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Summary

Oscillatory neural activity in the beta band has been consistently observed across the sen-

sorimotor cortex. Neurological disorders that primarily affect the motor system are often

linked with alterations in beta dynamics. This has led many researchers to hypothesise a

key role for this rhythm in somatosensory processing and motor control. An agreement on

the supposedly beta’s functional role, however, is currently lacking.

This thesis studied beta oscillations while focusing on two main aspects: the role of

beta in complex motor functions and the physiological mechanism behind its generation.

In the first two chapters, we explored the role of beta in the sensorimotor system by

employing a joystick-reaching task while recording neural activity with MEG. We first in-

vestigated the relationship of beta oscillations with learning in a motor adaptation task.

After being exposed to adaptation-inducing errors, post-movement beta activity was re-

duced. This effect, however, was short-lived and widely spread across a set of frontopari-

etal nodes, suggesting a link with generalised error monitoring. We then focused on the

potential ”inhibitory” role of beta in a stop-signal paradigm. We contrasted activity in IFG

and pre-SMA during successful and unsuccessful stopping. Although we used standard

(averaged) and beta-burst (single-trial) analyses, no differences were observable between

conditions. Taken together, our findings on beta’s functional role produced mixed results

when compared with the existing literature.

In the third chapter, we shifted our focus to the physiological mechanisms behind beta

origin. We investigated the relationship between GABA and beta in a pharmaco-MEG

study. We additionally employed a set of novel techniques for power spectra parametri-

sation, which successfully separated neural activity into rhythmic and arrhythmic com-

ponents. While we confirmed a modulation of beta oscillations after GABAergic interven-

tions, we also showed a dynamic change in the aperiodic activity. These findings, however,

were not observable across canonical averaged spectrograms, where periodic and aperi-

odic components conflated masking the true effect of GABA. We suggest that failing to

dissociate between rhythmic and arrhythmic neural features could result in a misinterpre-

tation of the underlying physiology of beta oscillations.
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Chapter 1

General introduction

1.1 The importance of rhythmic neural activity

Neural activity at the single-neuron level appears predominantly asynchronous. Both spike

discharges of cortical cells and synaptic inputs to cortical neurons display large stochastic

fluctuations, approximating a Poisson process (Destexhe and Sejnowski, 2003; Softky and

Koch, 1993; Shadlen and Newsome, 1994). Interestingly, when observed at a macro-scale

level, one of the most striking features of neural activity is rhythmicity. At first sight,

it seems difficult to reconcile the strongly stochastic nature of neuronal spike discharges

with the description of synchronised neural networks across the brain. However, an oscil-

latory activity could be better interpreted in the more general perspective of correlation

in the timing of neural firing (Wang, 2010). Biophysical studies revealed that the intrinsic

ability to resonate at multiple frequencies is observable even in single neurons (Hutcheon

and Yarom, 2000). This suggests that the precise timing of their activity within neuronal

networks could represent a fundamental condition for information transfer.

Theories of the functions of oscillations argue that they facilitate dynamic temporal

and spatial propagation of neural signals (Fries, 2005, 2015; VanRullen, 2016; Voytek

and Knight, 2015). Neural oscillations have been explored as potential biomarkers of dis-

ease status, drug efficacy, and other clinical indicators (Başar, 2013; Buzsáki and Watson,

2012; Newson and Thiagarajan, 2019). Reflecting this broad interest, a large number of

investigations have reported associations between oscillations and almost every aspect of
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cognition and behaviour (Başar et al., 2001; Lopes da Silva, 2013; Mazaheri et al., 2018).

Rhythmic activity is characterised by three key features: amplitude, phase and fre-

quency. Amplitude is the amount of energy at a given time and at a given frequency. In

the context of neural signals, amplitude changes are considered to result from changes in

synchronisation within a neural population. Phase is a definition of the position of a point

in time on a waveform cycle. Phase can be an expression of relative displacement between

or among waves having the same frequency. Lastly, frequency represents the number of

cycles per second, reflecting the ”speed” of the oscillation. Brain oscillations are usually

categorised into five frequency bands: delta (0.5-3.5 Hz), theta (4-7 Hz), alpha (8-12 Hz),

beta (13-30 Hz) and gamma (>30 Hz) (Buzsáki, 2006). In this thesis, we will focus on

one of these rhythms: beta oscillations.

1.2 The beta rhythm

1.2.1 The link between beta and the sensorimotor system

Neural activity in the beta range has been historically implicated in sensorimotor con-

trol (S. Baker, 2007; Pfurtscheller and Lopes da Silva, 1999). These oscillations are es-

tablished during stable postures and are decreased during active states, such as motion

planning and execution (Engel and Fries, 2010; Kilavik et al., 2013). A decrease in the

amplitude of beta oscillations across sensorimotor areas is seen just prior to and during

movement execution. Conversely, an increase in beta amplitude above the baseline level

is observed following movement termination. These two phenomena are commonly re-

ferred to as movement-related beta desynchronisation and post-movement beta rebound

or PMBR, respectively (Figure 1.1). The movement-related power decrease is typically

observed bilaterally over sensorimotor areas, particularly post-central. Conversely, while

some studies suggest a pre-central locus for the beta rebound, others have proposed that

originates from a distributed cortical network including frontal and parietal areas, rather

than a discrete cortical node. (Jurkiewicz et al., 2006; Kilavik et al., 2013; Muthuku-

maraswamy, Myers, et al., 2013).
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Figure 1.1: Beta desynchronisation and rebound
(upper left) Schematic representation of sensorimotor beta activity. During a motor task beta activ-
ity drops below baseline (light blue shaded area) just prior to and during movement execution.
After movement ends, beta activity increases rapidly (light orange shaded area) before slowly
returning to baseline level. (upper right) Example of time-frequency plot showing beta desynchro-
nisation and rebound in the subthalamic nucleus (Alegre et al., 2005). The plot shows oscillatory
activity changes specific to the beta band (13-30 Hz) in the period prior to movement and following
movement termination. The colour scale indicates relative power changes with respect to baseline
levels (dark colours indicate a decrease; bright colours indicate an increase). The movement begins
at time 0 (magenta dashed line). (bottom) Schematic representation of beta desynchronisation
and rebound spatial distribution. Beta desynchronisation (light blue circle) is commonly localised
to the postcentral gyrus whereas rebound (light orange circle) is often localised to the precentral
gyrus.
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Sensorimotor beta oscillations have been observed across several cortical (Jensen et al.,

2005; Kopell et al., 2011; Kramer et al., 2008; Roopun et al., 2006; Yamawaki et al., 2008)

and sub-cortical loci (Holgado et al., 2010; McCarthy et al., 2011; Mirzaei et al., 2017;

Tachibana et al., 2011). Natural modulation of beta dynamics have been reported in age-

ing and neurological disorders, such as Parkinson’s disease (PD) and stroke. Resting and

movement-related beta power has been shown to increase in older adults, alongside a con-

current deterioration of motor performance (Espenhahn et al., 2019; Heinrichs-Graham

and Wilson, 2016; Rossiter, Davis, et al., 2014). PD patients consistently show an in-

crease in beta amplitude in the basal ganglia. This alteration correlates with the severity

of the motor disorders (Brown, 2006; Little and Brown, 2014). Well-established treat-

ment options for advanced PD, such as pharmacological alteration of dopamine levels and

deep-brain stimulation, act on beta levels in the subthalamic nucleus (Little et al., 2013;

Tinkhauser, Pogosyan, Little, et al., 2017). Higher resting beta power in the affected hemi-

sphere of stroke patients was associated with poorer motor function whereas the reverse

relationship was found in the unaffected hemisphere (Rossiter, Boudrias, and Ward, 2014;

Thibaut et al., 2017).

The above findings help to understand why beta oscillations have often been proposed

as a purely motor rhythm. However, as we will see in the next paragraph, the role of beta

in the sensorimotor system is more nuanced.

Beyond its established role as a sensorimotor rhythm, modulations of beta activity are

also present in a range of non-motor processes, such as visual perception (Kloosterman

et al., 2015; Singh et al., 2002), language processing (for review, see Weiss and Mueller,

2012), working memory (Siegel et al., 2009), long-term memory (for review, see Hanslmayr

et al., 2016), decision making (Wimmer et al., 2016; Wong et al., 2016) and reward pro-

cessing (for review, see Marco-Pallarés et al., 2015) 1. For the remainder of this thesis,

however, we will focus exclusively on sensorimotor beta oscillations.

1For the interested reader we suggest two reviews encompassing several non-motor beta functions:
(Schmidt et al., 2019) and (Spitzer and Haegens, 2017)
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1.2.2 What is the role of beta oscillations?

As we described in the previous paragraph, one peculiarity of beta oscillations lies in the

tendency to vary during movement. Beta desynchronisation is present during spontaneous

and triggered movements, while successful movement cancellation is associated with an

increase in beta power (N. Swann et al., 2009; N. C. Swann et al., 2012). Due to this

predominant activity during rest, one of the earliest interpretations compared the activity

in the beta range to an ”idling rhythm” in the motor system (Pfurtscheller et al., 1996).

However, other studies showed how beta desynchronisation also occurs when no muscle

contraction is required (i.e., motor imagery or action observation) and how is rather in-

sensitive to motor parameters like movement type or effector (Kilavik et al., 2013; Miller

et al., 2010). These observations led Engel and Fries (2010) to propose a role for beta

oscillations as an active process, which interferes with the encoding of incoming informa-

tion while promoting the existing state in the system (”status-quo”). Therefore, instead of

being a proxy for the level of activity of the sensorimotor network, beta oscillations act as a

top-down inhibitory rhythm during motor and cognitive tasks. Following the ”status-quo”

hypothesis, movement-related beta desynchronisation and rebound could be interpreted

as controlled fluctuations of beta level during a motor set, with the former necessary for

releasing the inhibition and allowing the initiation of a motor plan, while the latter actively

preserves the existing motor states from internal and external sources of noise.

PMBR has also been interpreted more specifically as an indicator of movement out-

come processing (S. Baker, 2007). Supporting evidence stems from findings showing how

PMBR is modulated by passive movements (Alegre et al., 2002; Cassim et al., 2001) and

by kinematic errors (Tan et al., 2014). More recently, Tan et al. (2016) reported that

the level of PMBR over the sensorimotor cortex serves as an index of confidence in the

prediction of a motor outcome. This interpretation refers to the idea that optimal sensori-

motor control requires an integration of the motor command (”efferent copy”) and sensory

feedback (Franklin and Wolpert, 2011). When a mismatch between the efferent copy and

the sensory feedback is detected, this drives an update of the motor plan (Shadmehr et

al., 2010). According to Tan, the reduction of PMBR is therefore required to dynamically
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change the motor output and successfully exhibit motor learning.

Although a unifying interpretation of beta’s function is currently lacking, some mecha-

nistic aspects have been tentatively identified. In particular, oscillations in the beta fre-

quency are physiologically well suited for facilitating long-range interactions between

groups of neurons (Kopell et al., 2000, 2011; Varela et al., 2001). This characteris-

tic could possibly make beta an ideal candidate for transmitting top-down signals from

higher-executive nodes to the motor and sensory areas (Buschman and Miller, 2007; En-

gel and Fries, 2010; Fries, 2015; Wang, 2010).

Several reasons contribute to making sensorimotor beta’s role so elusive. First, activity

in the beta range is not unitary but it is actually comprised of separate rhythms (Kopell

et al., 2011). PD studies show that oscillatory activity through the cortico-basal ganglia

network is segregated into low (14–20 Hz) and high beta frequencies (>24 Hz) both in

humans (Litvak et al., 2011; Lopez-Azcarate et al., 2010) and rats (West et al., 2018).

Furthermore, each of the two rhythms shows a distinct pattern of response to variation

of dopamine levels (Priori et al., 2004; Marceglia et al., 2006). Multiple studies have

proposed a link between low-beta and motor dynamics, suggesting an ”anti-kinetic” role

(Brown, 2003; Chandrasekaran et al., 2019). High-beta, instead, seems to reflect atten-

tion and sensory cue anticipation processes (Chandrasekaran et al., 2019; Kilavik et al.,

2014; Saleh et al., 2010). Secondly, some studies have observed that movement-related

beta desynchronisation and PMBR have a different spatial distribution (with the first more

often observed close to postcentral gyrus and the latter to precentral gyrus) and could rep-

resent independent events (Alegre et al., 2008; Gaetz et al., 2011; Jurkiewicz et al., 2006;

Muthukumaraswamy, Myers, et al., 2013). Finally, recent studies returned consistent ev-

idence towards a novel interpretation of beta activity as a burst-like phenomenon rather

than sustained over time, suggesting a complete reappraisal of beta ”oscillatory” nature

(Little et al., 2019; Jones, 2016; Sherman et al., 2016; Shin et al., 2017). As we will dis-

cuss further below, theoretical models of beta oscillations should integrate this transient

nature when accounting for its functional role.
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1.2.3 Mechanisms of generating beta

Pharmacology studies have uncovered a link between GABA, the major inhibitory neuro-

transmitter in the brain, and beta oscillations (Jensen et al., 2005; Roopun et al., 2006;

Yamawaki et al., 2008). Specifically, the administration of benzodiazepines in humans has

been shown to increase the conductance of GABA-mediated currents, which in turn was

correlated with an increase of beta power (Hall et al., 2009, 2011; Jensen et al., 2005;

Muthukumaraswamy, Myers, et al., 2013; Nutt et al., 2015). The relation of beta and

GABA was also described by several neural network models describing the mechanism

by which these oscillations are generated (Whittington et al., 1995, 2000). According to

these models, beta is generated by local spiking interactions among pyramidal cells and

GABAergic interneurons (Jensen et al., 2005; Kopell et al., 2011; Kramer et al., 2008; Lee

et al., 2013) (Figure 1.2). A similar generative model was also proposed for oscillations

in the gamma range (30-90 Hz) (Börgers and Kopell, 2008; Olufsen et al., 2003; Whit-

tington et al., 2000). However, some functional aspects separate these two rhythms. As

described in Kopell et al. (2011), activity in the gamma range requires continuous excita-

tion, whereas beta rhythmicity can be preserved longer, even after a decaying excitatory

input. Furthermore, beta cell assemblies - groups of neurons synchronised in a beta fre-

quency range - can concurrently co-exist with other cell assemblies. Gamma-driven spiking

interactions instead, due to the large overlap in the axonal fields of inhibitory interneu-

rons, constantly suppress each other with one assembly dominating the others. These

physiological features, make beta an ideal candidate for supporting long-range network

interactions (Kopell et al., 2000, 2011; Roopun et al., 2006).

An alternative model of a cortical beta generator was recently proposed by Sherman et

al. (2016). According to the authors, beta oscillations can emerge from the interactions

between excitatory and inhibitory neurons in deep and superficial layers (Figure 1.2).

Specifically, the model consists of pyramidal neurons in the supragranular (layers 2/3)

and infragranular (layer 5) layers coupled to inhibitory neurons. The laminar neocortical

model receives further inputs from two external locations, providing excitatory drive to

proximal and distal dendrites of pyramidal neurons. The authors have speculated that
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Figure 1.2: Generative models of beta oscillations
Schematic illustration of potential mechanisms of beta generation. (left) Beta oscillations can be
generated in deep cortical layers by recurrent interactions between pyramidal neurons (triangles)
and interneurons (circles). (middle) A laminar model of beta generation requires pyramidal neu-
rons (triangles) in the supragranular (layers 2/3) and infragranular layers (layer 5). The model
is complemented by two external excitatory inputs, likely originating from the thalamus (for more
details see, Sherman et al., 2016). (right) Source model of basal ganglia beta oscillations. Arrows
denote excitatory connections and lines ending with circles denote inhibitory connections. Beta
can be generated in multiple ways within the basal ganglia. Most recurrent theories involve the
STN-GPe loop (Holgado et al., 2010), the striatal origin (McCarthy et al., 2011) and the cortical-
ganglia-thalamic loop (Moran et al., 2011). Abbreviations: STN - subthalamic nucleus; GPe/GPi -
globus pallidus pars externa and interna.

both the proximal and distal drive could originate from the thalamus. The model produces

beta activity which is transient (”burst-like”) and does not depend on rhythmic inputs, a

finding corroborated by human and animal studies (Bonaiuto et al., 2021; Leventhal et

al., 2012; Sherman et al., 2016; Shin et al., 2017).

Finally, another predominant theory on the origin of beta’s rhythm identifies the basal

ganglia as a key structure (Figure 1.2). Consistent with this view, beta has been robustly

observed from basal ganglia nuclei including the subthalamic nucleus (STN), striatum, and

globus pallidus (externa - GPe; interna - GPi) (Bevan, 2002; Feingold et al., 2015; Leven-

thal et al., 2012). Furthermore, as we mentioned in the previous paragraphs, exaggerated

beta oscillations in the basal ganglia are a common feature of PD and are believed to cor-

relate with the degree of motor symptoms (Beck et al., 2016; Brown, 2006; Hammond

et al., 2007). These pathological oscillations could be a direct consequence of changes to

the underlying networks of neuronal ensembles that generate them. However, locating

the origin of basal ganglia beta oscillations has been challenging, due to the complex ar-
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chitecture of the system and the rich interconnections with the cortex and the thalamus.

Several experimental and computational studies have reported that interactions between

STN and GPe can generate beta oscillations (Bevan, 2002; Holgado et al., 2010; Kumar et

al., 2011; Pavlides et al., 2015; Tachibana et al., 2011; W. Wei et al., 2015). Anatomically,

STN and GPe are densely and reciprocally interconnected (Shink et al., 1996), generat-

ing recurrent excitatory-inhibitory interactions in the beta range (Plenz and Kital, 1999),

which may then propagate to other regions in the cortico-basal ganglia loop. An alterna-

tive interpretation is based on a striatal-origin viewpoint (Corbit et al., 2016; McCarthy et

al., 2011). Tachibana et al. (2011), however, observed that blocking the striatal input to

GP did not reduce the power of beta oscillations in GPe. In contrast, blocking inputs from

STN to GPe abolished beta rhythms. The amount of evidence described above suggests

a complex and possibly non-unitary mechanism behind the origin of sensorimotor beta

oscillations. Following this idea, some authors have proposed the integration of different

models, with beta oscillations acting as an emergent property of the entire cortico-basal

ganglia networks, rather than a localised phenomenon (Kumaravelu et al., 2016; Leblois,

2006; Liu et al., 2020; Moran et al., 2011; Pavlides et al., 2015; van Albada et al., 2009;

West et al., 2018).

1.3 MEG

Recordings of rhythmic signatures of neural activity can be performed with a variety

of techniques, such as electroencephalography (EEG), magnetoencephalography (MEG),

electrocorticography (ECoG) and local field potential (LFP). In this thesis, neural record-

ings were obtained exclusively with a MEG system. Specifically, we used a CTF MEG

system consisting of 275 first-order axial gradiometers and 29 reference magnetometers.

MEG is a non-invasive imaging method based on measuring the magnetic fields that are

generated by electrical brain activity. It has a relatively high spatiotemporal resolution (∼1

ms, and 2-3 mm in principle) and reflects neural currents directly, with minimal distortion

from the skull and the scalp (Hämäläinen et al., 1993).

Taking a step back, electric current from a multitude of neurons can superimpose to
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generate a potential V (measured in Volts) with respect to a reference point. The difference

in V between two locations gives rise to an electric field. Electric fields can be monitored

by extracellularly placed electrodes with sub-millisecond time resolution and can be used

to infer many facets of neural computation (Buzsáki et al., 2012). While this type of

(electric) signal is recorded by EEG, ECoG and LFP, the resultant magnetic field is the

target of MEG recordings.

Synchronised activity across space and time is fundamental to generating measurable

magnetic fields which are detectable by the MEG (Baillet et al., 2001). The main genera-

tors of the ionic currents registered with an electrode are considered to be the postsynaptic

potentials (Hämäläinen et al., 1993) (Figure 1.3). Although neural electric activity com-

prises both rapid action potentials and slower synaptic potentials, the brief nature of action

potentials makes challenging signal summation on a sufficiently large scale. The slower

decay rate of postsynaptic potentials instead, allows a great overlap in time without re-

quiring rigorous synchronisation. Because of these well-defined characteristics, the largest

contributor to the MEG signal is thought to be the pyramidal neuron (Figure 1.3). The

reasons are twofold: first, the elongated morphology of the pyramidal neuron constrains

the net primary current circulation along the cell, which is a factor responsible for greater

signal strength compared to other kinds of neuron morphologies. Secondly, pyramidal

neurons are oriented perpendicular to the brain surface with dendrites of neighbouring

cells roughly parallel to each other. This results in the ionic current underlying postsynap-

tic potentials flowing in the same orientation across thousands of cells, thus generating

large magnetic fields (Baillet, 2017; Hämäläinen et al., 1993; Vrba and Robinson, 2001).

Brain-generated magnetic fields are typically measured on a scale of 50-500 femtotes-

las (fT). To put this in perspective, this number is about 10 to 100 million times smaller

than Earth’s static magnetic field. It follows that highly sophisticated sensor technology is

required for recording. Standard systems rely on pick-up coils coupled with superconduct-

ing interference devices (SQUIDs) (D. Cohen, 1972; Hämäläinen et al., 1993). As external

magnetic noise can prevent the detection of weak neural magnetic fields, several noise

rejection strategies are used in modern MEG systems. The first, and largest contribution

to noise suppression, comes from performing MEG recordings in magnetically shielded
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Figure 1.3: MEG signal origin
(left) Schematic representation of a cortical pyramidal neuron. Example of net primary current
(yellow arrow) along the cell. The current is generated by an imbalance in electrical potentials
between the apical dendrites and the cell body. The induced magnetic field (purple circular
arrows) perpendicular to the primary current is the principal source of the signal recorded with
the MEG. Source of activity depicted: postsynaptic potentials (PSP) and action potentials (AP).
(right) At the cell assembly scale, the slow decay of PSP allows for stronger superimposition of the
signal, thus increasing the detectability with MEG.
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rooms. Further suppression is achieved by the specific design of MEG sensors. Two of the

most common sensors are the magnetometers and the gradiometers, with the first con-

taining a single pick-up coil while the latter contains multiple ones. Gradiometers take

advantage of the fact that magnetic field strength decreases with distance from a current

source as an inverse square law. Signals from noise sources at a large distance from a

given gradiometer will induce similar currents in each loop, whereas the field generated

by a source inside the head would induce a larger current only in the loop closer to the

source (Vrba and Robinson, 2001).

The localisation of sensor-level responses can be ambiguous with MEG. Given a mag-

netic field measured by MEG, an infinite number of possible cortical source distributions

could contribute to its generation. The problem of estimating the current density that gen-

erated the measured electric potential (or magnetic field) is described as the inverse prob-

lem (Sarvas, 1987). Source analyses in this thesis use a linearly constrained minimum-

variance (LCMV) beamforming approach (Hillebrand et al., 2005; Van Veen et al., 1997),

which aims to alleviate the inverse problem. This method independently estimates a solu-

tion at each source location in the brain by weighting the sensor-level contribution to the

overall output so as to increase sensitivity at the target location while minimising interfer-

ence from others. The only assumption of this method requires that no two macroscopic

sources of neuronal activity are linearly correlated (Hillebrand et al., 2005). Beamforming

has proven to successfully attenuate noise (Vrba, 2002) and it does not require assump-

tions on the number of active sources. Another advantage of beamformer analysis is its

easy implementation since there is relatively little user interaction. The only parameters

that a user needs to specify are the size of the reconstruction grid, the time-frequency

window over which to run the analysis, and optionally the amount of noise regularisation

(Hillebrand and Barnes, 2005).

Overall, MEG provides whole-head direct measurements of neural activity, charac-

terised by excellent temporal and spectral resolution. Unlike EEG, MEG measures are

reference-free, do not suffer from the distortive conductive effect of brain tissues, are less

contaminated by muscle artifacts and are more sensitive to tangential sources (with EEG

additionally sensitive to radial ones). MEG, however, is sensitive to head movements and
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the correct registration of head position, which can impair data quality and comparability.

Furthermore, MEG is less sensitive to the activity that occurs deeper within the brain, thus

constraining a large section of MEG research to focus on activity in more superficial brain

regions.

1.4 Novel insights on neural oscillatory activity

In this section, we will present recent perspectives on neural oscillations. The implica-

tions of these findings could lead to a reappraisal of the methodology used for analysing

rhythmic patterns in the brain. We will show in the remainder of this thesis the potential

advantage of employing these techniques when studying sensorimotor beta oscillations.

1.4.1 The ”burst-like” hypothesis

Neural oscillations are typically interpreted as repeated cycles of rhythmic activity sus-

tained over a long period of time. Accordingly, common analytical techniques consist in

averaging time-frequency representations (TFRs) across multiple trials in order to improve

the signal-to-noise ratio. Recent studies, however, have shown that at a single-trial level,

oscillations appear only for a short period while they are also widely spread and infrequent

across trials (Feingold et al., 2015; Jones et al., 2009; Leventhal et al., 2012; Lundqvist et

al., 2016; Sherman et al., 2016). Therefore, it seems that the notion of brain rhythms be-

ing sustained over time is often a consequence of averaging signals in the spectral domain

rather than an inherent property of oscillations (Jones, 2016). TFRs, which are the out-

come of frequency analysis applied to a time series, are composed of purely non-negative

values. Thus, intermittent activity occurring at different points in a time window can be

accumulated without cancelling, returning a misleading picture of a ”sustained” pattern

of activity (Figure 1.4).

A group of recent studies tried to investigate if focusing on beta oscillations as a ”burst-

like” phenomenon could produce stronger relevance with behaviour than conventional

trial averaging. Sherman et al. (2016) analysed source-localised human MEG data looking
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Figure 1.4: Single-trial beta-bursts
Examples of spontaneous oscillations and corresponding TFRs over 1-s epochs observed in MEG
source-localised data from the primary somatosensory cortex (SI) and the right inferior frontal
cortex (IFC). Each column shows activity from four different subjects [units: (AM)2]. Across
single-trials beta oscillations (red boxes) emerged transiently, with high-power beta events lasting
approximately three periods. Sustained oscillations appear only when data are averaged over many
(N. trials = 100) 1-s cycles. Adapted from Sherman et al. (2016).

at spontaneous activity during rest in the primary somatosensory cortex. Beta appeared

transiently during single-trials as a sudden increase in power typically lasting <150 ms.

When the same trials were averaged together, continuous oscillations emerged in the TFR.

Similar findings in LFP recordings were reported by Feingold et al. (2015). The authors

showed how beta was present reportedly in brief bursts both in the motor/premotor cortex

and in the striatum of monkeys performing self-timed movement tasks. Fluctuation of

averaged oscillatory power was highly correlated with variations in burst density of beta

events. Thus, the authors suggested, beta synchronisation and desynchronisation could

reflect the probability of occurrence of a brief bursting event, rather than representing

modulation of the strength of a sustained oscillation.

Some beta-burst features however are not perfectly summarised by averaged spectro-

grams. Shin et al. (2017) showed that the rate of transient pre-stimulus beta events in

the primary somatosensory cortex was the most consistent predictor of stimulus detection

in humans and mice. Moreover, events occurring closer to the stimulus onset were more

likely to result in impaired detection. Similarly, Little et al. (2019), found that the late
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timing of a beta-burst closer to a preparatory cue predicted slower movement initiation.

By contrast, task errors resulted in delayed onset of bursts and a reduced probability of

bursting.

The cumulative evidence reviewed here supports the notion of beta as a transient event

across brain areas, recording modalities and species. Trial averaged analysis may conceal

the functional importance of the underlying bursting activity, thus contributing to the

challenge of providing a comprehensive interpretation of beta’s role in the sensorimotor

system. Whilst the averaged amplitude of beta power does seem to correlate with the

rate of beta events, the beta-bursts analysis could provide additional and independent

measures of neural activity which could be tested experimentally and implemented in

computational models.

1.4.2 Rhythmic and arrhythmic neural signals

Neural oscillation studies have often focused on predefined canonical frequency bands

that are thought to capture distinct rhythms. Accordingly, standard analyses rely on the

contrast of activity in narrow-band frequencies (i.e., 13–30 Hz for the beta range). This

methodology, however, requires some specific sets of assumptions about the nature of neu-

ral signals. Neural recordings have reportedly shown the presence of activity which lacks

defined rhythmicity. This aperiodic activity, also defined as ”scale-free” or ”1/f” (Freeman

et al., 2003; B. J. He, 2014), is characterised in the spectrogram by exponentially de-

creasing power across increasing frequencies. Interestingly, this activity has been linked to

several important features of brain activity, from postsynaptic integration to neural pop-

ulations firing magnitude (Gao et al., 2017; Miller et al., 2009). Furthermore, aperiodic

activity is always detectable in neural recordings and has large and observable variability

(Freeman and Zhai, 2009; Podvalny et al., 2015).

The above findings urge caution when interpreting the results from spectral analyses.

There is always non-zero power at all frequency bands, even if there is no oscillatory activ-

ity present. Therefore, it is erroneous to assume that predefined narrow-band frequency

analyses would reflect the presence of physiological oscillatory activity.
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A useful set of examples of how aperiodic activity could lead to misinterpretation of

power spectra was displayed by Donoghue et al. (2020) (Figure 1.5). Different physio-

logical processes could result in similar outcomes when inspecting narrow-band activity.

For example, if we consider a reduction of power in the alpha range the most direct cause

could be ascribed to a reduction of the number of neurons synchronised in that specific

range. However, a reduction of alpha power can also be observed after a shift in the alpha

peak frequency or by the intrinsic variability in the aperiodic activity.

Figure 1.5: Overview of periodic and aperiodic spectral features
(A) Example of a power spectrum with a strong alpha peak in the canonical frequency range (8-12
Hz, blue-shaded region) and a weak beta peak (not marked). (B), Same as A, but with the alpha
peak removed. (C, D), Changes in a narrow-band range (blue-shaded region) can be ascribed
to several different physiological processes. Total power (green bars in the inset) reflects the
total power in the frequency range, and relative power (purple bars in the insets) reflects the
relative power of the peak, over and above the aperiodic component. (C), Example scenarios:
oscillatory power reduction (i); oscillation center frequency shift (ii); broadband power shift (iii);
aperiodic exponent change (iv). In each simulated case, while the total measured narrow-band
power is similarly affected (inset, green bar), only in the power reduction case (i) the alpha power
was actually changed compared to the aperiodic activity (inset, purple bar). (D), Examples of
aperiodic dynamics with no peaks present in the spectrum. Changes in the aperiodic component
can be erroneously interpreted as changes in oscillatory power when performing narrow-band
analysis. R, relative; T, total. Reproduced from Donoghue et al. (2020).

16



Ignoring the aperiodic component when interpreting findings on neural oscillations is

problematic, as this component also reflects meaningful physiological information. As we

will discuss further in Chapter 4, avoiding spectral parametrisation in its periodic and

aperiodic components, leads to a misinterpretation of the effects of beta oscillations.

1.5 Thesis overview

This thesis brings together standard and novel methods for the analysis of sensorimotor

beta oscillations. In the first two chapters, we used a joystick-reaching task to explore

some of the most popular interpretations of the role of beta in the sensorimotor system,

specifically motor learning and action inhibition. In Chapter 2, we altered the visual feed-

back of the joystick cursor to elicit motor adaptation. This manipulation confirmed the

link between beta oscillations and motor errors. In Chapter 3, we employed an action-

stopping paradigm to test if beta oscillations are key to suppressing movement initiation.

Our results, however, were inconclusive and proposed a more nuanced relationship be-

tween beta and action control.

Finally, in Chapter 4 we tested the effect of two GABAergic modulators on beta. We

showed how applying novel techniques to the analysis of beta oscillations returns more

complex findings compared to standard approaches.
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Chapter 2

Beta dynamics during motor adaptation

2.1 Introduction

The functional significance of beta oscillations in the sensorimotor system is still not well

understood, as discussed in Chapter 1. One hypothesis proposes that increased beta dur-

ing movement acts as an inhibitory rhythm, actively interfering with the ability of the

network to encode new information (Engel and Fries, 2010). A different interpretation

suggests a link between beta and the processing of movement-related sensory afferent

and kinematic errors. In this context, modulation of beta promotes adaptive processes

in the sensorimotor system, ultimately resulting in the update of the motor plan in the

context of learning (Tan et al., 2016; Haar and Faisal, 2020).

In the first two chapters of this thesis, we will discuss both interpretations of the beta

functional role. In this first chapter, we investigate whether updates in motor performance

following motor learning are linked with the modulation of beta dynamics, and we explore

the spatiotemporal characteristics of such an effect.

Motor learning can be defined as an improvement of motor skills through practice

which is paralleled by long-lasting changes at the level of neural circuitry (Sanes and

Donoghue, 2000; Muellbacher et al., 2002; Halsband and Lange, 2006). Motor learning

paradigms involve goal-directed actions towards a target (reaching, pointing), while mo-

tor performance and/or sensory feedback are experimentally manipulated (force fields,

prisms; for review, see Shadmehr et al., 2010).
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In a visuomotor rotation paradigm, Tan et al. (2014, 2016) found that larger post-

movement beta rebound (PMBR) indicates more confidence in the motor plan and the

maintenance of more stable motor output, while smaller PMBR indicates the need for

adaptive changes driven by sensory feedback. Recently, Haar and Faisal (2020) explored

PMBR dynamics during a real-world billiards task. Across the experiment, PMBR am-

plitude exhibited opposite modulations, with some participants showing a reduction in

learning while others showed an increase. The authors speculated that participants may

opt for distinct learning strategies to complete the task during real-world paradigms.

Therefore, opposing PMBR dynamics could be interpreted as neural signatures of sepa-

rate underlying learning mechanisms. The link between PMBR and motor learning was

also explored by Torrecillos et al. (2015). In a pointing task, the authors contrasted two

types of reach errors: movement-execution errors that triggered adaptive mechanisms

and errors that elicited no sensorimotor adaptation. PMBR amplitude was reduced after

experiencing both kinds of errors, leading the authors to suggest a non-specific role for

PMBR in error/mismatch detection. In a subsequent study, Alayrangues et al. (2019) con-

trasted bi-manual reaching tasks with comparable motor kinematics but different action

goals. Although each task required distinct sensorimotor remapping following a mechan-

ical perturbation, PMBR modulation was comparable across tasks. This finding supports

the notion that PMBR is related to salient error-detection mechanisms which act without

triggering adaptive behavioural adjustments. Together, these studies suggest a complex

relationship between PMBR with outcome processing.

A growing number of studies suggest that cortical beta activity is characterised by tran-

sient bursting that may only appear to be temporally sustained if averaged over multiple

trials (Sherman et al., 2016; Shin et al., 2017; Little et al., 2019; Feingold et al., 2015).

These studies propose a prominent functional role for rapid beta bursts that could be con-

cealed by conventional analysis. Bursts occur more focally in space than temporally aver-

aged beta amplitude (Little et al., 2019), and burst timing was a better predictor of motor

behaviour than average beta power (Little et al., 2019; Shin et al., 2017). Therefore, beta

burst analysis could provide a better understanding of beta’s role during learning.

In the present chapter, we used a joystick aiming task from Tan et al.(2014, 2016) to
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test the role of beta oscillations during motor adaptation. In particular, we tested if aver-

aged PMBR was dynamically modulated during learning and if this effect was observable

in a set of frontal and parietal ROIs. We were able to identify a reduction in PMBR power

when the joystick cursor visual feedback was manipulated. This effect was shown across

several distinct ROIs but was stronger for M1, IFG and sPL. Finally, beta oscillations were

explored at the single-trial level. These transient events appear to confirm that during

adaptation the amplitude of post-movement beta bursts is reduced, but failed to produce

novel insights.
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2.2 Material and methods

2.2.1 Participants

22 healthy participants participated in the MEG experiment. One participant had to be

excluded due to the presence of artefacts during data collection. Three participants had

to be excluded because it was not possible to acquire an MR image. All of the remaining

18 participants (9 women; mean age ± SD, 25 ± 3 years) had normal or corrected-to-

normal vision. All individual participants included in the study were screened for factors

contradicting MRI and MEG scanning and provided written informed consent before par-

ticipation and consent to publish any research findings based on their provided data in

anonymized form. Participants were financially compensated for their time.

2.2.2 Experimental setup

The task and procedure were similar to the one described in (Tan et al., 2016). Participants

were seated in the MEG scanner in front of a computer monitor at 120 cm from the

screen, while they held a finger-joystick with their right hand, which was rested on a

padded arm support. Participants performed an out-and-back aiming task by moving the

joystick to match a cursor with a target during two conditions. The cursor, which is the

visual feedback of the position of the joystick, was displayed on the computer monitor in

the form of a white circle that was 1.3 cm (1.2 visual degrees) in diameter. The target

was a green circle (6 mm diameter) displayed on the screen. Each trial started with an

empty circle at the centre of the monitor which stayed in position for 750 ms. Then the

empty circle was substituted by the joystick cursor (white). After 1.5 s the target (green)

appeared at one of five possible positions equally spaced around an invisible half-circle in

the upper portion of the screen with a radius of 7.5 cm (6.1 visual degrees). The target

remained at its new position for 750 ms before both cursor and target were removed and

the empty circle was displayed for a further 1.75-2 s (uniformly distributed) before the

next trial began. This summed up to a total inter-trial interval ranging from 4.75 s to 5

s. Participants were instructed to move the joystick when the green target appeared so as
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to shift the white cursor from the central start position to match the position of the green

target with a rapid, discrete and straight movement. The position of the white cursor was

presented at rest and when the displacement of the joystick crossed 80% of the distance

between the target and the starting point. The participants were explicitly told that the

position of the feedback cursor would not respond to any later corrective movements

and would return to the centre when the joystick position came back to the centre. This

presentation strategy reduced corrective movements and encouraged more ballistic and

straight movements. Perturbation was implemented by introducing an angular rotation

between the cursor and the actual movement of the joystick so that the cursor deviated

from its actual position. After familiarisation with the task, each subject completed a

session of 310 trials. In the first 80 trials, no rotation was implemented. Thereafter, in

the adaptation phase, a constant rotation was introduced (fixed perturbation of 60°, n =

150), followed by a washout phase without rotation (n = 80). Participants began with

a practice session of 50 trials without rotational perturbation between the joystick and

the cursor and then completed the longer experimental session after a short break. The

participants were not aware of the adaptation condition and were not explicitly told that

perturbation would be introduced. During the session, the experiment was paused and the

participants were asked to either have a short break or to immediately return to the task.

At the same time, participants were also reminded to keep trying to move the joystick so

as to match the white dot with the target green dot.
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Figure 2.1: Experimental protocol and angular perturbation
(A) Participants performed an aiming task while controlling a joystick with their right hand. A
typical trial consisted in a ”baseline” period during which participants were instructed to remain
still and fix an empty circle for 750 ms. This stage was followed by a ”ready” period of 1.5 s, where
the joystick white cursor was displayed. Then, in the ”GO” period a green target was displayed for
a maximum time of 750 ms in one of 5 possible locations in the upper half of the screen. The trial
ended by displaying the same empty circle shown during ”baseline” for 1.75-2 s. (B) Example of a
straight outgoing movement (black line) performed when the perturbation was active. Perturbation
was introduced as a rotation between the green target and actual joystick movement. A 60°angular
rotation would cause the white cursor to be displaced at the end of the dashed red line

2.2.3 Behavioural analysis

Behavioural analyses were carried out with custom scripts in Python. Joystick cursor

displacement was differentiated to calculate velocity and subsequently low-pass filtered

through a Gaussian kernel to smooth the signal. Movement initiation was defined as

the time when the joystick velocity crossed a threshold (computed as mean trial activity

plus the trial standard deviation) and sustained this speed for at least 50 ms. Movement

termination was the last time point the joystick velocity fell below the threshold for that

trial. Joystick position error was calculated as the angular mismatch between the actual

joystick position at the maximal velocity of the outgoing movement and the target position.

The trial-to-trial adjustment was calculated based on the absolute change in the actual

joystick position error between sequential trials. Trial-to-trial adjustment indexed motor

adaptation. Reaction times (interval between stimulus onset and movement initiation),

movement duration (interval between movement initiation and movement termination)

and trial-to-trial adjustment were calculated for each individual trial and then averaged

within subjects.
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2.2.4 MEG acquisition and preprocessing

MEG signals were recorded using a CTF Omega 275-channel whole-head axial gradiome-

ter system. The signals were recorded at a sampling rate of 1200 Hz. Fiduciary coils

were placed at fixed distances from three anatomical landmarks (nasion, left, and right

pre-auricular) and the positions of the coils were monitored continuously throughout the

session. For co-registration, these landmarks were later identified on the subjects’ struc-

tural MRI. The MEG data were acquired continuously and epoched offline. All analyses

were performed in MATLAB (MathWorks Inc, Natick, MA), mainly using the FieldTrip tool-

box (Oostenveld et al., 2011) and custom scripts. MEG signals were first high-pass and

low-pass filtered at 0.5 Hz and 150 Hz respectively. Spectral interpolation was used to

remove power-line contamination and harmonics (Leske and Dalal, 2019). Data trials in-

cluding large muscle artefacts were identified via a semi-automatic procedure. Trials were

band-pass filtered between 110-140 Hz, z-transformed and compared against a thresh-

old. Trials with values above the cut-off were visually inspected before exclusion. Eye

movements and cardiac artefacts were projected out of the data using independent com-

ponent analysis (Makeig et al., 1995). Finally, MEG signals were down-sampled to 300

Hz. Data were epoched according to three different scenarios. Stimulus-locked data were

aligned from -2 s to 2 s around the GO cue (green target onset). Response-locked data

were aligned from -2 s to 2 s around the start of the movement. Offset-locked data were

aligned from -2 s to 1.5 s around the end of the movement.

2.2.5 Source imaging

For source localisation, each participant’ s anatomical MRI was divided into an irregular

grid by warping the individual MRI to the MNI template brain and then applying the in-

verse transformation matrix to the regular MNI template grid (4mm isotropic voxel resolu-

tion), allowing source estimates at brain locations directly comparable across participants.

For each grid location inside the brain, the forward model (i.e. the lead field) was calcu-

lated for a single dipole orientation by singular value decomposition, using a single-shell

volume conduction model (Nolte, 2003). Since all grid locations of each subject were
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aligned to the same anatomical brain compartments of the template, corresponding brain

locations could be statistically compared over all subjects. Source power at each loca-

tion was estimated using an LCMV (linearly constrained minimum variance) beamformer

(Van Veen et al., 1997), available in FieldTrip. Beamformer analysis uses an adaptive spa-

tial filter to estimate the power at every specific (grid) location of the brain. Virtual time

courses were reconstructed for a set of cortical ROIs: the primary motor cortex (M1), the

primary somatosensory cortex (S1) and the superior parietal lobule (sPL). A priori ROIs

selection was based on the motor adaptation literature (Diedrichsen, 2005). ROI masks

were constructed, for the left and right hemispheres, using the Harvard-Oxford atlas in

FSL (Makris et al., 2005). Then, masks were thresholded to 35%, binarized and interpo-

lated with MNI coordinates. For each participant and each ROI, a single virtual channel

was extracted following a multi-step procedure. First, beamforming spatial filter weights

were computed using a covariance matrix calculated by combining trials from the broad-

band data. The filter weights were used to reconstruct single-trial time series for each

source in the ROI. Then, power spectra (PSD) were computed for each time series with

Matlab Welch’s method. Next, the FOOOF toolbox (Donoghue et al., 2020) was used to

quantify periodic (oscillatory) activity in the beta (15-30 Hz) range. In short, the tool-

box conceptualises the PSD as a combination of an aperiodic component with overlying

periodic components (oscillations). These putative oscillatory components of the PSD are

characterised as frequency regions of power over and above the aperiodic component.

Only voxels that showed a peak in the beta range were selected for the next step. Finally,

the virtual time series with maximum standard deviation was selected as the target virtual

channel for that ROI.

2.2.6 TFRs on virtual channel time courses

Preprocessed MEG signals were decomposed into their time-frequency representations

(TFRs) in the 8-40 Hz range using a Hanning taper with a sliding time window of 7 cy-

cles. MEG power change was subsequently normalised as the percentage change relative

to the overall average by dividing the power at each frequency and each time point by the
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average power of that frequency across the whole experimental session (Tan et al., 2016;

Torrecillos et al., 2015). Values >0 indicated power higher than the overall average power

of that frequency and vice versa. Beta desynchronisation and PMBR were calculated for

each participant trial before averaging for further analysis. Beta desynchronisation was

defined as the average normalised power over a 200 ms window centred on the trough of

power change in the period that goes from -0.5 to 0 s before movement onset. The same

procedure was also applied to PMBR, with the difference that the window was centred on

the positive peak in a time period from 0 to 0.8 s after movement offset.

2.2.7 Beta burst analysis

Beta bursts computation followed the pipeline described in Rayson et al., (2022)(for a

detailed description of the analysis rationale see Section 1.4.1). In short, PSDs were

computed for each virtual channel time-series with Matlab Welch’s method and then log-

scaled. A 1/f function was fitted to the spectrum and frequency bands were identified

using the residuals of this fit, which represent the periodic component of the spectrum.

Band peak frequencies were identified as local maxima, while the bandwidth was set to 6

Hz (±3 Hz around the peak). Next, the amplitude threshold (standard deviations above

the median) for identifying beta bursts was estimated for all participants and ROIs. The

data is first band-pass filtered around the peak frequencies determined above, and then the

amplitude envelope is extracted after applying the Hilbert transform to the filtered data. In

order to avoid filter-related edge artefacts, the data are padded using the DC offset before

applying the filter and Hilbert transform. This padding is then removed from the resulting

amplitude envelope. The empirically-derived relative threshold on beta amplitude is used

to identify bursts and is computed based on multiple standard deviations above the median

beta amplitude (Eq. 2.1), with the median representing a robust measure of centrality for

skewed distributions.
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threshold = med(A) + s(A)× k (2.1)

where:

A = Hilbert envelope

k = range of values {0.1, 0.2,..., 3}

med = median

s = standard deviation

For each subject, the non-parametric correlation (Spearman’s ρ) was computed be-

tween the number of bursts per trial (number of threshold crossings) and the mean am-

plitude per trial. This is done using a range of thresholds computed from the median and

standard deviation of beta amplitude in all time points across all trials for that subject.

The standard deviation multiple that maximises the mean of this correlation was selected.

For M1, this resulted in a threshold of 1.6 SD above the median. The times at which beta

amplitude crossed the subject-specific threshold and then returned below the threshold

were found. The difference between these two time points gives the duration of the burst,

and from within these, burst onset and offset times, peak amplitude, and the time at which

this peak is reached were identified.

To compare the burst rate to beta amplitude, the amplitude and a smoothed measure

of burst rate were normalised. The amplitude was baseline corrected by subtracting the

mean amplitude over the whole experiment. The burst rate was obtained by binning the

burst event timings using 10 ms bins, smoothing using a two-pass Gaussian convolution

with a width of 25 bins, and then baseline correcting by subtracting the mean burst rate

over the whole experiment.

2.2.8 Statistical analysis

Repeated-measures ANOVAs were used to investigate the effects of trial execution order

(i.e., averages of trials 1-20, 81-100, etc) and experimental phases. Mauchly’s test of

sphericity was used to test the homogeneity of variance. Where Mauchly’s test of sphericity

was significant (p <0.05) in repeated-measures ANOVAs, Greenhouse-Geisser corrections
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were applied. Two-tailed paired-sample t tests were calculated for Post-hoc analyses, using

Bonferroni correction for multiple comparisons. Mean±SE are presented throughout the

text unless otherwise specified. Effect sizes were calculated using Cohen’s d, calculated

as the difference between the two means, divided by the standard deviation of the differ-

ence. 95% confidence intervals (95% CI) were calculated using accelerated bias-corrected

percentile limits (number of bootstrap samples = 10000).
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2.3 Results

2.3.1 Cursor perturbation elicits motor adaptation

During the priming phase (trials 1-80), the angular error between the joystick cursor and

the target, was close to zero because there was no perturbation in this condition. During

the adaptation phase (trials 81-230), the absolute task-relevant error was initially close

to the perturbation rotation angle (mean angular error±SD, 42°±9°), and then gradually

reduced with the process of adaptation (22°±7°). The cursor angular error increased again

(25°±10°) when the constant rotation was suddenly removed (from trial 231), and then

returned to baseline levels of the priming phase Table 2.1 - Figure 2.2.

Table 2.1: Descriptive statistics of behavioural features across phase

Phase

Priming Adaptation Washout

Angular Error °
mean 9 27 14
median 9 27 15
sd 1 6 3
se 0.4 1 1

Reaction Time s
mean 0.41 0.46 0.43
median 0.42 0.47 0.45
sd 0.05 0.05 0.06
se 0.01 0.01 0.01

Movement Duration s
mean 0.56 0.64 0.58
median 0.54 0.68 0.60
sd 0.16 0.16 0.15
se 0.04 0.04 0.04
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Figure 2.2: Behavioural features across the ex-
periment
(A) Angular error across trials. Two peaks are visi-
ble at the start of the adaptation phase (trial = 80)
and at the start of the washout phase (trial = 231).
Each data point is the average of 15 successive trials;
the solid lines and shaded area show the mean and
SE across participants. A light grey shaded area marks
the adaptation phase where cursor perturbation was
present. (B-C) same as A for reaction time and move-
ment duration

A two-way repeated-measures ANOVA

with factors of phase (3 levels,

priming-adaptation-washout) and trial

order (2 levels, start-end; an average

of first and last 20 trials of each phase)

was applied to the cursor angular er-

ror to test the effect of motor adap-

tation throughout the experiment Fig-

ure 2.3. This analysis showed a sig-

nificant effect of phase (F(1.27,21.6) =

86.62, p <0.001), a significant effect

of the trial order (F(1,17) = 100.35, p

<0.001) and a significant interaction

between phase and trial order (F(2,34)

= 59.04, p <0.001). Post-hoc anal-

ysis showed that during the adapta-

tion phase, the cursor angular error

was reduced over trial order (start-

end difference, 20°±2°, t(17) = 10.4, p

<0.001). A similar pattern was also

present in the washout phase (12°±2°,

t(17) = 8, p <0.001). In the priming

phase instead, the cursor angular error

remained stable (-1.5°±1°,t(17) = -1, p

= 0.1).

Reaction time and movement du-

ration showed modulations across the

experiment comparable to angular er-

ror (Table 2.1 - Figure 2.2B-C). A repeated measures ANOVA (Figure 2.4) revealed a

main effect of phase for both reaction time (F(2,34) = 23.87, p <0.001) and movement
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duration (F(2,34) = 9.41, p <0.001). Post-hoc analysis showed that during priming, partici-

pants responded faster (mean rt±SD, 410 ms ±50 ms) compared to both adaptation and

washout (adaptation, t(17) = 6.14, p <0.001; washout, t(17) = 3.46, p = 0.009). Further-

more, reaction times during the adaptation phase (460 ms±50 ms) were slower compared

to washout (430 ms ±60 ms, t(17) = 3.88, p = 0.004). Similarly, movement duration was

longer during adaptation (mean movement duration ±SD, 640 ms±160 ms) compared to

priming (560 ms ±160 ms, t(17) = 3.75, p = 0.005) and washout (580 ms ±150 ms, t(17)

= 3.89, p = 0.004). In contrast, no difference was found between washout and priming.

These results confirm that a visual perturbation of the joystick cursors can induce motor

adaptation. The joystick angular error was initially close to the perturbation rotation angle

and then was gradually reduced with the process of adaptation. The cursor angular error

increased again when the constant rotation was suddenly removed, and then was reduced

with the process of washout.

Both reaction time and movement duration were affected by visual perturbation. Slower

responses and longer movement duration suggest a decrease in motor performance.
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Figure 2.3: Angular error across time and phase
Plots of angular error at the start and end of each phase. Each raincloud plot (M. Allen et al.,
2019) is composed of individual participant scores (coloured points), boxplot, data distribution
(coloured curve) and mean with standard error (coloured diamond point and error bars). The
x-axis reflects the cursor error. The y-axis reflects the start and the end of each phase (average
of the first and last 20 trials). Individual phases are colour-coded (light-green, priming; light-
orange, adaptation; light-violet, washout). Coloured solid lines connect the mean scores of each
phase in different trial orders.
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Figure 2.4: Reaction time and movement duration across phase
(A) Evolution of reaction time across phases. Each raincloud plot is composed of individual par-
ticipant scores (coloured points), boxplot, data distribution (coloured curve) and mean with
standard error (coloured diamond point and error bars). The x-axis reflects reaction time. In-
dividual phases are colour-coded (light-green, priming; light-orange, adaptation; light-violet,
washout). Dashed black lines connect the mean scores of each phase. (B) same as A for movement
duration.
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2.3.2 Beta rebound is modulated during motor adaptation

A relative decrease in MEG power across the beta frequency band (15-30 Hz) was consis-

tently observed over M1 during joystick movement. The decrease in power was followed

by a rebound synchronisation beginning at movement offset (Figure 2.5; see also Figure

A.1-A.2 in Appendix A for individual dynamics).

Figure 2.5: Beta dynamics during movement
(A) TFRs of a virtual sensor over M1 during movement movement onset (left) and movement
offset (right). Pink dashed lines mark the start (left) and end (right) of movement. (B) Average
normalised power across beta frequency range (15 to 30 Hz). Solid black lines and grey-shaded
areas show the mean and SE across participants.

To analyse beta dynamics during learning, we split the trials across three phases (prim-

ing, adaptation and washout) and two periods (start and end). We initially run the analysis

on the TFRs from M1. A two-way repeated-measures ANOVA with factors of trial order (n

= 2) and phase (n = 3) was applied to the average PMBR during the first 20 trials and the

last 20 trials of each phase (Figure 2.6; Table 2.2). This analysis identified a significant

effect of trial order (F(1,17) = 7.16, p = 0.016), but failed to show a significant interaction

between trial order and phase (F(2,34) = 2.27, p = 0.12). Post-hoc tests revealed that the

PMBR was increased from start to end of the adaptation phase (mean power change±SD,

54±64%, t(17) = 3.57, p = 0.002, d = 0.84, 95% CI [0.48, 1.16]). Similarly, PMBR in-

creased during washout, but it failed to reach significance (52±115%, t(17) = 1.91, p =

0.07, d = 0.45, 95% CI [-0.03, 0.72]). PMBR during priming instead, remained stable

(8±64%, t(17) = 0.54, p = 0.6, d = 0.12, 95% CI [-0.41, 0.6]).
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A series of paired t tests was also run to compare beta power across phases. At the

start of the phase, PMBR was lower during adaptation compared to priming (t(17) = -2.79,

p = 0.038, d = -0.66, 95% CI [-1.2, -.39]). This difference flattened at the end of the two

phases (t(17) = -0.86, p = 1, d = -0.2, 95% CI [-0.63, .28]). Comparison of PMBR between

washout and priming did not return significant differences at the start (t(17) = -1.29, p =

0.64, d = -0.3, 95% CI [-0.57, .25]), and at the end (t(17) = 0.18, p = 1, d = 0.04, 95% CI

[-0.49, .48]).

A similar analysis as the one applied to PMBR on M1, was run on the average beta

desynchronisation (Figure 2.7). The repeated-measures ANOVA did not return any signif-

icant effect (for summary see Table 2.3).

Together, these results suggest that the introduction of the visual perturbation affected

the dynamics of PMBR over M1. PMBR was first reduced at the start of adaptation and

then, at the end, returned to activity levels comparable to the priming phase. In the

washout phase, the removal of the visual perturbation was also followed by a reduction of

PMBR. The magnitude of this effect, however, was smaller compared to the one observed

during adaptation, making this interpretation not fully supported by the data.

The dynamics of PMBR observed in M1 were also investigated in a set of frontal and

parietal ROIs (Figure 2.8 - Figure 2.9). An increase in beta power after movement ter-

mination was observable in all ROIs during priming. The magnitude of the increase,

however, was maximal for M1 and S1 and showed lateralisation (left ROIs power > right

ROIs). Comparison of PMBR at the start of adaptation with the same period during prim-

ing revealed a generalised trend. PMBR was reduced across all ROIs. However, only M1

(left and right), IFG (left and right) and sPL (left) survived multiple comparison corrections

(for more details see Table A.1 in Appendix A). The contrast of PMBR between washout

and priming at the start of each phase did not return any significant findings, showing

smaller differences overall (smaller effect sizes; see Table A.1). Similarly, no significant

effect was found for the contrast of adaptation and washout.

The reduction of PMBR power in M1 during adaptation was also observed across sev-

eral frontoparietal areas. The magnitude of this decrease was accentuated for ROIs in the

left hemisphere and was maximal for M1, IFG and sPL.
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Figure 2.6: PMBR across the experiment
(Top) Average power change relative to the average power of the whole session at different fre-
quencies. TFRs are aligned to movement offset at time 0, averaged across trials and then across
participants. (Bottom) Average power change in the beta band (15-30 Hz) aligned to movement
offset at time 0. Solid black lines and grey-shaded areas show the mean and SE across participants.

Table 2.2: PMBR across phase and trial order

Unit=Power% Phase

Priming Adaptation Washout

Start (first 20 trials)
mean 148 79 111
median 122 71 108
sd 99 52 84
se 23 12 20

End (last 20 trials)
mean 156 133 163
median 119 122 110
sd 87 86 150
se 21 20 35
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Figure 2.7: Beta desynchronisation across the experiment
(Top) Average power change relative to the average power of the whole session at different fre-
quencies. TFRs are aligned to movement onset at time 0, averaged across trials and then across
participants. (Bottom) Average power change in the beta band (15-30 Hz) aligned to movement
onset at time 0. Solid black lines and grey-shaded areas show the mean and SE across participants.

Table 2.3: Beta desynchronisation across phase and trial order

Unit=Power% Phase

Priming Adaptation Washout

Start (first 20 trials)
mean -43 -51 -50
median -47 -48 -49
sd 24 11 9
se 6 3 2

End (last 20 trials)
mean -44 -50 -48
median -42 -46 -47
sd 11 12 11
se 3 3 3
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Figure 2.8: PMBR dynamics across left ROIs
Plot showing the average PMBR power across several ROIs at the start and at the end of each
phase. PMBR power was normalised relative to the average power of the whole session. Indi-
vidual phases are colour-coded (light-green, priming; light-orange, adaptation; light-violet,
washout). Anatomical regions: IFG, inferior frontal gyrus, M1, primary motor cortex, pre-SMA,
pre-supplementary motor area, S1, primary somatosensory cortex, sPL, superior parietal lobule.
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Figure 2.9: PMBR dynamics across right ROIs
Plot showing the average PMBR power across several ROIs at the start and at the end of each phase.
PMBR power was normalised was normalised relative to the average power of the whole session.
Individual phases are colour-coded (light-green, priming; light-orange, adaptation; light-violet,
washout). Anatomical regions: IFG, inferior frontal gyrus, M1, primary motor cortex, pre-SMA,
pre-supplementary motor area, S1, primary somatosensory cortex, sPL, superior parietal lobule.
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2.3.3 Beta bursts amplitude is reduced during adaptation

The effects observed during the analysis of average beta power were further explored by

looking at the characteristics of single trial beta. Specifically, the analysis focused on the

behaviour of a number of beta’s features (amplitude, peak time, duration and number of

bursts) across phase and trial order (Table 2.4).

Beta burst probability gradually declines during movement and then increases after

movement termination (Figure 2.10). These dynamics were comparable to the findings

from averaged beta power. This was expected since the number of bursts extracted was

designed to maximise the correlation between beta amplitude and burst count (see Sec-

tion 2.2.7). The number of participants showing beta bursts in a time window that goes

from 0 to 1 s after movement offset, was reduced at the start (n = 14) and at the end (n

= 8) of the washout phase. Furthermore, the number of bursts detected for the remaining

participants at the end of the washout phase (mean number of bursts ± SD, 7±4) was

lower compared to the same period for priming (19±9) and adaptation (17±6).

In Figure 2.11 we show the number of bursts detected across the experiment. The

visualisation shows a distinct decrease in the number of bursts localised in the later stage

of the experiment, overlapping with the washout phase. Due to the inconsistent number of

bursts available during washout, this experimental phase was excluded from the following

analysis on beta bursts.

Results from a paired t test on beta burst-amplitude showed a marked decrease at

the start of adaptation compared to the same period during priming (t(14) = -2.44, p =

0.029, d = -0.63, 95% CI [-0.91, -0.12]). At the end of both phases, the burst-amplitude

difference diminished and was not significant (t(14) = -1.54, p = 0.146, d = -0.4, 95% CI

[-1.15, 0.26]).

Similar tests were run on burst peak time (start, t(14) = 0.61, p = 0.55, d = 0.16,

95% CI [-0.41, 0.71]; end, t(14) = 0.93, p = 0.37, d = 0.24, 95% CI [-0.36, 0.72]), burst

duration (start, t(14) = -1.81, p = 0.09, d = -0.47, 95% CI [-0.86, 0.11]; end, t(14) = -0.44,

p = 0.67, d = -0.11, 95% CI [-0.75, 0.46]) and burst count (start, t(14) = -1.93, p = 0.07,

d = -0.5, 95% CI [-0.89, 0.06]; end, t(14) = -0.63, p = 0.53, d = -0.16, 95% CI [-0.68,
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0.4]), but none showed significant differences.

41



Figure 2.10: Beta bursts across time
(Left) Raster plots showing the timing of each individual burst (single point = peak of burst) for all
trials of all 18 subjects (>5000 trials; individual subjects divided by dashed red lines). The plot is
aligned to the movement offset (t = 0). There is a significant increase (weakly temporally locked)
in burst probability after the end of the movement. (Right) Normalised average PMBR (red) is
shown in the post-movement period together with burst rate probability (blue). The plot is aligned
to the movement offset (t = 0). Solid coloured lines and coloured shaded areas show the mean
and SE across participants.
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Figure 2.11: Burst count across the experiment
Average burst count across participants. Each data point is the average of the total number of
bursts across 10 successive trials. * symbol shows the mean burst count while error bars show SE
across 18 subjects.

43



Table
2.4:

B
eta

bu
rsts

featu
res

across
phase

an
d

trialorder

B
u

rst
cou

n
t

A
m

plitu
de

%
Peak

tim
e

s
D

u
ration

s

P
rim

in
g

A
d
a
pta

tion
P
rim

in
g

A
d
a
pta

tion
P
rim

in
g

A
d
a
pta

tion
P
rim

in
g

A
d
a
pta

tion

Start

m
ea
n

19
14

165
145

0.56
0.58

0.15
0.13

m
ed
ia
n

21
11

155
142

0.57
0.6

0.13
0.12

sd
8

8
53

40
0.08

0.06
0.07

0.05

se
2

2
14

10
0.02

0.02
0.02

0.01

End

m
ea
n

18
17

173
155

0.57
0.6

0.16
0.15

m
ed
ia
n

18
16

160
140

0.56
0.62

0.15
0.14

sd
9

6
54

49
0.07

0.09
0.06

0.07

se
2

2
14

13
0.02

0.02
0.02

0.02

44



2.4 Discussion

In this chapter, we explored beta oscillations dynamics during motor adaptation. We found

a transient reduction of PMBR during the adaptation phase, consistent with a link between

beta oscillations and motor learning.

We replicated the findings in Tan et al. (2014, 2016) by employing a comparable joy-

stick paradigm. The task successfully elicited motor adaptation. This was shown by a rapid

worsening of motor performance at the start of the adaptation phase (visual perturbation

ON), followed by a return to baseline performance levels at the end. A similar pattern

was observable for sensorimotor beta oscillations, specifically for the PMBR, which was

dynamically modulated throughout the experiment. Tan et al. have proposed a link be-

tween beta oscillations and computational models of sensorimotor control (Franklin and

Wolpert, 2011; Scott, 2012). These models emphasise the importance of integrating sen-

sory feedback with motor plans to avoid environmental instabilities. Predictions from the

internal model are compared against incoming sensory information after movement ter-

mination. The mismatch between the two drives an update of the internal model and a

change in the motor output (Shadmehr et al., 2010). According to the interpretation of

Tan et al., a decrease in PMBR following large and consistent sensory errors indexes a low

confidence in the motor plan and drives adapting behaviours. It is noteworthy that PMBR

modulation was not restricted to M1. We found modulation of beta oscillations in several

sensorimotor ROIs, including IFG. Extensive literature has suggested that the IFG is part

of the ventral attention system, which activates in response to the detection of a salient

target, particularly when the target is behaviourally relevant (Erika-Florence et al., 2014;

Hampshire et al., 2009; Sharp et al., 2010; Duann et al., 2009). The PMBR reduction

observed across ROIs, could be linked to generalised top-down attentional processes. This

interpretation is supported by recent studies (Torrecillos et al., 2015; Alayrangues et al.,

2019). These authors contrasted beta responses after two types of reach errors: errors

that trigger trial-to-trial motor-command updates and errors that do not elicit sensorimo-

tor adaptation. PMBR was similarly attenuated for both types of errors, consistent with

the idea that beta attenuation relates to increased alertness due to salient events.
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The cumulative evidence from both the present and the above-mentioned studies aligns

with a notion of the functional role of beta during learning which reconciles two oppos-

ing views, namely relating to motor output (Engel and Fries, 2010) or sensory processing

functions (Cassim et al., 2001). PMBR has consistently been shown to be modulated by

movement outcomes (Alayrangues et al., 2019; Tan et al., 2014, 2016; Torrecillos et al.,

2015; Haar and Faisal, 2020). Interestingly, this modulation often exhibits a negative

trend following errors, resulting in a decrease in beta synchrony within crucial sensori-

motor areas such as M1 and S1. Consequently, it appears that reducing beta amplitude

is necessary for the sensorimotor system to respond effectively to corrective motor com-

mands.

In our study, it remains unclear whether the link between beta and motor learning is

mediated by one or more additional components, such as movement kinematics or be-

havioural features. Employing a correlational approach across trials to investigate the

relationship between beta and multiple measures, including RTs and errors, could provide

valuable insights into the primary factors driving this association. Moreover, it would be

necessary to carefully and extensively manipulate various experimental features, includ-

ing different movement types and specific types of errors, to try to establish a causal link

between beta and learning.

To further explore beta oscillations, we analysed beta at the single-trial level. We re-

ported a drop in the magnitude of bursts amplitude during adaptation, while burst timing

and duration were mostly unaffected. Burst amplitude indicates the local synchronisation

level within the beta band. Excessive synchronisation at the local and circuit level can

compromise information coding capacity and thereby motor processing (Engel and Fries,

2010; Brittain and Brown, 2014). Burst count was also reduced at the start of adapta-

tion and together with the attenuation of burst amplitude, they could contribute to the

effect observed in the averaged beta spectrum. We also reported a substantial decrease

in burst count in the final stage of the experiment, overlapping with the washout phase.

This reduction was progressive and consistent across all participants. The interpretation

of this finding is unclear. A parsimonious explanation could refer to an idiosyncratic issue

within the task structure or analysis. Another interpretation could suggest a tendency for
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beta burst to naturally decline throughout the experiment, as a consequence of increased

fatigue or reduced attention. To date, we are not aware of any study sharing similar find-

ings. Furthermore, the average beta power during the end of the washout was comparable

to the beta power at the beginning of the experiment. This raises concerns regarding the

interpretability of burst parameters and should be addressed in future studies employing

similar analyses.

One major limitation of this experiment concerns the correlational nature, by design, of

the results. To establish a causal effect of beta oscillations in motor learning, further stud-

ies are necessary. One potential approach to strengthen the evidence is to conduct studies

involving patients with impaired beta oscillations, such as individuals with Parkinson’s dis-

ease (Heinrichs-Graham et al., 2014; Tinkhauser, Pogosyan, Tan, et al., 2017) or stroke

(Rossiter, Boudrias, and Ward, 2014). Another supportive line of inquiry could involve

direct modulation of beta oscillations through brain stimulation techniques (Herrmann et

al., 2016). While brain stimulation studies can be only consistent with a causal link, they

have the potential to provide valuable insights into the underlying neural architecture and

shed further light on the role of beta oscillations in motor learning.

Another source limitation of this study pertains to the choice of ROIs. Many studies

of beta during movement have shown key contributions of this rhythm in sub-cortical

structures, such as the basal ganglia (Leventhal et al., 2012; Feingold et al., 2015). Ad-

ditionally, one key region for error-based learning is the cerebellum, viewed as a system

providing predictions about upcoming movements and receiving feedback about motor

errors (Shadmehr et al., 2010; Popa and Ebner, 2019). MEG has poor spatial resolu-

tion in deep structures. The distance from the sensor array and signal diffusion issues

yield a low signal-to-noise ratio and linear mixing at the individual recording sites. Fur-

thermore, it has been speculated that the neuronal architecture of the cerebellar cortex

(neural arrangement) may prevent the detection of cerebellar sources due to signal can-

cellation (Hashimoto et al., 2003; Dalal et al., 2013). The combined implementation of

new recordings techniques, such as OPM-MEG (Lin et al., 2019; Brookes et al., 2022) and

optimised pipelines (Andersen et al., 2020), could return reliable data from these sources.

This will be key to providing a deeper understanding of how beta is modulated across an
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extended sensorimotor system.

Finally, it is crucial to acknowledge that the present study does not provide a com-

prehensive understanding of the adaptation process due to the lack of adequate analysis

regarding accuracy and precision in motor performance. Accuracy refers to the closeness

of measurements to the true value of a quantity, while precision pertains to the consis-

tency and reproducibility of measurements under consistent conditions. In the joystick

paradigm, accuracy was quantified using the mean absolute error, whereas precision could

have been assessed by considering the standard deviation of signed errors. Unfortunately,

our analysis focused solely on absolute errors and did not incorporate precision mea-

surements. This limitation significantly hampers our ability to gain valuable insights into

the consistency and variability of participants’ movements, which are essential for under-

standing how individuals adapt their motor control strategies. Furthermore, the absence

of precision measurements introduces uncertainty regarding the relationship between the

observed beta dynamics during motor adaptation and the specific learning processes that

occur in our study. It remains unclear whether the observed beta dynamics are primarily

influenced by learning processes related to action execution or if they reflect modifica-

tions in the mapping between intended and actual goals, regardless of the specific motor

strategies employed. Additionally, by solely prioritising accuracy, our study may have

overlooked potential fluctuations or deterioration of motor performance over time. These

factors could serve as confounding variables impacting the modulation of beta oscillations

and their relationship to motor adaptation.

To conclude, we successfully replicated findings from previous studies (Tan et al., 2014,

2016). We confirmed how post-movement beta dynamics are linked with rapid changes

in the motor performance elicited by motor adaptation, and we further showed how this

effect was observable across several frontoparietal areas with similar effects. Analysis of

single-trial beta bursts confirmed a modulation of beta but did not provide key additional

insights.
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Chapter 3

The role of beta oscillations during

action-stopping

3.1 Introduction

In this chapter, we continue to discuss some of the most relevant hypotheses on the func-

tional role of sensorimotor beta. One of the first interpretations of beta oscillations linked

this rhythm to neural processes which promoted cortical idling (Pfurtscheller et al., 1996).

This view was further expanded by Engel and Fries (2010), which proposed a role for

beta in preserving the ongoing sensorimotor set, or “status quo”. The authors suggested

that increased beta synchrony in a neural population reduced the responsiveness of that

same population to incoming information, promoting de facto the current state. Support-

ing evidence comes from studies where impaired beta oscillations are linked with abnor-

mally strong inhibition of behavioural and cognitive performance (Brown, 2006; Little and

Brown, 2014; Rossiter, Boudrias, and Ward, 2014).

Motor inhibition is typically measured using the stop-signal paradigm (Logan et al.,

1984). During the task, participants respond to a GO signal by initiating an action. In

a minority of trials, they have to try to cancel that response following a salient STOP

signal. Unlike the latency of motor responses, i.e. reaction time, response-inhibition la-

tency cannot be observed directly. The stop-signal task is unique in allowing the estima-
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tion of this covert latency, referred to as stop signal reaction times (SSRT), by modelling

response-inhibition as an independent race between a GO and STOP runner (for more

details see Logan et al., 1984; Verbruggen et al., 2019). Numerous studies employing

the stop-signal task have consistently demonstrated that successful response inhibition re-

lies on various cortical nodes within the frontal cortex (Schaum et al., 2021; Wessel and

Aron, 2017). Specifically, two regions, namely the inferior frontal gyrus (IFG) and the

pre-supplementary motor area (pre-SMA) have been identified as key candidates in the

process of action-stopping. Lesions or temporary disruption via brain stimulation in these

regions have provided evidence supporting their crucial roles (Aaron et al., 2003; Cai et

al., 2012; Chambers et al., 2007; Flooded and Stuss, 2006). Additionally, rapid cancella-

tion of movements has been associated with beta power increases in these nodes (C. Allen

et al., 2018; Castiglione et al., 2019; Jana et al., 2020; Schaum et al., 2021; Wagner et al.,

2018). A beta band power increase was also observed in the basal ganglia during stopping

(N. J. Ray et al., 2012; Zavala et al., 2015; Wessel et al., 2016), perhaps underpinning

a broad cortical/sub-cortical network for inhibitory control (Aron et al., 2016). There-

fore, instead of being a proxy for the level of activity of the sensorimotor network, beta

oscillations could act as a top-down inhibitory rhythm during motor and cognitive tasks.

Recent studies have described a higher incidence of beta-bursts recorded over medial

frontal cortex with EEG (Jana et al., 2020; Wessel, 2020), further supporting the notion

that beta oscillations are a valid proxy of inhibition. However, a study in macaque monkeys

from Errington et al. (2020), revealed that beta bursts were neither necessary or sufficient

for stopping (too infrequent) and were also observed during trials were a response was

generated. This is in stark contrast from the spiking rates of neurons causally involved in

movement initiation and inhibition, where a drop in accumulation discharge is observable

before the SSRT (Middlebrooks et al., 2020).

The current study aims to test the role of beta oscillations during action-stopping. In

particular, we focused on which beta dynamics could act as proxy of inhibition in the

sensorimotor system. According to the rich literature described above, we extracted time-

courses from IFG, pre-SMA and M1. We employed a joystick version of the stop-signal

paradigm in combination with high temporal resolution MEG recordings. We focused

50



on beta during three distinct time-windows: pre-movement, post-movement and during

action-stopping. Our study did not return supporting evidence for a key role of beta in

inhibition for all ROIs, a finding which is in open contrast with the existing literature. This

calls for an in-depth analysis of how well the role of beta during stopping is generalisable

across tasks and analyses methods.
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3.2 Material and methods

3.2.1 Participants

22 healthy participants participated in the MEG experiment. One participant had to be

excluded due to the presence of artefacts during data collection. Three participants had

to be excluded because it was not possible to acquire an MR image. All of the remaining

18 participants (9 women; mean age ± SD, 25 ± 3 years) had a normal or corrected-to-

normal vision. All individual participants included in the study were screened for factors

contradicting MRI and MEG scanning and provided written informed consent before par-

ticipation and consent to publish any research findings based on their provided data in

anonymized form. Participants were financially compensated for their time.

3.2.2 Experimental setup

The stop-signal task followed the guidelines outlined in Verbuggen et al. (2019). The

task was collected on the same day as the motor adaptation task described in Chapter 2.

Half of the participants performed the action-stopping task first and then adaptation, the

order was counter-balanced for the remaining participants. Participants were seated in

the MEG scanner in front of a computer monitor at 120 cm from the screen, while they

held a finger-joystick with their right hand, which was rested on a padded arm support.

Participants performed an out-and-back aiming task by moving the joystick to match a

cursor with a target during two conditions (Figure 3.1). The cursor, which is the visual

feedback of the position of the joystick, was displayed on the computer monitor in the

form of a white circle that was 1.3 cm (1.2 visual degrees) in diameter. The target was a

green circle (GO cue, 6 mm diameter) displayed on the screen. Each trial started with an

empty circle at the centre of the monitor which stayed in position for 750 ms. Then the

empty circle was substituted by the joystick cursor (white). After 1.5 s the target (green)

appeared at one of five possible positions equally spaced around an invisible half-circle in

the upper portion of the screen with a radius of 7.5 cm (6.1 visual degrees). The target

remained at its new position for 750 ms before both cursor and target were removed and
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the empty circle was displayed for a further 1.75-2 s (uniformly distributed) before the

next trial began. This summed up to a total inter-trial interval ranging from 4.75 s to 5

s. On a minority of trials (n = 100), the green target would turn to red (STOP cue) after

a variable stop-signal delay (SSD). The SSD was initially set at 200 ms after the green

target onset, and then continuously adjusted (in steps of 50 ms) via a standard adaptive

tracking procedure: SSD increased after each successful stop and decreased after each

unsuccessful stop (Verbruggen et al., 2019). The SSD was limited between a minimum of

50 ms and 750 ms, the maximum permitted reaction time. This procedure converged on

a ∼50% probability of stopping to the STOP cue.

Figure 3.1: Experimental protocol
Participants performed an aiming task while controlling a joystick with their right hand. A typical
trial, consisted in a ”baseline” period during which participant were instructed to remain still and
fix an empty circle for 750 ms. This stage was followed by a ”ready” period of 1.5 s, where the
joystick white cursor was displayed. Then, in the GO period a green target was displayed for a
maximum time of 750 ms in one of 5 possible locations in the upper-half of the screen. On some
trials, the green target turned red after a variable SSD. When this happened, participants were
instructed to refrain from moving. The trial ended by displaying the same empty circle showed
during ”baseline” for 1.75-2 s.

Participants were instructed to move the joystick when the GO cue appeared so as to

shift the white cursor from the central start position to match the position of the green

target with a rapid, discrete and straight movement. Participants were informed about

the presence of STOP trials and to refrain completely from moving when the STOP cue

appeared. They were also informed that by design, they were expected to successfully

stop only half of the time. If the participants initialised a movement and then successively

stopped, that was considered an unsuccessful stopping/inhibition. The position of the
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white cursor was presented at rest and when the displacement of the joystick crossed 80%

of the distance between the target and the starting point. The participants were explicitly

told that the position of the feedback cursor would not respond to any later corrective

movements and would return to the centre when the joystick position came back to the

centre. After familiarisation with the task, each subject completed a session of 310 trials

with 210 GO trials and 100 STOP trials. STOP trial order was randomised. During the

session, the experiment was paused two times. During the break, three task statistics

were displayed on the screen: the inhibition rate, the number of GO omissions and the

average reaction time. Participants were reminded to keep the number of omissions close

to zero, additionally, they were reminded that the experiment was programmed to elicit a

successful inhibition on 50% of the STOP trials. If the percentage was to low or too high,

participants were informed to adjust their performance.

3.2.3 Behavioural analysis

Behavioural analyses were carried with custom scripts in Python. Joystick cursor displace-

ment was differentiated to calculate velocity and subsequently low-pass filtered through a

Gaussian kernel to smooth the signal. Movement initiation was defined as the time when

the joystick velocity crossed a threshold (computed as mean trial activity plus the trial

standard deviation) and sustained this speed for at least 50 ms. Movement termination

was the last time point the joystick velocity fell below the threshold for that trial. Reaction

times - RT (interval between stimulus onset and movement initiation), and movement

duration (interval between movement initiation and movement termination) were calcu-

lated for each individual trial and then averaged within-subjects across three trial types:

GO trials, successful stop (sSTOP) and unsuccessful stop (uSTOP) trials. An estimate

of covert behavioural response inhibition was approximated with the stop-signal reaction

time (SSRT), which was calculated via the integration method with the replacement of GO

omissions (Verbruggen et al., 2019). In short, in the integration method, SSRT was esti-

mated by finding the point at which the integral over the RT distribution equals the actual

probability of responding during STOP trials. The integration approximately corresponds
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to the nth RT of the distribution of GO trials. This is achieved by multiplying the total

number of RTs in the distribution by the actual probability of responding. For example, if

there are 200 GO trials and the overall probability of responding is 0.45, then the nth RT

is the 90th fastest GO RT. SSRT can then be estimated by subtracting the mean SSD from

the nth RT. To determine the nth RT, all go trials with a response are included (including

go trials with a choice error and go trials with a premature response). GO omissions are

assigned the maximum RT in order to compensate for the lacking response.

Participants were excluded from further analyses if their inhibition rate was < 25% or

> 75% and if the GO omission rate was higher than 15%. According to these criteria,

three participants were excluded.

3.2.4 MEG acquisition and preprocessing

MEG signals were recorded using a CTF Omega 275-channel whole-head axial gradiome-

ter system. The signals were recorded at a sampling rate of 1200 Hz. Fiduciary coils

were placed at fixed distances from three anatomical landmarks (nasion, left, and right

pre-auricular) and the positions of the coils were monitored continuously throughout the

session. For co-registration, these landmarks were later identified on the subjects’ struc-

tural MRI. The MEG data were acquired continuously and epoched offline. All analyses

were performed in MATLAB (MathWorks Inc, Natick, MA), mainly using the FieldTrip tool-

box (Oostenveld et al., 2011) and custom scripts. MEG signals were first high-pass and

low-pass filtered at 0.5 Hz and 150 Hz respectively. Spectral interpolation was used to

remove power-line contamination and harmonics (Leske and Dalal, 2019). Data trials in-

cluding large muscle artefacts were identified via a semi-automatic procedure. Trials were

band-pass filtered between 110-140 Hz, z-transformed and compared against a thresh-

old. Trials with values above the cut-off were visually inspected before exclusion. Eye

movements and cardiac artefacts were projected out of the data using independent com-

ponent analysis (Makeig et al., 1995). Finally, MEG signals were down-sampled to 300

Hz. Data were epoched according to four different scenarios. Stimulus-locked data were

aligned from -2 s to 2 s around the GO cue (green target display). Response-locked data
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were aligned from -2 s to 2 s around the start of the movement. Offset-locked data were

aligned from -2 s to 1.5 s around the end of the movement. Finally, SSD-locked data were

aligned from -2 s to 2 s around the SSD.

3.2.5 Source imaging

For source localisation, each participant’ s anatomical MRI was divided into an irregular

grid by warping the individual MRI to the MNI template brain and then applying the in-

verse transformation matrix to the regular MNI template grid (4mm isotropic voxel resolu-

tion), allowing source estimates at brain locations directly comparable across participants.

For each grid location inside the brain, the forward model (i.e. the lead field) was calcu-

lated for a single dipole orientation by singular value decomposition, using a single-shell

volume conduction model (Nolte, 2003). Since all grid locations of each subject were

aligned to the same anatomical brain compartments of the template, corresponding brain

locations could be statistically compared over all subjects. Source power at each loca-

tion was estimated using an LCMV (linearly constrained minimum variance) beamformer

(Van Veen et al., 1997), available in FieldTrip. Beamformer analysis uses an adaptive spa-

tial filter to estimate the power at every specific (grid) location of the brain. Virtual time

courses were reconstructed for a set of cortical ROIs: primary motor cortex (M1), primary

somatosensory cortex (S1), inferior frontal gyrus (IFG) and pre-supplementary motor cor-

tex (pre-SMA). A priori ROIs selection was based on the action-stopping literature (Jana

et al., 2020). ROI masks were constructed, for the left and right hemispheres, using the

Harvard-Oxford atlas in FSL (Makris et al., 2005). Then, masks were thresholded to 35%,

binarized and interpolated with MNI coordinates. For each participant and each ROI, a

single virtual channel was extracted following a multi-step procedure. First, beamforming

spatial filter weights were computed using a covariance matrix calculated by combining

trials from the broadband data. The filter weights were used to reconstruct the single-trial

time series for each source in the ROI. Then, power spectra (PSD) were computed for

each time series with Matlab Welch’ s method. Next, the FOOOF toolbox (Donoghue et

al., 2020) was used to quantify periodic (oscillatory) activity in the beta (15-30 Hz) range.
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In short, the toolbox conceptualises the PSD as a combination of an aperiodic component

with overlying periodic components (oscillations). These putative oscillatory components

of the PSD are characterised as frequency regions of power over and above the aperiodic

component. Only voxels that showed a peak in the beta range were selected for the next

step. Finally, the virtual time-series with maximum standard deviation was selected as the

target virtual channel for that ROI.

3.2.6 TFRs on virtual channel time courses

Preprocessed MEG signals were decomposed into their time-frequency representations

(TFRs) in the 8–40 Hz range using an Hanning taper with a sliding time window of 7

cycles. MEG power change was subsequently normalised as the percentage change rela-

tive to the overall average by dividing the power at each frequency and each time point

by the average power of that frequency across the whole experimental session (Tan et al.,

2016; Torrecillos et al., 2015). Values >0 indicated power higher than the overall average

power of that frequency and vice versa. Beta desynchronisation and PMBR were calculated

for each participant trial before averaging for further analysis. Beta desynchronisation was

defined as the average normalised power over a 200 ms window centred on the trough of

power change in the period that goes from -0.5 to 0 s before movement onset. The same

procedure was also applied to PMBR, with the difference that the window was centred

on the positive peak in a time period from 0 to 0.8 s after movement offset. Beta power

was also analysed for a period of time from 0 to .3 s (max SSRT) after SSD to test for the

dynamics of beta during action-stopping.

3.2.7 Beta burst analysis

Beta bursts computation followed the pipeline described in Rayson et al., (2022). In short,

PSD was computed for each virtual channel time-series with Matlab Welch’s method and

then log-scaled. A 1/f function was fitted to the spectrum and frequency bands were

identified using the residuals of this fit, which represent the periodic component of the

spectrum. Band peak frequencies were identified as local maxima, while the bandwidth

57



was set to 6 Hz (±3 Hz around the peak). Next, the amplitude threshold (standard devia-

tions above the median) for identifying beta bursts was estimated for all participants and

ROIs. The data is first band-pass filtered around the peak frequencies determined above,

and then the amplitude envelope is extracted after applying the Hilbert transform to the

filtered data. In order to avoid filter-related edge artefacts, the data are padded using the

DC offset before applying the filter and Hilbert transform. This padding is then removed

from the resulting amplitude envelope. The empirically-derived relative threshold on beta

amplitude is used to identify bursts and is computed based on multiple standard devia-

tions above the median beta amplitude (Eq. 3.1), with the median representing a robust

measure of centrality for skewed distributions.

threshold = med(A) + s(A)× k (3.1)

where:

A = Hilbert envelope

k = range of values {0.1, 0.2,..., 3}

med = median

s = standard deviation

For each subject, the non-parametric correlation (Spearman’s ρ) was computed be-

tween the number of bursts per trial (number of threshold crossings) and the mean am-

plitude per trial. This is done using a range of thresholds computed from the median and

standard deviation of beta amplitude in all time points across all trials for that subject.

The standard deviation multiple that maximises the mean of this correlation was selected.

For M1, this resulted in a threshold of 1.6 SD above the median. The times at which beta

amplitude crossed the subject-specific threshold and then returned below the threshold

were found. The difference between these two time points gives the duration of the burst,

and from within these, burst onset and offset times, peak amplitude, and the time at which

this peak is reached were identified.

To compare the burst rate to beta amplitude, the amplitude and a smoothed measure

of burst rate were normalised. The amplitude was baseline corrected by subtracting the
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mean amplitude over the whole experiment. The burst rate was obtained by binning the

burst event timings using 10 ms bins, smoothing using a two-pass Gaussian convolution

with a width of 25 bins, and then baseline correcting by subtracting the mean burst rate

over the whole experiment.

3.2.8 Statistical analysis

Repeated-measures ANOVAs were used to investigate the effects of trial execution order

(ie, averages of trials 1–20, 81–100, etc) and experimental phases. Mauchly’s test of

sphericity was used to test the homogeneity of variance. Where Mauchly’s test of sphericity

was significant (p <0.05) in repeated-measures ANOVAs, Greenhouse-Geisser corrections

were applied. Two-tailed paired-sample t tests were calculated for Post hoc analyses, using

Bonferroni correction for multiple comparisons. Mean±SE are presented throughout the

text unless otherwise specified. Effect sizes were calculated using Cohen’s d, calculated

as the difference between the two means, divided by the standard deviation of the differ-

ence. 95% confidence intervals (95% CI) were calculated using accelerated bias-corrected

percentile limits (number of bootstrap samples = 10000).
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3.3 Results

3.3.1 Behavioural performance

Healthy participants (n = 18) performed a joystick stop-signal task. Three participants

were excluded from further analysis according to behavioural exclusion criteria. Two

participants showed a high omission rate (> 15%) while one participant had an inhibition

rate lower than 25%. Participants were instructed to respond with a reaching movement

when they saw a GO cue, and then to try to inhibit or continue their already initiated GO

response. The mean SSD was 248±70 ms (mean±SD) and led to an average probability

of responding on a STOP trial of 50% proving the adherence of participants to the task

rules and the successful operation of the staircase procedure. While for sSTOP trials the

mean SSD was 223±68 ms, it was 274±70 ms for uSTOP trials. A repeated-measures

ANOVA based on RT revealed a main effect of condition (GO vs uSTOP, F(1,17) = 117.19,

p <0.001), with shorter RT in uSTOP trials (443±58 ms, mean±SD) as compared to GO

trials (491±55 ms) (Figure 3.2). Participants performed accurately as indicated by low

omission error rates in GO trials with an average omission of 3%. SSRT was calculated

using the integration method, resulting in a median SSRT of 235±33 ms. The maximal

SSRT across participants (SSRTmax) was 300 ms.
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Figure 3.2: Reaction time between conditions
Plots of RT during GO and uSTOP trials. Each raincloud plot (M. Allen et al., 2019) is composed
of individual participant scores (coloured points), boxplot, data distribution (coloured curve)
and mean with standard error (coloured diamond point and error bars). The x-axis reflects the
reaction time, expressed in seconds. Trial conditions are colour-coded (light-green, GO; light-
blue, uSTOP)
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3.3.2 Beta desynchronisation and rebound dynamics

To test for the role of beta in action inhibition, we focused on averaged beta power dynam-

ics. First, we inspected canonical beta desynchronisation and rebound. Although these

effects were more pronounced for M1 and S1, we observed similar dynamics during all

three conditions and across the rest of the ROIs (Figure 3.3). Beta desynchronisation and

rebound are classically linked to the preparation and completion of a movement. Since

only GO and uSTOP trials contain a complete movement, we restricted the following anal-

ysis to these two conditions. A repeated-measures ANOVA with factors of condition (GO,

uSTOP) on beta desynchronisation was independently applied to each ROI. The analysis

did not return any significant effect (Figure 3.4, for more details see Table B.1 in Ap-

pendix B). The same analysis was applied to the post-movement beta rebound which

revealed a significant main effect for rIFG only (F(1,14) = 7.96, p = 0.014), with beta re-

bound decreasing in the uSTOP condition compared to GO trials (Figure 3.5). A similar

trend was also observable for the other ROIs, although it did not reach significance (see

Table B.2). We also analysed the timing of beta desynchronisation and rebound across

ROIs (Figure 3.6). A two-way repeated measures ANOVA with factors of condition (n =

2) and ROIs (n = 5) on peak timings of beta desynchronisation revealed a main effect of

ROI (F(4,56) = 5.25, p = 0.001). Post-hoc tests revealed that the beta desynchronisation

started earlier in left and right pre-SMA compared to lM1 (lpre-SMA vs lM1, 23±24 ms,

t(29) = 3.53, p = 0.014, d = 0.65, 95% CI [0.3, 0.93]; rpre-SMA vs lM1, 20±26 ms, t(29)

= 3.25, p = 0.03, d = 0.6, 95% CI [0.25, 0.9]) (Figure 3.6A). The results from the same

ANOVA applied to the beta rebound peak time also returned a main effect of ROI (F(4,56) =

10.04, p < 0.001). Post-hoc comparisons revealed that beta rebound peaked earlier in rIFG

and left/right pre-SMA compared to both M1 and S1 (Figure 3.6B; for a summary see Ta-

ble 3.1). These results confirm that beta desynchronisation and rebound are widespread

phenomena across the cortex. Furthermore, beta rebound data suggest an influence of

trial types on its dynamics and a frontoparietal spread across time.
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Figure 3.3: Stimulus-locked TFRs across ROIs and conditions
Normalised TFRs aligned to the GO cue onset (t = 0). Each column shows TFRs dynamics during
a single condition (left - GO; middle - sSTOP; right - uSTOP). Each row shows results for a single
ROI. Anatomical regions: lM1 - left primary motor cortex; lS1 - left somatosensory cortex; rIFG
- right inferior frontal gyrus; lpre-SMA - left pre-supplementary motor cortex; rpre-SMA - right
pre-supplementary motor cortex.
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Figure 3.4: Beta desynchronisation during GO and uSTOP trials
Boxplots showing the magnitude of peak beta desynchronisation across participants during GO
and uSTOP conditions. light green - GO; light blue - uSTOP. Anatomical regions: lM1 - left primary
motor cortex; lS1 - left somatosensory cortex; rIFG - right inferior frontal gyrus; lpre-SMA - left
pre-supplementary motor cortex; rpre-SMA - right pre-supplementary motor cortex.
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Figure 3.5: PMBR during GO and uSTOP trials
Boxplots showing the magnitude of peak beta rebound across participants during GO and uSTOP
conditions. Significant effects (p <0.05) are marked by the * symbol. light green - GO; light blue -
uSTOP. Anatomical regions: lM1 - left primary motor cortex; lS1 - left somatosensory cortex; rIFG
- right inferior frontal gyrus; lpre-SMA - left pre-supplementary motor cortex; rpre-SMA - right
pre-supplementary motor cortex.
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Figure 3.6: Beta peak timing
(A) Boxplots showing averaged beta desynchronisation peak timing across participants and ROIs.
Peak time is expressed in ms before movement onset. (B) PMBR peak time. Peak time is expressed
in ms after movement offset. Anatomical regions: lM1 - left primary motor cortex; lS1 - left
somatosensory cortex; rIFG - right inferior frontal gyrus; lpre-SMA - left pre-supplementary motor
cortex; rpre-SMA - right pre-supplementary motor cortex.

Table 3.1: Post-hoc results for PMBR peak time across ROIs

lM1 lS1

rIFG lpre-SMA rpre-SMA rIFG lpre-SMA rpre-SMA

mean diff. (ms) 51 37 41 63 49 53

sd 47 32 46 58 49 60

t 5.06 4.23 3.91 5.57 4.72 4.29

Cohen’s d 0.92 0.77 0.72 1.02 0.86 0.78

95% CI [0.48 1.33] [0.41 1.13] [0.34 1.1] [0.44 1.71] [0.42 1.34] [0.38 1.22]
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3.3.3 Beta power during stopping

Next, we inspected the role of beta during stopping. We analysed the temporal develop-

ment of beta-band power across the ROIs by contrasting normalised sSTOP with uSTOP

trials (Figure 3.7). For each ROIs, although the sSTOP condition had more power than

the uSTOP, the cluster-permutation test, for a time window of 300 ms ranging from the

STOP cue onset to the maximum SSRT, did not reveal any cluster differences between

sSTOP and uSTOP conditions.

We then decided to further explore beta’s role during stopping by to look at beta bursts.

Due to their well-documented role in the stopping literature, we targeted rIFG and pre-

SMA by contrasting a number of burst features between the sSTOP and uSTOP conditions

during the stopping time window (from the STOP cue to the max SSRT). Instead of in-

specting a broad beta range, we restricted the analysis to beta band peak frequencies (for

details see Methods). This resulted in a beta range of 18-24 Hz, 17-23 Hz and 18-24 Hz

for rIFG, lpre-SMA and rpre-SMA respectively. We ran a paired-t-test on burst-amplitude,

burst-duration and burst-count independently for each ROI contrasting sSTOP vs uSTOP

conditions (see Table 3.2, Table 3.3, Table 3.4). No significant effects were found af-

ter adjusting for multiple comparisons. These results fail to return supporting evidence

towards a clear role of beta oscillations as a proxy for inhibition, particularly for frontal

nodes like IFG and pre-SMA.

67



Figure 3.7: Beta power during sSTOP and uSTOP trials
(left) TFRs contrast between sSTOP and uSTOP conditions. Brighter colours signal that sSTOP trials
had more power compared to uSTOP, darker colours reflect more power in the uSTOP condition.
(right) Coloured solid line and shaded area represent average beta power across participants and
SE respectively. x-axis shows time, ranging from 0 up to 500 ms after the stop-cue onset; dashed
dark vertical line marks max SSRT (t = 300 ms); dark horizontal line marks when baseline-
corrected beta power equals 0. Each row shows results for a single ROI. Anatomical regions: lM1 -
left primary motor cortex; lS1 - left somatosensory cortex; rIFG - right inferior frontal gyrus; lpre-
SMA - left pre-supplementary motor cortex; rpre-SMA - right pre-supplementary motor cortex.
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Table 3.2: Paired t-test results for burst-amplitude dur-
ing stopping

Unit = Power % Burst-amplitude

sSTOP vs uSTOP rIFG lpre-SMA rpre-SMA

mean diff. -2 3.21 1.72

sd 14.8 11.6 10.7

t -0.52 -1.07 0.62

Cohen’s d -0.14 -0.28 0.16

95% CI [-0.66 0.43] [-1.06 0.3] [-0.42 0.67]

Table 3.3: Paired t-test results for burst- duration during
stopping

Unit = Duration ms Burst-duration

sSTOP vs uSTOP rIFG lpre-SMA rpre-SMA

mean diff. 0* 0* 0*

sd 0.04 0.03 0.03

t 0.67 -0.81 -0.13

Cohen’s d 0.17 -0.21 -0.03

95% CI [-0.41 0.73] [-0.85 0.35] [-0.6 0.53]

* difference <10 ms

Table 3.4: Paired t-test results for burst-count dur-
ing stopping

Unit = N Burst-count

sSTOP vs uSTOP rIFG lpre-SMA rpre-SMA

mean diff. 2 -2 -1

sd 5 3 4

t 1.46 -2.38 -1

Cohen’s d 0.38 -0.62 -0.29

95% CI [-0.22 1.01] [-1.11 0] [-0.8 0.3]
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3.4 Discussion

In this chapter, we explored the role of beta oscillations in a stop-signal task. In our

study, we could not find supporting evidence for the notion that increased beta power,

particularly in frontal nodes, is key for movement inhibition. This finding is at odds with

many studies in the action-stopping literature, where there is consistent evidence that

response inhibition crucially depends on IFG and pre-SMA (Wessel and Aron, 2017).

ECoG studies reported increased beta power in frontal electrodes during successful

stopping within 100-250 ms after the stop signal (N. Swann et al., 2009; Wessel et al.,

2013). A similar pattern has also been shown in several EEG and MEG studies (Castiglione

et al., 2019; Jana et al., 2020; Schaum et al., 2021; Wagner et al., 2018; Wessel, 2020).

There may be several reasons for the diverse findings in our study which can be ascribed

to methodological differences. First, previous studies employed standard two-choice re-

action time tasks where participants responded to the GO cue by pressing a button. In

our study, instead, participants were required to perform a multi-choice reaching move-

ment with a finger joystick. Although our task was more challenging, from both a motor

and visual perspective, the stop process was correctly achieved. As outlined in the guide-

lines for the stop-signal task (Verbruggen et al., 2019), we implemented a salient STOP

cue and an adaptive tracking procedure for the SSD. This resulted in a probability of re-

sponding close to 50% while also having a low number of GO omissions. Another task

difference pertained to the ratio of GO and STOP trials. In our study, 33% of the trials

had a STOP cue. Interestingly, in Wagner et al. (2018) participants performed three ver-

sions of the stop-signal paradigm with varying task features, one of which was the STOP

ratio. While the authors reported the canonical frontal increase in the beta band at 25%

STOP ratio they failed to do so at 33%. One interpretation of this finding could be that

participants might have been biased to use a different strategy to perform the task, like

a waiting strategy, since the number of STOP trials was more recurrent. This interpre-

tation is highly speculative and not necessarily supported by our behavioural data, since

we reported low GO omissions and RTs in line with previous stop-signal studies. Finally,

an additional difference relates to frontal node localisation. Previous studies have either
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used intracranial recordings (N. Swann et al., 2009; Wessel et al., 2013) or implemented

independent component analysis (ICA) to localise the frontal source of action-stopping

(Castiglione et al., 2019; Wagner et al., 2018). We opted for seed-based analyses which

rely on a priori-defined coordinate from an anatomical atlas. It has to be noted that a

data-driven approach (i.e. source contrasting) could be generally preferred (Gross et al.,

2013), however, there is a strong consensus in the field about stopping source locations,

ranging from animal to fMRI studies (for a review see Wessel and Aron, 2017).

It is noteworthy that findings from a recent study returned a more complex picture of

the role of beta during stopping which partially aligns with our data (Schaum et al., 2021).

Schaum et al. reported a stronger increase in beta power during stopping, particularly in

rIFG. Similarly, we noticed in our study an increased beta power during sSTOP vs uSTOP

trials in different cortical nodes. Furthermore, the authors reported that IFG beta-band

power, which started to increase shortly after the STOP signal, was not strong enough such

that beta power was increased above baseline (see Figure 3.7). Immediately after the GO

cue, we observed beta desynchronisation across multiple ROIs. In the time frame that goes

from the STOP signal to the SSRT, we showed a slowing or pausing of this motor-related

beta dynamic during stopping. In our study, only rIFG and rpre-SMA showed this pattern

of activity, with averaged beta-power briefly approaching baseline levels but only in the

sSTOP condition. This poses some open questions about the frontal beta power increase.

Can these phenomena be regarded as a distinct active stopping process - operated by IFG

and pre-SMA - or it is related to the attenuation of other beta phenomena, like movement

desynchronisation?

A recent bursts study also questioned the causal role of beta oscillations in action inhi-

bition (Errington et al., 2020). The authors wanted to test the role of beta bursts during

a saccade-countermanding task in monkeys. They found that monkeys exhibited a small

but consistent pulse of beta activity over the medial-frontal cortex during movement in-

hibition, similar to other bursts studies (Jana et al., 2020; Wessel, 2020). The authors

also noticed how infrequently these bursts occurred (∼15% of trials) and how they were

observable during trials where a response was generated. When observing the time course

of beta-burst incidence across trials, it was not possible to differentiate between move-
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ment initiation and inhibition. Conversely, the discharge rate of target movement-related

neurons showed a clear separation between trial types occurring during the stopping time

frame. Although these results do not preclude beta oscillations from still being implicated

in action-stopping, they point towards a more indirect influence of this rhythm on motor

inhibition.

Although our burst analysis yielded inconclusive results, it is important to consider cer-

tain key caveats. Our analysis primarily concentrated on comparing the average features

of beta bursts across different conditions, while neglecting to account for their connection

with single-trial RTs. Notably, there exists a significant causal relationship between RTs

and motor inhibition. Two experimental conditions, specifically GO and uSTOP, exhibit

distinct disparities in their respective RT distributions. Failure to acknowledge this distinc-

tion poses a challenge when interpreting the results, as beta effects could potentially be

confounded by the influence of RTs.

Even though our study has several limitations as outlined above (namely low sam-

ple size, unusual task choice and less powerful source localisation strategy), it suggests a

more cautionary interpretation of the role of beta oscillations in motor control. Beta-burst

studies have shown how beta frequency is too inconsistent for accounting for the stopping

behaviour. New studies employing revised beta-bursts pipeline have recently been de-

scribed (Quinn et al., 2019; Seymour et al., 2022; Zich et al., 2022). Taking advantage of

these novel analyses could help clarify if the weak link between single-trial beta dynamics

and behavioural performance is due to poor sensitivity/SNR or if it is representative of an

alternative interpretation of beta’s ”canonical” role in inhibition.
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Chapter 4

The link between GABA and beta

oscillations

4.1 Introduction

In this chapter, we turned our focus on the mechanisms responsible for the generation of

beta oscillations. Animal and modelling studies provide evidence for an essential role of

GABAergic interneuronal activity for the generation of beta oscillations in the sensorimotor

cortex (Roopun et al., 2006; Whittington et al., 2000; Yamawaki et al., 2008). Several

studies demonstrated an increase in human beta power (Hall et al., 2009, 2011; Jensen

et al., 2005; Muthukumaraswamy, Myers, et al., 2013; Nutt et al., 2015) as a result of

pharmacological GABAergic modulation. Such modulations of beta power were evident at

rest (Hall et al., 2009; Jensen et al., 2005) as well as during/after movement (M. Baker

and Baker, 2003; Muthukumaraswamy, Myers, et al., 2013; Nutt et al., 2015).

There is compelling evidence to suggest that a reduction in cortical inhibitory tone is

critical for the induction of plasticity in the motor cortex (for a review, see Bachtiar and

Stagg, 2014). A recent study using magnetic resonance spectroscopy observed a significant

reduction of GABA concentration during motor learning (Kolasinski et al., 2019). The

authors also reported that baseline GABA levels in M1 were strongly predictive of the

degree of subsequent learning, suggesting that increased inhibition was linked with poorer
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learning. Similar findings are observed for beta oscillations, where a reduction in beta

power is consistently observed during movement (Engel and Fries, 2010). Furthermore,

impaired beta oscillations, as observed in Parkinson’s disease and following stroke, are

highly correlated with the severity of motor disorders (Brown, 2006; Little and Brown,

2014).

The dominant approach to the analysis of neural rhythmic activity has been to consider

power changes in canonical frequency bands. In the frequency domain, oscillations man-

ifest as narrow-band peaks of power above the aperiodic component (1/f). When modu-

lations of spectral power are observed, the implicit assumption is that frequency-specific

changes have occurred. However, irregular and arrhythmic activity accounts for the major-

ity of signal power recorded with LFP, EEG and MEG (B. J. He, 2014). A growing number

of studies has recently highlighted the potential importance of arrhythmic/aperiodic ac-

tivity underscoring its alteration in neuropsychiatric disorders (Bruining et al., 2020; Lai

et al., 2010; Maxim et al., 2005; Molina et al., 2020; Robertson et al., 2019; M. Wei

et al., 2013) and ageing (W. He et al., 2019; Schaworonkow and Voytek, 2021; Voytek

et al., 2015). Furthermore, this activity can dynamically change during sleep (Freeman

and Zhai, 2009; Lendner et al., 2020) and with exogenous stimuli and cognitive demands

(Waschke et al., 2021). Pharmaco-EEG/MEG studies have reported broadband spectral

changes of cortical power, suggesting that the effect could be attributed to the underlying

modulation of 1/f activity (Muthukumaraswamy, Myers, et al., 2013; Nutt et al., 2015).

According to this interpretation, recent pharmacological manipulations of GABA-A recep-

tors have produced alterations of aperiodic activity (Muthukumaraswamy, Carhart-Harris,

et al., 2013; Muthukumaraswamy and Liley, 2018; Robertson et al., 2019; Stock et al.,

2020; Waschke et al., 2021). Oscillatory and non-oscillatory activities are likely to be gen-

erated by distinct neural mechanisms and play different functional roles, which strongly

calls for the necessity to disentangle them.

In this project we studied the link between the GABA system and sensorimotor beta

oscillations, combining MEG recordings and pharmacological interventions. We focused

on the effect of gaboxadol and zolpidem during a finger abduction task. Although the

two drugs both act as GABA-A positive allosteric modulators (PAM), they show highly
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specific and distinct mechanisms of action. We separated neural activity, represented in

the power spectra, into two major components: periodic (rhythmic) and aperiodic (1/f)

neural activity. We showed how employing this parametrisation could be beneficial for

testing the specific effects of drugs on several markers of neural activity.
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4.2 Material and methods

4.2.1 Design and participants

Twelve healthy male participants (mean age 27.7, range 21-35) took part in a randomised,

single-blind, placebo-controlled study comparing single doses of zolpidem and gaboxadol.

The dataset was collected at Cardiff University Brain Research Imaging Center by Suresh

Muthukumaraswamy. This was part of an unpublished project. Doses of 15 mg gabox-

adol and 10 mg zolpidem were chosen. This was well-tolerated and showed comparable

sedative properties (Hajak et al., 2009). The elimination half-lives of these two drugs

were similar at approximately 1.5-2.0 h in fasting subjects. In this experiment it was orig-

inally intended to use a mixed-sex cohort, however early in data collection, it was found

that all but one female became too heavily sedated to complete the protocol; therefore

females were subsequently excluded during data collection. All participants were medi-

cally screened and excluded for significant medical, psychiatric or neurological conditions

and current recreational or prescription drug use. They were tested before each session

for drugs of abuse (urine screen) and breath alcohol. For each session, participants were

scanned on separate days, after at least a seven-day washout period, at approximately the

same time of day. On each day, an initial baseline MEG recording was obtained (PRE).

Participants then orally ingested a capsule containing either a placebo, 15 mg of gabox-

adol or 10 mg of zolpidem. Participants were blinded to the contents of the capsules and

the placebo/control session order was counterbalanced across both experiments. MEG

recordings were obtained at 60 (POST60) and 160 (POST160) min time points. Zolpidem

was sourced from an NHS hospital pharmacy, and gaboxadol was donated by Lundbeck as

part of the ECNP Medicines Chest Initiative (Nutt et al., 2014).

For each MEG recording, the participants performed 100 trials of a cued finger move-

ment task, comparable to that described in Muthukumaraswamy (2010). The task was

chosen because of its simplicity and the ability to effectively modulate beta power. The

participants were required to perform ballistic abductions of the right-hand index finger

to an auditory tone pip played through insert headphones (4.5 s ISI). The participants’

index fingers were lightly attached to a piece of plastic to measure finger displacement.
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To maintain a constant motor performance throughout the experiment the following feed-

back procedure was implemented. After the auditory pip (1.5 s), the participants received

on-screen feedback with a ”virtual ruler”, indicating how far they had moved relative to a

target movement criterion (10 mm). This feedback stayed on the screen for 1 s and then

was replaced with a fixation cross. The participants quickly learned to move consistently

on each trial and had training trials at the beginning of each day.

4.2.2 MEG acquisition and preprocessing

MEG signals were recorded using a whole-head system with a 275-channel CTF axial

gradiometer. The signals were recorded at a sampling rate of 1200 Hz. Simultaneous

EMG recordings were made from the participants’ right first dorsal interosseus (FDI) and

digitised with the MEG data. The participants’ fingers were lightly attached to a small

piece of plastic, attached to an optical displacement system. This device gave a one-

dimensional measure of displacement (in the direction of index-finger abduction), which

was also continuously sampled with the MEG. Fiduciary coils were placed at fixed dis-

tances from three anatomical landmarks (nasion, left, and right pre-auricular) and the

positions of the coils were monitored continuously throughout the session. Each partici-

pant had a 1 mm isotropic FSPGR MRI scan available for source localisation analysis. To

achieve MRI/MEG co-registration, the fiduciary markers were placed at fixed distances

from anatomical landmarks identifiable in the participants’ anatomical MRIs (tragus, eye

centre). The MEG data were acquired continuously and epoched offline. All analyses were

performed in MATLAB (MathWorks Inc, Natick, MA), mainly using the FieldTrip toolbox

(Oostenveld et al., 2011) and custom scripts. MEG signals were first high-pass and low-

pass filtered at 0.5 Hz and 150 Hz respectively. Spectral interpolation was used to remove

power-line contamination and harmonics (Leske and Dalal, 2019). Data trials including

large muscle artefacts were identified via a semi-automatic procedure. Trials were band-

pass filtered between 110-140 Hz, z-transformed and compared against a threshold. Trials

with values above the cut-off were visually inspected before exclusion. Eye movements

and cardiac artefacts were projected out of the data using independent component analy-
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sis (Makeig et al., 1995). Finally, MEG signals were down-sampled to 300 Hz. From the

continuous MEG recordings, EMG onsets were marked using an automated algorithm that

marked increases in the rectified EMG signal by 1.5 SD above the noise floor, subject to

the constraint that they occurred within 750 ms of the tone pip. Data were epoched from

-1.5 s to 1.5 s around the start (EMG onset) and the end (EMG offset) of the movement.

Gaboxadol recordings were not available for two participants, while three participants

were excluded for zolpidem. Another participant was excluded due to a high number of

faulty trials in all recordings, caused by a combination of muscle artefacts and poor per-

formance. The number of participants available after preprocessing was 9 for gaboxadol,

8 for zolpidem and 11 for placebo. Trials were adjusted at the end of each recording so

that each participant had an equal number of trials between sessions (PRE, POST60). Fur-

thermore, pharmacological interventions were contrasted in pairs (gaboxadol vs placebo;

zolpidem vs placebo; gaboxadol vs zolpidem). The number of participants tested was

balanced to allow within-subject comparisons.

4.2.3 Source imaging

For source localisation, each participant’s anatomical MRI was divided into an irregular

grid by warping the individual MRI to the MNI template brain and then applying the in-

verse transformation matrix to the regular MNI template grid (4mm isotropic voxel resolu-

tion), allowing source estimates at brain locations directly comparable across participants.

For each grid location inside the brain, the forward model (i.e. the lead field) was calcu-

lated for a single dipole orientation by singular value decomposition, using a single-shell

volume conduction model (Nolte, 2003). Since all grid locations of each subject were

aligned to the same anatomical brain compartments of the template, corresponding brain

locations could be statistically compared over all subjects. Source power at each loca-

tion was estimated using an LCMV (linearly constrained minimum variance) beamformer

(Van Veen et al., 1997). Beamformer analysis uses an adaptive spatial filter to estimate

the power at every specific (grid) location of the brain. Virtual time courses were recon-

structed for a set of cortical ROIs. For each ROI, the virtual time courses with the largest
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SD across time were selected as the target virtual channel for the ROI.

A data-driven pipeline was employed to extract relevant ROIs. Sources were recon-

structed in the beta band for the placebo intervention, with a frequency domain beam-

former source analysis performed by using the dynamic imaging of coherent sources al-

gorithm (Gross et al., 2001). The spatial filter was constructed from the individual lead

fields and the cross-spectral density (CSD) matrix for each subject. CSD matrices were

computed for the task period ranging from 0 to 500 ms after the auditory tone and a base-

line period of the same length, with an offset of -500 ms relative to the auditory tone. CSD

matrices were computed in the beta band for 25 Hz (± 10 Hz) where spectral smoothing is

indicated in brackets. CSD matrix calculation was performed with the multitaper method

(Percival and Walden, 1993) using four Slepian tapers (Slepian, 1978). An activation-

versus-baseline t-statistic was calculated at a single participant level by using an analytic

dependent-samples within-trial t-test. The source t-values obtained were grouped in ROIs

according to the AAL atlas in FieldTrip (Tzourio-Mazoyer et al., 2002). Then t-values were

thresholded at alpha = 0.05 and the proportion of significant sources for each ROI was

computed. This process was repeated for both the PRE (no drug) and the POST60 sessions.

The top 10% ROIs with the highest proportion of significant sources between the two ses-

sions were selected for extracting virtual time courses. The ROIs list according to the AAL

atlas was composed of Precentral cortex (M1), Postcentral cortex (S1), Paracentral Lobule

(PL), Mid Cingulum (mC) and Supplementary motor area (SMA).

4.2.4 TFRs on virtual channel time courses

Preprocessed MEG signals were decomposed into their time-frequency representations

(TFRs) in the 10-35 Hz range using a Hanning taper with a sliding time window of 7

cycles. MEG power change was subsequently normalised as the percentage change rela-

tive to the overall average by dividing the power at each frequency and each time point

by the average power of that frequency across the whole experimental session (Tan et al.,

2016; Torrecillos et al., 2015). Values >0 indicated power higher than the overall average

power of that frequency and vice versa.
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4.2.5 Statistical analysis

The pre-intervention baseline spectra (PRE) were subtracted from each post-intervention

spectra (POST60) and then differences between interventions were tested at two differ-

ent latencies: from -0.25 to 0.25 s around movement onset and from 0.3 to 1 s after

movement offset. For this purpose we used a dependent-samples permutation t-test and

a cluster-based correction method (Maris and Oostenveld, 2007) to account for multiple

comparisons across frequencies (Monte Carlo estimate). Samples whose t-values exceeded

a threshold of cluster α = 0.05 were considered as candidate members of clusters of ad-

jacent samples. The sum of t-values within every cluster was calculated as test statistics.

These cluster sizes were then tested (two-sided) against the distribution of cluster sizes

obtained for 10000 repetitions.

Repeated-measures ANOVAs were used to investigate the effects of pharmacological in-

terventions (gaboxadol vs zolpidem) and experimental sessions (PRE vs POST60). Mauchly’s

test of sphericity was used to test the homogeneity of variance. Where Mauchly’s test of

sphericity was significant (p <0.05) in repeated-measures ANOVAs, Greenhouse-Geisser

corrections were applied. Two-tailed paired-sample t tests were calculated using FDR cor-

rection for multiple comparisons. Effect sizes were calculated using Cohen’s d, calculated

as the difference between the two means, divided by the standard deviation of the differ-

ence. 95% confidence intervals (95% CI) were calculated using accelerated bias-corrected

percentile limits (number of bootstrap samples = 10000).

4.2.6 Power spectra parametrisation

The Spectral Parameterisation Resolved in Time algorithm (SPRiNT) (Wilson et al., 2022)

is designed to identify and model spectral features of neural activity across time. First,

the algorithm performs a short-time Fourier transform (STFT) on 0.5 s sliding time win-

dows using MATLAB’s FFT. Time windows are then averaged locally in time (3 windows;

50% overlap) to generate local-mean power spectra. Power spectra are then parametrised

implementing the same algorithm used in the FOOOF toolbox (Donoghue et al., 2020).

The toolbox conceptualises the power spectra as a combination of an aperiodic component
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with overlying periodic components (oscillations). These putative oscillatory components

are characterised as frequency regions of power over and above the aperiodic component.

The aperiodic component is fit as a function across the entire fitted range of the spectrum,

and each oscillatory peak is individually modelled with a Gaussian. The final outputs of

the algorithm are the parameters defining the best fit for the aperiodic component and

the Gaussians. These are described by the exponent and offset, and periodic peaks, are

described by the centre frequency, power, and bandwidth of identified peaks/Gaussians

(for a detailed description of the analysis rationale see Section 1.4.2; see Figure 1.5 for a

visual description of each periodic and aperiodic component). The FOOOF algorithm was

called with the following settings: frequency range 3-40 Hz; peak width limits 1.5-6; max

peaks 4; min peak height 0.2; aperiodic mode fixed; peak threshold 2.
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4.3 Results

4.3.1 Behavioural features

A series of paired t-tests were run to test the effect of the pharmacological intervention on

behavioural performance. Reaction times (Table 4.1) were largely slower after zolpidem

intervention (t(7) = -3.27, p = 0.014, d = -1.16, 95% CI [-2.18, -0.27]). No effect was

found for gaboxadol (t(8) = 0.262, p = 0.8, d = 0.09, 95% CI [-0.67, 0.98]) and placebo

(t(8) = -0.120, p = 0.9, d = -0.04, 95% CI [-0.7, 0.76]). Movement duration (Table

4.1) remained stable after zolpidem (t(7) = -1.69, p = 0.135, d = -0.6, 95% CI [-1.59,

0.38]), gaboxadol (t(8) = 0.99, p = 0.349, d = 0.33, 95% CI [-0.53, 0.76]) and placebo

administration (t(8) = 0.5, p = 0.634, d = 0.17, 95% CI [-0.69, 0.89]).

These results suggest that zolpidem sedative effects influenced participants’ respon-

siveness. In contrast, behavioural performance was unaltered with gaboxadol.

4.3.2 Beta power is modulated by gaboxadol and zolpidem

We tested the effects of gaboxadol and zolpidem on average beta power. In Figure 4.1 are

shown normalised TFRs located on M1, from the PRE sessions (baseline) of each drug. The

canonical beta desynchronisation and post-movement beta rebound are visible. We ran a

cluster-based permutation test on the normalised TFRs spanning the full time-window

(-1.5 to 1.5 s around movement offset). The test did not reveal any significant cluster,

suggesting that the baseline sessions were comparable.

In Figure 4.2 we show a comparison between gaboxadol and placebo. The cluster-

permutation test for a time window of 500 ms around movement onset, revealed a cluster

with a significant power decrease for lM1, lSMA, lS1 and lPL. For a time window rang-

ing from 0.3 to 1 s after movement offset, a cluster with significant power increase was

observed for lM1, lSMA and lmC. The contrast of zolpidem and placebo (Figure 4.3),

showed a cluster with a significant decrease only for lM1, lmC and lPL when tested for

a latency range of 500 ms around movement onset. Direct comparison of the effects of

gaboxadol and zolpidem (Figure 4.4), returns only a significant cluster for lM1, when
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testing for the latency range of -0.25 to 0.25 ms around movement onset.

These findings suggest that gaboxadol alters beta oscillatory power. Interestingly,

gaboxadol accentuates beta dynamics during movement, producing a larger desynchroni-

sation at the movement onset and a stronger beta rebound after movement offset. Zolpi-

dem seems to produce a more pronounced beta desynchronisation but has a less clear

effect on the beta rebound.

Figure 4.1: Normalised TFRs during PRE session
Power change relative to the average power of the whole session at different frequencies. TFRs
are aligned to movement offset at time 0, averaged across trials and then across participants. Data
from virtual channels on M1.
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Table 4.1: Behavioural features before and after pharmacological intervention

Reaction time s Mov. duration s

PRE POST60 PRE POST60

Gaboxadol

mean 0.241 0.237 0.204 0.186

median 0.232 0.224 0.156 0.141

sd 0.06 0.08 0.16 0.11

se 0.02 0.03 0.05 0.04

Zolpidem

mean 0.271 0.323 0.208 0.230

median 0.255 0.313 0.189 0.187

sd 0.11 0.09 0.11 0.11

se 0.04 0.03 0.04 0.04

Placebo

mean 0.263 0.265 0.220 0.214

median 0.223 0.213 0.168 0.158

sd 0.09 0.10 0.154 0.160

se 0.03 0.03 0.05 0.05

84



Figure 4.2: TFRs Gaboxadol and Placebo - POST60
First two columns show TFRs change compared to baseline (PRE session). The third columns show
the TFRs difference between gaboxadol and placebo. The fourth column shows normalised power
averaged in the beta range (13-30 Hz). The coloured solid line and shaded area represent average
power across participants and SE respectively. Each row shows results for a single ROI. Anatomical
regions: lM1 - left primary motor cortex; lSMA - left supplementary motor area; lmC - left middle
cingulum; lS1 - left somatosensory cortex; lPL - left paracentral lobule.
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Figure 4.3: TFRs Zolpidem and Placebo - POST60
First two columns show TFRs change compared to baseline (PRE session). The third columns show
the TFRs difference between zolpidem and placebo. The fourth column shows normalised power
averaged in the beta range (13-30 Hz). The coloured solid line and shaded area represent average
power across participants and SE respectively. Each row shows results for a single ROI. Anatomical
regions: lM1 - left primary motor cortex; lSMA - left supplementary motor area; lmC - left middle
cingulum; lS1 - left somatosensory cortex; lPL - left paracentral lobule.
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Figure 4.4: TFRs Gaboxadol and Zolpidem - POST60
First two columns show TFRs change compared to baseline (PRE session). The third columns show
the TFRs difference between gaboxadol and zolpidem. The fourth column shows normalised power
averaged in the beta range (13-30 Hz). The coloured solid line and shaded area represent average
power across participants and SE respectively. Each row shows results for a single ROI. Anatomical
regions: lM1 - left primary motor cortex; lSMA - left supplementary motor area; lmC - left middle
cingulum; lS1 - left somatosensory cortex; lPL - left paracentral lobule.

87



4.3.3 Effect of pharmacological intervention on periodic and aperi-

odic features of power spectra

Results from averaged beta power were further explored by addressing the dynamics of

periodic and aperiodic aspects of power spectra. Since the SPRiNT analysis allowed for

a time-resolved spectra parametrisation, we visualised periodic and aperiodic dynamics

during movement (Figure 4.5). Beta power, aperiodic-adjusted, shows comparable dy-

namics to the average TFRs as in Figure 4.1, with a pronounced decrease during move-

ment followed by a sharp increase after movement termination. It is noteworthy that both

aperiodic offset and exponent showed modulation in the opposite direction compared to

beta power, increasing during movement and decreasing after movement offset.

Figure 4.5: Time evolving periodic and aperiodic features
Beta power aperiodic-adjusted, aperiodic offset and exponent from spectra aligned to movement
onset (left column) and movement offset (right column) from M1. The coloured solid line and
shaded area represent the average across participants and SE respectively.
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A two-way repeated measures ANOVA with factors of pharmacological intervention (n

= 2; gaboxadol vs zolpidem) and recording session (n = 2, PRE vs POST60) was indepen-

dently applied to power, peak frequency, aperiodic offset and exponent. The analysis was

applied to spectra centred around a 250 ms window from -0.25 to 0 around movement

onset and from 0.75 to 1 after movement offset, which match the canonical time win-

dows for beta desynchronisation and rebound. Furthermore, the analysis was restricted to

spectra from M1 which showed the largest and most consistent activation in the previous

analyses (Figure 4.6 - Figure 4.7).

The ANOVA on the aperiodic-adjusted beta power between gaboxadol and zolpidem

at the start of the movement revealed a main effect of the intervention (F(1,6) = 58.61,

p < 0.001) and session (F(1,6) = 12.78, p = 0.001). Post-hoc analysis revealed increased

beta power at POST60 after gaboxadol (t(6) = 3.58, p = 0.021, d = 1.35, 95% CI [0.53,

3.62]) and zolpidem (t(6) = 3.01, p = 0.021, d = 1.17, 95% CI [0.33, 2.53]) intervention.

Zolpidem however, induced a larger beta power increase compared to gaboxadol (t(6) =

5.18, p = 0.004, d = 1.96, 95% CI [1.07, 3.62]). Results from the ANOVA applied to

the aperiodic components revealed significant interactions for offset (F(1,6) = 17.43, p =

0.006) and exponent (F(1,6) = 23.76, p = 0.003). Post-hoc tests showed a marked decrease

with zolpidem at POST60, for both aperiodic offset (t(6) = -5.90, p = 0.004, d = -2.23,

95% CI [-2.99, -1.49]) and exponent (t(6) = -5.75, p = 0.002, d = -2.17, 95% CI [-3.11,

-1.17]). In contrast, gaboxadol modulations were not significant for offset (t(6) = 1.95, p

= 0.147, d = 0.73, 95% CI [-0.22, 1.98]) and for exponent (t(6) = 1.75, p = 0.131, d =

0.66, 95% CI [-0.28, 2.05]), although showing effects in the opposite direction compared

to zolpidem. Summary metrics are available in Table C.1 in Appendix C.

The results of the ANOVA on beta power after movement offset showed significant

main effects of intervention(F(1,6) = 13.14, p = 0.011) and session (F(1,6) = 22.13, p =

0.003). Paired t-test showed a large beta power increase after zolpidem (t(6) = 5.71, p =

0.002, d = 2.16, 95% CI [1.57, 3.02]), while gaboxadol was not significant (t(6) = 1.44,

p = 0.2, d = 0.54, 95% CI [-0.27, 1.13]). ANOVA on aperiodic offset (F(1,6) = 55.45,

p < 0.001) and exponent (F(1,6) = 29.95, p = 0.002) returned significant interactions

between intervention and session. Post-hoc comparisons reported a significant increase of
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the aperiodic offset after gaboxadol (t(6) = 2.62, p = 0.04, d = 0.99, 95% CI [0.06, 3.6]),

while a significant decrease was observed after zolpidem (t(6) = -3.52, p = 0.04, d = -1.23,

95% CI [-1.92, -0.73]). Paired t-test on the aperiodic exponent did not return significant

findings after multiple comparison corrections for both gaboxadol (t(6) = 1.71, p = 0.14,

d = 0.65, 95% CI [-0.21, 2.52]) and zolpidem (t(6) = -2.86, p = 0.06, d = -1.08, 95% CI

[-1.92, -0.67]) intervention. Summary metrics are available in Table C.2 in Appendix C.

The results suggest that the effects of pharmacological interventions can influence os-

cillatory and aperiodic features independently.
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Figure 4.6: Contrast of gaboxadol and zolpidem interventions around movement on-
set in M1
Effects of pharmacological interventions on periodic (beta power - upper left, beta frequency
- upper right) and aperiodic (offset - lower left, exponent - lower right) spectra features. Each
raincloud plot is composed of individual participant scores (coloured points), boxplot, data dis-
tribution (coloured curvemean with standard error (coloured diamond point and error bars).
Observations are split across pharmacological intervention (light-blue, gaboxadol; light-orange,
zolpidem) and session (PRE and POST60).
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Figure 4.7: Contrast of gaboxadol and zolpidem interventions after movement offset
in M1
Effects of pharmacological interventions on periodic (beta power - upper left, beta frequency
- upper right) and aperiodic (offset - lower left, exponent - lower right) spectra features. Each
raincloud plot is composed of individual participant scores (coloured points), boxplot, data distri-
bution (coloured curve) and mean with standard error (coloured diamond point and error bars).
Observations are split across pharmacological intervention (light-blue, gaboxadol; light-orange,
zolpidem) and session (PRE and POST60).
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4.4 Discussion

In this study, we evaluated the effects on sensorimotor beta oscillations of two GABAer-

gic modulators. We showed how spectra parametrisation can differentiate between the

complex effects of pharmacological intervention on rhythmic neural activity, providing

additional insights into the underlying physiology.

We found selective effects on periodic spectra components after gaboxadol and zolpi-

dem intervention. Zolpidem produced a consistent increase in the aperiodic-adjusted beta

power. Gaboxadol, instead, produced only a marginal increase. These findings are par-

tially in contrast with our results on averaged beta power. Averaged TFRs showed that

gaboxadol induced a stronger modulation of beta dynamics compared to zolpidem. This

translated into deeper desynchronisation during movement and increased rebound after

movement termination. The nature of the discrepancy, between averaged and param-

eterised spectra results, could rise from the notion that rhythmic neural activity is em-

bedded within aperiodic activity (Donoghue et al., 2020). This activity is variable and

dynamic and has been linked to several contexts in which neural oscillations are usually

the focus of the investigation (Bruining et al., 2020; Lendner et al., 2020; Molina et al.,

2020; Muthukumaraswamy and Liley, 2018; Ouyang et al., 2020; Podvalny et al., 2015;

Waschke et al., 2021; Voytek et al., 2015; Schaworonkow and Voytek, 2021). Commonly

used power decomposition methods analyse neural oscillations in band-pass filtered sig-

nals. Since 1/f activity, by definition, will always return non-zero power for narrow-band

signals, modulation of the aperiodic components could lead to a misrepresentation of the

oscillatory components and misinterpretation of the underlying physiological processes

(Donoghue et al., 2020, 2022; Gerster et al., 2022). In our study, pharmacological inter-

vention produced bi-directional aperiodic modulations. Zolpidem produced a marked de-

crease in aperiodic offset and exponent, while the same parameters were increased after

gaboxadol intervention. Aperiodic offset was proposed to reflect a population-averaged

stochastic process (Miller et al., 2014). Broadband amplitude dynamics, which can be

approximated by the offset component, have demonstrated a positive relationship with

neuronal population spiking (Manning et al., 2009). Several studies have shown that
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broadband power spectra change can be used to track local cortical activity, reflecting

task-specific modulations (Manning et al., 2009; Miller et al., 2014; S. Ray and Maunsell,

2011). The aperiodic spectral exponent, in contrast, has been suggested to represent a

non-invasive approximation of the excitation:inhibition (E:I) balance (Gao et al., 2017;

Miller et al., 2009). In accordance with invasive work and single-cell modelling (Chini et

al., 2022; Gao et al., 2017), increased inhibitory (GABAergic) activity should lead to an

increase in the spectral exponent (steepening of the spectrum), while excitatory activity

is linked to a decrease (flattening). Several studies have shown how substances selec-

tively targeting inhibitory or excitatory systems have produced alterations of the aperiodic

exponent, supporting the validity of this component as a marker of overall E:I balance

(Muthukumaraswamy, Carhart-Harris, et al., 2013; Muthukumaraswamy and Liley, 2018;

Robertson et al., 2019; Stock et al., 2020; Waschke et al., 2021). Importantly, our study

revealed similar dynamics in both the aperiodic exponent and offset, indicating a possible

influence or relationship between these phenomena. Although they are typically associ-

ated with distinct functions in the existing literature, investigating the correlation between

the offset and exponent across participants could offer valuable insights in this regard.

Pharmaco-EEG/MEG studies in humans investigating the GABAergic system have con-

sistently reported an increase of beta power, both at rest and during movement, after

administration of a GABA-A agonist or a GABA reuptake blocker (Hall et al., 2009, 2011;

Jensen et al., 2005; Muthukumaraswamy, Myers, et al., 2013; Nutt et al., 2015). Simi-

larly, studies using gaboxadol and zolpidem have also shown a generalised effect on beta

oscillations, although showing distinct spectra profiles (Nutt et al., 2015). Our results,

only partially reconcile with the above-mentioned findings. When parametrised spectra

are analysed, gaboxadol effects on beta oscillations are modest and apparently observ-

able only around movement onset but not after movement termination. In an experiment

using diazepam, a non-specific GABA-A receptor modulator, Hall et al. (2011) found en-

hancement of beta desynchronisation but no modulation of PMBR. In a subsequent study,

Muthukumaraswamy et al. (2013) reported a modulation for both beta desynchronisation

and rebound while using tiagabine, a GAT1 reuptake blocker. The authors speculated that

the different mechanisms of action of the two drugs in the two studies could be responsi-
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ble for the dissociation observed for beta dynamics during and after movement. Namely,

diazepam acts primarily on the GABA-A receptor while tiagabine blocks the synaptic GABA

transporter, therefore enhancing the effect of GABA on both GABA-A and GABA-B recep-

tors. This provides supporting evidence that beta desynchronisation and PMBR are distinct

phenomena with likely different generators (Gaetz et al., 2011; Jurkiewicz et al., 2006;

Muthukumaraswamy, Myers, et al., 2013). Since both gaboxadol and diazepam target the

same receptors, our findings could be aligned with this interpretation.

In our study beta power was drastically increased after zolpidem intervention. Evi-

dence from rodent models demonstrates that beta is increased following zolpidem admin-

istration, through increased phasic interneuron drive (Yamawaki et al., 2008). Additional

supporting evidence comes from a MEG study in which zolpidem positively modulated

beta power (Nutt et al., 2015). However, studies on patients with atypical beta oscil-

lations (Parkinson’s disease, stroke), have reported that subsedative doses (2-5 mg) of

zolpidem improve cognitive and motor abilities coincident with a reduction in beta power

(Hall et al., 2010, 2014; Prokic et al., 2019). This effect was observable for Parkinson’s

disease patients but not for healthy controls, leading the authors to speculate that the ef-

fects of zolpidem were specific to GABAergic projections in the basal ganglia, known to

be deficitary in Parkinson’s disease (Prokic et al., 2019). An alternative interpretation,

specific to the low-dose administration of zolpidem, follows in vitro findings which show

that low-dose zolpidem selectively augments interneuron (fast-spiking) specific GABA-A

mediated tonic currents, resulting in a reduction in beta oscillatory power (Prokic et al.,

2015).

We suggest that the complex effects of GABAergic drugs on beta oscillations could be

partially explained by evaluating the aperiodic activity. Commonly used time-resolved

signal power decomposition such as Hilbert, wavelet, and short-time Fourier signal trans-

forms (Bruns, 2004; M. X. Cohen, 2014), do not explicitly account for the presence of

aperiodic signal components, which challenge both the detection and the interpretability

of spectral peaks as genuine periodic signal elements (Donoghue et al., 2020). This means

that any spectral measure will always return a numerical value for power for a given fre-

quency band, even if oscillations are absent. After gaboxadol intervention, both aperiodic
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components increased in magnitude. According to previous studies (for a review see Miller

et al., 2014), these findings can be interpreted as two separate co-occurring phenomena,

rise in local population spiking (offset) and strengthened inhibition/reduced E:I balance

(exponent). We propose that both effects could contribute to increased low-frequency

power in the spectrum, even in the absence of any rhythmic/periodic activity. In contrast,

the reduction of offset and exponent observed after zolpidem intervention should produce

a reduction in low-frequency and an increase in high-frequency power leading to the flat-

tening of the spectra. Interestingly, these results were reported by Nutt et al. (2015),

where gaboxadol showed a general enhancement of low-frequency power from the delta

through beta range while zolpidem showed enhanced beta and low gamma but reduced

alpha.

It is important to interpret our findings qualitatively and exercise caution in drawing

conclusions. A comprehensive understanding of the role of aperiodic activity and its rela-

tionship with rhythmic activity would require direct assessment and manipulation of key

neural mechanisms (see Chini et al., 2022). Additionally, it should be noted that pharma-

cological interventions can influence behavioural performance. In our study, we observed

slower RTs following zolpidem administration, likely due to its sedative effects. To disen-

tangle the impact of behavioural components on our results, one potential strategy would

be to compare conditions based on a subset of trials with similar RT distributions. How-

ever, this strategy was not feasible in our study due to the limited number of starting trials

and the consistent performance issues associated with the interventions. Future studies

should address these limitations by increasing the number of trials to enhance statistical

power and account for the potential influence of behavioural factors.

The current study would greatly benefit from an exploration of the impact of GABAer-

gic drugs on beta bursts. However, it poses challenges to directly compare burst analysis,

which is performed on single trials, with spectra parametrisation, which decomposes the

signal into averaged components across trials. Hence, within the scope of this thesis, it was

not feasible to investigate this connection. Nevertheless, recent studies, such as the work

by Seymour et al. (2022), have successfully integrated both methods. Conducting such

an analysis would allow for a more comprehensive characterisation of the relationship be-
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tween GABA and beta oscillations. By incorporating the modelling of aperiodic activity,

we could enhance sensitivity in detecting oscillatory bursts. Furthermore, by examining

burst features like power, count, or time, we can gain valuable insights into the specific

physiological aspects of rhythmic neural activity that interact with GABA.

To summarise, here we highlight the importance of separating the periodic and ape-

riodic neuronal signals in electrophysiological recordings. We argue that when assessing

spectral measures of neural oscillations the influence of aperiodic signal needs to be taken

into consideration, in order to avoid erroneous interpretations. Recent development in

algorithms and guidelines have made this challenge accessible (Donoghue et al., 2020,

2022; Gerster et al., 2022; Kosciessa et al., 2020; Wen and Liu, 2016; Wilson et al., 2022).
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Chapter 5

General Discussion

This thesis investigated sensorimotor beta oscillations while focusing on two main aspects:

the role of beta in complex motor functions and the physiological mechanism behind its

generation.

In Chapter 2 we assessed beta during a motor adaptation paradigm. Specifically, by

altering the visual feedback in a joystick-reaching task, a precise modulation of PMBR was

observable following errors which elicited motor adaptation. Although more pronounced

in M1, this modulation was also observed across an extended network of frontoparietal

areas. In contrast, when using a stop-signal task to test motor inhibition, Chapter 3

returned inconclusive results on the role of beta. Beta activity in IFG and pre-SMA was

comparable between sSTOP vs uSTOP trials. This finding, however, was noteworthy since

increased beta activity in frontal nodes is often considered crucial in successful movement

stopping.

In Chapter 4, we tested the effect of two GABAergic drugs on beta oscillations. Partici-

pants performed a finger abduction paradigm while receiving a single-dose administration

of gaboxadol and zolpidem across separate sessions. Both interventions produced an in-

crease in beta power. After applying spectra parametrisation, zolpidem only showed a

strong modulation of beta power. Gaboxadol effect instead was more modest, since it was

partially inflated by the aperiodic components.

In this final chapter, the main findings of this thesis are brought together to integrate

the results, discuss the strength and limitations of the methods and consider future appli-
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cations.

5.1 The role of beta oscillations: yet unclear?

Two chapters in the thesis investigated the roles of beta in the sensorimotor system. Beta

oscillations have been consistently linked with motor learning and action stopping, often

implying a causal role for this rhythm in both functions (Tan et al., 2014, 2016; Wessel

and Aron, 2017). Our results only partially support this view.

In Chapter 2 we observed a decrease in PMBR after experiencing task-related errors

in the adaptation phase. This supports the idea that beta is sensitive to the outcome of a

movement. It is unclear, however, whether this modulation reflects a neural signature of

learning or a generalised mismatch/error signal. Our experiments were not designed to

explicitly target this outstanding question but could still provide additional insights. PMBR

reduction was observable in almost all the ROIs we tested during motor adaptation, but

it was more pronounced in IFG and across both hemispheres. Additionally, a drop in

IFG’s PMBR was also observable in Chapter 3 while contrasting GO trials with uSTOP

trials. Participants in this task were aware of their incorrect performance, but no adaptive

response was expected or observable in the data. The idea that PMBR modulation refers

to error monitoring has been directly tested in previous studies (Alayrangues et al., 2019;

Torrecillos et al., 2015), which found PMBR similarly attenuated for errors that triggered

an adaptive response and for errors that did not elicit one. Therefore, our results provide

additional support towards the role of PMBR modulation in signalling errors or, more

generally, salient events.

In Chapter 3 we could not differentiate beta activity during successful vs unsuccessful

stopping. Even when adopting a more refined analysis focusing on beta-burst, the pattern

of response was comparable across conditions. The canonical finding of increased frontal

beta during stopping is normally observed in two-choice tasks. In our study, we employed

instead a multi-choice joystick-reaching task. Existing guidelines advise choosing a task

with a moderate level of difficulty since too complex tasks could alter the probability

that the stop process is triggered (Verbruggen et al., 2019). When inspecting behavioural
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performance across participants, however, we found results matching the ones described

in the existing literature. This implies that our findings could not be simply interpreted in

light of methodological discrepancies. Our study, then suggests that when deviating from

the canonical stop-signal task a key role of beta in inhibition is less clear.

Both chapters on the beta functional role were designed following a set of well-defined

paradigms. The current studies in the field of motor learning and inhibition - and by

extension also our studies - often tend to suffer from a purely correlational nature and

an unclear definition of beta oscillations. In light of recent studies in the field of neural

oscillations (Donoghue et al., 2020, 2022; Jones, 2016), we advise a more precise and

cautious interpretation of rhythmic brain activity. As we have shown in Chapter 4, stan-

dard analyses can obscure oscillatory dynamics and over/underemphasize its real effect.

Spectral parametrisation and burst analysis will be key in disentangling neural activity in

rhythmic and arrhythmic components, providing better insights into beta functional role.

5.2 GABA influence on beta oscillations

Many theories of beta generation revolve around the interaction between pyramidal neu-

rons and interneurons (Jensen et al., 2005; Kopell et al., 2011; Sherman et al., 2016).

Accordingly, the beta rhythm is the result of a balance between excitation and inhibition,

with the latter being strictly dependent on GABA levels. Pharmaco-MEG studies have

repeatedly reported an increase in beta activity after administration of GABA agonist or

GABA reuptake inhibitor drugs (Hall et al., 2009, 2011; Jensen et al., 2005; Muthuku-

maraswamy, Myers, et al., 2013; Nutt et al., 2015). Therefore, the definition of beta as a

GABAergic rhythm is widely accepted across the literature.

Chapter 4 showed how the link between GABA and beta oscillations is more nuanced

and actually comprised of distinct, yet interactive, neural features. When relying on stan-

dard analyses, the impact of GABAergic activity on beta could easily be misinterpreted.

During the investigation of average beta power fluctuations, gaboxadol showed the great-

est degree of variation. Our results after spectra parameterisation while still tracing a

strong association between GABA and beta also found a weaker linkage with gaboxadol.

100



This discrepancy stems from a significant contribution to the averaged signal from ar-

rhythmic features. These aperiodic components have been shown to vary in response

to experimental demands and could be interpreted as a proxy of neural dynamics which

conflate the impact of GABA on oscillatory activity. Our results, therefore, highlight the

importance of carefully considering the underlying assumptions of the methods employed

when studying neural activity. This statement is particularly relevant in studies where the

primary goal is to uncover the physiological mechanisms behind neural oscillations.

5.3 Limitations

Within the context of this thesis project, there are several underlying behavioural assump-

tions that often go overlooked. One specific assumption pertains to the ecological validity

of artificial laboratory tasks when studying the sensorimotor system. These tasks, com-

monly employed in research, allow for the isolation and individual examination of specific

motor process features, thereby providing elegant experimental designs to test hypotheses.

However, it is essential to critically assess the extent to which within-trial beta modula-

tions align with the intricate nature of continuous, uninterrupted actions encountered in

everyday life, which typically involve the participation of various muscle groups and occur

without pauses between them.

Despite the relevance of this issue, it has received limited attention in the literature.

Notably, Haar and Faisal (2020) addressed this concern in their study by recording beta

activity during a game of pool table billiards using mobile EEG. Their findings revealed

canonical beta modulations during movement, alongside distinct PMBR dynamics across

participants, reflecting different spontaneous learning strategies observed in real-world

tasks. While the study incorporated the complexity of natural motor behaviour and the

presence of multiple sub-tasks, it still retained key features of laboratory-based paradigms,

such as natural spatial constraints, divisibility of behaviour into trials, and clear outcomes.

However, conducting naturalistic studies poses significant challenges, partly due to

the limitations associated with conventional methods for recording neural activity. Con-

ventional MEG systems are cumbersome, static, and can only scan one person at a time,
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necessitating motionless participants and being limited by the scalp-sensor separation. En-

couragingly, recent advancements in MEG technologies based on optically pumped magne-

tometers (OPMs) (Boto et al., 2018; Brookes et al., 2022) hold promise for facilitating the

exploration of naturalistic motor paradigms (Roberts et al., 2019; Seymour et al., 2021).

Thus, investigating the ecological validity of laboratory tasks and the extent to which

beta modulations reflect real-world motor functions is a crucial consideration that deserves

further attention in the field. Advancements in recording technologies, such as OPM-based

MEG systems, present opportunities for exploring more naturalistic motor paradigms and

addressing these important questions.

In Chapter 3, we conducted experiments to investigate the role of beta oscillations in

inhibition using a stop-signal paradigm. While the latency of go responses can be directly

observed, response-inhibition latency poses a challenge as it cannot be measured directly.

To overcome this limitation, many researchers utilise the SSRT as an inferred measure

to assess individual differences in stopping ability. SSRT is derived from a mathematical

model and relies on assumptions about the underlying processes involved in inhibitory

control.

It is important to recognise that SSRT while providing an estimate of the time required

for cancelling an action plan, may not fully capture the complexity of inhibitory processes.

For instance, it may not account for partial inhibitions or other cognitive mechanisms in-

volved in response control. Moreover, SSRT estimates can be influenced by various factors

in the decision process, rather than solely reflecting a unique construct or a compound

construct primarily indexing top-down control (Bompas et al., 2020). These confounding

factors can impact the interpretation and comparability of SSRT measures across different

populations and experimental conditions.

It is worth noting that inferred measures like SSRT may not fully capture the real-world

complexity and variability of inhibitory control. Observable measures, such as response ac-

curacy or RTs in specific task conditions, may provide more ecologically valid assessments

of inhibitory abilities. Although SSRT has been widely adopted as a convenient and prac-

tical measure of inhibitory control due to its ease of implementation and interpretation,

researchers should be mindful of the potential implications of using inferred measures.
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Whenever possible, complementing inferred measures with observable measures can con-

tribute to a more comprehensive understanding of inhibitory processes.

5.4 Conclusion

As we briefly touched on above, future studies on beta would benefit from a more precise

definition of neural oscillations. Are oscillations a proxy of neural activity? If so, how can

we separate their contribution from multiple co-existing neural dynamics (i.e. broadband

neural activity, E:I gradient)? Are oscillations fundamental for neural communication and

network partition? We suggest that some of the methodologies applied in this thesis could

improve our ability to answer these questions.

Our results demonstrated that beta oscillations are dynamically modulated in the sen-

sorimotor system. We showed how beta possesses a great amount of variability when

contrasting motor functions (learning vs inhibition) and also during different stages of

a movement. While we confirmed a strong link between GABA and beta oscillations,

we showed how arrhythmic components can bias our interpretation when using standard

time-frequency analyses.
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Appendix A

Appendix: Beta dynamics during motor

adaptation

Figure A.1: Individual beta desynchronisation
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Figure A.2: Individual beta rebound
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Appendix B

Appendix: The role of beta oscillations

during action-stopping

107



Table B.1: Beta desynchronisation during GO and uSTOP conditions

Unit=Norm. Power% ROIs

lM1 lS1 rIFG lPRE-SMA rPRE-SMA

GO

mean -48 -50 -40 -42 -41

median -50 -50 -40 -43 -40

sd 7 9 7 6 6

se 2 2 2 2 2

uSTOP

mean -46 -50 -37 -42 -41

median -44 -52 -36 -46 -41

sd 7 8 8 8 7

se 2 2 2 2 2

Table B.2: PMBR during GO and uSTOP conditions

Unit= Norm. Power% ROIs

lM1 lS1 rIFG lPRE-SMA rPRE-SMA

GO

mean 117 137 79 96 91

median 113 118 73 86 87

sd 60 85 26 46 34

se 15 22 7 12 9

uSTOP

mean 103 120 62 87 82

median 87 113 61 75 73

sd 62 68 20 34 32

se 16 18 5 16 8

108



Appendix C

Appendix: The link between GABA and
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Table C.1: Summary statistics for gaboxadol and zolpidem interventions around
movement onset

Power a.u. Frequency Hz Offset a.u. Exponent a.u.

PRE POST60 PRE POST60 PRE POST60 PRE POST60

Gaboxadol

mean 0.75 0.78 21.61 21.96 -7.32 -6.79 1.70 1.84

median 0.75 0.78 21.92 21.66 -7.09 -6.82 1.67 1.82

sd 0.05 0.05 0.96 1.41 0.11 0.34 0.13 0.22

se 0.02 0.02 0.36 0.53 0.04 0.13 0.05 0.08

Zolpidem

mean 0.78 0.87 21.85 21.65 -7.02 -7.34 1.71 1.45

median 0.78 0.85 22.69 21.78 -6.98 -7.30 1.72 1.50

sd 0.08 0.06 1.28 1.08 0.24 0.18 0.23 0.16

se 0.03 0.02 0.48 0.41 0.09 0.07 0.09 0.06

Table C.2: Summary statistics for gaboxadol and zolpidem interventions after move-
ment offset

Power a.u. Frequency Hz Offset a.u. Exponent a.u.

PRE POST60 PRE POST60 PRE POST60 PRE POST60

Gaboxadol

mean 0.82 0.85 20.99 21.77 -7.21 -6.91 1.51 1.62

median 0.82 0.87 21.01 22 -7.23 -6.96 1.49 1.56

sd 0.06 0.06 1.06 1.07 0.13 0.33 0.14 0.23

se 0.02 0.02 0.4 0.4 0.05 0.13 0.05 0.09

Zolpidem

mean 0.84 0.95 21.40 21.17 -7.16 -7.41 1.51 1.3

median 0.81 0.94 21.48 21.16 -7.25 -7.31 1.40 1.34

sd 0.09 0.08 0.91 1.03 0.29 0.17 0.30 0.16

se 0.04 0.03 0.34 0.4 0.11 0.06 0.12 0.06
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