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Abstract. The imprint of gravitational waves (GWs) on large-scale structures (LSS) is a useful
and promising way to detect or to constrain them. Tensor fossils have been largely studied in
the literature as an indirect way to detect primordial GWs. In this paper we analyze a new
effect induced by primordial GWs: a correction to the density contrast of the underlying matter
distribution of LSS, as well as its radiation counterpart, induced by the energy density fluctuation
of the gravitational radiation. We perform our derivation of the full analytical solution of the
density contrast for waves entering the horizon during radiation dominance. We account for two
phases in the radiation era, depending on the main contributor to the perturbed energy density
of the Universe. By comparing the density contrast of cold dark matter and radiation – sourced
by linear gravitational waves only – we conclude that the former overcomes the latter at some
time in the radiation era, a behaviour analogous to their linear counterpart. Then we conclude
by discussing the case of density perturbations produced by GWs entering the Hubble radius
during the matter era as well as their evolution in the late dark-energy dominated phase.
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1 Introduction

The recent groundbreaking detection of gravitational waves (GWs) [1] gave a boost to the obser-
vational search for the same, followed by an inevitable push on the theoretical side of research
directions related to the study of GWs. Apart from the resolved astrophysical sources like com-
pact binaries (e.g. see [2] and references therein), there are two more expected contribution: the
stochastic background of astrophysical GWs, arising from the coherent superposition of GWs
from unresolved astrophysical sources [3–5], and the background of cosmological GWs, produced
via some early Universe phenomena, such as e.g. inflation [6], phase transitions [7] etc. A cos-
mological stochastic GW background is a potentially observable smoking gun of inflation [8–10],
which is so far the most successful theory to explain the origin of most cosmological observables
[11, 12]. Due to their feeble interaction with all matter components, GWs from inflation carry
pristine information about the early Universe below the Planck scale, unreachable by any other
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means. Searching for the primordial GWs background has become a major focus in cosmology,
for references see [6, 13–18] and the references therein. At the moment, a tight constraint on
the tensor-to-scalar ratio r (< 0.032) has been put on their amplitude on CMB scales through
the joint observation of Planck, BICEP2/Keck, and WMAP [19]. Adding LIGO-Virgo-KAGRA
data to those obtained from CMB scales, a tighter constraint (r < 0.028) has been obtained
recently [20]. The next-generation ground-based CMB experiment CMB-S4 aims to optimize the
constraint on r (< 0.001) at 95% Confidence Level (CL) [16]. Before CMB-S4, LiteBIRD [21]
and Simons Observatory [22] plan to set an upper limit r < 0.002 and r < 0.01 respectively.

Apart from CMB and interferometer experiments, recently primordial GWs have also been
sought in theoretical studies through their imprint on large-scale-structures (LSS). For example,
long-wavelength tensor perturbations (tensor fossils) are believed to induce local quadrupolar
anisotropic signatures in the otherwise statistically isotropic two-point correlation function of
the mass distribution or the galaxies through scalar-scalar-tensor interaction [23–27]. GWs can
also have projection effects due to the perturbation of the space-time on the galaxy distribution
[28]. The presence of GWs perturbs the photon geodesics, and hence the observed angular po-
sitions and redshifts of the galaxies, which in turn modifies the observed galaxy density (e.g.,
see [29]). Perturbed photon geodesics also modify the observed flux of a given source, inducing
additional fluctuations in the galaxy density through magnification bias [29]. These projection
effects, along with the intrinsic alignment (alignment of galaxy orientation with large-scale tidal
field) induced by the tidal effect of GWs [30] lead to a correlation of galaxy ellipticities. Fi-
nally, only GWs (and not scalar modes at linear order) contribute to the parity-odd B-mode
component, and thus acts as a probe to search for gravitational waves [28, 31–33].

Another effect of GWs on LSS was analysed in a recent preceding paper [34]: GWs, produced
in the early Universe, can source matter perturbation upon re-entering the horizon, which are
statistically independent from the linear matter perturbation, and can give rise to observable
effects in the matter power spectrum. In particular, [34] showed that GW energy density fluc-
tuations generate an additional correction to the matter density contrast. The possibility of
constraining r through an accurate observation of the scalar modes was also pointed out in [35].
This mechanism was first proposed and analyzed in [36–38] and can be considered the opposite
effect to that in which gravitational waves are induced by linear scalars: large amplitude scalar
perturbations, upon entering the horizon, source GWs, and as the scalar perturbations are the
most dominant ones at the first order, one can expect an observable GWs background if the
source scalar perturbations are enhanced. This approach has been studied in detail over the
years, e.g. see [38–50]. Finally, it is worth mentioning that the scalar induced GWs can be used
to probe the primordial black holes [51–54].

In [34], the treatment was limited to the matter dominated era, i.e. only to the scales which en-
tered the horizon after matter-radiation equality, and included a correction considering late-time
dark energy dominance. Due to the fact that these modes are statistically independent of stan-
dard adiabatic density perturbations, they can be studied separately. However, to understand
and interpret the effect properly, it is necessary to extend the study to smaller scales. In this pa-
per, we consider the same effect in the radiation domination era, taking into account the density
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perturbation modes entering the horizon since the end of inflation to the matter epoch. Finally,
we show the expression of tensor-induced CDM and radiation contrast modes entering the Hubble
radius during the era of matter and their evolution in the late phase dominated by dark energy.
It is important to note that our previous paper [34] focused on the matter power spectrum of
tensor-induced-scalar modes during the matter-dominated era. In contrast, the current study
specifically examines the sub-horizon evolution of these modes during the radiation-dominated
and dark energy-dominated epoch and does not address the matter power spectrum issue.

It is to be noted that [55] discussed the second-order perturbations in synchronous gauge for the
scalar-tensor and tensor-tensor couplings for radiation domination, but their study assumed that
in the whole radiation regime, radiation is the main component in both background and perturba-
tion. The same limitation can be observed in [56], which studied the contribution to CDM density
contrast sourced by tensor perturbations produced via a phase transition in radiation domina-
tion. In this paper we provide a complete solution of second-order density contrast, sourced by
only linear GWs, taking into account the whole radiation epoch, up to matter-radiation equality.
Then we proceed to study the phenomenon in late times, when the contribution of dark energy
to the background energy density has grown to be significant. Our study is complete and fully
analytical, leading way to a future numerical treatment of the problem.

The correction to the density contrast sourced by GWs can be an indirect probe of GWs, and
in the case of non-detection, it can help to constrain the amplitude of the same. Future LSS
surveys such as Euclid [57], DESI [58], SPHEREx [59], SKA [60], Roman Space Telescope [61]
and Vera Rubin Observatory (LSST)[62] are extremely good candidates for this purpose.

We would like to address an additional point that has come up during the course of our research.
Although not directly related to our main research focus, we understand the value of briefly
discussing this topic to provide a comprehensive perspective. The question pertains to whether
our tensor-induced-scalar has a non-zero correlation with the linear scalars. There might be a
confusion regarding Maldacena’s work [63], (see also [64, 65]), which shows both a non-vanishing
scalar-tensor-tensor and tensor-scalar-scalar bispectrum. However, it is important to note that
Maldacena’s work was conducted within an interaction picture in the single-field inflation, leading
to non-Gaussian initial conditions, and the scalar-tensor-tensor correlation corresponds to a
tensor four-point function, in the language of the standard perturbation theory. In [34], we had
considered Gaussian initial perturbations, which is a very standard approach in perturbation
theory. Consequently, we found that the correlation between our tensor-induced-scalar and
linear scalar perturbations is zero, similar to the well-studied case of scalar-induced scalars at
second order, which exhibit no correlation with linear tensors; similarly, Maldacena’s mixed
bispectra are not included in various studies on the non-linear gravitational evolution of scalar
perturbations (e.g. in the framework of the Effective Field Theory of LSS). Here, however, we
do not need to care about Gaussian/non-Gaussian initial conditions, as we are not concerned
about the correlations.

The paper is structured as follows: In section 2, we define the perturbations, and discuss the
tensor-sourced scalar perturbations for a Universe where radiation and cold dark matter (CDM)
both are present. In section 3, evolution in a deep radiation dominated regime is discussed.
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Figure 1: We show a plot of ln 1/H versus ln a in the different epochs analyzed in this work,
separated by a blue vertical dashed line. The solid black curve indicates the evolution of the
modes that cross the horizon from the end of inflation until today, the black dashed line shows the
extrapolation of the present horizon scale. The green region highlights sub-horizon scales during
the radiation epoch in which Einstein’s field equations are governed by the matter perturbations
generated only by linear gravitational waves (discussed in Section 4). The area above the green
region indicates all modes during the deep radiation epoch (for details see Section 3). The light-
green area describes these sub-horizon scales, related to the green region described above, during
matter and dark energy epochs (discussed in Section 6). The gray shaded area denotes those
scales where we do not have an analytical solution. The dashed-dot blue line shows the horizon
scale at the end of inflation.

We follow the evolution towards matter-radiation equality in section 4, and the full solution in
the end of radiation era is presented in 5. Section 6 is dedicated to the study of perturbations
produced by gravitational waves entering the Hubble radius during the matter era as well as
their evolution in the late Dark Energy dominated phase. Finally, we summarize in 7. In Fig. 1
we graphically show all the epochs and scales studied and analyzed in the paper.

2 Tensor-sourced scalar perturbations

2.1 Perturbations in the metric and matter components

We begin by introducing the notation and conventions used for metric and matter perturba-
tions. We consider a flat Friedmann-Lemaître-Robertson-Walker (FLRW) space-time, which is
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described by the metric: ds2 = a2(η)
[
−dη2 + dx2

]
, where η is the conformal time, and a(η) the

scale factor. Here we assume that c = ℏ = 1 throughout this paper.

In the previous work [34], we focused only on a Universe dominated by cold dark matter (CDM)
and a cosmological constant. The absence of a pressure gradient in the matter sector allowed us
to apply directly a synchronous, time-orthogonal and comoving (with CDM) gauge, e.g. see also
[38]. Here, due to the presence of the contribution of radiation, in principle, we need to be more
general. Hence, in this paper, we chose to start with comoving and time-orthogonal gauge with
CDM by choosing δg0i to be zero and doing the calculation in the rest frame of CDM. However,
as is shown later, in our specific choice of perturbations, which depends only on the linear tensor
contribution, our gauge becomes synchronous again.

In this time-orthogonal gauge, a perturbed flat FLRW metric becomes [66]

ds2 = a2(η)
[
−(1 + 2ψ)dη2 + γij(x, η)dx

idxj
]
, (2.1)

where the spatial metric γij contains second order scalar and linear tensor modes. Here we ignore
the linear scalar and vector modes because they are statistically independent with tensor-sourced
scalars modes, and we can in principle set them to zero by hand. At second order we have scalar,
vector and tensor contributions whose governing equations have source terms quadratic in the
first order perturbations with respect to scalars, mixing linear scalars and tensors (i.e., “tensor
fossils”, tensor-induced vector and tensor modes [24, 38]) and, finally, scalar modes originating
from linear tensors. The last source term is the contribution we are interested in and will consider
in the main text of the paper (see also [67, 68]). (For a focused study of the second order vector
and tensor contributions see Appendix A.) Since the tensor-sourced-scalar modes are statistically
independent of linear scalar modes, we are allowed to deal with them separately. In the following,
the decomposition of the metric components is shown 1

ψ =
ψ(2)

2
, (2.2)

γij = δij + γ
(1)
ij +

γ
(2)
ij

2
,

= δij + χ
(1)
ij +

1

2
(− 2ϕ(2)δij + χ

(2)
ij ),

= δij + χ
(1)
ij − ϕ(2)δij +

1

2
Dijχ

(2)||,

(2.3)

γij = δij − χij(1) + ϕ(2)δij − 1

2
Dijχ(2)|| + χik(1)χk

j(1), (2.4)

where χ(1)
ij , from here on χij , is the linear tensor perturbation, and our scalar perturbations (at

second order) are ψ(2), ϕ(2), and χ(2)||. Dij is defined as ∂i∂j − (1/3)∇2δij . In Appendix A,
briefly, we consider the vector and tensor contributions of the metric and set the equations that
allow us to find their dynamics.

1In general, for any perturbation X and Y, X = X(2)/2, and XY = X(1)Y (1), as we are considering perturbative
terms up to second order.
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In this paper, the matter component of the Universe consists of a mixture of an irrotational dust,
with which the observer is comoving, and the radiation. Note that the perturbations arising in
the energy-momentum tensor of the matter components are solely sourced by the contribution
linked to the primordial GWs. As both of them are perfect fluids (here, we are making the
assumption that the coupling between baryons and radiation is neglected. We aim to analyse
how much significance the effect of this coupling might pose in a future work.), their energy-
momentum tensor is given by: Tµν = (ρ + p)uµuν + pgµν . Here ρr, ρm, and pr are the energy
density of radiation and matter respectively, and pressure of radiation (here we are assuming
pm = 0), and ur

µ and um
µ are their respective four-velocities, normalised as uµuµ = −1. Its

components are, for matter

um0 = −a (1 + ψ) ,

um
0 =

1

a
(1− ψ) ,

um
i = 0,

(2.5)

and for radiation

ur0 = −a (1 + ψ) ,

ur
0 =

1

a
(1− ψ) ,

uri = a vri = a vr,i,

ur
i =

1

a
vr

i =
1

a
vr

,i .

(2.6)

Here ,i = ∂i is used to indicate a derivative w.r.t. xi, and vr is the velocity potential of radiation.

In the next sections we discuss the conservation equation of radiation and CDM. Then, we analyse
Einstein’s field equations which allow to study these contributions both during the radiation
and CDM dominated epochs of the Universe. Precisely, using the characteristic scale keq ∼
1/(100Mpc) defined by the comoving size of the Hubble horizon at matter-radiation equality, our
treatment of modes with k > keq is divided into two phases: i) start with the modes entering the
horizon at very early times, at the beginning of radiation domination ii) follow their subhorizon
evolution where they travel through matter-radiation equality towards matter domination. The
large scale modes (k < keq), which enter the horizon during matter domination, are already
discussed in [34]. However, in order to have a complete picture of primordial GW contribution,
in the Section 6 we analyse and discuss also these solutions.

2.2 Conservation equations

As the radiation and CDM components interact only gravitationally, their energy–momentum
tensors satisfy the conservation laws Tαβ

;β = 0 separately. For α = 0 and α = i, we get continuity
and momentum conservation equation respectively. The next two subsections will be devoted to
the derivation of the contribution of tensor-scalar perturbations within the CDM and radiation
component.
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2.2.1 Conservation equation for matter

Assuming that the observer is comoving with the CDM component, the energy-momentum tensor
of a pressure-free matter is

T 00
m = ρmu

0
mu

0
m =

ρm (1 + δm)

a2
(1− 2ψ) ,

T ij
m = T 0i

m = 0 ,

(2.7)

where δm = (ρm−ρm)/ρm is the density contrast of the matter. Energy–momentum conservation
gives evolution equations for the density contrast at second order

δ(2)m

′ − γ(1)ikγ
(1)
ki

′
+

1

2
δikγ

(2)
ki

′
= 0, (2.8)

where ′ indicates derivative w.r.t. η. Considering only tensor contribution at the first order, the
evolution second-order density contrast reads

δ(2)m

′
=

1

2

(
χijχij + 6ϕ(2)

)′
, (2.9)

and, consequently, we have

δ(2)m =
1

2

(
χijχij − χij

0 χ0ij

)
+ 3

(
ϕ(2) − ϕ

(2)
0

)
+ δ

(2)
m0 . (2.10)

Here the subscript ‘0’ denotes the value of the variable at the initial time, i.e. the end of inflation.

Following the analysis made in Appendix D we can set ϕ(2)0 and δ
(2)
m0 equal to zero, and we can

simply rewrite Eq. (2.10) in the following way

δ(2)m =
1

2

(
χijχij − χij

0 χ0ij

)
+ 3ϕ(2). (2.11)

Note that this expression has exactly the same form as that obtained in [34], where the tensor-
sourced matter perturbation in the comoving (with CDM) and synchronous gauge, during the
epoch of matter domination was studied (see also [38, 67]).

From the momentum conservation for matter

∂iψ(2) + 2∂iψ(1)δ(1)m − 4ψ(1)∂iψ(1) = 0, (2.12)

we observe that ψ(2) can only be sourced by the first-order scalar modes. This means that, in
our purpose, ψ can be safely ignored. Then, although started from the time-orthogonal gauge,
our system of equations can directly be written in the synchronous gauge. This is the first result
of the paper.
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2.2.2 Conservation equation for radiation

According to the discussion in the last section, ψ can be ignored from hereon. The components
of the energy-momentum tensor of radiation are

T 00
r =

ρr(1 + δr)

a2
,

T 0i
r =

4ρr
3a2

vr
,i,

T ij
r =

ρr(1 + δr)

3a2
γij .

(2.13)

From the continuity equation we have

δ(2)r

′ − 4

3
χ(1)ijχ

(1)
ij

′
+

4

3
∇2v(2)r − 4ϕ(2)

′
= 0. (2.14)

Whereas the momentum conservation equation gives

4v(2)r

′
+ δ(2)r = 0. (2.15)

2.3 Einstein equations

After the end of inflation, even though radiation dominates the energy density of the background,
as it decays faster than CDM, it is toppled by the latter as the main contributor of the energy
density of the Universe at the matter-radiation equality. As a result, towards the end of radiation
domination, ρm can not be ignored anymore.

Then, there is another aspect in this study that should not be overlooked. During the end of
the radiation era, as in the linear case, it is possible that the perturbative contribution of the
CDM component could be greater than that of the radiation. In this work we will also probe
this possibility and accurately analyze the trend of each component both during the radiation
epoch and during the matter-radiation equality.

In this section, we mainly focus on tensor-sourced CDM perturbation δ(2)m evolution in presence
of a perturbed radiation component, considering adiabatic perturbations only. Using the metric
(2.2) and stress-energy tensor decomposition (2.5), and keeping in mind the discussion in 2.2.1
that ψ in our case effectively vanishes, we have the second order Einstein equations. 00-th, 0i-th,
and ij-th Einstein equations become, respectively

∇2ϕ(2) +
1

2
χij∇2χij − 3Hϕ(2)′ + 1

6
∇2∇2χ||(2) − 1

8
χij ′χ′

ij −Hχijχ′
ij +

3

8
χkl,iχkl,i

− 1

4
χik,lχli,k = 4πGa2(ρmδ

(2)
m + ρrδ

(2)
r ), (2.16)

ϕ(2)
′
,i −

1

2
χjkχ′

ki,j +
1

4
Dijχ

||(2),j ′ +
1

2
χjkχ′

jk,i +
1

4
χjk ′χjk,i = −16πGa2

3
ρrv

(2)
r,i , (2.17)

1

4
Dijχ

||(2)′′ +
H
2
Dijχ

||(2)′ +
1

12
∇2Dijχ

||(2) − 1

18
∇2∇2χ||(2)δij

– 8 –



+ 2Hϕ(2)′δij + ϕ(2)
′′
δij +

1

2
Dijϕ

(2) − 1

3
∇2ϕ(2)δij −

1

2
χkl(χlj,ik + χil,jk − χij,lk − χkl,ij)

+
1

4
χkl

,jχkl,i −
1

2
χjk,lχli,k +

1

2
χjk,lχki,l −

3

8
χkl,pχkl,pδij +

1

4
χkp,lχlp,kδij

− 1

2
χk
j
′
χki

′ +
3

8
χkl′χkl

′δij =
4πGρra

2

3
δ(2)r δij . (2.18)

In the Einstein equations, we have also used the evolution equation of the linear GWs

χij
′′ + 2Hχij

′ −∇2χij = 0 . (2.19)

Let us stress again that here we are ignoring any effect related to the anisotropic stress tensor.
Decomposing (2.18) into a trace equation and a trace-less one, the trace part becomes

ϕ(2)
′′
+ 2Hϕ(2)′ − 1

3
∇2ϕ(2) − 1

18
∇2∇2χ||(2) − 1

8
χkl,iχkl,i +

1

12
χik,lχli,k

+
5

24
χkl′χkl

′ +
1

6
χkl∇2χkl =

4πGρra
2

3
δ(2)r . (2.20)

In the next sections, we split the treatment in two regimes, first, immediately after inflation, the
deep radiation one, and second, when the Universe evolves towards matter-radiation equality. As
we will discuss, these two regimes have different dynamics, depending on the dominant contrib-
utor to the background matter component as well as to the perturbation content. According to
what is found in [34], we are only interested in the sub-horizon evolution, as the GWs radiation
sourcing our second order perturbations exists only there.

We note that [55] discusses tensor-sourced scalars in radiation domination without the sub-
horizon assumption, and it only focuses on the first of the two phases stated above. We will
show below a full solution of density contrast, for modes evolving (always in the sub-horizon)
throughout radiation domination, comprising of the contributions from both the phases. However
let us emphasise that, for completeness, in Appendix B, we have redone the general analysis for
the deep radiation-dominated Universe for all scales.

3 Einstein equations in the deep radiation-dominated Universe

Although there are two components of stress-energy tensor (radiation and CDM) in radiation
era, in the very early stages of radiation domination, the ratio of energy density of radiation to
that of CDM component is too high, and the Einstein equations have only radiation (and not
CDM) perturbations (sourced by tensors) on the matter side. The continuity equation (2.11)
can be used to retrieve CDM perturbation from the potential, obtained as a solution of Einstein
equations.

In this phase of evolution, discarding the CDM perturbation, (2.16), (2.17), (2.18) become

∇2ϕ(2) +
1

2
χij∇2χij − 3Hϕ(2)′ + 1

6
∇2∇2χ||(2) − 1

8
χij ′χij

′ −Hχijχij
′ +

3

8
χkl,iχkl,i

− 1

4
χik,lχli,k =

3H2

2
δ(2)r , (3.1)
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ϕ
(2)
,i

′
− 1

2
χjkχki,j

′ +
1

4
Dijχ

||(2),j ′ +
1

2
χjkχjk,i

′ +
1

4
χjk ′χjk,i = −2H2v

(2)
r,i , (3.2)

1

4
Dijχ

||(2)′′ +
H
2
Dijχ

||(2)′ +
1

12
∇2Dijχ

||(2) − 1

18
∇2∇2χ||(2)δij

+ 2Hϕ(2)′δij + ϕ(2)
′′
δij +

1

2
Dijϕ

(2) − 1

3
∇2ϕ(2)δij −

1

2
χkl(χlj,ik + χil,jk − χij,lk − χkl,ij)

+
1

4
χkl

,jχkl,i −
1

2
χjk,lχli,k +

1

2
χjk,lχki,l −

3

8
χkl,pχkl,pδij +

1

4
χkp,lχlp,kδij

− 1

2
χk ′

jχki
′ +

3

8
χkl′χkl

′δij =
H2

2
δ(2)r δij . (3.3)

Let us point out that δ(2)m ≪ δ
(2)
r is not assumed in this period; rather we take on that δ(2)ρm is

negligible w.r.t. δ(2)ρr . This assumption is only valid for the regime discussed in this section.
The trace part becomes

ϕ(2)
′′
+ 2Hϕ(2)′ − 1

3
∇2ϕ(2) − 1

18
∇2∇2χ||(2) − 1

8
χkl,iχkl,i +

1

12
χik,lχli,k +

5

24
χkl′χkl

′

+
1

6
χkl∇2χkl =

H2

2
δ(2)r . (3.4)

Trace-less part of (3.3) gives

Dijϕ
(2) +

1

2
Dijχ

||(2)′′ +HDijχ
||(2)′ +

1

6
∇2Dijχ

||(2)

− χkl(χlj,ik + χil,jk − χij,lk − χkl,ij) +
1

2
χkl

,jχkl,i − χjk,lχli,k + χjk,lχki,l

− χk
j
′
χki

′ − 1

3
χkl∇2χklδij +

1

3
χkl′χkl

′δij −
1

2
χkl,pχkl,pδij +

1

3
χkp,lχlp,kδij = 0. (3.5)

Replacing ∇2∇2χ||(2) from (3.4) in (3.1), and using (2.14) and (2.15), we get a third order
differential equation of radiation velocity potential

v(2)r

′′′
+Hv(2)r

′′ − 4H2v(2)r

′ − 1

3
∇2v(2)r

′ − H
3
∇2v(2)r +

1

6
χkl′χkl

′ = 0. (3.6)

In Fourier space2 the same equation turns out

v
(2)
rk

′′′
+Hv(2)rk

′′
+
(k2
3

− 4H2
)
v
(2)
rk

′
+

Hk2

3
v
(2)
rk = Sk. (3.7)

where Sk is the Fourier transformation of the source term −(1/6)χkl′χkl
′, i.e.

Sk(η) = −1

6

∑
σ,σ′

∫
d3q

(2π)3
Aσ′(q)Aσ (k − q) ϵσ

′
ij (q̂)ϵ

σij
(
k̂ − q

)
T ′ (q, η) T ′ (|k − q|, η) (3.8)

2Throughout this work, we use two notations for Fourier space representation of a generic variable X(x): Xk,
or X(k, η). Both are equivalent expressions.
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and the real space tensors have been defined in the following way

χij(x, η) =
1

(2π)3

∫
d3keik.xχσ(k, η)ϵ

σ
ij(k̂). (3.9)

Here we are separating the amplitude χσ(k, η), which includes the time evolution, from the
polarisation tensor ϵσij(k̂). Then this amplitude is further split into the transfer function T (k, η)
and a stochastic zero-mean variable Aσ(k)

χσ(k, η) = Aσ(k)T (k, η) , (3.10)

where Aσ(k) is characterised by the following auto-correlation function,

⟨Aσ1(k1)Aσ2(k2)⟩ =
24π5

k31
δ3(k1 + k2) δσ1σ2 ∆

2
σ(k1) (3.11)

and ∆2
σ(k) is the dimension-less power-spectrum for each GW polarisation. The time evolution

of the GWs in given by the transfer function [14]

T (k, η) =


j0 (kη) for η < ηeq, k > keq ,
ηeq
η [AGW(k)j1 (kη) +BGW(k)y1 (kη)] for ηΛ ≫ η > ηeq, k > keq ,
3j1(kη)

kη for any η ≪ ηΛ, k < keq .

(3.12)

Here ηeq and keq correspond respectively to the conformal time and wavenumber of the modes
entering the horizon at matter-radiation equality, and AGW(k) and BGW(k) are suitable coeffi-
cients, obtained by equating the first and the second line of Eq. (3.12) and their first derivatives
at the matter-radiation equality (see the complete derivation in [14]). Let us point out that
keq has already been defined above. Note that, we define ηΛ as the conformal time in which
density parameter of the matter is equal to that of the cosmological constant/Dark Energy (see
also Section 6), and in the second and third line of Eq. (3.12) we put “η ≪ ηΛ" because these
solutions are correct up to the matter epoch3.

Introducing a new definition

u
(2)
rk = v

(2)
rk

′
+Hv(2)rk =

(av
(2)
rk )′

a
,

we have4

u
(2)
rk

′′
+
(k2
3

− 2H2
)
u
(2)
rk = Sk, (3.13)

which reduces (3.7) to a second-order equation. As we are interested in the regime kη ≫ 1, this
further simplifies to5

u
(2)
rk

′′
+
k2

3
u
(2)
rk = Sk. (3.14)

3This point is not important for this section, but it will be relevant for the discussion in Section 6.
4In principle, we can introduce another variable θ =

√
3/2a, and solve the system according to the procedure

demonstrated in [69]. In that case, we have
[
θ2(u

(2)
rk /θ)′

]′
+ c2sθk

2u
(2)
rk = −θSk.

5Without this approximation, the results for tensor-sourced scalar quantities like potential and density contrast
derived in [55] can be accurately recovered with the help of the variable u

(2)
rk . See Appendix B for details.
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The solution to this equation is

u
(2)
rk (η) = A(k) cos

kη√
3
+B(k) sin

kη√
3
+

√
3

k
sin

kη√
3

∫ η

ηin

dη̃ cos
kη̃√
3
Sk(η̃)

−
√
3

k
cos

kη√
3

∫ η

ηin

dη̃ sin
kη̃√
3
Sk(η̃) , (3.15)

where A(k) and B(k) depend on the initial conditions at η = ηin. Here ηin is indicating the end
of inflation (i.e. the “last scattering" surface for gravitons).

Assuming initial adiabatic conditions and considering the particular gauge that we have fixed
(i.e. the synchronous comoving gauge), due to the fact that all modes considered here are yet to
enter the horizon at initial time ηin, we do not have an initial source/contribution to the second
order perturbation of GW density. Consequently, we can neglect the homogeneous solutions and
obtain the following results

v
(2)
rk =

√
3

ka(η)

∫ η

ηin

dη̃

[
a(η̃) sin

kη̃√
3

∫ η̃

ηin

d˜̃η cos
k ˜̃η√
3
Sk(˜̃η)− a(η̃) cos

kη̃√
3

∫ η̃

ηin

d˜̃η sin
k ˜̃η√
3
Sk(˜̃η)

]
(3.16)

=

√
3

k3τ

∫ τ

τin

τ̃ dτ̃

[∫ τ̃

τin

d˜̃τ

(
sin

τ̃√
3
cos

˜̃τ√
3
− cos

τ̃√
3
sin

˜̃τ√
3

)
Sk(˜̃τ/k)

]
, (3.17)

where we have defined τ = kη. Here, as we explained above, we have ignored the integration
constant as v(2)rk (ηin) = 0, for the reason explained above. Finally, using the relation (2.15), the
radiation density perturbation turns out

δ(2)r (k, τ) =
12

k2τ2

∫ τ

τin

dτ̃ τ̃Sk(τ̃ /k)

− 4
√
3

k2

[(
1− 3

τ2

)
sin

τ√
3
+

√
3

τ
cos

τ√
3

]∫ τ

τin

dτ̃ cos
τ̃√
3
Sk(τ̃ /k)

+
4
√
3

k2

[(
1− 3

τ2

)
cos

τ√
3
−

√
3

τ
sin

τ√
3

]∫ τ

τin

dτ̃ sin
τ̃√
3
Sk(τ̃ /k) . (3.18)

On sub-Hubble scales, this expression can be further simplified. In fact, for τ(= kη) ≫ 1, we
find

δ(2)r (k, τ) =
12

k2τ2

∫ τ

τin

dτ̃ τ̃Sk(τ̃)−
4
√
3

k2

[
sin

τ√
3
+

√
3

τ
cos

τ√
3

]∫ τ

τin

dτ̃ cos
τ̃√
3
Sk(τ̃)

+
4
√
3

k2

[
cos

τ√
3
−

√
3

τ
sin

τ√
3

]∫ τ

τin

dτ̃ sin
τ̃√
3
Sk(τ̃). (3.19)

Now, from (2.14), we get

ϕ(2)(k, η) = −v(2)r

′
(k, η)− 1

6
[Xk(η)−Xk(ηin)]−

k2

3

∫ η

ηin

dη̃ vr, (3.20)
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where Xk is the Fourier transform of χklχkl, i.e.

Xk(η) =
∑
σ,σ′

∫
d3q

(2π)3
Aσ′(q)Aσ (|k − q|) ϵσ′

ij (q̂)ϵ
σij
(
̂|k − q|

)
T (q, η) T (|k − q|, η) .

(Here v(2)r (k, η) = v
(2)
rk (η).) Finally, using (2.11) and (3.20), we have the expression for δ(2)m .

Precisely, using

δ(2)m (k, η) = −3v(2)r

′ − k2
∫ η

ηin

dη̃ vr , (3.21)

we obtain

δ(2)m (k, τ) =
1

k2

(
9

τ2
− 3 ln τ

)∫ τ

τin

dτ̃ τ̃Sk(τ̃ /k)−
1

k2

[
3
√
3

(
1− 3

τ2
+ ln τ

)
sin

τ√
3

+

(
9

τ2
− 3 ln τ

)
τ cos

τ√
3

] ∫ τ

τin

dτ̃ cos
τ̃√
3
Sk(τ̃ /k)−

1

k2

[
−3

√
3

(
1− 3

τ2
+ ln τ

)
× cos

τ√
3
+

(
9

τ2
− 3 ln τ

)
τ sin

τ√
3

] ∫ τ

τin

dτ̃ sin
τ̃√
3
Sk(τ̃ /k)

+

√
3

k2

∫ τ

τin

dτ̃ τ̃ ln τ̃

[
sin

τ̃√
3

∫ τ̃

τin

d˜̃τ cos
˜̃τ√
3
Sk(˜̃τ/k)− cos

τ̃√
3

∫ τ̃

τin

d˜̃τ sin
˜̃τ√
3
Sk(˜̃τ/k)

]
.

(3.22)

Imposing again that τ = kη ≫ 1, it becomes

δ(2)m (k, τ) = − 3

k2
ln τ

∫ τ

τin

dτ̃ τ̃ Sk(τ̃ /k)

− 1

k2

[
3
√
3 (1 + ln τ) sin

τ√
3
− 3τ ln τ cos

τ√
3

] ∫ τ

τin

dτ̃ cos
τ̃√
3
Sk(τ̃ /k)

+
1

k2

[
3
√
3 (1 + ln τ) cos

τ√
3
+ 3τ ln τ sin

τ√
3

] ∫ τ

τin

dτ̃ sin
τ̃√
3
Sk(τ̃ /k)

+

√
3

k2

∫ τ

τin

dτ̃ τ̃ ln τ̃

[
sin

τ̃√
3

∫ τ̃

τin

d˜̃τ cos
˜̃τ√
3
Sk(˜̃τ/k)− cos

τ̃√
3

∫ τ̃

τin

d˜̃τ sin
˜̃τ√
3
Sk(˜̃τ/k)

]
.

(3.23)

In addition, the potential can be obtained using (2.11). Then it reduces to

ϕ(2)(k, τ) = − 1

k2
ln τ

∫ τ

τin

dτ̃ τ̃ Sk(τ̃ /k)−
1

6
(Xk(η)−Xk(ηin))

− 1

k2

[√
3 (1 + ln τ) sin

τ√
3
− τ ln τ cos

τ√
3

] ∫ τ

τin

dτ̃ cos
τ̃√
3
Sk(τ̃ /k)

+
1

k2

[√
3 (1 + ln τ) cos

τ√
3
+ τ ln τ sin

τ√
3

] ∫ τ

τin

dτ̃ sin
τ̃√
3
Sk(τ̃ /k)

+
1√
3k2

∫ τ

τin

τ̃ ln τ̃

[
sin

τ̃√
3

∫ τ̃

τin

d˜̃τ cos
˜̃τ√
3
Sk(˜̃τ/k)− cos

τ̃√
3

∫ τ̃

τin

d˜̃τ sin
˜̃τ√
3
Sk(˜̃τ/k)

]
dτ̃ .

(3.24)
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In this section we have discussed the epoch where the matter perturbation δ(2)ρm is negligible
compared to its radiation counterpart, δ(2)ρr. Looking at (3.19) and (3.23) one can realise
that, as time progresses, the contribution of the CDM perturbation begins to become dominant
with respect to that of the radiation. Let us explain this point in more detail. Comparing the
absolute value of each additive term of in Eqs. (3.19) and (3.23), we note that, for example,
terms proportional to∫ τ

τin

dτ̃ cos
τ̃√
3
Sk(τ̃ /k),

∫ τ

τin

dτ̃ sin
τ̃√
3
Sk(τ̃ /k) or

∫ τ

τin

dτ̃ τ̃Sk(τ̃ /k)

have an extra multiplicative factor which is proportional to τ , ln τ and/or τ ln τ in δ
(2)
m , which

are missing in δ(2)r . Then, δ(2)r has extra terms which decays like

∼ 1

τ
cos

τ̃√
3

or ∼ 1

τ
sin

τ̃√
3
,

which are absent in δ
(2)
m . Finally, Eq. (3.23) includes other additional contributions (they are

integrals that contain complicated sine or cosine functions that multiply the terms proportional
to ln τ . Note that we are in the regime τ ≫ 1). These extra terms could also cause a faster
growth of δ(2)m w.r.t δ(2)r . In conclusion, these facts suggest the existence of a suitable time η and
scale (through k) in which δ(2)ρm becomes of the same order as δ(2)ρr.

Now, let us define the following new quantity

F (k, η) ≡ δ(2)ρm(k, η)

δ(2)ρr(k, η)
=
ρ̄m(η)

ρ̄r(η)

δ
(2)
m (k, η)

δ
(2)
r (k, η)

. (3.25)

When δ(2)ρm becomes the same order as δ(2)ρr, i.e. F ≃ O(1), the perturbative contribution
linked to the matter begins to overcome that of radiation even if ρ̄m is smaller than ρ̄r. There-
fore we are entering a new phase of dynamical evolution in which the time-time component of
Einstein’s field equations is governed by the matter perturbations δ(2)m .

A correct setting of the initial condition of this new phase will also be discussed in detail in
the next section. However, let us stress that the analysis in the subsequent sections will require
a matching between the solutions of the two phases at given η = ηα, where ηα refers to the
conformal time in which F (k, ηα) ≡ α ≃ O(1), for fixed value of k and for τ ≫ 1. Here α
is a suitable value which sets the initial condition for the solutions at η ≥ ηα. Also from the
discussion made above, for η > ηα, F has a value larger than α, according to the respective
evolution of matter and radiation density perturbation.

Before concluding this section, let us add a final comment. As we pointed out above, in order to
have this new phase, during radiation epoch, we need that kη ≫ 1. Therefore if kη ∼> 1 there is
a concrete possibility that this phase cannot start during radiation epoch. However, even if this
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new phase does not exist, for scales around keq and at 1/k ≲ η ≲ 1/keq (here we have defined
keq ≃ 1/ηeq), it is possible that matter contribution could also be non-negligible and, in this
case, we should consider both matter and radiation contributions in Einstein field equations.
Therefore our analytical prescription cannot work and a numerical analysis is needed.

The emergence of this ‘new phase’ at kη ≫ 1, within the domination of radiation, is another
completely new result which has never been considered in the previous literature. In this case.
Eqs. (3.19), (3.23), and (3.24) can be considered the second result in the paper.

4 Sub-horizon evolution towards matter-radiation equality

In the previous section, we saw that during the deep radiation epoch, although the matter
perturbation is determined by the potential sourced by primordial GWs, it does not affect the
potential itself. Now, when we approach the second phase of evolution of perturbations, for modes
entering the Hubble radius during the epoch of radiation, ρ̄mδ

(2)
m grows sufficiently to surpass

ρ̄rδ
(2)
r as the main contributor to Einstein’s field equations, although ρ̄m ≪ ρ̄r is still maintained.

Here below we see precisely how we can achieve the second order differential equation governing
δ
(2)
m evolution, in other words a new Meszaros equation due to GWs contribution.

As the epoch approaches towards matter-radiation equality, ρ̄m can not be completely ignored
anymore, and it is convenient to use the usual variable y = a/aeq as an evolution variable instead
of η and/or a. Here aeq = a(ηeq) is the value of the scale factor when ρ̄m(aeq) = ρ̄r(aeq). Trivially,
this implies that

y =
a

aeq
=
ρ̄m
ρ̄r

.

Using y, the background dynamics can be described by the Friedmann equations in the following
way

H2 = H2
eq

y + 1

2y2
= k2eq

y + 1

2y2
and H′ = −k2eq

2 + y

4y2
, (4.1)

where

keq ≡ Heq = aeqHeq , H2
eq =

8πG

3
ρ̄eqa

2
eq and ρ̄eq = 2ρ̄m(aeq) .

In terms of y, Einstein equations (2.16), (2.17) and (2.18) become, respectively

− 3H2y
dϕ(2)

dy
+∇2ϕ(2) +

1

6
∇2∇2χ||(2) − 1

8
(Hy)2 dχ

ij

dy

dχij

dy
−H2yχij dχ

ij

dy
+

3

8
χkl,iχkl,i

− 1

4
χik,lχli,k +

1

2
χij∇2χij =

3H2

2(1 + y)

(
yδ(2)m + δ(2)r

)
, (4.2)

dϕ(2),i
dy

− 1

2
χjk dχki,j

dy
+

1

4
Dij

dχ||(2),j

dy
+

1

2
χjk dχjk,i

dy
+

1

4

dχjk

dy
χjk,i = − 2H

y(1 + y)
v
(2)
r,i , (4.3)
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Hy
[
Hy d

2

dy2
+

(
H+ y

dH
dy

)
d

dy

](
1

4
Dijχ

||(2) + ϕ(2)δij

)
+

H2y

2
Dij

dχ||(2)

dy
+

1

12
∇2Dijχ

||(2)

− 1

18
∇2∇2χ||(2)δij + 2H2y

dϕ(2)

dy
δij +

1

2
Dijϕ

(2) − 1

3
∇2ϕ(2)δij −

1

2
χkl (χlj,ik + χil,jk

−χij,lk − χkl,ij) +
1

4
χkl

,jχkl,i −
1

2
χjk,lχli,k +

1

2
χjk,lχki,l −

3

8
χkl,pχkl,pδij +

1

4
χkp,lχlp,kδij

− H2y2

2

dχk
j

dy

dχki

dy
+

3H2y2

8

dχkl

dy

dχkl

dy
δij =

H2

2(1 + y)
δ(2)r δij . (4.4)

Its trace part is

Hy
[
Hy d

2

dy2
+

(
H+ y

dH
dy

)
d

dy

]
ϕ(2) + 2H2y

dϕ(2)

dy
− 1

3
∇2ϕ(2) − 1

18
∇2∇2χ||(2)

− 1

8
χkl,iχkl,i +

1

12
χik,lχli,k +

5H2y2

24

dχkl

dy

dχkl

dy
+

1

6
χkl∇2χkl =

H2

2(1 + y)
δ(2)r . (4.5)

Taking ∇2∇2χ||(2) from (4.2), and putting it in (4.5), we get[
H2y2

d2

dy2
+

(
2H2y +Hy2dH

dy

)
d

dy

]
ϕ(2) +

H2y2

6

dχkl

dy

dχkl

dy
− 1

3
H2yχij dχ

ij

dy
+

1

3
χij∇2χij

=
H2

2(1 + y)

(
yδ(2)m + 2δ(2)r

)
. (4.6)

A comment is in order here. From Eq. (4.6) we can see that for yδ(2)m ≫ 2δ
(2)
r , i.e. ρ̄mδ

(2)
m =

δρ
(2)
m ≫ 2ρ̄rδ

(2)
r = 2δρ

(2)
r , we can safely neglect δ(2)r . (Here note the factor 2 in front of δρ(2)r .)

Now, according to the discussion at the end of the previous section, after δρ(2)m surpasses δρ(2)r ,
i.e. when F ≃ O(1), the matter perturbation keeps increasing, and we can no longer neglect
this contribution. At the same time, we can actually discard δ(2)r from evolution equations only
for F ≃ 2, see Eq. (4.6). (Here, for the sake of simplicity of the calculation we will do below
and without any loss of generality, we are assuming that F is positive.) This implies that, at
a fixed scale (e.g. at a given value of k), the beginning of this new phase is indicated by the
following range of values 1 ∼< F (ηα, k) = α ∼< 2. In other words, we have to set the initial
condition at η = ηα imposing α between 1 and 2. However, with our present approach, which is
only analytical, we cannot be more precise. In order to know exactly the value of α, a numerical
treatment would be necessary, but that is beyond the scope of this work. (Note that α should
also depend on the cosmological parameters and the matter component of the Universe.) In Fig.
1 the green and light-green regions, for η ≤ ηrec, highlight the modes and particular period that
we analyze in this section (in other words, at each sub-horizon mode with k ≥ keq and η ≥ ηα
up to recombination). The reason why we consider η only up to the time of recombination will
be discussed in Section 6.

Now, using the definition of F , see Eq. (3.25), we are setting the initial conditions yα = a(ηα)/aeq
which is defined, in implicit manner, from the following relation

yαδ
(2)
m (yα) = αδ(2)r (yα) . (4.7)
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Now, introducing again y as variable and combining Eqs. (2.11) and (2.19), it easy to see that
the second-order equation which determines the evolution of the matter perturbation δ(2)m , in the
second phase of radiation domination (i.e. for y ≥ yα), is

d2δ
(2)
m

dy2
+

2 + 3y

2y(y + 1)

dδ
(2)
m

dy
− 3

2y(y + 1)
δ(2)m =

1

2

dχij

dy

dχij

dy
. (4.8)

This is a retelling of the Meszaros equation [70] (e.g., for the derivation, see also [71, 72]). In
particular, the left side is exactly the same Meszaros equation, the governing equation of the
evolution of subhorizon matter perturbation, albeit having source term quadratic in tensors on
the right hand side. This is not surprising, considering the fact that δ(2)m replaces δ(2)r as the source
of Einstein equations in this phase, a behaviour similar to their linear counterpart. Obviously,
for the two solutions to the homogeneous equation, we find the same of Meszaros

• D1(y) = y + 2
3 ,

• D2(y) = D1(y) ln
√
1+y+1√
1+y−1

− 2
√
1 + y .

It should be noted that these solutions are correct both during the epoch of radiation y ≪ 1
(when y ≥ yα) and of matter (for y ≫ 1). Indeed, in matter era, they go as y and y−3/2

respectively, whereas in radiation era (i.e., for yα ≲ y ≪ 1), they behave as a constant and ln y.
In conclusion, taking also into account the particular solution, the general solution of the matter
perturbation δ(2)m , on sub-horizon scales, takes the form

δ(2)m (x, y) = P1(x)D1(y) + P2(x)D2(y) +
1

2

∫ y

yα

dỹ G(y, ỹ)
dχij

dỹ

dχij

dỹ
, (4.9)

where G(y, ỹ) is the Green’s function

G(y, ỹ) =− 1

4
ỹ
√
1 + ỹ

[
6
(√

1 + ỹ(2 + 3y)−
√

1 + y(2 + 3ỹ)
)

−(2 + 3ỹ)(2 + 3y) ln
(
√
1 + ỹ + 1)(

√
1 + y − 1)

(
√
1 + ỹ − 1)(

√
1 + y + 1)

]
, (4.10)

and P1(x), P2(x) are two time-independent functions. Let us rename the Fourier transformation
of Eq. (4.9) as δ(2)m(Tmesz)(k, y), which can be written as

δ
(2)
m(Tmesz)(k, y) = P1(k)D1(y) + P2(k)D2(y) +

1

2

∫ y

yα

dỹ G(y, ỹ)F1(k, ỹ), (4.11)

where F1(k, y) is the Fourier transform of dχij/dy dχij/dy, i.e.

F1(k, y) =
∑
σ,σ′

∫
d3q

(2π)3
Aσ′(q)Aσ (k − q)

× ϵσ
′

ij (q̂)ϵ
σij
(
k̂ − q

) dT (q, y)

dy

dT (|k − q|, y)
dy

. (4.12)
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Note immediately that, using Eq. (4.1), we can easily relate the definition of F1 with Sk in the
following way

F1(k, y) =
−12

k2eq(y + 1)
Sk . (4.13)

Here we just make one comment. In order to obtain the full solution, which describes the
evolution of δ(2)m at all epochs, from the deep radiation to CDM era, at a given k > keq, we need
to know the value of P1, P2 (or their corresponding Fourier transformations). As we are aware,
the above solution, Eq. (4.11), is valid only for y ≥ yα. At y = yα, we have

δ
(2)
m(Tmesz)(k, yα) = P1(k)D1(yα) + P2(k)D2(yα) .

Consequently, we should analyse the matching conditions at y = yα. Then we need the solution
of matter perturbation and its derivative obtained both during deep radiation epoch and in this
second phase of radiation domination. The next section will be devoted to the study of the initial
condition of Eq. (4.9).

Before concluding this section, in order to have a complete picture of the dynamics at these
scales, it is also useful to get an expression for the radiation density contrast (for the complete
derivation, see Appendix C)

δ
(2)
r(Tmesz)(k, y) =Ar(k) cos

(
2

√
2

3

k

keq

√
1 + y

)
+Br(k) sin

(
2

√
2

3

k

keq

√
1 + y

)

+
keq
4k

√
3

2

∫ y

yα

dỹ√
1 + y

Qk(
√

1 + ỹ)

[
sin

(
2

√
2

3

k

keq

√
1 + y

)
cos

(
2

√
2

3

k

keq

√
1 + ỹ

)

− cos

(
2

√
2

3

k

keq

√
1 + y

)
sin

(
2

√
2

3

k

keq

√
1 + ỹ

)]
, (4.14)

where

Qk(
√

1 + y) =
4

3

{
2P1(k) +

1

3y2

[
4(2− 3y)

√
1 + y + 6y2 ln

(
2 + y + 2

√
1 + y

y

)]
P2(k)

}

− 1

2

{
1

3y2

[
4(2− 3y)

√
1 + y + 6y2 ln

(
2 + y + 2

√
1 + y

y

)]

×
∫ y

yα

dỹ ỹ(2 + 3ỹ)
√
1 + ỹ F1(k, ỹ) + 2

∫ y

yα

dỹ ỹ
√
1 + ỹ

[
6
√
1 + ỹ

+(2 + 3ỹ) ln

(
2 + ỹ − 2

√
1 + ỹ

ỹ

)]
F1(k, ỹ)−

16(1 + y)

3
F1(k, ỹ)

}
(4.15)

where the naming of the variable in Eq. (4.14) is done in analogy its CDM counterpart. The
coefficients Ar(k), Br(k) can be obtained in a similar way as the coefficients P1(k) and P2(k) of
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δ
(2)
m (see the complete expression in Appendix C). Finally, using (2.11) and (4.9) we can obtain

the potential ϕ(2). In fact we find

ϕ(2)(x, y) =
1

3

[
P1(x)D1(y) + P2(x)D2(y) +

1

2

∫ y

yα

dỹ G(y, ỹ)
dχij

dỹ

dχij

dỹ

]
− 1

6

(
χijχij − χij

0 χ0ij

)
, (4.16)

in configuration space, where G(y, ỹ) has already been defined in Eq. (4.10). Still note that here
χij
0 = χij(x, ηin). In Fourier space, ϕ(2) becomes

ϕ(2)(k, y) =
1

3

[
P1(k)D1(y) + P2(k)D2(y) +

1

2

∫ y

yα

dỹ G(y, ỹ)F1(k, ỹ)

]
− 1

6
(Xk(η)−Xk(ηin)) . (4.17)

Let us emphasize that the third result of this paper are Eqs. (4.9) along with (4.10), (4.14), and
(4.16).

5 Determining the coefficients of the density contrast

The coefficients of the homogeneous parts of the solution P1(x) and P2(x) can be obtained by
matching the solutions from section 3 and section 4. As we discussed in the previous section,
the perturbation and its derivatives have to be continuous throughout evolution. This implies
that they must be matched at a particular time ηα which can be easily linked to variable yα, i.e.
when the new phase is starting. This matching conditions will be of the form

δ
(2)
m(DRe)(k, τα) = δ

(2)
m(Tmesz)(k, yα), (5.1)(

d

dy
δ
(2)
m(DRe)(k, τ)

)∣∣∣∣∣
τα

=

(
d

dy
δ
(2)
m(Tmesz)(k, y)

)∣∣∣∣∣
yα

, (5.2)

where τα = kηα. Here we have called with δ
(2)
m(DRe)(k, τ) the matter perturbation solution

during the deep radiation era, while δ(2)m(Tmesz)(k, y) is the solution obtained by the tensor-induced
Meszaros equation. (The last definition was already mentioned in the previous section.) Before
this matching, δ(2)m(DRe)(k, τ) must be re-expressed in terms of the dynamic variable y.

Following [69], writing the scale factor as a = aeq(ξ
2 + 2ξ), where ξ = η/η∗, with η∗ being

ηeq/(
√
2− 1), in deep radiation era we have ξ ≪ 1 and we can write a(ξ ≪ 1) = 2aeqξ. Thus η

can easily be related to y by the relation η = η∗y/2 and we find τ = kη∗y/2. Then (3.23) can be
expressed as

δ
(2)
m(DRe)(k, y) = −3η2∗

4
ln

(
kη∗y

2

)∫ y

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
−

{
3
√
3η∗
2k

[
1 + ln

(
kη∗y

2

)]
sin

(
kη∗y

2
√
3

)
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− 3η2∗y

4
ln

(
kη∗y

2

)
cos

(
kη∗y

2
√
3

)}∫ y

yin

dỹ cos

(
kη∗ỹ

2
√
3

)
Sk

(
η∗ỹ

2

)

+

{
3
√
3η∗
2k

[
1 + ln

(
kη∗y

2

)]
cos

(
kη∗y

2
√
3

)
+

3η2∗y

4
ln

(
kη∗y

2

)
sin

(
kη∗y

2
√
3

)}

×
∫ y

yin

dỹ sin

(
kη∗ỹ

2
√
3

)
Sk

(
η∗ỹ

2

)
+

√
3η3∗k

8

∫ y

yin

dỹ

{
ỹ ln

(
kη∗y

2

)

×

[
sin

(
kη∗ỹ

2
√
3

)∫ ỹ

yin

d˜̃y cos

(
kη∗ ˜̃y

2
√
3

)
Sk

(
η∗ ˜̃y

2

)

− cos

(
kη∗ỹ

2
√
3

)∫ ỹ

yin

d˜̃y sin

(
kη∗ ˜̃y

2
√
3

)
Sk

(
η∗ ˜̃y

2

)]}
. (5.3)

Now we can finally match (5.3) with (4.9). The condition (5.1) can now be written as

− 3η2∗
4

ln

(
kη∗y

2

)∫ y

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
−

{
3
√
3η∗
2k

[
1 + ln

(
kη∗y

2

)]
sin

(
kη∗y

2
√
3

)

− 3η2∗y

4
ln

(
kη∗y

2

)
cos

(
kη∗y

2
√
3

)}∫ y

yin

dỹ cos

(
kη∗ỹ

2
√
3

)
Sk

(
η∗ỹ

2

)

+

{
3
√
3η∗
2k

[
1 + ln

(
kη∗y

2

)]
cos

(
kη∗y

2
√
3

)
+

3η2∗y

4
ln

(
kη∗y

2

)
sin

(
kη∗y

2
√
3

)}

×
∫ y

yin

dỹ sin

(
kη∗ỹ

2
√
3

)
Sk

(
η∗ỹ

2

)
+

√
3η3∗k

8

∫ y

yin

dỹ

{
ỹ ln

(
kη∗y

2

)

×

[
sin

(
kη∗ỹ

2
√
3

)∫ ỹ

yin

d˜̃y cos

(
kη∗ ˜̃y

2
√
3

)
Sk

(
η∗ ˜̃y

2

)
− cos

(
kη∗ỹ

2
√
3

)

×
∫ ỹ

yin

d˜̃y sin

(
kη∗ ˜̃y

2
√
3

)
Sk

(
η∗ ˜̃y

2

)]}
= P1(k)D1(yα) + P2(k)D2(yα), (5.4)

and (5.2) gives

− 3η∗
2kyα

∫ yα

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
−

[
3
√
3

k2yα
sin

kη∗yα

2
√
3

+
3η2∗
4

cos
kη∗yα

2
√
3

− 3η∗
2k

cos
kη∗yα

2
√
3

]∫ yα

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)

−

[
− 3

√
3

k2yα
cos

kη∗yα

2
√
3

+
3η2∗
4

sin
kη∗yα

2
√
3

− 3η∗
2k

sin
kη∗yα

2
√
3

]∫ y

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
= P1(k) + P2(k)

(
− 2(1 + 3yα)

3yα
√
1 + yα

+ ln

√
1 + yα + 1√
1 + yα − 1

)
. (5.5)
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Multiplying (5.5) by D1(yα) and subtracting it from (5.4), we have

P2(k) =
9yα

√
1 + yα

2(2 + 3yα)

[
−3η2∗

4
ln
kη∗yα

2

∫ yα

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
−

[
3
√
3η∗
2k

×
(
1 + ln

kη∗yα
2

)
sin

kη∗yα

2
√
3

− 3η2∗yα
4

ln
kη∗yα

2
cos

kη∗yα

2
√
3

] ∫ yα

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
−

[
−3

√
3η∗
2k

(
1 + ln

kη∗yα
2

)
cos

kη∗yα

2
√
3

− 3η2∗yα
4

ln
kη∗yα

2
sin

kη∗yα

2
√
3

]

×
∫ yα

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
+

√
3η3∗k

8

∫ yα

yin

dỹ ỹ ln
kη∗y

2

×
[
sin

kη∗ỹ

2
√
3

∫ ỹ

yin

d˜̃y cos
kη∗ ˜̃y

2
√
3
Sk

(
η∗ ˜̃y

2

)
− cos

kη∗ỹ

2
√
3

∫ ỹ

yin

d˜̃y sin
kη∗ ˜̃y

2
√
3
Sk

(
η∗ ˜̃y

2

)]
+

(
yα +

2

3

)(
3η∗
2ky

∫ yα

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
+

[
3
√
3

k2yα
sin

kη∗yα

2
√
3

+
3η2∗
4

cos
kη∗yα

2
√
3

− 3η∗
2k

cos
kη∗yα

2
√
3

]∫ yα

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)

+

[
− 3

√
3

k2yα
cos

kη∗yα

2
√
3

+
3η2∗
4

sin
kη∗yα

2
√
3

− 3η∗
2k

sin
kη∗yα

2
√
3

]∫ y

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

))]
.

(5.6)

Finally, substituting the above expression in (5.5), we get the expression for P1(k)

P1(k) =

{
1 + 3y

(
1−

√
1 + y

2
ln

√
1 + yα + 1√
1 + yα − 1

)}
3

2 + 3y[
−3η2∗

4
ln
kη∗yα

2

∫ yα

yin

dỹ ỹSk

(
η∗ỹ

2

)
−

[
3
√
3η∗
2k

(
1 + ln

kη∗yα
2

)
sin

kη∗yα

2
√
3

−3η2∗yα
4

ln
kη∗yα

2
cos

kη∗yα

2
√
3

] ∫ yα

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
−

[
−3

√
3η∗
2k

(
1 + ln

kη∗yα
2

)
cos

kη∗yα

2
√
3

− 3η2∗yα
4

ln
kη∗yα

2
sin

kη∗yα

2
√
3

]

×
∫ yα

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
+

√
3η3∗k

8

∫ yα

yin

dỹ ỹ ln
kη∗y

2

×
[
sin

kη∗ỹ

2
√
3

∫ ỹ

yin

d˜̃y cos
kη∗ ˜̃y

2
√
3
Sk

(
η∗ ˜̃y

2

)
− cos

kη∗ỹ

2
√
3

∫ ỹ

yin

d˜̃y sin
kη∗ ˜̃y

2
√
3
Sk

(
η∗ ˜̃y

2

)]]
+ 3y

(
1−

√
1 + y

2
ln

√
1 + yα + 1√
1 + yα − 1

)[
3η∗
2ky

∫ yα

yin

dỹ ỹSk

(
η∗ỹ

2

)
+

[
3
√
3

k2yα
sin

kη∗yα

2
√
3

+
3η2∗
4

cos
kη∗yα

2
√
3

− 3η∗
2k

cos
kη∗yα

2
√
3

]∫ yα

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
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+

[
− 3

√
3

k2yα
cos

kη∗yα

2
√
3

+
3η2∗
4

sin
kη∗yα

2
√
3

− 3η∗
2k

sin
kη∗yα

2
√
3

]∫ y

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)]
.

(5.7)

The tensor-sourced δ(2)m is given by (4.9), where the coefficients are shown in (5.6) and (5.7). In
order to determine yα, we should express δ(2)r , computed in (3.19) as well in terms of the variable
y. Indeed, it becomes

δ
(2)
r(DRe)(k, y) =

12

k2y2

∫ y

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
− 2

√
3η∗
k

[
sin

kη∗y

2
√
3
+

2
√
3

kη∗y
cos

kη∗y

2
√
3

]

×
∫ y

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
+

2
√
3η∗
k

[
cos

kη∗y

2
√
3
− 2

√
3

kη∗y
sin

kη∗y

2
√
3

]

×
∫ y

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
. (5.8)

(Here we have called with δ
(2)
r(DRe)(k, y) the radiation perturbation solution during the deep

radiation era.) Therefore, using the above relation Eq. (5.8), taking into account of Eq. (5.3)
and the condition derived in Eq. (4.7), we can find an expression from which we can implicitly
obtain the value of yα:

√
3η∗yα
4

ln
kη∗yα

2

∫ yα

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
+

[
3yα
2k

(
1 + ln

kη∗yα
2

)
sin

kη∗yα

2
√
3

−
√
3η∗y

2
α

4
ln
kη∗yα

2
cos

kη∗yα

2
√
3

]∫ yα

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)

+

[
−3yα

2k

(
1 + ln

kη∗yα
2

)
cos

kη∗yα

2
√
3

−
√
3η∗y

2
α

4
ln
kη∗yα

2
sin

kη∗yα

2
√
3

]

×
∫ yα

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
− η2∗kyα

8

∫ yα

yin

dỹ ỹ ln
kη∗y

2

×
[
sin

kη∗ỹ

2
√
3

∫ ỹ

yin

d˜̃y cos
kη∗ ˜̃y

2
√
3
Sk

(
η∗ ˜̃y

2

)
− cos

kη∗ỹ

2
√
3

∫ ỹ

yin

d˜̃y sin
kη∗ ˜̃y

2
√
3
Sk

(
η∗ ˜̃y

2

)]
= − 4

√
3α

η∗k2y2α

∫ yα

yin

dỹ ỹ Sk

(
η∗ỹ

2

)
+

2α

k

[
sin

kη∗yα

2
√
3

+
2
√
3

kη∗yα
cos

kη∗yα

2
√
3

]

×
∫ yα

yin

dỹ cos
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
− 2α

k

[
cos

kη∗yα

2
√
3

− 2
√
3

kη∗yα
sin

kη∗yα

2
√
3

]

×
∫ yα

yin

dỹ sin
kη∗ỹ

2
√
3
Sk

(
η∗ỹ

2

)
. (5.9)

As previously discussed, numerical analysis is required in order to obtain a precise and proper
value of α. Following our analytical approach this value should be between 1 and 2. We postpone
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this numerical work for the future. Finally, the next section is devoted to the analytical analysis
of the density perturbations produced by gravitational waves entering the Hubble radius during
the era of matter and their evolution in the late phase dominated by dark energy.

6 Tensor-sourced CDM and radiation perturbation during matter and Dark
Energy domination

Before discussing in detail the subject of this section, a comment is in order. Below, first of all we
will recap the analysis made in [34] where they computed the matter density contribution when
the Universe has become matter-dominated and for k < keq. In particular, we will extend this
approach for all modes considering both dark matter and dark energy period. Then we give an
analytical solution of radiation perturbation for the same time period. Therefore our analysis is
only for η ≫ ηeq and all k until today, i.e. at η = η0. Precisely, in order to be sure that we are in
the CDM epoch, let us consider only the Universe for η ≥ ηrec, where ηrec is the conformal time at
recombination. In fact, for η ≥ ηrec, the radiation perturbations become irrelevant with respect
to those of matter and, consequently, the Universe is dominated by matter at both background
and perturbation levels. Finally, note that with the analytical prescription used in this work, we
are not able to describe modes that enter the horizon around matter-radiation equality and for
1/ηrec ≤ k ∼< 1/ηeq. For these scales we need a numerical approach. However, at the end of this
section, we will provide a possible analytic prescription that could help solve this matching.

For the scalar modes entering in matter domination [34], as we have also discussed in the main
text, we can adopt comoving, synchronous, and time-orthogonal gauge. Then, for η ≥ ηrec ≫ ηeq,
we can discard the radiation perturbation within the Einstein field Equations. In this case,
choosing comoving observers, the deformation tensor is purely spatial and coincides with the
extrinsic curvature of constant-time spatial hypersurfaces, i.e. θij = −Ki

j = γikγ′kj/2. (Here
the prime denotes the differentiation w.r.t. conformal time.) In this case, let us consider the
continuity and Raychaudhury equation [38, 73, 74]

θ(2)
′
+Hθ(2) + 2θ

(1)i
j θ

(1)j
i + 4πGa2ρ̄mδ

(2)
m = 0, (6.1)

δ(2)m

′
+ 2δ(1)m θ(1) + θ(2) = 0, (6.2)

where θ is the trace of θij and represents the inhomogeneous part of the volume expansion. Taking

into account that the additive term 2δ
(1)
m θ(1) can be discarded because it is independent of the

tensor contribution, we can combine these equations to obtain the evolution equation of δ(2)m

δ(2)m

′′
+Hδ(2)m

′ − 4πGa2ρ̄mδ
(2)
m =

1

2
χij ′χij

′. (6.3)

Now, let us consider the usual relation

a2ρ̄m =
3

8πG
H2Ωm =

3

8πG

H2
0Ωm0

a
,

where the cosmological parameter is defined as Ωm = 8πGρ̄ma
2/3H2 and Ωm0 = 8πGρ̄m0/3H2

0 =
Ωm(η = η0) (here we have normalised the scale factor today as a0 = a(η0) = 1), and the usual
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background equations (that we set for η ≥ ηrec)

H2 =
H0

2Ωm0

a

(
1 +R0a

3
)

and H′ = H2

(
1− 3

2
Ωm

)
,

where R0 = ΩΛ0/Ωm0 = (1 − Ωm0)/Ωm0. Then Eq. (6.3), in terms of the variable ι = R
1/3
0 a,

becomes

ι2
(
1 + ι3

) d2δ(2)m

dι2
+

3

2
ι
(
1 + 2ι3

) dδ(2)m

dι
− 3

2
δ(2)m = Sm, (6.4)

where we have defined the source term in the following way

Sm(ι) =
ι2(1 + ι3)

2

dχij

dι

dχij

dι
,

and the following variable transformation rules have been used

d

dη
= H0R

1/6
0

√
Ωm0ι(1 + ι3)

d

dι
, (6.5)

and
d2

dη2
= H2

0R
1/3
0 Ωm0

(
1 + 4ι3

2

d

dι
+ ι(1 + ι3)

d2

dι2

)
. (6.6)

Here note that the meaning of ι can be easily related to the normalized scale factor at ηΛ which is
the conformal time when Ωm = ΩΛ, i.e. ι(η) = a(η)/a(ηΛ) [69]. The general solution in Fourier
space is

δ(2)m (k, ι) = D−(ι)C−(k) +D+(ι)C+(k) +

∫ ι

ιrec

dι̃Gm(ι, ι̃)Sm(ι̃, η̃,k) (6.7)

where η̃ = η(ι̃), ιrec = ι(ηrec) and the source term is the Fourier transform of Sm(ι), i.e.

Sm(k, ι̃, η̃) =
ι̃2(1 + ι̃3)

2
F2(k, ι̃), (6.8)

where the functional form of F2 is defined as the Fourier transform of dχij/dι dχij/dι, i.e.

F2(k, ι) =
∑
σ,σ′

∫
d3q

(2π)3
Aσ′(q)Aσ (k − q)

× ϵσ
′

ij (q̂)ϵ
σij
(
k̂ − q

) dT (q, ι)

dι

dT (|k − q|, ι)
dι

. (6.9)

Obviously, we connect F2 with Sk (see Eq. (3.8))

F2(k, ι) = − 6

H2
0R

1/3
0 Ωm0ι

Sk
(1 + ι3)

(6.10)
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and, therefore, we have

Sm(k, ι̃, η̃) = − 3

H2
0R

1/3
0 Ωm0

ιSk . (6.11)

Here, D− and D+ are [69]

D−(ι) =
√

1 + ι−3, (6.12)

D+(ι) = D−(ι)

∫ ι

0
dι̃

(
ι̃

1 + ι̃3

)3/2

, (6.13)

and, consequently, the Green’s function is defined as

Gm(ι, ι̃) = (1 + ι̃3)
√

1 + ι−3

(∫ ι

0
dι̃

(
ι̃

1 + ι̃3

)3/2

−
∫ ι̃

0
d˜̃ι

(
˜̃ι

1 + ˜̃ι3

)3/2
)
. (6.14)

[Here, for D+, we have followed the conventions used in [69]. Consequently the integrals in Gm

start at ι = 0.]

An important comment is in order. As we observe from Eq. (6.9), the source term F2(ι,k)
[and, consequently, Sk(ι, η)], which contains two T , cannot be computed by using the analytical
expressions defined in Eq. (3.12), see also [14]. This is because these expressions are obtained
ignoring the contribution of the cosmological constant/Dark Energy. In this case we need a new
definition of T , which is not analytical, that takes into account the acceleration expansion of the
Universe (note that this very late time epoch reduces the amplitude of hij for 1/η0 ≥ k ≥ 1/ηΛ).

Now, as also pointed out in [34], for k ≤ 1/ηrec < keq, we are focusing on density contrast for
waves entering the horizon during matter and dark energy domination. In this case we will not
consider the homogeneous solutions. Instead for k > keq we need to keep all the terms in Eq.
(6.7). For these modes we need a matching conditions at η = ηrec between the general solution
Eq. (6.7) and the one that we obtain in Section 4, i.e. Eq. (4.9) (e.g., see the light-green area
for η ≥ ηrec in Fig. 1). Moreover, for this match, if η → η+rec, ι≪ 1. In this limit, we can discard
the inhomogeneous solution and Eq. (6.7) reads [69]

δ(2)m (ι→ ι+rec,k) = ι−3/2C−(k) +
2

5
ι C+(k) . (6.15)

Now, using the definition of ι = R
1/3
0 a and y = a/aeq, Eq. (6.15) can be written in the following

way

δ(2)m (y → y+rec,k) =
(
a3eqR0

)−1/2
y−3/2C−(k) +

2

5
aeqR

1/3
0 y C+(k) . (6.16)

Now we can impose the following matching conditions

δ
(2)
m(Tmesz)(k, y → y−rec)|yrec = δ(2)m (k, y → y+rec)|yrec , (6.17)
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(
d

dy
δ
(2)
m(Tmesz)(k, y → y−rec)

)∣∣∣∣∣
yrec

=

(
d

dy
δ(2)m (k, y → y+rec)

)∣∣∣∣∣
yrec

, (6.18)

which allow to get C− and C+. Here δ(2)m(Tmesz)(k, y → y−rec) is exactly Eq. (4.11) at y → y−rec.
The matching conditions Eqs. (6.17) and (6.18) give us

P1(k)D1(yrec) + P2(k)D2(yrec) +
1

2

∫ yrec

yα

dỹ G(y, ỹ)F1(ỹ,k)

=
(
a3eqR0

)−1/2
yrec

−3/2C−(k) +
2

5
aeqR

1/3
0 yrecC+(k), (6.19)

and

P1(k) + P2(k)

(
− 2(1 + 3yrec)

3yrec
√
1 + yrec

+ ln

√
1 + yrec + 1√
1 + yrec − 1

)
= −3

2

(
a3eqR0

)−1/2
yrec

−5/2C−(k) +
2

5
aeqR

1/3
0 C+(k) (6.20)

respectively. Multiplying Eq. (6.20) with yrec and subtracting it from Eq. (6.19), we obtain

C−(k) =
4

15

(
a3eqy

3
eqR0

)1/2 [
P1(k) + P2(k)

(
− 2√

1 + yrec
+ ln

√
1 + yrec + 1√
1 + yrec − 1

)
+
3

4

∫ yrec

yα

dỹ G(y, ỹ)F1(ỹ,k)

]
. (6.21)

Similarly, multiplying Eq. (6.19) with 3/(2yrec) and adding it to Eq. (6.20), we have

C+(k) =
1

aeqR
1/3
0

[(
5

2
+

1

yrec

)(
P1(k) + P2(k) ln

√
1 + yrec + 1√
1 + yrec − 1

)
−P2(k)

3

11 + 15yrec
yrec

√
1 + yrec

+
3

4yrec

∫ yrec

yα

dỹ G(y, ỹ)F1(ỹ,k)

]
, (6.22)

where P1(k), P2(k) are given by Eq. (5.7) and Eq. (5.6) respectively. The form of D1(y), D2(y)
is shown in Section 4.

Finally, let us focus on the radiation contribution due to the primordial gravitational waves
entering the horizon during the late time. For η ≳ ηrec, radiation is not the dominant contribution
at both the background and perturbation levels and, as we have pointed out earlier, it can be
discarded in the perturbed Einstein field equations. However its effect could be non-negligible in
the CMB and we are able to find an expression of radiation density perturbation using (2.11),
(2.14), and (2.15), which are still valid. Now, inserting (2.11) into (2.14), we have

δ(2)r

′
+

4

3
∇2v(2)r =

4

3
δ(2)m

′
. (6.23)

Differentiating the above equation w.r.t. time, and using (2.15), we obtain

δ
(2)
rk

′′
+
k2

3
δ
(2)
rk =

4

3
δ
(2)
mk

′′
, (6.24)
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which gives us an expression for δ(2)r

δ
(2)
rk (η) = ArMD(k) cos

kη√
3
+BrMD(k) sin

kη√
3

+

√
3

k

∫ η

ηrec

dη̃

(
sin

kη√
3
cos

kη̃√
3
− cos

kη√
3
sin

kη̃√
3

)
SkMD(η̃) , (6.25)

where the source term SkMD can be obtained by differentiating Eq. (6.7) twice. Note that here
η = η(ι), the exact functional form can be obtained by solving the Friedmann equations. Just as
discussed in the case of δ(2)m , the solution can be divided for two separate range of scales. Firstly,
for k ≤ 1/ηrec < keq, we can ignore the homogeneous solution, and δ(2)rk is

δ
(2)
rk (ι) =

√
3

k

∫ ι

ιrec

dι̃

(
sin

kη(ι)√
3

cos
kη̃(ι̃)√

3
− cos

kη(ι)√
3

sin
kη̃(ι̃)√

3

)
SkMD(ι̃) . (6.26)

SkMD can be written in terms of ι, using rule (6.6), as

SkMD =
4

3
δ
(2)
mk

′′

=
4

3
H2

0R
1/3
0 Ωm0

(
1 + 4ι3

2

d

dι
+ ι(1 + ι3)

d2

dι2

)
δ
(2)
mk

=
4

3
H2

0R
1/3
0 Ωm0

[
3ι−5/2

√
1 + ι3

∫ ι

ιrec

(1 + ι̃3)Sm(ι̃,k)

×

[∫ ι

0
dι̃

(
ι̃

1 + ι̃3

)3/2

−
∫ ι̃

0
d˜̃ι

(
˜̃ι

1 + ˜̃ι3

)3/2

− ι5/2

3
√
1 + ι3

]
+ ι(1 + ι3)Sm(ι,k)

]
, (6.27)

where Eq. (6.7) has been used, without the homogeneous part. In the second range of scales
(k > keq) instead, the whole Eq. (6.7) should be used to get SkMD

SkMD(ι) = 4H2
0R

1/3
0 Ωm0

[
ι−5/2

√
1 + ι3

(∫ ι

ιrec

(1 + ι̃3)Sm(ι̃,k)

×

[∫ ι

0
dι̃

(
ι̃

1 + ι̃3

)3/2

−
∫ ι̃

0
d˜̃ι

(
˜̃ι

1 + ˜̃ι3

)3/2

− ι5/2

3
√
1 + ι3

]

+

[
C−(k) + C+(k)

∫ ι

0
dι̃

(
ι̃

1 + ι̃3

)3/2
])

+
ι(1 + ι3)Sm(ι,k)

3
− C+(k)

3(1 + ι3)
(1 + 3ι3)

]
.

(6.28)

For the initial conditions ArMD(k), BrMD(k), we have to connect Eq. (6.25) with eq (4.14) at
η = ηrec. For η → η−rec, remembering the argument before Eq. (5.3), we can write y = ξ2 =
(η/η⋆)

2, as ξ ≫ 1. So Eq. (4.14) reads

δ
(2)
r(Tmesz)(k, η) = Ar(k) cos

2

√
2

3

k

keq

√
1 +

(
η

η⋆

)2
+Br(k) sin

2

√
2

3

k

keq

√
1 +

(
η

η⋆

)2
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+
keq
kη2∗

√
3

2

∫ η

ηα

dη̃ η̃Qk(η̃)

sin(2√2

3

k

keq

√
1 + (

η

η⋆
)2

)
cos

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


− cos

2

√
2

3

k

keq

√
1 +

(
η

η⋆

)2
 sin

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2
 . (6.29)

Applying following matching conditions

δ
(2)
r(Tmesz)(k, η → η−rec)|ηrec = δ(2)r (k, η → η+rec)|ηrec , (6.30)(

d

dη
δ
(2)
r(Tmesz)(k, η → η−rec)

)∣∣∣∣∣
ηrec

=

(
d

dη
δ(2)r (k, η → η+rec)

)∣∣∣∣∣
ηrec

, (6.31)

where the rhs is the solution Eq. (6.25), we get, respectively,

Ar(k) cos

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
+Br(k) sin

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2


+
keq
kη2∗

√
3

2

∫ ηrec

ηα

dη̃ η̃Qk(η̃)

sin
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


− cos

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


= ArMD(k) cos
kηrec√

3
+BrMD(k) sin

kηrec√
3
, (6.32)

and

2
√
2

keq

ηrec

η2∗

√
1 +

(
ηrec
η⋆

)2
−Ar(k) sin

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2


+Br(k) cos

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
+

2
√
3ηrec

kη4∗

√
1 +

(
ηrec
η⋆

)2
×
∫ ηrec

ηα

dη̃ η̃Qk(η̃)

cos
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


+sin

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


= −ArMD(k) sin
kηrec√

3
+BrMD(k) cos

kηrec√
3
. (6.33)
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Multiplying Eq. (6.32) with sin(kηrec/
√
3), Eq. (6.33) with cos(kηrec/

√
3), and adding them, we

get

BrMD(k) = Ar(k)

cos
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

kηrec√
3

−2
√
2

keq

ηrec

η2∗

√
1 +

(
ηrec
η⋆

)2 sin
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

kηrec√
3


+Br(k)

sin
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

kηrec√
3

+
2
√
2

keq

ηrec

η2∗

√
1 +

(
ηrec
η⋆

)2 cos
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

kηrec√
3


+

∫ ηrec

ηα

dη̃ η̃Qk(η̃)

{
keq
kη2∗

√
3

2
sin

kηrec√
3

×

sin
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


− cos

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


+
2
√
3ηrec

kη4∗

√
1 +

(
ηrec
η⋆

)2 cos kηrec√
3

cos
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2


× cos

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2
+ sin

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2


× sin

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2
}. (6.34)

Multiplying Eq. (6.32) with cos (kηrec/
√
3), Eq. (6.33) with sin (kηrec/

√
3), and subtracting the

latter from the former, we get

ArMD(k) = Ar(k)

cos
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

kηrec√
3
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+
2
√
2

keq

ηrec

η2∗

√
1 +

(
ηrec
η⋆

)2 sin
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

kηrec√
3


+Br(k)

sin
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

kηrec√
3

−2
√
2

keq

ηrec

η2∗

√
1 +

(
ηrec
η⋆

)2 cos
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

kηrec√
3


+

∫ ηrec

ηα

dη̃ η̃Qk(η̃)

{
keq
kη2∗

√
3

2
cos

kηrec√
3

×

sin
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 cos

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


− cos

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2
 sin

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2


− 2
√
3ηrec

kη4∗

√
1 +

(
ηrec
η⋆

)2 sin kηrec√
3

cos
2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2


× cos

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2
+ sin

2

√
2

3

k

keq

√
1 +

(
ηrec
η⋆

)2


× sin

2

√
2

3

k

keq

√
1 +

(
η̃

η⋆

)2
}. (6.35)

Before concluding this Section, we make the following comment. As we immediately note, in the
analytical analysis discussed in this work, the solutions for 1/ηrec < k < keq are missing (e.g.,
see the gray area Fig. 1). One possible way we can overcome this problem could be the following
prescription. Let us define the general solutions, both for matter and radiation, in this way

δ
(2)
A (η ≥ ηrec,k) =

[
δ
(2)
Ak(k < 1/ηrec, η ≥ ηrec) + (k/keq)

nA δ
(2)
Ak(k > keq, η ≥ ηrec)

]
1 + (k/keq)

nA
, (6.36)

with A = {m, r} and nA > 0 (e.g. nA ≃ 2). Here, clearly, k < 1/ηrec indicates the solutions
obtained above which do not contain the homogeneous solutions and for k > keq we are consid-
ering solutions in which the modes entered the horizon before equality. Obviously this guess has
to be tested numerically.

Here we present Eqs. (6.7) (with (6.14)), and (6.25) as the fourth and final result of the paper.
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7 Summary

Nowadays the detection of the primordial GW background is one of the main interests of cos-
mology and, recently, it has been shown that the tensor-induced scalar modes produced by GWs
from inflation can give an important GW signature on cosmic structures [34]. In particular,
[34] studied a novel mechanism for generating matter density perturbations based upon the non-
linear evolution of primordial tensor modes which generates matter-density perturbations and
its power spectrum for modes entering in the matter dominated period of evolution. In this sec-
ond paper we have explored analytically this mechanism both for matter and radiation density
perturbations and, in particular, during matter and radiation epochs.

Here, first of all, we extend the treatment to smaller scales, which enter the horizon during a
radiation dominated period, during which there are two matter components contributing to the
energy density of the Universe and we compute also the radiation-density perturbations produced
by these tensor-induced scalar modes.

Starting from a comoving (with CDM frame) and time-orthogonal gauge, we have shown that we
can safely implement the metric perturbations in the synchronous gauge from the very beginning.
In fact, using a perturbative expansion up to the second order in which the source term consists
only of linear tensor perturbations, we have shown that the perturbations of scalar density can
be directly re-expressed and re-formulated in the synchronous gauge.

Phases of evolution
Dominant
component

Deep radiation
epoch

(Section 3)

Radiation
epoch in

sub-horizon
scales

(Section 4)

Intermediate
regime (mat-

ter+radiation)
for 1/ηrec ≲
k ≲ 1/ηeq (no

analytical
solutions)

After
recombination
(Section 6)

In background radiation radiation radiation +
CDM

CDM + DE

Dominant
perturbation
component

δ
(2)
r δ

(2)
m δ

(2)
m & δ

(2)
r δ

(2)
m

Table 1: The dominant component in different phases of evolution in the background and
perturbation sector (see also Fig. 1).

Then we started focusing on the radiation period in which we split the epoch into two phases
according to the relative importance of background and perturbed quantities of the components.
In Table 1, we briefly summarised schematically the dominant component between CDM and
radiation in the background and perturbation sector.

The first phase, also called the epoch of deep radiation, begins after the end of inflation, when
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the radiation dominates both the background and the perturbation sector. During this period, in
this paper, we have calculated the radiation and matter perturbation solutions which are sourced
by primordial GWs.

Looking at these contributions, we observed that the matter perturbation grows faster than
the radiation one. Due to this mechanism, still during the radiation era, a subsequent second
phase has begun, i.e. when the matter perturbation grows sufficiently to overcome the radiation
perturbation, becoming the main contributor to Einstein’s field equations.

Note that only the first phase was presented in [55, 56], whereas our study shows a full solution
of tensor-induced density contrast in the radiation domination. In this second phase, we have
obtained a Meszaros’ like equation with a source term quadratic in GWs. In obtaining the
expressions, we have focused on the subhorizon regime, as our effect is non-existent on the
superhorizon. Now, in order to obtain the initial conditions for the second phase, we matched
the solutions from the two phases at the junction. The initial conditions for the first phase can
be ignored because the effect is suppressed by the fact that all these modes enter within the
horizon scale only during the radiation epoch. In this way we have derived full solution of the
tensor-sourced scalar modes entering the horizon starting from the end of inflation to matter
epoch for modes k > keq.

Finally, in Section 6, we have extended the analysis of [34], computing the tensor contribution
to matter and radiation perturbations at late times, i.e. from ηeq ≪ ηrec ≤ η ≤ η0, both for
k < 1/ηrec and k > keq, where η0 is the conformal time today and ηrec at recombination epoch.

In this paper, for the sake of simplicity, the effects of baryons have been ignored. This contribu-
tion will be explored and analysed in a future study. Another important future research direction
could be to calculate the power spectrum, following the approach used in [34], considering also
the matter contribution obtained in this paper, i.e. for k > keq. In addition it is also very
interesting to analyse and evaluate the corrections in the CMB anisotropies due to radiation
perturbations, at all scales, induced by the energy density fluctuation of gravitational radiation.

Finally, a comparison between this analytical work with a proper numerical analysis will be very
useful. In particular, let us stress that, for 1/ηrec ≤ k ∼< 1/ηeq, we are not able to make use of
our analytical prescription and a numerical approach is needed. All of these projects are left for
a future work.
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Appendix A Tensor induced vector and tensor modes

As we pointed out in the main text of the paper, in this work we analyze and study the scalar
modes sourced by the linear tensors. Here, for completeness, we briefly show the equations
containing the second order vector and tensor modes, sourced by the same. These equations can
also be found at [55]. Appending second order vector and tensors to the metric Eq. (2.1), we
have

γij = δij + γ
(1)
ij +

γ
(2)
ij

2
,

= δij + χ
(1)
ij − ϕ(2)δij +

1

2

(
Dijχ

(2)|| + ∂iχ
⊥(2)
j + ∂jχ

⊥(2)
i + χ

T (2)
ij

)
,

(A.1)

γij = δij − χij(1) + ϕ(2)δij − 1

2

(
Dijχ(2)|| + ∂iχ⊥(2)j + ∂jχ⊥(2)i + χ

T (2)
ij

)
+ χik(1)χk

j(1) . (A.2)

Second order vector and tensor perturbations satisfy ∂iχ⊥(2)
i = 0, ∂iχT (2)

ij = χ
T (2)
ii = 0. Due to

the gauge chosen , the observers are comoving with the CDM, umµ = −aδ0µ, and the components
of the energy-momentum tensor for the matter does not contain any vector mode. Here only the
radiation tensor has an additional term. Indeed, the four-vector of the radiation is defined as

uri = avri = a(vr,i + v⊥ri ),

ur
i =

1

a
vr

i =
1

a
(vr

,i + v⊥i
r ).

If we consider also vector and tensor perturbations sourced by tensors, the conservation equations
of matter remains the same, but radiation gains a new component of the energy-momentum
tensor, T 0i

r = 4ρr/3a
2(vr

,i+v⊥i
r ), which ends up modifying the momentum conservation equation

for it
4(v

(2)
r,i

′
+ v

⊥(2)
ri

′
) + δ

(2)
r,i = 0 . (A.3)

We can immediately conclude that v⊥(2)
ri is constant in time. The energy constraint remains the

same as (3.1), but the momentum constraint has new components

ϕ(2)
′
,i+

1

4
(Dijχ

||(2),j ′+∇2χ
⊥(2)
i

′
) = −2H2(v

(2)
r,i +v

⊥(2)
ri )+

1

2
χjkχjk,i

′+
1

4
χjk ′χjk,i−

1

2
χjkχki,j

′, (A.4)

and the ij−th equation reads

1

4
(Dijχ

||(2)′′ + ∂iχ
⊥(2)
j

′′
+ ∂jχ

⊥(2)
i

′′
+ χT (2)′′

ij) +
H
2
(Dijχ

||(2)′ + ∂iχ
⊥(2)
j

′
+ ∂jχ

⊥(2)
i

′
+ χT (2)′

ij)

− 1

4
∇2χ

T (2)
ij +

1

12
∇2Dijχ

||(2) − 1

18
∇2∇2χ||(2)δij + 2Hϕ(2)′δij + ϕ(2)

′′
δij +

1

2
Dijϕ

(2)

− 1

3
∇2ϕ(2)δij −

1

2
χkl(χlj,ik + χil,jk − χij,lk − χkl,ij) +

1

4
χkl

,jχkl,i −
1

2
χk,l
j χli,k +

1

2
χk,l
j χki,l

− 3

8
χkl,pχkl,pδij +

1

4
χkp,lχlp,kδij −

1

2
χk ′

jχki
′ +

3

8
χkl′χkl

′δij =
H2

2
δ(2)r δij . (A.5)
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Trace-less part of (A.5) now gives

Dijϕ
(2) +

1

2
(Dijχ

||(2)′′ + ∂iχ
⊥(2)
j

′′
+ ∂jχ

⊥(2)
i

′′
+ χT (2)′′

ij) +H(Dijχ
||(2)′ + ∂iχ

⊥(2)
j

′
+ ∂jχ

⊥(2)
i

′

+ χT (2)′
ij)−

1

2
∇2χ

T (2)
ij +

1

6
∇2Dijχ

||(2) − χkl(χlj,ik + χil,jk − χij,lk − χkl,ij) +
1

2
χkl

,jχkl,i

− χk,l
j χli,k + χk,l

j χki,l − χk ′
jχki −

1

3
χkl∇2χklδij +

1

3
χkl′χklδij −

1

2
χkl,pχkl,pδij

+
1

3
χkp,lχlp,kδij = 0. (A.6)

In (A.6), we have a coupled system of tensor-sourced scalar, vector, and tensor perturbations.
This equation is the generalization of Eq. (3.5). To obtain independent equations for vector and
tensors, we apply 3∇−2∇−2∂i∂j to (A.6) [55]. The result is the evolution equation for the scalar
χ||(2)

χ||(2)′′ + 2Hχ||(2)′ +
1

3
∇2χ||(2) + 2ϕ(2) = −3

8
χklχkl −∇−2

(
χkl′χkl −

1

2
χkl,pχkp,l

)
+

1

4
χkl∇2χkl + 3∇−2∇−2

(
χkl,p′χkp,l

′ − 1

2
χkl∇2∇2χkl −

1

2
χkl,p∇2χkl,p + χkl,p∇2χkp,l

)
.

(A.7)

Applying ∇−2
{
∂i
[
(A.6) − 1

2Dij(A.7)
]
+ (i↔ j)

}
, we obtain

χ
⊥(2)
i

′′
+ 2Hχ⊥(2)

i

′
= 2∇−2

[(
χkl′χik,l

′ − 1

2
χkl∇2χkl,i + χkl∇2χik,l

)
+∂i∇−2

(
χkl,j ′χjk,l

′ − 1

2
χkl,j∇2χkl,j −

1

2
χkl∇2∇2χkl + χkl,j∇2χjk,l

)]
− 4∂i∇−2∇−2

(
χkl,p′χkp,l

′ − 1

2
χkl∇2∇2χkl −

1

2
χkl,p∇2χkl,p + χkl,p∇2χkp,l

)
(A.8)

as the evolution equation of tensor-sourced vector perturbation. Furthermore, application of[
(A.6) − 1

2Dij(A.7) − (A.8)
]

gets us the evolution equation for tensor-sourced tensor modes

χT (2)′′
ij + 2HχT (2)′

ij −∇2χT (2)
ij = −5

8
χklχkl,ij −

1

4
χkl,pχkp,lδij −

1

8
χkl
,i χkl,j +

3

8
χkl,pχkl,pδij

− χk,l
j χki,l + χl,k

j χki,l +
1

4
χkl∇2χklδij + χl

i
′
χlj

′ − 1

2
χkl′χkl

′δij + χklχkj,il + χklχki,jl

− χklχij,kl +
1

2
∇−2

(
χkl,p′χkp,l

′ + χkl,p∇2χkp,l −
1

2
χkl∇2∇2χkl −

1

2
χkl,p∇2χkl,p

)
δij

+

[
∂i∇−2

(
1

2
χkl∇2χkl,j − χkl′χjk,l

′ − χkl∇2χjk,l

)
+ (i↔ j)

]
+

1

2
∂i∂j∇−2

(
χkl′χkl

′ − 1

2
χkl,pχkp,l −

1

4
χkl∇2χkl

)
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+
1

2
∂i∂j∇−2∇−2

(
χkl,p′χkp,l

′ + χkl,p∇2χkp,l −
1

2
χkl∇2∇2χkl −

1

2
χkl,p∇2χkl,p

)
. (A.9)

From these equations we are able to describe the dynamics of vector and tensor contribution from
end of inflation until today. We refer a detailed analysis of these equations and their solutions
to a future paper.

Appendix B General solution during deep radiation dominance, without sub-
horizon approximation

In the second part of Section 3 we only focused on the regime where kη ≫ 1, i.e when the modes
were sub-Hubble during the first phase of the radiation era. However, it is useful to obtain the
general solution for any k. Let start again with Eq. (3.13)

u
′′(2)
rk +

(k2
3

− 2H2
)
u
(2)
rk = Sk, (B.1)

and using again the definition τ = kη, this equation takes the form

τ2
d2u

(2)
rk

dτ2
+
(τ2
3

− 2
)
u
(2)
rk = τ2

Sk
k2
, (B.2)

where Sk is given by Eq. (3.8). Now, we note that the solutions of the homogeneous part of this
equation can easily be obtained if we consider the following second order differential equation

x2
d2y

dx2
(x) + [a2x2 − n(n+ 1)]y(x) = 0, with n = 0, 1, 2... ,

or, equivalently,

y(x)xn+1 =

(
x3

d

dx

)n(C1 cos ax+ C2 sin ax

x2n−1

)
,

where C1 and C2 are two constants. Then if y = u
(2)
rk , x = τ , a = 1/

√
3 and n = 1, we get the

homogeneous solutions

1

τ
cos

τ√
3
+

1√
3
sin

τ√
3

and
1

τ
sin

τ√
3
− 1√

3
cos

τ√
3
.

Discarding the initial conditions according to the reasoning mentioned in the main text, we have

u
(2)
rk (τ) = −

√
3

k2τ

∫ τ

τin

dτ̃Sk(τ̃)

[(
sin

τ̃√
3
cos

τ√
3
− cos

τ̃√
3
sin

τ√
3

)(
τ +

3

τ̃

)
+
√
3

(
cos

τ̃√
3
cos

τ√
3
+ sin

τ̃√
3
sin

τ√
3

)(τ
τ̃
− 1
)]
. (B.3)

Then the perturbation v(2)rk becomes

v
(2)
rk (τ) =

3

k3τ

∫ τ

τin

dτ̃

(
τ̃ +

6

τ̃

)
Sk(τ̃)

– 35 –



−
(
2

τ
cos

τ√
3
+

1√
3
sin

τ√
3

)∫ τ

τin

dτ̃
9 cos τ̃√

3
+ 3

√
3τ̃ sin τ̃√

3

k3τ̃
Sk(τ̃)

−
(
2

τ
sin

τ√
3
− 1√

3
cos

τ√
3

)∫ τ

τin

dτ̃
9 sin τ̃√

3
− 3

√
3τ̃ cos τ̃√

3

k3τ̃
Sk(τ̃). (B.4)

Therefore, using the relation (2.15), we obtain

δ(2)r (k, τ) =
12

k2τ2

∫ τ

τin

dτ̃

(
τ̃ +

6

τ̃

)
Sk(τ̃)

− 4

(
2
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τ√
3
+

2√
3τ
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3
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3
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3
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3
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9 sin τ̃√
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3
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Sk(τ̃).

(B.5)

For δ(2)m (k, τ), we use the relation (3.21). In (3.21), the first term (v(2)rk

′
) can be readily obtained

from δ
(2)
r (k, τ) expression above (using relation (2.15)), and the integral in the second term is

(in terms of τ)∫ τ

τin

dτ̃ v
(2)
rk (τ̃) =

3

k3

∫ τ

τin

dτ̃ ln
τ
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6

τ̃
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−
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τ√
3
cos

τ̃√
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3
+ 3

√
3τ̃ sin τ̃√
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]
, (B.6)

where the expression of v(2)rk from Eq. (B.4) has been used. Combining both the terms, we arrive
at

δ(2)m (k, τ) =
3

k2

∫ τ

τin

dτ̃

[(
3

τ2
− ln

τ

τ̃

)(
τ̃ +

6

τ̃

)
+

3

τ̃

]
Sk(τ̃)
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3
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 , (B.7)

which is the expression for CDM density contrast in deep radiation domination, without sub-
horizon approximation. In [55], only radiation perturbation was studied. As a result, only (B.4)
and (B.5) was derived there. Here we re-obtain them, along with the matter perturbation (B.7),
which was missing in [55].

Appendix C Calculation of δr in the second phase

This appendix section is devoted to the computation of the radiation-density perturbations
produced by tensor-induced scalar modes during the second phase of the radiation epoch. As we
pointed out in the main text, in this second phase we have modes well inside the Hubble radius,
i.e. kη ≫ 1, and with yδ(2)m > 2δ

(2)
r . In this case, the matter perturbation is the main contributor

to Einstein’s field equations. In Section 4, we obtained a new Meszaros equation due to GWs
contribution which describes the dynamics of δ(2)m . Then, using (2.14) and (2.15), we are able to
write second order differential equation for δ(2)r . Indeed, in Fourier space, we have

δ
(2)
rk

′′
+
k2

3
δ
(2)
rk =

4

3
δ
(2)
mk

′′
, (C.1)

which, in terms of the variable y, turns out

Hy
[
Hy d

2

dy2
+

(
H+ y

dH
dy

)
d

dy

]
δ
(2)
rk +

k2

3
δ
(2)
rk =

4

3
Hy
[
Hy d

2

dy2
+

(
H+ y

dH
dy

)
d

dy

]
δ
(2)
mk . (C.2)

(As we also pointed out in the main part of the paper, here δ(2)rk (η) = δ
(2)
r (k, η) and δ

(2)
mk(η) =

δ
(2)
m (k, η).) We note immediately that the source term on the right-hand side depends on δ

(2)
m .

Now, using

dH
dy

=
1

Hy
H′ = −H

2y

2 + y

1 + y
(C.3)

and the definition of keq ≡ Heq, Eq. (C.2) reads as follows

d2δ
(2)
rk

dy2
+

1

2(y + 1)

dδ
(2)
rk

dy
+
k2

k2eq

2

3(y + 1)
δ
(2)
rk =

4

3

d2δ
(2)
mk

dy2
+

2

3(y + 1)

dδ
(2)
mk

dy
. (C.4)
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At this stage it is useful changing the variable y → w =
√
1 + y. In this case Eq. (C.4) becomes

d2δ
(2)
rk

dw2
+

8

3

k2

k2eq
δ
(2)
rk = Qk(w) , (C.5)

where

Qk(w) =
4

3

d2δ
(2)
mk

dw2
.

Writing the solution of δ(2)m from Eq. (4.9) w.r.t. the variable w, we have

δ(2)m (x, w) =

(
w2 − 1

3

)
P1(x) +

[(
w2 − 1

3

)
ln
w + 1

w − 1
− 2w

]
P2(x)

+
1

4

∫ w

wα

dw̃

w̃
G
(
w2 − 1, w̃2 − 1

) dχij

dw̃

dχij

dw̃
, (C.6)

in configuration space, and

δ(2)m (k, w) =

(
w2 − 1

3

)
P1(k) +

[(
w2 − 1

3

)
ln
w + 1

w − 1
− 2w

]
P2(k)

+
1

4

∫ w

wα

dw̃

w̃
G
(
w2 − 1, w̃2 − 1

)
F3(k, w̃) , (C.7)

in Fourier space. Here F3(k, w) is related to F1(k, y) via the following relation

F3(k, w) = 4(1 + y)F1(k, y) (C.8)

and

G
(
w2 − 1, w̃2 − 1

)
= −1

4
w̃(w̃2 − 1)

[
6
(
w̃(3w2 − 1)− w(3w̃2 − 1)

)
−(3w̃2 − 1)(3w2 − 1) ln

(w̃ + 1)(w − 1)

(w̃ − 1)(w + 1)

]
. (C.9)

Then, the source term of Eq. (C.5) can be written in the following way

Qk(w) =
4

3

[
2P1(k) + P2(k)

(
4w(5− 3w2)

3(w2 − 1)2
+ 2 ln

w + 1

w − 1

)]
− 1

2

[(
ln
w + 1

w − 1
+

2w(5− 3w2)

3(w2 − 1)2

)∫ w

wα

dw̃ (w̃2 − 1)(3w̃2 − 1)F3(k, w̃)

+
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]
, (C.10)

and the full solution of (C.5) reads

δ(2)r (k, w) = Ar(k) cos

(
2

√
2

3

k

keq
w

)
+Br(k) sin

(
2

√
2

3

k

keq
w

)
+

∫ w

wα

dw̃ Gr(w, w̃)Qk(w̃) , (C.11)
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where the Green’s function of the above relation is defined as
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. (C.12)

Now, going back to the variable y, and naming the perturbation as δ(2)r(Tmesz)(k, y), it becomes

δ
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, (C.13)

where
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(C.14)

and

Qk

(√
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=
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]
, (C.15)

where we used Eq. (C.8). The coefficients Ar and Br can be determined exactly the same way as
the coefficients P1 and P2 of δ(2)m . Following the discussion related to δ(2)m , presented in Section
5, the perturbation δ

(2)
r and its derivatives have to be continuous throughout evolution and, in

particular, at y = yα . In other words, the following matching condition must be satisfied

δ
(2)
r(DRe)(k, τα) = δ

(2)
r(Tmesz)(k, yα), (C.16)(

d
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)∣∣∣∣∣
τα

=

(
d
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)∣∣∣∣∣
yα

, (C.17)
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Also for radiation contribution, we have defined δ(2)r(DRe)(k, τ) as the radiation perturbation solu-

tion during the deep radiation era [i.e. Eq. (3.19) or, equivalently, (5.8)], while δ(2)r(Tmesz)(k, y) is
the solution obtained in Eq. (C.13).

Using Eq. (5.8), the first condition, Eq. (C.16), gives us
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and the second condition, Eq. (C.17), becomes
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Multiplying Eq. (C.18) with
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Similarly, multiplying Eq. (C.18) with
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and subtracting the latter from the former, we obtain

Ar(k) =
6
√
6keq

k3y3α
sin

(
2

√
2

3

k

keq

√
1 + yα

)∫ yα

yin
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2
√
3
Sk

(
η∗ỹ
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In this case we are able to obtain the solution of δ(2)r from end of inflation to CDM epoch.

Appendix D Setup of the initial conditions

This Appendix is devoted to addressing some issues relating to the initial conditions, i.e. at the
end of Inflation, used in this paper, adopted in Section 2. First of all, let us focus on Eqs. (2.16),

– 42 –



(2.20) and (2.19). Substituting ∇2(ϕ(2) +∇2χ||(2)/6) from (2.16) in (2.20), we have

ϕ(2)
′′
+Hϕ(2)′ − 1

3
Hχklχkl

′ +
1

3
χkl∇2χkl +

1

6
χkl′χkl

′ =
4πGa2

3

(
2δ(2)r ρr + δ(2)m ρm

)
. (D.1)

The fourth additive term may be rewritten by replacing ∇2χkl with χij
′′+2Hχij

′, see Eq. (2.19),
and the above equation can be written in the following way

ϕ(2)
′′
+Hϕ(2)′ + 1

3
Hχklχkl

′ +
1

3
χklχkl

′′ +
1

6
χkl′χkl

′ =
4πGa2

3

(
2δ(2)r ρr + δ(2)m ρm

)
. (D.2)

In this paper, we are setting the initial conditions at the end of inflation. Before discussing them,
two important observations are in order.

• In several expressions considered in this work [see, e.g., the above Eq. (D.2)], in each
source term defined in Fourier space, we have a loop integral which runs at all scales (or,
equivalently, we are integrating over the whole frequency range of GW modes). However,
at η = ηin, all GW modes that we are interested in here are already outside the the horizon
scale 1/H(ηin). This means that, if k corresponds to the induced scalar modes and q is
the loop momentum, the loop integral is truncated on horizon scales and, consequently,
q and |k − q| of tensor perturbations cannot be larger than H(ηin) (see also Fig. 1). In
conclusion, at initial time GW modes will be frozen outside the horizon. This point is
crucial for the below discuss.

• As we already pointed out in the main text, assuming initial adiabatic conditions and the
synchronous comoving gauge fixed here, the induced scalar modes will be zero because the
contribution will come only after horizon entry, i.e. when GW tensor perturbations start
oscillating [14]. This imply that, at ηin and k < H(ηin), δ

(2)
m , δ(2)r , v(2)r and v(2)r

′
can be set

to zero.

As a result of these comments, at η = ηin, χkl′
0 and χkl′′

0 can set to zero in (D.2). (As we already
pointed out in the main text, also here the subscript ’0’ denotes the initial conditions, i.e. the
end of inflation when η = ηin.) Then, (D.2) reads

ϕ
(2)
0

′′
+Hϕ(2)0

′
= 0 . (D.3)

In this case, Eq. (D.3) suggests choosing ϕ0 = const. (in time). This conclusion can be further
justified and confirmed if we also look at Eqs. (2.9) and (2.14) at η = ηin. Now let us examine
∇2(ϕ(2) +∇2χ||(2)/6) in Fourier space, at the initial time. Following all the arguments made so
far, from Eq. (2.17), we can get directly the relation

ϕ
(2)
k0 − k2

6
χ
||(2)
k0 = F(k), (D.4)

where F(k), being a constant of time, can be derived explicitly in configuration space from Eq.
(2.16). Defining F(x) as its Fourier inverse, from (2.16), we find

F(x) =
∇−2

4

(
χik,l
0 χ0li,k −

3

2
χkl,i
0 χ0kl,i

)
. (D.5)
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Note that the above results have been obtained in whole generality. However there is a residual
ambiguity which could be related to the gauge chosen here in this work. For instance, one could
fix this ambiguity imposing that ϕ(2)0 = 0. Then

χ
||(2)
0 =

3

2
∇−4

(
χik,l
0 χ0li,k −

3

2
χkl,i
0 χ0kl,i

)
. (D.6)

This concludes the discussion related to the issue of how to set the initial conditions of the paper.

References

[1] B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,”
Phys. Rev. Lett., vol. 116, no. 6, p. 061 102, 2016. doi: 10.1103/PhysRevLett.116.061102.
arXiv: 1602.03837 [gr-qc].

[2] A. Buonanno and B. S. Sathyaprakash, “Sources of Gravitational Waves: Theory and Ob-
servations,” in Oct. 2014. arXiv: 1410.7832 [gr-qc].

[3] V. Ferrari, S. Matarrese, and R. Schneider, “Stochastic background of gravitational waves
generated by a cosmological population of young, rapidly rotating neutron stars,” Mon.
Not. Roy. Astron. Soc., vol. 303, p. 258, 1999. doi: 10.1046/j.1365-8711.1999.02207.x.
arXiv: astro-ph/9806357.

[4] E. S. Phinney, “A Practical theorem on gravitational wave backgrounds,” Jul. 2001. arXiv:
astro-ph/0108028.

[5] T. Regimbau, “The astrophysical gravitational wave stochastic background,” Res. Astron.
Astrophys., vol. 11, pp. 369–390, 2011. doi: 10.1088/1674- 4527/11/4/001. arXiv:
1101.2762 [astro-ph.CO].

[6] M. C. Guzzetti, N. Bartolo, M. Liguori, and S. Matarrese, “Gravitational waves from
inflation,” Riv. Nuovo Cim., vol. 39, no. 9, pp. 399–495, 2016. doi: 10.1393/ncr/i2016-
10127-1. arXiv: 1605.01615 [astro-ph.CO].

[7] M. Kamionkowski, A. Kosowsky, and M. S. Turner, “Gravitational radiation from first order
phase transitions,” Phys. Rev. D, vol. 49, pp. 2837–2851, 1994. doi: 10.1103/PhysRevD.
49.2837. arXiv: astro-ph/9310044.

[8] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems,” Phys. Rev. D, vol. 23, L.-Z. Fang and R. Ruffini, Eds., pp. 347–356, 1981. doi:
10.1103/PhysRevD.23.347.

[9] A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,”
Phys. Lett. B, vol. 91, I. M. Khalatnikov and V. P. Mineev, Eds., pp. 99–102, 1980. doi:
10.1016/0370-2693(80)90670-X.

[10] D. H. Lyth and A. Riotto, “Particle physics models of inflation and the cosmological density
perturbation,” Phys. Rept., vol. 314, pp. 1–146, 1999. doi: 10.1016/S0370- 1573(98)
00128-8. arXiv: hep-ph/9807278.

– 44 –

https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1410.7832
https://doi.org/10.1046/j.1365-8711.1999.02207.x
https://arxiv.org/abs/astro-ph/9806357
https://arxiv.org/abs/astro-ph/0108028
https://doi.org/10.1088/1674-4527/11/4/001
https://arxiv.org/abs/1101.2762
https://doi.org/10.1393/ncr/i2016-10127-1
https://doi.org/10.1393/ncr/i2016-10127-1
https://arxiv.org/abs/1605.01615
https://doi.org/10.1103/PhysRevD.49.2837
https://doi.org/10.1103/PhysRevD.49.2837
https://arxiv.org/abs/astro-ph/9310044
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/S0370-1573(98)00128-8
https://doi.org/10.1016/S0370-1573(98)00128-8
https://arxiv.org/abs/hep-ph/9807278


[11] N. Aghanim et al., “Planck 2018 results. I. Overview and the cosmological legacy of Planck,”
Astron. Astrophys., vol. 641, A1, 2020. doi: 10.1051/0004- 6361/201833880. arXiv:
1807.06205 [astro-ph.CO].

[12] N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys.,
vol. 641, A6, 2020, [Erratum: Astron.Astrophys. 652, C4 (2021)]. doi: 10.1051/0004-
6361/201833910. arXiv: 1807.06209 [astro-ph.CO].

[13] M. Maggiore, “Gravitational wave experiments and early universe cosmology,” Phys. Rept.,
vol. 331, pp. 283–367, 2000. doi: 10.1016/S0370- 1573(99)00102- 7. arXiv: gr- qc/
9909001.

[14] Y. Watanabe and E. Komatsu, “Improved Calculation of the Primordial Gravitational
Wave Spectrum in the Standard Model,” Phys. Rev. D, vol. 73, p. 123 515, 2006. doi:
10.1103/PhysRevD.73.123515. arXiv: astro-ph/0604176.

[15] H. Sakamoto, K. Ahn, K. Ichiki, H. Moon, and K. Hasegawa, “Probing the Early History of
Cosmic Reionization by Future Cosmic Microwave Background Experiments,” Feb. 2022.
arXiv: 2202.04263 [astro-ph.CO].

[16] K. Abazajian et al., “CMB-S4: Forecasting Constraints on Primordial Gravitational Waves,”
Astrophys. J., vol. 926, no. 1, p. 54, 2022. doi: 10.3847/1538- 4357/ac1596. arXiv:
2008.12619 [astro-ph.CO].

[17] P. Campeti, E. Komatsu, D. Poletti, and C. Baccigalupi, “Measuring the spectrum of
primordial gravitational waves with CMB, PTA and Laser Interferometers,” JCAP, vol. 01,
p. 012, 2021. doi: 10.1088/1475-7516/2021/01/012. arXiv: 2007.04241 [astro-ph.CO].

[18] R. Flauger, N. Karnesis, G. Nardini, M. Pieroni, A. Ricciardone, and J. Torrado, “Improved
reconstruction of a stochastic gravitational wave background with LISA,” JCAP, vol. 01,
p. 059, 2021. doi: 10.1088/1475-7516/2021/01/059. arXiv: 2009.11845 [astro-ph.CO].

[19] M. Tristram et al., “Improved limits on the tensor-to-scalar ratio using BICEP and Planck
data,” Phys. Rev. D, vol. 105, no. 8, p. 083 524, 2022. doi: 10.1103/PhysRevD.105.083524.
arXiv: 2112.07961 [astro-ph.CO].

[20] G. Galloni, N. Bartolo, S. Matarrese, M. Migliaccio, A. Ricciardone, and N. Vittorio,
“Updated constraints on amplitude and tilt of the tensor primordial spectrum,” Jul. 2022.
arXiv: 2208.00188 [astro-ph.CO].

[21] E. Allys et al., “Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Back-
ground Polarization Survey,” Feb. 2022. arXiv: 2202.02773 [astro-ph.IM].

[22] P. Ade et al., “The Simons Observatory: Science goals and forecasts,” JCAP, vol. 02, p. 056,
2019. doi: 10.1088/1475-7516/2019/02/056. arXiv: 1808.07445 [astro-ph.CO].

[23] K. W. Masui and U.-L. Pen, “Primordial gravity wave fossils and their use in testing
inflation,” Phys. Rev. Lett., vol. 105, p. 161 302, 2010. doi: 10.1103/PhysRevLett.105.
161302. arXiv: 1006.4181 [astro-ph.CO].

[24] D. Jeong and M. Kamionkowski, “Clustering Fossils from the Early Universe,” Phys. Rev.
Lett., vol. 108, p. 251 301, 2012. doi: 10.1103/PhysRevLett.108.251301. arXiv: 1203.
0302 [astro-ph.CO].

– 45 –

https://doi.org/10.1051/0004-6361/201833880
https://arxiv.org/abs/1807.06205
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1016/S0370-1573(99)00102-7
https://arxiv.org/abs/gr-qc/9909001
https://arxiv.org/abs/gr-qc/9909001
https://doi.org/10.1103/PhysRevD.73.123515
https://arxiv.org/abs/astro-ph/0604176
https://arxiv.org/abs/2202.04263
https://doi.org/10.3847/1538-4357/ac1596
https://arxiv.org/abs/2008.12619
https://doi.org/10.1088/1475-7516/2021/01/012
https://arxiv.org/abs/2007.04241
https://doi.org/10.1088/1475-7516/2021/01/059
https://arxiv.org/abs/2009.11845
https://doi.org/10.1103/PhysRevD.105.083524
https://arxiv.org/abs/2112.07961
https://arxiv.org/abs/2208.00188
https://arxiv.org/abs/2202.02773
https://doi.org/10.1088/1475-7516/2019/02/056
https://arxiv.org/abs/1808.07445
https://doi.org/10.1103/PhysRevLett.105.161302
https://doi.org/10.1103/PhysRevLett.105.161302
https://arxiv.org/abs/1006.4181
https://doi.org/10.1103/PhysRevLett.108.251301
https://arxiv.org/abs/1203.0302
https://arxiv.org/abs/1203.0302


[25] L. Dai, D. Jeong, and M. Kamionkowski, “Anisotropic imprint of long-wavelength tensor
perturbations on cosmic structure,” Phys. Rev. D, vol. 88, no. 4, p. 043 507, 2013. doi:
10.1103/PhysRevD.88.043507. arXiv: 1306.3985 [astro-ph.CO].

[26] E. Dimastrogiovanni, M. Fasiello, D. Jeong, and M. Kamionkowski, “Inflationary tensor
fossils in large-scale structure,” JCAP, vol. 12, p. 050, 2014. doi: 10.1088/1475-7516/
2014/12/050. arXiv: 1407.8204 [astro-ph.CO].

[27] E. Dimastrogiovanni, M. Fasiello, and G. Tasinato, “Searching for Fossil Fields in the Grav-
ity Sector,” Phys. Rev. Lett., vol. 124, no. 6, p. 061 302, 2020. doi: 10.1103/PhysRevLett.
124.061302. arXiv: 1906.07204 [astro-ph.CO].

[28] F. Schmidt and D. Jeong, “Cosmic Rulers,” Phys. Rev. D, vol. 86, p. 083 527, 2012. doi:
10.1103/PhysRevD.86.083527. arXiv: 1204.3625 [astro-ph.CO].

[29] D. Jeong and F. Schmidt, “Large-Scale Structure with Gravitational Waves I: Galaxy
Clustering,” Phys. Rev. D, vol. 86, p. 083 512, 2012. doi: 10.1103/PhysRevD.86.083512.
arXiv: 1205.1512 [astro-ph.CO].

[30] F. Schmidt, E. Pajer, and M. Zaldarriaga, “Large-Scale Structure and Gravitational Waves
III: Tidal Effects,” Phys. Rev. D, vol. 89, no. 8, p. 083 507, 2014. doi: 10.1103/PhysRevD.
89.083507. arXiv: 1312.5616 [astro-ph.CO].

[31] S. Dodelson, E. Rozo, and A. Stebbins, “Primordial gravity waves and weak lensing,”
Phys. Rev. Lett., vol. 91, p. 021 301, 2003. doi: 10.1103/PhysRevLett.91.021301. arXiv:
astro-ph/0301177.

[32] S. Dodelson, “Cross-Correlating Probes of Primordial Gravitational Waves,” Phys. Rev.
D, vol. 82, p. 023 522, 2010. doi: 10.1103/PhysRevD.82.023522. arXiv: 1001.5012
[astro-ph.CO].

[33] F. Schmidt and D. Jeong, “Large-Scale Structure with Gravitational Waves II: Shear,”
Phys. Rev. D, vol. 86, p. 083 513, 2012. doi: 10 .1103 /PhysRevD .86 .083513. arXiv:
1205.1514 [astro-ph.CO].

[34] P. Bari, A. Ricciardone, N. Bartolo, D. Bertacca, and S. Matarrese, “Signatures of pri-
mordial gravitational waves on the large-scale structure of the universe,” Phys. Rev. Lett.,
vol. 129, p. 091 301, 9 Aug. 2022. doi: 10.1103/PhysRevLett.129.091301. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.129.091301.

[35] K. Nakamura, “Consistensy of Equations in the Second-order Gauge-invariant Cosmological
Perturbation Theory,” Prog. Theor. Phys., vol. 121, p. 1321, 2009. doi: 10.1143/PTP.121.
1321. arXiv: 0812.4865 [gr-qc].

[36] K. Tomita, “Non-Linear Theory of Gravitational Instability in the Expanding Universe,”
Progress of Theoretical Physics, vol. 37, no. 5, pp. 831–846, May 1967. doi: 10.1143/PTP.
37.831.

[37] K. Tomita, “Non-Linear Theory of Gravitational Instability in the Expanding Universe.
III,” Progress of Theoretical Physics, vol. 47, no. 2, pp. 416–443, Feb. 1972. doi: 10.1143/
PTP.47.416.

– 46 –

https://doi.org/10.1103/PhysRevD.88.043507
https://arxiv.org/abs/1306.3985
https://doi.org/10.1088/1475-7516/2014/12/050
https://doi.org/10.1088/1475-7516/2014/12/050
https://arxiv.org/abs/1407.8204
https://doi.org/10.1103/PhysRevLett.124.061302
https://doi.org/10.1103/PhysRevLett.124.061302
https://arxiv.org/abs/1906.07204
https://doi.org/10.1103/PhysRevD.86.083527
https://arxiv.org/abs/1204.3625
https://doi.org/10.1103/PhysRevD.86.083512
https://arxiv.org/abs/1205.1512
https://doi.org/10.1103/PhysRevD.89.083507
https://doi.org/10.1103/PhysRevD.89.083507
https://arxiv.org/abs/1312.5616
https://doi.org/10.1103/PhysRevLett.91.021301
https://arxiv.org/abs/astro-ph/0301177
https://doi.org/10.1103/PhysRevD.82.023522
https://arxiv.org/abs/1001.5012
https://arxiv.org/abs/1001.5012
https://doi.org/10.1103/PhysRevD.86.083513
https://arxiv.org/abs/1205.1514
https://doi.org/10.1103/PhysRevLett.129.091301
https://link.aps.org/doi/10.1103/PhysRevLett.129.091301
https://doi.org/10.1143/PTP.121.1321
https://doi.org/10.1143/PTP.121.1321
https://arxiv.org/abs/0812.4865
https://doi.org/10.1143/PTP.37.831
https://doi.org/10.1143/PTP.37.831
https://doi.org/10.1143/PTP.47.416
https://doi.org/10.1143/PTP.47.416


[38] S. Matarrese, S. Mollerach, and M. Bruni, “Relativistic second-order perturbations of the
einstein–de sitter universe,” Physical Review D, vol. 58, no. 4, Jul. 1998, issn: 1089-4918.
doi: 10.1103/physrevd.58.043504. [Online]. Available: http://dx.doi.org/10.1103/
PhysRevD.58.043504.

[39] G. Domènech, S. Pi, and M. Sasaki, “Induced gravitational waves as a probe of thermal
history of the universe,” JCAP, vol. 08, p. 017, 2020. doi: 10.1088/1475-7516/2020/08/
017. arXiv: 2005.12314 [gr-qc].

[40] J. Espinosa, D. Racco, and A. Riotto, “A cosmological signature of the SM higgs instability:
Gravitational waves,” Journal of Cosmology and Astroparticle Physics, vol. 2018, no. 09,
pp. 012–012, Sep. 2018. doi: 10.1088/1475- 7516/2018/09/012. [Online]. Available:
https://doi.org/10.1088/1475-7516/2018/09/012.

[41] R. Saito and J. Yokoyama, “Gravitational-wave background as a probe of the primordial
black-hole abundance,” Physical Review Letters, vol. 102, no. 16, Apr. 2009, issn: 1079-
7114. doi: 10.1103/physrevlett.102.161101. [Online]. Available: http://dx.doi.org/
10.1103/PhysRevLett.102.161101.

[42] G. Domènech, “Scalar Induced Gravitational Waves Review,” Universe, vol. 7, no. 11,
p. 398, Oct. 2021. doi: 10.3390/universe7110398. arXiv: 2109.01398 [gr-qc].

[43] S. Matarrese and S. Mollerach, “The Stochastic gravitational wave background produced
by nonlinear cosmological perturbations,” in ERE - Spanish Relativity Conference, Sep.
1996. arXiv: astro-ph/9705168.

[44] N. Bartolo, S. Matarrese, O. Pantano, and A. Riotto, “Second-order matter perturbations in
a ΛCDM cosmology and non-gaussianity,” Classical and Quantum Gravity, vol. 27, no. 12,
p. 124 009, May 2010. doi: 10.1088/0264- 9381/27/12/124009. [Online]. Available:
https://doi.org/10.1088/0264-9381/27/12/124009.

[45] K. Nakamura, “Second-order gauge invariant cosmological perturbation theory: Einstein
equations in terms of gauge invariant variables,” Prog. Theor. Phys., vol. 117, pp. 17–74,
2007. doi: 10.1143/PTP.117.17. arXiv: gr-qc/0605108.

[46] D. Baumann, P. Steinhardt, K. Takahashi, and K. Ichiki, “Gravitational wave spectrum
induced by primordial scalar perturbations,” Physical Review D, vol. 76, no. 8, Oct. 2007,
issn: 1550-2368. doi: 10.1103/physrevd.76.084019. [Online]. Available: http://dx.
doi.org/10.1103/PhysRevD.76.084019.

[47] K. Inomata and T. Terada, “Gauge independence of induced gravitational waves,” Physical
Review D, vol. 101, no. 2, Jan. 2020, issn: 2470-0029. doi: 10.1103/physrevd.101.023523.
[Online]. Available: http://dx.doi.org/10.1103/PhysRevD.101.023523.

[48] C. Yuan, Z.-C. Chen, and Q.-G. Huang, “Scalar induced gravitational waves in different
gauges,” Physical Review D, vol. 101, no. 6, Mar. 2020, issn: 2470-0029. doi: 10.1103/
physrevd.101.063018. [Online]. Available: http://dx.doi.org/10.1103/PhysRevD.101.
063018.

– 47 –

https://doi.org/10.1103/physrevd.58.043504
http://dx.doi.org/10.1103/PhysRevD.58.043504
http://dx.doi.org/10.1103/PhysRevD.58.043504
https://doi.org/10.1088/1475-7516/2020/08/017
https://doi.org/10.1088/1475-7516/2020/08/017
https://arxiv.org/abs/2005.12314
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1088/1475-7516/2018/09/012
https://doi.org/10.1103/physrevlett.102.161101
http://dx.doi.org/10.1103/PhysRevLett.102.161101
http://dx.doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.3390/universe7110398
https://arxiv.org/abs/2109.01398
https://arxiv.org/abs/astro-ph/9705168
https://doi.org/10.1088/0264-9381/27/12/124009
https://doi.org/10.1088/0264-9381/27/12/124009
https://doi.org/10.1143/PTP.117.17
https://arxiv.org/abs/gr-qc/0605108
https://doi.org/10.1103/physrevd.76.084019
http://dx.doi.org/10.1103/PhysRevD.76.084019
http://dx.doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1103/physrevd.101.023523
http://dx.doi.org/10.1103/PhysRevD.101.023523
https://doi.org/10.1103/physrevd.101.063018
https://doi.org/10.1103/physrevd.101.063018
http://dx.doi.org/10.1103/PhysRevD.101.063018
http://dx.doi.org/10.1103/PhysRevD.101.063018


[49] K. N. Ananda, C. Clarkson, and D. Wands, “Cosmological gravitational wave background
from primordial density perturbations,” Physical Review D, vol. 75, no. 12, Jun. 2007, issn:
1550-2368. doi: 10.1103/physrevd.75.123518. [Online]. Available: http://dx.doi.org/
10.1103/PhysRevD.75.123518.

[50] K. Kohri and T. Terada, “Semianalytic calculation of gravitational wave spectrum non-
linearly induced from primordial curvature perturbations,” Phys. Rev. D, vol. 97, no. 12,
p. 123 532, 2018. doi: 10.1103/PhysRevD.97.123532. arXiv: 1804.08577 [gr-qc].

[51] N. Bartolo et al., “Gravitational wave anisotropies from primordial black holes,” JCAP,
vol. 02, p. 028, 2020. doi: 10 . 1088 / 1475 - 7516 / 2020 / 02 / 028. arXiv: 1909 . 12619
[astro-ph.CO].

[52] N. Bartolo, V. De Luca, G. Franciolini, A. Lewis, M. Peloso, and A. Riotto, “Primordial
Black Hole Dark Matter: LISA Serendipity,” Phys. Rev. Lett., vol. 122, no. 21, p. 211 301,
2019. doi: 10.1103/PhysRevLett.122.211301. arXiv: 1810.12218 [astro-ph.CO].

[53] R. Saito and J. Yokoyama, “Gravitational wave background as a probe of the primordial
black hole abundance,” Phys. Rev. Lett., vol. 102, p. 161 101, 2009, [Erratum: Phys.Rev.Lett.
107, 069901 (2011)]. doi: 10.1103/PhysRevLett.102.161101. arXiv: 0812.4339 [astro-ph].

[54] J. Garcia-Bellido, M. Peloso, and C. Unal, “Gravitational Wave signatures of inflationary
models from Primordial Black Hole Dark Matter,” JCAP, vol. 09, p. 013, 2017. doi: 10.
1088/1475-7516/2017/09/013. arXiv: 1707.02441 [astro-ph.CO].

[55] B. Wang and Y. Zhang, “Second-order cosmological perturbations IV. Produced by scalar-
tensor and tensor-tensor couplings during the radiation dominated stage,” Phys. Rev. D,
vol. 99, no. 12, p. 123 008, 2019. doi: 10.1103/PhysRevD.99.123008. arXiv: 1905.03272
[gr-qc].

[56] C. Döring, S. C. Chuliá, M. Lindner, B. M. Schaefer, and M. Bartelmann, “Gravitational
wave induced baryon acoustic oscillations,” SciPost Phys., vol. 12, p. 114, 2022. doi: 10.
21468/SciPostPhys.12.3.114. arXiv: 2107.10283 [gr-qc].

[57] A. Blanchard et al., “Euclid preparation: VII. Forecast validation for Euclid cosmological
probes,” Astron. Astrophys., vol. 642, A191, 2020. doi: 10.1051/0004-6361/202038071.
arXiv: 1910.09273 [astro-ph.CO].

[58] A. Dey et al., “Overview of the DESI Legacy Imaging Surveys,” Astron. J., vol. 157, no. 5,
p. 168, 2019. doi: 10.3847/1538-3881/ab089d. arXiv: 1804.08657 [astro-ph.IM].

[59] O. Doré et al., “Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral
Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and
Planetary Science,” Jun. 2016, arxiv:1606.07039.

[60] D. J. Bacon et al., “Cosmology with Phase 1 of the Square Kilometre Array: Red Book 2018:
Technical specifications and performance forecasts,” Publ. Astron. Soc. Austral., vol. 37,
e007, 2020. doi: 10.1017/pasa.2019.51. arXiv: 1811.02743 [astro-ph.CO].

[61] B. M. Rose et al., “A Reference Survey for Supernova Cosmology with the Nancy Grace
Roman Space Telescope,” Nov. 2021, arxiv:2111.03081.

– 48 –

https://doi.org/10.1103/physrevd.75.123518
http://dx.doi.org/10.1103/PhysRevD.75.123518
http://dx.doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.97.123532
https://arxiv.org/abs/1804.08577
https://doi.org/10.1088/1475-7516/2020/02/028
https://arxiv.org/abs/1909.12619
https://arxiv.org/abs/1909.12619
https://doi.org/10.1103/PhysRevLett.122.211301
https://arxiv.org/abs/1810.12218
https://doi.org/10.1103/PhysRevLett.102.161101
https://arxiv.org/abs/0812.4339
https://doi.org/10.1088/1475-7516/2017/09/013
https://doi.org/10.1088/1475-7516/2017/09/013
https://arxiv.org/abs/1707.02441
https://doi.org/10.1103/PhysRevD.99.123008
https://arxiv.org/abs/1905.03272
https://arxiv.org/abs/1905.03272
https://doi.org/10.21468/SciPostPhys.12.3.114
https://doi.org/10.21468/SciPostPhys.12.3.114
https://arxiv.org/abs/2107.10283
https://doi.org/10.1051/0004-6361/202038071
https://arxiv.org/abs/1910.09273
https://doi.org/10.3847/1538-3881/ab089d
https://arxiv.org/abs/1804.08657
https://doi.org/10.1017/pasa.2019.51
https://arxiv.org/abs/1811.02743


[62] Vera C. Rubin Observatory LSST Solar System Science Collaboration, R. L. Jones, et al.,
“The Scientific Impact of the Vera C. Rubin Observatory’s Legacy Survey of Space and
Time (LSST) for Solar System Science,” Sep. 2020, arxiv:2009.07653.

[63] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field infla-
tionary models,” JHEP, vol. 05, p. 013, 2003. doi: 10.1088/1126-6708/2003/05/013.
arXiv: astro-ph/0210603.

[64] A. Gangui, F. Lucchin, S. Matarrese, and S. Mollerach, “The Three point correlation func-
tion of the cosmic microwave background in inflationary models,” Astrophys. J., vol. 430,
pp. 447–457, 1994. doi: 10.1086/174421. arXiv: astro-ph/9312033.

[65] V. Acquaviva, N. Bartolo, S. Matarrese, and A. Riotto, “Second order cosmological pertur-
bations from inflation,” Nucl. Phys. B, vol. 667, pp. 119–148, 2003. doi: 10.1016/S0550-
3213(03)00550-9. arXiv: astro-ph/0209156.

[66] H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,” Prog. Theor. Phys. Suppl.,
vol. 78, pp. 1–166, 1984. doi: 10.1143/PTPS.78.1.

[67] Y. Zhang, F. Qin, and B. Wang, “Second-order cosmological perturbations. II. Produced
by scalar-tensor and tensor-tensor couplings,” Phys. Rev. D, vol. 96, no. 10, p. 103 523,
2017. doi: 10.1103/PhysRevD.96.103523. arXiv: 1710.06639 [gr-qc].

[68] P. Carrilho and K. A. Malik, “Vector and tensor contributions to the curvature perturba-
tion at second order,” Journal of Cosmology and Astroparticle Physics, vol. 2016, no. 02,
pp. 021–021, Feb. 2016, issn: 1475-7516. doi: 10.1088/1475-7516/2016/02/021. [Online].
Available: http://dx.doi.org/10.1088/1475-7516/2016/02/021.

[69] V. Mukhanov, Physical foundations of cosmology. Cambridge, UK New York: Cambridge
University Press, 2005, isbn: 978-0-511-13679-5.

[70] P. Meszaros, “The behaviour of point masses in an expanding cosmological substratum,”
Astron. Astrophys., vol. 37, pp. 225–228, 1974.

[71] S. Dodelson, Modern cosmology. London, United Kingdom: Academic Press, 2021, isbn:
978-0-12-815948-4.

[72] S. Weinberg, “Cosmological fluctuations of short wavelength,” Astrophys. J., vol. 581,
pp. 810–816, 2002. doi: 10.1086/344441. arXiv: astro-ph/0207375.

[73] J. Ehlers, “Contributions to the relativistic mechanics of continuous media,” Abh. Akad.
Wiss. Lit. Mainz. Nat. Kl., vol. 11, pp. 793–837, 1961. doi: 10.1007/BF00759031.

[74] G. F. R. Ellis, “Republication of: Relativistic cosmology,” General Relativity and Gravita-
tion, vol. 41, no. 3, pp. 581–660, Mar. 2009. doi: 10.1007/s10714-009-0760-7.

– 49 –

https://doi.org/10.1088/1126-6708/2003/05/013
https://arxiv.org/abs/astro-ph/0210603
https://doi.org/10.1086/174421
https://arxiv.org/abs/astro-ph/9312033
https://doi.org/10.1016/S0550-3213(03)00550-9
https://doi.org/10.1016/S0550-3213(03)00550-9
https://arxiv.org/abs/astro-ph/0209156
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1103/PhysRevD.96.103523
https://arxiv.org/abs/1710.06639
https://doi.org/10.1088/1475-7516/2016/02/021
http://dx.doi.org/10.1088/1475-7516/2016/02/021
https://doi.org/10.1086/344441
https://arxiv.org/abs/astro-ph/0207375
https://doi.org/10.1007/BF00759031
https://doi.org/10.1007/s10714-009-0760-7

	Introduction
	Tensor-sourced scalar perturbations
	Perturbations in the metric and matter components
	Conservation equations
	Conservation equation for matter
	Conservation equation for radiation

	Einstein equations

	Einstein equations in the deep radiation-dominated Universe
	Sub-horizon evolution towards matter-radiation equality
	Determining the coefficients of the density contrast
	Tensor-sourced CDM and radiation perturbation during matter and Dark Energy domination
	Summary
	Appendix Tensor induced vector and tensor modes
	Appendix General solution during deep radiation dominance, without subhorizon approximation
	Appendix Calculation of _r in the second phase
	Appendix  Setup of the initial conditions

