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Abstract

In this thesis we will build to a result that has applications in C*-
algebras and twisted K-theory. We aim to understand the behaviour of
exponential functors and the cohomology theories their target categories
induce. We will use the Weyl map, K-theory, and the suspension-loop
adjunction in order to achieve this goal.

We will begin by acquainting ourselves with fibre bundles and a few
key theorems and definitions that we will make heavy use of later due
to the role fibre bundles play in defining the 0th complex topological K-
theory group. We will discuss a few important functors, adjunctions, and
characteristic classes. We will also give a description of the cohomology
ring of any flag manifold Fn(Ck) as a quotient ring of the polynomial
ring with n generators. We will also begin to understand generalised
cohomology theories.

Exponential functors are a particular family of monoidal functors be-
tween strict symmetric monoidal categories. We will show that each of
these functors induce a family of natural transformations and that the
suspension isomorphisms from the 0th degree to the 1st degree commute
with the relevant natural transformations.

The source category of an exponential functor is always a category
that we will call C⊕ and the cohomology theory it induces is connective
K-theory. We will investigate the effect an exponential functor has on a
vector bundle.

We will describe the Weyl map and we will discover that the class of
this map in K-theory corresponds to a sum of tensor products of certain
formal differences of line bundles with circle components. Finally it will
be shown that the class of the Weyl map in our more exotic cohomology
theories corresponds to a very similar class where we have instead taken
a formal quotient of vector bundles.
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1 Introduction
Exponential functors, as studied in [29], are monoidal functors from the category
of complex inner product vector spaces with unitary isomorphisms equipped
with the direct sum to a subcategory of the category of complex inner product
vector spaces with unitary isomorphisms equipped with the tensor product.
The source and target categories of an exponential functor are both equivalent
to strict symmetric monoidal categories so, as we will see, we can construct
a cohomology theory from each of these categories and hence investigate the
natural transformations induced by exponential functors.

The determinant functor and its powers are examples of exponential func-
tors. The induced maps on classifying spaces correspond to classical twists in
twisted K-theory. In this context the power is known as the level. The classical
twists, as introduced by Atiyah and Segal [2], correspond to elements in the 3rd
cohomology. Indeed, powers of the determinant give rise to a map:

SU(n)→ SU ' BBU⊕ → BBU(1)

and since BBU(1) ' K (Z, 3), an Eilenberg-MacLane space, we therefore obtain
a class in [SU(n), K (Z, 3)] ∼= H3(SU(n); Z). Twisted K-theory with classical
twists and their connection to representations of loop groups have been studied
intesively by Freed, Hopkins, and Teleman [14].

We will discuss this family of examples, but our main contribution is that
we will also look at more general exponential functors that provide twists with
non-trivial contributions from higher cohomology groups. For such a functor F,
we obtain a similar map:

SU(n)→ SU ' BBU⊕ → BBU⊗[
1

d
]

where d = dim(F (C)).
In a different context similar higher twists have also been studied by Teleman

[34].
The work of Dadarlat and Pennig [7] provides a link to bundles of C*-

algebras. The bundles they investigate are classified up to isomorphism by the
same cohomology theories as we achieve here from the target category of an
exponential functor. Work by Evans and Pennig [12] consider the twists in this
operator-alegbraic setting but lead into the work in this thesis by conjecturing
the purely topological angle that we will follow.

We will be investigating the behaviour of a map called the Weyl map, com-
posing it with some useful inclusions, and later with induced maps from expo-
nential functors to determine the classes it represents in our various cohomology
theories.

W : SU(n)/T× T→ SU(n)

([g], Z) 7→ gZg−1
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The Weyl map and it’s connection to twisted K-theory has been studied using
the language of gerbes by Becker, Murray, and Stevenson [4]. It is hoped but not
known that the Weyl map induces an injection W *: h1

⊗(SU(n))→ h1
⊗(SU(n).T

× T) in the cohomology theory induced by any target category of an exponential
functor.

We will make extensive use of a cohomology theory known as K-theory which
has Bott periodicity, that is, for any topological space X and integer n, there
is an isomorphism K n(X ) ∼= K n+2(X ). Therefore, we only need to define two
of the abelian groups explicitly: K 0(X ) is the Grothendiek completion of the
monoid of isomorphism classes of vector bundles over X, and K -1(X ) is the
quotient of the topological group of invertible matrices with complex valued
functions on X as entries, equipped with the equivalence relation S ∼ diag(S,
1), by the normal subgroup that is the connected component of the identity. An
extensive introduction to K-theory can be found in the book Complex Topolog-
ical K-Theory by Efton Park [28].

We will use the Leray-Hirsch Theorem and the splitting principle in order to
discover the nature of the cohomology ring of any finite complex flag manifold
H *(Fn(Ck; k)) as it is of particular note that SU(n)/T is homeomorphic to
the complete flag manifold Fn(Cn); that homeomorphism sends the canonical
tautological complex line bundles over Fn(Cn) to their counterpart canonical
complex line bundles over SU(n)/T, and the Chern classes of these complex line
bundles are the generators of the cohomology ring.

The inclusion SU(n) ↪→ SU(∞) ↪→ U allows us to describe the class of the
Weyl map in K-theory thanks to the isomorphism K 1(X ) ∼= [X, U]. We will show
using the Künneth formula isomorphism and the suspension-loop adjunction
that there is a representative of [W ] that is given by the sum of the complex
line bundles over SU(n)/T each tensored with a generator of K 1(S1) where S1

is the circle corresponding to each line bundle that exists as a subspace of T.
Armed with the knowledge of where our class exists in K-theory, we will

then investigate the effect of exponential functors. We will explain how to
construct cohomology theories from strict symmetric monoidal categories and
natural transformations of cohomology theories from functors between such cat-
egories. Using this method we will show that from the source category of an
exponential functor we can construct a cohomology theory known as connective
K-theory and from the target category, more exotic cohomology theories that
can be described using an integer fixed by the specific exponential functor d =
dim(F (C )).

To have a better understanding of the resulting class in our exotic cohomol-
ogy theories, we can use a ring homomorphism called the Chern character: ch:
K 0(X ) → H0

per(X ; Q) to derive a natural isomorphism of cohomology theories
K*(X ) ⊗ Q → H∗per(X ; Q) and similar natural transformations of cohomology
theories we will call the logarithmic Chern characters h∗⊗(X ) ⊗ Q → H∗per(X ;
Q). We can then investigate the resulting automorphism in the periodic coho-
mology with rational coefficients, hopefully resulting in a natural automorphism
of cohomology theories induced by the exponential functor.

Chapter 2 will deal with introducing the idea of fibre bundles alongside a
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handful of examples and related properties that will be of great use to us later.
The pullback bundle construction in particular will be a heavy lifter in this
project as it is an easy method of constructing fibre bundles over complicated
spaces if we have a clear map to the simpler base space of a map we already
know to be a fibre bundle.

Chapter 3 will contain an in depth proof of the Leray-Hirsch theorem, a
result that allows us to construct a module isomorphism from a fibre bundle
provided that certain conditions are satisfied. The Leray-Hirsch isomorphism is
a weak analogue of the Künneth formula; it shows that the cohomology ring of
the total space and the tensor product of the cohomology rings of the base space
and the fibre are isomorphic as cohomology ring of the base space modules. We
first show that the map we’re constructing is indeed a module homomorphism
and then show case by case that it is in fact an isomorphism. The conditions
of the Leray-Hirsch theorem impose restrictions on the total space and fibre of
a fibre bundle but not on the base space, in our proof we will show we have
an isomorphism when our fibre bundle has a CW complex as a base space of
varying dimensionality before checking that the base space need not even be a
CW complex. We will close the chapter proving that a few familiar fibre bundles
satisfy the conditions and thus allow ourselves to describe the cohomology rings
of the special unitary groups and flag manifolds at least as modules if nothing
more yet.

Chapter 4 will have a more categorical flavour, we will introduce the idea of
a classifying space of a group or monoid. We will describe the simplex category
∆, simplicial sets and spaces, and finally two useful constructions known as the
nerve of a category and the geometric realisation of a simplicial set/space. We
will show that if we have a category with one object and a group as the collection
of morphisms, then the geometric realisation of the nerve of our category is a
way of constructing the classifying space of the group. We will finish off this
chapter by demonstrating that the loop space of a classifying space is homotopy
equivalent to the original group.

In chapter 5 we will discuss characteristic classes, these are classes in the
cohomology groups of the base space of a vector bundle (a fibre bundle where
the fibre is a vector space and the homeomorphisms are fibrewise linear) that
act as invariants. If two vector bundles have different characteristic classes then
they cannot be equal but the converse is not necessarily true. The Stiefel-
Whitney classes are characteristic classes in cohomology with Z/2Z coefficients
that we will define axiomatically. The Euler class is a characteristic class in
cohomology with integer coefficients but we require that the vector bundles are
oriented. The Chern classes are characteristic classes for complex vector bundles
in cohomology with integer coefficients; they are built from Euler classes of
underlying real vector bundles as complex vector bundles come equipped with
a canonical choice of orientation coming from the complex structure. We will
use characteristic classes to investigate the cohomology of flag manifolds as
a ring and close the chapter with the construction of a very important ring
homomorphism called the Chern character.

Chapter 6 is about general cohomology theories. We will discuss the Eilenberg-
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Steenrod axioms and a similar set of axioms for reduced cohomology theories.
We explore the idea of Ω-spectra and show that given an Ω-spectrum, we can
construct our very own (reduced) cohomology theory. Finally, we will discuss the
Künneth formula, a result concerning the cohomology rings of product spaces.
Not every general cohomology theory admits a Künneth formula but we will
show that there is a similar result when one of the spaces in our product space
is a torus and that this result is compatible with natural transformations of
cohomology theories.

We discuss strict symmetric monoidal categories and exponential functors
in chapter 7. We will give some examples of monoidal categories and show
that they are strict and symmetric before giving a few examples of exponential
functors [29], and then observing how they transform vector bundles into new
vector bundles over the same base space. Exponential functors transform the
direct sum of vector spaces into a tensor product of vector spaces

We introduce Segal’s category (well really it’s opposite category) in chapter
8, a very important category for our purposes. Γ-categories are covariant func-
tors from the opposite of Segal’s category to the cateogry of pointed categories,
and in this chapter we first describe how to construct a Γ-category given a strict
symmetric monoidal category and then given a Γ-category, how to construct an
Ω-spectrum. This completes the chain and we see that we can construct a co-
homology theory from any strict symmetric monoidal category. We follow up
this conclusion with a proof that a strong symmetric monoidal functor induces
a natural transformation of cohomology theories.

Chapter 9 finally introduces the Weyl map. We see that, after composition
with the inclusion of SU(n) into U, the Weyl map is homotopic to the direct
sum of easier to manipulate maps, easier in the sense that each is adjoint to a
map that is in turn homotopic to the formal difference of two line bundles. We
can put this result together with the Künneth formula for K-theory to express
the class of the Weyl map in K 1(SU(n)/T).

Finally in chapter 10 we describe a family of group homomorphisms that
we call the tensor Chern characters as they are built in part using the Chern
character we have already met but instead these maps are from the cohomol-
ogy theories h∗⊗ constructed using the target categories of exponential functors.
We explore the class of the Weyl map after an application of a power of the
determinant as an exponential functor. We will discover that not all expo-
nential functors result in natural transformations of cohomology theories but
nevertheless, we can describe the class of the Weyl map as it is only dependent
on elements in the 0th and 1st degrees and we will finally show that this con-
struction agrees with the natural transformation construction if an exponential
functor is also a strong symmetric functor.
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2 Fibre Bundles
Let us begin with a few preliminaries. The concept of fibre bundles was first
introduced by Steenrod in 1951 [33]. Here we introduce the definition:

Definition 1. A continuous map p: E → B is called a fibre bundle with
fibre F if ∀ x ∈ B ∃ an open neighbourhood U of x such that there exists a
homeomorphism h: p-1(U ) → U × F such that:

p−1(U) U × F

U

h

p
�

πU

2.1 Pullback Bundle
Theorem 1. If p: E → X is a fibre bundle with fibre F, and φ: Y → X is a
continuous map; consider the space φ∗E := {(y, e) ∈ Y × E : φ(y) = p(e)},
and a map pφ: φ∗E → Y defined by pφ(y, e) = y. Then pφ: φ∗E → Y is a
fibre bundle with fibre F.

Proof. Since p: E → X is a fibre bundle with fibre F, ∀ x ∈ X ∃ an open
neighbourhood U of x such that ∃ a homeomorphism h: p-1(U )→ U × F such
that:

p−1(U) U × F

U

h

p
�

πU

Consider x = φ(y), since φ is continuous, if U is an open neighbourhood of x,
then φ-1(U ) is an open neighbourhood of y.

We must show that ∃ a homeomorphism k : pφ-1(φ-1(U )) → φ-1(U ) × F
such that:

p−1
φ (φ−1(U)) φ−1(U)× F

φ−1(U)

k

pφ
� πφ−1(U)

A point of pφ-1(φ-1(U )) is of the form (y, e) ∈ Y×E where p(e) = φ(y) ∈ U.
We require that (πφ-1(U )◦k)(y, e) = pφ(y, e) = y, to define k we must now
determine a map πF◦k :pφ-1(φ-1(U )) → F.

Since if φ(y) ∈ U, then p(e) ∈ U =⇒ e ∈ p-1(U ) and we have the diagram

p−1(U) U × F

U F

h

p
�

πU

πF

5



the identification (πF◦k)(y, e) := (πF◦h)(e) is well defined.
It must finally be shown that k(y, e) = (y, (πF◦h)(e)) is a homeomorphism.
k is continuous because projection maps are continuous and h is continuous

since it is a homeomorphism.
Let us design a map l : φ-1(U ) × F → pφ-1(φ-1(U )) to be the inverse of k.
A point in φ-1(U ) × F is of the form (u, f ) where φ(u) ∈ U and f ∈ F, thus

(φ(u), f ) ∈ U × F.
h has a continuous inverse h-1: U × F → p-1(U ) since it is a homeomor-

phism, and so h-1(φ(u), f ) ∈ p-1(U ) ⊂ E.
Now consider p(h-1(φ(u), f )) = πU ◦h(h-1(φ(u), f )) = πU (φ(u), f ) = φ(u),

thus (u, h-1(φ(u), f )) ∈ φ ∗E and since φ(u) ∈U, (u, h-1(φ(u), f )) ∈ pφ-1(φ-1(U )).
Therefore define l by l(u, f ) = (u, h-1(φ(u), f )), which is continuous since

identities, h-1, and φ are continuous. We must check that l is the inverse of k.
It must be shown that l◦k = idpφ-1(φ-1(U )) and k◦l = idφ-1(U )×F .

l ◦ k(y, e) = l(y, (πF ◦ h)(e))

= (y, h−1(φ(y), (πF ◦ h)(e)))

= (y, h−1(p(e), (πF ◦ h)(e)))

= (y, h−1((πU ◦ h)(e), (πF ◦ h)(e)))

= (y, h−1(h(e))

= (y, e)

k ◦ l(u, f) = k(u, h−1(φ(u), f))

= (u, (πF ◦ h)(h−1(φ(u), f)))

= (u, πF (φ(u), f))

= (u, f)

Therefore k has a continuous inverse in l and is thus a homeomorphism and
therefore pφ: φ∗E → Y is a fibre bundle with fibre F. 4

Definition 2. If p: E → X is a fibre bundle and φ: Y → X is a continuous
map, then the fibre bundle pφ: φ∗E → Y is called the pullback bundle of p
by φ.

2.2 Concrete Family of Examples
Consider SU(n) = {X ∈ Mn×n(C) | XX * = X *X = In , det(X ) = 1}. An
element X ∈ SU(n) is a matrix of the form:

X =

u11 + iv11 . . . u1n + iv1n

...
. . .

...
un1 + ivn1 . . . udn + ivnn


where

n∑
i=1

u2
ij + v2

ij = 1 ∀j,
n∑
j=1

u2
ij + v2

ij = 1 ∀i, det(X) = 1

6



Since an element of the m sphere Sm is of the form (x 1, ..., xm+1) where

m+1∑
i=1

x2
i = 1, and since

n∑
i=1

u2
i1 + v2

i1 = 1,

(u11, v11, ..., un1, vn1) is an element of S2n-1.
Therefore we can construct a map

p : SU(n) −→ S2n−1

X 7−→ (u11, v11, ..., un1, vn1)

We will show that p: SU(n) → S2n-1 is a fibre bundle with fibre SU(n-1).
To do so, we must show that for any x ∈ S2n-1, ∃ an open neighbourhood

U ⊂ S2n-1 of x such that ∃ a homeomorphism h: p-1(U ) → U × SU(n-1) such
that

p−1(U) U × SU(n− 1)

U

h

p
�

πU

Consider some x = (x 1, x 2, ..., x 2n-1, x 2n) ∈ S2n-1. We can always construct
the following vector x ∈ Cn and matrix X ∈ SU(n):

x =

 x1 + ix2

...
x2n−1 + ix2n

 , X =
(
x v2 . . . vn

)
where x, v2, ..., vn is an orthonormal basis of Cn . Since v2, ..., vn are columns
of a matrix in SU(n), there also exist corresponding points on the sphere S2n-1

v2, ..., vn .
Consider the half 2n-1 sphere of points in S2n-1 that are strictly on the

same side of the hyperplane through the points v2, ..., vn as x, this is our
neighbourhood U.

In the same way we constructed x from x, for any u ∈ U we can construct
a vector u ∈ Cn . Since u does not lie in the v2, ..., vn hyperplane, u, v2, ...,
vn is a basis of Cn .

We will generate a new orthonormal basis from this basis using the Gram-
Schmidt process.

We define the following operations:

〈p,q〉 :=

n∑
i=1

pi · qi, projp(q) :=
〈q,p〉
〈p,p〉

· p

where p = (p1, ..., pn), q = (q1, ..., qn) ∈ Cn .

7



Consider the following:

w̃2 = v2 − proju(v2)

w̃3 = v3 − proju(v3)− projw̃2
(v3)

...
w̃n = vn − proju(vn)− projw̃2(vn)− . . .− projw̃n−1

(vn)

Then take
wi =

w̃i

||w̃i||
∀i

Then u, w2, ..., wn is an orthonormal basis of Cn and therefore(
u w2 . . . wn

)
∈ SU(n)

Let us use all this to construct a map:

f : U −→ SU(n)

u 7−→
(
u w2 . . . wn

)
We would like to find a homeomorphism h: p-1(U ) → U × SU(n-1), in this
case we will instead find the continuous inverse first and equivalently prove that
it is a homeomorphism instead.

Consider then the map:

k : U × SU(n− 1) −→ p−1(U)

(u,X) 7−→ f(u)

(
1 0
0 X

)
where the entries called 0 are the n-1 dimensional row and column vectors whose
entries are all zero.

k is well defined since the first column of k(u, X ) is u by inspection. It is
also clear that k is continuous since the Gram-Schmidt process is continuous.

We would like to find a continuous inverse of k for which we require that
πU ◦k -1 = p.

Let us consider a map:

g : SU(n) −→ SU(n)

Y 7−→ f(p(Y ))∗ · Y

Necessarily from the definitions of p and f, the first row of f (p(Y ))* is the con-
jugate transpose of the first column of Y and since both matrices are elements
of SU(n), their product will be a matrix of the form:

g(Y ) =

(
1 0
0 G(Y )

)

8



Let us now consider the required map:

h : p−1(U) −→ U × SU(n− 1)

Z 7−→ (p(Z), G(Z))

We must finally show that k◦h = idp-1(U ) and h◦k = idU×SU(n-1)

k ◦ h(Z) = k(p(Z), G(Z))

= f(p(Z))

(
1 0
0 G(Z)

)
= f(p(Z))f(p(Z))∗ · Z
= In · Z
= Z

h ◦ k(u,X) = h(f(u)

(
1 0
0 X

)
)

= (p(f(u)

(
1 0
0 X

)
), G(f(u)

(
1 0
0 X

)
))

= (u,G(f(u)

(
1 0
0 X

)
))

g(f(u)

(
1 0
0 X

)
) = f(p(f(u)

(
1 0
0 X

)
))∗ · f(u)

(
1 0
0 X

)
= f(u)∗ · f(u)

(
1 0
0 X

)
= In

(
1 0
0 X

)
=

(
1 0
0 X

)
=⇒ G(f(u)

(
1 0
0 X

)
) = X

=⇒ h ◦ k(u,X) = (u,X)

Therefore h is a homeomorphism with inverse k, and thus p: SU(n) → S2n-1 is
a fibre bundle with fibre SU(n-1).

2.3 Fibre Bundles from a Lie Group to a Quotient Space
If G is a Lie Group and H is a closed subgroup of G, then we would like to
show that the canonical map

p : G→ G/H

g 7→ g ·H

is a fibre bundle with fibre H.

9



Proof. For every point x ∈ G/H we need to find a neighbourhood U ⊂ G/H
such that ∃ a homeomorphism h: p-1(U ) → U × H such that

p−1(U) U ×H

U

h

p
�

πU

Since H is a closed subgroup of G, by the Closed Subgroup Theorem, it is
also a Lie group. We call the corresponding Lie algebras of G and H, g and h
respectively, and we may consider the maps expg: g → G and exph: h → H
along with their derivatives dexpg|0 = idg and dexph|0 = idh. Consequently, h
is a subspace of g and we can consider the following short exact sequence:

0 h g g/h 0
q

where q is the clearly surjective canonical map to the quotient.
Every short exact sequence of vector spaces splits so ∃ a map σ: g/h → g

such that q ◦ σ = idg/h. Since identities are injective, σ must also be injective.
G/H is not necessarily a group as H is not required to be a normal subgroup,

however it does have a left G action: for g, h ∈ G, we have g.p(h) = p(g.h).
Let us construct a map expg/h:= p ◦ expg ◦ σ: g/h → G/H.

G G/H

g g/h

p

�expg

σ

expg/h

Let 0 be the identity element of G, we can determine the derivative of expg/h

at [0]: dexpg/h|0 = dp|0 ◦ dexpg|0 ◦ dσ|0 = q ◦ idg ◦ σ = q ◦ σ = idg/h.
Therefore, since expg/h is continuously differentiable and has non-zero deriva-

tive at [0], by the Inverse Function Theorem, we may construct a neighbourhood
U of [0] such that ∃ U ∈ g/h for which expg/h|U : U → U = expg/h(U) is a
diffeomorphism.

Since expg/h is a diffeomorphism on U , let us construct the inverse map φ:
U → U . For any y ∈ U, φ(y) is such that expg/h(φ(y)) = y. Then we can
construct a map σ: U → G that makes the following diagram commute:

U G

U g

σ

φ �

σ

expg

10



So we have

σ(y) = expg(σ(φ(y)))

so p(σ(y)) = p(expg(σ(φ(y))))

= expg/h(φ(y))

= y

Thus p ◦ σ = idU
Let x ∈ G/H with x = [g ] for some g ∈ G. Then due to the left G action on

G/H we have x = g.[0]. We have constructed a neighbourhood U of [0], thus
g.U is a neighbourhood of x.

Let us now construct a map σx: g.U → G

σx(y) := g.σ(g−1.y)

This is well defined since y ∈ g.U =⇒ g -1.y ∈ U so we can apply σ.
Again we have:

p(σx(y)) = p(g.σ(g−1.y))

= g.p(σ(g−1.y))

= g.g−1.y

= y

So p ◦ σx = idg.U
Now for every point x ∈ G/H we have a neighbourhood U x = g.U ⊂ G/H

where p(g) = x. For each neighbourhood let us finally construct a homeomor-
phism hx : p-1(U x ) → U x × H such that:

p−1(Ux) Ux ×H

Ux

hx

p
�

πUx

The inverse of this function is more immediate. Let us define:

kx : Ux ×H → p−1(Ux)

(u, h) 7→ σx(u).h

The codomain of kx is indeed p-1(U x ) since p(σx(u).h) = p(σx(u)) = u ∈ U x .
As for hx itself, we define as follows:

hx : p−1(Ux)→ Ux ×H
g 7→ (p(g), σx(p(g))−1.g)

11



To show that this too is well defined, we must show that if h = σx(p(g))-1.g
then p(h) = [0] ∈ G/H

h−1 = g−1.σx(p(g))

p(h−1) = p(g−1.σx(p(g)))

= g−1.p(σx(p(g))

= g−1.p(g)

= p(g−1.g)

= p(0) = [0]

Since H is a group and p(h-1) = [0] implies h-1 ∈ H, h ∈ H and so hx is well
defined.

(πUx ◦ hx )(u) = p(u) so hx fits into the commutative diagram, and both hx
and kx are both smooth by construction so to prove that hx is a homeomor-
phism, all we must do is prove that kx is its inverse.

(kx ◦ hx)(g) = kx(p(g), σx(p(g))−1.g)

= σx(p(g)).σx(p(g))−1.g

= g

(hx ◦ kx)(u, h) = hx(σx(u).h)

= (p(σx(u).h), σx(p(σx(u).h))−1.σx(u).h)

= (p(σx(u)), σx(p(σx(u)))−1.σx(u).h)

= (u, σx(u)−1.σx(u).h)

= (u, h)

Therefore kx ◦ hx = idp-1(U x)
and hx ◦ kx = idU x×H thus hx is the required

homeomorphism and therefore for a Lie group G and closed subgroup H ⊂ G,
the quotient map p: G → G/H is a fibre bundle with fibre H. 4

2.4 The Homotopy Extension and Lifting Properties
The definitions and following proofs are described by Hatcher in Algebraic Topol-
ogy [17]

Definition 3. A map p: E → B has the homotopy lifting property with
respect to a space X if for any given homotopy h: X × I → B and any given
map H 0: X × {0} → E which lifts h0:= h|X×{0} (i.e. such that p◦H 0 = h0),
there exists a homotopy H : X × I → E that lifts h (i.e. such that p◦H = h)
and H 0 = H |X×{0}.

X × {0} E

X × I B

H0

idX× p

h

∃H

12



A map p: E → B is called a fibration if it has the homotopy lifting property
with respect to all spaces X.

Lemma 2. If p: E → B is a fibration and x,y ∈ B, then p-1(x ) ' p-1(y), i.e.
we can define a fibre F of a fibration that is unique up to homotopy equivalence.

Lemma 3. Any fibre bundle is a fibration.

Definition 4. Let X be a topological space, and let ι: A→ X be the inclusion of
a subspace A into X, the pair (X, A) has the homotopy extension property
with respect to a space Y if given any homotopy f : A × I → Y and any map
F 0: X × {0}→ Y such that F 0|A×{0} = f 0:= f |A×{0}, there exists an extension
of f to a homotopy F : X × I → Y such that F |X×{0} = F 0 and F |A×I = f.

A× {0} A× I

X × {0} Y

X × I

idA×

ι×id{0} � f
ι×idI

F0

idX×
∃F

Equivalently, the pair (X, A) has the homotopy extension property with respect
to a space Y if any map g : (X × {0}) ∪ (A × I ) → Y can be extended to a
map G : X × I → Y with G |(X×{0})∪(A×I ) = g.

We say that the pair (X, A) has the homotopy extension property if it has
the homotopy extension property with respect to all spaces Y, in such cases the
inclusion ι: A → X is called a cofibration.

Definition 5. Let X be a topological space, a subspace A of X is called a
retract of X if there exists a continuous map r : X → A called a retraction
that is such that r |A = idA.

A continuous map F : X × I → X is called a deformation retract of X
onto a subspace A if ∀ x ∈ X and a ∈ A:

F (x, 0) = x F (x, 1) ∈ A F (a, 1) = a

That is, a deformation retract is a homotopy between the identity map on X
and a retraction.

Lemma 4. A pair (X, A) has the homotopy extension property if and only if
(X × {0}) ∪ (A × I ) is a retract of X × I.

Proof. If (X ×{0}) ∪ (A × I ) is a retract of X × I then there exists a retraction
r : X × I → (X × {0}) ∪ (A × I ) such that r |(X×{0})∪(A×I ) = id(X×{0})∪(A×I ).

If we have a homotopy h: A × I → Y and a map H 0: X × {0} → Y such
that H 0|A×{0} = h0:= h|A×{0} we need to find a homotopy H : X × I → Y
such that H |X×{0} = H 0 and H |A×I = h.

13



Since h and H 0 are required to agree on (X ×{0}) ∩ (A × I ) = A × {0}, the
map H 0 ∪ h: (X ×{0}) ∪ (A × I ) → Y is well defined, then the composition
(H 0 ∪ h) ◦ r : X × I → Y is a candidate for H.

H |X×{0} = ((H 0 ∪ h) ◦ r)|X×{0} = (H 0 ∪ h)|r(X×{0}) ◦ r |X×{0}. Since
r is a retraction r |(X×{0})∪(A×I ) = id(X×{0})∪(A×I ) so r |X×{0} = idX×{0} and
thus r(X × {0}) = X × {0}. Then since (H 0 ∪ h)|X×{0} = H 0 we achieve the
result H |X×{0} = (H 0 ∪ h)|X×{0} ◦ id|X×{0} = H 0 as required. By an identical
argument H |A×I = h. Therefore we have found a suitable homotopy and thus
(X, A) has the homotopy extension property with respect to Y, but since Y was
arbitrary, (X, A) has the homotopy extension property.

If (X, A) has the homotopy extension property, then for any space Y, if we
have a homotopy h: A × I → Y and a map H 0: X × {0} → Y such that
H 0|A×{0} = h|A×{0}, then there exists a homotopy H : X × I → Y such that
H |X×{0} = H 0 and H |A×I = h.

Let us choose Y = (X × {0}) ∪ (A × I ). The inclusions provide a homotopy
ι: A × I → Y and a map : X × {0}→ Y such that |A×{0} = ι|A×{0} therefore
there exists a homotopy r : X × I → Y such that r |A×I = ι, r |X×{0} = .

To show that r is a retraction, we must show that r |Y = idY .
r |Y = r |A×I ∪ r |X×{0} = ι ∪  = idY since ι and  agree on the intersection

(X × {0}) ∩ (A × I ) = A × {0}. Therefore (X × {0}) ∪ (A × I ) is a retract
of X × I.

Therefore a pair (X, A) has the homotopy extension property if and only if
(X × {0}) ∪ (A × I ) is a retract of X × I. 4

Proofs of the following corollary and lemma can also be found in Allen
Hatcher’s Algebraic Topology on page 15 and 16 respectively [17].

Corollary 5. If X is a CW-complex and A is a subcomplex of X, then (X, A)
has the homotopy extension property.

Lemma 6. If (X, A) has the homotopy extension property and A is contractible,
then the quotient map q : X → X /A is a homotopy equivalence.
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3 The Leray-Hirsch Theorem
There is a result called the Künneth formula that we will properly introduce and
make heavy use of later, that relates the cohomology ring of a product space to
the cohomology rings of the factor spaces.

The total space of a fibre bundle is locally, but not necessarily globally, the
product of two topological spaces, and as such there is a similar but weaker
result relating the various cohomology rings that was proved independently by
Jean Leray and Guy Hirsch in the 1940s. Here we will flesh out a proof given
by Hatcher [17].

Theorem 7. Let p : E → B be a fibre bundle with fibre F such that for some
commutative ring with identity R:

• H n(F ; R) is a finitely generated free R-module for all n

• There exist classes cj ∈ H k j (E ; R) whose restrictions ι∗(cj ) form a basis
for H *(F ; R) in each fibre F, where ι : F → E is the inclusion.

Then the map

Φ : H∗(B;R)⊗R H∗(F ;R)→ H∗(E;R)∑
ij

bi ⊗R ι∗(cj) 7→
∑
ij

p∗(bi) ^ cj

is an H *(B ; R)-module isomorphism.

3.1 Proof of the Leray-Hirsch Theorem
3.1.1 Φ is an H*(B ; R)-module homomorphism

Proof. It is not too difficult to show that Φ is at least a group homomorphism.
Since H *(F ; R) is finitely generated in each degree we can write two general
elements of H *(B ; R) ⊗R H *(F ; R) as:

A =

∞∑
i=0

Ji∑
ji=0

aji ⊗R ι∗(cji) and B =

∞∑
i=0

Ji∑
ji=0

bji ⊗R ι∗(cji)

15



Clearly, we have:

Φ(A+B) = Φ(

∞∑
i=0

Ji∑
ji=0

aji + bji ⊗R ι∗(cji))

=

∞∑
i=0

Ji∑
ji=0

p∗(aji + bji) ^ cji

=

∞∑
i=0

Ji∑
ji=0

p∗(aji) ^ cji +

∞∑
i=0

Ji∑
ji=0

p∗(bji) ^ cji

Φ(A) + Φ(B) =

∞∑
i=0

Ji∑
ji=0

p∗(aji) ^ cji +

∞∑
i=0

Ji∑
ji=0

p∗(bji) ^ cji

To ensure the module structure is maintained, we need to describe the module
structure of both rings.

In H *(B ; R) ⊗R H *(F ; R) we have:

H∗(B;R)×H∗(B;R)⊗R H∗(F ;R)→ H∗(B;R)⊗R H∗(F ;R)

(r,
∑
ij

bi ⊗R ι∗(cj)) 7→
∑
ij

r.bi ⊗R ι∗(cj)

In H *(E ; R) we have:

H∗(B;R)×H∗(E;R)→ H∗(E;R)

(r, e) 7→ p∗(r) ^ e

Thus, to prove that Φ is a H *(B ; R)-module homomorphism, we must show
that:

Φ(
∑
ij

r.bi ⊗R ι∗(cj)) = p∗(r) ^ Φ(
∑
ij

bi ⊗R ι∗(cj)).

Φ(
∑
ij

r.bi ⊗R ι∗(cj)) =
∑
ij

p∗(r.bi) ^ cj

=
∑
ij

p∗(r) ^ p∗(bi) ^ cj

= p∗(r) ^
∑
ij

p∗(bi) ^ cj

= p∗(r) ^ Φ(
∑
ij

bi ⊗R ι∗(cj))

p is a map of spaces and thus p* is necessarily a ring homomorphism, also since
p*(r) does not depend on i or j and H *(E ; R) is a ring, it can be pulled out as a
common factor. Since the two sides do indeed agree, Φ is an H *(B ; R)-module
homomorphism. 4

Let us now tackle the trickier task of showing that Φ is a bijection and thus
an H *(B ; R)-module isomorphism.
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3.1.2 If B is a 0-dimensional CW complex

To begin proving the Leray-Hirsch Theorem, let us consider fibre bundles where
the base space is a 0-dimensional CW complex. All such spaces have the form
of a set of points equipped with the discrete topology.

We want to show that if the conditions of the theorem hold, then

Φ : H∗(B;R)⊗R H∗(F ;R)→ H∗(E;R)∑
ij

bi ⊗R ι∗(cj) 7→
∑
ij

p∗(bi) ^ cj

is an isomorphism.

Proof. Since B is a 0-dimensional CW complex and a class in H 0(X ; R) simply
assigns an element of R to each connected component of X, we have the following
isomorphism: ∏

B

R→ H0(B;R)

(r1, r2, ...) 7→
∑
i∈B

({i} 7→ ri)

Since H k (B ; R) = 0 ∀ k 6= 0, we must simply show that ∀ k

Φk : H0(B;R)⊗R Hk(F ;R)→ Hk(E;R)∑
ij

b_i⊗R ι∗(cj) 7→
∑
ij

p∗(bi) ^ cj

is an isomorphism.
Since p: E → B is a fibre bundle, ∀ i ∈ B, E i := p-1(i) is homeomorphic to

the fibre F and E is the disjoint union of these fibres.

E =
∐
i∈B

Ei

Since all the fibres are homeomorphic to one another, without loss of generality
we may designate E 1 = F and construct homeomorphisms from the other fibres
as ψi : E i → F. We must also define the inclusion maps of each fibre into the
total space ιi : E i → E.

If cj
(1) is a basis of H *(E 1; R) = H *(F ; R) then ψi*(cj

(1)) =: cj
(i) is a

basis of H *(E i ; R). For classes cj ∈ H *(E ; R), we require that ιi*(cj ) is a basis
of H *(E i ; R) ∀ i ∈ [n], therefore we choose the classes cj = (cj

(1), cj
(2), ...) to

satisfy these conditions.
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Thus ∀ k ∈ Z

Hk(E;R) ∼= Hk(
∐
i∈B

Ei;R)

∼=
∏
i∈B

Hk(Ei;R)

∼=
∏
i∈B

Hk(F ;R)

We can define the relevant isomorphism as follows:

Hk(E;R)→
∏
B

Hk(F ;R)

φ 7→ ((ι1 ◦ ψ−1
1 )∗(φ), (ι2 ◦ ψ−1

2 )∗(φ), ...)

Thanks to these isomorphisms, to show that each Φk is an isomorphism, we
must construct another isomorphism φ that ensures that the following diagram
commutes:

H0(B;R)⊗R Hk(F ;R) Hk(E;R)

∏
B R⊗R Hk(F ;R)

∏
B H

k(F ;R)

Φk

� ∼=

φ

∼=

Lemma 8. Let R be a commutative ring with identity, X be a finitely generated
free R-module, and B a set. Then there exists an isomorphism

φ :
∏
B

R⊗R X →
∏
B

X∑
i,j

ri ⊗R xj 7→
∑
i,j

(ri1xj , ri2xj , ...)

Proof. : We will show that the following map is both a left and right inverse of
φ:

ψ :
∏
B

X →
∏
B

R⊗R X

(x1, x2, ...) 7→
∑
i∈B

ei ⊗R xi

where ei is the vector with 0R in every entry except the i th which is instead 1R.
The set {ei | i ∈ B} is the standard basis of

∏
B R.
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Consider a general element of
∏
B R ⊗R X and apply first φ, then ψ:

(ψ ◦ φ)(
∑
i,j

ri ⊗R xj) = ψ(φ(
∑
i,j

ri ⊗R xj))

= ψ(
∑
i,j

(ri1xj , ri2xj , ...))

=
∑
i,j

ψ(ri1xj , ri2xj , ...)

=
∑
i,j

∑
k∈B

ek ⊗R rikxj

=
∑
i,j

∑
k∈B

ekrik ⊗R xj

=
∑
i,j

ri ⊗R xj

Thus ψ ◦ φ = id∏
B R ⊗R X .

Now consider a general element of
∏
B X and apply first ψ, then φ:

(φ ◦ ψ)(x1, x2, ...) = φ(ψ(x1, x2, ...))

= φ(
∑
i∈B

ei ⊗R xi)

=
∑
i∈B

φ(ei ⊗R xi)

=
∑
i∈B

(ei1xi, ei2xi, ...)

=
∑
i∈B

(0, ..., xi, 0, ...)

= (x1, x2, ...)

Thus φ ◦ ψ = id∏
B X .

Therefore, since ψ is indeed both a left and right inverse of φ, both must be
isomorphisms. 4

Since H *(F ; R) is a finitely generated free R-module, so must H k (F ; R)
be a finitely generated free R-module for each level k ∈ Z. Therefore, in the
following diagram, φ is an isomorphism by the previous lemma:

H0(B;R)⊗R Hk(F ;R) Hk(E;R)

∏
B R⊗R Hk(F ;R)

∏
B H

k(F ;R)

Φk

∼=

φ

∼=

Finally, this diagram must be shown to commute. Let us introduce names for
the two vertical isomorphisms we described earlier: σ:

∏
B R → H 0(B ; R) and

Ψ: H k (E ; R) →
∏
B H k (F ; R).
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We therefore need to show that for any element of
∏
B R ⊗R H k (F ; R):

φ(
∑
i,j

ri ⊗R xj) = Ψ(Φk(
∑
i,j

σ(ri)⊗R xj))

Since H k (F ; R) is a finitely generated R-module ∀ k and we have a basis cj
(1)

of H k (F ; R), we can express any element x ∈ H k (F ; R) in the form:

x =
∑
l

xlc
(1)
l for some set of xl ∈ R

Now to show the commutativity

φ(
∑
i,j

ri ⊗R xj) =
∑
i,j

(ri1xj , ri2xj , ...)

Ψ(Φk(
∑
i,j

σ(ri)⊗R xj)) = Ψ(Φk(
∑
i,j

∑
m∈B

({m} 7→ rim)⊗R
∑
l

xjlc
(1)
l ))

= Ψ(Φk(
∑
i,j,l

∑
m∈B

({m} 7→ rim)xjl ⊗R c
(1)
l ))

= Ψ(Φk(
∑
i,j,l

∑
m∈B

({m} 7→ rimxjl)⊗R c
(1)
l ))

= Ψ(
∑
i,j,l

p∗(
∑
m∈B

({m} 7→ rimxjl)) ^ cl)

= Ψ(
∑
i,j,l

(e 7→ {rimxjl , if e ∈ Em) ^ cl)

=
∑
i,j

((ι1 ◦ ψ−1
1 )∗(

∑
l

((e 7→ {rimxjl , if e ∈ Em) ^ cl)),

, (ι2 ◦ ψ−1
2 )∗(

∑
l

((e 7→ {rimxjl , if e ∈ Em) ^ cl)), ...)

=
∑
i,j

((ψ−1
1 )∗(

∑
l

((e 7→ ri1xjl) ^ c
(1)
l )),

, (ψ−1
2 )∗(

∑
l

((e 7→ ri2xjl) ^ c
(2)
l )), ...)

=
∑
i,j

(
∑
l

((e 7→ ri1xjl) ^ c
(1)
l ),

∑
l

((e 7→ ri2xjl) ^ c
(1)
l ), ...)

=
∑
i,j

(ri1
∑
l

xjlc
(1)
l , ri2

∑
l

xjlc
(1)
l , ...)

=
∑
i,j

(ri1xj , ri2xj , ...) as required

Therefore the diagram in question does indeed commute, so since φ is an iso-
morphism, Φk must be an isomorphism ∀ k.

Therefore Φ is an isomorphism, and the Leray-Hirsch theorem holds for fibre
bundles with 0-dimensional CW complex base spaces. 4
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3.1.3 If B is a finite-dimensional CW complex

To prove that the theorem holds for all finite-dimensional CW complex base
spaces we will use an induction argument.

Let us assume that the Leray-Hirsch theorem holds for (n-1)-dimensional
CW complex base spaces.

Let B be an n-dimensional CW complex and consider B ’ ⊂ B to be the
subspace of B obtained by removing a single point from the interior of each of
the n-cells of B.

We will also let E ’ := p-1(B ’)

Proof. We must show that the following diagram, where R is understood to be
the coefficient ring, commutes and that the vertical maps are all isomorphisms:

... H∗(B,B′)⊗H∗(F ) H∗(B)⊗H∗(F ) H∗(B′)⊗H∗(F ) ...

... H∗(E,E′) H∗(E) H∗(E′) ...

ΦB,B′ Φ ΦB′

Since every pair of topological spaces (X, Y ) with Y ⊂ X generates a long exact
sequence of cohomology groups

... H∗(X,Y ) H∗(X) H∗(Y ) ...

the pairs (B, B ’) and (E, E ’) generate long exact sequences and the bottom row
of our diagram is an exact sequence automatically. Also, since H k (F ; R) is a
finitely generated free R-module ∀ k ∈ Z, the functor (-) ⊗R H *(F ; R) is exact,
thus the top row of our diagram is an exact sequence too.

Let us consider the space Bn-1, the n-1 skeleton of B. It is clear to see that
B ’ is homotopy equivalent to Bn-1 since removing a single point from each n
cell allows us to continuously retract each to its boundary.

Homotopy equivalence in spaces induces isomorphisms in their cohomology
groups. To show that ΦB ’ is an isomorphism, we need to find a fibre bundle from
a total space X that is homotopic to E ’ onto Bn-1 with fibre F ; by assumption,
the Leray-Hirsch theorem will hold for this fibre bundle

H∗(B′)⊗H∗(F ) H∗(Bn−1)⊗H∗(F )

H∗(E′) H∗(X)

∼=

ΦB′ � ∼=

∼=

From this diagram, if we can prove the existence of X, then clearly ΦB ’ must
be an isomorphism.

Definition 6. A space X is said to be k-connected if ∀ i ≤ k, πi(X ) = 0.
For a space X, and subspace A of X, the pair (X, A) is said to be k -connected

if ∀ i ≤ k, πi(X, A) = 0. By the long exact sequence of homotopy groups induced
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by the short exact sequence of the pair, this implies that (X, A) is k -connected
iff πi(A) ∼= πi(X ) ∀ i ≤ k -1 and ι*: πk (A) → πk (X ), the map induced by the
inclusion, is a surjection.

Lemma 9. Consider a fibre bundle p: E → B and a subspace B ’ ⊂ B such
that (B, B ’) is k -connected, then (E, p-1(B ’)) is also k -connected.

Proof. Consider any map g0: (D i , ∂D i)→ (E, p-1(B ’)), with i ≤ k, a map from
the i -disc to E that maps the boundary totally into p-1(B ’).

Since (B, B ’) is k -connected, there must exist a homotopy between any two
maps (D i , ∂D i) → (B, B ’) where i ≤ k, thus consider the maps f 0 = pg0 and
f 1, any map such that Im(f 1) ⊆ B ’. Let f be the homotopy between f 0 and f 1.

We thus achieve the following diagram:

(Di, ∂Di)× {0} (E, p−1(B′))

(Di, ∂Di)× I (B,B′)

g0

� p

f

Since p: E → B is a fibre bundle, it is also a fibration and thus satisfies the
homotopy lifting property. We therefore know that there exists a homotopy g
such that the following diagram commutes:

(Di, ∂Di)× {0} (E, p−1(B′))

(Di, ∂Di)× I (B,B′)

g0

p

f

g

Thus we may consider g1 such that f 1 = pg1, therefore, since Im(f 1) ⊆ B ’,
Im(g1) ⊆ p-1(B ’).

Since such a g exists for any choice of g0 and i ≤ k, if (B, B ’) is k -connected,
(E, p-1(B ’)) must also be k -connected. 4

Since B ’ and Bn-1 are homotopy equivalent, (B ’, Bn-1) is k -connected ∀ k,
thus by our lemma, (E ’, p-1(Bn-1)) must be k -connected ∀ k, therefore p-1(Bn-1)
is homotopy equivalent to E ’. Additionally, since p: E → B is a fibre bundle
with fibre F, then so are the maps p: E ’ → B ’, and p: p-1(Bn-1) → Bn-1.

We have therefore found a space that allows our diagram to commute:

H∗(B′)⊗H∗(F ) H∗(Bn−1)⊗H∗(F )

H∗(E′) H∗(p−1(Bn−1))

∼=

ΦB′ � ∼=

∼=

Therefore ΦB ’ is an isomorphism.
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We removed a set of points (read 0-dimensional CW complex) from B to
construct B ’. Let the points themselves be denoted xα, and the n-cells from
which they were removed, eα respectively.

Since p: E → B is a fibre bundle, for each xα ∃ a neighbourhood U α ⊂ eα
such that ∃ a homeomorphism hα: p-1(U α) → U α × F such that:

p−1(Uα) Uα × F

Uα

hα

p
� πU_α

Let U α’ ⊂ U α be the subspace constructed by removing xα from U α.
Let U and U ’ be defined as follows:

U =
⋃
α

Uα U ′ =
⋃
α

U ′α

Now let us consider a space K = B\U. It is clear that K ⊂ B ’ ⊂ B and
that the closure of K is contained within the interior of B ’ since each U α is a
neighbourhood of the corresponding missing point.

Therefore, since B\K = U and B ’\K = U ’, by excision, the inclusion map
ι: (U, U ’) → (B, B ’) induces isomorphisms ι∗: H k (B, B ’; R) → H k (U, U ’; R)
∀ k ∈ Z.

It is also clear that p-1(K ) ⊂ p-1(B ’) = E ’ ⊂ p-1(B) = E and thus the
inclusion as described and the fibre bundle induce a similar collection of isomor-
phisms ι’*: H k (E, E ’; R) → H k (p-1(U ), p-1(U ’); R) induced by the inclusion
ι’: (p-1(U ), p-1(U ’)) → (E, E ’).

To prove that ΦB,B ’ is an isomorphism, we must show, in the following
diagram, that ΦU,U ’ is an isomorphism

H∗(B,B′)⊗H∗(F ) H∗(U,U ′)⊗H∗(F )

H∗(E,E′) H∗(p−1(U), p−1(U ′))

∼=

ΦB,B′ � ΦU,U′

∼=

To do so, consider the following diagram:

... H∗(U ′)⊗H∗(F ) H∗(U,U ′)⊗H∗(F ) H∗(U)⊗H∗(F ) ...

... H∗(p−1(U ′)) H∗(p−1(U), p−1(U ′)) H∗(p−1(U)) ...

ΦU′ ΦU,U′ ΦU

The rows are exact by the induced long exact sequences of the pairs (U, U ’)
and (p-1(U ), p-1(U ’)) and the fact that the functor (-) ⊗R H *(F ; R) is exact.

Let us denote by N the set of n-cells of B. Since each U α is a neighbourhood
wholly contained within a single corresponding n-cell eα, it must be the case
that each U α is isomorphic to the n-disc Dn .
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Since every disc Dn is homotopy equivalent to a single point, U must be
homotopy equivalent to a set of distinct points labelled by N.

We must also consider the fact that a disc without a single point in it’s
interior is homotopy equivalent to its boundary thus each U α’ is homotopy
equivalent to ∂Dn = Sn-1, thus U ’ is homotopy equivalent to the disjoint union
of |N | n-1 spheres, we will call this space NSn-1

NSn−1 :=
∐
α

Sn−1

As in the proof that ΦB ’ is an isomorphism, we can construct spaces X and Y
such that p: X → N and p: Y → NSn-1 are fibre bundles with fibre F and so
the following diagrams commute:

H∗(U)⊗H∗(F ) H∗(N)⊗H∗(F )

H∗(p−1(U)) H∗(X)

H∗(U ′)⊗H∗(F ) H∗(NSn−1)⊗H∗(F )

H∗(p−1(U ′)) H∗(Y )

∼=

ΦU � ΦN

∼=

∼=

ΦU′ � ΦNSn−1

∼=

Therefore since we have proven that the Leray-Hirsch theorem holds for the
case of 0-dimensional CW complex base spaces, ΦN is an isomorphism, and
since NSn-1 is an (n-1)-dimensional CW complex, ΦNSn-1 is an isomorpism by
assumption.

Therefore, ΦU and ΦU ’ are also isomorphisms.
Finally, it must be shown that all the diagrams are commutative. The fol-

lowing are commutative by the naturality of the cup product:

H∗(B,B′)⊗H∗(F ) H∗(B)⊗H∗(F ) H∗(B′)⊗H∗(F )

H∗(E,E′) H∗(E) H∗(E′)

H∗(U,U ′)⊗H∗(F ) H∗(U)⊗H∗(F ) H∗(U ′)⊗H∗(F )

H∗(p−1(U), p−1(U ′)) H∗(p−1(U)) H∗(p−1(U ′))

ΦB,B′ ΦB ΦB′

ΦU,U′ ΦU ΦU′
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We must finally show that the following diagrams commute:

H∗(B′)⊗H∗(F ) H∗(B,B′)⊗H∗(F )

H∗(E′) H∗(E,E′)

H∗(U ′)⊗H∗(F ) H∗(U,U ′)⊗H∗(F )

H∗(p−1(U ′)) H∗(p−1(U), p−1(U ′))

δ⊗id

ΦB′ ΦB,B′

δ

δ⊗id

ΦU′ ΦU,U′

δ

Since the two squares are identical in structure, we only need to check once.
Let us choose the first and consider a general element of H *(B ’) ⊗ H *(F )

and map it into H *(E, E ’) in both directions:

ΦB,B′((δ ⊗ id)(
∑
i,j

bi ⊗ ι∗(cj))) = ΦB,B′(
∑
i,j

δ(bi)⊗ ι∗(cj))

=
∑
i,j

p∗(δ(bi)) ^ cj

δ(ΦB′(
∑
i,j

bi ⊗ ι∗(cj))) = δ(
∑
i,j

p∗(bi) ^ cj)

=
∑
i,j

δ(p∗(bi) ^ cj)

=
∑
i,j

δ(p∗(bi)) ^ cj , since δ(cj) = 0

Hence, since δ ◦ p* = p* ◦ δ, the squares must commute.
Thus by the Five Lemma ΦU,U ’ is an isomorphism, thus ΦB, B ’ is an iso-

morphism, and finally, again by the Five Lemma, Φ is an isomorphism.
Therefore the Leray-Hirsch Theorem is true for fibre bundles with finite

dimensional CW complex base spaces. 4

3.1.4 If B is an infinite-dimensional CW complex

The argument when our base space is an infinite dimensional CW complex is
not too difficult since we have already laid most of the ground work.

Proof. Let B be an infinite-dimensional CW complex and let Bn be the n-
skeleton of B for any finite n.

Clearly, (B, Bn) will be n-connected, thus by our lemma, (E, p-1(Bn)) must
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also be n-connected. Let us examine the following diagram:

H∗(B;R)⊗R H∗(F ;R) H∗(Bn;R)⊗R H∗(F ;R)

H∗(E;R) H∗(p−1(Bn);R)

Φ � ΦBn

Since Bn is an n-dimensional CW subcomplex of B, p: p-1(Bn)→ Bn will be a
fibre bundle with fibre F, satisfying the conditions of the Leray-Hirsch theorem,
and with a finite-dimensional CW complex base space; therefore, ΦBn is an
isomorphism.

The n-connectedness of (B, Bn) and (E, p-1(Bn)) ensure that for all k ≤ n
the horizontal maps are isomorphisms in the following diagram:

Hk−∗(B;R)⊗R H∗(F ;R) Hk−∗(Bn;R)⊗R H∗(F ;R)

Hk(E;R) Hk(p−1(Bn);R)

∼=

Φk � ΦBnk

∼=

Since a graded module homomorphism is an isomorphism if and only if on each
level it restricts to an abelian group isomorphism and ΦBn is an isomorphism of
H *(Bn ; R)-modules, ΦBnk must be an isomorphism of abelian groups, therefore
so too must Φk.

Since n was arbitrary, we can deduce that Φk is an isomorphism of abelian
groups for arbitrary k ∈ N, and therefore we achieve the result that Φ is an
isomorphism of H *(B ; R)-modules. 4

3.1.5 If B is not a CW complex

Definition 7. A map f : X → Y is called a weak homotopy equivalence if
the induced maps f ∗: πn(X, x 0)→ πn(Y, f (x 0)) are isomorphisms for all n ≥ 0
and choices of basepoint x 0 ∈ X. A weak homotopy equivalence is all you need
to ensure an isomorphism of cohomology rings.

For a topological space X and a CW complex Z, a weak homotopy equiva-
lence f : Z → X is called a CW approximation to X.

Lemma 10. For any topological space X, a CW complex Z can be constructed
such that there exists a CW approximation f : Z → X

A proof of this statement can be attributed to Hatcher [17].
Now will show that if a fibre bundle p: E → B satisfies the conditions of

the Leray-Hirsch theorem but B is not a CW complex, even still, the map Φ is
an isomorphism.

Proof. Even though B is not a CW complex, there exists a CW approximation
f : A → B and we can construct the pullback bundle that makes the following
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a commutative diagram:
f∗(E) E

A B

p∗

πE

y p

f

p*: f *(E )→ A is also a fibre bundle with fibre F. Since this diagram commutes
by construction, it will easy to show that Φ is an isomorphism if we can prove
that p* satisfies the conditions of the Leray-Hirsch theorem.

Since fibre bundles induce long exact sequences of homotopy groups we can
examine the connection between these two fibre bundles in terms of these se-
quences:

... πn(F ) πn(f∗(E)) πn(A) πn−1(F ) ...

... πn(F ) πn(E) πn(B) πn−1(F ) ...

∼= ∼= ∼=

Since the fibres are the same and f is a CW approximation, only every third
vertical map is not automatically an isomorphism. The Five Lemma takes care
of those maps and ensures that every vertical map is an isomorphism! Thus
the map πE : f *(E ) → E in the pullback diagram induces isomorphisms on all
homotopy groups thus it it is a weak homotopy equivalence and must induce an
isomorphism in cohomology.

Since p* and p have the same fibre and p satisifies the conditions of the
Leray-Hirsch theorem, p*: f *(E ) → A is a fibre bundle with fibre F which for
some ring with identity R, H n(F ; R) is a finitely generated free R-module for
all n.

Additionally, the classes cj ∈ H k j (E ; R) pull back to classes π∗E
-1(cj ) ∈

H k j (f *(E ); R) and thus by the commutativity of the following diagram we
have classes that restrict by the inclusion of the fibre into f *(E ) to a basis of
the cohomology ring for each fibre.

H∗(E;R) H∗(f∗(E);R)

H∗(F ;R) H∗(F ;R)

π∗E

ι∗ � ι∗f

∼=

By the commutativity of the pull back diagram, functoriality of the tensor prod-
uct with H *(F ; R), and naturality of the cup product, the following diagram
commutes:

H∗(B;R)⊗R H∗(F ;R) H∗(A;R)⊗R H∗(F ;R)

H∗(E;R) H∗(f∗(E);R)

f∗⊗Rid

Φ � ΦA

π∗E
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The weak homotopy equivalences ensure that the two horizontal maps are iso-
morphisms and now we have seen that p* is a fibre bundle satisfying the condi-
tions of the Leray-Hirsch theorem and has a CW complex as a base space, thus
ΦA is an isomorphism. Therefore the commutativity of the diagram ensures
that Φ is also an isomorphism.

Thus, provided the conditions hold, the Leray-Hirsch map is an isomorphism
regardless of what kind of topological space we have as a base space. 4

3.2 Applications of the Leray-Hirsch Theorem
3.2.1 Cohomology of the Special Unitary Groups

Definition 8. The exterior algebra on a finite set of generators x i with
coefficients in a ring R, denoted ΛR[x 1, ..., xN ], where each x i is in degree d i ,
is a ring with an addition operation naturally derived from the ring R, and a
multiplication operation defined by the multiplication in R together with the
following property:

xp ∧ xq = (−1)dpdq (xq ∧ xp)

where x i is in degree d i .

Theorem 11. The cohomology ring of the groups SU(n) with coefficients in Z
for n ≥ 2 is the exterior algebra on n-1 generators x i each in a different odd
degree i, with 3 ≤ i ≤ 2n-1:

H∗(SU(n);Z) ∼= ΛZ[x3, ..., x2n-1]

Proof. We will attempt to prove this using an induction argument.
SU(1) ∼= 0 and since we know there is a fibre bundle p: SU(2) → S3 with

fibre SU(1), we know that SU(2) ∼= S3. Hence H *(SU(2); Z) ∼= H *(S3; Z) ∼=
ΛZ[x 3] and thus the base case holds.

Let us assume that H *(SU(n-1); Z) = ΛZ[x 3, ..., x 2n-3] and hopefully con-
clude that H *(SU(n); Z) = ΛZ[x 3, ..., x 2n-1].

In an earlier section we determined that the map p: SU(n) → S2n-1 defined
by p(X ) = (u11, v11, ..., un1, vn1) where uj1 + iv j1 is the j,1 entry in the
matrix X, is a fibre bundle with fibre SU(n-1).

In order to find the cohomology rings of the groups SU(n) with coefficients
in Z we would like to show that this fibre bundle satisfies the conditions of the
Leray-Hirsch Theorem.

Since a fibre bundle induces a short exact sequence, we can consider the long
exact sequence of homotopy groups associated with the fibre bundle:

... πk+1(S2n−1) πk(SU(n− 1)) πk(SU(n)) πk(S2n−1) ...

Since πk(Sn) = 0 when k < n, the long exact sequence above implies that
πk(SU(n-1)) ∼= πk(SU(n)) ∀ k < 2n-2 and π2n−2(SU(n-1)) → π2n−2(SU(n)) is
an epimorphism. Therefore the pair (SU(n), SU(n-1)) is 2n-2 connected.
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An application of the Hurewicz theorem therefore tells us that H k (SU(n); Z)
→ H k (SU(n-1); Z) is at least an epimorphism for k ≤ 2n-3, and by our assump-
tion that H *(SU(n-1); Z) ∼= ΛZ[x 3, ..., x 2n-3], there must be classes c3, ..., c2n-3
∈ H *(SU(n); Z) that these epimorphisms send to the classes corresponding to
the generators x 3, ..., x 2n-3 respectively.

A basis of H *(SU(n-1); Z) is deduced by a basis of ΛZ[x 3, ..., x 2n-3] which
is given by forming the wedge product of distinct x is. The cup products of the
corresponding ci classes in H *(SU(n); Z) will restrict to this basis.

Therefore, by assumption, the cohomology groups of the fibre are finitely
generated free Z-modules, and there exist classes in the cohomology ring of the
total space whose restrictions form a basis of the cohomology ring of each fibre.

Thus we may apply the Leray-Hirsch Theorem and so,

H∗(SU(n);Z) ∼= H∗(S2n−1;Z)⊗H∗(SU(n− 1);Z)
∼= ΛZ[x2n−1]⊗ ΛZ[x3, ..., x2n−3]

Finally, we must show that there is an isomorphism

λ : ΛZ[x2n−1]⊗ ΛZ[x3, ..., x2n−3]→ ΛZ[x3, ..., x2n−1]

Since 1 ⊗ p(x3, ..., x2n−3) + x2n−1 ⊗ q(x3, ..., x2n−3) is a generic element of
ΛZ[x2n−1] ⊗ ΛZ[x3, ..., x2n−3], we will show by a short argument that λ can
be defined by:

λ(1⊗ p(x3, ..., x2n−3) + x2n−1 ⊗ q(x3, ..., x2n−3)) = p(x3, ..., x2n−3)

+ x2n−1 ∧ q(x3, ..., x2n−3)

We are looking for an isomorphism of rings, and so we only need to show that
λ is both injective and surjective.

λ is injective if Ker(λ) = {0}.

λ(1⊗ p(x3, ..., x2n−3) + x2n−1 ⊗ q(x3, ..., x2n−3)) = 0

p(x3, ..., x2n−3) + x2n−1 ∧ q(x3, ..., x2n−3) = 0

=⇒ p(x3, ..., x2n−3) = 0 and x2n−1 ∧ q(x3, ..., x2n−3) = 0

=⇒ p(x3, ..., x2n−3) = 0 and q(x3, ..., x2n−3) = 0

=⇒ 1⊗ p(x3, ..., x2n−3) + x2n−1 ⊗ q(x3, ..., x2n−3) = 1⊗ 0 + x2n−1 ⊗ 0

= 0

Thus Ker(λ) = {0} and so λ is indeed injective.
Let us now show that λ is surjective.
Consider T (x 3, ..., x 2n-1), a generic element of ΛZ[x3, ..., x2n−1]. We can

describe T (x 3, ..., x 2n-1) in the following manner:

T (x3, ..., x2n−1) =
∑

(i3,...,i2n−1)∈B

t(i3,...,i2n−1)

n−1∧
j=1

x
i2j+1

2j+1
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for some given t(i3,...,i2n−1) ∈ Z, and where B is the set of tuples (i3, ..., i2n-1)
where each ik is either 0 or 1.

Let us make the following denotations:

T0(x3, ..., x2n−3) =
∑

(i3,...,i2n−3,0)∈B

t(i3,...,i2n−3,0)

n−2∧
j=1

x
i2j+1

2j+1

T1(x3, ..., x2n−3) =
∑

(i3,...,i2n−3,1)∈B

t(i3,...,i2n−3,1)

n−2∧
j=1

x
i2j+1

2j+1

Clearly,

T (x3, ..., x2n−1) = T0(x3, ..., x2n−3) + x2n−1 ∧ T1(x3, ..., x2n−3)

and thus λ(1⊗T0(x3, ..., x2n−3) + x2n−1⊗T1(x3, ..., x2n−3)) = T (x3, ..., x2n−1),
so λ is surjective.

Therefore λ is an isomorphism and we achieve the result:

H∗(SU(n);Z) ∼= ΛZ[x3, ..., x2n−1]

4

3.2.2 Cohomology of Grassmannian Manifolds

Definition 9. A Grassmannian of an n-dimensional vector space V, denoted
Grk (V) is the set of all linear k -dimensional vector subspaces of V.

An n-flag in Ck is an n-tuple of orthogonal 1 dimensional vector spaces in
Ck or equivalently, a sequence of vector subspaces V1 ⊂ ... ⊂ Vn ⊆ Ck where
Vi has dimension i.

The set of all n-flags in Ck forms a topological space denoted Fn(Ck ) which
is a subspace of the product of n copies of CPk-1.

There is a natural fibre bundle p: Fn(Ck ) → Grn(Ck ) where p maps each
flag V1 ⊂ ... ⊂ Vn ⊆ Ck to the subspace Vn . p-1(Cn) is the set of n-flags where
Vn = Cn which is also the space Fn(Cn). Thus Fn(Cn) is the fibre.

We would like to determine the cohomology structure of the Grassmannians
Grn(C∞) using the fibre bundle p: Fn(C∞) → Grn(C∞) with fibre Fn(Cn).
Clearly, in order to do this we must in turn determine the cohomology structure
of Fn(C∞).

As a result, we need to consider the map q : Fn(C∞) → Fn-1(C∞) which
maps each flag V1 ⊂ ... ⊂ Vn-1 ⊂ Vn ⊆ C∞ to the flag V1 ⊂ ... ⊂ Vn-1 ⊆ C∞.
We see from the fact that q -1(C1 ⊂ ... ⊂ Cn-1 ⊆ C∞) is the set of flags of the
form C1 ⊂ ... ⊂ Cn-1 ⊂ Vn ⊆ C∞ and that choosing a suitable Vn is equivalent
to choosing a line that is orthogonal to Cn-1 in C∞ which in turn is equivalent
to choosing a line in C∞, that since q is a fibre bundle, the fibre is CP∞.
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Since F 1(C∞) = CP∞, we know that H *(F 1(C∞); Z) = Z[x ] where x is in
degree 2. Then if q satisfies the conditions of the Leray-Hirsch Theorem then

H∗(Fn(C∞);Z) ∼=
n⊗
i=1

Z[x(i)] = Z[x(1), ..., x(n)]

where each x (i) is in degree 2. We also need to know the cohomology of the
groups Fn(Ck ), which we can determine from the similar map q : Fn(Ck ) →
Fn-1(Ck ) which maps each flag V1 ⊂ ... ⊂ Vn-1 ⊆ Vn ⊆ Ck to the flag V1 ⊂
... ⊂ Vn-1 ⊆ Ck .

Again, we see that q -1(C1 ⊂ ... ⊂ Cn-1 ⊆ Ck ) is the set of flags of the form
C1 ⊂ ... ⊂ Cn-1 ⊂ Vn ⊆ Ck and that choosing a suitable Vn is equivalent to
choosing a line that is orthogonal to Cn-1 in Ck which in turn is equivalent to
choosing a line in Ck-n+1, therefore since q is a fibre bundle, the fibre is CPk-n .

We know that H *(CPk ; Z) = Z[x ]/(x k+1) where x is in degree 2, and since
F 1(Ck ) = CPk-1, if q is a fibre bundle, and satisfies the conditions of the Leray-
Hirsch Theorem, we have:

H∗(Fn(Ck);Z) ∼=
n⊗
i=1

Z[x(i)]/((x(i))k−i+1)

∼= Z[x(1), ..., x(n)]/((x(1))k, ..., (x(n))k−n+1)

is an isomorphism of abelian groups.
We will be investigating the cohomology of these spaces again in a later

section with the aim of achieving a description of the cohomology ring as a ring
instead of just as modules.
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4 Classifying Spaces and Adjunctions

4.1 Simplicial Sets and Spaces
Definition 10. The simplex category ∆, as described by Grothendieck [15],
is the category whose objects are ordered sets of the form [n] = {0, 1, ..., n} for
n ∈ N and morphisms are order preserving maps f : [n] → [m], i.e. maps such
that i < j in [n] =⇒ f (i) ≤ f (j ) in [m].

The monomorphisms δn,0, ..., δn,n : [n-1]→ [n] such that (δn,i)-1(i) = ∅ and
the epimorphisms σn,0, ..., σn,n : [n+1]→ [n] such that |(σn,i)-1(i)| = 2 together
generate every morphism in ∆.

Originally defined by Eilenberg and Zilber [11], a simplicial set is a con-
travariant functor X : ∆ → Set and a simplicial space is a contravariant
functor Y : ∆ → Top. The images of the monomorphisms δn,i are called the
face maps and denoted dn,i and the images of the epimorphisms σn,i are called
the degeneracy maps and denoted sn,i .

In addition, there is a covariant functor ∆ → Top that sends each object
[n] to the standard n-simplex:

∆n = {(x0, ..., xn) | 0 ≤ xi ≤ 1,

n∑
i=0

xi = 1} ⊂ Rn+1

The images of the monomorphisms δn,i are called the coface maps and denoted
dn,i and the images of the epimorphisms σn,i are called the codegeneracy
maps and denoted sn,i .

dn,i : ∆n−1 → ∆n

(x0, ..., xn−1) 7→ (x0, ..., xi−1, 0, xi, ..., xn−1)

sn,i : ∆n+1 → ∆n

(x0, ..., xn+1) 7→ (x0, ..., xi−1, xi + xi+1, xi+2, ..., xn+1)

As described by Segal in Categories and Cohomology Theories [32], the ge-
ometric realisation of a simplicial set or space X is defined as the following
space:

|X| = (

∞∐
i=0

X([i])×∆i)/ ∼

where for (x, p) ∈ X [n] × ∆n , (y, q) ∈ X [n-1] × ∆n-1 we have (x, p) ∼ (y, q)
if:

dn,i(x) = y and dn,i(q) = p

or sn−1,i(y) = x and sn−1,i(p) = q

There is a related notion called the fat geometric realisation of a simplicial
set or space X defined as:

||X|| = (

∞∐
i=0

X([i])×∆i)/ ∼
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where in this case, (x, p) ∼ (y, q) just if dn,i(x ) = y and dn,i(q) = p. i.e.
the geometric realisation is the quotient of the fat geometric realisation by the
equivalence relation induced by the degeneracy and codegeneracy maps.

Definition 11. Consider each object [n] of ∆ as a category in its own right [n].
The collection of objects of [n] is the set [n] and the collections of morphisms
of [n] are sets with sizes given by:

|Hom[n](i, j)| =

{
1, i ≤ j
0, else

In addition, for every morphism f : [n] → [m] in ∆ we can determine a functor
F : [n] → [m] that sends each object i of [n] to the object f (i) in [m] and
each morphism φ ∈ Hom[n](i,j ) to the morphism ψ ∈ Hom[m](f (i),f (j )) which
necessarily exists since f is order preserving.

Let C be a small category. By definition each [n] is a small category and so
we may consider the collection of morphisms HomCat([n], C ) in the category
of small categories. This collection is itself a set since Cat is a locally small
category.

Now for each morphism f : [n] → [m] in ∆ we can define a mapping of
sets HomCat([m], C ) → HomCat([n], C ) by precomposition with the induced
functor F : [n] → [m] as in the following commutative diagram in Cat:

[n] [m]

C

F

V ◦F
�

V

The nerve of C is the simplicial set N (C ): ∆ → Set that sends each object
[n] of ∆ to the set HomCat([n], C ). This is consistent with the definition by
Segal in Classifying Spaces and Spectral Sequences [31]

4.2 Classifying Spaces
Definition 12. Let G be a topological group. Following the definition by
Steenrod [33], a principal G-bundle is a fibre bundle p: E → B together
with a continuous right action α: E × G → E such that ∀ x ∈ B, if y ∈ p-1(x ),
then α(y,g) ∈ p-1(x ) ∀ g ∈ G. Furthermore, ∀ x ∈ B, y ∈ p-1(x ), the map G →
p-1(x ) given by g 7→ α(y,g) is a homeomorphism.

Lemma 12. Let G be a topological group and let p: E → B be a principal
G-bundle such that E is weakly contractible i.e. E is path connected and ∀ i
πi(E ) = 0. Then for all CW compleces X, the map φ: [X, B ] → PG(X ) from
the set of homotopy classes of maps from X to B to the set of isomorphism
classes of principal G-bundles over X, given by φ([f ]) = f *E is a bijection.

A proof of this lemma is provided by Theorem 7.4 in lecture notes by Mitchell
[27].
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This lemma implies that any other principal G-bundle can be written as a
pullback of such a fibre bundle, we call a principal G-bundle with contractible
total space a universal G-bundle. The base space is called a classifying
space of G, and is denoted BG. It can be seen that for a given G, BG is
unique up to homotopy equivalence.

4.2.1 A Candidate for BG

Definition 13. As discussed by Kelly in Basic Concepts of Enriched Category
Theory [21], a topologically enriched category is a small category where
the collections of morphisms are topological spaces and the composition of mor-
phisms is continuous.

A topological category is a topologically enriched category where the
collection of objects is also a topological space.

Any topologically enriched category can be considered as a topological cate-
gory in a simple manner. If we have a topologically enriched category X ’ with
a set of objects X, then there is a topological category X with X equipped
with the discrete topology as the topological space of objects and spaces of
morphisms for each pair of objects inherited from X ’.

Theorem 13. For a topological group G consider the topological category G
of one object ∗G with morphisms the elements of G. Composition of morphisms
is defined by composition in the group G. Then the geometric realisation of the
nerve of G , |N (G )| is a classifying space of G.

Proof. In order to show for a topological group G and the topological category
G of one object ∗G with morphisms the elements of G, that |N (G )| is a candidate
for BG, we must show that it is the base space of a universal G-bundle.

It is natural to consider a similar topological category to G that we will call
H that has as a collection of objects the topological group G and exactly one
morphism from every object to every other object. Composition of morphisms
is defined in the following manner: for φ ∈ HomH (g1,g2), ψ ∈ HomH (g2,g3),
ψ ◦ φ is defined to be the unique morphism in HomH (g1,g3).

Lemma 14. If F,G : C → D are two functors and η: F → G is a natural
transformation, then there is a homotopy between the two continuous maps
|N (F )|,|N (G)|: |N (C )| → |N (D)|

Proof. Recall the category [1] that has as objects the set {0,1} and three mor-
phisms id0 ∈ Hom[1](0,0), id1 ∈ Hom[1](1,1), and φ ∈ Hom[1](0,1).

Consider a new functor H : C × [1] → D . H maps pairs of objects in the
following manner:

H(X,N) =

{
F (X), N = 0

G(X), N = 1
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and, since the natural transformation η: F → G ensures that for any morphism
f ∈ HomC (X,Y ) the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

ηX

F (f) � G(f)

ηY

H maps pairs of morphisms in the following manner: for f ∈ HomC (X,Y )

H(f, ξ) =


F (f), ξ = id0

G(f), ξ = id1

ηY ◦ F (f) = G(f) ◦ ηX , ξ = φ

Now let us consider the continuous map |N (H )|: |N (C × [1])| → |N (D)|. It is
known that the nerve and geometric realisation respect products and so this is
the map |N (H )|: |N (C )| × |N ([1])| → |N (D)|.

It can be shown that |N ([1])| ∼= [0,1] the unit interval and since the end
points of the interval correspond to the two objects of [1], we must have that
H (X,0) = F (X ) implies |N (H )|(x,0) = |N (F )|(x ) and likewise H (X,1) = G(X )
implies |N (H )|(x,1) = |N (G)|(x ) therefore |N (H )|: |N (C )| × [0,1] → |N (D)|
is a homotopy from |N (F )| to |N (G)|. 4

Lemma 15. If C is a category with a terminal object, then |N (C )| is con-
tractible.

Proof. The category [0] has a single object 0 and a single morphism id0. Let
C be any category with a terminal object T, that is, for every object S of C ,
there is exactly one morphism in the set HomC (S,T ).

Let F : [0] → C be the functor such that F (0) = T and F (id0) = idT and
let G : C → [0] be the functor such that G(X ) = 0 for all objects X of C and
G(φ) = id0 for all morphisms φ of C .

Let us consider the composition of these two functors in both ways possible.
GF : [0] → [0] sends the object 0 to itself, and the morphism id0 also to itself
thus GF is equal to the identity functor on [0], id[0]. FG : C → C sends every
object X of C to the terminal object T and every morphism φ of C to idT .

There is a natural transformation τ : idC → FG that has as components
the morphisms τX : idC (X ) → FG(X ) in HomC (X,T ) which are by definition
unique for each object X. τ is indeed a natural transformation as ∀ objects X, Y
of C , and morphisms φ ∈ HomC (X,Y ), the following diagram clearly commutes:

idC (X) FG(X) X T

idC (Y ) FG(Y ) Y T

τX

idC (φ) � FG(φ) =

τX

φ � idT

τY τY
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Therefore since we have two functors idC ,FG : C → C and a natural trans-
formation τ : idC → FG, by the previous lemma we know that there must
exist a homotopy H : |N (C )| × [0,1] → |N (C )| where H (x,0) = |N (idC )|(x ) =
id|N (C )|(x ) = x and H (x,1) = |N (FG)|(x ) = |N (F )|(|N (G)|(x )), since |N ([0])|
is a single point, |N (G)| is the map to just that point, and |N (F )| is the in-
clusion of that point onto t, the vertex of |N (C )| corresponding to the terminal
object T. Thus, H (x,1) = |N (F )|(|N (G)|(x )) = t, and therefore the identity is
homotopic to the map to a single point and thus |N (C )| is contractible. 4

Since the category H has exactly one morphism from each object to every
object, every object of H must be a terminal object, and thus |N (H )| must
be contractible.

|N (H )| is our candidate for the total space of the universal G-bundle that
has |N (G )| as a base space. We must show that there is a G-action on the space
|N (H )|, and that the quotient of this space by the action is |N (G )|.

We can describe a G-action on the category H which consists of:

• a G-action on the group of objects α: obH × G → obH which sends
the pair (h, g) of an object labelled with the group element h and a group
element g, to the object labelled hg,

• a G-action on the collection of morphisms α: morH × G → morH
which sends the pair (φ, g) of a morphism φ ∈ HomH (h1,h2) and a group
element g to the unique morphism φg ∈ HomH (h1g,h2g)

Let us examine the simplicial spaces N (G ) and N (H ). We will be deter-
mining whether the G-action on H induces a G-action on N (H )([n]) with the
desired quotient for each object [n] of ∆.

N (H )([n]) = HomCat([n], H ) is equivalent to Gn+1 since each object of
[n] can be sent to any of the elements of obH = G and the image of each
morphism will be automatically determined since there is a unique morphism
in H between any two objects.

N (G )([n]) = HomCat([n], G ) is equivalent to Gn , since each object [n] is
necessarily sent to the object ∗G , an element of HomCat([n], G ) is uniquely
determined by the images of the morphisms φi: i -1 → i for 1 ≤ i ≤ n, each of
which can be any of the elements of HomG (∗G , ∗G ) = G.

We can define a G-action on N (H )([n]) derived from the G-action on H :

αn : N(H )([n])×G→ N(H )([n])

((h0, ..., hn), g) 7→ (h0g, ..., hng)

To define the quotient of N (H )([n]) by the G-action, we first define an equiv-
alence relation ∼G in the following manner:

(h0, ..., hn) ∼G αn((h0, ..., hn), g) ∀ g ∈ G

It is easy to show that this is indeed an equivalence relation as it is reflexive:

(h0, ..., hn) ∼G αn((h0, ..., hn), 1G)

= (h0, ..., hn)
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symmetric:

(h0, ..., hn) ∼G (k0, ..., kn)

=⇒ (k0, ..., kn) = αn((h0, ..., hn), g)

= (h0g, ..., hng) for some g ∈ G
but also (k0, ..., kn) ∼G αn((k0, ..., kn), g−1)

= (k0g
−1, ..., kng

−1) = (h0gg
−1, ..., hngg

−1)

=⇒ (k0, ..., kn) ∼G (h0, ..., hn)

and transitive:

(h0, ..., hn) ∼G (k0, ..., kn)

and (k0, ..., kn) ∼G (l0, ..., ln)

=⇒ (k0, ..., kn) = αn((h0, ..., hn), g1)

= (h0g1, ..., hng1)

and (l0, ..., ln) = αn((k0, ..., kn), g2)

= (k0g2, ..., kng2) for some g1, g2 ∈ G
=⇒ (l0, ..., ln) = (h0g1g2, ..., hng1g2)

= αn((h0, ..., hn), g1g2)

=⇒ (h0, ..., hn) ∼G (l0, ..., ln)

We now examine the quotient space that we denote by

N (H )([n])/G := N (H )([n])/∼G
Points in this space are classes of the form [(h0, ..., hn)], but due to the equiva-
lence relation we can always choose (1G , h1h

−1
0 , ..., hnh

−1
0 ) to be the represen-

tative of each class and we see that N (H )([n])/G ∼= Gn .
There is in fact a homeomorphism between N (H )([n])/G and N (G )([n])

given by the map:

φ : N(H ([n])/G→ N(G )([n])

[(h0, ..., hn)] 7→ (h1h
−1
0 , ..., hih

−1
i−1, ..., hnh

−1
n−1)

which is continuous since composition and inversion are required to be in a
topological group, with a similarly continuous map:

ψ : N(G )([n])→ N(H )([n])/G

(g1, ..., gn) 7→ [(1G, g1, g2g1, ..., gn...g1)]
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which can easily be shown to be the inverse of φ:

ψ(φ([(h0, ..., hn)])) = ψ((h1h
−1
0 , ..., hnh

−1
n−1))

= [(1G, h1h
−1
0 , h2h

−1
1 h1h

−1
0 , ..., hnh

−1
n−1...h1h

−1
0 )]

= [(1G, h1h
−1
0 , ..., hnh

−1
0 )]

= [(h0, ..., hn)]

φ(ψ((g1, ..., gn))) = φ([(1G, g1, g2g1, ..., gn...g1)])

= (g11−1
G , g2g1g

−1
1 , ..., gn...g1(gn−1...g1)−1)

= (g1, g2g1g
−1
1 , ..., gn...g1g

−1
1 ...g−1

n−1)

= (g1, ..., gn)

While we now have a homeomorphism on every level, before we can say we have
a homeomorphism of simplicial spaces we need to verify that our constructions
are compatible with the face and degeneracy maps.

In the following diagrams, q denotes the quotient maps N (H )([m]) →
N (H )([m])/G, φ denotes the homeomorphisms N (H )([m])/G → N (G )([m]),
and dn,i , sn,i denote the face and degeneracy maps respectively in the appropri-
ate simplicial spaces. In the diagrams it is clear which of these maps is meant
in each case but in the proof following they will be appropriately indexed.

N(H )([n]) N(G )([n]) N(H )([n]) N(G )([n])

N(H )([n− 1]) N(G )([n− 1]) N(H )([n+ 1]) N(G )([n+ 1])

φ◦q

dn,i � dn,i

φ◦q

sn,i � sn,i

φ◦q φ◦q

Let us first describe what the face and degeneracy maps do in our simplicial
spaces:

dH
n,i : N(H )([n])→ N(H )([n− 1])

(h0, ..., hn) 7→ (h0, ..., hi−1, hi+1, ..., hn)

dG
n,i : N(G )([n])→ N(G )([n− 1])

(g1, ..., gn) 7→


(g2, ..., gn), i = 0

(g1, ..., gi−1, gi+1gi, gi+2, ..., gn), 1 ≤ i ≤ n− 1

(g1, ..., gn−1), i = n

sH
n,i : N(H )([n])→ N(H )([n+ 1])

(h0, ..., hn) 7→ (h0, ..., hi, hi, ..., hn)

sG
n,i : N(G )([n])→ N(G )([n+ 1])

(g1, ..., gn) 7→ (g1, ..., gi, 1G, gi+1, ..., gn)
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Now to check that the diagrams commute as we would like:

(dG
n,i ◦ (φn ◦ qn))(h0, ..., hn) = (dG

n,i ◦ φn)([(h0, ..., hn)])

= dG
n,i(h1h

−1
0 , ..., hnh

−1
n−1)

=


(h2h

−1
1 , ..., hnh

−1
n−1), i = 0

(h1h
−1
0 , ..., hi+1h

−1
i−1, ..., hnh

−1
n−1), 1 ≤ i ≤ n− 1

(h1h
−1
0 , ..., hn−1h

−1
n−2), i = n

((φn−1 ◦ qn−1) ◦ dH
n,i)(h0, ..., hn) = (φn−1 ◦ qn−1)(h0, ..., hi−1, hi+1, ..., hn)

= φn−1([(h0, ..., hi−1, hi+1, ..., hn)])

=


(h2h

−1
1 , ..., hnh

−1
n−1), i = 0

(h1h
−1
0 , ..., hi+1h

−1
i−1, ..., hnh

−1
n−1), 1 ≤ i ≤ n− 1

(h1h
−1
0 , ..., hn−1h

−1
n−2), i = n

(sG
n,i ◦ (φn ◦ qn))(h0, ..., hn) = (sG

n,i ◦ φn)([(h0, ..., hn)])

= sG
n,i(h1h

−1
0 , ..., hnh

−1
n−1)

= (h1h
−1
0 , ..., hih

−1
i−1, 1G, hi+1h

−1
i , ..., hnh

−1
n−1)

((φn+1 ◦ qn+1) ◦ sH
n,i)(h0, ..., hn) = (φn+1 ◦ qn+1)(h0, ..., hi, hi, ..., hn)

= φn+1([(h0, ..., hi, hi, ..., hn)])

= (h1h
−1
0 , ..., hih

−1
i−1, 1G, hi+1h

−1
i , ..., hnh

−1
n−1)

We see that the diagrams both commute therefore the composition φ ◦ q with
components φk ◦ qk is a simplicial map.

This also ensures that the intermediary N (H )/G := Im(q) is a simplicial
space and the fact that φn: N (H )([n])/G → N (G )([n]) is a homeomorphism
for each n ensures that ||N (H )/G || is at least homotopy equivalent to ||N (G )||
as proved by Segal [32]. Additionally, if the inclusion group homomorphism ι:
1 → G is a cofibration then more helpfully we have that the induced map φ∗:
|N (H )/G | → |N (G )| is also a homotopy equivalence.

We can define a G-action on |N (H )| via the G-actions we have defined on
each level of the nerve:

α : |N(H )| ×G→ |N(H )|
([((h0, ..., hn), t)], g) 7→ [(αn((h0, ..., hn), g), t)]

It is the quotient of this action that must be, at least up to homotopy equiva-
lence, a principal G-bundle over |N (G )| in order for |N (G )| to be a valid model
for BG.

The G-action quotient and the geometric realisation are quotients that do
not interfere with each other, the G-action is a quotient on each N (H )([i ]) with
no relations between levels or to the simplices while the geometric realisation
only has relations between consecutive levels N (H )([i ]) × ∆i with no relations
within any individual level, therefore:

|N(H )|/G ∼= |N(H )/G| ' |N(G )|
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and we see that the quotient of the contractible space |N (H )| by the G-action
we have defined is, up to homotopy equivalence, |N (G )|.

The local triviality of the map φ* ◦ q : |N (H )| → |N (G )| is another conse-
quence of the group homomorphism ι: 1 → G being a cofibration as proved by
Segal [32].

Thus |N (G )| is the base space of a principal G-bundle, and therefore a model
for the classifying space BG. 4

4.3 The Suspension-Loop Adjunction
The following very important functors and the adjunction between them are
defined here using the definitions provided in Topology a Categorical Approach
[6]

Definition 14. For two pointed topological spaces (X, x 0), (Y, y0), the smash
product X∧Y is defined as (X×Y )/∼ where ∼ is the equivalence relation:

(x, y0) ∼ (x′, y0) ∀ x, x′ ∈ X
(x0, y) ∼ (x0, y

′) ∀ y, y′ ∈ Y

X∧Y is a pointed topological space with base point [(x 0, y0)].
For a pointed topological space (X, x 0), the reduced suspension ΣX is

defined to be the smash product X ∧ S1. The mapping Σ: Top* → Top* can
be shown to be a covariant functor.

Definition 15. For two pointed topological spaces (X, x 0), (Y, y0), consider
the set HomTop*(X, Y ) (and it is a set as Top* is a locally small category since
it is a subcategory of Set). We can equip HomTop*(X, Y ) with the compact-
open topology defined to be the coarsest topology containing all sets of the
form:

S(K,U) := {f ∈ HomTop*(X,Y ) | f(K) ⊆ U}
where K ⊂ X is compact and U ⊂ Y is open. Additionally we can define the
base point to be the map X → Y that sends all of X to the base point y0.

For a pointed topological space (X, x 0), the loop space ΩX is defined to be
the space HomTop*(S1, X ). The mapping Ω: Top* → Top* can also be shown
to be a covariant functor.

Lemma 16. There is an adjunction Σ a Ω

Proof. We would like to show that for all pointed topological spaces, X and Y,
we have an isomorphism that is natural in both arguments:

ΘX,Y : HomTop*(ΣX,Y )→ HomTop*(X,ΩY )

Helpfully, if (Z, z 0) is locally compact and Hausdorff, and HomTop*(Z, Y ) is
equipped with the compact-open topology, then for any other pointed topolog-
ical space (X, x 0) there is a bijection

θZ,X,Y : HomTop*(X ∧ Z, Y )→ HomTop*(X,HomTop*(Z, Y ))
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that sends a morphism g : X∧Z → Y to the morphism that sends each x ∈ X
to g evaluated at x, g([(x, -)]): Z → Y. [6]

Since S1 is compact Hausdorff, taking Z = S1 we see that θS1,X,Y = ΘX,Y
is an isomorphism. We must now check that this isomorphism is natural.

Let φ: X → X ’, ψ: Y → Y ’ be continuous maps of pointed topological
spaces. We must show that the following diagram commutes:

HomTop*(ΣX ′, Y ) HomTop*(X ′,ΩY )

HomTop*(ΣX,Y ) HomTop*(X,ΩY )

HomTop*(ΣX,Y ′) HomTop*(X,ΩY ′)

ΘX′,Y

HomTop*(Σφ,Y ) HomTop*(φ,ΩY )

ΘX,Y

HomTop*(ΣX,ψ) HomTop*(X,Ωψ)

ΘX,Y ′

We therefore need to show that for any continuous map f ∈ HomTop*(ΣX ’,Y )
we have (HomTop*(φ,ΩY )◦ ΘX ’,Y )(f ) = (ΘX,Y ◦HomTop*(Σφ,Y ))(f ), and for
any continuous map g ∈ HomTop*(ΣX,Y ) we similarly have another equality
(HomTop*(X,Ωψ)◦ ΘX,Y )(g) = (ΘX,Y ’◦HomTop*(ΣX,ψ))(g).

f : ΣX ′ → Y

HomTop*(Σφ, Y )(f) : ΣX → Y

= f ◦ Σφ : ΣX → Y

Σφ : ΣX → ΣX ′

(x, z) 7→ (φ(x), z)

=⇒ f ◦ Σφ : ΣX → Y

(x, z) 7→ f(φ(x), z)

(ΘX,Y ◦HomTop*(Σφ, Y ))(f) : X → ΩY

= ΘX,Y (f ◦ Σφ) : X → ΩY

x 7→ (f ◦ Σφ)(x,−)

= x 7→ f(φ(x),−)

ΘX′,Y (f) : X ′ → ΩY

x′ 7→ f(x′,−)

(HomTop*(φ,ΩY ) ◦ΘX′,Y )(f) : X → ΩY

= ΘX′,Y (f) ◦ φ : X → ΩY

x 7→ f(φ(x),−)
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Thus (HomTop*(φ,ΩY )◦ ΘX ’,Y )(f ) = (ΘX,Y ◦HomTop*(Σφ,Y ))(f ),

g : ΣX → Y

HomTop*(ΣX,ψ)(g) : ΣX → Y ′

= ψ ◦ g : ΣX → Y ′

(ΘX,Y ′ ◦HomTop*(ΣX,ψ))(g) : X → ΩY ′

= ΘX,Y ′(ψ ◦ g) : X → ΩY ′

x 7→ (ψ ◦ g)(x,−)

= x 7→ ψ ◦ g(x,−)

ΘX,Y (g) : X → ΩY

x 7→ g(x,−)

(HomTop*(X,Ωψ) ◦ΘX,Y )(g) : X → ΩY ′

= Ωψ ◦ΘX,Y (g) : X → ΩY ′

x 7→ Ωψ(g(x,−))

Ωψ : ΩY → ΩY ′

ω 7→ ψ ◦ ω
=⇒ Ωψ ◦ΘX,Y (g) : X → ΩY ′

x 7→ ψ ◦ g(x,−)

Thus (HomTop*(X,Ωψ)◦ ΘX,Y )(g) = (ΘX,Y ’◦HomTop*(ΣX,ψ))(g), and there-
fore ΘX,Y is natural in both arguments and the adjunction Σ a Ω follows. 4

4.4 The Homotopy Fibre
Definition 16. Let f : A → B be a continuous function of topological spaces.

The mapping path space is defined to be the space:

Ef := {(a, p) | a ∈ A, p : [0, 1]→ B such that p(0) = f(a)}

Lemma 17. The map π: E f → B given by π(a, p) := p(1) is a fibration.

Proof. Given a topological space X, a homotopy h: X × I → B, and a map H 0:
X × {0} → E f such that π ◦ H 0 = h|X×{0}, we need to show the existence of
a map H : X × I → E f such that π ◦ H = h and H |X×{0} = H 0.

Let πA: E f → A and πBI : E f → B I be the projections of the mapping path
space onto the first and second coordinates respectively, and let us define ax :=
(πA ◦ H 0)(x ) and px := (πBI ◦ H 0)(x ), i.e. H 0(x ) = (ax , px ). Since H 0(x ) ∈
E f and π ◦ H 0 = h|X×{0}, px is a path from f (ax ) to h(x, 0).

In describing the homotopy H, we require that H (x, 0) = H 0(x ) = (ax , px )
and π(H (x, t)) = h(x, t), i.e. the path πBI (H (x, t)) needs to end at h(x, t) and
needs to be px when t = 0. Consider the homotopy:

H(x, t) := (ax, s 7→

{
px( s

1− t2
), 0 ≤ s ≤ 1− t

2

h(x, 2(s− (1− t
2 ))), 1− t

2 < s ≤ 1
)
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We can easily verify that this indeed is a well defined map and that our two
requirements hold:

at s = 1− t

2
: px(

1− t
2

1− t
2

) = px(1)

= π(H0(x))

h(x, 2(1− t

2
− (1− t

2
))) = h(x, 0)

= π(H0(x))

at s = 1 : πBI (H(x, t))(1) = h(x, 2(1− (1− t

2
)))

= h(x, 2(
t

2
))

= h(x, t)

at t = 0 : πBI (H(x, 0))(s) =

{
px( s

1− 0
2

), 0 ≤ s ≤ 1− 0
2

h(x, 2(s− (1− 0
2 ))), 1− 0

2 < s ≤ 1

= px(s)

Thus H is a homotopy that lifts our given homotopy h and agrees with our
given map H 0. Since both were arbitrary, π: E f → B is a fibration. 4

Definition 17. If E f is the mapping path space of a map f : A → B, then
the fibre of the fibration π: E f → B is called the homotopy fibre of f and is
denoted F f ; particularly, it is unique up to homotopy equivalence.

Lemma 18. If f : ∗ → B is a map from the one point space to any topological
space B, then the homotopy fibre of f is homotopy equivalent to ΩB.

Proof. For any continuous function of topological spaces f : A → B, the homo-
topy fibre can be written as:

Ff ' {(a, p) ∈ Ef | π(a, p) = p(1) = b0 for some b0 ∈ B}

up to homotopy equivalence.
Since any choice of b0 yields a space homotopy equivalent to F f , let us

consider the space when b0 = p(0) = f (a); there every path p: [0, 1] → B is
actually a loop p: S1 → B since p(0) = p(1)!

For a general topological space A there may be many choices for a ∈ A such
that (a, p) ∈ F f . However for A = ∗ the one point space, we naturally only
have once choice for a ∈ ∗ so for f : ∗ → B we have:

Ef = {(a, p) | a ∈ ∗, p : [0, 1]→ B such that p(0) = f(a)}
= {p : [0, 1]→ B such that p(0) = f(a)}

=⇒ Ff ' {p : S1 → B such that p(0) = p(1) = f(a)}
= {p : (S1, 0)→ (B, f(a))} = ΩB

4
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Theorem 19. Let G be a topological group and H be an admissible subgroup
of G, that is, the quotient map G → G/H is a principal H -bundle. Then the
homotopy fibre of the map of classifying spaces Bι: BH → BG induced by the
inclusion is weakly equivalent to G/H, i.e. πk(FBι) ∼= πk(G/H ) ∀ k ∈ N.

A proof for this statement is given by Theorem 11.3 in the notes by Mitchell
[27].

For H equal to the trivial group, this theorem together with the previous
lemma boil down to the following statement:

Corollary 20. For any topological group G, there is a homotopy equivalence
ΩBG ' G.
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5 Characteristic Classes and K0

A vector bundle p: E → B is a fibre bundle where each fibre p-1(b) is a fixed
vector space V, and for the open neighbourhoods U of the points x ∈ B the
homeomorphisms hU : U × V → p-1(U ) are fibrewise linear:

i.e. hU (x, v) + hU (x, w) = hU (x, v+w) and hU (x, λv) = λhU (x, v) for
any λ in the underlying field of V.

The following definition and proofs of the non-trivial statements within it
can be found in Complex Topological K-Theory by Efton Park [28].

Definition 18. The set of isomorphism classes of complex vector bundles over
a topological space X is denoted Vect(X ). Vect(X ) is an abelian monoid when
equipped with the direct sum of vector bundles as a binary operation.

The Grothendieck completion of an abelain monoid A is the abelian
group (A × A)/∼ where (a, b) ∼ (a’, b’) if a + b’ + c = a’ + b + c for some
c ∈ A. A class [(a, b)] ∈ (A × A)/∼ is denoted a - b and called a formal
difference.

The Grothendieck completion of Vect(X ) is an abelian group denoted K 0(X )
called the 0th K-theory group of X.

The abelian group K 0(X ) can be seen to be a ring when equipped with the
tensor product of vector bundles as a binary operation.

The following definition for characteristic classes, along with the definitions
of specific characteristic classes found in the next section, all adhere to the
definitions provided by Milnor and Stasheff [26]

Definition 19. A characteristic class of a vector bundle p: E → B is some
class φ(E ) ∈ H *(B ; G) such that for any continuous map f : B ’ → B, we have
φ(f *E ) = f *(φ(E )) where f * is the pullback of E to B ’ by f on the left hand
side, and the induced map in cohomology on the right hand side.

Lemma 21. If p: E → B and q : E ’→ B are two vector bundles such that there
is an isomorphsim f : E ’ → E, then if φ(E ) is a characteristic class of p, then
φ(E ’) = φ(E ), i.e. characteristic classes are unique up to isomorphism and thus
define maps φ: Vect(B) → H *(B ; G), which by the definition of characteristic
classes, are the components of a natural transformation φ: Vect → H *(-; G).

Many characteristic classes define more than just maps and thus a natural
transformation between functors from Top to Set.

As we will see, we can construct characteristic classes that define monoid
homomorphisms and thus natural transformations K 0 → H *(-; G) as functors
Top→Grp, with the goal for now being to construct a characteristic class that
defines ring homomorphisms and thus a natural transformation K 0 → H *(-; G)
as functors Top → Rng.
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5.1 Stiefel-Whitney Classes
Definition 20. Consider an n-dimensional real vector bundle p: E → B (i.e.
where the fibre is Rn for some n ∈ N). The Stiefel-Whitney classes are a
sequence of classes w i(E ) ∈ H i(B ; Z/2Z) for i ∈ Z subject to the following
axioms:

• w0(E) = 1 ∈ H0(B;Z/2Z),

and wi(E) = 0 ∈ Hi(B;Z/2Z) ∀i > n,

• If p’: E ’ → B ’ is a n-dimensional real vector bundle and f : B → B ’
is covered by a bundle map g : E → E ’ (i.e. g maps each fibre of p
isomorphically onto a fibre of p’), then w i(E ) = f *(w i(E ’)) = w i(f *(E ’)),

• If q : E ’ → B is an m-dimensional real vector bundle over the same base
space as p, then

wk(E ⊕ E′) =

k∑
i=0

wi(E) ^ wk−i(E
′)

• For the canonical line bundle over the circle γ1
1 : M → S1, the Stiefel-

Whitney class w1(M ) 6= 0 ∈ H 1(S1; Z/2Z)

We can define the total Stiefel-Whitney class of an n-dimensional real vector
bundle p: E → B to be the class w(E ) ∈ H *(B ; Z/2Z) as follows:

w(E) :=

∞∑
i=0

wi(E) = 1 + w1(E) + ...+ wn(E) by the first axiom

Together with the third axiom, the total Stiefel-Whitney class permits us to
write the following relation for any two real vector bundles over the same base
space p: E → B and q : E ’ → B :

w(E ⊕ E′) = w(E)w(E′)

5.2 The Euler Class
Definition 21. Let V be a real vector space of dimension n > 0. An orienta-
tion of V is an equivalence class of bases of V. Two bases v1, ..., vn and w1,
..., wn are said to be equivalent if the matrix A satisfying the equation

(v1, ...,vn)A = (w1, ...,wn)

has positive determinant.
A linear map k : V → V is said to be orientation preserving if v1, ..., vn

and k(v1), ..., k(vn) are in the same orientation of V ∀ bases v1, ..., vn of V.
Let p: E → B be an n-dimensional real vector bundle with fibre V. An

orientation of p is a function which assigns an orientation to each fibre V

46



such that for every point x ∈ B, there exists a neighbourhood of x, U and a
homeomorphism h: U × Rn → p-1(U ) so that for each fibre V = p-1(u) over
U, the homomorphisms ψu : x 7→ h(u, x ) from Rn to V ∼= Rn are orientation
preserving for all u ∈ U. If we can construct an orientation of a vector bundle p,
then we say that p is orientable. An orientable vector bundle equipped with
an orientation is called oriented.

Let V0 := V\{0}. The choice of an orientation of V corresponds to a choice
of generator µV of the singular homology group H n(V, V0; Z). We can use µV
to obtain a generator uV of the cohomology group H n(V, V0; Z) using the inner
product equation <uV, µV> = 1.

Theorem 22. If p: E → B is an oriented n-dimensional real vector bundle,
and z : B → E is the zero section to define E 0 = E\z (B) then H i(E, E 0; Z) is
trivial for i < n and H n(E, E 0; Z) has exactly one cohomology class u, that we
call the orientation class, such that under the induced map of the inclusion
ι: V → E, the restriction of u to ι*(u) ∈ H n(V, V0; Z) is equal to the already
chosen generator uV for every fibre.

Furthermore Ψ: H k (E ; Z) → H k+n(E, E 0; Z) defined by Ψ(x ) = x^u is
an isomorphism for all k.

A proof of this theorem can be found in section 10 of Characteristic Classes
by Milnor and Stasheff. [26]

The inclusion of the pair (E, ∅) → (E, E 0) gives rise to the restriction
homomorphism (-)|E : H *(E, E 0; Z) → H *(E ; Z). Notice that since the fibre
of p is a vector space and vector spaces are contractible to a point, E and B are
homotopy equivalent and thus p*: H n(B ; Z) → H n(E ; Z) is an isomorphism.

Definition 22. The Euler class, named for it’s relation to the Euler char-
acteristic, of an oriented n-dimensional real vector bundle p: E → B is the
cohomology class e(E ) ∈ H n(B ; Z) such that p*(e(E )) = u|E , where u is the
orientation class of the vector bundle.

Lemma 23. For two oriented n-dimensional real vector bundles p: E → B and
p’: E ’→ B ’, if a map f : B → B ’ is covered by an orientation preserving bundle
map g : E → E ’, then:

e(E) = f∗(e(E′))

Lemma 24. For any two oriented real vector bundles over the same base space
p: E → B, q : E ’ → B we have the following relation:

e(E ⊕ E′) = e(E) ^ e(E′)

Lemma 25. The ring homomorphism q : Z → Z/2Z given by q(x ) = x + 2Z
induces a ring homomorphism q*: H *(B ; Z)→ H *(B ; Z/2Z). For any oriented
n-dimensional real vector bundle p: E → B, it can be shown that:

q∗(e(E)) = wn(E)

Proofs of these lemmas are given in the oriented bundles and the Euler class
chapters also in Milnor and Stasheff’s book Characteristic Classes [26].
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5.3 Chern Classes
Let p: E → B be an n-dimensional complex vector bundle i.e. the fibre is Cn .
Let us denote by pR: E → B, the underlying 2n-dimensional real vector bundle.

Lemma 26. If p is a complex vector bundle, then pR has a canonical choice of
orientation.

Proof. Let us choose a complex basis of each fibre of p over B, (v1, ..., vn), then
after ignoring the complex structure, (v1, iv1, ..., vn , ivn) is a basis for each
fibre of pR over B. 4

As a result, the Euler class e(E ) ∈ H 2n(B ; Z) is well defined.
Let z : B → E be the zero section, and then let E 0 = E\z (B). A point in

E 0 is given by any non-zero vector in E, v ∈ p-1(b). Given a Hermitian metric
on each fibre V, we can define a space E ’ whose points are of the form (v, w)
where w is orthogonal to v in the fibre p-1(b).

Then the projection map p’: E ’ → E 0 given by p’(v, w) = (v) is an (n-1)-
dimensional complex vector bundle. Clearly, this process iterates.

Lemma 27. Let p: E → B be an oriented n-dimensional real vector bundle,
and let z : B → E be the zero section, E 0 = E\z (B), and p0: E 0 → B be
the restriction of p to E 0, then the following sequence is exact and is called the
Gysin sequence:

... Hi−n(B;Z) Hi(B;Z) Hi(E0;Z) Hi−n+1(B;Z) ...
^e(B) p∗0 ξ ^e(B)

The map ξ is derived in part from the map coming from the Snake Lemma in
the long exact sequence in cohomology of the pair (E, E 0).

Thus, if p: E → B is an n-dimensional complex vector bundle, pR admits
an exact Gysin sequence:

... Hi−2n(B;Z) Hi(B;Z) Hi(E0;Z) Hi−2n+1(B;Z) ...
^e(B) (pR)∗0 ^e(B)

For i < 2n-1, clearly H i-2n(B ; Z) and H i-2n+1(B ; Z) are both zero, and so the
map (pR)∗0: H i(B ; Z) → H i(E 0; Z) is an isomorphism for i < 2n-1.

Definition 23. TheChern classes of an n-dimensional complex vector bundle
p: E → B are a collection of cohomolgy classes ci(E ) ∈ H 2i(B ; Z) defined as
follows:

ci(E) = 0 ∀i > n

cn(E) = e(E)

ci(E) = ((pR)∗0)−1(ci(E
′)) ∀i < n

Specifically cn-1(E ) = ((pR)∗0)-1(cn-1(E ’)) = ((pR)∗0)-1(e(E ’)) since p’: E ’ →
E 0 is an (n-1)-dimensional complex vector bundle, and thus since the process
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of reducing the dimension iterates, we see that the Chern classes are a series of
Euler classes of related complex vector bundles.

As with the Stiefel-Whitney classes, we may define the total Chern class
of an n-dimensional complex vector bundle p: E → B to be the class c(E ) ∈
H *(B ; Z) given by:

c(E) :=

∞∑
i=0

ci(E) = 1 + c1(E) + ...+ cn(E)

Proofs of the following lemmas can be found in Characteristic Classes by
Milnor and Stasheff [26].

Lemma 28. Let p: E → B and p’: E ’ → B ’ are two n-dimensional complex
vector bundles, if a map f : B → B ’ is covered by a bundle map g : E → E ’,
then:

c(E) = f∗(c(E′))

Lemma 29. Similarly to the other characteristic classes discussed, for any two
complex vector bundles over the same base space p: E → B, q : E ’ → B we
have the following relation:

c(E ⊕ E′) = c(E)c(E′)

Corollary 30. If a complex vector bundle p: E → B decomposes into the
direct sum of complex line bundles i.e. E = L1 ⊕ ... ⊕ Ln and p = l1 ⊕ ... ⊕
ln where each l i : Li → B is a vector bundle with fibre C, then

c(E) =

n∏
i=1

c(Li)

n∑
i=0

ci(E) =

n∏
i=1

(1 + c1(Li))

5.4 Chern Classes and Flag Manifolds
The Chern classes of some certain vector bundles will be very useful to know.

Lemma 31. Let us consider the tautological line bundle over complex projective
space CPk, that is, the 1 dimensional vector bundle γ1 that has total space
E1CPk := {(Span(v), w) | v ∈ Ck+1\{0}, w = λv for λ ∈ C} and is given by:

γ1 : E1CPk → CPk

(Span(v),w) 7→ Span(v)

The Chern class c1(E1CPk) is the generator of the ring H *(CPk; Z).
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Proof. Since γ1 is a complex line bundle, the underlying real plane bundle γ1
R

has a canonical choice of orientation and we may construct a Gysin sequence:

... Hi+1(E0;Z) Hi(CPk;Z) Hi+2(CPk;Z) Hi+2(E0;Z) ...
γ1∗
R ^c1(E) γ1∗

R

where we write E = E1CPk for brevity and so E 0 as E without the zero section
leaves us with E 0 = {(Span(v), w) | v ∈ Ck+1\{0}, w = λv for λ ∈ C\{0}}.

There is a clear isomorphism between E 0 and Ck+1\{0} given by

φ : Ck+1\{0} → E0

w 7→ (Span(w),w)

Since additionally, Cn\{0} is homotopy equivalent to the sphere S2n−1, we have
that E 0 is homotopy equivalent to S2k+1 and so H i(E 0; Z) ∼= H i(S2k+1; Z) for
all i ∈ Z; in particular, H i(E 0; Z) ∼= 0 for i /∈ {0, 2k + 1} and so

^ c1(E) : Hi(CPk;Z)→ Hi+2(CPk;Z)

x 7→ x ^ c1(E)

is an isomorphism for i ≤ -3, 0 ≤ i ≤ 2k -2, i ≥ 2k+1. With the knowledge that
H i(X ; k) ∼= 0 for i < 0, and a closer examination of the remaining sections of
the Gysin sequence, we will determine the nature of H *(CPk; Z) as a ring.

From the following section of the Gysin sequence, since H 0(S2k+1; Z) ∼= Z,
we can determine the nature of H 0(CPk; Z) for k ∈ N

0 H−2(CPk;Z) H0(CPk;Z) Z H−1(CPk;Z)
^c1(E)

Since H i(X ; k) ∼= 0 for i < 0, this leaves us with the map H 0(CPk; Z) → Z
which must be an isomorphism ∀ k ∈ N.

From successive isomorphisms we have Z ∼= H 0(CPk; Z) ∼= H 2i(CPk; Z) for
0 ≤ i ≤ k. Since the only automorphisms on Z are idZ and -idZ, generators
of these groups must be mapped by the isomorphisms to generators. Therefore
since 1 ^ c1(E ) = c1(E ), by iteration we have that c1(E )i is a generator of
H 2i(CPk; Z) for 0 ≤ i ≤ k.

Next let us inspect the following section of the Gysin sequence:

H0(CPk;Z) Z H−1(CPk;Z) H1(CPk;Z) H1(S2k+1;Z)
∼= 0 ^c1(E)

Since in exact sequences, a zero map must follow an isomorphism and an in-
jection must follow a zero map, since we have H -1(CPk; Z) ∼= 0, necessarily
H 2i-1(CPk; Z) ∼= 0 for 0 ≤ i ≤ k.

Since CPk is a 2k -dimensional CW-complex, H i(CPk; Z) ∼= 0 for i ≥ 2k+1,
we now have a full description of the cohomology ring of complex projective
space:

H∗(CPk;Z) = Z[c1(E1CPk)]/(c1(E1CPk)k+1)

4
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The process of constructing line bundles in the following theorem is known
as the splitting principle [24].

Theorem 32. Let p: E → X be an n-dimensional vector bundle over a para-
compact space X. There exists a space Y and a map q : Y → X such that the
induced map q∗: H *(X ; Z) → H *(Y ; Z) is injective, and the pullback bundle
q∗(p): q∗(E ) → Y decomposes into the direct sum of n line bundles.

Proof. To prove this theorem we will show that there exists a space Y 1 and
a map q1: Y 1 → X such that the induced map q∗1 : H *(X ; Z) → H *(Y 1; Z)
is injective, and the pullback bundle q∗1(p): q∗1(E ) → Y 1 decomposes into the
direct sum of a line bundle and an (n-1)-dimensional vector bundle, i.e. there
exists a line bundle l1: L1 → Y 1 and an (n-1)-dimensional vector bundle pn-1:
Q1 → Y 1 such that q∗1(E ) = L1 ⊕ Q1 and q∗1(p) = l1 ⊕ pn-1.

We will be able to iteratively apply this process to the resulting (n-k)-
dimensional vector bundles pn-k : Qk → Y k to construct spaces Y k+1 and
maps qk+1: Y k+1 → Y k such that the induced maps q∗k+1: H∗(Y k ; Z) →
H∗(Y k+1; Z) are injective and the pullback bundle q∗k+1(qk ): q∗k+1(Qk ) →
Y k+1 decomposes into the direct sum of a line bundle lk+1: Lk+1 → Y k+1 and
an (n-(k+1))-dimensional vector bundle pn-(k+1): Qk+1 → Y k+1.

If the base case is true, then the space Y = Y n and the map q = (q1 ◦
... ◦ qn): Y → X are such that the induced map q∗: H *(X ; Z) → H *(Y ; Z)
is injective, and the pullback bundle q∗(p): q∗(E ) → Y decomposes into the
direct sum of n line bundles, namely

q∗(E) =

n⊕
i=1

L̃i

and q∗(p) =

n⊕
i=1

l̃i

where l̃i: L̃i → Y is the pullback of l i : Li → Y i by the map (q i+1 ◦ ... ◦ qn)
for each i.

Let p: E → X be an n-dimensional vector bundle and, if z : X → E is
the zero section, i.e. z (x ) = 0x ∈ Vx ⊂ E, let us consider P(E ) := E\z (X )/∼
where v ∼ w iff v = λw for some λ ∈ C\{0}. The map p0: P(E ) → X given
by p0([v]) = p(v) is well defined since any other representative of [v] must be
in the same vector space as v and thus in the same fibre. The map p0 is a fibre
bundle, choosing points [v] ∈ P(E ) such that p0([v]) = x for some x ∈ X is
equivalent to choosing lines in the vector space Vx , i.e. p−1

0 (x) ∼= F 1(Vx ) ∼=
CPn−1 since p is an n-dimensional vector bundle.

Let us produce the following pullback diagram:

p∗0(E) E

P (E) X

π y p

p0
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p∗0(E) := {([v], w) ∈ P(E ) × E | v, w ∈ Vx for some x ∈ X } and the map
π: p∗0(E) → P(E ) is simply the projection map to the P(E ) coordinate. We
may decompose this n-dimensional vector bundle into the direct sum of a line
bundle and an (n-1)-dimensional vector bundle in the following manner:

Let us define L := {([v], w) ∈ P(E ) × E | w ∈ [v]} and Q := {([v], w) ∈
P(E ) × E | v ⊥ w}, clearly p∗0(E) = L ⊕ Q. Additionally, we have projection
maps to the P(E ) coordinate πL: L→ P(E ), πQ: Q → P(E ) so that π = πL ⊕
πQ, therefore the pullback vector bundle π decomposes into a line bundle and
an (n-1)-dimensional vector bundle. 4

Lemma 33. For an n-dimensional vector bundle p: E → X using the splitting
principle we can construct the flag bundle π: p∗0(E ) → P(E ) and decompose it
into the direct sum of the line bundle πL: L→ P(E ) and the (n-1)-dimensional
vector bundle πQ: Q → P(E ). Then we have the following isomorphism in the
category of rings:

H∗(P (E));Z) ∼= H∗(X;Z)[c1(L), c1(Q), ..., cn−1(Q)]/(c(L)c(Q)− c(E))

∼= H∗(X;Z)[c1(L)]/(

n∑
j=0

(−1)jp∗0(cn−j(E))c1(L)j)

Proof. Since we already know that H k (CPn−1; Z) is a finitely generated free
Z-module for all k and since in the following pullback diagram:

ιx(L) L

F1(Vx) P (E)

γx y πL

ιx

where ιx: F 1(Vx ) → P(E ) is the inclusion of the fibre over x ∈ X into the
total space, γx: ι∗x(L) → F 1(Vx ) is the tautological bundle over F 1(Vx ), and
thus the restrictions ι∗x(c1(L)i), where c1(L) ∈ H 2(P(E ); Z), form a basis for
H *(F 1(Vx ); Z) ∼= H *(CPn−1; Z) for each x ∈ X. The conditions are met and
so we may apply the Leray-Hirsch Theorem to the fibre bundle p0: P(E ) → X
that has fibre F 1(Vx ) ∼= CPn−1, and achieve the following isomorphism:

H∗(P (E);Z) ∼= H∗(X;Z)⊗H∗(CPn−1;Z)
∼= H∗(X;Z)[x]/(xn)

in the category of H *(X ; Z)-modules where x is the Chern class of the tauto-
logical line bundle over CPn−1. Thus, every element of H *(P(E ); Z) can be
written in the form:

n−1∑
i=0

aic1(L)i
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where ai ∈ H *(X ; Z) and for b ∈ H *(X ; Z) we have:

b ·
n−1∑
i=0

aic1(L)i =

n−1∑
i=0

(b · ai)c1(L)i

However, while we cannot have a linearly independent c1(L)n term, it is not
necessarily true that c1(L)n = 0 since the Leray-Hirsch Theorem does not give
us an isomorphism of rings.

To eliminate the c1(L)n term and describe the multiplication structure of
H *(P(E ); Z) as a ring, we instead turn to the relation c(L)c(Q) = p∗0(c(E ))
derived from the facts that L ⊕ Q = p∗0(E ) and p0 is covered by the bundle
map p∗0(E ) → E, the projection to the E coordinate.

The ring H *(P(E ); Z) is therefore generated by c1(L) along with the set
{c1(Q), ..., cn-1(Q)} (though these elements may not be independent), together
with the condition that c(L)c(Q) - p∗0(c(E )) = 0. We therefore may write the
ring in the following manner:

H∗(P (E);Z) ∼= H∗(X;Z)[c1(L), c1(Q), ..., cn−1(Q)]/(c(L)c(Q)− p∗0(c(E)))

Since the element p∗0(c(E )) is some fixed element of H *(P(E ); Z), using the rela-
tion we can determine c(Q) explicitly in terms of powers of c1(L) by comparing
like degrees:

(1 + c1(L))(1 + c1(Q) + ...+ cn−1(Q)) = 1 + p∗0(c1(E)) + ...+ p∗0(cn(E))

1 + c1(Q) + ...+ cn−1(Q)+

c1(L) + c1(Q)c1(L) + ...+ cn−1(Q)c1(L) = 1 + p∗0(c1(E)) + ...+ p∗0(cn(E))

=⇒ ci(Q) + ci−1(Q)c1(L) = p∗0(ci(E)), for 1 ≤ i ≤ n

=⇒ recursively for 1 ≤ i ≤ n, ci(Q) =

i∑
j=0

(−1)jp∗0(ci−j(E))c1(L)j

so since cn(Q) = 0, 0 =

n∑
j=0

(−1)jp∗0(cn−j(E))c1(L)j

So to write our ring H *(P(E ); Z) with an independent generating set, we can
say:

H∗(P (E);Z) ∼= H∗(X;Z)[c1(L)]/(

n∑
j=0

(−1)jp∗0(cn−j(E))c1(L)j)

4

Corollary 34. Let each x i be the Chern class of the tautological line bundle γi:
Li → Fn(Ck) where Li := {((V1 ⊂ ... ⊂ Vn ⊆ Ck), v) | v ∈ Vi , v ⊥ w ∀ w ∈
Vi-1}, and γi is the projection to the flag coordinate, and, abusing notation, let
c(Qn) denote simultaneously the total Chern class and the set of Chern classes
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of the (k -n)-dimensional vector bundle Qn → Fn(Ck) such that L1 ⊕ ... ⊕ Ln
⊕ Qn = Ck. Finally, let P(z ) be the set of partitions of z into n non-negative
integers, elements of P(z ) are tuples (r1, ..., rn) such that

for 1 ≤ i ≤ n, ri ≥ 0 and
n∑
i=1

ri = z

Then the cohomology ring of a finite dimensional flag manifold Fn(Ck) is given
by:

H∗(Fn(Ck);Z) ∼= Z[x1, ..., xn, c(Qn)]/((

n∏
i=1

(1 + xi))c(Qn)− 1)

∼= Z[x1, ..., xn, c(Qn)]/(

n∑
i=1

k−n∑
m=k−n−i+1

σi(x1, ..., xn)cm(Qn))

∼= Z[x1, ..., xn, c(Qn)]/(

k∑
m=k−n+1

k−m∑
i=0

σn−i(x1, ..., xn)cm−n+i(Qn))

∼= Z[x1, ..., xn]/

(

k∑
m=k−n+1

k−m∑
i=0

(−1)m−n+iσn−i(x1, ..., xn)
∑

(r1,...,rn)
∈P (m−n+i)

n∏
j=1

x
rj
j )

Proof. Consider the trivial k -bundle over a single point Ck → ∗. The space
P(Ck) = Ck\{0}/∼ where v ∼ w iff v = λw for some λ ∈ C\{0} is clearly
equivalent to the space F 1(Ck). We will prove this relation with a proof by
induction.

In the following pullback diagram L1 := {(V1, v) ∈ F 1(Ck) × Ck | v ∈ V1},
Q1 := {(V1, w) ∈ F 1(Ck) × Ck | v ⊥ w ∀ v ∈ V1}, and f 1: F 1(Ck)→ ∗ sends
every 1-flag to the 0-flag in Ck.

L1 ⊕Q1 Ck

F1(Ck) ∗
y

f1

Since Ck → ∗ is the trivial bundle, c(Ck) = 1, and thus f∗1 (c(Ck)) = 1. Let us
write x 1 = c1(L1), from our previous theorem we have:

H∗(F1(Ck);Z) ∼= H∗(∗;Z)[x1]/(

k∑
j=0

(−1)jf∗1 (ck−j(Ck))xj1)

∼= Z[x1]/((−1)kxk1)

∼= Z[x1]/(xk1)
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From the congruence F 1(Ck) ∼= CPk−1 we know that H *(F 1(Ck); Z) ∼=
Z[x ]/(x k ) where x is the first Chern class of the tautological line bundle over
F 1(Ck). These two methods agree, and to prove the base case holds, let us show
that our formula yields the same result:

H∗(F1(Ck);Z) ∼= Z[x1]/(

k∑
m=k

0∑
i=0

(−1)m−1+iσ1−i(x1)xm−1+i
1 )

∼= Z[x1]/((−1)k−1xk1)

∼= Z[x1]/(xk1)

Thus, since all these methods agree, our base case holds.
To proceed we will show that if Qn = {((V1 ⊂ ... ⊂ Vn), w) ∈ Fn(Ck) ×

Ck | v ⊥ w ∀ v ∈ Vn}, is the complement to the direct sum of the tautological
line bundles over Fn(Ck) then P(Qn) ∼= Fn+1(Ck).

Let us denote by V a flag (V1 ⊂ ... ⊂ Vn ⊆ Ck) ∈ Fn(Ck). P(Qn) = {(V,
w) ∈ Fn(Ck) × Ck\{0 | v ⊥ w ∀ v ∈ Vn}/∼ where (V, w) ∼ (V’, w’) iff V
= V’ and w = λw’ for some λ ∈ C\{0}. Therefore equivalently, P(Qn) = {(V,
W) ∈ Fn(Ck) × F 1(Ck) such that Vn ⊥W}, or additionally equivalently, since
Vn and W must be perpendicular, let Vn+1 = Vn ⊕ W, then P(Qn) = {V1 ⊂
... ⊂ Vn ⊂ Vn+1 ⊆ Ck} = Fn+1(Ck).

Next we would like to show that the following formula for the Chern classes
of Qn hold in terms of the Chern classes of the tautological line bundles over
Fn(Ck), let P(i) be the set of partitions of i into n non-negative integers, and
x j = c1(Lj ) where Lj = {(V, w) ∈ Fn(Ck) × Ck | w ∈ Vj , v ⊥ w ∀ v ∈ Vj -1}:

ci(Qn) = (−1)i
∑

(r1,...,rn)∈P (i)

n∏
j=1

x
rj
j

c(Qn) =

k−n∑
i=0

(−1)i
∑

(r1,...,rn)∈P (i)

n∏
j=1

x
rj
j

We will show that the tautological line bundles over a flag manifold Fn-1(Ck)
can be pulled back by the map f n : Fn(Ck) → Fn-1(Ck) where f n(V1 ⊂ ... ⊂
Vn ⊆ Ck) = (V1 ⊂ ... ⊂ Vn-1 ⊂ Ck) to the corresponding tautological line
bundles over Fn(Ck). This formula will then be shown to hold via an induction
argument.

Let Lj := {(V, w) ∈ Fn-1(Ck) × Ck | w ∈ Vj , v ⊥ w ∀ v ∈ Vj -1} be the
total space of the tautological line bundle γj : Lj → Fn-1(Ck) and construct the
following pullback diagram:

f∗n(Lj) Lj

Fn(Ck) Fn−1(Ck)

y γj

fn
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f∗n(Lj) = {((V,w),V′) ∈ Lj × Fn(Ck) | γj(V,w) = fn(V′)}
= {((V,w),V′) ∈ Lj × Fn(Ck) | V = fn(V′)}
= {((V,w),V′ ∈ Lj × Fn(Ck) | w ∈ Vj ,v ⊥ w
∀ Vj−1,Vi = V′i ∀ 1 ≤ i ≤ n− 1}

= {(V,w) ∈ Fn(Ck)× Ck | w ∈ Vj ,v ⊥ w
∀ Vj−1,Vi = V′i ∀ 1 ≤ i ≤ n− 1}

Thus f∗n(Lj) is the total space of the j th tautological line bundle over Fn(Ck),
therefore c1(f∗n(Lj)) = f∗n(c1(Lj)) will be a generator of the ring H *(Fn(Ck);
Z) if we are able to show that the Chern classes of the tautological line bundles
are.

The base case for our relation is easy. Since we require that c(L1)c(Q1) =
c(Ck), we can use the recursive formula we found to determine the Chern classes
of Q1. For 1 ≤ i ≤ k -1 we have:

ci(Q1) =

i∑
j=0

(−1)jf∗1 (ci−j(Ck))xj1

= (−1)ixi1

=⇒ c(Q1) =

k−1∑
i=0

(−1)ixi1

Our formula for n = 1 requires us to partition i into 1 non negative integer.
Clearly, there is only one 1-tuple (namely (i)) that will partition i and thus:

ci(Q1) =

k−1∑
i=0

(−1)i
∑

(r1)∈P (i)

1∏
j=1

xr11

=

k−1∑
i=0

(−1)i
∑

(r1)∈P (i)

xr11

=

k−1∑
i=0

(−1)ixi1

exactly as required.
Now, let us assume our formula works for Qn and reach the conclusion that

it must also therefore hold for Qn+1.
Let us denote by x j the Chern classes of the tautological line bundles over

Fn+1(Ck), we have already seen that for 1 ≤ j ≤ n, x j = f∗n+1(yj) where the
y j are the Chern classes of the tautological line bundles over Fn(Ck). We have
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also showed that the following pullback diagram is valid:

Ln+1 ⊕Qn+1 Qn

Fn+1(Ck) Fn(Ck)

y

fn+1

Thus we may apply our lemma to achieve:

ci(Qn+1) =

i∑
j=0

(−1)jf∗n+1(ci−j(Qn))xjn+1

=

i∑
j=0

(−1)j((−1)i−j
∑

(r1,...,rn)∈P (i−j)

n∏
l=1

xrll )xjn+1 by assumption

=

i∑
j=0

(−1)i(
∑

(r1,...,rn,j)∈P (i)

n∏
l=1

xrll )xjn+1

= (−1)i
i∑

j=0

(
∑

(r1,...,rn,j)∈P (i)

(

n∏
l=1

xrll )xjn+1)

= (−1)i
∑

(r1,...,rn+1)∈P (i)

n+1∏
l=1

xrll

exactly as required, thus our formula holds for all n.
The final push is to assume the ring H *(Fn(Ck); Z) behaves as we expect

and thus conclude that the ring H *(Fn+1(Ck); Z) follows suit.
We have done all the work required to say that:

H∗(Fn+1(Ck);Z) ∼= H∗(Fn(Ck);Z)[xn+1, c(Qn+1)]/((1 + xn+1)c(Qn+1)− c(Qn))

By our assumption:

H∗(Fn(Ck);Z) ∼= Z[x1, ..., xn, c(Qn)]/((
n∏
i=1

(1 + xi))c(Qn)− 1)

57



Therefore:

H∗(Fn+1(Ck);Z) ∼= (Z[x1, ..., xn, c(Qn)]/

((

n∏
i=1

(1 + xi))c(Qn)− 1))[xn+1, c(Qn+1)]/

((1 + xn+1)c(Qn+1)− c(Qn))
∼= Z[x1, ..., xn, c(Qn), xn+1, c(Qn+1)]/

((

n∏
i=1

(1 + xi))c(Qn)− 1, (1 + xn+1)c(Qn+1)− c(Qn))

∼= Z[x1, ..., xn+1, c(Qn+1)]/((

n∏
i=1

(1 + xi))(1 + xn+1)c(Qn+1)− 1)

∼= Z[x1, ..., xn+1, c(Qn+1)]/((

n+1∏
i=1

(1 + xi))c(Qn+1)− 1)

Thus our corollary holds for all flag manifolds Fn(Ck).
Since c(Qn) is a polynomial in x 1, ..., xn we are able to rewrite the coho-

mology ring explicitly in terms of x 1, ..., xn by determining the nature of the
ideal:

(

n∏
i=1

(1 + xi))c(Qn) = 1

(

n∑
i=0

σi(x1, ..., xn))c(Qn) = 1

1 + c1(Qn) + ...+ ck−n(Qn)+

σ1(x1, ..., xn) + σ1(x1, ..., xn)c1(Qn) + ...+ σ1(x1, ..., xn)ck−n(Qn)+

...

σn(x1, ..., xn) + σn(x1, ..., xn)c1(Qn) + ...+ σn(x1, ..., xn)ck−n(Qn) = 1

To reduce the number of terms, let us show the following:

i∑
j=0

σj(x1, ..., xn)ci−j(Qn) = 0 for 1 ≤ i ≤ k − n.

Let X = xr1p1
...x

rj
pj be a general term of our sum where the pq are distinct

elements of the set {1, ..., n}, and we have r1 + ... + r j = i with rq > 0.
Necessarily j ≤ i and j ≤ n.

To show the equality of our formula we must show that the coefficient of X
in our sum is 0. This will be done by examining the coefficients of X in each of
the summands σk(x1, ..., xn)ci-k (Qn) and we discover that:

the coefficient of X in ci(Qn) is (-1)i ,
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the coefficient of X in σ1(x1, ..., xn)ci-1(Qn) is (-1)i-1j,
...

the coefficient of X in σk(x1, ..., xn)ci-k (Qn) is (-1)i-k
(
j
k

)
,

...
the coefficient of X in σj(x1, ..., xn)ci-j (Qn) is (-1)i-j

(
j
j

)
= (-1)i-j .

The j th term is reached since j ≤ i and j ≤ n.
Thus we must have that the coefficient of X in our full sum is:

j∑
k=1

(−1)i−k
(
j

k

)
= (−1)i

j∑
k=1

(−1)k
(
j

k

)
= (−1)i(0) = 0

since the alternating sum of binomial coefficients is zero, therefore our sum
works too! Let us return to our ideal now that these terms have vanished:

σ1(x1, ..., xn)ck−n(Qn)+

σ2(x1, ..., xn)ck−n−1(Qn) + σ2(x1, ..., xn)ck−n(Qn)

...

σn(x1, ..., xn)ck−2n(Qn) + ...+ σn(x1, ..., xn)ck−n+1(Qn) = 0

We can group the summands along the rows first to achieve:

n∑
i=1

k−n∑
m=k−n−i+1

σi(x1, ..., xn)cm(Qn) = 0

Or to better demonstrate which polynomial vanishes in each degree we can
group the summands down the columns first to achieve:

k∑
m=k−n+1

k−m∑
i=0

σn−i(x1, ..., xn)cm−n+i(Qn) = 0

and finally, substituting our formula for the Chern classes of Qn , we achieve:

k∑
m=k−n+1

k−m∑
i=0

(−1)m−n+iσn−i(x1, ..., xn)
∑

(r1,...,rn)∈P (m−n+i)

n∏
j=1

x
rj
j = 0

Therefore, in the ring H *(Fn(Ck); Z), the ideal can be given by any of these
formulae. 4

Corollary 35. The cohomology ring of a total flag manifold is given by:

H∗(Fn(Cn);Z) ∼= Z[x1, ..., xn]/(

n∑
i=1

σi(x1, ..., xn))

This result is consistent with the work of Borel [5].
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Proof. Let us examine the ideal for k = n:

n∑
m=1

n−m∑
i=0

(−1)m−n+iσn−i(x1, ..., xn)
∑

(r1,...,rn)∈P (m−n+i)

n∏
j=1

x
rj
j = 0

Since for our permitted values m - n + i < 0 unless m + i = n and P(t) = ∅
for t < 0, this ideal simplifies:

n∑
m=1

σm(x1, ..., xn)
∑

(r1,...,rn)∈P (0)

n∏
j=1

x
rj
j = 0

and since (0, ..., 0) is the only n-tuple in P(0), we achieve:

n∑
m=1

σm(x1, ..., xn) = 0

Therefore,

H∗(Fn(Cn);Z) ∼= Z[x1, ..., xn]/(

n∑
i=1

σi(x1, ..., xn))

as required. 4
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5.5 The Chern Character
To define a useful ring homomorphism we must first evoke some definitions and
results from Macdonald’s Symmetric Functions and Hall Polynomials [23]

Definition 24. Consider the set of polynomials in n indeterminates t1, ..., tn
with integer coefficients Z[t1, ..., tn ]. A symmetric polynomial is a polyno-
mial f (t1, ..., tn) ∈ Z[t1, ..., tn ] that is invariant under all permutations of t1,
..., tn , that is, for all elements ψ ∈ S (n) the symmetric group acting on the set
{1, ..., n}, we have f (t1, ..., tn) = f (tψ(1), ..., tψ(n)). Let us denote by SZ[t1,
..., tn ] the set of symmetric polynomials in n indeterminates with coefficients
in Z.

It is known that SZ[t1, ..., tn ] is a subring of Z[t1, ..., tn ] and indeed a
polynomial ring in its own right in n algebraically independent generators:

SZ[t1, ..., tn] = Z[σ1, ..., σn]

where σk is the k th elementary symmetric polynomial in n indeterminates.
Let us define a set of equivalence relations ∼k on S (n).
ψ ∼k φ iff ψ(1) = φ(1), and ..., and ψ(k) = φ(k).
The elementary symmetric polynomials are defined as follows:

σk(t1, ..., tn) :=
∑

[ψ]∈S(n)/∼k

k∏
i=1

tψ(i)

A key feature of the elementary symmetric polynomials is the property:

1 +

n∑
i=1

σi =

n∏
i=1

(1 + ti)

Let each t i have degree 1, we denote by SkZ [t1, ..., tn ] the additive subgroup
of SZ[t1, ..., tn ] of all k -dimensional symmetric polynomials.

Let I = (i1, ..., ir ) be a partition of k ∈ N, i.e.
∑r
j=1 i j = k and without

loss of generality for our purposes, let k ≥ i1 ≥ ... ≥ ir > 0. Let P(k) be the
set of partitions of k.

For any n ≥ k and any partition I of k we define the following symmetric
polynomial in n indeterminates:

sI(σ1, ..., σk) = si1,...,ir (σ1, ..., σk) :=
∑

[ψ]∈S(n)/∼r

r∏
j=1

t
ij
ψ(j)

It is clear that sI is a polynomial in only σ1, ..., σk as any further elementary
symmetric polynomials are in too high a degree to produce a k -dimensional
polynomial by addition or multiplication.

For n < k it is still possible to define sI , but the result is only polynomial
in σ1, ..., σn as symmetric polynomials in higher degrees are also polynomial in
σ1, ..., σn . Also, for I = (i1, ..., ir ), sI (σ1, ..., σn) = 0 if n < r as we run out
of indeterminates.
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Lemma 36. SkZ [t1, ..., tn ] has as an additive basis the set:

{sI(σ1, ..., σk) | I ∈ P (k)}

Now to introduce the reason these constructions are useful.

Lemma 37. If p: E → B is a complex vector bundle. For any partition I of k
∈ N, we can define the symmetric polynomial sI (c(E )) := sI (c1(E ), ..., cn(E )).

Then sI (c(E )) = sI (σ1(t1, ..., tn), ..., σn(t1, ..., tn)) for some set of inde-
terminates t1, ..., tn .

Proof. For a complex vector bundle p: E → B that decomposes into the direct
sum of n complex line bundles l i : Li → B we have

c(E) =

n∏
i=1

c(Li)

n∑
i=0

ci(E) =

n∏
i=1

(1 + c1(Li))

and by comparison we have

ci(E) = σi(c1(L1), ..., c1(Ln))

So for any partition I of some k ∈ N we are permitted to write:

sI(c(E)) := sI(c1(E), ..., ck(E))

= sI(σ1(c1(L1), ..., c1(Ln)), ..., σk(c1(L1), ..., c1(Ln))).

If, however, p: E → B does not decompose into the direct sum of line bundles,
we are still able to define sI (c(E )) via the splitting principle. Below we will
construct the flag bundles and associated maps and classes to ensure the relation
still holds.

As we had when we defined the Chern classes, let z : B → E be the zero
section and E 0 = E\z (B). Let us consider the space P1(E ) = E 0/∼ where ∼
is the equivalence relation given by v ∼ w iff v = λw for some λ ∈ C. There
is a map f 1: P1(E ) → B given by f 1([v]) = p(v). This map is well defined as
λv is necessarily in the same fibre as v ∀ λ ∈ C.

We may consider the pullback of E by f 1:

f∗1 (E) E

P1(E) B

q1 y p

f1

where f 1*(E ) = {([v], w) ∈ P1(E ) × E | p(v) = p(w)} and q1([v], w) = [v].
Let L1 = {([v], w) ∈ f 1*(E ) | w = λv for some λ ∈ C} and l1 = q1|L1 ,

then l1: L1 → P1(E ) is a line bundle. Let E 1 be the orthogonal complement of
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L1 in f 1*(E ) and p1 = q1|E1 . q1: f 1*(E ) → P1(E ) thus decomposes into the
direct sum of the vector bundles l1: L1 → P1(E ) and p1: E 1 → P1(E ).

Since the total Chern class is natural, we know that:

f∗1 (c(E)) = c(f∗1 (E))

= c(L1 ⊕ E1)

= c(L1)c(E1)

This process iterates.
At each following step we have a vector bundle pk : E k → Pk (E ), we consider

another zero section z k : Pk (E ) → E k and define (E k )0 = E k\z k (Pk (E )) and
Pk+1(E ) = (E k )0/∼ where ∼ is the equivalence relation given by ([v1, ..., vk ],
w) ∼ ([v1’, ..., vk ’], w’) iff [v1, ..., vk ] = [v1’, ..., vk ’] and w’ = λw for some
λ ∈ C.

We have maps f k+1: Pk+1(E ) → Pk (E ) and thus we may construct the
pullback of E k by f k+1 resulting in a vector bundle qk+1: f k+1*(E k )→ Pk+1(E )
that decomposes into the direct sum of the line bundle lk+1: Lk+1 → Pk+1(E )
and the vector bundle pk+1: E k+1 → Pk+1(E ). Therefore giving us the formula:

f∗k+1(c(Ek)) = c(Lk+1)c(Ek+1)

If p: E → B is an n-dimensional complex vector bundle, this process termi-
nates as the vector bundle qn : f n*(En-1) → Pn(E ) is equal to the line bundle
ln : Ln → Pn(E ).

Since each l i : Li → P i(E ) is a line bundle there is only once Chern class of
note for each 1 ≤ i ≤ n: c1(Li) ∈ H 2(P i(E ); Z).

This results in a family of equations:

f∗1 (c(E)) = (1 + c1(L1))c(E1)

f∗2 (c(E1)) = (1 + c1(L2))c(E2)

...
f∗n−1(c(En−2)) = (1 + c1(Ln−1))c(En−1)

f∗n(c(En−1)) = 1 + c1(Ln)

In addition, since f 1: P1(E ) → B and the maps f i : P i(E ) → P i-1(E ) for
2 ≤ i ≤ n are surjections, the induced maps f 1*: H *(B ; Z) → H *(P1(E ); Z)
and f i*: H *(P i-1(E ); Z) → H *(P i(E ); Z) for 2 ≤ i ≤ n must be injections.

Therefore we may rewrite our family of equations:

c(E) = f∗1
-1((1 + c1(L1))c(E1))

c(E1) = f∗2
-1((1 + c1(L2))c(E2))

...

c(En−2) = f∗n−1
-1((1 + c1(Ln−1))c(En−1))

c(En−1) = f∗n
-1(1 + c1(Ln))
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and so, by making all the substitutions, the family may be written as a sin-
gle equation. However, since each f k* is a ring homomorphism, we may first
simplify even further:

For 1 ≤ i ≤ n let us denote by χi(E ) the class in H 2(B ; Z) such that:

χi(E) = (f∗i ◦ ... ◦ f∗1 )−1(c1(Li))

Then:
c(E) = (1 + χ1(E))...(1 + χn(E))

And so, for an n-dimensional non-decomposable complex vector bundle p: E →
B and any partition I of some k ∈ N we write:

sI(c(E)) := sI(c1(E), ..., ck(E))

= sI(σ1(χ1(E), ..., χn(E)), ..., σk(χ1(E), ..., χn(E)))

Note that sI (c(E )) is a polynomial in the Chern classes c1(E ), ..., ck (E ) so in
practice it will not regularly be necessary to compute the classes χi(E ), they
are just necessary to show that the Chern classes are elementary symmetric
polynomials in some set of n indeterminates.

By the splitting principle, if p: E → B is an n-dimensional vector bundle,
we can construct a space Y and a map φ: Y → B such that the pullback bundle
φ*(p): φ*(E ) → Y can be decomposed into the direct sum of line bundles:

φ∗(E) =

n⊕
i=1

L′i

The line bundles l i ’: Li ’ → Y can be ordered in such a way that c1(Li ’) =
φ*(χi(E )) and since φ* is required to be an injection, we have that χi(E ) =
(φ*)-1(c1(Li ’))

We can verify that ci(φ*(E )) = φ*(ci(E )).

ci(φ
∗(E)) = ci(

n⊕
j=1

L′j)

= σi(c1(L′1), ..., c1(L′n))

φ∗(ci(E)) = φ∗(σi(χ1(E), ..., χn(E)))

= σi(φ
∗(χ1(E)), ..., φ∗(χn(E)))

= σi(φ
∗((φ∗)−1(c1(L′1))), ..., φ∗((φ∗)−1(c1(L′1))))

= σi(c1(L′1), ..., c1(L′n))

and so for any partition I of k ∈ N, sI (c(E )) = (φ∗)-1(sI (c(φ*E ))). 4

Lemma 38. If I = (i1, ..., ir ) is a partition of k ∈ N and p: E → B, p’: E ’ →
B are two complex vector bundles over the same space then:

sI(c(E ⊕ E′)) =

r∑
j=0

si1,...,ij (c(E)) + sij+1,...,ir (c(E
′))
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Definition 25. For an n-dimensional complex vector bundle p: E → B, the
Chern character ch(E ) is defined to be the following:

ch(E) := n+

∞∑
k=1

sk(c(E))

k!
∈ H∗(B;Q)

Notice that if p: E → B is a line bundle we have:

ch(E) = exp(c1(E))

The Chern character can been shown to have some beneficial properties that
the total Chern class lacks.

Theorem 39. Since the total Chern class is a characteristic class, and the Chern
classes all lie in even degree, the Chern character ch: Vect(B) → H even(B ; Z)
is well defined where:

Heven(B;Q) :=
⊕
k∈2Z

Hk(B;Q)

If p: E → B and q : F → B are vector bundles over B, then

ch(E ⊕ F ) = ch(E) + ch(F )

and ch(E ⊗ F ) = ch(E)ch(F )

therefore the Chern character extends to a ring homomorphism ch: K 0(B) →
H *(B ; Q) and thus a natural transformation K 0 → H *(-; Q) as functors Top
→ Rng

Proof. It is not too tricky to show that the Chern character satisfies the first
property. For p: E → B and q : F → B, two complex vector bundles over the
same space B, we have:

ch(E ⊕ F ) = rank(E ⊕ F ) +

∞∑
k=1

sk(c(E ⊕ F ))

k!

= rank(E) + rank(F ) +

∞∑
k=1

sk(c(E)) + sk(c(F ))

k!

= rank(E) +

∞∑
k=1

sk(c(E))

k!
+ rank(F ) +

∞∑
k=1

sk(c(F ))

k!

= ch(E) + ch(F )

Thus the direct sum of vector bundles becomes addition of their Chern charac-
ters.

The set of vector bundles over a base space B together with the direct sum
is a monoid. Group completion of this monoid ensures that the Chern character
is a homomorphism of abelian groups.
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To prove that the multiplication operation is preserved, we will first con-
sider when the two complex vector bundles can both be decomposed into the
direct sum of line bundles. This decomposition will help as the tensor product
distributes over the direct sum.

To achieve the result we want we will have to determine the Chern classes
of the tensor product of vector bundles.

Lemma 40. For two complex line bundles l : L → B and l ’: L’ → B over the
same base space, we have:

c0(L⊗ L′) = 1,

c1(L⊗ L′) = c1(L) + c1(L′),

ci(L⊗ L′) = 0, for i 6= 0, 1.

Let p: E → B and q : F → B be complex vector bundles over the same
space such that there exist complex line bundles l i : Li → B for 1 ≤ i ≤ n and
l j ’: Lj ’ → B for 1 ≤ j ≤ m where p = l1 ⊕ ... ⊕ ln , q = l1’ ⊕ ... ⊕ lm ’, E =
L1 ⊕ ... ⊕ Ln , and F = L1’ ⊕ ... ⊕ Lm ’

ch(E ⊗ F ) = ch((L1 ⊕ ...⊕ Ln)⊗ (L′1 ⊕ ...⊕ L′m))

= ch(

n⊕
i=1

m⊕
j=1

(Li ⊗ L′j))

=

n∑
i=1

m∑
j=1

ch(Li ⊗ Lj)

=

n∑
i=1

m∑
j=1

exp(c1(Li ⊗ Lj))

=

n∑
i=1

m∑
j=1

exp(c1(Li) + c1(Lj))

=

n∑
i=1

m∑
j=1

exp(c1(Li))exp(c1(Lj))

= (

n∑
i=1

exp(c1(Li)))(

m∑
j=1

exp(c1(Lj)))

= (

n∑
i=1

ch(Li))(

m∑
j=1

ch(Lj))

= ch(

n⊕
i=1

Li)ch(

m⊕
j=1

Lj)

= ch(E)ch(F )

Thus the Chern character of the tensor product of two vector bundles that can
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be decomposed into the direct sum of line bundles is indeed equal to the product
of their Chern characters.

If however, p: E → B and q : F → B are two vector bundles that cannot
be decomposed into the direct sum of line bundles, we will need to implement
the splitting principle.

Let Y and Z be the spaces and φ: Y → B and ψ: Z → B be the maps
such that the pullback bundles φ*(B) → Y and ψ*(B) → Z decompose into
the direct sum of line bundles.

We can define the vector bundle p ⊗ q : E ⊗ F → B and a continuous map
φ ⊗ ψ: Y ⊗ Z → B to construct a pullback bundle:

(φ⊗ ψ)∗(E ⊗ F ) E ⊗ F

Y ⊗ Z B

(φ⊗ψ)∗(p⊗q) y p⊗q

φ⊗ψ

Since the tensor product is compatible with the pullback construction, here the
pullback bundle is equivalent to the tensor product of the two pullback bundles
φ*(p) ⊗ ψ*(q): φ*(E ) ⊗ ψ*(F ) → Y ⊗ Z.

The pullback bundles φ*(p) and ψ*(q) both decompose into the direct sum
of line bundles so ch(φ*(E ) ⊗ ψ*(F )) = ch(φ*(E ))ch(ψ*(F )) as we have already
seen.

Therefore:

ch(E ⊗ F ) = rank(E ⊗ F ) +

∞∑
k=1

sk(c(E ⊗ F )

k!

= rank(φ∗(E)⊗ ψ∗(F )) +

∞∑
k=1

(φ∗ ⊗ φ∗)−1(sk(c(φ∗(E)⊗ ψ∗(F ))))

k!

= (φ∗ ⊗ φ∗)−1(ch(φ∗(E)⊗ ψ∗(F )))

= (φ∗ ⊗ φ∗)−1(ch(φ∗(E))ch(ψ∗(F )))

= (φ∗)−1(ch(φ∗(E)))(ψ∗)−1(ch(ψ∗(F )))

= ch(E)ch(F )

Thus the tensor product of any pair of vector bundles becomes multiplication
of the Chern characters.

These two properties together can be extended to ensure that the Chern
character is a ring homomorphism:

ch : K0(B)→ Heven(B;Q)

4
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6 General Cohomology Theories and the Chern
Character

6.1 General Cohomology Theories
Definition 26. A cohomology theory is a sequence of contravariant functors
from the category of pairs of CW-complexes to the category of abelian groups
hk : CWpair→AbGrp together with natural transformations between consec-
utive functors with components d : hk (A) → hk+1(X, A) called the boundary
homomorphisms where hk (A) := hk (A, ∅) such that:

• If f, g : (X, A) → (Y, B) are homotopic maps, then the maps induced by
the functors f *,g*: hk (Y, B) → hk (X, A) are equal for each k

• For any pair of CW-complexes (X, A), the inclusions i : A → X and j :
(X, ∅) → (X, A) induce a long exact sequence:

... hk−1(A) hk(X,A) hk(X) hk(A) hk+1(X,A) ...d j∗ i∗ d

• If A and B are two subcompleces of X such that X = A∪B, then the
inclusion i : (A, A∩B) → (X, B) induces an isomorphism for each functor
i*: hk (X, B) → hk (A, A∩B)

• If we have a pair of CW-complexes (X α, Aα) for each α in some set I and
let (X, A) =

∐
α∈I(X α, Aα), then the inclusions iα: (X α, Aα) → (X, A)

induce an isomorphism for each k

i∗ : hk(X,A)→
∏
α∈I

hk(Xα, Aα)

If, in addition, a cohomology theory h* is such that hk (pt) = 0 ∀ k 6= 0, we
say that h* is an ordinary cohomology theory, if it does not satisfy this
property, we call it an extraordinary cohomology theory.

These are the Eilenberg-Steenrod axioms as defined by Eilenberg and Steen-
rod in Foundations of Algebraic Topology [10].

For ordinary cohomology theories and many (at least all those we will dis-
cuss) extraordinary cohomology theories, we can define a functor also denoted
h*: CWpair → Rng by equipping the graded abelian group

h∗(X,A) :=
⊕
k∈Z

hk(X,A)

with a multiplication structure derived in part by the contravariance of the
functors hk and the diagonal map ∆: X → X × X, where ∆(x ) = (x, x ). [17]

Let us continue by defining a couple of extraordinary cohomology theories
built using some familiar abelian groups.
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Definition 27. Consider a compact Hausdorff space X and let C (X ) be the
set of all complex valued functions on X. Let GL(n, C (X )) be the topological
group of invertible n×n matrices with entries in C (X ) and let GL(n, C (X ))0 be
the connected component of In in GL(n, C (X )) where 1 and 0 are the constant
maps to 1 and 0 in C respectively.

We define the following groups:

GL(C(X)) = (
⋃
n∈N

GL(n,C(X)))/ ∼

and GL(C(X))0 = (
⋃
n∈N

GL(n,C(X))0)/ ∼

where ∼ is the equivalence relation defined by A ∼ diag(A, 1).
GL(C (X ))0 is a normal subgroup of GL(C (X )) and so we may define a

group called the -1st K-theory group:

K−1(X) := GL(C(X))/GL(C(X))0

Together with our previous construction of the 0th K-theory group, and a prop-
erty called Bott-periodicity that ensures that K n(X ) ∼= K n+2(X ) ∀ n ∈ Z,
we are able to define an extraordinary cohomology theory called complex K-
theory using the functors K n .

There are many non-trivial statements in this definition including but not
limited to: each mapping K n defines a functor CWpair → AbGrp, we have
Bott-periodicity, that we have boundary homomorphisms, and thus that we
have an extraordinary cohomology theory. Proofs of all of these statements can
be found in Complex Topological K-Theory by Efton Park [28].

Definition 28. Using ordinary cohomology with coefficients in G for some
group G as a base, we can construct an extraordinary cohomology theory we
will call periodic cohomology with coefficients in G :

Hi
per(X;G) :=

⊕
k∈2Z

Hi+k(X;G)

Clearly there is an isomorphism Hi
per(X;G) ∼= Hi+2

per (X;G) ∀ i.
We often write H even(X ; G) = H0

per(X;G) and we may define H odd(X ; G)
= H−1

per(X;G).

6.2 Behaviour of the Chern Character
We have defined the Chern character for some space X as a ring homomor-
phism ch: K 0(X ) → H even(X ; Q), we would like to extend this to a natural
transformation ch: K* → H∗per(-; Q).

Bott periodicity gives us an isomorphism K n(X ) ∼= K 0(X ) for even integers
n ∈ 2Z, so we may immediately construct an abelian group homomorphism we
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may call ch:
Kn(X) Hn

per(X;Q)

K0(X) Heven(X;Q)

ch

∼= �

ch

∼=

The isomorphisms K -1(X ) ∼= K 0(X × R) and H n-1(X ; Q) ∼= H n(X × R; Q)
ensure the existence of an abelian group homomorphism we can call the odd
Chern character:

K−1(X) Hodd(X;Q)

K0(X × R) Heven(X × R;Q)

ch

∼= �

ch

∼=

and Bott periodicity once again gives us an isomorphism K n(X ) ∼= K -1(X ) for
odd integers n ∈ -1 + 2Z and the final set of abelian group homomorphisms
can be constructed:

Kn(X) Hn
per(X;Q)

K−1(X) Hodd(X;Q)

ch

∼= �

ch

∼=

Since K theory and cohomology are functors and all of these isomorphisms are
functorial, for any map φ: X → Y and n ∈ Z, the appropriate Chern characters
ensure the following diagram commutes:

Kn(Y ) Hn
per(Y ;Q)

Kn(X) Hn
per(X;Q)

ch

φ∗ � φ∗

ch

The following definitions are provided by Hilton [18].

Definition 29. Let h* be a cohomology theory, the corresponding reduced
cohomology theory h̃∗ is a sequence of contravariant functors from the cate-
gory of pointed topological spaces (at least CW-complexes) to the category of
abelian groups h̃: Top* → AbGrp. If i : pt → X is the inclusion of a point to
the basepoint of a CW-complex X, then h̃k (X ) is the kernel of the map induced
by the cohomology theory for each k, i.e. the following sequence is exact ∀ k :

0 h̃k(X) hk(X) hk(pt)i∗

The coefficient ring of a cohomology theory defined to be the graded ring h̆∗
where each h̆k := h̃k (S0).
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Let us examine the coefficient rings of some familiar cohomology theories.
Firstly, cohomology with rational coefficients H *(-; Q) unsurprisingly has

coefficient ring H̆∗ ∼= Q. This is true since H 0(pt ; Q) ∼= Q, H 0(S0; Q) ∼= Q×Q
and the map induced by i : pt → S0 is the projection onto one of the entries
i*(p, q) = p. All other groups in the coefficient ring are trivial since for k 6= 0,
H k (S0; Q) ∼= 0.

It is also easy to determine the coefficient ring for complex K-theory. We
already know K 0(S0) ∼= Z×Z, K 0(pt) ∼= Z and the map induced by the inclusion
i : pt → S0 is again the projection onto one of the entries i*(p, q) = p so we
have K̃0(S0) ∼= Z. The other K-theory group is easy, K̃-1(S0) ∼= 0 since K -1(S0)
∼= 0.

Bott periodicity ensures that K n(X ) ∼= K n-2(X ), a property maintained in
reduced K-theory, thus as a graded abelian group, the coefficient ring of complex
K-theory is as follows:

K̆n ∼=

{
Z, n ∈ 2Z
0, n ∈ 1 + 2Z

Since K-theory admits a cup product, as a graded ring, the coefficient ring is:

K̆∗ = Z[x, x−1]

where x is a generator in degree 2.
The other cohomology theory currently of note is periodic cohomology with

rational coefficients H∗per(-; Q). As we saw before, H̃0(S0; Q) ∼= Q and for all
other n 6= 0, H̃n(S0; Q) ∼= 0. Since relative periodic cohomology is the kernel
of a group homomorphism we have:

H̃n
per(X;Q) =

⊕
k∈2Z

H̃n+k(X;Q)

Thus as a graded abelian group the coefficient ring of periodic cohomology is:

H̆n
per
∼=

{
Q, n ∈ 2Z
0, n ∈ 1 + 2Z

and again, thanks to the cup product, as a ring:

H̆∗per = Q[y, y−1]

where y is a generator in degree 2.

Lemma 41. If k* and h* are cohomology theories, and h̆* is a graded vector
space over Q, then any homomorphism of graded rings η̆: k̆*→ h̆* has a unique
extension to a natural transformation η: k* → h*.

Proven by Hilton. Theorem 3.22 [18]
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Thus in order to understand the Chern character as a natural transforma-
tion, since H̆∗per is a graded vector space over Q, we need only understand the
homomorphism of graded rings obtained by restricting the Chern character to
the coefficient rings which will naturally extend to the full natural transforma-
tion.

0 K̆n Kn(S0) Kn(pt)

0 H̆n
per Hn

per(S0;Q) Hn
per(pt;Q)

c̆h �

i∗

ch � ch

i∗

6.3 Axiomatic Reduced Cohomology Theories
There is an alternative axiomatic definition for reduced cohomology theories;
often we prefer not to work with pairs of CW-complexes, but only with pointed
topological spaces. Again we defer to definitions provided in General Cohomol-
ogy Theory and K-theory by Hilton [18]

Definition 30. For any based continuous map f : X → Y let us define C f the
mapping cone of f as follows:

Cf := ((X × [0, 1]) t Y )/ ∼

where ∼ is the equivalence relation defined as follows:

(x, 0) ∼ (x′, 0)

(x, 1) ∼ f(x)

and (x0, t) ∼ (x0, t
′)

Definition 31. A reduced cohomology theory is a sequence of contravari-
ant functors from the category of pointed topological spaces to the category
of abelian groups hk : Top* → AbGrp together with a sequence of natural
transformations with components σnX : hn(X ) → hn+1(ΣX ) such that:

• If f, g : X → Y are homotopic based continuous maps, then the maps
induced by the functors f *, g*: hk (Y ) → hk (X ) are equal for each k

• The natural transformations σn: hn → hn+1Σ are all natural isomor-
phisms.

• for any based continuous map f : X → Y, the sequence

X Y Cf
f i

where i : Y → C f is the inclusion of Y into the mapping cone of f, induces
an exact sequence for each k :

hk(X) hk(Y ) hk(Cf )
f∗ i∗
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It can, but won’t be shown that the definition of a cohomology theory de-
scribed earlier is equivalent to this definition of a reduced cohomology theory
when restricted to pointed topological spaces.

Definition 32. As first introduced by Adams [1], a family Y of pointed topo-
logical spaces Y n together with a family of based continuous maps gn : Y n →
ΩY n+1 is called an Ω-spectrum if gn is a homotopy equivalence for all n.

Lemma 42. If Y is an Ω-spectrum, then there exists a reduced cohomology
theory h∗Y consisting of contravariant functors hkY : Top*→ AbGrp defined by
a mapping of objects: ∀ X ∈ ob(Top*)

hkY (X) := [X,Yk]

and mapping of morphisms: ∀ f ∈ HomTop*(X, Z )

hkY (f) : hkY (Z)→ hkY (X)

[φ] 7→ [φ ◦ f ]

together with natural transformations σn: hnY → hn+1
Y Σ with components:

σnX : hnY (X)→ hn+1
Y (ΣX)

[φ] 7→ [Θ−1
X,Yn+1

(gn ◦ φ)]

where ΘX,Y : HomTop*(ΣX, Y ) → HomTop*(X, ΩY ) are the component iso-
morphisms of the suspension-loop adjunction Σ a Ω.

Proof. Clearly each hkY is a contravariant functor, as for every φ: X → Y k we
have hkY (idX )[φ] = [φ ◦ idX ] = [φ] and thus hkY (idX ) = idhkY (X).

To show that each σn is a natural transformation, we must show that for
any f : X → Z the following diagram commutes:

hnY (Z) hn+1
Y (ΣZ)

hnY (X) hn+1
Y (ΣX)

σnZ

hnY (f) � hn+1
Y (Σf)

σnX

That is, for any [φ] ∈ hnY (Z) we must show that:

(hn+1
Y (Σf)(σnZ [φ]) = (σnX(hnY (f)[φ])).

(hn+1
Y (Σf)(σnZ [φ]) = [Θ−1

Z,Yn+1
(gn ◦ φ) ◦ Σf ]

and (σnX(hnY (f)[φ])) = [Θ−1
X,Yn+1

(gn ◦ φ ◦ f)].

Let gn ◦ φ: Z → ΩY n+1 be given by (gn ◦ φ)(z ) = ζz: S1 → Y n+1 then
Θ−1
X,Yn+1

(gn ◦ φ): ΣZ → Y n+1 is the mapping (z, t) 7→ ζz(t).
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Let us examine the behaviour of the two maps from ΣX to Y n+1.

(Θ−1
Z,Yn+1

(gn ◦ φ) ◦ Σf)(x, t) = Θ−1
Z,Yn+1

(gn ◦ φ)(f(x), t)

= ζf(x)(t)

(ΘX,Yn+1
(gn ◦ φ ◦ f))(x, t) = (ΘX,Yn+1

(gn ◦ φ))(f(x), t)

= ζf(x)(t)

Therefore the two maps are equal and thus trivially homotopic and every σn is
a natural transformation.

It will be shown that the functors hkY together with the natural transforma-
tions σn satisfy the three axioms for a reduced cohomology theory.

Let f, g : X → Z be based continuous maps such that there exists a homotopy
H : X × [0,1] → Z where H (x 0, t) = z 0, H (x, 0) = f (x ), and H (x, 1) = g(x ).

Let φ: Z → Y k be a representative of the class [φ] ∈ hkY (Z ), it must be
shown that f *[φ] = [φ◦f ] and g*[φ] = [φ◦g ] are the same class in hkY (X ), that
is we must show there exists a homotopy between φ◦f and φ◦g.

φ◦H : X × [0,1] → Y k is exactly such a homotopy.

(φ ◦H)(x, 0) = φ(f(x)) (φ ◦H)(x, 1) = φ(g(x))

= (φ ◦ f)(x) = (φ ◦ g)(x)

Thus, f *[φ] = g*[φ] and since [φ] was arbitrary, f * and g* are equal maps.
Secondly, it must be shown that σn: hnY → hn+1

Y Σ is a natural isomorphism
for all n ∈ Z, that is, every component morphism σnX : hnY (X ) → hn+1

Y (ΣX )
must be shown to be an isomorphism.

For any class [φ] ∈ hnY (X ), we have σnX [φ] = [Θ−1
X,Yn+1

(gn ◦ φ)], we would
like to find a mapping τnX : hn+1

Y (ΣX ) → hnY (X ) so that σn ◦ τn = idhn+1
Y Σ and

τn ◦ σn = idhnY .
In order to define τnx , we will again use the component isomorphisms of the

suspension loop adjunction ΘX,Y : HomTop*(ΣX, Y ) → HomTop*(X, ΩY ).
Also, since the maps gn : Y n → ΩY n+1 are homotopy equivalences, there

exist maps called their homotopy inverses gn ’: ΩY n+1 → Y n such that gn◦gn ’
is homotopic to idΩYn+1

and gn ’◦gn is homotopic to idY n .
Let [ψ] ∈ hn+1

Y (ΣX), we define τnX [ψ] := [gn ’◦ΘX,Yn+1
(ψ)]

For all [φ] ∈ hnY (X):

τnX(σnX [φ]) = τnX [Θ−1
X,Yn+1

(gn ◦ φ)]

= [g′n ◦ΘX,Yn+1(Θ−1
X,Yn+1

(gn ◦ φ))]

= [g′n ◦ gn ◦ φ]

= [φ]
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since gn ◦ g′n is homotopic to the identity, and for all [ψ] ∈ hn+1
Y (ΣX)

σnX(τnX [ψ]) = σnX [g′n ◦ΘX,Yn+1
(ψ)]

= [Θ−1
X,Yn+1

(gn ◦ g′n ◦ΘX,Yn+1(ψ))]

= [Θ−1
X,Yn+1

(ΘX,Yn+1
(ψ))]

= [ψ]

since g′n ◦ gn is homotopic to the identity.
Therefore each σnX is an isomorphism, and thus each σn is a natural isomor-

phism.
Finally, we must show that if f : X → Z is a based continuous map and i :

Z → C f is the inclusion of Z into the mapping cone of f, then the sequence:

hkY (Cf ) hkY (Z) hkY (X)i∗ f∗

is exact for all k ∈ Z, that is Im(i*) = Ker(f *).
To show that Im(i*) ⊂ Ker(f *) we must show that if [ψ] ∈ hkY (Z ) is such

that ∃ [φ] ∈ hkY (C f ) with i*[φ] = [ψ], then f *[ψ] = [0] ∈ hkY (X ), or equivalently,
∀ [φ] ∈ hkY (C f ), we have f *(i*[φ]) = [0] ∈ hkY (X ). By the definition of these
maps then, it must be shown that for all based continuous maps φ: C f → Y k ,
φ◦i◦f : X → Y k is homotopic to the mapping x 7→ y0 that sends all of X to
the base point of Y k .

There is a homotopy H : X × [0,1]→ C f given by H (x, t) = [x, t ]. It is seen
that H (x, 0) = [x 0, z 0] the base point of C f , and H (x, 1) = [f (x )] = i◦f (x ).

φ ◦H: X × [0,1] → Y k therefore is a homotopy from the mapping x 7→ y0
to φ ◦ i ◦ f as φ ◦ H(x, 0) = φ[x 0, z 0] = y0 since φ is based continuous, and
φ ◦H(x, 1) = φ ◦ i ◦ f(x).

Thus Im(i*) ⊂ Ker(f *).
To show that Ker(f *) ⊂ Im(i*) we must show that if [ψ] ∈ hkY (Z ) is such

that f *[ψ] = [0] ∈ hkY (X ), then ∃[φ] ∈ hkY (C f ) such that i*[φ] = [ψ].
f *[ψ] = [0] means that there exists some homotopy H : X × [0,1]→ Y k with

H (x, 0) = y0, H (x, 1) = (ψ ◦ f )(x ), and H (x 0, t) = y0.
Let us describe a map φ: C f → Y k :

φ[x, t] = H(x, t)

φ[z] = ψ(z)

for (x,t) ∈ X × [0,1] ⊂ C f , and z ∈ Z ⊂ C f .
To check that φ is well defined, we must show that the different representa-

tives of each class of C f are mapped identically:

φ[x, 0] = H(x, 0) φ[x, 1] = H(x, 1) φ[x0, t] = H(x0, t)

= y0 = (ψ ◦ f)(x) = y0

= H(x′, 0) = ψ(f(x)) = H(x0, t
′)

= φ[x′, 0] = φ[f(x)] = φ[x0, t
′]
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And since φ ◦ i = ψ by definition of the inclusion, we have found a map that
exactly maps to any ψ in the kernel of f *. Since this is equality, taking the
homotopy classes clearly gives us i*[φ] = [ψ], and thus [ψ] ∈ Im(i*).

Therefore Ker(f *) ⊂ Im(i*) and thus Ker(f *) = Im(i*).
Therefore, from any Ω-spectrum, a reduced cohomology theory can be con-

structed. 4

6.4 Künneth formula and Products with Tori
Definition 33. A cohomology theory h* has a property called the Künneth
formula over a ring R if for any topological spaces X, Y where hn(Y ) is a
finitely generated free R-module for all n, for all k, we have an isomorphism of
abelian groups:

hk(X × Y ) ∼=
⊕
i+j=k

hi(X)⊗R hj(Y )

and we have an isomorphism of rings:

h∗(X × Y ) ∼= h∗(X)⊗R h∗(Y )

Ordinary cohomology with coefficients in a field k has the Künneth formula
over k [17] and K-theory has the Künneth formula over Z [28]. Thanks to
Bott-periodicity, the Künneth formula group isomorphisms for K-theory are as
follows:

K0(X × Y ) ∼= (K0(X)⊗K0(Y ))⊕ (K1(X)⊗K1(Y ))

K1(X × Y ) ∼= (K0(X)⊗K1(Y ))⊕ (K1(X)⊗K0(Y ))

As we have seen, the Leray-Hirsch Theorem is a generalisation of the Künneth
formula in ordinary cohomology for total spaces of fibre bundles, i.e. spaces
that are locally but not necessarily globally a product space, the trade off being
that we achieve only a module isomoprhism instead of a ring isomorphism.

Many general cohomology theories do not admit a Künneth formula but we
will see that there is a family of product spaces where the ring induced by any
general cohomology theory can be decomposed into a tensor product.

Lemma 43. Let h* be a general cohomology theory and X be a CW-complex.
Then h*(X × S1) ∼= h*(X ) ⊗ Λ∗Z[z ] where z has degree 1.
Furthermore, h*(X × Tn) ∼= h*(X ) ⊗ Λ∗Z[z 1, ..., zn ] where each z i has

degree 1.

Proof. Let D1 and d1 denote closed and open respectively connected proper
subsets of S1.

We will first examine the long exact sequence of the pair (X × S1, X × D1):

... hk(X × S1, X ×D1) hk(X × S1)

hk+1(X ×D1) hk+1(X × S1, X ×D1) ...
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Since D1 is a closed and connected proper subset of S1, it is homeomorphic to
a closed interval which in turn is homotopy equivalent to a single point. The
resulting homotopy equivalence allows us to simplify our long exact sequence:

... hk(X × S1, X × {1}) hk(X × S1)

hk(X) hk+1(X × S1, X × {1}) ...

The maps hk (X × S1) → hk (X ) are induced by the inclusion ι: X → X × S1.
ι has a clear left inverse in the projection map πX : X × S1 → X, and so, since
each hk is a contravariant functor:

πX ◦ ι = idX
=⇒ (πX ◦ ι)∗ = id∗X

ι∗ ◦ π∗X = idhk(X)

Since f ◦ g being a surjection implies that f is a surjection and since identities
clearly are, ι* is a surjection, thus the maps hk (X ) → hk+1(X × S1, X × D1)
must be zero maps and we obtain a sequence of split short exact sequences:

0 hk(X × S1, X ×D1) hk(X × S1) hk(X) 0ι∗

The split gives us the isomorphism:

hk(X × S1) ∼= hk(X × S1, X ×D1)⊕ hk(X)

Let us try and find a friendlier way of expressing the relative term.
If d1 ⊂ D1, then let us excise X × d1 ⊂ X × D1 ⊂ X × S1 and obtain the

following isomorphism in every degree:

hk(X × S1, X ×D1) ∼= hk(X × S1\d1, X ×D1\d1)

∼= hk(X ×D1, X × S0)

We may also construct a long exact sequence using this pair:

... hk(X ×D1, X × S0) hk(X ×D1)

hk(X × S0) hk+1(X ×D1, X × S0) ...

For the same reason as before, hk (X × D1) ∼= hk (X ). The map hk (X × D1)
→ hk (X × S0) is induced in part by the inclusion : S0 → D1, additionally,
we have a map hk (X × S0) → hk (X ) induced by the inclusion ιX : X → X ×
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S0. If the following diagram commutes then our long exact sequence will break
down into split small exact sequences:

hk(X ×D1) hk(X)

hk(X × S0)

∼=

(idX×)∗ ι∗X

The composition (idX × ) ◦ ιX is equal to the inclusion of X into X × D1.
Composing or each side with the projection map X × D1 → X yields a map
at least homotopic to the identity on each space so this is the map that induces
our isomorphism, thus the diagram necessarily commutes.

Since f ◦ g being an injection implies that g is an injection and since identities
clearly are, (idX × )* is an injection, thus the maps hk (X × D1, X × S0) →
hk (X × D1) must be zero maps and we obtain a sequence of split short exact
sequences:

0 hk(X ×D1) hk(X × S0) hk+1(X ×D1, X × S0) 0

In the following diagram, since h* is a cohomology theory, the first two vertical
maps must be isomorphisms, we would like to find a map φ such that the
left square will commute, then since the rows are exact, the right square will
commute and hk (X × D1, X × S0) will be isomorphic to the cokernel of φ by
the five lemma:

0 hk(X ×D1) hk(X × S0) hk+1(X ×D1, X × S0) 0

0 hk(X) hk(X)⊕ hk(X) Coker(φ) 0

∼= � ∼= � ∼=

φ

The central isomorphism is due to the fact that X × S0 ∼= X
∐

X, if we define
the maps on spaces as follows:

ι1 : X → X × S0 ι−1 : X → X × S0

x 7→ (x, 1) x 7→ (x,−1)

Then the isomorphism hk (X × S0) → hk (X ) ⊕ hk (X ) is the map I * which is
induced by the inclusions i.e. I *(ξ) = (ι∗1(ξ), ι∗−1(ξ)).

For ξ = (idX × )*(ξ̃), we will have ι∗1(ξ) = ι∗−1(ξ), therefore the sensible
choice for φ in our diagram is the diagonal map, i.e. φ(x ) = (x, x ).

The map hk (X ) ⊕ hk (X ) → Coker(φ) will be the difference map in order
to keep the bottom row exact, therefore Coker(φ) ∼= hk (X ) and we achieve the
result that hk+1(X × D1, X × S0) ∼= hk (X ).

Returning to our first split exact sequence then, we can see the result of all
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these isomorphisms:

hk(X × S1) ∼= hk(X × S1, X ×D1)⊕ hk(X)

∼= hk(X ×D1, X × S0)⊕ hk(X)

∼= hk−1(X)⊕ hk(X)

This is the case in every degree k, but we can make this neater and describe the
whole graded abelian group at once. If z is some degree 1 object, then we can
consider the exterior algebra ΛZ[z ], which as a graded abelian group, has one
copy of Z in degree 0, one copy of Z in degree 1, and is trivial otherwise.

We can safely tensor with a single copy of Z and see that:

hk(X × S1) ∼= hk−1(X)⊗ Z⊕ hk(X)⊗ Z
∼= hk−1(X)⊗ Λ1

Z[z]⊕ hk(X)⊗ Λ0
Z[z]

∼=
∞⊕
i=0

hk−i(X)⊗ ΛiZ[z]

Therefore
h∗(X × S1) ∼= h∗(X)⊗ Λ∗Z[z]

Since Tn is the product of n copies of S1, the graded abelian group h*(X × Tn)
can similarly be described:

h∗(X × Tn) ∼= h∗(X × Tn−1 × S1)

∼= h∗(X × Tn−1)⊗ Λ∗Z[z1]

...

∼= h∗(X)

n⊗
i=1

Λ∗Z[zi]

∼= h∗(X)⊗ Λ∗Z[z1, ..., zn]

where each z i is in degree 1. 4

Naturally, by the homeomorphism pt × X ∼= X, we have for any cohomology
theory that h*(Tn) ∼= h*(pt) ⊗ Λ∗Z[z 1, ..., zn ].

Corollary 44. Let h* be a general cohomology theory and let h̃* be the corre-
sponding reduced cohomology theory defined by h̃*(X ) := h*(X, pt), then for
any CW-complex X :

h̃∗(X × Tn) ∼= h̃∗(X)⊗ Λ0
Z[z1, ..., zn]⊕ h∗(X)⊗ Λ̃∗Z[z1, ..., zn]

where we define Λ̃∗Z[z1, ..., zn] := Λ∗Z[z1, ..., zn]\Λ0
Z[z1, ..., zn] and each z i is in

degree 1.
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Proof. If we have a pointed topological space X with basepoint x 0 and D1 a
closed, connected subset of S1 containing a point z 0 we take to be the base point
of S1, then we may say that (x 0, z 0) is the basepoint of X × S1 and we have
a triple of pointed topological spaces (x 0, z 0) ⊂ X × D1 ⊂ X × S1 and so, as
shown by Hatcher [17], we can construct a long exact sequence:

... hk(X × S1, X ×D1) h̃k(X × S1)

h̃k(X ×D1) hk−1(X × S1, X ×D1) ...

where h̃(X) = h(X, pt).
Again, X × D1 is homotopy equivalent to X and an identical argument to

previously ensures that h̃k(X × S1) → h̃k(X × D1) is a surjection, thus this
long exact sequence splits and for each k :

0 hk(X × S1, X ×D1) h̃k(X × S1) h̃k(X ×D1) 0ι∗

and the split gives us an isomorphism:

h̃k(X × S1) ∼= h̃k(X)⊕ hk(X × S1, X ×D1)

Additionally, we have already determined that hk (X × S1, X × D1) ∼= hk-1(X ),
and so our isomorphism simplifies again:

h̃k(X × S1) ∼= h̃k(X)⊕ hk−1(X)

Once again we can write our isomorphism in terms of exterior algebras:

h̃k(X × S1) ∼= h̃k(X)⊗ Z⊕ hk−1(X)⊗ Z

= h̃k(X)⊗ Λ0
Z[z]⊕ hk−1(X)⊗ Λ̃∗Z[z]

where z is an element of degree 1.
Thus we have

h̃∗(X × S1) ∼= h̃∗(X)⊗ Λ0
Z[z]⊕ h∗(X)⊗ Λ̃∗Z[z]

We need to make quick note of a ring isomorphism by describing its effect on
simple elements, let p(z 1, ..., zn-1) = b1z 1 + b2z 2 + ... + b1, ..., n-1z 1∧...∧zn

be a general element of Λ̃∗Z[z 1, ..., zn-1]:

λ : Λ̃∗Z[zn]⊗ Λ0
Z[z1, ..., zn−1]→ Λ̃∗Z[z1, ..., zn]

⊕Λ∗Z[zn]⊗ Λ̃∗Z[z1, ..., zn−1]

anzn ⊗ a0 ⊕ (b0 + bnzn)⊗ p(z1, ..., zn−1) 7→ a0anzn + b0p(z1, ..., zn−1)

+ bnzn ∧ p(z1, ..., zn−1)
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After which we can investigate products with an arbitrary torus:

h̃∗(X × Tn) ∼= h̃∗(X × Tn−1)⊗ Λ0
Z[z1]⊕ h∗(X × Tn−1)⊗ Λ̃∗Z[z1]

∼= (h̃∗(X × Tn−2)⊗ Λ0
Z[z2]⊕ h∗(X × Tn−2)⊗ Λ̃∗Z[z2])⊗ Λ0

Z[z1]

⊕ (h∗(X × Tn−2)⊗ Λ∗Z[z2])⊗ Λ̃∗Z[z1]

∼= h̃∗(X × Tn−2)⊗ Λ0
Z[z1, z2]

⊕ h∗(X × Tn−2)⊗ (Λ̃∗Z[z2]⊗ Λ0
Z[z1]⊕ Λ∗Z[z2]⊗ Λ̃∗Z[z1])

∼= h̃∗(X × Tn−2)⊗ Λ0
Z[z1, z2]⊕ h∗(X × Tn−2)⊗ Λ̃∗Z[z1, z2]

...

∼= h̃∗(X)⊗ Λ0
Z[z1, ..., zn]⊕ h∗(X)⊗ Λ̃∗Z[z1, ..., zn]

where each z i is in degree 1. 4

With the homeomorphism Tn ∼= pt × Tn and the obvious isomorphism h̃∗(pt)
∼= 0, we achieve the result h̃∗(Tn) ∼= h*(pt) ⊗ Λ̃∗Z[z 1, ..., zn ].

6.4.1 Compatibility with a Natural Transformation

Definition 34. A natural transformation of cohomology theories is a
natural transformation η: h*→ k* which in turn consists of a family of natural
transformations ηn: hn → kn such that the required components commute with
the boundary maps i.e. for each n ∈ Z, pairs of topological spaces (X, A) and
(Y, B), and map of pairs φ: (X, A) → (Y, B):

hn(Y,B) kn(Y,B) hn(A) kn(A)

hn(X,A) kn(X,A) hn+1(X,A) kn+1(X,A)

ηnY,B

φ∗ � φ∗

ηnA

dh � dk

ηnX,A ηn+1
X,A

Lemma 45. For any general cohomology theories h* and k*, natural trans-
formation of cohomology theories η: h* → k*, and topological space X, the
cohomology of the product with a torus construction is compatible with the
natural transformation:

h∗(X × Tn) k∗(X × Tn)

h∗(X)⊗ Λ∗Z[z1, ..., zn] k∗(X)⊗ Λ∗Z[z1, ..., zn]

ηX×Tn

∼= � ∼=

ηX⊗id

Proof. The homeomorphism X × Tn ∼= X × Tn−1 × S1 together with the
isomorphism Λ∗Z[z 1, ..., zn-1] ⊗ Λ∗Z[zn ] ∼= Λ∗Z[z 1, ..., zn ] ensure that we can work
up to higher dimensional torii inductively once we have shown that the following
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diagram commutes:

h∗(X × S1) k∗(X × S1)

h∗(X)⊗ Λ∗Z[z] k∗(X)⊗ Λ∗Z[z]

ηX×S1

∼= � ∼=

ηX⊗id

This diagram will commute if in turn, for each n:

hn(X × S1) kn(X × S1)

hn(X)⊕ hn−1(X) kn(X)⊕ kn−1(X)

ηn
X×S1

∼= � ∼=

ηnX⊕η
n−1
X

We will show that this is the case by examining some exact sequences.
The pair (X × S1, X × D1) induces a long exact sequence in both h* and

k*, the natural transformation of cohomology theories gives us corresponding
components to connect the two sequences:

... hn(X × S1, X ×D1) hn(X × S1) hn(X ×D1) hn+1(X × S1, X ×D1) ...

... kn(X × S1, X ×D1) kn(X × S1) kn(X ×D1) kn+1(X × S1, X ×D1) ...

ηn
X×S1,X×D1 � ηn

X×S1 � ηn
X×D1 � ηn+1

X×S1,X×D1

η being a natural transformation of cohomology theories ensures that every
square in this diagram commutes. The two squares contained within any given
degree commute as the horizontal maps are induced by the two inclusion maps
of pairs (X × S1, ∅) ↪→ (X × S1, X × D1) and (X × D1, ∅) ↪→ (X × S1, ∅) and
the vertical maps are components of a natural transformation, and the squares
between degrees commute as a natural transformation of cohomology theories
requires the relevant components to commute with the boundary maps.

The splitting of these long exact sequences comes from a map on spaces
which together with the fact that X × D1 is homeomorphic to X allows us to
construct a sequence of commutative diagrams by ensuring that every square we
need to construct will still commute by the nature of a natural transformation
of cohomology theories, the excision isomorphism too comes from a homeomor-
phism and a inclusion of pairs and so for each n:

0 hn(X ×D1, X × S0) hn(X × S1) hn(X) 0

0 kn(X ×D1, X × S0) kn(X × S1) kn(X) 0

ηn
X×D1,X×S0 � ηn

X×S1 � ηnX

82



which ensures that the following diagram is commutative:

hn(X × S1) hn(X)⊕ hn(X ×D1, X × S0)

kn(X × S1) kn(X)⊕ kn(X ×D1, X × S0)

∼=

ηn
X×S1 � ηnX⊕η

n
X×D1,X×S0

∼=

Thus all we must do is show that the following diagram holds:

hn(X ×D1, X × S0) hn−1(X)

kn(X ×D1, X × S0) kn−1(X)

∼=

ηn
X×D1,X×S0 � ηn−1

X

∼=

We can start by investigating the long exact sequences of the pair (X × D1, X
× S0), again connected by components of our natural transformation of coho-
mology theories:

... hn(X ×D1, X × S0) hn(X ×D1) hn(X × S0) hn+1(X ×D1, X × S0) ...

... kn(X ×D1, X × S0) kn(X ×D1) kn(X × S0) kn+1(X ×D1, X × S0) ...

ηn
X×D1,X×S0 � ηn

X×D1 � ηn
X×S0 � ηn+1

X×D1,X×S0

Once again the split is induced by a map of spaces and so we achieve a sequence
of commutative diagrams:

0 hn(X ×D1) hn(X × S0) hn+1(X ×D1, X × S0) 0

0 kn(X ×D1) kn(X × S0) kn+1(X ×D1, X × S0) 0

ηn
X×D1 � ηn

X×S0 � ηn+1

X×D1,X×S0

Again, homeomorphisms will generate commutative squares so additionally, the
additivity isomoprhism will make a commutative square and, with an extra
bit of homological algebra and diagram chasing, every square in the following
diagram will commute:

0 hn(X ×D1) hn(X × S0) hn+1(X ×D1, X × S0) 0

0 hn(X) hn(X)⊕ hn(X) hn(X) 0

0 kn(X ×D1) kn(X × S0) kn+1(X ×D1, X × S0) 0

0 kn(X) kn(X)⊕ kn(X) kn(X) 0
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and the diagram we require is the rightmost vertical parallelogram.
Therefore all our previous diagrams do indeed commute and we achieve the

result that:

h∗(X × Tn) k∗(X × Tn)

h∗(X)⊗ Λ∗Z[z1, ..., zn] k∗(X)⊗ Λ∗Z[z1, ..., zn]

ηX×Tn

∼= � ∼=

ηX⊗id

4
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7 Monoidal Categories and Exponential Functors

7.1 Monoidal Categories
Monoidal categories were first introduced under different names independently
by Bénabou and MacLane. The following definition is derived from the work of
Kelly [20] who paired down the coherence conditions of MacLane’s definition to
just the pentagon and triangle identities.

Definition 35. Amonoidal category is a category C equipped with a monoidal
structure which consists of:

• a bifunctor ◦: C × C → C called the monoidal product

• an object I called the unit object

• natural isomorphisms α, λ and ρ called the associator, and the left and
right unitors respectively which together express that up to isomorphism:

• ◦ is associative, α has components αA,B,C : A◦(B◦C ) → (A◦B)◦C
• ◦ has I as a left and right identity, λ and ρ have respective compo-

nents λA: I ◦A → A, and ρA: A◦I → A

• coherence conditions on α, λ and ρ requiring that the following diagrams
commute:

A ◦ (B ◦ (C ◦D)) (A ◦B) ◦ (C ◦D) ((A ◦B) ◦ C) ◦D

A ◦ ((B ◦ C) ◦D) (A ◦ (B ◦ C)) ◦D

αA,B,C◦D

idA◦αB,C,D

αA◦B,C,D

�

αA,B◦C,D

αA,B,C ◦idD

A ◦ (I ◦B) (A ◦ I) ◦B

A ◦B

αA,I,B

idA◦λB
�

ρA◦idB

A strict monoidal category is a monoidal category where the associator and
unitors are identities.

The coherence conditions are satisfied automatically in a strict monoidal
category.

7.1.1 Examples of Monoidal Categories

Consider the category C⊕ that has as objects the set N and collections of mor-
phisms as follows:

HomC⊕(n,m) =

{
U(n), n = m

∅, else

Where U(0) is defined to be the trivial group.
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We may equip this category with a monoidal structure consisting of a bi-
functor ⊕: C⊕ × C⊕ → C⊕ that maps pairs of objects (n, m) to the object
n+m, and maps pairs of morphisms (A, B) where A ∈ U(n), B ∈ U(m) to the
morphism diag(A, B) ∈ U(n+m). 0 is the unit object, and the associator and
unitors are identities.

Now consider the category C⊗ that has as objects the set N and collections
of morphisms as follows:

HomC⊗(n,m) =

{
U((Cd)⊗n), n = m

∅, else

We may equip this category with a monoidal structure consisting of a bifunctor
⊗: C⊗ × C⊗ → C⊗ that maps pairs of objects (n, m) again to the object n+m,
and maps pairs of morphisms (A, B) where A ∈ U((Cd)⊗n), B ∈ U((Cd)⊗m)
to the morphism A⊗B ∈ U((Cd)⊗(n+m)). Again 0 is the unit object, and the
associator and unitors are identities.

7.1.2 Geometric Realisation of the Nerve of Monoidal Categories

As with any category we can construct a topological space |N (C )| for any
monoidal category C , the difference here is that the monoidal structure on C
imbues |N (C )| with the structure of a monoid. Then, since |N (C )| is a monoid,
there exists a category with one object and collection of morphisms |N (C )| with
composition of morphisms defined as in the monoid, and the geometric reali-
sation of the nerve of that category can be taken and will be a model for the
classifying space of |N (C )|.

Let us attempt this on the monoidal categories we have already described.
For i ∈ N, let C⊕i be the category with one object and collection of mor-

phisms U(i). By inspection we can see that C⊕ is the coproduct of all of these
categories:

C⊕ =

∞∐
i=0

C⊕i , and so |N(C⊕)| = |N(

∞∐
i=0

C⊕i)| =
∞∐
i=0

|N(C⊕i)|

Since each C⊕i is a category with one object and morphism space U(i), we
know that |N (C⊕i)| = B(U(i)), the classifying space of the topological group
U(i). Therefore:

|N(C⊕)| =
∞∐
i=0

BU(i)

Since we have the structure of a moniod on |N (C⊕)|, we can again construct
it’s classifying space:

B(|N(C⊕)|) = B(

∞∐
i=0

BU(i))
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We would like to construct a space X such that πi(X ) ∼= πi(B(|N (C⊕)|) for i
≥ 2, and π1(X ) = 0

There is a monoid homomorphism:

ω :

∞∐
i=0

BU(i)→ N

given by ω(E ) = n for E ∈ BU(n), since constructing classifying spaces is a
functor, this map induces a group homomorphism:

Bω : B(

∞∐
i=0

BU(i))→ B(N)

The homotopy fibre of this map Bω will be denoted BBU⊕.

Lemma 46. BBU⊕ is such that πi(BBU⊕) ∼= πi(B(|N (C⊕)|) for i ≥ 2 and
π1(BBU⊕) = 0

Proof. The group homomorphism Bω induces a fibration B̃ω: EBU⊕ → BN
with fibre BBU⊕ where

EBU⊕ := {(a, p) | a ∈ B(

∞∐
i=0

BU(i)), p : [0, 1]→ B(N) such that p(0) = Bω(a)}

BBU⊕ ' {(a, p) ∈ EBU⊕ | B̃ω(a, p) = p(1) = b0 for some b0 ∈ B(N)}

Naturally there is an inclusion ι: BBU⊕ → EBU⊕, but there is also an inclusion
: ΩB(N) → BBU⊕ since ΩB(N) = {(a, p) ∈ BBU⊕ | Bω(a) = p(0) = p(1) =
b0 where b0 is the basepoint of B(N)}

Together with B̃ω, ι and  induce a long exact sequence of topological spaces
which in turn induces a long exact sequence of homotopy groups:

...→ πk+1(B(N))→ πk(BBU⊕)→ πk(EBU⊕)→ πk(B(N))→ πk−1(BBU⊕)→ ...

There is a canonical injection:

φ : B(

∞∐
i=0

BU(i))→ EBU⊕

a 7→ (a, cBω(a))

where cBω(a) is the constant path at Bω(a).
There is a deformation retract of EBU⊕ onto Im(φ) given by:

H : EBU⊕ × I → EBU⊕
((a, p), t) 7→ (a, pt)

where pt : I → B(N) is given by pt(s) = p(s(1 - t)).
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H is indeed a homotopy retract since H ((a, p), 0) = (a, p0) = (a, p) as
p0(s) = p(s) ∀ s ∈ I, H ((a, p), 1) = (a, p1) ∈ Im(φ) as p1(s) = p(0) ∀ s ∈ I
so p1 = cBω(a), and for (a, cBω(a)) ∈ Im(φ), H ((a, cBω(a)), 1) = (a, cBω(a)1)
= (a, cBω(a)) as cBω(a)1(s) = cBω(a)(0) = Bω(a) = cBω(a)(s) ∀ s ∈ I.

Thus since a homotopy retract is a particular case of homotopy equivalence,
EBU⊕ is homotopy equivalent to Im(φ) and since φ is an injection, Im(φ) is
isomorphic to B(|N (C⊕)|), therefore πk(B(|N (C⊕)|)) ∼= πk(EBU⊕) ∀ k.

Additionally, we know

πk(B(N)) = [Sk, B(N)]

= [Sk−1,ΩB(N)]

= [Sk−1,Z]

= πk−1(Z)

=

{
Z, k = 1

0, else

Therefore πk(BBU⊕) ∼= πk(B(|N (C⊕)|)) for k ≥ 2 and we are left with only a
small section of the long exact sequence to untangle:

0→ π1(BBU⊕)→ π1(B(|N(C⊕)|))→ π1(B(N))→ π0(BBU⊕)→ π0(B(|N(C⊕)|))→ 0

The map π1(Bω): π1(B(|N (C⊕)|))→ π1(B(N)) is an isomorphism as it fits into
the following commutative diagram:

π1(B(|N(C⊕)|)) π0(ΩB(|N(C⊕)|)) π0(BU× Z) Z

π1(B(N)) π0(ΩB(N)) π0(Z) Z

π1(Bω)

∼=

�

∼=

�

∼=

� idZ

∼= ∼= ∼=

Therefore, π1(BBU⊕) ∼= 0 and π0(BBU⊕) ∼= π1(B(|N (C⊕)|)) ∼= 0.
Thus BBU⊕ is exactly as we require. 4

Definition 36. Let X i for i ∈ N be objects in some category C and f i ∈
HomC (X i , X i+1) be a sequence of composable morphisms.

If C is a category where the objects are topological spaces perhaps with addi-
tional algebraic structure, and the morphisms are continuous homomorphisms,
the colimit of the sequence X 0 → X 1 → ... X n → ... is the object of C
colim(X 0 → X 1 → ... X n → ...) defined as follows:

colim(X0 → X1 → ...→ Xn → ...) := (

∞∐
i=0

Xi)/ ∼

where for p ∈ X i , q ∈ X j , p ∼ q if f k-1(...(f i(p))...) = f k-1(...(f j (q))...) ∈ X k
for some k ≥ i,j.
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the homotopy colimit of X 0 → X 1 → ... X n → ... is the object ho-
colim(X 0 → X 1 → ... X n → ...) defined as follows:

hocolim(X0 → X1 → ...→ Xn → ...) := (

∞∐
i=0

(Xi × [i, i+ 1]))/ ∼

where for x ∈ X i , (x, i+1) ∼ (f i(x ), i+1).

Lemma 47. If X 0 → X 1 → ... → X n → ... is a sequence of topological spaces
potentially with additional algebraic structures and appropriate continuous ho-
momorphisms, then hocolim(X 0 → X 1 → ... → X n → ...) and hocolim(X 1 →
X 2 → ... → X n → ...) are homotopy equivalent.

Proof. Let us make definitions H 0 := hocolim(X 0 → X 1 → ... → X n → ...)
and H 1 := hocolim(X 1 → X 2 → ... → X n → ...). We need to find continuous
maps f : H 0 → H 1 and g : H 1 → H 0 such that g ◦ f is homotopic to idH 0 and
f ◦ g is homotopic to idH 1 .

If we take H 0 as it is and simply translate H 1 by one unit interval we may
write:

H0 = (

∞∐
i=0

(Xi × [i, i+ 1]))/ ∼ H1
∼= (

∞∐
i=1

(Xi × [i, i+ 1]))/ ∼

where for x ∈ X i , (x, i+1) ∼ (f i(x ), i+1) for all i.
Let g : H 1 → H 0 simply be the inclusion [x, t ] 7→ [x, t ] and let f : H 0 → H 1

be defined as follows:

f([x, t]) :=

{
[f0(x), 1], x ∈ X0,

[x, t], else

f is continuous as [x, 1] = [f 0(x ), 1] for x ∈ X 0 by the equivalence relation.
(f ◦ g)([x,t ]) = f ([x,t ]) = [x,t ] since x /∈ X 0, therefore f ◦ g is equal to idH 1

let alone homotopy equivalent.
The composition g ◦ f however, maps as follows:

(g ◦ f)([x, t]) :=

{
[f0(x), 1], x ∈ X0,

[x, t], else

We need to describe a homotopy between idH 0 and g ◦ f. Let H : H 0 × [0,1] →
H 0 be defined as follows:

H([x, t], s) :=

{
[x, t+ (1− t)s], x ∈ X0,

[x, t], else

Then H ([x,t ],0) = [x,t ] and H ([x,t ],1) = (g ◦ f )([x,t ]) since [x,1] = [f 0(x ),1] for
x ∈ X 0, therefore H is a homotopy from idH 0 to g ◦ f, and thus H 0 and H 1 are
homotopy equivalent. 4
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Corollary 48. If X 0 → X 1 → ... → X n → ... is a sequence of topological
spaces, then hocolim(X 0 → X 1 → ... → X n → ...) and hocolim(X k → X k+1
→ ... → X n → ...) are homotopy equivalent for all k ∈ N.

Proof. Let H i := hocolim(X i → X i+1 → ... → X n → ...). We have already
proven that H 0 is homotopy equivalent to H 1. By a simple relabelling Y j =
X i+j and g j = f i+j for j ∈ N, Y 0 → Y 1 → ... → Y n → ... is a sequence
of algebraic structures and appropriate homomorphisms and therefore we know
that H i = hocolim(Y 0 → Y 1 → ... → Y n → ...) is homotopy equivalent to
H i+1 = hocolim(Y 1 → Y 2 → ... → Y n → ...) for all i ∈ N.

Therefore, via the homotopy equivalences to all homotopy colimits in be-
tween, H 0 is homotopy equivalent to H k for all k ∈ N. 4

Lemma 49. If X 0 → X 1 → ... → X n → ... is a sequence of CW-complexes
and continuous maps, such that f i(X i) is a subcomplex of X i+1 for all i, then
hocolim(X 0 → X 1 → ... → X n → ...) is homotopy equivalent to colim(X 0 →
X 1 → ... → X n → ...).

Proof. Let us write H := hocolim(X 0 → X 1 → ... → X n → ...) and C :=
colim(X 0 → X 1 → ... → X n → ...). We again need to find two continuous
maps f : H → C and g : C → H where g ◦ f is homotopic to idH and f ◦ g is
homotopic to idC .

There is a simple map f : H → C where f ([x,t ]) = [x ]. f is well defined since
[x, i+1] = [f i(x ), i+1] for every x ∈ X i in H, but we clearly have [x ] = [f i(x )]
in C so f is indeed well defined.

A map g : C → H is trickier to produce. 4

Consider the inclusion maps ι: U(n) ↪→ U(n+1) given by ι(X ) = diag(X, 1)
and then the sequence U(0) ↪→ U(1) ↪→ ... ↪→ U(n) ↪→ ...

Let U := colim(U(0) ↪→ U(1) ↪→ ... ↪→ U(n) ↪→ ...). Since each U(n) is a
group and the colimit is a construction by use of homomorphisms, U is also a
group and thus B(U) can be constructed.

The inclusion maps ιn: U(n)→ U(n+1) will induce maps between classifying
spaces B(ιn): BU(n)→ BU(n+1) since B : Mon→ Top is a covariant functor.

Lemma 50. BU = colim(BU(0) → BU(1) → ... → BU(n) → ...)

Proof. 4

We can therefore describe a monoid homomorphism:
∞∐
n=0

B(ιn) :

∞∐
n=0

BU(n)→
∞∐
n=0

BU(n)

and from repeated application of this homomorphism we obtain a sequence and
thus we can construct that sequence’s homotopy colimit H :

H := hocolim(

∞∐
n=0

BU(n)→
∞∐
n=0

BU(n)→ ...) = (

∞∐
i=0

((

∞∐
n=0

BU(n))×[i, i+1]))/ ∼
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where for x ∈
∐∞
j=0BU(j ), (x, i+1) ∼ (

∐∞
j=0B(ιj)(x ), i+1), or equivalently, for

y ∈ BU(n), (y, i+1) ∼ (B(ιn)(y), i+1) for all i ∈ N.
The nature of the disjoint union allows us to rearrange H :

H = (

∞∐
i=0

((

∞∐
n=0

BU(n))× [i, i+ 1]))/ ∼

= (

∞∐
m=0

(

∞∐
j=0

BU(j)× [m+ j,m+ j + 1]) t
∞∐
n=1

(

∞∐
i=0

BU(n+ i)× [i, i+ 1]))/ ∼

=

∞∐
m=0

hocolim(BU(0)→ BU(1)→ ...) t
∞∐
n=1

hocolim(BU(n)→ BU(n+ 1)→ ...)

'
∐
n∈Z

hocolim(BU(0)→ BU(1)→ ...)

'
∐
n∈Z

colim(BU(0)→ BU(1)→ ...) '
∐
n∈Z

BU = BU× Z

By the Group Completion Theorem [25]:

B(

∞∐
i=0

BU(i)) ' B(BU× Z)

and by Harris [16]:

B(

∞∐
i=0

BU(i)) ' U

Now for i ∈ N, let C⊗i be the category with one object and collection of
morphisms U((Cd)⊗i).

As before, C⊗ is the disjoint union of all of these categories and so:

|N(C⊗)| = |N(

∞∐
i=0

C⊗i)| =
∞∐
i=0

|N(C⊗i)| =
∞∐
i=0

BU((Cd)⊗i)

The monoidal structure of C⊗ induces a moniod structure on |N (C⊗)| and thus
we may construct B(|N (C⊗)|)

As in the case with C⊕, we would like to find a space X such that πi(X ) ∼=
πi(B(|N (C⊗)|)) for i ≥ 2, and π1(X ) = 0.

Luckily, the same process as before works identically! There is a monoid
homomorphism:

ψ :

∞∐
i=0

BU((Cd)⊗i)→ N

given by ψ(E ) = n for E ∈ BU((Cd)⊗n), and again, the classifying space con-
struction functor induces a group homomorphism:

Bψ : B(BU((Cd)⊗i))→ B(N)
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The homotopy fibre of this map will be denoted BBU⊗[ 1d ], and has the desired
properties as the codomain of Bψ is B(N) exactly as was the case when we
defined BBU⊕.

For some fixed integer d, consider the map .d : Z → Z given by z 7→ z.d and
then the sequence Z → Z → ... → Z → ...

colim(Z→ Z→ ...→ Z→ ...) ∼= {
p

q
| p ∈ Z, q = dk, k ∈ N} = Z[

1

d
] ⊂ Q

Similarly, for some fixed integer d, let us consider the map (-) ⊗ Id: U((Cd)⊗i)
→ U((Cd)⊗(i+1)) given by A 7→ A ⊗ Id the Kronecker product, and then the
sequence U((Cd)⊗0) → U((Cd)⊗1) → ... → ... U((Cd)⊗n) → ...

We will make the following definition:

U[
1

d
] := colim(U((Cd)⊗0)→ U((Cd)⊗1)→ ...→ ...U((Cd)⊗n)→ ...)

Again, since each U((Cd)⊗n) is a group and the colimit uses homomorphisms
in its construction, U[ 1d ] is also a group and BU[ 1d ] can be constructed.

Analogously to the case of C⊕, by the Group Completion Theorem [25]:

B(|N(C⊗)|) = B(

∞∐
i=0

BU((Cd)⊗i)) ' B(BU[
1

d
]× Z)

and by Harris [16]:

B(

∞∐
i=0

BU((Cd)⊗i)) ' U[
1

d
]

7.1.3 Strict Symmetric Monoidal Categories

Definition 37. A braided monoidal category, as introduced by Joyal and
Street [19], is a monoidal category C together with a natural isomorphism β
called the braiding with components βA,B : A◦B → B◦A satisfying a further
pair of coherence conditions:

A ◦ (B ◦ C) (A ◦B) ◦ C C ◦ (A ◦B)

A ◦ (C ◦B) (A ◦ C) ◦B) (C ◦A) ◦B

(A ◦B) ◦ C A ◦ (B ◦ C) (B ◦ C) ◦A

(B ◦A) ◦ C B ◦ (A ◦ C) B ◦ (C ◦A)

αA,B,C

idA◦βB,C

βA◦B,C

� αC,A,B

αA,C,B βA,C◦idB

α−1
A,B,C

βA,B◦idC

βA,B◦C

� α−1
B,C,A

α−1
B,A,C

idB◦βA,C
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A symmetric monoidal category is a braided monoidal category such
that the braiding satisfies βA,B · βB,A = idA◦B for all objects A, B. In this case,
the two additional coherence conditions imply one another.

A strict symmetric monoidal category is a symmetric monoidal cate-
gory where the associator and unitors are identities, that is a symmetric monoidal
category that is also a strict monoidal category.

We have already seen that C⊕ and C⊗ are strict monoidal categories, to
show they are strict symmetric monoidal categories all we must do is describe
the braidings.

For each pair of objects n, m ∈ obC⊕ we must find a unitary linear trans-
formation βn,m ∈ HomC⊕(n⊕m, m⊕n) such that βn,m ◦βm,n = idn⊕m , and for
every pair of morphisms A ∈ U(n), B ∈ U(m), the following diagram commutes:

n⊕m m⊕ n

n⊕m m⊕ n
A⊕B

βn,m

� B⊕A

βn,m

For any morphism X ∈ U(n+m) let us define:

βn,m(X) :=

(
0 Im
In 0

)
X

(
0 In
Im 0

)
where 0 is the n×m or m×n zero matrix as appropriate.

For A ∈ U(n), B ∈ U(m), this results in the following equation:

βn,m(diag(A,B)) = diag(B,A)

For each pair of objects n, m ∈ obC⊗ we must find a unitary linear trans-
formation βn,m ∈ HomC⊗(n⊗m, m⊗n) such that βn,m ◦ βm,n = idn⊗m , and
for every pair of morphisms A ∈ U((Cd)⊗n), B ∈ U((Cd)⊗m), the following
diagram commutes:

n⊗m m⊗ n

n⊗m m⊗ n
A⊗B

βn,m

� B⊗A

βn,m

In this case βn,m is a unitary linear transformation βn,m: (Cd)⊗(n+m)→ (Cd)⊗(n+m)

defined as follows for vi , wj ∈ Cd for 1 ≤ i ≤ n, 1 ≤ j ≤ m:

βn,m(v1 ⊗ ...⊗ ...vn ⊗w1 ⊗ ...⊗wm) = w1 ⊗ ...⊗ ...wm ⊗ v1 ⊗ ...⊗ vn
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7.2 Exponential Functors
Definition 38. Let C and D be monoidal categories. A monoidal functor
as described by MacLane [22] is a functor F : C → D together with a natural
transformation φ with components φA,B : FA ◦D FB → F (A ◦C B) and a
morphism ψ: ID → F (IC ) which are such that the following diagrams commute:

FA ◦ D(FB ◦ DFC) (FA ◦ DFB) ◦ DFC

FA ◦ DF (B ◦ CC) F (A ◦ CB) ◦ DFC

F (A ◦ C (B ◦ CC)) F ((A ◦ CB) ◦ CC)

αFA,FB,FC

idFA◦DφB,C φA,B◦D idFC

�

φA,B◦CC φA◦CB,C

FαA,B,C

FA ◦ DID FA ◦ DF (IC ) ID ◦ DFB F (IC ) ◦ DFB

FA F (A ◦ C IC ) FB F (IC ◦ CB)

idFA◦Dψ

ρFA � φA,IC and

ψ◦D idFB

λFB � φID ,B

FρA FλB

A monoidal functor is called a strong monoidal functor if the components of
φ and ψ are all isomorphisms, or a strict monoidal functor if the components
of φ and ψ are all the appropriate identity morphisms. An exponential functor
where the components of φ and ψ are not all isomorphisms is called a lax
monoidal functor

Definition 39. Let Vectk be the category whose objects are vector spaces over
the field k and morphisms are linear maps. This category will be donoted Vect
when the field k is understood or arbitrary.

An exponential functor [29] is a monoidal functor F : Vect → Vect that
preserves adjoints (i.e. F (A*) = F (A)*) such that for any vector spaces V and
W, φV,W: F (V⊕W) → F (V)⊗F (W) is a natural isomorphism.

7.2.1 The Determinant

Let VectisoC be the category with complex vector spaces as objects and linear
automorphisms as the only morphisms.

As each morphism of VectisoC can be given as a square matrix, let us deter-
mine whether the determinant is an exponential functor.

Let det : VectisoC → VectisoC map every object to the vector space C and
every morphism A to det(A), then for any two vector spaces V and W we have
det(V⊕W) = C and det(V)⊗det(W) = C ⊗ C ∼= C so the required isomor-
phism has the potential to exist. On morphisms, since A⊕B = diag(A,B) and
det(diag(A,B)) = det(A)det(B), the isomorphism is given as φ: C ⊗ C → C
where φ(α⊗ β) = αβ, thus the determinant is an exponential functor.
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The determinant gives us a clue towards another family of exponential func-
tors.

Any n×n square matrix A is a linear transformation A: V → V for some
n dimensional vector space V with basis {v1, ..., vn}, and thus induces a map
Λn(A): Λn(V) → Λn(V) given by Λn(A)(v1∧...∧vn) = Av1∧...∧Avn . Since
Λn(V) is a 1 dimensional vector space, Av1∧...∧Avn = λ.v1∧...∧vn for some
constant λ and it so happens that λ = det(A).

7.2.2 The Direct Sum of Exterior Powers

For any two vector spaces V and W, there is an isomorphism for each k ∈ N

λk : Λk (V⊕W)→
⊕
i+j=k

Λi(V)⊗ Λj (W)

Each λk can be shown to be an isomorphism by considering what happens on
the basis elements. If V has basis {v1, ..., vn} and W has basis {w1, ..., wm}
then V⊕W has basis {(v1,0), ..., (vn ,0), (0,w1), ..., (0,wm)}, Λi(V) has basis
elements of the form vp1∧...∧vpi where px < py for x < y, Λj (W) has basis
elements of the form wq1∧...∧wqj where qx < qy for x < y and thus Λk (V⊕W)
has basis elements of the form (vp1 ,0)∧...∧(vpi ,0)∧(0,wq1)∧...∧(0,wqj ) where
i+j=k, and px < py & qx < qy for x < y, and

⊕
i+j=k Λi(V)⊗ Λj (W) has

basis elements of the form (0, ..., vp1∧...∧vpi⊗wq1∧...∧wqj , ..., 0).
Clearly if λk maps each basis element (vp1 ,0)∧...∧(vpi ,0)∧(0,wq1)∧...∧(0,wqj )

to the basis element (0, ..., vp1∧...∧vpi⊗wq1∧...∧wqj , ..., 0), then each λk must
be an isomorphism as only (0,0)∧...∧(0,0) can map to (0, ..., 0) and, as we will
demonstrate, the domain and codomain are vector spaces of the same dimension.

dim(V) = n and dim(W) = m so dim(V⊕W) = n+m and

dim(Λk (V⊕W)) =

(
n+m

k

)
dim(

⊕
i+j=k

Λi(V)⊗ Λj (W)) =

k∑
i=0

(
n

i

)(
m

k − i

)

and
(
n+m

k

)
=

k∑
i=0

(
n

i

)(
m

k − i

)
which is a relabelling of the Chu-Vandermonde identity.

However, we have not yet described an exponential functor as Λk (V⊕W) is
not isomorphic to Λk (V) ⊗ Λk (W).

Instead let us consider the functor F : Vect → Vect defined as follows:

F (V) =

∞⊕
k=0

Λk (V)

F (V) is finite dimensional as Λk (V) = 0 for k > dim(V).
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We must show that for any vector spaces V and W we have a natural iso-
morphism φV,W F (V⊕W) → F (V)⊗F (W).

F (V)⊗ F (W) =

∞⊕
i=0

Λi(V)⊗
∞⊕
j=0

Λj (W)

=

∞⊕
i=0

∞⊕
j=0

Λi(V)⊗ Λj (W)

=

∞⊕
k=0

⊕
i+j=k

Λi(V)⊗ Λj (W)

∼=
∞⊕
k=0

Λk (V⊕W), by the isomorphisms λk

= F (V⊕W)

7.2.3 Modification to the Direct Sum of Exterior Powers

Consider the functor G : Vect → Vect defined as follows for some fixed d :

G(V) =

∞⊕
k=0

(Cd)⊗k ⊗ Λk (V)

Again, we can show that for any two vector spaces V and W, there is a natural
isomorphism ψV,W: G(V⊕W) → G(V)⊗G(W)

G(V)⊗G(W) = (

∞⊕
i=0

(Cd)⊗i ⊗ Λi(V))⊗ (

∞⊕
j=0

(Cd)⊗j ⊗ Λj (W))

=

∞⊕
i=0

∞⊕
j=0

(Cd)⊗i ⊗ Λi(V)⊗ (Cd)⊗j ⊗ Λj (W)

∼=
∞⊕
k=0

⊕
i+j=k

(Cd)⊗(i+j ) ⊗ Λi(V)⊗ Λj (W)

=

∞⊕
k=0

(Cd)⊗k ⊗
⊕
i+j=k

Λi(V)⊗ Λj (W)

∼=
∞⊕
k=0

(Cd)⊗k ⊗ Λk (V⊕W), by the isomorphisms λk

= G(V⊕W)
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7.3 The Effect of Exponential Functors on Vector Bundles
Let p: E → X be a vector bundle with fibre V and let F : C⊕ → C⊗ be an
exponential functor between the categories C⊕ and C⊗ as described previously.

Let us write BC⊕ = |N (C⊕)| and BC⊗ = |N (C⊗)|, then [X, BC⊕], the
set of homotopy classes of maps from X to BC⊕ is in bijection with the set
of isomorphism classes of vector bundles over X, and similarly, [X, BC⊗] is in
bijection with the set of isomorphism classes of rank dn vector bundles over X
for some n and fixed d ∈ N.

Since the nerve and geometric realisation act functorially, F induces a map
BF : BC⊕ → BC⊗ which in turn induces a map BF◦ -: [X, BC⊕]→ [X, BC⊗]
and thus for any vector bundle over X we can construct another vector bundle
over X by means of any exponential functor. Essentially, for any vector bundle
p: E → X, this map sends each fibre p-1(x ) for x ∈ X, to F (p-1(x )). Let us see
how the total space E is transformed by this map.

Let the vector bundle p: E → X have fibre V. For each x ∈ X, ∃ an open
neighbourhood U ⊂ X of x such that ∃ a homeomorphism φ: E |U → U × V
such that:

E|U U ×V

U

φ

p
�

πU

Let I be an indexing subset of X so that the open neighbourhoods as described
above U i for i ∈ I ⊂ X form a cover of X, let φi be the corresponding homeo-
morphism for each i.

The map π below is a clear trivial vector bundle which can clearly be trans-
formed by the exponential functor F :

π :
∐
i∈I

(U i ×V)→
∐
i∈I

U i

There are also equivalence relations to compare π with p:∐
i∈I(U i ×V) E

∐
i∈I U i X

π

∼E

p

∼X

where, for (i, x ), (j, y) ∈
∐
i∈IU i , (i, x ) ∼X (j, y) iff x = y, and for (i, x, v),

(j, y, w) ∈
∐
i∈I(U i × V), (i, x, v) ∼E (j, y, w) iff x = y and (φj◦φi

-1)(x, v)
= (x, w).

φj◦φi
-1: (U i ∩ U j ) × V → (U i ∩ U j ) × V is a homeomorphism such that

(φj◦φi
-1)(x, v) = (x, φji(x )v) where φji : U i ∩ U j → U(V). It is clear that this

homeomorphism can be written in this form as the φ homeomorphisms take our
point (x, v) into and out of the fibre over x and both must respect projection
to the first component. In addition, since this is a homeomorphism, there is
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a unitary matrix based on x, φji(x ) that under this homeomorphism, linearly
transforms the fibre V.

It is clear that ∼X is an equivalence relation since equality of the first entries
is an equivalence relation. However, we must check that ∼E is an equivalence
relation too.

Reflexivity: (i, x, v) ∼E (i, x, v) iff x = x and (φi◦φi
-1)(x, v) = (x, v).

These conditions hold as φi is a homeomorphism and thus composing with it’s
inverse is equal to the appropriate identity. We have φii = Irank(V).

Transitivity: if (i, x, v) ∼E (j, y, w) and (j, y, w) ∼E (k, z, u) then (i, x, v)
∼E (k, z, u), true iff x = z and (φk◦φi

-1)(x, v) = (z, u).
We know that x = y and y = z so x = z since equality is an equivalence

relation. We also know that (φj◦φi
-1)(x, v) = (y, w) and (φk◦φj

-1)(y, w) = (z,
u) so (φk◦φj

-1)((φj◦φi
-1)(x, v)) = (z, u) thus (φk◦φj

-1◦φj◦φi
-1)(x, v) = (z, u)

and since φj is a homeomorphism we have (φk◦φi
-1)(x, v) = (z, u) as required.

We have φkjφji = φki .
Symmetry: if (i, x, v) ∼E (j, y, w) then (j, y, w) ∼E (i, x, v), true iff y =

x and (φi◦φj
-1)(y, w) = (x, v).

Clearly if x = y then y = x since equality is an equivalence relation, the
second condition follows from reflexivity and transitivity. We would like to show
that (φj◦φi

-1)((φi◦φj
-1)(x, v) = (x, v) and so:

(φj ◦ φi
-1)((φi ◦ φj

-1)(x,v)) = (φj ◦ φi
-1)(x, φijv)

= (x, φjiφijv)

by transitivity, we have φjiφij = φjj and by reflexivity φjj = Irank(V) and we
achieve the required result.

Let us finally apply our exponential functor F and use this information to
construct a new total space for a vector bundle over X.

We can imediately apply F to π to obtain a vector bundle

F (π) :
∐
i∈I

(U i × F (V))→
∐
i∈I

U i

Lets see if we can’t apply an equivalence relation on this vector bundle to
obtain a vector bundle over X we can call F (p).

For brevity, let us write ψij := F (φij )
For (i, x, v), (j, y, w) ∈

∐
i∈I(U i × F (V)) we will construct an equivalence

relation ∼ where (i, x, v) ∼ (j, y, w) iff x = y and ψji(x )v = w.
The functoriality of F ensures that ∼ is an equivalence relation:
Reflexivity: (i, x, v) ∼ (i, x, v) as x = x and ψii(x )v = F (φii)(x )v =

F (Irank(V))v = Irank(F(V))v = v.
Transitivity: if (i, x, v) ∼ (j, y, w) and (j, y, w) ∼ (k, z, u) then x = y = z

=⇒ x = z since equality is an equivalence relation and ψkj (x)(ψji(x )v) = u and
ψkj (x)(ψji(x )v) = (ψkj (x)◦ψji(x ))v = (F (φkj (x ))◦ F (φji(x ))v = F (φkj (x)◦φji(x ))v
= F (φki(x ))v = ψki(x )v and so ψki(x )v = u so (i, x, v) ∼ (k, z, u) as required.
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Symmetry: if (i, x, v) ∼ (j, y, w) then (j, y, w) ∼ (i, x, v) as x = y =⇒
y = x and since ψji(x )v = w, ψij (x )◦ψji(x )v = ψii(x )v by transitivity and
ψii(x )v = Irank(F(V))v = v as required by reflexivity.

Then we have a vector bundle over X with fibre F (V) we can call F (p):

F (p) : (
∐
i∈I

(U i × F (V)))/ ∼ → X
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8 Segal’s Category and Γ-spaces
The aim of this chapter is to ensure that we can construct cohomology theories
from strict symmetric monoidal categories. We need to enlist the help of a
strange but useful category introduced, unsurprisingly, by Segal in Categories
and Cohomology Theories [32].

Definition 40. Segal’s category is a category Γ, but for our purposes it
will be more beneficial to describe the opposite category Γop whose objects are
pointed sets of the form [n]* = {0, 1, ..., n} for n ∈ N where 0 is the basepoint
and morphisms are pointed maps f : [n]* → [m]* such that f (0) = 0.

A Γ-set is a covariant functor X : Γop→ Set* such that X ([0]*) is isomorphic
to [0]* and X ([n]*) is isomorphic to X ([1]*)n , a Γ-space is a covariant functor
Y : Γop → Top* such that Y ([0]*) is homotopy equivalent to ∆0 and Y ([n]*)
is homotopy equivalent to Y ([1]*)n , and a Γ-category is a covariant functor
Z : Γop → Cat* such that Z ([0]*) is equivalent to [0] and Z ([n]*) is equivalent
to Z ([1]*)n .

In addition there is a contravariant functor ∆→ Γop that sends each object
[n] to [n]* as one would expect, and sends each order preserving map f : [n] →
[m], to the pointed map f *: [m]* → [n]* defined as follows:

f∗(i) :=

{
min{j ∈ [n] | f(j) = i}, f−1(i) 6= ∅
0, else

f * is pointed as either f (0) = 0, in which case 0 ∈ f -1(0) and must be the
minimum, or f (0) ≥ 0, and thus f (i) ≥ 0 since f is order preserving, and thus
f -1(0) = ∅, therefore we must have f *(0) = 0 in both cases.

The morphisms of ∆ are generated by the monomorphisms δn,i and the
epimorphisms σn,i, we can easily describe the images of these morphisms by
our contravariant functor ∆ → Γop.

The monomorphisms δn,i: [n-1] → [n] such that (δn,i)-1(i) = ∅ are sent to
pointed maps δn,i: [n]* → [n-1]* given by:

δn,i(j) =


j, j < i

0, j = i

j − 1, j > i

The epimorphisms σn,i: [n+1] → [n] such that |(σn,i)-1(i)| = 2 are sent to
pointed maps σn,i: [n]* → [n+1]* given by:

σn,i(j) =

{
j, j ≤ i
j + 1, j > i

If X is an established Γ-set, Γ-space or Γ-category, we will say the simplicial
set, space, or category X , to mean the functor X precomposed with this
functor ∆→ Γop.
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Lemma 51. If X is a Γ-space, then the functors X
′

n defined as X
′

n([m]*) =
X ([m]* ∨ [n]*) and BX defined as BX ([n]*) = |X

′

n| are also Γ-spaces.

Proof. It must be shown thatX
′

n([0]*) is homotopy equivalent to ∆0 andX
′

n([m]*)
is homotopy equivalent to X

′

n([1]*)m ∀ n ∈ N.
[n]* ∨ [m]* = ([n]* × [m]*)/∼ where (i, 0) ∼ (0, 0) ∼ (0, j ), for all i ∈ [n]*,

j ∈ [m]* therefore [n]* ∨ [m]* ∼= [nm]*
For all n ∈ N X

′

n([0]*) = X ([0]* ∨ [n]*) ∼= X ([0]*) ' ∆0 since X is a Γ-space
thus the first requirement holds.

X
′

n([m]*) = X ([m]* ∨ [n]*) ∼= X ([mn]*) ' X ([1]*)mn since X is a Γ-space,
and X

′

n([1]*)m = X ([1]* ∨ [n]*)m ∼= X ([n]*)m ' (X ([1]*)n)m = X ([1]*)mn ,
therefore the second requirement holds and thus X

′

n is a Γ-space ∀ n ∈ N.
Now for BX. BX ([0]*) = |X

′

0| where X
′

0 is the simplicial space X
′

0. We must
first investigate the Γ-space X

′

0. For n ∈ N, X ′0([n]*) = X ([n]* ∨ [0]*) ∼= X ([0]*)
' ∆0. For any f : [n]* → [m]*, we have:

X
′

0([n]∗) X
′

0([m]∗)

X([0]∗) X([0]∗)

∆0 ∆0

X
′
0(f)

∼= � ∼=

X(id[0]∗ )

' � '

id∆0

That is, each X
′

0(f) is homotopic to id∆0

As a simplicial space X
′

0 also sends each object [n] of ∆ to X ([0]*) ' ∆0

and each morphism f : [n] → [m] to a map homotopic to id∆0

|X
′

0| = (

∞∐
i=0

X
′

0([i])×∆i)/ ∼

∼= (

∞∐
i=0

X([0]∗)×∆i)/ ∼

' (

∞∐
i=0

∆0 ×∆0)/ ∼

' ∆0 ×∆0

∼= ∆0

Thus BX ([0]*) = |X
′

0| ' ∆0 as required
BX ([n]*) = |X

′

n| where X
′

n is the simplicial space X
′

n, we would like to show
that this space is homotopy equivalent to BX ([1]*)n = |X

′

1|n where X
′

1 is the
simplicial space X

′

1 [13] 4
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8.1 Constructing a Γ-category from a Strict Symmetric
Monoidal Category

Definition 41. Based on notes by Freed [13], if C is a strict symmetric monoidal
category, let us construct a covariant functor C Γ: Γop → Cat*, where C Γ([n]*)
is defined to be the category with objects (c, ρ) where c: P([n]*)*→ obC is an
assignment to an object of C for every pointed subset of [n]* and ρ is a natural
transformation with components that are isomorphisms ρP,Q: c(P) ⊗ c(Q) →
c(P ∨ Q) for P, Q ⊆ [n]* such that P ∩ Q = {0}, and morphisms f : (c, ρ) →
(c’, ρ’) are a set of morphisms {f R ∈ HomC (c(R), c’(R)) | R ⊆ [n]*} such that
for P ∩ Q = {0} the following diagram commutes:

c(P )⊗ c(Q) c(P ∨Q)

c′(P )⊗ c′(Q) c′(P ∨Q)

ρP,Q

fP⊗fQ � fP∨Q

ρ′P,Q

we further require that for all objects (c, ρ) of any of the categories C Γ([n]*):

• c({0}) = I, the unit object of C ,

• the isomorphism ρ{0},P : c({0}) ⊗ c(P) → c({0} ∨ P) must be equal to
idc(P) for all pointed subsets P ⊆ [n]*

• for P, Q, R ⊆ [n]* such that P ∩ Q ∩ R = {0}, the following diagrams
must commute:

c(P )⊗ c(Q) c(Q)⊗ c(P )

c(P ∨Q)

βc(P ),c(Q)

ρP,Q
� ρQ,P

c(P )⊗ c(Q)⊗ c(R) c(P ∨Q)⊗ c(R)

c(P )⊗ c(Q ∨R) c(P ∨Q ∨R)

ρP,Q⊗idc(R)

idc(P )⊗ρQ,R � ρP∨Q,R

ρP,Q∨R

If HomC (I, I ) is not a group under composition of morphisms, then we further
need to require that for all morphisms f in any of the categories C Γ([n]*), f {0}
= idI . If HomC (I, I ) is a group under composition of morphisms, then this
condition is met automatically since we require f⊗2

{0} = f {0} ◦ f {0} = f {0} and
if f {0} is an isomorphism then we have:

f{0} ◦ f{0} ◦ f−1
{0} = f{0} ◦ f−1

{0}

f{0} = idI
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The identity morphism of an object (c, ρ) in C Γ([n]*) is the morphism id(c,ρ) =
{idc(P) ∈ HomC (c(P), c(P)) | P ⊆ [n]*} where every component is the identity
on it’s respecive object.

Composition of morphisms is defined piecewise on components. If f ∈
HomCΓ([n]*)((c, ρ), (c’, ρ’)) and g ∈ HomCΓ([n]*)((c’, ρ’), (c”, ρ”)) then g ◦
f = {gP ◦ f P : c(P) → c”(P) | P ⊆ [n]*}.

Since C is a category, composing with an identity morphism on either side
yields the morphism we started with, composing several morphisms with the
relevant appropriate morphisms at once will behave exactly the same way. For
any morphism f : (c, ρ) → (c’,ρ’), f ◦ id(c, ρ) = f = id(c’,ρ’) ◦ f as f P ◦ idc(P)=
f P = idc’(P) ◦ f P for each P ⊆ [n]*.

Similarly, appropriate composition of morphisms in C is associative so si-
multaneously composing morphisms piecewise is also associative. For any f : (c,
ρ) → (c’, ρ’), g : (c’, ρ’) → (c”, ρ”), and h: (c”, ρ”) → (c” ’, ρ” ’), (h ◦ g) ◦ f =
h ◦ (g ◦ f ) as (hP ◦ gP ) ◦ f P = hP ◦ (gP ◦ f P ) for all P ⊆ [n]*.

Ensuring that this structure does in fact define a Γ-category will be tanta-
mount in proving that strict symmetric monoidal categories induce cohomology
theories.

The following theorem is a fleshing out of the work by Freed [13]

Theorem 52. If C is a strict symmetric monoidal category, then C Γ is a Γ-
category and |N (C Γ)| is a Γ-space.

Thus we may construct a reduced cohomology theory h∗C with a sequence of
functors hkC : Top* → AbGrp defined as follows since C Γ([1]*) ∼= C :

hkC (X) :=

{
[X,Ω(−k+1)B|N(C )|], k ≤ 0

[X,B(k)|N(C )|], k > 0

Proof. To show that C Γ is a Γ-category, we need to show that C Γ([0]*) ∼= [0],
and to show that the reduced cohomology is as we say it is, we need to show
that C Γ([1]*) ∼= C .

To show either equivalence, we must first investigate the objects and mor-
phisms in the categories C Γ([0]*) and C Γ([1]*).

Objects in C Γ([0]*) are pairs (c, ρ) where c: P([0]*)* → obC is required to
satisfy c({0}) = I, and ρ is a natural transformation with only one component
since there is only one pair P, Q ⊆ [0]* with P ∩ Q = {0} and we require
ρ{0},{0} = idc({0}) = idI .

Thus since there are no other pointed subsets of [0]*, c is required to be the
map to the unit object, and ρ must have a single component that is required to
be the identity, the category C Γ([0]*) has only one object (cI , ρidI ).

Since there is only one object, we only need to examine one collection of
morphisms HomCΓ([0]*)((cI , ρidI ), (cI , ρidI )). Morphisms in C Γ([0]*) are de-
fined to be sets of morphisms {f R ∈ HomC (cI (R), cI (R)) | R ⊆ [0]*} such that
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the following diagram commutes for P ∩ Q = {0}:

cI(P )⊗ cI(Q) cI(P ∨Q)

cI(P )⊗ cI(Q) cI(P ∨Q)

ρP,Q

fP⊗fQ � fP∨Q

ρP,Q

and since there is only one pointed subset of [0]*, the morphisms f ∈HomCΓ([0]*)((cI ,
ρidI ), (cI , ρidI )) are sets containing one morphism f {0} ∈ HomC (I, I ) such that:

I ⊗ I I

I ⊗ I I

idI

f{0}⊗f{0} � f{0}

idI

By hook (if every morphism in HomC (I, I ) is an isomorphism) or by crook
(forcing it through the definition) f {0} = idI for any morphism, so the category
C Γ([0]*) has only a single morphism id(cI , ρidI ) where id(cI , ρidI ), {0} = idI .

Since both C Γ([0]*) and [0] are cateogries with only one object and only one
morphism, any functor one could construct between them must be full, faithful,
and essentially surjective on objects, and thus C Γ([0]*) ∼= [0].

Now to examine C Γ([1]*). Again objects are pairs (c, ρ) where c: P([1]*)*
→ obC and ρ is a natural transformation, but now we have a bit more freedom.
c({0}) is still required to be I but we now have another pointed subset of [1]*
and we can let c({0, 1}) be any object we like in C , ρ however is still fixed as
we require ρ{0},{0} = idI , and ρ{0},{0,1} = ρ{0,1},{0} = idc({0,1}). Let (cX , ρid)
denote the object where c({0, 1}) = X, we can see that the objects of C Γ([1]*)
are all of the form (cX , ρid) for X ∈ obC .

Morphisms f ∈ HomCΓ([1]*)((cX , ρid), (cY , ρid)) must consist of a pair of
morphisms (f {0}, f {0,1}) where f {0} ∈ HomC (I, I ), and f {0,1} ∈ HomC (X, Y )
such that the following diagrams all commute:

I ⊗ I I I ⊗X X X ⊗ I X

I ⊗ I I I ⊗ Y Y Y ⊗ I Y

idI

f{0}⊗f{0} � f{0}

idX

f{0}⊗f{0,1} � f{0,1}

idX

f{0,1}⊗f{0} � f{0,1}

idI idY idY

As we have already seen, either the commutativity of the first diagram or an ad-
ditional requirement ensures that for every morphism f in the category C Γ([1]*),
f {0} = idI . Since C is a strict symmetric monoidal category, the unitors are
identities and so idI ⊗ φ = φ ⊗ idI = φ for any morphism φ in the cate-
gory C . For any morphism φ ∈ HomC (X, Y ), let (φ) denote the morphism in
HomCΓ([1]*)((cX , ρid), (cY , ρid)) where (φ){0,1} = φ. Again, we can see that
all morphisms in C Γ([1]*) are of the form (φ) for some morphism φ in C . To
ensure that C Γ([1]*) is a category, the identities are given by id(cX , ρid) = (idX )
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and the composition law is given by g ◦ f = (g{0} ◦ f {0}, g{0,1} ◦ f {0,1}) = (idI,
g{0,1} ◦ f {0,1}) = (g{0,1} ◦ f {0,1})

To show the equivalence C Γ([1]*) ∼= C we need to construct a functor that
is full, faithful, and essentially surjective on objects. This is not very difficult
as we can use the following functor:

E : C Γ([1]∗)→ C

(c, ρ) 7→ c({0, 1})
f 7→ f{0,1}

Clearly, for any object X ∈ obC , the object (cX , ρid) ∈ obC Γ([1]*) is such that
E ((cX , ρid)) = X so E is essentially surjective on objects.

Now to show that the map E*: HomCΓ([1]*)((c, ρ), (c’, ρ’)) → HomC (E ((c,
ρ)), E ((c’, ρ’))) is injective and surjective for all objects (c, ρ), (c’, ρ’) ∈
ob(C Γ([1]*)).

Surjectivity is easy. For any morphism φ ∈ HomC (c({0,1}), c’({0,1})),
clearly the morphism (φ) ∈ HomCΓ([1]*)((c, ρ), (c’, ρ’)) is such that E ((φ))
= φ as E ((φ)) = (φ){0,1} = φ. Since the objects were arbitrary, this map is
surjective for any objects and our functor is full.

For injectivity we need to show that if E (f ) = E (g) then f = g. If E (f ) =
E (g) then f {0,1} = g{0,1} = ψ let’s say, then f = (idI , ψ) = g, thus our map is
injective and thus our functor is faithful.

Therefore C Γ([1]*) ∼= C .
To show that C Γ is a Γ-category, all that is left to show is that C Γ([n]*) ∼=

(C Γ([1]*))n ∼= C n for each n.
Objects (c, ρ) of the category C Γ([n]*) can be determined up to isomorphism

by the images under c of the pointed subsets {0, 1}, ..., {0, n} ⊆ [n]*. The
coherence conditions ensure that, for any two objects (c, ρ), (c’, ρ’) are such
that c({0, i}) = c’({0, i}) ∀ i ∈ {1, ..., n}, if P = {0, p1, ..., pk} ⊆ [n]*, we
have:

c(P ) ∼= c({0, p1})⊗ ...⊗ ...c({0, pk})
∼= c′({0, p1})⊗ ...⊗ ...c′({0, pk})
∼= c′(P )

A morphism f ∈ HomCΓ([n]*)((c, ρ), (c’, ρ’)) is a set {f R: c(R) → c’(R) | R ⊆
[n]*}, and due to the required coherence conditions, unlike objects, f is uniquely
determined by the maps f {0,1}, ..., f {0,n} as for P = {0, p1, ..., pk}, f P will
have to be the morphism in C such that the following diagram commutes:

c({0, p1})⊗ ...⊗ c({0, pk}) c(P )

c′({0, p1})⊗ ...⊗ c′({0, pk}) c′(P )

∼=

f{0,p1}⊗...⊗f{0,pk} � fP

∼=
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Let us construct a functor:

E : C Γ([n]∗)→ C n

(c, ρ) 7→ (c({0, 1}), ..., c({0, n}))
f 7→ (f{0,1}, ..., f{0,n})

It’s easy to show that E is full and faithful. Let (c, ρ) and (c’, ρ’) be any two
objects in C Γ([n]*). We need to show that the map E*: HomCΓ([n]*)((c, ρ),
(c’, ρ’)) → HomCn(E ((c, ρ)), E ((c’, ρ’))) is both injective and surjective.

If f, g ∈ HomCΓ([n]*)((c, ρ), (c’, ρ’)) are such that E (f ) = E (g), then (f {0,1},
..., f {0,n}) = (g{0,1}, ..., g{0,n}), therefore f {0,i} = g{0,i} for all i ∈ {1, ..., n},
and since we have seen that a morphism is uniquely determined by exactly these
maps, f = g and thus the map E* is injective and the functor E is faithful.

Surjectivity is even easier, if (φ1, ..., φn) ∈ HomCn(E ((c, ρ)), E ((c’, ρ’))),
then φi ∈ HomC (c({0, i}), c’({0, i})) for each i, and so there exists a morphism
φ ∈ HomCΓ([n]*)((c, ρ), (c’, ρ’)) where φ{0,i} = φi for each i and we see that
E (φ) = (φ1, ..., φn), thus E* is surjective and E is full.

Finally we can easily show that E is essentailly surjective on objects. For any
object (X 1, ..., X n) ∈ ob(C n), let (c, ρ) be any object in C Γ([n]*) where c({0,
i}) = X i for each i, then E ((c, ρ)) = (X 1, ..., X n) and thus E is, better than
essentially, exactly surjective on objects. Notice that (c, ρ) is not necessarily
unique, this is a good example of an equivalence where the mapping of objects
is not injective.

Since E is full, faithful, and essentially surjective on objects, we have an
equivalence C Γ([n]*) ∼= C n ∼= C Γ([1]*)n .

Finally we need to show that C Γ: Γop → Cat* is a covariant functor, we
already have an appropriate mapping of objects, we just need to construct a
functor between appropriate cateogries for each morphism in Γop.

A morphism in Γop is a pointed map between pointed sets f : [n]* → [m]*,
that is a map of sets with no conditions but for one: that f (0) = 0.

Let us define a mapping of objects and morphisms C Γ(f ) and then prove
that it defines a functor:

C Γ(f) : C Γ([n]∗)→ C Γ([m]∗)

(c, ρ) 7→ (C Γ(f)c,C Γ(f)ρ)

φ 7→ C Γ(f)φ

Let us define a mapping of power sets:

f∗ : P([m]∗)∗ → P([n]∗)∗

P 7→ {i ∈ [n]∗ | f(i) ∈ P\{0}} ∪ {0}

By definition, for all pointed subsets P ⊆ [m]*, 0 ∈ f *(P) ⊆ [n]* and thus this
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map is well defined. Then for any pointed sets P, Q ⊆ [m]* we define:

C Γ(f)c : P([m]∗)∗ → C

P 7→ c(f∗(P ))

C Γ(f)ρP,Q = ρf∗(P ),f∗(Q)

C Γ(f)φP = φf∗(P )

It is not too difficult show that if (c, ρ) is an object of C Γ([n]*) then (C Γ(f )c,
C Γ(f )ρ) is an object of C Γ([m]*).

f *({0}) = {0} so C Γ(f )c({0}) = c({0}) = I.
For any pointed subsets P, Q ⊆ [n]* with P ∩ Q = {0}, ρP,Q an isomorphism

and ρ{0},P = idc(P), so if we can show that for any pointed subsets R, S ⊆ [m]*
with R ∩ S = {0}, that f *(R) ∩ f *(S ) = {0}, then necessarily, C Γ(f )ρR,S
= ρf∗(R),f∗(S) is well defined and is is an isomorphism and C Γ(f )ρ{0},R =
ρf∗({0}),f∗(R) = ρ{0},f∗(R) = idc(f *(R)).

Let R, S ⊆ [m]* with R ∩ S = {0}. f *(R) = {i ∈ [n]* | f (i) ∈ R\{0}} ∪
{0}. Since R\{0} ∩ S\{0} = ∅, {i ∈ [n]* | f (i) ∈ R\{0}} ∩ {i ∈ [n]* | f (i)
∈ S\{0}} = ∅ since f is a mapping of sets, no i ∈ [n]* exists such that f (i) ∈
R\{0} and f (i) ∈ S\{0}, thus since we add 0 into both, f *(R) ∩ f *(S ) = {0}
as required.

Since (c, ρ) is an object of C Γ([n]*), the coherence diagrams will commute
for any pointed subsets of [n]*, so since for any pointed subset P ⊆ [m]*, f *(P)
is a pointed subset of [n]*, for any pointed subsets P, Q, R ⊆ [m]* with P ∩ Q
∩ R = {0}, the following diagrams are required to commute:

c(f∗(P ))⊗ c(f∗(Q)) c(f∗(Q))⊗ c(f∗(P ))

c(f∗(P ) ∨ f∗(Q))

c(f∗(P ))⊗ c(f∗(Q))⊗ c(f∗(R)) c(f∗(P ) ∨ f∗(Q))⊗ c(f∗(R))

c(f∗(P ))⊗ c(f∗(Q) ∨ f∗(R)) c(f∗(P ) ∨ f∗(Q) ∨ f∗(R))

βc(f∗(P )),c(f∗(Q))

ρf∗(P ),f∗(Q)
� ρf∗(Q),f∗(P )

ρf∗(P ),f∗(Q)⊗idc(f∗(R))

idc(f∗(P ))⊗ρf∗(Q),f∗(R) � ρf∗(P )∨f∗(Q),f∗(R)

ρf∗(P ),f∗(Q)∨f∗(R)

Since C Γ(f )c(P) = c(f *(P)) and C Γ(f )ρP,Q = ρf∗(P ),f∗(Q) for any pointed
subsets P, Q ⊆ [m]* with P ∩ Q = {0}, these are almost exactly the diagrams
we need to commute, once we show that C Γ(f )c(P ∨ Q) = c(f *(P) ∨ f *(Q))
for any pointed subsets P, Q ⊆ [m]* with P ∩ Q = {0} we will be done.
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C Γ(f )c(P ∨ Q) = c(f *(P ∨ Q)). Since P ∩ Q = {0},

P ∨Q = P\{0} ∪Q\{0} ∪ {0}
=⇒ f∗(P ∨Q) = f∗(P\{0} ∪Q\{0} ∪ {0})

= {i ∈ [n]∗ | f(i) ∈ P\{0} ∪Q\{0}} ∪ {0}
= {i ∈ [n]∗ | f(i) ∈ P\{0}} ∪ {i ∈ [n]∗ | f(i) ∈ Q\{0}} ∪ {0}
= f∗(P ) ∨ f∗(Q)

since P ∩ Q = {0} =⇒ f *(P) ∩ f *(Q) = {0}.
Therefore (C Γ(f )c, C Γ(f )ρ) is indeed an object in C Γ([m]*).
We need to also check that we have a valid mapping of morphisms. If φ: (c,

ρ)→ (c’, ρ’) is a morphism in C Γ([n]*) we need to show that C Γ(f )φ: (C Γ(f )c,
C Γ(f )ρ)→ (C Γ(f )c’, C Γ(f )ρ’) is a morphism in C Γ([m]*) for any morphism f :
[n]* → [m]* in Γop.

φ = {φP : c(P) → c’(P) | P ⊆ [n]*} such that φ{0} = idI and for pointed
subsets P, Q ⊆ [n]* with P ∩ Q = {0}:

c(P )⊗ c(Q) c(P ∨Q)

c′(P )⊗ c′(Q) c′(P ∨Q)

ρP,Q

φP⊗φQ � φP∨Q

ρ′P,Q

C Γ(f )φP = φf∗(P ) so C Γ(f )φP : c(f *(P))→ c’(f *(P)) and since C Γ(f )c(P)
is defined to be c(f *(P)), therefore C Γ(f )φP : C Γ(f )c(P) → C Γ(f )c’(P) as
required and we can see that the following diagram commutes:

c(f∗(P ))⊗ c(f∗(Q)) c(f∗(P ) ∨ f∗(Q))

c′(f∗(P ))⊗ c′(f∗(Q)) c′(f∗(P ) ∨ f∗(Q))

ρf∗(P ),f∗(Q)

φf∗(P )⊗φf∗(Q) � φf∗(P )∨f∗(Q)

ρ′f∗(P ),f∗(Q)

We have already checked that f *(P) ∨ f *(Q) = f *(P ∨ Q) so the diagram we
require does in fact commute. Since we have also checked that f *({0}) = {0},
C Γ(f )φ{0} = φ{0} = idI , C Γ(f )φ is indeed a valid functor in C Γ([m]*).

The identity morphisms of C Γ([n]*) are the morphisms id(c,ρ) where id(c,ρ)P
= idc(P). C Γ(f )id(c,ρ),P = id(c,ρ),f *(P) = idc(f *(P)) = idCΓ(f )c(P) for any pointed
subset P ⊆ [m]* therefore C Γ(f ) preserves identities.

Finally we must show that if φ ∈ HomCΓ([n]*)((c1, ρ1), (c2, ρ2)) and ψ ∈
HomCΓ([n]*)((c2, ρ2), (c3, ρ3)), then C Γ(f )(ψ ◦ φ) = C Γ(f )ψ ◦ C Γ(f )φ. For
every pointed subset P ⊆ [n]* and Q ⊆ [m]*

(ψ ◦ φ)P = ψP ◦ φP
C Γ(f)(ψ ◦ φ)Q = (ψ ◦ φ)f∗(Q)

= ψf∗(Q) ◦ φf∗(Q)

= C Γ(f)ψf∗(Q) ◦ C Γ(f)φf∗(Q)
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Therefore C Γ(f ) preserves composition, and is thus a functor as expected.
To ensure C Γ is a functor, we need to check that the mapping C Γ: Γop →

Cat* also preserves identities and composition.
The morphism id[n]*: [n]* → [n]* sends each element of [n]* to itself, we

need to show that C Γ(id[n]*) is the identity functor on the category C Γ([n]*).
To do so we need to show that for any object (c, ρ) and any morphism φ

in C Γ([n]*), C Γ(id[n]*)(c, ρ) = (c, ρ) and C Γ(id[n]*)φ = φ, most of the work
is done already, we simply need to show that for any pointed subset P ⊆ [n]*,
id[n]**(P) = P.

id∗[n]∗(P ) = {i ∈ [n]∗ | id[n]∗(i) ∈ P\{0}} ∪ {0}
= {i ∈ [n]∗ | i ∈ P\{0}} ∪ {0}
= P\{0} ∪ {0} = P

Therefore C Γ preserves identities.
Finally, if f : [m]* → [n]* and g : [n]* → [N]* we want to show the functors

C Γ(g ◦ f ) and C Γ(g) ◦ C Γ(f ) are equal. Therefore we need to show that for
any object (c, ρ) and any morphism φ in C Γ([m]*), C Γ(g ◦ f )(c, ρ) = (C Γ(g)
◦ C Γ(f ))(c, ρ) and C Γ(g ◦ f )φ = (C Γ(g) ◦ C Γ(f ))φ. Similarly to with the
identities, this boils down to checking that for any pointed subset P ⊆ [N]*, (g
◦ f )*(P) = (f * ◦ g*)(P).

(g ◦ f)∗(P ) = {i ∈ [m]∗ | (g ◦ f)(i) ∈ P\{0}} ∪ {0}
= {i ∈ [m]∗ | g(f(i)) ∈ P\{0}} ∪ {0}

(f∗ ◦ g∗)(P ) = f∗(g∗(P ))

= f∗({i ∈ [n]∗ | g(i) ∈ P\{0}} ∪ {0})
= {j ∈ [m]∗ | f(j) ∈ {i ∈ [n]∗ | g(i) ∈ P\{0}}} ∪ {0}
= {i ∈ [m]∗ | g(f(i)) ∈ P\{0}} ∪ {0}

Therefore C Γ is a covariant functor and therefore we have checked everything
to ensure that C Γ is indeed a Γ-category.

We want to check that |N (C Γ)| is a Γ-space. Since the nerve and geometric
realisation are both functors, constructing a Γ-space from a Γ-category is easy
simply by passing each cateogry through these two functors.

We need to show that:

|N(C Γ)|([0]∗) ' ∆0

and |N(C Γ)|([n]∗) ' (|N(C Γ)|([1]∗))n
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The equivalences we have shown make short work of this:

|N(C Γ)|([0]∗) = |N(C Γ([0]∗))|
' |N([0])| = ∆0

|N(C Γ)|([n]∗) = |N(C Γ([n]∗))|
' |N(C n)|
' |N((C Γ([1]∗))n)|
' |N(C Γ([1]∗))|n

4

8.2 Cohomology Theories Constructed from Strict Sym-
metric Monoidal Categories

We have seen that the categories C⊕ and C⊗ are strict symmetric monoidal
categories. We shall now determine the nature of the cohomology theories one
may construct from them.

Let us denote by h∗⊕ := h∗C⊕ the reduced cohomology theory constructed
from C⊕ and h∗⊗ := h∗C⊗ the reduced cohomology theory constructed from C⊗.

hk⊕(X) :=

{
[X,Ω(−k+1)B|N(C⊕)|], k ≤ 0

[X,B(k)|N(C⊕)|], k > 0

Since B |NC ∗⊕| ' B(BU × Z), h∗⊕ is very similar to K-theory

Kn(X) =

{
[X,BU× Z], n ∈ 2Z
[X,U], n ∈ 1 + 2Z

Since Ω(BU × Z) = Ω(BU) ' U, Ω(2)(BU) ' BU × Z, and Ω(2)(U) ' U by
Bott periodicity, we have:

hk⊕(X) :=

{
K̃k(X), k ≤ 0

[X,B(k)(BU× Z)], k > 0

We must also investigate the nature of B (k)(BU × Z).
One way is to notice the effects of the classifying space construction on

homotopy groups.
From Bott periodicity and the fact that BU is a connected space, we know

that:

πi(BU× Z) =

{
Z, i ∈ 2Z, i ≥ 0

0, else

πi(U) =

{
Z, i ∈ 2Z + 1, i ≥ 0

0, else
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For a topological group X it is easy to see that:

πi(BX) = [Si, BX]

= [Si−1,ΩBX]

= [Si−1, X]

= πi−1(X)

and thus we see that:

πi(B(k)(BU× Z)) =

{
Z, i ∈ 2Z + k, i ≥ k
0, else

In particular, this shows us that B(BU × Z) ' U, so additionally and critically
h1
⊕(X ) = K 1(X ).
Since the spaces in this spectrum are the same as in K-theory but for in-

creasingly many trivial homotopy groups, this cohomology theory is often called
connective K-theory and is sometimes denoted cK* :

cKk(X) := hk⊕(X) :=

{
K̃k(X), k ≤ 1

[X,B(k−1)U], k > 1

The cohomology theory h∗⊗ is much more exotic. For starters it is entirely
dependent on the integer d so really we have a family of related categories and
cohomology theories with context informing us which incarnation of C⊗ we are
dealing with. In all cases, by our definition, we have:

hk⊗(X) :=

{
[X,Ω(−k+1)B|N(C⊗)|], k ≤ 0

[X,B(k)|N(C⊗)|], k > 0

We can at least examine the case when d = 1. In the category C⊗ there are
no morphisms between different objects and otherwise we see that we have
HomC⊗(i, i) = U((Cd)⊗i) = U((C)⊗i) = U(1) in the case d = 1.

Lemma 53. Let N be the category with a set of objects ob(N ) = N and just
the identity morphisms from each object to itself, and let U (1) be the category
with one object and morphisms HomU (1)(∗, ∗) = U(1) as a topological group.

Then, when d = 1, C⊗ is equivalent to the product category N × U (1) as
strict symmetric monoidal categories.

Proof. First we need to describe the monoidal structure on N × U (1).

⊗ : (N ×U (1))× (N ×U (1))→ N ×U (1)

((n, ∗), (m, ∗)) 7→ (n+m, ∗)
((idn, u), (idm, v)) 7→ (idn+m, uv)

The unit object is (0, ∗), the unitors are identities since 0 is the additive identity
of the abelian monoid N, and the associator is an identity since U(1) is a group.
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We can also introduce a braiding that must be symmetric since U(1) is an
abelian group.

To show we have an equivalence of cateogries, we must describe a functor F :
N × U (1)→ C⊗ that is full, faithful, and essentially surjective on objects. Let
us consider the following functor and then show that it satisfies these properties:

F : N ×U (1)→ C⊗

(n, ∗) 7→ n

(idn, u) 7→ u ∈ HomC⊗(n, n)

More than just essentially surjective on objects, F is a bijection of objects! For
each object n ∈ obC⊗ we can see that the object (n, ∗) ∈ ob(N × U (1)) is
such that F ((n, ∗)) = n, an equality instead of merely an isomorphism.

Now we need to examine the morphisms of the category N × U (1). Since
there are no morphisms between different objects in N we see that:

HomN ×U (1)((n, ∗), (m, ∗)) = HomN (n,m)×HomU (1)(∗, ∗)

=

{
{(idn, u) | u ∈ U(1)}, n = m

∅, n 6= m

To show that F is both full and faithful, we need to show that the following
map is both injective and surjective for all pairs of of objects (n, ∗), (m, ∗):

F : HomN ×U (1)((n, ∗), (m, ∗))→ HomC⊗(F ((n, ∗)), F ((m, ∗)))
φ 7→ F (φ)

From our morphism investigation, it is clear that we need to check two cases:
when the two objects are the same, and when the two objects are different.

Let’s deal with the case where the objects are different first. Let n 6= m,
then:

HomN ×U (1)((n, ∗), (m, ∗)) ∼= ∅
HomC⊗(F ((n, ∗)), F ((m, ∗))) ∼= HomC⊗(n,m)

∼= ∅

and since any map from the empty set to itself is necessarily a bijection, our
map certainly is in this case.

Now for the case when the objects are the same:

HomN ×U (1)((n, ∗), (n, ∗)) ∼= U(1)

HomC⊗(F ((n, ∗)), F ((n, ∗))) ∼= HomC⊗(n, n)
∼= U(1)

F : HomN ×U (1)((n, ∗), (n, ∗))→ HomC⊗(n, n)

(idn, u) 7→ u
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Now we will show that this map is injective and surjective.
We need to show that if F ((idn , u)) = F ((idn , v)) then (idn , u) = (idn , v).

F ((idn, u)) = F ((idn, v))

=⇒ u = v

=⇒ (idn, u) = (idn, v)

Thus the map F is injective in this case and thus the functor F is faithful.
Finally we need to show that for all morphisms u ∈ HomC⊗(n, n) there is a

morphism φ ∈ HomN × U (1)((n, ∗), (n, ∗)) such that F (φ) = u. Clearly F ((idn ,
u)) = u and thus the map F is surjective in this case and thus the functor F is
full.

Since the functor F is full, faithful, and essentially surjective on objects, C⊗
and N × U (1) are equivalent as categories.

To show that the categories are equivalent as strict symmetric monoidal
categories we need to show that the monoidal product and the braiding both
commute with the functor F. Let’s look at the monoidal product first and show
that the following diagram commutes in Cat:

(N ×U (1))× (N ×U (1)) N ×U (1)

C⊗ × C⊗ C⊗

⊗

F×F � F

⊗

We will consider two general objects (n, ∗), (m, ∗) and two general morphisms
(idn , u), (idm , v) in the category N × U (1), now to investigate the commuta-
tivity of the diagram:

F (⊗((n, ∗), (m, ∗))) = F ((n, ∗)⊗ (m, ∗))
= F ((n+m, ∗))
= n+m

⊗((F × F )((n, ∗), (m, ∗))) = ⊗(F ((n, ∗)), F ((m, ∗)))
= n⊗m
= n+m

F (⊗((idn, u), (idm, v))) = F ((idn, u)⊗ (idm, v))

= F ((idn+m, uv))

= uv ∈ HomC⊗(n+m,n+m)

⊗((F × F )((idn, u), (idm, v))) = ⊗(F ((idn, u)), F ((idm, v)))

= (u ∈ HomC⊗(n, n))⊗ (v ∈ HomC⊗(m,m))

= uv ∈ HomC⊗(n+m,n+m)

Thus we have shown the commutativity on objects and morphisms and thus the
two categories are equivalent as monoidal categories.
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To show that the braiding is also preserved, we need to show that for any
two objects (n, ∗), (m, ∗) ∈ ob(N × U (1)) the following diagram commutes in
C⊗:

F ((n, ∗)⊗ (m, ∗)) F ((n, ∗))⊗ F ((m, ∗))

F ((m, ∗)⊗ (n, ∗)) F ((m, ∗))⊗ F ((n, ∗))

∼=

F (β(n,∗),(m,∗)) � βF ((n,∗)),F ((m,∗))

∼=

That is, since all four of these objects are the object n + m in C⊗, we want
to show that as morphisms in HomC⊗(n + m, n + m), F (β(n,∗),(m,∗)) and
βF ((n,∗)),F ((m,∗)) are equal. Let (idn , u) and (idm , v) be two morphisms in N
× U (1):

F (β(n,∗),(m,∗))(F ((idn, u)⊗ (idm, v))) = F ((idm, v)⊗ (idn, u))

= F ((idm+n, vu))

= vu ∈ HomC⊗(m+ n,m+ n)

βF ((n,∗)),F ((m,∗))(F ((idn, u)⊗ (idm, v))) = βn,m(F ((idn, u))⊗ F ((idm, v)))

= βn,m((u ∈ HomC⊗(n, n))⊗ (v ∈ HomC⊗(m,m)))

= (v ∈ HomC⊗(m,m))⊗ (u ∈ HomC⊗(n, n))

= vu ∈ HomC⊗(m+ n,m+ n)

Thus the braiding is preserved and we achieve the result that when d = 1, C⊗
and N × U (1) are equivalent as strict symmetric monoidal categories. 4

This equivalence allows us to see that:

|N(C⊗)| = |N(N ×U (1))|
= |N(N )| × |N(U (1)|
= N×BU(1)

=⇒ ΩB|N(C⊗)| ' BU(1)× Z

Definition 42. An Eilenberg-MacLane space, introduced by Eilenberg and
MacLane [9], is a topological space K (G i) for a given discrete group G and
integer i ∈ Z, such that for any topological space X,

[X, K (G, i)] ∼= H i(X ; G)

Lemma 54. If A is an abelian group equipped with the discrete topology,
then clearly A ' K (A, 0), the Eilenberg-MacLane space in degree 0 with A
coefficients.

Additionally, and not trivially, the classifying spaces BnA all exist, are
abelian monoids, and BnA ' K (A, n).

Using this Eilenberg-MacLane space lemma and how well the classifying
space construction works with products ensures that the strict symmetric monoidal
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category C⊗ when d = 1 generates a surprisingly well behaved cohomology the-
ory:

hk⊗(X) = H̃k(X;Z)× H̃k+2(X;Z)
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8.3 Functors between Strict Symmetric Monoidal Cate-
gories

There are many ways to define functors between strict symmetric monoidal
categories but not all of them will induce natural transformations of cohomology
theories. Following Baez’s definition [3]

Definition 43. If C and D are strict symmetric monoidal categories and a
functor F : C → D together with a natural transformation φ: ⊗D ◦ (F, F ) →
F ◦ ⊗C and a morphism ψ: ID → F (IC ) is a monoidal functor, then we call F
together with φ and ψ a symmetric monoidal functor if for all objects A, B
∈ ob(C ) the following diagram commutes:

FA ◦D FB F (A ◦C B)

FB ◦D FA F (B ◦C A)

φA,B

βD
FA,FB � F (βC

A,B)

φB,A

A symmetric monoidal functor is called a strong symmetric monoidal func-
tor if the components of φ and ψ are all isomorphisms.

Theorem 55. A monoidal functor induces a natural transformation of coho-
mology theories τF : h∗C → h∗D if it is a strong symmetric monoidal functor.

Proof. Let F : C → D together with a natural isomorphism φ: ⊗D ◦ (F, F )→ F
◦ ⊗C and an isomorphism ψ: ID → F (IC ) be a symmetric monoidal functor. To
show that a natural transformation of cohomology theories is induced we must
first show that this data induces a morphism in the category of Γ-cateogries.

We would like to construct a sequence of functors F ∗n : C Γ([n]*)→ DΓ([n]*)
that are induced by our strong symmetric monoidal functor.

To construct the functors F ∗0 and F ∗1 we don’t even need our strong monoidal
functor to be symmetric.

Since C Γ([0]*) and DΓ([0]*) are both categories with a single object con-
sisting of a map that sends the pointed subset of [0]* to their respective unit
objects and a natural transformation whose only component is the identity on
their respective unit objects, and a single morphism which also consists of only
a single morphism that is the identity on their respective unit object, if (c, ρ)
is our object in C Γ([0]*), we need F ∗0 ((c, ρ)) to be our object and F ∗0 (id(c, ρ))
to be our morphism in DΓ([0]*). Let us construct our functor:

F ∗0 : C Γ([0]∗)→ DΓ([0]∗)

(c, ρ) 7→ ((ψ−1 ◦ F )(c), (ψ−1 ◦ F )(ρ))

f 7→ (ψ−1 ◦ F )(f)
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(ψ−1 ◦ -): D → D here denotes a partially defined mapping of categories where:

(ψ−1 ◦ −) : D → D

X 7→ ψ−1(X)

f 7→ ψ−1 ◦ f ◦ ψ

This mapping is only defined on the object F (IC ) in D and ψ−1(F (IC )). Since
ψ is an isomorphism, the mapping of morphisms is defined as the morphism in
HomD(ID , ID) that ensures the following diagram commutes:

F (IC ) ID

F (IC ) ID

ψ−1

f � (ψ−1◦−)(f)

ψ−1

Since c({0}) = IC , ρ{0},{0} = idIC , and f {0} = idIC , we see that, when πc
and πρ are projections onto the first and second entry of an object respectively:

F ∗0 ((c, ρ)) = ((ψ−1 ◦ F )(c), (ψ−1 ◦ F )(ρ))

=⇒ πc(F
∗
0 ((c, ρ)))({0}) = (ψ−1 ◦ F )(c({0}))

= (ψ−1 ◦ F )(IC )

= (ψ−1 ◦ −)(F (IC ))

= ID , πρ(F
∗
0 ((c, ρ))){0},{0} = (ψ−1 ◦ F )(ρ{0},{0})

= (ψ−1 ◦ F )(idIC )

= (ψ−1 ◦ −)(idF (IC ))

= ψ−1 ◦ idF (IC ) ◦ ψ
= ψ−1 ◦ ψ = idID

and F ∗0 (f) = (ψ−1 ◦ F )(f)

=⇒ (ψ−1 ◦ F )(f){0} = (ψ−1 ◦ F )(f{0})

= (ψ−1 ◦ F )(idIC )

= idID as above

Thus F ∗0 : C Γ([0]*) → DΓ([0]*) is indeed a functor as the identity and com-
position conditions automatically hold since these are cateogries with only one
object and one morphism.

On the next level our cateogries are no longer as simple as a single object
and a single morphism. We have seen that all objects of C Γ([1]*) and DΓ([1]*)
consist of pairs (c, ρ) where c({0}) is required to be the relevant unit object and
all the components of ρ are required to be the relevant identities; to construct
a functor F ∗1 : C Γ([1]*)→ DΓ([1]*) induced by our strong monoidal functor, we
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will have to check that all of this is maintained.

F ∗1 : C Γ([1]∗)→ DΓ([1]∗)

(c, ρ) 7→ (F ∗1 c, F
∗
1 ρ)

f 7→ F ∗1 f

We need to describe these mappings only in terms of our strong monoidal functor
so let us do exactly that, let P, Q be pointed subsets of [1]* with P ∩ Q = {0}:

F ∗1 c : P([1]∗)∗ → obD

P 7→

{
(ψ−1 ◦ F )(c(P )), P = {0}
F (c(P )), else

F ∗1 ρP,Q =

{
(ψ−1 ◦ F )(ρP,Q), P = Q = {0}
F (ρP,Q), else

F ∗1 fP =

{
(ψ−1 ◦ F )(fP ), P = {0}
F (fP ), else

We have already seen that (ψ−1 ◦ F )(IC ) = ID and (ψ−1 ◦ F )(idIC ) = idID

and we can also easily see that F ∗1 (idc({0,1}) = F (idc({0,1})) = idF(c({0,1})) since
F is a functor, therefore for any object (c, ρ) of C Γ([1]*), F ∗1 ((c, ρ)) is an object
in DΓ([1]*).

These facts also show that F ∗1 (id(c, ρ)) = idF∗1 ((c, ρ)) and together with the
fact that F is a functor ensures that composition of morphisms is preserved, we
can say that F ∗1 : C Γ([1]*) → DΓ([1]*) is indeed a functor that is induced by
our strong monoidal functor.

On higher levels, again we have more to concern ourselves with. For objects
(c, ρ) of a category C Γ([n]*) for n ≥ 2, it will not be true in general that all
the components of ρ are the relevant identities. We would like the following to
be a functor:

F ∗n : C Γ([n]∗)→ DΓ([n]∗)

(c, ρ) 7→ (F ∗nc, F
∗
nρ)

f 7→ F ∗nf

We will describe these mappings and then show that F ∗n is indeed a functor.
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Let P and Q be pointed subsets of [n]* with P ∩ Q = {0}:

F ∗nc : P([n]∗)∗ → obD

P 7→

{
(ψ−1 ◦ F )(c(P )), P = {0}
F (c(P )), else

F ∗nρP,Q =


(ψ−1 ◦ F )(ρP,Q), P = {0} and Q = {0}
F (ρP,Q), P = {0} or Q = {0}
F (ρP,Q) ◦ φF (c(P )),F (c(Q)), else

F ∗nfP =

{
(ψ−1 ◦ F )(fP ), P = {0}
F (fP ), else

First, we need to show that for any object (c, ρ) in C Γ([n]*), F ∗n((c, ρ)) is in
fact an object in DΓ([n]*).

Since, as we have already seen, (ψ−1 ◦ F )(IC ) = ID and (ψ−1 ◦ F )(idIC )
= idID , F ∗nc({0}) = (ψ−1 ◦ F )(IC ) = ID and F ∗n ρ{0},{0} = (ψ−1 ◦ F )(idIC )
= idID as required.

For any pointed subset P ⊆ [n]* where P 6= {0}, since F is a functor, F ∗n
ρ{0},P = F (ρ{0},P ) = F (idc(P)) = idF(c(P)) = idF∗nc(P) also as required.

We also require that F ∗n ρP,Q is an isomorphism for any pointed subsets P,
Q ∈ [n]* with P ∩ Q = {0}. If either P or Q is identically {0}, then we have
already checked that this component is the identity, and thus an isomorphism
but if neither P nor Q are {0} then F ∗n ρP,Q = F (ρP,Q) ◦ φF (c(P )),F (c(Q)). Since
ρ is a natural isomorphism and F is a functor, F (ρP,Q) is an isomorphism and
since our monoidal functor is strong, φP,Q is also an isomorphism, therefore F ∗n
ρ is a natural isomorphism.

There are also several diagrams that must be shown to commute. Notice
that in a strict symmetric monoidal category, since the unitors are identities,
the components of the braiding where at least one of the indices are the unit
must be equal to the identity on the other index, i.e. βI,X = βX,I = idX for
any object X in a strict symmetric monoidal category with unit object I and
braiding β.

For any pair of pointed subsets P, Q ⊆ [n]* with P ∩ Q = {0}, we need to
show that the following diagram commutes:

F ∗nc(P )⊗D F ∗nc(Q) F ∗nc(Q)⊗D F ∗nc(P )

F ∗nc(P ∨Q)

βD
F∗nc(P ),F∗nc(Q)

F∗nρP,Q
�

F∗nρQ,P

There are three different cases we need to examine.
If P = Q = {0}, then P ∨ Q = {0} and since F ∗nc({0}) = ID , ID ⊗D ID =

ID , F ∗n ρ{0},{0} = idID , and βD
ID ,ID

= idID as we have seen, our diagram simply
becomes a triangle with ID at each vertex, and idID on each edge which clearly
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commutes:
ID ID

ID

idID

idID
�

idID

The next case is when exactly one of P or Q is equal to {0}. Since βX,Y ◦
βY,X = idX ⊗ Y in any strict symmetric monoidal category, without loss of
generality, we can assume that P 6= {0} and Q = {0}. Then P ∨ Q = P,
and since F ∗nc({0}) = ID , ID ⊗D X = X ⊗D ID = X, and βD

ID ,X
= βD

X,ID

= idX our diagram simplifies, and since ρP,{0} = ρ{0},P = idc(P) and F is
a functor, F (idc(P)) = idF(c(P)) = idF∗nc(P) and so F ∗n ρP,{0} = F (ρP,{0}) =
F (idc(P)) = idF∗nc(P) and F ∗n ρ{0},P = F (ρ{0},P ) = F (idc(P)) = idF∗nc(P) and
again our diagram is a triangle with the same object at each vertex and the
identity morphism of that object on each edge, again this clearly commutes:

F (c(P )) F (c(P ))

F (c(P ))

idF (c(P ))

idF (c(P ))

�
idF (c(P ))

Finally we have the case when neither P nor Q are equal to {0}. F ∗nc(R) =
F (c(R)) for all pointed subsets R ⊆ [n]* with R 6= {0}. Since (c, ρ) is an object
in C Γ([n]*) and F is a functor, the following diagram necessarily commutes in
D :

F (c(P )⊗C c(Q)) F (c(Q)⊗C c(P ))

F (c(P ∨Q))

F (βC
c(P ),c(Q))

F (ρP,Q)
�

F (ρQ,P )

Since our monoidal functor is a symmetric monoidal functor, we also have for
any objects X, Y ∈ obC :

F (X)⊗D F (Y ) F (Y )⊗D F (X)

F (X ⊗C Y ) F (Y ⊗C X)

βD
F (X),F (Y )

φX,Y � φY,X

F (βC
X,Y )

Combining these two diagrams in the case where X = c(P) and Y = c(Q) we
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see that the following diagram commutes:

F (c(P ))⊗D F (c(Q)) F (c(Q))⊗D F (c(P ))

F (c(P )⊗C c(Q)) F (c(Q)⊗C c(P ))

F (c(P ∨Q))

βD
F (c(P )),F (c(Q))

φc(P ),c(Q) � φc(Q),c(P )

F (βC
c(P ),c(Q))

F (ρP,Q)
�

F (ρQ,P )

and therefore:

F (c(P ))⊗D F (c(Q))) F (c(Q))⊗D F (c(P ))

F (c(P ∨Q))

βD
F (c(P )),F (c(Q))

F (ρP,Q)◦φc(P ),c(Q)

�
F (ρQ,P )◦φc(Q),c(P )

and since F ∗n ρP,Q = F (ρP,Q) ◦ φc(P ),c(Q) when neither P nor Q are {0}, this
is the required diagram and thus in all cases, this diagram commutes.

We also need to show for any pointed subsets P, Q, R ⊆ [n]*, with P ∩ Q
∩ R = {0} that the following diagram commutes:

F ∗nc(P )⊗D F ∗nc(Q)⊗D F ∗nc(R) F ∗nc(P ∨Q)⊗D F ∗nc(R)

F ∗nc(P )⊗D F ∗nc(Q ∨R) F ∗nc(P ∨Q ∨R)

F∗nρP,Q⊗D idF∗nc(R)

idF∗ncP⊗DF
∗
nρQ,R � F∗nρP∨Q,R

F∗nρP,Q∨R

Again there are several cases we need to examine.
When P = Q = R = {0}, since F ∗nc({0}) = ID , F ∗n ρ{0},{0} = idID , ID ⊗D

ID = ID and idID ⊗D idID = idID , the diagram boils down to a square with
ID at each vertex and idID on each edge which clearly commutes:

ID ID

ID ID

idID

idID � idID

idID

If exactly two of P, Q, and R are equal to {0}, then a similar situation arises.
Since F ∗nc(S ) = F (c(S )), and F ∗n ρ{0},S = F ∗n ρS,{0} = isF(c(S)) for any pointed
subset S ⊆ [n]* with S 6= {0}, X ⊗D ID = ID ⊗D X = X for any object X of
D and idID ⊗D ξ = ξ ⊗D ID = ξ for any morphism ξ of D , the three different
cases all end up boiling down to a diagram consisting of a square with the same
object at each vertex and the relevant identity morphism on each edge, all of
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which clearly commute:

F (c(P )) F (c(P )) F (c(Q)) F (c(Q)) F (c(R)) F (c(R))

F (c(P )) F (c(P )) F (c(Q)) F (c(Q)) F (c(R)) F (c(R))

idF (c(P ))

idF (c(P )) � idF (c(P ))

idF (c(Q))

idF (c(Q)) � idF (c(Q))

idF (c(R))

idF (c(R)) � idF (c(R))

idF (c(P )) idF (c(Q)) idF (c(R))

The next set of cases is when exactly one of P, Q, or R is {0}, again the unit
object of D and it’s identity morphism occur in each diagram but the result is
subtly different depending on which of P, Q, or R is {0}.

We also use the fact that ρS,{0} = ρ{0},S = idc(S) and that F is a functor to
achieve the following diagrams which all clearly commute:

if R = {0} F ∗nc(P )⊗D F ∗nc(Q) F ∗nc(P ∨Q)

F ∗nc(P )⊗D F ∗nc(Q) F ∗nc(P ∨Q)

if Q = {0} F ∗nc(P )⊗D F ∗nc(R) F ∗nc(P )⊗D F ∗nc(R)

F ∗nc(P )⊗D F ∗nc(R) F ∗nc(P ∨R)

if P = {0} F ∗nc(Q)⊗D F ∗nc(R) F ∗nc(Q)⊗D F ∗nc(R)

F ∗nc(Q ∨R) F ∗nc(Q ∨R)

F∗nρP,Q

idF∗nc(P )⊗D idF∗nc(Q) � idF∗nc(P∨Q)

F∗nρP,Q

idF∗nc(P )⊗D idF∗nc(R)

idF∗nc(P )⊗D idF∗nc(R) � F∗nρP,R

F∗nρP,R

idF∗nc(Q)⊗D idF∗nc(R)

F∗nρQ,R � F∗nρQ,R

idF∗nc(Q∨R)

Finally, we need tackle the case when none of P, Q, or R are {0}.
Since (c, ρ) is an object in C Γ([n]*) and F is a functor we know that:

F (c(P )⊗C c(Q)⊗C c(R)) F (c(P ∨Q)⊗C c(R))

F (c(P )⊗C c(Q ∨R)) F (c(P ∨Q ∨R))

F (ρP,Q⊗C idc(R))

F (idc(P )⊗CρQ,R) � F (ρP∨Q,R)

F (ρP,Q∨R)

Since D is a strict monoidal category, the associator is the identity and since
F together with φ and ψ is a monoidal functor the following diagram also
commutes:

F (c(P ))⊗D F (c(Q))⊗D F (c(R)) F (c(P )⊗C c(Q))⊗D F (c(R))

F (c(P ))⊗D F (c(Q)⊗C c(R)) F (c(P )⊗C c(Q)⊗C c(R))

φc(P ),c(Q)⊗D idF (c(R))

idF (c(P ))⊗Dφc(Q),c(R) � φc(P )⊗C c(Q),c(R)

φc(P ),c(Q)⊗C c(R)
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Recalling the diagram that we want to show is a commutative diagram and the
fact that F ∗n ρS,T = F (ρS,T ) ◦ φc(S),c(T ) for any pair of pointed subsets S, T ⊆
[n]* with S ∩ T = {0} and S 6= {0} 6= T, if we can show that all the squares
in the following diagram commute then we are done:

F (c(P ))⊗ F (c(Q))⊗D F (c(R)) F (c(P )⊗C c(Q))⊗D F (c(R)) F (c(P ∨Q))⊗D F (c(R))

F (c(P ))⊗D F (c(Q)⊗C c(R)) F (c(P )⊗C c(Q)⊗C c(R)) F (c(P ∨Q)⊗C c(R))

F (c(P ))⊗D F (c(Q ∨R)) F (c(P )⊗C c(Q ∨R)) F (c(P ∨Q ∨R))

φc(P ),c(Q)⊗D idF (c(R))

idF (c(P ))⊗Dφc(Q),c(R) �

F (ρP,Q)⊗D idF (c(R))

φc(P )⊗C c(Q),c(R) φc(P∨Q),c(R)

φc(P ),c(Q)⊗C c(R)

idF (c(P ))⊗DF (ρQ,R)

F (ρP,Q⊗C idc(R))

F (idc(P )⊗CρQ,R) � F (ρP∨Q,R)

φc(P ),c(Q∨R) F (ρP,Q∨R)

Since φ: ⊗D ◦ (F, F )→ F ◦ ⊗C is a natural transformation, for any morphisms
f : X → Y and g : X ’ → Y ’ the following diagram commutes:

F (X)⊗D F (X ′) F (Y )⊗D F (Y ′)

F (X ⊗C X ′) F (Y ⊗C Y ′)

F (f)⊗DF (f ′)

φX,X′ � φY,Y ′

F (f⊗Cf
′)

The top right square and bottom left square in our diagram are both this com-
mutative diagram for the morphisms ρP,Q and idc(R), and idc(P) and ρQ,R re-
spectively. Thus all four squares in the diagram commute and we achieve the
desired commutative diagram:

F ∗nc(P )⊗D F ∗nc(Q)⊗D F ∗nc(R) F ∗nc(P ∨Q)⊗D F ∗nc(R)

F ∗nc(P )⊗D F ∗nc(Q ∨R) F ∗nc(P ∨Q ∨R)

F∗nρP,Q⊗D idF∗nc(R)

idF∗ncP⊗DF
∗
nρQ,R � F∗nρP∨Q,R

F∗nρP,Q∨R

Since we have now shown that all the desired conditions are preserved, we know
that if (c, ρ) is an object in C Γ([n]*), then F ∗n((c, ρ)) is an object in DΓ([n]*).

Now to show that if f : (c, ρ) → (c’, ρ’) is a morphism in C Γ([n]*), then
F ∗n f : F ∗n((c, ρ)) → F ∗n((c’, ρ’)) is a morphism in DΓ([n]*).

f {0} is required to be idIC for any morphism in C Γ([n]*). We need to show
that F ∗n f {0} is the identity on ID . Since F ∗n f {0} = (ψ−1 ◦ F )(idIC ) clearly
F ∗n f {0}: ID → ID as F ∗n(IC ) = ID , additionally the following diagram must
commute:

F (IC ) ID

F (IC ) ID

ψ−1

idIC � F∗nf{0}

ψ−1

Therefore F ∗n f {0} = ψ−1 ◦ idIC ◦ ψ = ψ−1 ◦ ψ = idID .
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For any other component of a morphism in C Γ([n]*), f P : c(P) → c’(P) for
P ⊆ [n]* with P 6= {0}, since F ∗nc(P) = F (c(P)), F ∗n f P : F (c(P)) → F (c’(P))
as required.

We need to check that the following diagram commutes for any P, Q ⊆ [n]*
with P ∩ Q = {0}:

F ∗nc(P )⊗D F ∗nc(Q) F ∗nc(P ) ∨Q)

F ∗nc
′(P )⊗D F ∗nc

′(Q) F ∗nc
′(P ∨Q)

F∗nρP,Q

F∗nfP⊗DF
∗
nfQ � F∗nfP∨Q

F∗nρ
′
P,Q

For P = Q = {0}, clearly all of the vertices are ID and all of the edges are idID

so in this case the diagram clearly commutes. If only one of P and Q is equal
to {0}, since the unitors are identities, without loss of generality we can say Q
= {0} and P 6= {0}, then this diagram instead has F ∗nc(P) at each vertex and
idF∗nc(P) on each edge, another diagram that clearly commutes.

If neither P nor Q is equal to {0} then since F is a functor we know the
following diagram commutes:

F (c(P )⊗C c(Q)) F (c(P ∨Q))

F (c′(P )⊗C c′(Q)) F (c′(P ∨Q))

F (ρP,Q)

F (fP⊗CfQ) � F (fP∨Q)

F (ρ′P,Q)

and since F together with φ and ψ is a monoidal functor, we have another
commutative diagram:

F (c(P ))⊗D F (c(Q)) F (c(P )⊗C c(Q))

F (c′(P ))⊗D F (c′(Q)) F (c′(P )⊗C c′(Q))

φc(P ),c(Q)

F (fP )⊗DF (fQ) � F (fP⊗CfQ)

φc′(P ),c′(Q)

Therefore:

F (c(P ))⊗D F (c(Q)) F (c(P ∨Q))

F (c′(P ))⊗D F (c′(Q)) F (c′(P ∨Q))

F (ρP,Q)◦φc(P ),c(Q)

F (fP )⊗DF (fQ) � F (fP∨Q)

F (ρ′P,Q)◦φc′(P ),c′(Q)

and since F ∗n ρP,Q = F (ρP,Q) ◦ φc(P ),c(Q) and F ∗n f P = F (f P ) when neither P
nor Q is {0}, this is exactly the diagram we needed to commute.

Therefore F ∗n is a valid mapping of morphisms.
Finally it needs to be shown that F ∗n preserves both the identities and com-

position.
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If id(c,ρ) = {idc(P) | P ⊆ [n]*} then F ∗n id(c,ρ) needs to be shown to be equal
to id(F∗nc,F∗n ρ). We have already seen that F ∗n f {0} = idID for any morphism in
C Γ([n]*) and for an other pointed subset P ⊆ [n]*, F ∗n f P = F (f (P)) so since
id(c,ρ),P = idc(P) and F is a functor, F ∗n id(c,ρ) = {idID} ∪ {idF(c(P)) | P ⊆ [n]*,
P 6= {0}} = {idF∗nc(P) | P ⊆ [n]*} as required.

Lastly, if f : (c, ρ) → (c’, ρ’) and g : (c’, ρ’) → (c”, ρ”) are morphisms in
C Γ([n]*) then we need to show that F ∗n(g ◦ f ) = F ∗ng ◦ F ∗n f.

Again this works component-wise, and since f {0} = g{0} = idID is required,
F ∗n(g ◦ f ){0} = (F ∗ng ◦ F ∗n f ){0} = idID . For every pointed subset P 6= {0}, we
simply have F (gP ◦ f P ) = F (gP ) ◦ F (f P ) which holds since F is a functor.

Therefore, F ∗n : C Γ([n]*) → DΓ([n]*) is a functor for every n ∈ N.
To achieve a Γ-category homomorphism we need to show that one final

condition is satisfied.
For any morphism in Γop, i.e. a pointed map ξ: [n]*→ [m]*, we require the

following diagram to commute in Cat*:

C Γ([n]∗) C Γ([m]∗)

DΓ([n]∗) DΓ([m]∗)

CΓ(ξ)

F∗n � F∗m

DΓ(ξ)

Since we have shown that all of these maps are indeed functors, all that needs
to be shown is that the mapping of objects and morphisms agree.

Let (c, ρ) be an object of C Γ([n]*), then for pointed subsets P, Q ⊆ [m]*
with P ∩ Q = {0}:

(F ∗m ◦ C Γ(ξ))((c, ρ)) = F ∗m(C Γ(ξ)((c, ρ)))

= (F ∗m(C Γ(ξ)c), F ∗m(C Γ(ξ)ρ))

F ∗m(C Γ(ξ)c)(P ) = F ∗m(c(ξ∗(P )))

=

{
ID , ξ∗(P ) = {0}
F (c(ξ∗(P ))), else

F ∗m(C Γ(ξ)ρ)P,Q = F ∗m(C ΓξP,Q)

= F ∗m(ρξ∗(P ),ξ∗(Q))

=


idID , ξ

∗(P ) = {0} and ξ∗(Q) = {0}
F (ρξ∗(P ),ξ∗(Q)), ξ

∗(P ) = {0} or ξ∗(Q) = {0}
F (ρξ∗(P ),ξ∗(Q)) ◦ φF (c(ξ∗(P ))),F (c(ξ∗(Q))), else
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(DΓ(ξ) ◦ F ∗n)((c, ρ)) = DΓ(ξ)(F ∗n((c, ρ)))

= (DΓ(ξ)(F ∗nc),D
Γ(ξ)(F ∗nρ))

(DΓ(ξ)(F ∗nc))(P ) = F ∗nc(ξ
∗(P ))

=

{
ID , ξ∗(P ) = {0}
F (c(ξ∗(P ))), else

(DΓ(ξ)(F ∗nρ))P,Q = F ∗nρξ∗(P ),ξ∗(Q)

=


idID , ξ

∗(P ) = {0} and ξ∗(Q) = {0}
F (ρξ∗(P ),ξ∗(Q)), ξ

∗(P ) = {0} or ξ∗(Q) = {0}
F (ρξ∗(P ),ξ∗(Q)) ◦ φF (c(ξ∗(P ))),F (c(ξ∗(Q))), else

Thus the mapping of objects commutes and all that is left is to show the same
for morphisms. Let f : (c, ρ) → (c’, ρ’) be a morphism in C Γ([n]*), then for
any pointed subset P ⊆ [m]*:

(F ∗m ◦ C Γ(ξ))fP = F ∗m(C Γ(ξ)fP )

= F ∗mfξ∗(P )

=

{
idID , ξ∗(P ) = {0}
F (fξ∗(P )), else

(DΓ(ξ)(F ∗n))fP = F ∗nfξ∗(P )

=

{
idID , ξ∗(P ) = {0}
F (fξ∗(P )), else

Thus the mapping of morphisms also commutes and thus the diagram commutes
in Cat*.

Therefore F*: C Γ → DΓ is a Γ-category homomorphism. 4
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9 The Weyl Map
For any given exponential functor F : C⊕ → C⊗ we do not automatically achieve
a natural transformation of cohomology theories, but since every map involved
in defining the cohomology groups in each degree is functorial, we do achieve a
sequence of natural transformations with components:

F ∗kX : hk⊕(X)→ hk⊗(X)

[φ] 7→ [F ∗ ◦ φ]

where

F ∗ =

{
Ω(−k+1)B|N(F )|, k ≤ 0

B(k)|N(F )|, k > 0

Ultimately, it is this sequence of natural transformations that we would like to
better understand.

Since the other maps are simply multiple applications of either the loop func-
tor or classifying space construction to the map F*: B |N (C⊕)| → B |N (C⊗)|,
our focus will be on this map and it’s corresponding natural transformation
F*1: K 1 → h1

⊗
The inclusions SU(n) ↪→ SU(∞) ↪→ U induce a class in K 1(SU(n)) ∼=

h1
⊕(SU(n)), and we can postcompose these inclusions with the map F*: U
→ B |N (C⊗)| to induce a non-trivial class in h1

⊗(SU(n)).
Since we have already investigated the effect exponential functors have on

vector bundles, it will be much easier to determine the nature of these classes
if we are able to precompose the inclusions with a map that plays well with
the suspension isomorphism, so as to involve the 0th K-theory group whose
elements are all formal differences of vector bundles. At which point, since
F ∗1 is a natural transformation, determining the nature of the corresponding
class in our exotic cohomology theory will hopefully be as easy as applying our
exponential functor to those vector bundles while turning the formal difference
into a formal quotient.

We will use a map known as the Weyl map, identically defined as in the
work by Becker, Murray, and Stevenson [4] that will hopefully help us achieve
this goal.

Definition 44. Consider the group SU(n). Diagonal matrices within this group
are of the form diag(z 1, ...,zn) where |z i | = 1 ∀ i and z 1·...·zn = 1. Since the
set of elements z ∈ C such that |z | = 1 is isomorphic to S1, the set of diagonal
matrices in SU(n) is isomorphic to Tn-1, the product of n-1 copies of S1. We
call this subgroup the maximal torus of SU(n) and will denote it T. We can
form the quotient space SU(n)/T by the equivalence relation: g ∼ h if g = hZ
for some Z ∈ T, and thus we can define the Weyl map as follows:

W : SU(n)/T× T→ SU(n)

([g], Z) 7→ gZg−1
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This map is well defined since for any other representative h of the class [g ],
we have h = gT for some T ∈ T and thus hZh-1 = gTZT -1g -1 = gZg -1 since
elements of T commute with each other. We would like to determine how the
map induced by the Weyl map in cohomology with rational coefficients behaves:

W ∗ : H∗(SU(n);Q)→ H∗(SU(n)/T;Q)⊗H∗(T;Q)

We have seen that H *(SU(n); Q) = ΛQ[x 3, ..., x 2n-1] where each x i is in degree
i, and since T is isomorphic to the product of n-1 copies of S1, we can say that
H *(T; Q) = ΛQ[z (1), ..., z (n-1)] where each z (j ) is in degree 1.

Lemma 56. The space SU(n)/T is homeomorphic to Fn(Cn)

Proof. Let us consider general elements A ∈ SU(n) and Z ∈ T.

A = [v1|...|vn] where vi ⊥ vj for i 6= j,

Z = diag(z1, ..., zn−1, z1...zn−1) where zi ∈ S1 ⊂ C ∀ i

The class of A, [A] ∈ SU(n)/T is the set {AZ ∈ SU(n) | Z ∈ T}
Let us consider a map Ψ: SU(n)/T → Fn(Cn) defined as follows:

Ψ([v1|...|vn]) = (Span(v1) ⊂ Span(v1,v2) ⊂ ... ⊂ Span(v1, ...,vn−1) ⊂ Cn)

This map is well defined since all representatives of the class of [v1| ... | vn ] are
of the form [z 1v1| ... | zn-1vn-1| z1...zn vn ] where each z i ∈ S1 ⊂ C

We would like to show that Ψ is a homeomorphism. We therefore must show
that Ψ is a continuous bijection, that SU(n)/T is compact, and that Fn(Cn) is
Hausdorff.

SU(n)/T is compact since quotients of compact spaces are compact and
SU(n) is compact.

Fn(Cn) is Hausdorff as it inherits the property as it is a subspace of the
Hausdorff space (CPn−1)n-1.

Let us consider two matrices A = [v1| ... |vn ] and B = [w1| ... |wn ]. We
would like to show that if Ψ([A]) = Ψ([B ]), then [A] = [B ].

Ψ([A]) = Ψ([B])

(Span(v1) ⊂ ... ⊂ Span(v1, ...,vn−1) ⊂ Cn) = (Span(w1) ⊂ ... ⊂ Span(w1, ...,wn−1) ⊂ Cn)

=⇒ Span(v1, ...,vi) = Span(w1, ...,wi) ∀ i
Since vi ⊥ vj and wi ⊥ wj ∀ i 6= j,

=⇒ Span(vi) = Span(wi) ∀ i
=⇒ wi = λivi for some λi ∈ C ∀ i

Since |vi| = 1 = |wi| ∀ i, =⇒ wi = zivi for some zi ∈ S1 ⊂ C ∀ i
Therefore B = [z1v1|...|znvn]

Since det(B) = 1, we must have zn = z1...zn−1 and so
B = AZ for some Z ∈ T

Then [A] = [B]
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Therefore Ψ is injective.
Let us consider the map Φ: Fn(Cn) → SU(n) defined in the following man-

ner:
Φ(V1 ⊂ ... ⊂ Vn−1 ⊂ Vn = Cn) = [v1|...|vn]

where vi is a vector in Vi such that |vi | = 1 and vi ⊥ w ∀ w ∈ Vi-1.
Necessarily, the class of [v1| ... |vn ] in SU(n)/T will be mapped by Ψ to

the flag (V1 ⊂ ... ⊂ Vn-1 ⊂ Cn). Since this construction works for any flag in
Fn(Cn), Ψ must be surjective, and thus bijective.

In order to show that Ψ is continuous, let us consider its composition with
the inclusion into (CPn-1)n-1 and the following diagram:

SU(n) (Cn\{0})n−1

SU(n)/T (CPn−1)n−1

Ξ

q1 � q2

ι◦Ψ

Where q1 and q2 are quotient maps and Ξ is defined as followed in order to
make the diagram commute:

Ξ : SU(n)→ (Cn\{0})n−1

A 7→ (Ae1, ..., Aen−1)

where each ei is the i th unit vector in Cn . In essence, Ξ maps an n×n matrix
to the n-1 tuple of its first n-1 columns.

The diagram commutes, as for a general matrix A = [v1| ... |vn ] ∈ SU(n):

(q2 ◦ Ξ)([v1|...|vn]) = q2((v1, ...,vn−1))

= (Span(v1), ..., Span(vn−1))

(ι ◦Ψ ◦ q1)([v1|...|vn]) = (ι ◦Ψ)([[v1|...|vn]])

= ι((Span(v1) ⊂ ... ⊂ Span(v1, ...,vn−1) ⊂ Cn))

= (Span(v1), ..., Span(vn−1))

Let us finally consider an open set U ∈ (CPn-1)n-1. The quotient topology
dictates that a set in the quotient is open if and only if its preimage by the
quotient is open, therefore q2

-1(U ) is open in (Cn\{0})n-1. Ξ as a map is linear
as it is a series of matrix multiplications, therefore Ξ is continuous and so since
q2

-1(U ) is open, Ξ−1(q2
-1(U )) is open in SU(n). Since q1 is a quotient map

and Ξ−1(q2
-1(U )) is open, necessarily, q1(Ξ−1(q2

-1(U ))) is open in SU(n)/T,
and since the diagram commutes, q1(Ξ−1(q2

-1(U ))) = (ι ◦ Ψ)-1(U ).
Therefore U ∈ (CPn−1)n-1 is open =⇒ (ι ◦ Ψ)-1(U ) ∈ SU(n)/T is open

and thus ι ◦ Ψ is continuous. Since the inclusion is continuous, we therefore
know that Ψ must be continuous.

Since Ψ is a continuous bijection from a compact space to a Hausdorff space,
Ψ is a homeomorphism and thus SU(n)/T ∼= Fn(Cn). 4
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Hence H *(SU(n)/T; Q) = H *(Fn(Cn); Q)
The group T has elements of the form diag(z 1, ..., zn-1, z1...zn-1). Let Ti

be the subgroup of T whose elements are of the form diag(Ii-1, z, In-i-1, z̄) for
some z ∈ S1 ⊂ C. There is a clear isomorphism from T1× ...× Tn-1 → T given
by (Z 1, ..., Z n-1) 7→ Z 1...Z n-1, and so we can write any Z ∈ T as a product
Z 1...Z n-1 where each Z i ∈ Ti ⊂ T.

Let Ŵ : SU(n)/T × T → SU(∞) be the composition of the Weyl map with
the the inclusion of SU(n) into SU(∞) and let W∞: SU(n)/T × T → SU(∞)
be given by:

W∞ : ([g], Z1...Zn−1) 7→ diag(gZ1g
−1, ..., gZn−1g

−1, 1, ...)

Lemma 57. There exists a homotopy between the maps Ŵ and W∞.

Proof. Let us define a matrix to assist us in our quest:

Rot(t) =

[
cos(tπ/2)In −sin(tπ/2)In
sin(tπ/2)In cos(tπ/2)In

]
Since each n×n block is a diagonal matrix, the blocks commute with one another
and so

det(Rot(t)) = det(cos(tπ/2)In cos(tπ/2)In − (−sin(tπ/2)In)sin(tπ/2)In)

= det(cos2(tπ/2)In + sin2(tπ/2)In)

= det((cos2(tπ/2) + sin2(tπ/2))In)

= det(In) = 1

Rot(t)−1 =

[
cos(tπ/2)In sin(tπ/2)In
−sin(tπ/2)In cos(tπ/2)In

]
= Rot(t)∗

Thus Rot(t) is an element of SU(2n) ∀ t.
This matrix is useful as:

Rot(0) =

[
cos(0)In −sin(0)In
sin(0)In cos(0)In

]
Rot(1) =

[
cos(π/2)In −sin(π/2)In
sin(π/2)In cos(π/2)In

]
=

[
In 0
0 In

]
= I2n =

[
0 −In
In 0

]
Let Roti(t) := diag(I(i−1)n, Rot(t), 1, ...) ∈ SU(∞). Roti(t) has inverse

Rot−1
i (t) = diag(I(i−1)n, Rot(t)-1, 1, ...) We can now use these matrices to

construct the required homotopy:

H([g], Z, t) = {diag(gZ1g
−1, ..., gZig

−1, 1, ...)Roti((n− 2)t− i+ 1)

diag(I(i−1)n, gZi+1g
−1...gZn−1g

−1, 1, ...)Rot−1
i ((n− 2)t− i+ 1),

i− 1

n− 2
≤ t ≤ i

n− 2
for 1 ≤ i ≤ n− 2
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We can see that for t = 0, we require i = 1 and so

H([g], Z, 0) = diag(gZ1g
−1, 1, ...)Rot1(0)diag(gZ2g

−1...gZn−1g
−1, 1, ...)Rot−1

1 (0)

= diag(gZ1g
−1, 1, ...)diag(Rot(0), 1, ...)diag(gZ2g

−1...gZn−1g
−1, 1, ...)diag(Rot(0)−1, 1, ...)

= diag(gZ1g
−1, 1, ...)diag(I2n, 1, ...)diag(gZ2g

−1...gZn−1g
−1, 1, ...)diag(I2n, 1, ...)

= diag(gZ1g
−1, 1, ...)diag(gZ2g

−1...gZn−1g
−1, 1, ...)

= diag(gZ1g
−1...gZn−1g

−1, 1, ...) = Ŵ ([g], Z)

and for t = 1, we require i = n - 2, so

H([g], Z, 1) = diag(gZ1g
−1, ..., gZn−2g

−1, 1, ...)Rotn−2(1)diag(I(n−3)n, gZn−1g
−1, 1, ...)Rot−1

n−2(1)

= diag(gZ1g
−1, ..., gZn−2g

−1, 1, ...)diag(In−3,Rot(1), 1, ...)

diag(In−3, ..., gZn−1g
−1, 1, ...)diag(In−3,Rot(1)−1, 1, ...)

= diag(gZ1g
−1, ..., gZn−2g

−1, 1, ...)diag(In−3,

[
0 −In
In 0

]
, 1, ...)

diag(In−3, ..., gZn−1g
−1, 1, ...)diag(In−3,

[
0 In
−In 0

]
, 1, ...)

= diag(gZ1g
−1, ..., gZn−2g

−1, 1, ...)diag(In−3,

[
0 −In
In 0

]
, 1, ...)

diag(In−3,

[
0 gZn−1g

−1

−In 0

]
, 1, ...)

= diag(gZ1g
−1, ..., gZn−2g

−1, 1, ...)diag(In−3,

[
In 0
0 gZn−1g

−1

]
, 1, ...)

= diag(gZ1g
−1, ..., gZn−2g

−1, 1, ...)diag(In−2, gZn−1g
−1, 1, ...)

= diag(gZ1g
−1, ..., gZn−1g

−1, 1, ...) = W∞([g], Z)

Therefore Ŵ and W∞ are homotopic maps 4

Thus the induced maps in cohomology are equal.

Ŵ ∗ = W ∗∞ : H∗(SU(∞);Q)→ H∗(SU(n)/T;Q)⊗H∗(T;Q)

And so the following diagram commutes:

H∗(SU(∞);Q) H∗(SU(n)/T;Q)⊗H∗(T;Q)

H∗(SU(n);Q)

W∗∞

ι∗
�

p∗

9.1 Loop Spaces and Line Bundles
The Weyl map has been described earlier as the map:

W : SU(n)/T× T→ SU(n)

([g], Z) 7→ gZg−1
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We have also described the maps from n-1 copies of S1 to T and from SU(n) to
SU(∞) (which can then be included into U), thus we can extend this to a map:

SU(n)/T× S1 ↪→ SU(n)/T× T→ SU(n) ↪→ SU(∞) ↪→ U

where if the inclusion S1 ↪→ T is given by z 7→ Z = diag(z, In−2, z), then we
have a map:

P̂ : SU(n)/T× S1 → U

([g], z) 7→ diag(gZg−1, 1, ...)

P̂ factors through the following map:

P : S(SU(n)/T)→ U

[[g], t] 7→ diag(gZg−1, 1, ...)

where Z = diag(exp(2πi t), In−2, exp(-2πi t)) S : Top → Top is a covariant
functor called the suspension that maps objects X to SX := (X × [0, 1])/∼
where (x, 0) ∼ (x ’, 0) and (x, 1) ∼ (x ’, 1), and maps morphisms f : X → Y to
morphisms Sf : SX → SY where we define Sf ([x, t ]) = [f (x ), t ]. Notice that
our map P is not a pointed map of topological spaces.

An adjunction isomorphism then gives us a map:

Q : SU(n)/T→ ΩU

[g] 7→ G : S1 → U

z 7→ diag(gZg−1, 1, ...)

To better understand this loop let us attempt to factor it through the loop space
of a space that is homeomorphic to U.

Let Gr be the space of Hermitian projections E : C∞ → C∞ of finite positive
rank. i.e. E* = E = E 2 and rank(E ) ≥ 0

Let X • be the simplicial space defined as follows: X 0 := (pt) and

Xn := {(E1, ..., En) ∈ Grn | EiEj = 0 for i 6= j}

with face maps:

dn,0(E1, ..., En) = (E2, ..., En)

dn,i(E1, ..., En) = (E1, ..., Ei + Ei+1, ..., En) for 1 ≤ i ≤ n− 1

dn,n(E1, ..., En) = (E1, ..., En−1)

and degeneracy maps:

sn,i(E1, ..., En) = (E1, ..., Ei, 0, Ei+1, ..., En) for 0 ≤ i ≤ n

It will be easier to describe the geometric realisation of this simplicial space if
the elements of the n-simplex are represented by an n-tuple as opposed to an
(n+1)-tuple as we have in the past.
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For (x 0, ..., xn) ∈ ∆n , let t i =
∑n
j=i x j , then an element of ∆n can be

written as a n-tuple (t1, ..., tn) where 1 ≥ t1 ≥ ... ≥ tn ≥ 0.
In this context, the coface maps are the maps:

dn,0(t1, ..., tn−1) = (1, t1, ..., tn−1)

dn,i(t1, ..., tn−1) = (t1, ..., ti−1, ti, ti, ti+1, ..., tn−1)

dn,n(t1, ..., tn−1) = (t1, ..., tn−1, 0)

The codegeneracy maps are the maps:

sn,i(t1, ..., tn+1) = (t1, ..., ti, ti+2..., tn+1)

There is a homeomorphism shown by Harris [16]

φ : |X•| → U
((E1, ..., En), (t1, ..., tn)) 7→ exp(2πi(t1E1 + ...+ tnEn))

Consider (E, t) ∈ X 1 × ∆1 ⊂ |X •|, then:

φ(E, t) = exp(2πi tE)

=

∞∑
j=0

(2πi t)j

j!
Ej

= I +

∞∑
j=1

(2πi t)j

j!
E

= I + E

∞∑
j=1

(2πi t)j

j!

= I + E(z − 1)

where z = exp(2πi t)
We would like to be able to describe a loop in |X •| that will map to Q([g ])

= (t 7→ diag(gZg -1, 1, ...)) ∈ ΩU by φ.
Let E i be the projection diag(0i-1, 1, 0, ...) where 0n is the n×n matrix

with every entry 0. Let us see if the following path does the job:

H([g], t) =

{
((gEng

−1, gE1g
−1), (1− t, t)), 0 ≤ t ≤ 1/2

((gE1g
−1, gEng

−1), (t, 1− t)), 1/2 < t ≤ 1

To begin, this path is continuous:

from below H([g], 1/2) = ((gEng
−1, gE1g

−1), (1/2, 1/2))

∼ (gEng
−1 + gE1g

−1, 1/2)

= (gE1g
−1 + gEng

−1, 1/2)

∼ ((gE1g
−1, gEng

−1), (1/2, 1/2))

= H([g], 1/2) from above
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and in fact, the path is a loop through the base point of |X •|:

H([g], 0) = ((gEng
−1, gE1g

−1), (1, 0))

∼ (gEng
−1, 1)

∼ (pt, pt) ∈ X0 ×∆0

and H([g], 1) = ((gE1g
−1, gEng

−1), (1, 0))

∼ (gE1g
−1, 1)

∼ (pt, pt) ∈ X0 ×∆0

Now to see how φ transforms the loop, notice that E 1En = EnE 1 since both are
zero by definition, therefore ∀ λ, µ ∈ C, and g ∈ SU(n)/T we have exp(λgE 1g -1

+ µgEng -1) = exp(λgE 1g -1)exp(µgEng -1):

φ(H([g], t)) = exp(2πi(tgE1g
−1 + (1− t)gEng−1))

= exp(2πi tgE1g
−1)exp(2πi(1− t)gEng−1)

= φ(gE1g
−1, t)φ(gEng

−1, 1− t)
= (I + gE1g

−1(z − 1))((I + gEng
−1(z − 1)) where z = exp(2πi t)

= I + gE1g
−1(z − 1) + gEng

−1(z − 1) + gE1g
−1(z − 1)gEng

−1(z − 1)

= gIg−1 + g((z − 1)E1)g−1 + g((z − 1)En)g−1 + (z − 1)(z − 1)gE1g
−1gEng

−1

= g(I + (z − 1)E1 + (z − 1)En)g−1 + (z − 1)(z − 1)gE1Eng
−1

= g(I + diag(z − 1, 0, ...) + diag(0n−1, z − 1, 0, ...))g−1

= g(diag(z, In−2, z, 1, ...))g
−1

= g(diag(Z, 1, ...))g−1

= diag(gZg−1, 1, ...)

Therefore this loop is indeed the correct choice as it maps to the loop we had
in ΩU.

H ([g ], t) is a loop wholly contained in the 2-skeleton of |X •|, it will be
advantageous for it to be homotopic to a loop wholly contained in the 1-skeleton
of |X •|.

K([g], t) =

{
(gEng

−1, 1− 2t), 0 ≤ t ≤ 1/2

(gE1g
−1, 2t− 1), 1/2 < t ≤ 1

K ([g ], t) is a continuous loop as K ([g ], 0) ∼ K ([g ], 1/2) ∼ K ([g ], 1) ∼ (pt, pt)
∈ |X •|.

There is a homotopy from H ([g ], t) to K ([g ], t).

Ψ([g], t, s) =

{
((gEng

−1, gE1g
−1), (1− t− st, t− st)), 0 ≤ t ≤ 1/2

((gE1g
−1, gEng

−1), (t− s(1− t), 1− t− s(1− t)), 1/2 < t ≤ 1
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Ψ([g ], t, s) is continuous:

from below Ψ([g], 1/2, s) = ((gEng
−1, gE1g

−1), ((1− s)/2, (1− s)/2))

∼ (gEng
−1 + gE1g

−1, (1− s)/2)

= (gE1g
−1 + gEng

−1, (1− s)/2)

∼ ((gE1g
−1, gEng

−1), ((1− s)/2, (1− s)/2))

= Ψ([g], 1/2, s) from above

Ψ([g ], t, s) is a homotopy from H ([g ], t) to K ([g ], t):

Ψ([g], t, 0) =

{
((gEng

−1, gE1g
−1), (1− t, t)), 0 ≤ t ≤ 1/2

((gE1g
−1, gEng

−1), (t, 1− t), 1/2 < t ≤ 1

= H([g], t)

Ψ([g], t, 1) =

{
((gEng

−1, gE1g
−1), (1− t− t, t− t)), 0 ≤ t ≤ 1/2

((gE1g
−1, gEng

−1), (t− (1− t), 1− t− (1− t)), 1/2 < t ≤ 1

∼

{
(gEng

−1, 1− 2t), 0 ≤ t ≤ 1/2

(gE1g
−1, 2t− 1), 1/2 < t ≤ 1

= K([g], t)

The 1-skeleton of ΩU is homeomorphic to the space BU. K ([g ], t) therefore
factors through BU ∼= Gr. We will attempt to determine how this factorisation
works.

Let γ: Gr → ΩU be the map sending a projection E to the loop exp(2πi tE )
for 0 ≤ t ≤ 1.

The loop Ωφ ◦ K ([g ],-) is the concatenation of two such loops:

Ωφ ◦K([g],−) = γ(gEng
−1)−1 ∗ γ(gE1g

−1)

There are n-1 inclusions S1 ↪→ T given by z 7→ diag(Ii−1, z, In−i−1, z). We
have thoroughly examined the case when i = 1 but an identical method with an
identity matrix block shifted along the diagonal allows us to achieve the result
that these inclusions composed with the Weyl map and further included into U
are adjoint to maps that are homotopic to the concatenation of two loops and
for the i th inclusion, this concatenation is given as γ(gEng

−1)−1 ∗ γ(gEig
−1).

We have BU(n) = {E ∈ Gr | rank(E ) = n} and since E ∈ Gr =⇒ E is
an idempotent, we have rank(E ) = tr(E ).

As before, let E i = diag(0i-1, 1, 0, ...), then:

rank(gEig
−1) = tr(gEig

−1)

= tr(gg−1Ei)

= tr(Ei)

= 1
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Thus the maps:

Γi : SU(n)/T→ ΩU

[g] 7→ γ(gEig
−1)

must factor through BU(1) ⊂ Gr

SU(n)/T ΩU

BU(1)

Γi

εi
� γ

where εi([g ]) = gE ig -1.
The homotopy class of εi : SU(n)/T → BU(1) corresponds to a line bundle

over SU(n)/T.
EU(1) := {(E, v) ∈ BU(1) × C∞ | v ∈ Im(E )} is the total space of the uni-

versal line bundle over BU(1). The line bundle corresponding to the homotopy
class of εi is the pullback of EU(1) by εi :

ε∗i (EU(1)) EU(1)

SU(n)/T BU(1)

y

εi

Then ε∗i (EU(1)) = {([g ], E, v) ∈ SU(n)/T × EU(1) | εi([g ]) = E} or equiva-
lently, ε∗i (EU(1)) = {([g ], v) ∈ SU(n)/T × C∞ | v ∈ Im(gE ig -1)}

There are n natural projections πi : T → S1 given by πi(Z ) = z i where, as
usual Z = diag(z 1, ..., zn). For each 1 ≤ i ≤ n, let us define the following space:
Li := SU(n) ×πi C := (SU(n) × C)/∼ where ∼ is the following equivalence
relation:

(g, πi(Z )λ) ∼ (gZ, λ) for some Z ∈ T.
The maps l i : Li → SU(n)/T given by l i([g, λ]) = [g ] are line bundles.

Lemma 58. The line bundle corresponding to the homotopy class of εi is l i .

Proof. It must be shown that there is an isomorphism Ξ: Li → ε∗i (EU(1)) and
that the following diagram commutes:

Li ε∗i (EU(1))

SU(n)/T

Ξ

li
�

To ensure that the diagram commutes, we require that Ξ([g, λ]) = ([g ], v) for
some vector v ∈ Im(gE ig -1). Let us test whether Ξ is a well defined isomorphism
when v = λgei .

136



First we must find some u ∈ C∞ such that gE ig -1u = λgei to ensure that
λgei ∈ Im(gE ig -1).

Let u = λgei

gEig
−1λgei = λgEig

−1gei
= λgEiei
= λgei

Thus λgei ∈ Im(gE ig -1).
We must show that for any Z = diag(z 1, ..., zn) ∈ T:

Ξ([g, ziλ]) = Ξ([gZ, λ]).

Ξ([g, ziλ]) = ([g], ziλgei)
Ξ([gZ, λ]) = ([gZ], λgZei)

= ([g], λgziei)
= ([g], ziλgei) as required

Therefore Ξ is well defined.
Since Li and ε∗i (EU(1)) are the total spaces of line bundles, they necessarily

have the same rank = 1 and thus, we must only check that Ξ is injective.
Since λgei = 0 =⇒ λ = 0, Ξ is injective, and thus an isomorphism. 4

Lemma 59. The Chern classes of the line bundles l i : Li → SU(n)/T are
generators of the cohomology ring H *(SU(n)/T; Z)

Proof. We have seen that SU(n)/T is homeomorphic to Fn(Cn) via the map:

Ψ : SU(n)/T→ Fn(Cn)

[[v1|...|vn]] 7→ (Span(v1) ⊂ ... ⊂ Span(v1, ...,vn−1) ⊂ Cn)

Let the maps γi: Γi → Fn(Cn) be the tautological line bundles over Fn(Cn),
i.e. Γi := {(V, v) ∈ Fn(Cn) × Cn | v ∈ Vi , v ⊥ w ∀ w ∈ Vi-1} and γi is the
projection to the flag component.

H *(Fn(Cn); Z) is generated by the elements c1(Γi) for 1 ≤ i ≤ n, so the
pullback of these elements by Ψ will generate H *(SU(n)/T; Z). Since Chern
classes are compatible with pullbacks, we need to show that each map γi is
pulled back onto a line bundle over SU(n)/T with total space homeomorphic to
Li .

Ψ∗(Γi) Γi

SU(n)/T Fn(Cn)

y γi

Ψ
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Let us examine the space Ψ*(Γi):

Ψ∗(Γi) = {([g], (V,v)) ∈ SU(n)/T× Γi | Ψ([g]) = γi(V,v)}
= {([g], (V,v)) ∈ SU(n)/T× Γi | Ψ([g]) = V}
= {([g], (V,v)) ∈ SU(n)/T× Γi | Span(ge1, ..., gej) = Vj , 1 ≤ j ≤ n}
= {([g],v) ∈ SU(n)/T× Cn | v ∈ Span(ge1, ..., gei),v ⊥ w ∀ w ∈ Span(ge1, ..., gei−1)}
= {([g],v) ∈ SU(n)/T× Cn | v ∈ Span(gei)}

To show that this space is homeomorphic to Li , let us attempt to construct the
homeomorphism:

k : Li → Ψ∗(Γi)

[g, λ] 7→ ([g], λgei)

To show that this map is well defined, let Z = diag(z 1, ..., zn) be an element of
the maximal torus T ⊆ SU(n). We require that k([gZ, λ]) = k([g, z iλ]) which
can be seen since:

k([gZ, λ]) = ([gZ], λzigei)
= ([g], ziλgei)

k([g, ziλ]) = ([g], ziλgei)

Since Li and Ψ*(Γi) are the total spaces of line bundles over the same space,
thanks to work by Milnor and Stasheff [26], if we can show that k is continuous
and an isomorphism on each fibre, then we will know that k is a homeomorphism.

Considering Ψ*(Γi) as a subspace of SU(n)/T × Cn, if πSU(n)/T ◦ ι ◦ k and
πCn ◦ ι ◦ k are both continuous, then k is continuous.

(πSU(n)/T ◦ ι ◦ k)([g, λ]) = (πSU(n)/T ◦ ι)([g], λgei)
= [g]

(πCn ◦ ι ◦ k)([g, λ]) = (πCn ◦ ι)([g], λgei)
= λgei

Since we have seen that k is well defined, and we know that quotient maps and
multiplication are continuous, both of these maps are necessarily continuous,
thus so is k.

To show that k is a fibre-wise isomorphism let us fix a point [g ] ∈ SU(n)/T
and examine the fibres over [G ]:

{[g, λ] ∈ Li | li([g, λ]) = [G]} = {[G,λ] ∈ Li}
∼= C

{([g],v) ∈ Ψ∗(Γi) | Ψ∗(γi)([g],v) = [G]} = {([G],v) ∈ Ψ∗(Γi)}
∼= Span(Gei) ∼= C
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Since k([G, λ]) = ([G ], λGei) ∈ {([G ], v) ∈ Ψ*(Γi)}, we can construct a re-
striction map:

k[G] : {[G,λ] ∈ Li} → {([G],v) ∈ Ψ∗(Γi)}
[G,λ] 7→ ([G], λGei)

Since Gei is a non-zero vector in Cn, λGei = 0 iff λ = 0, therefore k [G] is
injective, and since both the domain and codomain of k [G] have the same rank,
it must be an isomorphism.

Since k is continuous and fibre-wise bijective, k is a homeomorphism and
thus each Li is homeomorphic to the space Ψ*(Γi), therefore the Chern classes
c1(Li) for 1 ≤ i ≤ n form a generating set of H *(SU(n)/T; Z). 4

9.2 Differences of Line Bundles
Before we can get into how this all fits together, there is one more thing we
must check.

Let us consider the space [X, ΩU], the set of all homotopy classes of maps
from X to ΩU. We may equip this set with two binary operations.

Let us equip [X, ΩU] with the operation of concatenation of loops. For two
loops a,b: X → ΩU we have:

(a ∗ b)(x)(t) =

{
a(x)(2t), 0 ≤ t ≤ 1/2

b(x)(2t− 1), 1/2 < t ≤ 1

This operation has a unit [1∗] ∈ [X, ΩU], that is the class of maps homotopic
to the representative 1∗: X → ΩU where 1∗(x )(t) = I ∈ U.

Each loop a has a concatenative inverse a−1
∗ such that a∗a−1

∗ , a−1
∗ ∗a and 1∗

are all homotopic given by a−1
∗ (x )(t) = a(x )(1-t)

We may also equip [X, ΩU] with the operation of multiplication in U. For
two loops a,b: X → ΩU we have:

(a · b)(x)(t) = a(x)(t) · b(x)(t)

This operation also has a unit [1·] ∈ [X, ΩU], that is the class of maps homotopic
to the representative 1·: X → ΩU where 1·(x )(t) = I ∈ U.

Again each loop a has a multiplicative inverse a−1
· such that a·a−1

· , a−1
· ·a

and 1· are all homotopic given by a−1
· (x )(t) = (a(x )(t))-1 ∈ U.

If these operations satisfy the following identity, then by the Eckmann-Hilton
argument [8], the two operations are the same and more than that, they are
commutative and associative.

We must first show that for any loops a,b,c,d we have:

(a ∗ b) · (c ∗ d) = (a · c) ∗ (b · d)
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Which can be seen to hold in this case as:

((a ∗ b) · (c ∗ d))(x)(t) =

{
a(x)(2t) · c(x)(2t), 0 ≤ t ≤ 1/2

b(x)(2t− 1) · d(x)(2t− 1), 1/2 < t ≤ 1

and ((a · c) ∗ (b · d))(x)(t) =

{
a(x)(2t) · c(x)(2t), 0 ≤ t ≤ 1/2

b(x)(2t− 1) · d(x)(2t− 1), 1/2 < t ≤ 1

Since this identity holds on loops, it will certainly hold on homotopy classes of
loops, and thus on [X, ΩU] the operations of concatenation and multiplication
in U are the same operation which is commutative and associative. Therefore,
since we have defined inverses, [X, ΩU] is an abelian group under this operation,
hereby denoted with standard addition and subtraction notation.

Now we can begin.
We have a group [SU(n)/T, ΩU]. We would like to know how to describe

the map we had before Q : SU(n)/T→ ΩU where Q([g ])(z ) = diag(gZg -1, 1, ...)
where Z = diag(z, In-2, z, 1, ...) for z ∈ S1, in terms of isomorphism classes of
principal bundles over SU(n)/T.

We considered a space

|X•| = {((E1, ..., En), (t1, ..., tn)) ∈
∞∐
n=0

Grn ×∆n | EiEj = 0 for i 6= j}

and a homeomorphism φ: |X •| → U given by φ((E 1, ..., En), (t1, ..., tn)) =
exp(2πi(E 1t1 + ... + En tn)).

This gives us a clear map [Ωφ ◦ -]: [SU(n)/T, Ω|X •|] → [SU(n)/T, ΩU]
which is a group isomorphism since φ is a homeomorphism.

We have a map H : SU(n)/T → Ω|X •| given by

H([g])(t) =

{
((gEng

−1, gE1g
−1), (1− t, t)), 0 ≤ t ≤ 1/2

((gE1g
−1, gEng

−1), (t, 1− t)), 1/2 < t ≤ 1

which we determined satisfied the property Ωφ ◦ H = Q therefore clearly after
taking homotopy classes, [Ωφ ◦ -]([H ]) = [Q ].

H was determined to be homotopy equivalent to the map K : SU(n)/T →
Ω|X •| given by

K([g])(t) =

{
(gEng

−1, 1− 2t), 0 ≤ t ≤ 1/2

(gE1g
−1, 2t− 1), 1/2 < t ≤ 1

and it was shown that Ωφ ◦ K = Γn
-1 ∗ Γ1 where Γi : SU(n)/T → ΩU is the

loop given by Γi([g ])(t) = exp(2πi tgE ig -1)
Since [H ] = [K ] necessarily, and [Ωφ ◦ -] is a well defined group isomorphism,

it must be the case that [Q ] = [Γn
-1 ∗ Γ1] = [Γn ]-1 + [Γ1] = [Γ1] - [Γn ].

Each Γi was shown to be the composition of a map εi : SU(n)/T → BU(1)
given by εi([g ]) = gE ig -1 and the map γ: BU → ΩU given by γ(E )(t) =
exp(2πi tE ), permitted since BU(1) is a subspace of BU, Γi = γ ◦ εi .
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In turn, γ is the composition of two maps, let ω: BU → Ω|X •| be given by
ω(E ) = (E, t) for 0 ≤ t ≤ 1, then γ = Ωφ ◦ ω. Clearly, ω is injective so since
Ωφ is an isomorphism, γ is also injective.

We now have a map [γ|BU(1) ◦ -]: [SU(n)/T, BU(1)] → [SU(n)/T, ΩU] that
is injective where [γ|BU(1) ◦ -]([εi ]) = [Γi ].

We have discussed the isomorphism Φ: [X, BG ] → PG(X ) which in the
case of X = SU(n)/T and G = U(1) translates into finding an appropriate
isomorphism class of line bundles over SU(n)/T for any homotopy class of maps
from SU(n)/T to BU(1). We discovered that Φ([εi ]) = [l i ] where l i : SU(n) ×πi
C → SU(n)/T

Let Ψ = [γ|BU(1) ◦ -] ◦ Φ-1. Ψ: PU(1)(SU(n)/T) → [SU(n)/T, ΩU] is a
group homomorphism and we know that Ψ([l i ]) = [Γi ].

And so [Q ] = [Γ1] - [Γn ] = Ψ([l1]) - Ψ([ln ]) = Ψ([l1] - [ln ]).
Similarly, the other inclusions S1 ↪→ T induce maps that are adjoint to maps

that are homotopic to the difference of line bundles [l i ] - [ln ] for each 1 ≤ i ≤
n-1

9.3 The Class of the Weyl Map in K-theory
The Weyl map is given by:

W : SU(n)/T× T→ SU(n)

([g], Z) 7→ gZg−1

and by the inclusions of SU(n) into SU(∞) and SU(∞) into U, we have a map:

ι ◦W : SU(n)/T× T→ U

([g], Z) 7→ diag(gZg−1, 1, ...)

We can write elements of T in the form diag(z1, ..., zn−1, z1...zn−1), let us write
Z i = diag(Ii−1, zi, In−i−1, zi), we can construct another map

W∞ : SU(n)/T× T→ U

([g], diag(z1, ..., zn−1, z1...zn−1)) 7→ diag(gZ1g
−1, ..., gZn−1g

−1, 1, ...)

We have seen that W is homotopic to W∞.
There are n - 1 projections πS1(i) : T→ S1 given by πS1(i)(diag(z1, ..., zn−1, z1...zn−1))

= zi
Let us then construct maps w i for 1 ≤ i ≤ n - 1:

wi : SU(n)/T× S1 → U

([g], zi) 7→ diag(In(i−1), gZig
−1, 1, ...)

Now we may define W i : SU(n)/T × T→ U as W i := w i ◦ (idSU(n)/T × πS1(i)).
Then W∞ = W 1 ⊕ ... ⊕ W n-1.
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K 1(X ) = [X, U] so in K 1(SU(n)/T) we have:

[W ] = [W∞] = [W1 ⊕ ...⊕Wn−1] =

n−1∑
i=1

[Wi]

Each map idSU(n)/T × πS1(i) induces a map

(idSU(n)/T × πS1(i))*: K 1(SU(n)/T × S1) → K 1(SU(n)/T × T)

and so (idSU(n)/T × πS1(i))*([w i ]) = [W i ]. We can use the Künneth formulaula
and the naturality of the isomorphisms to obtain a commutative diagram:

K1(SU(n)/T× S1) K1(SU(n)/T× T)

K0(SU(n)/T)⊗K1(S1)

⊕ K1(SU(n)/T)⊗K0(S1)

K0(SU(n)/T)⊗K1(T)

⊕ K1(SU(n)/T)⊗K0(T)

∼=

(idSU(n)/T×πS1(i) )∗

�
∼=

idK0⊗π∗S1(i)

⊕idK1⊗ π∗
S1(i)

and so we must determine the behaviour of the induced maps π∗S1(i) : K k (S1) →
K k (T).

T is the maximal torus of SU(n) so in our case it is really Tn−1, the cartesian
product of n - 1 copies of S1. K 0(S1) ∼= Z and K 1(S1) ∼= Z so let us use the
Künneth formulaula to construct K 0(T) and K 1(T).

Lemma 60. In the category of groups, K 0(Tk) ∼= Z2k−1

and K 1(Tk) ∼= Z2k−1

Proof. We will perform an induction argument.
The base case is known to hold; T1 = S1 and so K 0(T1) ∼= K 0(S1) ∼= Z =

Z20

and K 1(T1) ∼= K 1(S1) ∼= Z = Z20

as required.
Let us assume K 0(Tk) ∼= Z2k−1

and K 1(Tk) ∼= Z2k−1

, since Tk is the cartesian
product of k copies of S1, we have Tk+1 ∼= Tk × S1 and so we may apply the
Künneth formulaula:

K0(Tk+1) ∼= K0(Tk)⊗K0(S1)⊕K0(Tk)⊗K0(S1)

∼= Z2k−1

⊗ Z⊕ Z2k−1

⊗ Z
∼= Z2k−1

⊕ Z2k−1

∼= Z2k

and K1(Tk+1) ∼= K0(Tk)⊗K1(S1)⊕K1(Tk)⊗K0(S1)

∼= Z2k−1

⊗ Z⊕ Z2k−1

⊗ Z
∼= Z2k−1

⊕ Z2k−1

∼= Z2k

4
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The copies of Z in K k (Tn) can be efficiently labelled using the Künneth
formula, each one is isomorphic to the tensor product of a copy of either K 0(S1)
or K 1(S1) for each of the component circles and so we may label them by an
n-tuple (i1, ..., in) where each i j is 0 if the tensor product includes K 0(S1(j))
or 1 if it includes K 1(S1(j)), the K theory groups of the j th component circle.

Naturally,

Z(i1,...,in) ⊂ Kk(Tn) iff
n∑
j=1

ij ∈ k + 2Z

Lemma 61. The restriction maps πS1(i) : T → S1 induce maps in K-theory
K 0(πS1(i)) and K 1(πS1(i)) such that Im(K 0(πS1(i))) ∼= Z(0,...,0) ⊆ K 0(T) and
Im(K 1(πS1(i))) ∼= Z(0i−1,1,0n−i−1) ⊆ K 1(T).

Proof. The restriction maps πS1(i) : T → S1 each have right inverses in the
inclusion maps ιi: S1 → T, so since K k is a functor we must have (πS1(i) ◦ ιi)*
= idK k (S1). For any other inclusion of a component circle into the torus, i.e. for
i 6= j, we have:

πS1(i) ◦ ιj : S1 → S1

z 7→ 1

where 1 is the basepoint of the circle.
If c: S1 → pt is the map collapsing a circle to a single point and : pt → S1

is the incluion of a point to the basepoint of the circle, we see that the following
diagram commutes:

S1 S1

pt

c

πS1(i)◦ιj

� 

Since additionally, c ◦  = idpt , we must have that the following diagrams all
commute:

K0(S1) K0(S1) K1(S1) K1(S1)

K0(pt) K1(pt)

K0(pt) K0(pt) K1(pt) K1(pt)

K0(S1) K1(S1)

K0()

K0(πS1(i)◦ιj)

�
K1()

K1(πS1(i)◦ιj)

�
K0(c) K1(c)

K0(c)

idK0(pt)

�
K1(c)

idK1(pt)

�
K0() K1()

Since K 1(pt) ∼= 0 and K 1(S1) ∼= Z, K 1() must be the zero map and K 1(c)
must be the inclusion of 0 into Z, therefore K 1(πS1(i) ◦ ιj) must also be the zero
map.
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Since K 0(pt) ∼= Z and K 0(S1) ∼= Z, K 0() and K 0(c) must be isomorphisms
since the only group homomorphisms p,q : Z → Z such that q ◦ p = idZ are p
= q = idZ and p = q = -idZ. Since in either case p ◦ q = idZ, K 0(πS1(i) ◦ ιj)
must also be the identity.

Let us denote by X i the following space:

Xi :=

i−1∏
k=1

pt× S1 ×
n−i−1∏
k=1

pt

Let us denote by i: X i → T the natural inclusions of each X i into T. Each i
has a clear left inverse we will denote ci : T → X i that collapses all but the i th
component circle of T to a point. Observe how these maps may be written:

i =

i−1∏
k=1

× id×
n−i−1∏
k=1



ci =

i−1∏
k=1

c× id×
n−i−1∏
k=1

c

Clearly, each X i is homeopmorphic to S1, let us denote the homeomorphism
that fits into the following commutative diagram pi : X i → S1:

T S1

Xi

πS1(i)

ci � pi

Necessarily, K 0(pi) and K 1(pi) will be isomorphisms.
Now to the question we actually asked, we would like to understand the

behaviour of K 0(πS1(i)) and K 1(πS1(i)), and so since the following diagrams
commute:

K0(S1) K0(T) K1(S1) K1(T)

K0(Xi) K1(Xi)

K0(πS1(i) )

∼=
�

K1(πS1(i) )

∼=
�

K0(ci) K1(ci)

all we must do is investigate the bahviour of the maps K 0(ci) and K 1(ci)
which, by the naturality of the Künneth formulaula isomorphisms, decompose
once more into the direct sum of the tensor product of a combination of only
four maps.

Helpfully, since K 1(c) is the inclusion of 0 into Z, K 0(c) is an isomorphism
and both of the other maps are identities, our maps K 0(ci) and K 1(ci) factor
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exclusively through isomorphisms and inclusions.

K0(Xi) K0(T)

⊗i−1
k=1K

0(pt)⊗K0(S1)
⊗n−i−1

k=1 K0(pt) Z(0,...,0)

K1(Xi) K1(T)

⊗i−1
k=1K

0(pt)⊗K1(S1)
⊗n−i−1

k=1 K0(pt) Z(0i−1,1,0n−i−1)

∼=

K0(ci)

�

∼=

∼=

K1(ci)

�

∼=

Therefore the map K 0(πS1(i)) is an isomorphism onto Z(0,...,0) ⊆ K 0(T) and
K 1(πS1(i)) is an isomorphism onto Z(0i−1,1,0n−i−1) ⊆ K 1(T). 4

Lemma 62. The class of the Weyl map [W ] ∈ K 1(SU(n)/T × T) has non
trivial components only in the subgroup:

K̃0(SU(n)/T)⊗
n−1⊕
i=1

Z(0i−1,1,0n−i−1) ⊆ K1(SU(n)/T)

Proof. We have seen that the class of the Weyl map can be decomposed in the
following manner:

[W ] =

n−1∑
i=1

[Wi] =

n−1∑
i=1

(idSU(n)/T × πS1(i))∗([wi])

and thanks to the previous lemma, we know that the maps (idSU(n)/T × πS1(i))*:
K 1(SU(n)/T × S1) → K 1(SU(n)/T × T) must first factor through a specific
space:

K1(SU(n)/T× S1) K1(SU(n)/T× T)

K0(SU(n)/T)⊗K1(S1)

⊕ K1(SU(n)/T)⊗K0(S1)

K0(SU(n)/T)⊗ Z(0i−1,1,0n−i−1)

⊕ K1(SU(n)/T)⊗ Z(0i−1,0,0n−i−1)

∼=

(idSU(n)/T×πS1(i) )∗

�

∼=

Therefore we must have:

[W ] ∈ K0(SU(n)/T)⊗
n−1⊕
i=1

Z(0i−1,1,0n−i−1)

⊕K1(SU(n)/T)⊗ Z(0,...,0) ⊆ K1(SU(n)/T× T)
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We must determine the nature of the classes [w i ] ∈ K 1(SU(n)/T × S1).
Consider the space A := ({[1]} × S1) ∪ (SU(n)/T × {1}) ⊂ SU(n)/T ×

S1. The inclusion ι: A → SU(n)/T × S1 is a cofibration, therefore the pair
(SU(n)/T × S1, A) has the homotopy extension property with respect to all
spaces, particularly, with respect to the space U.

We need to determine the behaviour of w i on elements of A which are either
of the form ([g ], 1) or ([In ], z ) for [g ] ∈ SU(n)/T, z ∈ S1.

wi([g], 1) = diag(In(i−1), gIng−1, 1, ...)

= I
wi([In], z) = diag(In(i−1), Indiag(Ii−1, z, In−i−1, z)In, 1, ...)

= diag(I(n+1)(i−1), z, In−i−1, z, 1, ...)

Let us define a homotopy f i : A × I → U in the following manner:

fi([g], z, t) =


I, ([g], z) ∈ SU(n)/T× {1} ⊂ A
diag(I(n+1)(i−1), exp(2πi(1− t)s),
In−i−1, exp(−2πi(1− t)s), 1, ...), ([g], z) ∈ {[In]} × S1 ⊂ A

where z = exp(2πis) for some s ∈ I.
By design we have that f i([g ], z, 0) = w i([g ], z ) for ([g ], z ) ∈ A, so the

conditions of the homotopy extension property hold and we can construct a
homotopy F i to fit into the commutative diagram:

A× {0} A× I

SU(n)/T× S1 × {0} U

SU(n)/T× S1 × I

idA×

ι×id{0} � fi ι×idI

wi

idSU(n)/T×S1×

∃Fi

Additionally, we have that f i([g ], z, 1) = I, so F i,1([g ], z ) := F i([g ], z, 1) = I
for ([g ], z ) ∈ A, therefore F i,1 necessarily factors through Σ(SU(n)/T). Let w̃i
be the map that makes the following diagram commute:

SU(n)/T× S1 U

Σ(SU(n)/T)

Fi,1

q � w̃i

In K-theory therefore, we have [w i ] = [F i,1] since w i and F i,1 are homotopic,
and thus [w i ] = q*[w̃i].

So in order to better understand our class [W ], now we must determine the
behaviour of q*: K 1(Σ(SU(n)/T)) → K 1(SU(n)/T × S1).
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Since Σ(SU(n)/T) = (SU(n)/T × S1)/A, let us consider the long exact
sequence induced by the pair (SU(n)/T × S1, A) where ιX is the map induced
by the inclusion of (SU(n)/T × S1, ∅) into (SU(n)/T × S1, A) and ιA is the
map induced by the inclusion of A into SU(n)/T × S1:

K1(SU(n)/T× S1, A) K1(SU(n)/T× S1) K1(A)

K1(Σ(SU(n)/T), pt) K1(Σ(SU(n)/T))

ιX

�

ιA

∼=

∼=

q∗

Form this diagram we can see that Im(q*) = Im(ιX) = Ker(ιA). Notice addi-
tionally, that while ({[1]} × S1) ∪ (SU(n)/T × {1}) = A, we also have ({[1]} ×
S1) ∩ (SU(n)/T × {1}) = {pt} and so let us use a Mayer-Vietoris sequence:

K1(A) K1({[1]} × S1)⊕K1(SU(n)/T× {1}) K1(pt)

K0(pt) K0({[1]} × S1)⊕K0(SU(n)/T× {1}) K0(A)

(∗1 ,
∗
2) ι∗1−ι

∗
2

ι∗1−ι
∗
2 (∗1 ,

∗
2)

where ι1, ι2 are the inclusions of a point into S1 and SU(n)/T respectively, and
1, 2 are the inclusions of {[1]} × S1 and SU(n)/T × {1} into A respectively.

Since we know that K 1(pt) ∼= 0, K 0(pt) ∼= Z, and K 1(S1) ∼= Z, we can
rewrite our sequence:

K1(A) K1({[1]} × S1)⊕K1(SU(n)/T× {1}) 0

Z Z⊕K0(SU(n)/T× {1}) K0(A)

(∗1 ,
∗
2)

ι∗1−ι
∗
2 (∗1 ,

∗
2)

Additionally, since ι1 is the inclusion of a point into the circle, K 0(ι1) is an
isomorphism, and so ι∗1-ι∗2: Z ⊕ K 0(SU(n)/T × {1}) → Z is a surjection as
(ι∗1-ι∗2)(z, 0) = ι∗1(z ), so Im(ι∗1-ι∗2) = Im(ι∗1) = Z, and therefore the connecting
map into K 1(A) is the zero map. Thus by exactness:

(∗1, 
∗
2) : K1(A)→ K1({[1]} × S1)⊕K1(SU(n)/T× {1})

is an isomorphism.
Now that we have products again, we can use the Künneth formulaula to

show that K 1(A) is isomorphic to K 0(pt) ⊗ K 1(S1) ⊕ K 1(SU(n)/T) ⊗ K 0(pt).
Thus in order to find the kernel of ιA, all we must do is determine the kernel of
the map naturally induced by the Künneth formulaula:

K1(SU(n)/T× S1) K0(SU(n)/T)⊗K1(S1)⊕K1(SU(n)/T)⊗K0(S1)

K1(A) K0(pt)⊗K1(S1)⊕K1(SU(n)/T)⊗K0(pt)

ιA

∼=

� (ι∗2⊗id∗S1 )⊕(id∗SU(n)/T⊗ι
∗
1)

∼=
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The two identities and ι∗1 are all isomorphisms so all of their kernels are 0, let
us see how that affects the kernel:

Ker((ι∗2 ⊗ id∗S1)⊕ (id∗SU(n)/T ⊗ ι∗1)) = Ker(ι∗2 ⊗ id∗S1)⊕Ker(id∗SU(n)/T ⊗ ι∗1)

= (Ker(ι∗2)⊗K1(S1) ∪K0(SU(n)/T)⊗ 0)

⊕ (0⊗K0(S1) ∪K1(SU(n)/T)⊗ 0)

= Ker(ι∗2)⊗K1(S1) ∪ 0⊕ 0 ∪ 0

= Ker(ι∗2)⊗K1(S1)

= K̃0(SU(n)/T)⊗K1(S1)

since ι2 is the inclusion of a point into SU(n)/T.
Therefore we must have that Ker(ιA) = K̃0(SU(n)/T) ⊗ K 1(S1) as a subset

ofK 1(SU(n)/T× S1), and sinceKer(ιA) = Im(ιX) = Im(q*) and [w i ] ∈ Im(q*),
we must have [w i ] ∈ K̃0(SU(n)/T) ⊗ K 1(S1) which in turn ensures that:

[W ] ∈ K̃0(SU(n)/T)⊗
n−1⊕
i=1

Z(0i−1,1,0n−i−1)

⊆ K0(SU(n)/T)⊗K1(T)

⊂ K1(SU(n)/T× T)

4

Theorem 63. The class of the Weyl map in K 1(SU(n)/T × T) is given by:

[W ] =

n−1⊕
i=1

Φ([Li]− [Ln])⊗ zi

where Φ is an isomorphism, and for each i, z i is a generator of K 1(S1(i)), and
Li is the i th tautological line bundle over SU(n)/T.

Proof. Earlier we have seen that, in unreduced K-theory, the class of the map

P1 : S(SU(n)/T)→ U

[[g], t] 7→ diag(g.Z1.g
−1, 1, ...)

where Z 1 = diag(exp(2πi t), In−2, exp(-2πi t)), is equal to the difference of
the classes of two line bundles [L1] - [Ln ] (after a fair few isomorphisms), and
without much further effort, we can see that the class of the map:

Pi : S(SU(n)/T)→ U

[[g], t] 7→ diag(g.Zi.g
−1, 1, ...)

where Z i = diag(Ii−1, exp(2πi t), In−i−1, exp(-2πi t)), is in turn equal to the
difference of the classes of two line bundles [Li ] - [Ln ].
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We could easily produce a homotopy, thus ensuring they represent the same
class in K 1(S (SU(n)/T), between each map P i and a counterpart map:

pi : S(SU(n)/T)→ U
[[g], t] 7→ diag(In(i−1), Pi([g], t))

In the following diagram we have quotient maps qI , qS and qΣ that together
with our original quotient map q, form the innermost square which commutes
as q ◦ qI = qΣ ◦ qS . Additionally, since the maps w i have been seen to
factor through S (SU(n)/T), the outermost square also commutes as w i ◦ qI
= pi ◦ qS . Additionally, additionally, as we have already described, there is
a homotopy between w i and w̃i ◦ q, thus by composition with qI there is a
homotopy between w i ◦ qI and w̃i ◦ q ◦ qI , thus by using the commutative
squares there is a homotopy between pi ◦ qS and w̃i ◦ qΣ ◦ qS , and thus there
is a homotopy between pi and w̃i ◦ qΣ:

SU(n)/T× I SU(n)/T× S1

S(SU(n)/T) Σ(SU(n)/T)

U

qI

qS �

4
wi

q

qΣ

pi

4
w̃i

Since SU(n)/T is a based CW-complex, qΣ is a homotopy equivalence and thus
induces isomorphisms qΣ*: K k (Σ(SU(n)/T)) → K k (S (SU(n)/T)).

The homotopy between pi and w̃i ◦ qΣ ensures that [pi ] = qΣ*[w̃i] ∈
K 1(S (SU(n)/T)), which, since qΣ* is an isomorphism, means that [w̃i] = qΣ*-1[pi ]
∈ K 1(Σ(SU(n)/T)). Therefore, since [w i ] = q*[w̃i] as we have seen, we must
have [w i ] = q*(qΣ*-1[pi ]).

We know that [pi ] = Ξ([Li ] - [Ln ]) therefore:

[W ] =

n−1⊕
i=1

q∗(q∗−1
Σ (Ξ([Li]− [Ln])))⊗ zi

and since we only require information about the restriction of q* to the map
q*|: {[w i ] | 1 ≤ i ≤ n-1} → {[w̃i] | 1 ≤ i ≤ n-1} which is an isomorphism of
sets, we achieve the result that

[W ] =

n−1⊕
i=1

Φ([Li]− [Ln])⊗ zi

and thus our theorem holds. 4
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10 Finally Twisting K-Theory

10.1 The Tensor Chern Character
For each fixed integer d we have described a strict symmetric monoidal category
C⊗ with objects N and morphism sets

HomC⊗(n,m) =

{
U((Cd)⊗n), n = m

∅, else

Since C⊗ is a strict symmetric monoidal category, we were able to construct the
reduced cohomology theory h∗⊗: Top* → AbGrp defined as

hk⊗(X) =

{
[X,Ω(−k+1)B(BU[ 1

d ]× Z)], k ≤ 0

[X,B(k)(BU[ 1
d ]× Z)], k > 0

Theorem 64. There is a natural transformation logch: h∗⊗ → H∗per that will be
called the tensor Chern character at it is analogous to the Chern character
ch: K* → H∗per that we are already familiar with.

Proof. It can be seen that h0
⊗(X ) ⊆ GL(1, K 0(X ) ⊗ Z[ 1d ]).

h0
⊗(X) = [X,ΩB(BU[

1

d
]× Z)]

= [X,BU[
1

d
]× Z]

⊆ [X,BU[
1

d
]× Z[

1

d
]]

...

= GL(1,K0(X)⊗ Z[
1

d
])

We will be able to make good use of this in order to construct logch.
ch: K 0(X ) → H0

per(X ; Q) is the Chern character we are already familiar
with. We may tensor with the identity on Z[ 1d ] to achieve ch ⊗ idZ[ 1

d ]: K 0(X ) ⊗
Z[ 1d ] → H0

per(X ; Q) ⊗ Z[ 1d ] which can then be composed with the isomorphism
Ψ: H0

per(X ; Q) ⊗ Z[ 1d ] → H0
per(X ; Q) given by:

Ψ(

n∑
i=0

φi ⊗ zi) =

n∑
i=0

ziφi

possible because Z[ 1d ] is a subset of Q.
Since ch, idZ[ 1

d ], and Ψ are all ring homomorphisms, restricting to invertible
elements in the source space also restricts to invertible elements in the target
space and so we have:

GL(1,Ψ ◦ (ch⊗ idZ[ 1
d ])) : GL(1,K0(X)⊗ Z[

1

d
])→ GL(1, H0

per(X;Q))
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and with a further restriction:

GL(1,Ψ ◦ (ch⊗ idZ[ 1
d ]))|h0

⊗(X) : h0
⊗(X)→ GL(1, H0

per(X;Q))

Now to discuss the map from GL(1, H0
per(X ; Q)) to H0

per(X ; Q).
For X a CW-complex H i(X ; Q) ∼= 0 for i > N where N is the dimension

of X and i < 0 and so H0
per(X ; Q) is a graded commutative ring where for all

i,j ∈ 2N, H i(X ; Q)^H j (X ; Q) ⊆ H i+j (X ; Q) and H n(X ; Q) = 0 for n > M
where M ∈ 2N is such that N - 1 ≤ M ≤ N where N is the dimension of X.

Elements of H0
per(X ; Q) will be written as φ0 + φ2 + ... + φM where each

φi is a class in H i(X ; Q).
We must determine what elements of H0

per(X ; Q) are elements of GL(1,
H0
per(X ; Q)).

Lemma 65. If R is a graded commutative ring

R =
⊕
n∈N

Rn

with Ri .Rj ⊆ Ri+j and Rn = 0 for n > N for some N ∈ N,
then GL(1, R) = {r0 + ... + rN ∈ R | r0 ∈ GL(1, R0)}

Proof. Let r = r0 + ... + rN be an invertible element of R. Then ∃ s = s0 +
... + sN ∈ R such that r.s = 1.

r.s = 1

(r0 + ...+ rN ).(s0 + ...+ sN ) = 1

r0.s0 + r0.(s− s0) + (r − r0).s0 + (r − r0).(s− s0) = 1

so r0.s0 = 1

and r0.(s− s0) + (r − r0).s0 + (r − r0).(s− s0) = 0

Therefore, if r = r0 + ... + rN is an invertible element of R, we require that
r0 be an invertible element of R0.

Now, let r = r0 + ... + rN be an element of R with r0 an invertible element
of R0. We would like to show that r is an invertible element of R.

Consider an element of R of the form 1 - x where x ∈ R\R0. It is easy to
show that 1 - x is an invertible element of R.

(1− x).(1 + x) = 1− x2

(1− x).(1 + x).(1 + x2) = 1− x4

...

(1− x).

k−1∏
i=0

(1 + x2i) = 1− x2k = 1
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since there will always be some k such that 2k > N, xn ∈ R\(
⊕N

i=0Ri) for n >
N, and Rn = 0 for n > N. Therefore 1 - x is an invertible element of R.

r = r0 + ... + rN is an element of R where r0 is an invertible element of
R0.

r.r−1
0 = (r0 + r − r0).r−1

0 = 1 + (r − r0).r−1
0

= 1 + (r.r−1
0 − 1)

= 1− (1− r.r−1
0 )

r.r−1
0 .

k−1∏
i=0

(1 + (1− r.r−1
0 )2i) = 1− (1− r.r−1

0 )2k = 1

Therefore if r0 is an invertible element of R0, r is an invertible element of R
and thus GL(1, R) = {r0 + ... + rN | r0 ∈ GL(1, R0)}. 4

From this lemma, we can see that the elements of GL(1, H0
per(X ; Q)) are

those elements φ0 + φ2 + ... + φM ∈ H0
per(X ; Q) such that φ0 is an invertible

element of H 0(X ; Q).
For X a path connecteded CW-complex, H 0(X ; Q) ∼= Q so GL(1, H0

per(X ;
Q)) are those elements φ0 + φ2 + ... + φM ∈ H0

per(X ; Q) such that φ0 6= 0.
Finally we need to describe a map Ж: GL(1, H0

per(X ; Q)) → H0
per(X ; Q)

such that Ж(φ ^ ψ) = Ж(φ) + Ж(ψ)
The initial thought is that Ж should be the logarithm, we will use the Taylor

expansion:

log(1 + x) = x− x2

2!
+
x3

3!
− x4

4!
+ ...

=

∞∑
k=1

(−1)k−1x
k

k!

however, let us apply the logarithm to an element of GL(1, H0
per(X ; Q)) of

the form φ0 + φ:

log(φ0 + φ) = log(φ0 ^ (1 + φ ^ φ−1
0 ))

= log(φ0) + log(1 + φ ^ φ−1
0 )

= log(φ0) +

∞∑
k=1

(−1)k−1 (φ ^ φ0)k

k!

Since log(φ0 + φ) - log(φ0) is a polynomial in elements of H0
per(X ; Q), it too

is an element of H0
per(X ; Q). However, there is no guarantee that log(φ0) ∈

H0
per(X ; Q) so it cannot be that Ж = log as simply as that. Luckily, in order

to define logch we don’t require that Ж be defined on all of GL(1, H0
per(X ;

Q)), just on the subset Im(GL(1, Ψ ◦ (ch ⊗ idZ[ 1
d ]))|h0

⊗(X)) and it is only the
component in degree 0 that needs special attention.
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Since h0
⊗(X ) ⊂ GL(1, K 0(X ) ⊗ Z[ 1d ]), Im(GL(1, Ψ ◦ (ch ⊗ idZ[ 1

d ]))|h0
⊗(X))

⊂ Im(GL(1, Ψ ◦ (ch ⊗ idZ[ 1
d ]))). We will define a map using this slightly larger

space for ease of use.
We need to find a map

Ш : Im(GL(1,Ψ ◦ (ch⊗ idZ[ 1
d ]))) ∩H0(X;Q)→ H0

per(X;Q)

such that Ш(φ ^ ψ) = Ш(φ) + Ш(ψ).
Then Ж(φ0 + φ):= Ш(φ0) + log(φ0 + φ) - log(φ0) will behave as we require.
First we must determine the invertible elements of K 0(X ) ⊗ Z[ 1d ].
For X path connected
GL(1, K 0(X ) ⊗ Z[ 1d ]) ∼= {[E ] - [F ] ∈ K 0(X ) | dim([E ] - [F ]) ∈ GL(1, Z[ 1d ])}

GL(1,Z[
1

d
]) ∼= Z/2Z⊕

⊕
p|d

Z

where p is prime.
The isomorphism is given as follows for d = pa1

1 ...pann :

Φ : Z/2Z⊕
⊕
p|d

Z→ GL(1,Z[
1

d
])

(u, b1, ..., bn) 7→ u · pb11 ...p
bn
n

GL(1,Ψ ◦ (ch⊗ idZ[ 1
d ]))(

N∑
i=0

([Ei]− [Fi])⊗ zi) =

N∑
i=0

zi · ch([Ei]− [Fi])

ch([E]− [F ]) = dim([E]− [F ]) +

∞∑
k=1

sk(c([E]− [F ]))

k!

Im(GL(1, Ψ ◦ (ch ⊗ idZ[ 1
d ]))) ∩ H 0(X ; Q) ∼= GL(1, Z[ 1

d ])
And so we need to define a map ш: GL(1, Z[ 1

d ]) → Q with ш(xy) = ш(x )
+ ш(y) in order to define Ш.

Im(GL(1,Ψ ◦ (ch⊗ idZ[ 1
d ]))) ∩H0(X;Q) H0

per(X;Q)

GL(1,Z[ 1
d ]) Q

Ш

∼= �
∼=

ш

For d = pk for some prime p and some k ∈ N this is easy. GL(1, Z[ 1
d ]) =

{u ⊕ pn | n ∈ Z} ∼= Z so we can construct the map шd as follows:

шd : GL(1,Z[
1

d
])→ Q

u⊕ pn 7→ n

k
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and so we have

шd((u⊕ pn) · (v ⊕ pm)) = шd((uv ⊕ pn+m))

=
n+m

k

=
n

k
+
m

k
= шd(u⊕ pn) + шd(v ⊕ pm)

as required
Then the tensor Chern character can be given as:

logch = Ж ◦GL(1,Ψ ◦ (ch⊗ idZ[ 1
d ]))|h0

⊗(X) : h0
⊗(X)→ H0

per(X;Q)

4

Since H̆∗per is a graded vector space over Q, any homomorphism of graded
rings η̆: k̆∗ → H̆∗per will extend to a natural transformation η: k* → H∗per

We need to determine the nature of h̆∗⊗. And so we must evaluate hn⊗(S0)

hn⊗(S0) =

{
[S0,Ω(−n+1)B(BU[ 1

d ]× Z)], n ≤ 0

[S0, B(n)(BU[ 1
d ]× Z)], n > 0

hn⊗(S0) =


Z, n = 0

Z[ 1
d ], n ∈ 2Z ∩ (Z\N)

0, else

10.2 The Class of the Weyl Map in h∗
⊗

As we have seen, we must have a strong symmetric monoidal functor between
strict symmetric monoidal categories in order to produce a natural transforma-
tion of cohomology theories. Our focus is on exponential functors which are
only required to be monoidal functors, however there is a family of exponential
functors that are strong symmetric monoidal functors.

10.2.1 The Determinant and Powers Thereof

The exponential functors detm : C⊕ → C⊗ are strong symmetric monoidal func-
tors as detm(AB) = detm(A)detm(B) = detm(B)detm(A) = detm(BA) since
multiplication in the underlying field must be commutative. Therefore, each
of these exponential functors induces a natural transformations of cohomology
theories τ : h∗⊕ → h∗⊗.

Since detm(C) = C, we know that these instances of C⊗ are when d = 1,
and we have already discussed the cohomology theory generated by this strict
symmetric monoidal category:

hk⊗(X) = H̃k(X;Z)× H̃k+2(X;Z)
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Now let us concern ourselves with the Weyl map again. We have seen that
the map W : SU(n)/T × T → SU(n) includes into U and therefore defines a
class [W ] ∈ K 1(SU(n)/T × T). We have also seen that our cohomology theory
constructed from C⊕ is connective K-theory, so h1

⊕(X ) ∼= K 1(X ) and clearly
[W ] is also a class in this cohomology theory.

Theorem 66. The natural transformation of cohomology theories generated
by the symmetric exponential functor detm ensures we have a class τ1([W ]) ∈
h1
⊗(SU(n)/T × T). This class is given by:

τ1([W ]) =

n−1∑
i=1

m.(c1([L1])− c1([Ln]))⊗ zi

Proof. h1
⊗(SU(n)/T × T) ∼= H 1(SU(n)/T × T; Z) × H 3(SU(n)/T × T; Z) but

we can show that the class τ1([W ]) lies in the subset {0} × H 3(SU(n)/T × T;
Z).

The functor detm : C⊕ → C⊗ induces a continuous map between topological
spaces |N (det)|: |N (C⊕)| → |N (C⊗)| which in turn induces a continuous map
on the classifying spaces B |N (det)|: B |N (C⊕)| → B |N (C⊗)|.

We have seen that B |N (C⊕)| ' U, C⊗ ∼= N × U (1), products commute
with the classifying space construction up to homotopy, and it is not too tricky
to see that |N (N )| ' N since for any set X, if X is the category with X as a
collection of objects and only the required identity morphisms from each object
to itself, then |N (X )| ' X.

Additionally, since B(N) ' U(1), we would like to show that the following
diagrams commute up to homotopy:

B|N(C⊕)| B|N(C⊗)| B|N(C⊕)| B|N(N )|

B|N(N )| B|N(N )| ×B|N(U (1))| U U(1)

B|N(detm)|

Ξ 4 '

Ξ

' 4 '

πB|N(N )| det

where Ξ: B |N (C⊕)|→ B |N (N )| is the continuous map induced by the functor
ξ: C⊕ → N that sends each object to itself (since both are labeled by N), and
each morphism to the appropriate identity morphism.

It is not too tricky to show that the first diagram commutes up to homotopy
as every map is induced by a functor and clearly the following diagram commutes
in Cat:

C⊕ C⊗

N N ×U (1)

detm

ξ � ∼=

πN

After applying a series of functors we achieve the diagram we want but it does
not commute on the nose since B |N (N × U (1))| ' B |N (N )| × B |N (U (1))|
is only a homotopy equivalence.
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The second diagram is a question of showing that two maps are representa-
tives of the same class in [B |N (C⊕)|, U(1)] ∼= H 1(U; Z) since B |N (C⊕)| ' U,
and U(1) ' K (Z, 1).

The universal coefficient theorem states that:

H1(U;Z) ∼= [H1(U),Z]⊕ Ext(H0(U),Z)

and since H 0(X ) is a free abelian group for any topological space and Ext(A,
B) = 0 if A is a free group, we achieve H 1(U; Z) ∼= [H 1(U), Z]. furthermore,
since H 1(X ) ∼= π1(X )ab, [G, A] ∼= [Gab, A] for any group G and abelian group
A, and Z is abelian, [H 1(U), Z] = [π1(U), Z]. Since also, π1(U(1)) ∼= Z, then
[π1(U), Z] = [π1(U), π1(U(1))].

The functor ξ: C⊕ → N , as well as inducing the map Ξ: B |N (C⊕)| →
B |N (N )|, further induces a map ΩΞ: ΩB |N (C⊕)| → ΩB |N (N )| which makes
the following diagram commute up to homotopy:

ΩB|N(C⊕)| ΩB|NN )|

BU× Z Z

ΩΞ

' � '

πZ

Therefore, since BU is connected, the induced map π0(ΩΞ): π0(ΩB |N (C⊕)|)→
π0(ΩB |N (N )|) makes the following diagram commute:

π0(ΩB|N(C⊕)|) π0(ΩB|NN )|)

Z Z

π0(ΩΞ)

∼= �
∼=

idZ

Therefore since π0(ΩX ) ∼= π1(X ) for any pointed topological space X by the
suspension loop adjunction, [π1(Ξ)] = [idZ] ∈ [π1(U), π1(U(1))]

det : U→ U(1) also induces a map π1(det): π1(U)→ π1(U(1)). The following
map is a generator of π1(U):

g : S1 → U
z 7→ diag(z, 1)

and since clearly det ◦ g = idS1 , and idS1 is a generator of π1(U(1)), π1(det) is
an isomorphism and [π1(det)] = [idZ].

Therefore the two maps are in the same class, and thus the diagram com-
mutes up to homotopy.

All this to say that, since the Weyl map factors through SU(∞), and detm(A)
= 1 for any A ∈ SU(∞), πH1 [B |N (detm)| ◦ W ] = [0] ∈ H 1(SU(n)/T × T; Z).

We therefore know that the image of the Weyl map lies totally inside the
supspace {0} × H 3(SU(n)/T × T; Z) ⊆ h1

⊗
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The strong symmetric exponential functor detm induces a natural transfor-
mation of cohomology theories τ . Thus for any topological space X, we have
the following commutative diagram in the category of graded rings:

h∗⊕(X × Tn) h∗⊗(X × Tn)

h∗⊕(X)⊗ Λ∗Z[z1, ..., zn] h∗⊗(X)⊗ Λ∗Z[z1, ..., zn]

τX×Tn

∼= � ∼=

τX⊗id

Since the class of the Weyl map lies in h1
⊕(SU(n)/T × T), we only need to

concern ourselves with the following commutative diagram in the category of
abelian groups:

h1
⊕(SU(n)/T× T) h1

⊗(SU(n)/T× T)

⊕n−1
j=0 h

1−j
⊕ (SU(n)/T)⊗ ΛjZ[z1, ..., zn−1]

⊕n−1
j=0 h

1−j
⊗ (SU(n)/T)⊗ ΛjZ[z1, ..., zn−1]

τ1
SU(n)/T×T

∼= � ∼=

(τSU(n)/T⊗id)1

At this point we can further reduce the scope of our diagram. We have seen
that hn⊕(X ) ∼= K n(X ) for any topological space X and n ≤ 1, and also we have
seen that K 0(Tn) ∼= ΛevenZ [z 1, ..., zn ], and K 1(Tn) ∼= ΛoddZ [z 1, ..., zn ]. These
facts together show us that the left vertical map in our diagram must be the
Künneth formula isomorphism.

We described the class of the Weyl map as an element of a subset:

[W ] ∈
n−1⊕
i=1

K̃0(SU(n)/T)⊗ Z0i−1,1,0n−i−1
⊆ K0(SU(n)/T)⊗K1(T)

and here we find a natural identification, Z0i−1,1,0n−i−1
∼= Λ1

Z[z i ]. Our diagram
naturally simplifies to:

K1(SU(n)/T× T) h1
⊗(SU(n)/T× T)

K0(SU(n)/T)⊗ Λ1
Z[z1, ..., zn−1] h0

⊗(SU(n)/T)⊗ Λ1
Z[z1, ..., zn−1]

τ̃1
SU(n)/T×T

�

τ̃0
SU(n)/T⊗id

ι ι

where τ̃ iX is the precomposition of τ iX with the isomorphism Ki(X) → hi⊕(X)
for i ≤ 1.

We have also seen that, in the case of powers of the determinant, hn⊗(X )
∼= H n(X ; Z) × H n+2(X ; Z), and that the class of the Weyl map is wholly
contained in a single copy of H 3(SU(n)/T × T; Z) ⊆ h1

⊗(SU(n)/T × T) so we
only need to concern ourselves with the elements of degree 3 on the right hand
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side of our diagram to achieve:

K1(SU(n)/T× T) H3(SU(n)/T× T;Z)

K0(SU(n)/T)⊗ Λ1
Z[z1, ..., zn−1] H2(SU(n)/T;Z)⊗ Λ1

Z[z1, ..., zn−1]

πH3◦τ̃1
SU(n)/T×T

�ι

πH2◦τ̃SU(n)/T⊗id

ι

and from this we can see that in order to determine where the class of the Weyl
map ends up in h1

⊗(SU(n)/T × T), the only thing we need to do is describe the
maps K 0(SU(n)/T) → H 2(SU(n)/T; Z) induced by powers of the determinant.

Recall that:

[W ] =

n−1⊕
i=1

([Li]−[Ln])⊗zi ∈ K̃0(SU(n)/T)⊗Λ1
Z[z1, ..., zn−1] ⊆ K1(SU(n)/T×T)

where each Li is the total space of a tautological line bundle over SU(n)/T.
The exponential functor detm : C⊕ → C⊗ is built using maps:

detm : U(n)→ U(1)

A 7→ (det(A))m

Since U = colim(U(0) ↪→ U(1) ↪→ ... ↪→ U(n) ↪→ ...), and each of the following
diagrams commute:

U(n) U(1)

U(n+ 1) U(1)

detm

ι � =

detm

where ι(A) = diag(A, 1), since det(A) = det(diag(A, 1)). We can easily define
a group homomorphism detm : U → U(1) since every element of U has a rep-
resentative of the form diag(A, 1, ...) for A ∈ U(N ) for some sufficiently large
N. Since this map is a group homomorphism, we can construct a map on the
classifying spaces B(detm): BU → BU(1).

Post composition with projection onto the BU component and this map
together with the isomorphism c1: [X, BU(1)] → H 2(X ; Z) that sends an
isomorphism class of complex line bundles to it’s first Chern class is exactly the
map we were after:

K0(SU(n)/T) [SU(n)/T, BU× Z] [SU(n)/T, BU(1)] H2(SU(n)/T;Z)
∼= B(detm)∗ c1

Since the colimit and classifying space construction commute, we can investigate
the nature of the map B(detm)*: [SU(n)/T, BU × Z] → [SU(n)/T, BU(1)] by
investigating how each of the maps B(detm)*: [SU(n)/T, BU(i)] → [SU(n)/T,
BU(1)] behave.

Since the set of homotopy classes of maps from a space X into the classifying
space BU(i) is isomorphic to the set of isomorphism classes of i -dimensional
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complex vector bundles, let p: E → SU(n)/T be an i -dimensional vector bundle,
then the vector bundle detmp: detmE → SU(n)/T is the line bundle the makes
the following diagram commute:

E EU(i)

detmE EU(1)

BU(i)

SU(n)/T BU(1)

p

ξ

detmp

B(detm)

The map ξ: E → detmE sends each fibre of px ⊆ E to the fibre (detmp)x ⊆
detmE for each x ∈ SU(n)/T and the restriction map is given by:

ξ|px : px → (detmp)x

A 7→ (det(A))m

Again thanks to the colimit we are able to use these maps to define a group
homomorphism that sends any isomorphism class of vector bundles to the iso-
morpism class of it’s determinant bundle.

It can be shown fibrewise that if p: E → SU(n)/T and p’: E ’ → SU(n)/T
are representatives of two isomorphism classes of vector bundles over SU(n)/T
then detm(E ) ∼= det(E )⊗m, and detm(E ⊕ E ’) ∼= detm(E ) ⊗ detm(E ’) and so
c1(detm(E ⊕ E ’)) = c1(detm(E )) + c1(detm(E ’)) =m(c1(det(E )) - c1(det(E ’)))
once we take Chern classes. Therefore we have our map:

(detm)∗ : K0(SU(n)/T)→ H2(SU(n)/T;Z)

[E]− [F ] 7→ m(c1(det(E))− c1(det(F )))

Additionally, if a vector bundle p: E → SU(n)/T can be written as a direct
sum of line bundles, i.e. E ∼= L1 ⊕ ... ⊕ Lk and p ∼= pL1 ⊕ ... ⊕ pLk where
each pLi : Li → SU(n)/T is a complex line bundle, then:

c1(detm(E)) = c1(detm(L1 ⊕ ...⊕ Lk))

= c1(det(L1 ⊕ ...⊕ Lk)⊗m)

= m.c1(det(L1 ⊕ ...⊕ Lk))

= m.c1(det(L1)⊗ ...⊗ det(Lk))

= m.c1(L1 ⊗ ...⊗ Lk)

= m.(c1(L1) + ...+ c1(Lk))

= m.c1(E)
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So since the class of the Weyl map only has information concerning classes of
line bundles which are clearly isomorphic to a direct sum of line bundles, we
finally achieve the result that the map:

W : SU(n)/T× T→ SU(n)

([g], Z) 7→ gZg−1

when passed through a series of maps, including one induced by the expoential
functor detm : C⊕ → C⊗:

SU(n)/T× T SU(n) SU(∞) U BBU⊗[ 1
1 ]W (detm)∗

gives us a class τ([W ]) ∈ h1
⊗(SU(n)/T × T) and:

τ([W ]) =

n−1∑
i=1

m(c1(Li)− c1(Ln))⊗ zi

where each Li is the total space of the i th tautological line bundle over SU(n)/T,
and each z i is a generator of H 1(S1; Z), one for each natural inclusion of a circle
into the torus T. 4

10.2.2 Non-Symmetric Exponential Functors

Not all exponential functors are created equally. It is not a necessary condition
that they must preserve the symmetry between the categories

Theorem 67. Let F : C⊕ → C⊗ be an exponential functor that is not nec-
essarily a strong symmetric monoidal functor. If τ1: h1

⊕ → h1
⊗ is the natural

transformation induced by F between the first degree cohomology groups and
W is the Weyl map, then the class τ1([W ]) ∈ h1

⊗(SU(n)/T × T) is given by:

τ1([W ]) =

n−1⊙
i=1

([F (Li)⊗
n−1⊗
j=1

F (Lj)]⊗
1

dn
)⊗ zi

where � is the binary operation of h0
⊗(SU(n)/T) ⊗ Λ1

Z[z 1, ..., zn ] given by:

(a⊗ x)� (b⊗ y) = ab⊗ x+ y

Proof. Since F is not necessarily strong symmetric, we do not necessarily obtain
a natural transformation of cohomology theories induced by F, however we do
still clearly achieve a homomorphism of topological monoids |N (F )|: |N (C⊕)|
→ |N (C⊗)| simply by performing the nerve and geometric realisation functors.
The monoid operation in each of these monoids is induced by the monoidal
product in each of their respective categories.

Since we have a monoid homomorphism, we can perform the classifying
space construction to achieve a continuous map of pointed topological spaces
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B |N (F )|: B |N (C⊕)|→ B |N (C⊗)| and it is post composition with this map that
induces a natural transformation τ1: h1

⊕ → h1
⊗.

Clearly, we can apply the loop functor to this map to achieve ΩB |N (F )|:
ΩB |N (C⊕)| → ΩB |N (C⊗)| and similarly, post composition with this map in-
duces a natural transformation τ0 h0

⊕ → h0
⊗

Critically, these two natural transformations are identically equal to those
we can construct if we make an attempt at a full blown natural transformation
of cohomology theories using Γ-categories.

Even though we don’t have a natural transformation of cohomology theories,
for any cohomology theory we do still have the isomorphism:

h∗(X × Tn) ∼= h∗(X)⊗ Λ∗Z[z1, ..., zn]

and as we have already seen, for the cohomology theory h∗⊕ this isomorphism of
graded rings restricted to the isomorphism of abelian groups in the first degree:

h1
⊕(X × Tn) ∼=

n⊕
i

h1−i
⊕ (X)⊗ ΛiZ[z1, ..., zn]

is identically the map given by the Künneth formula isomorphism:

h1
⊕(X × Tn) K1(X × Tn)

⊕n
i=0 h

1−i
⊕ (X)⊗ ΛiZ[z1, ..., zn] K1(X)⊗K0(Tn)⊕K0(X)⊗K1(Tn)

∼=

∼= � ∼=

∼=

We have also seen that the class of the Weyl map lies entirely within a subset
of K 1(SU(n)/T × T)

[W ] ∈
n−1⊕
i=0

K̃0(SU(n)/T)⊗ Z0i−1,1,0n−i−1
⊆ K1(SU(n)/T× T)

and we have also already seen that this subset maps by the bottom isomorphism
in the diagram to h0

⊕(SU(n)/T) ⊗ Λ1
Z[z 1, ..., zn-1].

Therefore, since we do have the required natural transformation in the 0th

and 1st degrees, the following diagram commutes:

h1
⊕(SU(n)/T× T) h1

⊗(SU(n)/T× T)

h0
⊕(SU(n)/T)⊗ Λ1

Z[z1, ..., zn−1] h0
⊗(SU(n)/T)⊗ Λ1

Z[z1, ..., zn−1]

τ1
SU(n)/T×T

�

τ0
SU(n)/T⊗id

and to understand the class τ1
SU(n)/T×T([W ]) we just need to investigate the

map τ0
SU(n)/T.
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If F : C⊕ → C⊗ is an expoential functor such that F (C) ∼= Cd, then we have
seen that h0

⊗(X ) ⊆ GL(1, K 0(X ) ⊗ Z[ 1d ]).
The invertible elements of K 0(X ) under the tensor product are the formal

differences of vector bundles [E 1] - [E 2] such that |dim(E 1) - dim(E 2)| = 1 and
the tensor multiplicative unit of K 0(X ) is [X × C] = [X × C] - [X ] (the - [X ]
can be alighted since [X ] is the additive identity of the monoid that we group
complete to achieve K 0(X )).

Clearly, [X × C] ⊗ 1 is the multiplicative unit of K 0(X ) ⊗ Z[ 1d ] and since
the multiplication in this ring is given by extending the relation on simples ([E 1]
⊗ p) · ([E 2] ⊗ q) = ([E 1 ⊗ E 2] ⊗ pq), any element [X × C] ⊗ p where p ∈
GL(1, Z[ 1d ]) is invertible.

X × Cn ∼= (X × C)⊕n, and by the relation [E⊕n] ⊗ p = [E ] ⊗ np for any
n ∈ Z, we therefore know that

[X × Cd] ⊗ 1 = [X × C] ⊗ d ∈ GL(1, K 0(X ) ⊗ Z[ 1d ])

The Weyl map deals with the classes [Li ] of the tautological line bundles
over SU(n)/T. We have seen that:

n⊕
i=1

Li ∼= SU(n)/T× Cn

Since F is an exponential functor, in terms of vector bundles:

n⊗
i=1

F (Li) ∼= F (

n⊕
i=1

Li)

∼= F (SU(n)/T× Cn)
∼= F ((SU(n)/T× C)n)

∼= F (SU(n)/T× C)⊗n

∼= (SU(n)/T× Cd)⊗n

Therefore, in the ring K 0(X ) ⊗ Z[ 1d ] we have:

n∏
i=1

([F (Li)]⊗ 1) = [

n⊗
i=1

F (Li)]⊗ 1

= [(SU(n)/T× C)⊗n]⊗ 1

= ([SU(n)/T× Cd]⊗ 1)n

∈ GL(1,K0(SU(n)/T⊗ Z[
1

d
])

as it is the product of n copies of the invertible element [SU(n)/T × Cd] ⊗ 1.
Therefore, since if a.b is invertible in a ring, then both a and b are also

invertible, for each i, [F (Li)] ⊗ 1 ∈ GL(1, K 0(SU(n)/T) ⊗ Z[ 1d ])
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([F (Li)] ⊗ 1)-1 is the element such that ([F (Li)] ⊗ 1) · ([F (Li)] ⊗ 1)-1 =
[SU(n)/T × C] ⊗ 1.

([F (Li)]⊗ 1) · (
∏

j∈[n]\i

([F (Lj)]⊗ 1)) = ([SU(n)/T× Cd]⊗ 1)n

= ([SU(n)/T× C]⊗ d)n

= [SU(n)/T× C]⊗ dn

=⇒ ([F (Li)]⊗ 1)−1 = (
∏

j∈[n]\i

([F (Lj)]⊗ 1)) · ([SU(n)/T× C]⊗ 1

dn
)

= (
∏

j∈[n]\i

[F (Lj)]⊗ 1) · ([SU(n)/T× C]⊗ 1

dn
)

= [
⊗
j∈[n]\i

F (Lj)]⊗ 1) · ([SU(n)/T× C]⊗ 1

dn
)

= [
⊗
j∈[n]\i

F (Lj)]⊗
1

dn

The map τ0
SU(n)/T sends formal differences of vector bundles to a subgroup of

the invertible elements of K 0(X ) ⊗ Z[ 1d ] but we only need to concern ourselves
with the image of the formal differences [Li ] - [Ln ].

Since we have already checked the invertibility, and by the nature of an
exponential functor, the addition in h0

⊕(SU(n)/T) becomes the multiplication
in h0

⊗(SU(n)/T), we have:

τ0
SU(n)/T([Li]− [Ln]) = ([F (Li)]⊗ 1) · ([F (Ln)]⊗ 1)−1

= ([F (Li)]⊗ 1) · ([
n−1⊗
j=1

F (Lj)]⊗
1

dn
)

= [F (Li)⊗
n−1⊗
j=1

F (Lj)]⊗
1

dn

We now fully understand every map in our diagram and we can see that:

τ1
SU(n)/T×T([W ]) =

n−1⊙
i=1

([F (Li)⊗
n−1⊗
j=1

F (Lj)]⊗
1

dn
)⊗ zi

where � is the binary operation that defines the group h0
⊗(SU(n)/T) ⊗ Λ1

Z[z 1,
..., zn-1] where:

(a⊗ x)� (b⊗ y) = ab⊗ x+ y

4
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10.2.3 The Tensor Chern Character in Action

Finally we can use the tensor Chern character, the natural transformation of
cohomology theories logch: h∗⊗ → H∗per(-; Q) we previously constructed where:

logch0
X : h0

⊗(X)→ H0
per(X;Q)

([E1]− [E2])⊗ p 7→ log((ch(E1)− ch(E2))p)

where p ∈ GL(1, Z[ 1d ]).
Since the tensor Chern character is a natural transformation of cohomology

theories, the following diagram commutes in the category of graded rings

h∗⊗(X × Tn) H∗per(X × Tn;Q)

h∗⊗(X)⊗ Λ∗Z[z1, ..., zn] H∗per(X;Q)⊗ Λ∗Z[z1, ..., zn]

logch∗X×Tn

∼= � ∼=

logch∗X⊗id

Since the class of the Weyl map is contained in just the first degree, and more
specifically, just the subgroup h0

⊗(SU(n)/T) ⊗ Λ1
Z[z 1, ..., zn-1], for our purposes

we can restrict this diagram to just this degree and use inclusions to restrict
again to the subgroup and achieve the following diagram in the category of
abelian groups:

h1
⊗(SU(n)/T× T) H1

per(SU(n)/T× T;Q)

h0
⊗(SU(n)/T)⊗ Λ1

Z[z1, ..., zn−1] H0
per(SU(n)/T;Q)⊗ Λ1

Z[z1, ..., zn−1]

logch1
SU(n)/T×T

�

logch0
SU(n)/T⊗id

ι ι

And since we already understand the behaviour of the tensor Chern character
in the 0th degree, we can easily see that if τ1([W ]) is the class of the Weyl map
in h1

⊗(SU(n)/T × T) after application of a natural transformation induced by
an exponential functor F : C⊕ → C⊗, then:

logch1(τ1([W ]) = (logch0 ⊗ id)(

n−1⊙
i=1

([F (Li)⊗
n−1⊗
j=1

F (Lj)]⊗
1

dn
)⊗ zi)

=

n−1∑
i=1

logch0([F (Li)⊗
n−1⊗
j=1

F (Lj)]⊗
1

dn
))⊗ zi

=

n−1∑
i=1

log(ch(F (Li)⊗
n−1⊗
j=1

F (Lj))
1

dn
)⊗ zi

=

n−1∑
i=1

log(ch(F (Li))(

n−1∏
j=1

ch(F (Lj)))
1

dn
)⊗ zi
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Theorem 68. The result obtained using the tensor Chern character with the
exponential functors detm is identical to the result previously obtained by un-
derstanding the cohomology theory h∗⊗ for d = 1.

Proof. Since dn = dim(F (SU(n)/T × Cn)), ch(F (SU(n)/T × Cn)) = dn and
so:

logch1(τ1([W ]) =

n−1∑
i=1

log(
ch(F (Li))(

∏n−1
j=1 ch(F (Lj)))

ch(F (SU(n)/T× Cn))
)⊗ zi

=

n−1∑
i=1

log(
ch(F (Li))(

∏n−1
j=1 ch(F (Lj)))

ch(F (
⊕n

k=1 Lk))
)⊗ zi

=

n−1∑
i=1

log(
ch(F (Li))(

∏n−1
j=1 ch(F (Lj)))

ch(
⊗n

k=1 F (Lk))
)⊗ zi

=

n−1∑
i=1

log(
ch(F (Li))(

∏n−1
j=1 ch(F (Lj)))∏n

k=1 ch(F (Lk))
)⊗ zi

=

n−1∑
i=1

log(
ch(F (Li))

ch(F (Ln))
)⊗ zi

=

n−1∑
i=1

(log(ch(F (Li)))− log(ch(F (Ln))))⊗ zi

The construction of a class in h1
⊗(SU(n)/T) as we have done for a general ex-

ponential functor together with an application of the tensor Chern character
can be shown to yield the same result as those we achieve using the natural
transformations of cohomology theories constructed from the exponential func-
tors detm : C⊕ → C⊗. If τ is the natural transformation of cohomology theories
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induced by detm then:

logch1(τ1([W ])) =

n−1∑
i=1

(log(ch(detm(Li)))− log(ch(detm(Ln))))⊗ zi

=

n−1∑
i=1

(log(ch(det(Li)
⊗m))− log(ch(det(Ln)⊗m)))⊗ zi

=

n−1∑
i=1

(log(ch((Li)
⊗m))− log(ch((Ln)⊗m)))⊗ zi

=

n−1∑
i=1

(log(ch(Li)
m)− log(ch(Ln)m))⊗ zi

=

n−1∑
i=1

(m.log(ch(Li))−m.log(ch(Ln)))⊗ zi

=

n−1∑
i=1

m(log(exp(c1(Li)))− log(exp(c1(Ln))))⊗ zi

=

n−1∑
i=1

m(c1(Li)− c1(Ln))⊗ zi

Which agrees exactly with our alternative method of applying the functor detm
to the line bundles directly. 4
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