclude the Whittle quasi-likelihood estimators for the Pincherle ARMA process are

consistent. □

Theorem 4.2. Assuming the conditions of theorem 3.1 holds, then the Whittle quasi-likelihood estimators for the Horadam

ARMA process are consistent. That is, lim
n→∞

θ̂n = θ a.s.

Proof. Assume that the parameter vector lies in the compact space S ′
0. Similar to the previous theorem taking Θ(B)

Φ(B)
=

∑∞
j=0(ψjB

j) and (1−2uB+B) =
∑∞

k=0

∑k

r=0(−1)r Γ (ν+k)

Γ (ν)Γ (k+1)
(2u)k−rBk using (3.7) the process Xt can be expressed as follows

Xt = Θ(B)

Φ(B)
(1 − 2uB + B)ϵt =

∞
∑

j=0

(ψjB
j)

∞
∑

n=0

n
∑

r=0

(−1)r
Γ (ν + n)

Γ (ν)Γ (n + 1)
(2u)n−rBnϵt

13
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=
∞
∑

j=0

(ψjB
j)

∞
∑

n=0

(βnB
n),

where βn =
∑n

r=0(−1)r Γ (ν+n)

Γ (ν)Γ (n+1)

(

n

r

)

(2u)n−r . Further, the Xt can have following representation

Xt =
∞
∑

j=0

akϵt−k,

where ak =
∑k

s=0 ψk−sβs. Similar to the previous theorem using Stirling’s approximation, it can be easily proved that
∑∞

k=0 |ak| < ∞ and a0 = 1 for |u| ≤ 1 and |ν| < 1/2. Also, the spectral density for the Horadam ARMA process using

(3.6) can be written as

fx(ω) = σ 2

2π
K (ω),

where K (ω) = |Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))−ν, z = e−ιω . To prove that 1

K (ω)+a
is continuous for a > 0 we

have

1

K (ω) + a
=

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))ν

a
|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))ν + 1

,

here (2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))ν is continuous for 0 < ν < 1/2 and |u| < 1 implying 1
K (ω)+a

is continuous

for |ν| < 1/2 and |u| ≤ 1. Moreover, the parameter space θ ∈ S ′
0 defines the spectral density uniquely. These conditions

satisfy the results given by Hannan [36] and hence prove the consistency. □

Theorem 4.3. Assuming the conditions of theorem 3.1 holds, then the Whittle quasi-likelihood estimators for the Horadam–

Pethe ARMA process are consistent. That is, lim
n→∞

θ̂n = θ a.s.

Proof. Assume that the parameter vector lie in the compact space S ′
0. The Horadam–Pethe ARMA process Xt has the

following moving average representation

Xt =

⎛

⎝

∞
∑

j=0

ψjB
j

⎞

⎠

( ∞
∑

n=0

∞
∑

r=0

(−1)r
Γ (ν + n)

Γ (n + 1)Γ n

(

n

r

)

(2u)n−rBn+2r

)

ϵt =

⎛

⎝

∞
∑

j=0

ψjB
j

⎞

⎠

( ∞
∑

i=0

ζiB
i

)

ϵt ,

where

ζi = Γ (ν + i)

Γ (ν)Γ (i + 1)
(2u)i − Γ (ν + i − 2)(2u)i−3

Γ (ν)Γ (2)Γ (i − 2)
. (4.12)

We can rewrite Xt as follows

Xt =
∞
∑

k=0

akB
kϵt =

∞
∑

k=0

akϵt−k,

where ak =
∑k

s=0 ψk−sζs. The proof for
∑∞

k=0 |ak| < ∞ is similar to theorem 4.1. Also, it can be proved that 1
K (ω)+a

is

continuous for a > 0, here it can be expressed as

1

K (ω) + a
=

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))ν

a
|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))ν + 1

.

Again using the same argument as theorem 4.1 it can be proved that 1
K (ω)+a

is continuous for a > 0 and the parameter

vector θ defines the spectral density uniquely. These all conditions satisfy the results defined by Hannan (1973) [36]

hence prove the consistency of the Whittle quasi-likelihood estimators. □

Remark 4.1. In order to establish the normality of the estimators, we exclude the scenario where the spectral density

is unbounded that is at u = 0 and u = 1. For a detailed examination of the unbounded spectral density case at these

points, refer to the paper by Fox and Taqqu [37]. In the next results, ∂ log K (ω)
∂θ

is 2 × 1 column vector which represents

the derivative of log K (ω) with respect to both the parameters ν and u and
{

∂ log K (ω)

∂θ

}{

∂ log K (ω)

∂θ

}′
will be a 2 × 2 matrix,

where
{

∂ log K (ω)

∂θ

}′
represents the transpose of a 2 × 1 column vector.
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Theorem 4.4. Let the Whittle quasi-likelihood estimate for the Pincherle ARMA process be defined as follows

θ̂n = argmin
θ

Wn(θ ), θ ∈ Ω0,

where Ω0 ⊂ Ω = {ν, u : |ν| < 1/2, 0 < u < 2/3} is a compact set then for the Whittle quasi-likelihood estimators for

Pincherle ARMA process the n−1/2(θ̂n − θ ) ∼ N (0,W−1), where W represents the variance–covariance matrix having the

following form

W = 1

4π

∫ π

−π

{

∂ log K (ω)

∂θ

}{

∂ log K (ω)

∂θ

}′
dω.

Proof. Using the results defined by Hannan (1973) (see theorem 2 in [36]) we need to verify the following conditions to

check the asymptotic normality of the parameters.

(a) K (ω) > 0 for all ω ∈ (−π, π ) and θ ∈ Ω0.

(b) K (ω) twice differentiable of parameters ν and u.

(c) The time series defined in (2.8) can be written as Xt =
∑∞

k=0 akϵt−k,
∑∞

k=0 ak < ∞ and a0 = 1.

The condition (a) can be proved by rewriting K (ω) as follows

K (ω) = |Θ(z)|2

|Φ(z)|2
(2 + 9u2 + 2 cos(3ω) − 6u(cos(ω) + cos(2ω)))−ν

= |Θ(z)|2

|Φ(z)|2
((2 + 2 cos(3ω) + [3u − {cos(ω) + cos(2ω)}]2) − [cos(ω) + cos(2ω)]2)−ν

= |Θ(z)|2

|Φ(z)|2
(

4 cos2
[

3ω

2

]

+ [3u − {cos(ω) + cos(2ω)}]2 − 4 cos2
[

3ω

2

]

cos2
[ω

2

]

)−ν

= |Θ(z)|2

|Φ(z)|2
(

4 cos2
[

3ω

2

]

sin2
[ω

2

]

+
[

3u − 2 cos

(

3ω

2

)

cos
(ω

2

)

]2)−ν
.

This indicates that K (ω) > 0 for 0 < u < 2/3 and |ν| < 1/2. The condition (b) can be easily verified as the function does

not have any singularity for 0 < u < 2/3 hence continuous and differentiable. Moreover, the condition (c) is proven in the

theorem 4.1. Thus the Whittle quasi-likelihood estimates for |ν| < 1/2 and 0 < u < 2/3 are asymptotically normal. □

Theorem 4.5. Let the Whittle quasi-likelihood estimate for the Horadam ARMA process be defined as follows

θ̂n = argmin
θ

Wn(θ ), θ ∈ Ω ′
0,

whereΩ ′
0 ⊂ Ω ′ = {ν, u : |ν| < 1/2, 0 < u < 1} is a compact set then for the Whittle quasi-likelihood estimators for Horadam

ARMA process the n−1/2(θ̂n − θ ) ∼ N (0,W−1), where W represents the variance–covariance matrix having the following form

W = 1

4π

∫ π

−π

{

∂ log K (ω)

∂θ

}{

∂ log K (ω)

∂θ

}′
dω.

Proof. This can be proved again using the conditions defined in theorem 4.4. The K (ω) for the Horadam ARMA process

can be written as follows

K (ω) = |Θ(z)|2

|Φ(z)|2
(2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))−ν

= |Θ(z)|2

|Φ(z)|2
(

4 cos2
[ω

2

]

sin2
[ω

2

]

+
[

2u − 2 cos2
(ω

2

)]2
)−ν

,

From this expression, it is evident that K (ω) is strictly greater than zero and that K (ω) is twice differentiable for all values

of θ ∈ Ω ′
0. Furthermore, the moving average representation for the Horadam process is provided in theorem 4.2. By

establishing this moving average representation, we have successfully proven the desired result. □

Theorem 4.6. Let the Whittle quasi-likelihood estimate for the Horadam–Pethe ARMA process be defined as follows

θ̂n = argmin
θ

Wn(θ ), θ ∈ Ω ′
0,

where Ω ′
0 ⊂ Ω ′ = {ν, u : |ν| < 1/2, 0 < u < 1} is a compact set then for the Whittle quasi-likelihood estimators for

Horadam–Pethe ARMA process the n−1/2(θ̂n − θ ) ∼ N (0,W−1), where W represents the variance–covariance matrix having
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the following form

W = 1

4π

∫ π

−π

{

∂ log K (ω)

∂θ

}{

∂ log K (ω)

∂θ

}′
dω.

Proof. The K (ω) for the Horadam–Pethe ARMA process can be written as follows

K (ω) = |Θ(z)|2

|Φ(z)|2
(2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))−ν

= |Θ(z)|2

|Φ(z)|2
(

4 cos2
[

3ω

2

]

sin2
[ω

2

]

+
[

2u − 2 cos

(

3ω

2

)

cos
(ω

2

)

]2)−ν
.

This expression indicates that K (ω) is greater than zero and possesses two continuous derivatives for all values of θ ∈ Ω ′
0.

Furthermore, theorem 4.3 provides the moving average representation for the Horadam–Pethe ARMA process. Thus, by
establishing the aforementioned moving average representation and considering the expression for K (ω), the desired
result has been successfully demonstrated. □

5. Simulation study for Pincherle ARMA process and its application

In order to evaluate the efficacy of the parameter estimation techniques introduced, we employ simulated data.
The simulation study serves as a valuable tool in the evaluation of parameter estimation techniques. It enables us to
empirically examine the accuracy and reliability of the estimation method by comparing the estimated parameters to the
actual parameters obtained from synthetic data. The use of simulated data provides several advantages for performance
assessment. Firstly, it allows us to create controlled experiments where the true parameters are known, facilitating a
direct comparison. Secondly, simulations provide the flexibility to generate data with specific properties or characteristics,
allowing us to investigate the behavior of estimation techniques under different scenarios. Finally, by repeating the
simulation process multiple times, we can obtain statistical measures of performance, such as average estimation error,
providing a more comprehensive evaluation. By conducting a simulation study, we can gather empirical evidence that
sheds light on the effectiveness of these statistical techniques. Through the utilization of appropriate simulation methods,
we generate a synthetic time series based on an initial set of parameters. Subsequently, we apply the defined parameter
estimation techniques to the simulated series, aiming to estimate the underlying parameters.

By comparing the estimated parameters with the actual parameters used in the simulation, we can assess the
performance of the applied techniques. This comparison serves as a fundamental metric to evaluate the accuracy and
reliability of the estimation methods. If the estimated parameters closely align with the actual parameters, it indicates that
the techniques effectively capture the underlying characteristics of the data. On the other hand, significant discrepancies
between the estimated and actual parameters may indicate limitations or potential areas for improvement in the
estimation techniques.

The data from the Pincherle ARMA process is simulated by first simulating the i.i.d. innovations ϵt ∼ N (0, σ 2). The
simulation and estimation study is done using R. Now we use the relation defined in (2.8) as,

Xt = Θ(B)

Φ(B)
(1 − 3uB + B3)−νϵt . (5.13)

The series Zt = (1 − 3uB + B3)−νϵt is generated using the simulated innovation series ϵt in (5.13). The generation of the
series is done by taking the binomial expansion of (1 − 3uB + B3)−ν up to 4 terms, which is given as follows

Zt = (1 − 3uB + B3)−νϵt =
∞
∑

n=0

n
∑

j=0

(−1)j
(ν)n

n!

(

n

j

)

(3u)n−jB2j+nϵt

=
∞
∑

n=0

n
∑

j=0

(−1)j
(ν)n

n!

(

n

j

)

(3u)n−jϵt−n−2j.

Now by generating the series Zt the (5.13) takes the following form

Xt = Θ(B)

Φ(B)
Zt ,

which is nothing but the ARMA process which is simulated using the inbuilt R library by passing the Zt as innovation
series. Further to check the effectiveness of the model the parameter estimation is done on the simulated series. By
assuming two different combinations of the initial set of parameters that is u = 0.2, ν = 0.4 and u = 0.1, ν = 0.3 the
series Zt is generated and the two series Pincherle ARMA(1, 0.2, 0.15, 0) and Pincherle ARMA(1, 0.3, 0.1, 0) is generated
using the above-defined procedure. The results of parameter estimation using the Whittle quasi-likelihood approach are
summarized in Table 1.
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Table 1

Actual and estimated parameter values for two different

choices of parameters estimated by the Pincherle ARMA

process using the Whittle quasi-likelihood approach.

Actual Estimated

Case 1 ν = 0.2, u = 0.15 ν̂ = 0.21, û = 0.13

Case 2 ν = 0.3, u = 0.1 ν̂ = 0.32, û = 0.07

Fig. 3. Box plot of parameters using 1000 samples for ν = 0.45 and u = 0.2 (left) and for ν = 0.35 and u = 0.1 (right) based on Whittle

quasi-likelihood approach.

From the above Table 1 it is clearly shown that the estimate of ν and u from the Whittle quasi-likelihood approach is
good. In order to assess the effectiveness of the Whittle quasi-likelihood technique based on empirical spectral density, we
construct box plots for different parameters. To create these box plots, we perform a simulation of 1000 series, assuming
fixed values for the parameters ν = 0.4 and u = 0.1. Each simulated series consists of 1000 observations. Using theWhittle
quasi-likelihood estimation method, we estimate the parameters ν and u from each simulated series. By repeating this
process for all 1000 simulated series, we obtain a distribution of estimated parameters for each parameter. we construct
box plots. Each box plot represents the variability and central tendency of the estimated parameters across the 1000
simulations. The box plot displays the median value, the interquartile range (IQR), and any potential outliers for each
parameter. The box plots provide a comprehensive visual representation of the estimated parameters’ variability and the
overall performance of the Whittle quasi-likelihood technique. Fig. 3 displays the box plots for the estimated parameters
obtained from each simulation, allowing for a visual assessment of their distribution and variability.

To assess the asymptotic normality of the estimates, we performed a comprehensive simulation analysis, which consists
of 1000 datasets. Each dataset consisted of a sequence of length 1000, with the parameter values set at ν = 0.45 and
ν = 0.2. The estimated parameters were denoted as ν̂ and û. In order to visualize the results, we constructed Q-Q plots
for the standardized differences, namely

√
n(ν̂ − ν) and

√
n(û − u). These plots provide a graphical representation of the

comparison between the observed quantiles and the theoretical quantiles of the standard normal distribution. The Q-Q

plots for
√
n(d̂ − d) and

√
n(û − u) are depicted in Fig. 4.

Furthermore, we demonstrate the normality of the estimated parameters by conducting the Shapiro–Wilk normality
test. The resulting p-values for both parameters, ν and u are found to be greater than 0.05. This indicates that the variables√
n(d̂ − d) and

√
n(û − u) follow a normal distribution.

Real Data Application: We conduct an analysis using the Pincherle ARMA model on the daily percentage yield data
of Spain’s 10-year treasury bond. The data covers the period from October 7th, 2011 to June 7th, 2018. The Pincherle
ARMA model is compared with other existing models, namely autoregressive integrated moving average (ARIMA),
autoregressive fractionally integrated moving average (ARFIMA), autoregressive tempered fractionally integrated moving
average (ARTFIMA), and Gegenbauer autoregressive moving average (GARMA). The daily percentage yield is a commonly
used metric in financial markets to measure the return on investment for fixed-income securities, such as government
bonds. It represents the change in the bond’s yield, expressed as a percentage, from one day to the next. This yield data
is of particular interest to investors, traders, and policymakers as it provides insights into the performance and market
dynamics of long-term government debt. By analyzing this dataset, we can gain valuable insights into the behavior and
patterns of Spain’s 10-year treasury bond yield over the given time frame. The objective of applying various models,
including the Pincherle ARMA model, is to accurately capture and forecast the future movements and trends in the bond
yield, thereby assisting in decision-making processes related to investment strategies, risk management, and financial
planning. The trajectory plot for the introduced dataset is given in Fig. 5
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Fig. 4. Q-Q plots using 1000 samples for
√
n(ν̂ − ν) (left) and

√
n(û − u) (right)

Fig. 5. Trajectory plot for Spain’s 10-year treasury yield series dataset.

To evaluate the accuracy of these models, we utilize two common metrics: the root mean square error (RMSE) and
the mean absolute error (MAE). These metrics provide measures of the deviation between the predicted values and the
actual values of the bond yield data.

Table 2 presents the results of the accuracy assessment for each model. From the table, we observe that the RMSE of the
Pincherle ARMA process is lower than that of the other models. This indicates that the Pincherle ARMA model performs
better in terms of capturing the overall variability in the bond yield data. However, it is worth noting that the MAE for
the Pincherle ARMA process is slightly higher compared to the ARFIMA and ARTFIMA models. The MAE represents the
average magnitude of the errors made by the models, regardless of their direction. In this case, the slightly higher MAE
suggests that the Pincherle ARMA model may have a slightly larger average error in its predictions when compared to
the ARFIMA and ARTFIMA models.
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Table 2

The goodness-of-fit measures of different

models using RMSE and MAE metrics.

Models RMSE MAE

ARIMA 2.588 1.972

ARFIMA 2.476 1.831

ARTFIMA 2.463 1.801

GARMA 2.584 1.962

Pincherle ARMA 2.406 1.840

Based on these findings, we can conclude that the Pincherle ARMA process demonstrates good accuracy in predicting
Spain’s 10-year treasury bond yield when compared to the other models evaluated in this study. This suggests that the
Pincherle ARMA model can be a valuable tool in other fields where accurate forecasting is required. It may be particularly
useful in financial applications where predicting bond yields is crucial for investment decisions and risk management

6. Conclusions

We study the general Humbert polynomials based autoregressive moving average called here HARMA (p, ν, u, q) time
series models. Initially, type 1 HARMA (p, ν, u, q) process defined in (2.2) and its stationarity and invertibility conditions
are derived. We also compute the spectral density of the above process. For m = 3 in (2.8), we focus on a particular case
Pincherle ARMA (p, ν, u, q) process, by obtaining the spectral density and also prove that for u = 0 and 0 < ν < 1/2, the
process also exhibits seasonal long memory property. In the subsequent section, we study similar properties of particular
cases of type 2 HARMA (p, ν, u, q) process defined in (3.2) for m = 1 and m = 3 named as Horadam ARMA process and
Horadam–Pethe ARMA process respectively. We also provide the Whittle quasi-likelihood estimation method to estimate
the parameters of the HARMA process. We also provide the results for the consistency and normality of the estimators.
The simulation study on 1000 series each of length 1000 is performed and real data of Spain’s 10-year treasury bond daily
percentage yield is used to show the application of the Pincherle ARMA model.

Further, we believe that the proposed time series models will be helpful in the modeling of real-world data from
other fields. Also, the estimation techniques for example, minimum contrast estimation [38,39] will be applied for the
discussed models. This technique estimates the parameters by minimizing the spectral density and empirical spectral
density of the process. Maximum likelihood estimation is the particular case of minimum contrast estimation. Apart
from this, Pincherle, Horadam and Horadam–Pethe random fields will be interest of study on the line of Gegenbauer
random fields [40]. Moreover, one can study the tempered versions of Humbert, Pincherle, Horadam and Horadam–
Pethe ARMA processes similar to Sabzikar et al. [15]. Due to the presence of singularities in the spectral density of the
introduced models, the estimation techniques become more challenging to implement. We may need to employ advanced
numerical methods, such as numerical optimization algorithms or robust estimation techniques, to address the challenges
posed by the singularities. However, it is important to note that the introduced processes in this study assume constant
volatility. Consequently, these models may not be suitable for capturing heteroscedastic data that exhibit persistence in
the conditional variance of the innovation term. In future research, an interesting avenue to explore would be extending
the concept of the Humbert processes to incorporate volatility modeling, specifically by developing a Humbert-GARCH
process.
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