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Abstract
We consider the set-up of a Japanese–English auction with exogenously fixed discrete
bid levels for a specific game (the wallet game with two bidders, following Gonçalves
and Ray in Econ Lett 159:177–179, 2017). We show that in this auction, partition
equilibria exist that may be separating or pooling.We illustrate separating and pooling
equilibria in games with two and three discrete bid levels and compare the revenues
of the seller from these equilibria to find the optimal bid levels for these cases.
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1 Introduction

Discrete bidding in (English) auctions has been the norm in the real world, although
substantial variations in the exact design and characteristics of these auctions are
observed in practice. In auctions at Sotheby’s or Christie’s, bidding usually advances
between 5 and 10% of the current price level (Rothkopf and Harstad 1994). Cas-
sady (1967) gives examples of auctions in which the bid levels are exogenously
given, such as tobacco and livestock auctions in the USA. In wholesale fish markets,
ascending or English (Graham 1999, p. 181) and descending or Dutch (Guillotreau
and Jiménez-Toribio 2011) electronic auctions are commonly used, where the former
(electronically) replicates the traditional oral ascending auctions; known discrete bid
increments are a common feature in both these auction types (Carleton 2000, pp. 10–
11).1 Various online auction sites, such as eBay, have implemented a proxy bidding
mechanism, whereby the price level increases automatically (up to the bidder’s stated
maximum bid) in known discrete bid increments that depend on the price level (Bajari
and Hortaçsu 2004).

This discreteness in bids contrasts with a particular version of the English auction,
the so-called Japanese–English Auction (henceforth JEA, commonly known as the
clock auction), in which the price of the object increases continuously whilst interested
bidders depress a button, and, upon observing the price level, bidders decide to stay (by
continuing to press the button) or drop out by releasing the button (Milgrom andWeber
1982). Rothkopf and Harstad (1994) were the first to point out that discrete (rather
than continuous) bid levels could affect English auction strategies and outcomes.2

Recently, Tukiainen (2017) provided empirical evidence from online English auctions
(using a field experiment) supporting this view.

We propose to incorporate this feature of real world English auctions in a common
value JEA. The set-up in this paper (as originally presented in Gonçalves and Ray
2017) is the same as the usual JEA except that the price goes up in discrete commonly
known bid levels. In our game, as in the usual JEA, if a bidder wants to drop out, all
he has to do is release the button. The final auction price is equal to the highest bid
level at which at least one bidder was active.

There are real-life examples that (sort of) fit the above set-up. Bidding at the online
auction site QXL was quite similar to our model: the price went up in predetermined
increments and if bids were not a multiple of that increment, then the bid was rounded
down to the closest multiple of the increment. QXL bidding increments depended on
the bid value; for example, for bids in the £2.50−£9.99 range, the bid increment was
£0.10 while for bids in the £10−£99.99, it was £1.00 and so on.

In the recent past, English auctions with predefined discrete bid levels have been
analyzed in different contexts (Rothkopf and Harstad 1994; Yu 1999; Harstad and
Rothkopf 2000; Sinha and Greenleaf 2000; Cheng 2004; David et al. 2007; Rogers
et al. 2007; Isaac et al. 2007). For example, Yu (1999), in a private value setting with
discrete bid increments, found multiple equilibria: depending on whether bidders’

1 For example, in the Looe wholesale fish auction (UK), the increments are anywhere from 1p to 5p or 10p
and sometimes different increments are used for different species during the same auction session.
2 To the best of our knowledge, the seminal reference for discrete bids is Chwe (1989), who looked at its
role in first-price auctions.

123



Revenue implications of choosing discrete bid levels in a…

valuations are above (or below) certain thresholds, bidders choose different (equilib-
rium) strategies. Several other authors have looked into the role of discrete bids in
other auction types: Li et al (2011, 2013, 2018) for Dutch auctions; Mathews and Sen-
gupta (2008) and Sandoval (2014) for second-price sealed bid auctions and Rasooly
and Gavidia-Calderon (2021) for first- and second-price sealed bid auctions as well
as all-pay auctions. However, we note that the existing (above-mentioned) literature
on discrete bids for single object auctions has focused entirely on private value envi-
ronments; virtually nothing has been done for the common value model. There is
a vast literature on both multi-object and multi-unit auctions, some of which con-
siders discrete bidding (see, for example, Brusco and Lopomo 2002; Ausubel 2004;
Engelbrecht-Wiggans and Kahn 2005). However, this literature also mainly refers to
private values; for example, Ausubel (2004) modeled the auction increments through
a price clock with either integer (steps) or continuous increases. Interestingly, and of
relevance to our paper, Ausubel (2004) used discrete increments only in the private
values case while the proposed (novel) ascending auction under an interdependent
value formulation (a generalization of both the private and common value models) is
analyzed under continuous bid increments.

We use the so-called “wallet game”with two bidders (inwhich the common value of
the good is simply the sum of two private signals, the amounts in the “wallets” of each
bidder), introduced by Klemperer (1998), as our background common value model to
theoretically analyze a JEA with discrete bid levels. Klemperer (1998) illustrated that
bidding twice the individual (private) signal forms the unique symmetric (Bayesian-
Nash) equilibrium in this game. However, with discrete bid levels, Gonçalves and Ray
(2017) proved that one cannot construct a symmetric equilibrium using strategies anal-
ogous (in a discrete bids’ environment) to bidding twice the private signal. Moreover,
following the seminal experiment by Avery and Kagel (1997) on a continuous-bid
JEA based on the wallet game, Gonçalves and Hey (2011) experimentally looked at
the role of discrete bids in such an environment; however, there has been no attempt
to theoretically analyze the equilibria for this game apart from the recent contribution
by Gonçalves and Ray (2017). Following their work, we are now taking the first step
to theoretically characterize the set of equilibria for the wallet game in a JEA with
exogenously specified discrete bid levels.

In this paper, we show that (symmetric) partition equilibria, involving weakly
increasing strategies based on elements of a partition of the signal space, exist for
the wallet game in a JEA with discrete bid levels. Such partition equilibria may be
pooling or separating (depending on the number of partitions). We illustrate several
such equilibria with only two or three discrete bid levels and find the necessary con-
ditions that support them. These equilibria, however, yield a lower expected revenue
for the seller than in the case of a continuous JEA. Despite this, we further show that
a revenue-maximizing second-best solution for this set-up exists; that is, the seller
may choose these bid levels optimally to maximize the revenue, although it can never
achieve the expected revenue of a continuous JEA (first-best).

These results are, in our opinion, interesting and novel from a theoretical viewpoint,
but are also of practical interest for real world auctions. First, our partition equilibria
with discrete bid levels suggest that (expected) seller’s revenue may be lower than
in a continuous JEA—a result which is similar to that obtained by Rothkopf and
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Harstad (1994) in a private values environment. However, by adequately choosing
both the number and the values of discrete bid levels, the seller may minimize this
loss. Moreover, we find that expected revenue is higher in a separating equilibrium
than in any of the pooling equilibria (although lower in both cases than expected
revenue in the continuous JEA), suggesting that auctioneers would prefer the former
to be played, as it minimizes the loss vis-a-vis the continuous JEA. Naturally, the
seller also benefits from discrete bid levels in ways that our model does not capture.
For instance, the auction speed may be higher, and this is an important variable to
consider when auctioning certain goods. In addition, by definition, JEA preclude the
possibility of jump-bidding equilibria, which could hurt the auctioneer (Avery 1998;
Isaac et al. 2007).

Second, the (symmetric) partition equilibria that we find may appear to be complex
in theway they are calculated, but they do point to very simple rule-of-thumb strategies
that bidders may resort to: for example, with two discrete bid levels, a bidder would
bid high if the signal is higher than a threshold; otherwise bid low. The experimental
literature on ascending auctions presents multiple (similar in nature) examples of
simple strategies that are actually played (for instance, see Kagel 1995; Kagel and
Levin 2016). Although in most of those cases, such strategies are not equilibrium
strategies, our partition equilibria strategies would be. In that context, our results may,
in a way, bridge the divide between the theoretical and the experimental work on
ascending auctions.

In summary, from an auction design viewpoint, our research points out what the
implications are of using a specific set of bid levels and how a seller should optimally
manipulate it, although the multiplicity of equilibria (especially when pooling and
separating equilibria coexist) may hinder those efforts. In addition, one may be inter-
ested in finding the optimal number of bid levels for such an auction. Our simulation
on three bid levels suggests that the optimal number of bid levels (to maximize the
seller’s revenue) is perhaps small.

2 Model

We consider the wallet game3 with two symmetric risk-neutral bidders, i ∈ {1, 2},
bidding for one single goodwith common value, Ṽ . Each of the two bidders receives an
independent and uniformly4 distributed private signal xi ∼ U (0, 1), i = 1, 2. The (ex
ante) unknown common value of the good is the sum of the two signals: Ṽ = x1 + x2.

We analyze a JEA for this game, with some exogenously fixed discrete bids that
are the elements of the set A = {a1, . . . , ak}, with 0 < a1 < · · · < ak < 2, k ≥ 2 a
finite integer; A is common knowledge to the bidders. We denote a typical bid level
by a j , for j = 1, . . . , k, with the implicit assumption that a0 = 0 and ak+1 = 2, for
notational convenience. The price in the JEA goes up in levels in the set A, starting
from a1 and ending at ak . The final price is equal to the highest bid level at which

3 Details of this game can be found in Gonçalves and Ray (2017).
4 We take the uniform distribution as it is easier to analyze; however, any other specific distribution could
have been considered.
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at least one bidder was active. Therefore, for any j = 1, . . . , k − 1, if one bidder is
active at a j but not at a j+1 while his opponent is active at a j+1, then the latter wins
the auction and pays a price equal to a j+1; if both bidders are active at a j , but not at
a j+1, then the auction winner is decided at random with equal probabilities and the
final price is a j ; finally, if both bidders are active at the last bid level ak , the winner
will be chosen at random with equal probabilities and will pay the price ak .

The net payoff to the winner is the realized value of x1 + x2 minus the price to pay
while the payoff to the loser is 0. If no bidder is active at a1, then the auction ends
immediately with zero payoff to each bidder. This JEA for the wallet game with k bid
levels (a1, .., ak) will henceforth be called Gk .

In this paper, we restrict attention to dynamic strategies that are history independent.
In particular, players choose a drop-out bid level as a function of the signal. Given a
signal x ∈ (0, 1), a bidding strategy for a player in Gk is to choose either 0 (which
implies that the bidder is not active even at a1) or a bid level a j so that the bidder
will be active at a j but not at a j+1, where j = 1, . . . , k (with ak+1 = 2). A typical
strategy thus can be denoted by σ = b(x), where, b(x) ∈ {0, a1, . . . , ak} implying
that the player with signal x is active until b(x). We focus on a specific subset of the
strategy sets in Gk using the following assumption.
Assumption 0 Bidder’s strategy set is restricted to a set of drop-out functions that are
weakly increasing step functions b(x), where b(x) ∈ {0, a1, . . . , ak}.

Our strategies thus divide the domain of signals, (0, 1), into (l + 1) subintervals or
elements of a partition using l (≥ 1) many cutoff signals. The JEA for the wallet game
with k bid levels (a1, .., ak), with weakly increasing partition5 strategies only, is our
baseline game, called G0

k .

3 Results

We focus on the strategies under Assumption 0 in G0
k , with k ≥ 2.

Definition 1 For any k ≥ 2, l ≤ k − 1, a strategy with l many cutoffs is called
separating if l = k − 1. For k > 2, a strategy with l many cutoffs is called pooling6 if
1 ≤ l < k − 1.

In G0
k , where k > 2, a separating strategy uses k − 1 cutoffs (x∗

1 , . . . , x
∗
k−1) and

thereby k partitions; it can be written7 as:

σ =
⎧
⎨

⎩

a1 if x ≤ x∗
1

a j if x∗
j−1 < x ≤ x∗

j , j = 2, . . . , k − 1
ak if x > x∗

k−1

5 In the rest of the paper, we (ab)use the word “partition” to mean “elements of a partition”.
6 We do understand that our use of the word “pooling” is not standard in this literature.
7 We have used, without any loss of generality, the weak inequality on the left-hand side of the cutoff (as
the signal is generated using a continuous distribution). One may consider a partition strategy with the weak
inequality on the right-hand side of the cutoff in which case the following equilibrium analysis needs to be
modified accordingly.
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In G0
2, with 2 bid levels (a1, a2) and one cutoff x∗, a separating strategy σ can be

written as: σ = a1 if x ≤ x∗ and a2 otherwise. Similarly, one may formally express
any pooling strategy, with k > 2, using l (< k − 1) cutoffs.

We analyze symmetric equilibria (in which both bidders play the same partition
strategy) only, for the game G0

k , with k ≥ 2, in the rest of our paper.

Definition 2 A symmetric partition strategy profile for any game G0
k , with k ≥ 2, is

called a symmetric partition equilibrium if it is a Bayesian-Nash Equilibrium (BNE)
of the game, i.e., each bidder is playing optimally given the strategy of the other player.

We first characterize our separating equilibria. Clearly, one has to use the expression
for the expected payoff for a bidder i , ui (σ1, σ2), in such a characterization. In what
follows, in the rest of the paper, we abuse notations slightly for all these expected
payoffs and write it in terms of the bid level a player is active until, given the signal
x . For example, the expected payoff of bidder 1, ui (σ1, σ2), when bidder 1’s strategy
σ1 = b(x1) = a1, is denoted by u1 (a1, σ2).
Lemma 0. In G0

k , a symmetric separating strategy profile (σ1, σ2) each with k − 1
cutoffs (x∗

1 , . . . , x
∗
k−1) is a symmetric separating equilibrium if and only if all of the

following conditions are satisfied.
(i) u1

(
a j , σ2

)∣
∣
x1=x∗

j
= u1

(
a j+1, σ2

)∣
∣
x1=x∗

j
, j = 1, . . . , k − 1.

(i i) u1 (a1, σ2) > u1 (ah, σ2) if x1 ≤ x∗
1 , h > 1.

(i i i) u1 (ak, σ2) > u1 (ah, σ2) if x1 > x∗
k−1, h < k.

(iv) u1
(
a j , σ2

)
> u1 (ah, σ2) if x∗

j−1 < x1 ≤ x∗
j , j = 2, . . . , k − 1, h �= j , only

for k > 2.
(v) u1 (a1, σ2) ≥ u1 (0, σ2) = 0 if x1 ≤ x∗

1 .
(vi) 0 < x∗

1 < · · · < x∗
k−1 < 1.

The proof of Lemma 0 just uses standard BNE conditions: participation constraint,
incentive constraints and indifference conditions at all the cutoffs.8 The explicit proof
can be found in the Appendix.

Unfortunately, it is extremely difficult to analytically solve the set of constraints in
Lemma 0 and thereby find all partition equilibria for G0

k , particularly when k is not
small. The analysis is understandably easier for G0

2 or G
0
3; the case of G

0
2 is presented

in the next subsection.
Following Lemma 0, one may also characterize a (symmetric) pooling equilibrium

for any specific values of k and l. We do so, later in this paper, for G0
3 with l = 1, and

provide new lemmata for such equilibria.

3.1 Equilibrium in G0
2

Consider any given G0
2. Let us denote the bid levels by L (low) and H (high); that is,

k = 2 with a1 = L and a2 = H . A separating strategy for this game can be written in

8 The unconventional numbering—Lemma 0—was adopted for expositional clarity, so as to align the
numbering of the (three) lemmas in Sect. 3.2 with that of the respective Propositions’ numbering.
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Fig. 1 Seller’s expected revenue
(R2S ) in G0

2

terms of a cutoff signal x∗, 0 < x∗ < 1:

σ 2S =
{
L if x ≤ x∗
H if x > x∗

We use the superscript ‘2S’ to identify the number of discrete bid levels in the game
(‘2’) and ‘S’ to denote a separating strategy. The proof of the following proposition is
in the Appendix.9

Proposition 0. (i) For any L and H , satisfying L < 1
2 and L + 1

2 < H < 3
4 + L

2 , the
separating strategy σ 2 S , with x∗ = 2H−1

2(1+L−H)
, is the unique symmetric (Bayesian-

Nash) equilibrium of G0
2; seller’s expected revenue is maximized when L∗ = 1/4 and

H∗ = 3/4, with x∗ = 1/2 and R2S∗ = 5/8.
(i i) When H < 1/2, the unique symmetric equilibrium is for both players to play

H regardless of their signal.
(i i i) For L and H such that H > 3

4 + L
2 , the unique symmetric equilibrium is for

both players to play L regardless of their signal.
Note that in (i) of Proposition 0, L < 1

2 and L + 1
2 < H < 3

4 + L
2 together

implies H < 1. As noted in the proof of Proposition 0, whenever the symmet-
ric separating equilibrium σ 2S is played, the seller’s expected revenue is R2 S =
L+4LH−4LH2+3H−4H2+4HL2

4(1+L−H)2
. We observe that R2 S is lower than the revenue in a

JEA with continuous bids, where each bidder stays active up to twice her signal (that
is, b∗ (xi ) = 2xi ), given by E

[
P J E A

] = 2/3 (see Avery and Kagel 1997).
Figure1 displays this result, which is similar to that obtained by Rothkopf and

Harstad (1994, Proposition, p. 575) in a private values setting (insofar as the revenue
from a discrete bid auction is lower than in its continuous counterpart). Although
G0

2 yields ‘lost revenue’ compared to the continuous case, Proposition 0 provides the
second-best solution for which R2S∗ = 5/8. In this second best solution, “the loss

9 The unconventional numbering of this result—Proposition 0—has been adopted for expositional clarity,
so as to align the numbering of the (three) equilibria and Propositions in Sect. 3.2.
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of revenue” compared to the JEA with continuous bids is approximately 6.3%. It is,
although significantly higher than zero, not very high in percentage terms.

3.2 Pooling equilibria in G0
3

In the rest of the paper, we find results for G0
3 to be a good illustration of the type

of equilibria that may emerge in G0
k , with k > 3. In the game with three bid levels,

one may test three strategy profiles that are obvious possible candidates to pooling
equilibria, by checking whether they satisfy the equilibrium conditions. We denote
each of them with superscript ‘3P’ as ‘3’ refers to the number of discrete bid levels
in the game and ‘P’ denotes pooling equilibrium.

Below, we state and prove that all three candidate strategy profiles constitute an
equilibrium for this game under certain conditions on the bid levels, each as a proposi-
tion. Moreover, we find the best possible bid levels that maximize the seller’s revenue
in each case.

Each of these propositions relies on the characterization of a pooling equilibrium
in this set-up; we state the corresponding characterization result as a lemma in each
case. The proofs of the three lemmata follow steps similar to those used in the proof
of Lemma 0 and are thus omitted. The proofs of the propositions have been relegated
to the Appendix.

Let us start with the following partition strategy:

σ 3P1 =
{
L if x ≤ x∗
M if x > x∗

Clearly the above strategy is a pooling strategy. Intuitively, this strategymay emerge
naturally if one bidder believes the other bidder will not use H (and these beliefs would
be consistent in equilibrium). For instance, M could be significantly distant from H ,

leading one player to believe that H may not be used in equilibrium.

Lemma 1 In G0
3, the partition strategy σ 3P1 (with some x∗) is a symmetric pooling

equilibrium if and only if all of the following conditions are satisfied:

u1 (L, σ2)|x1=x∗ = u1 (M, σ2)|x1=x∗ (1)

u1 (L, σ2)|x1=0 ≥ 0[participation constraint] (2)

0 < x∗ < 1 (3)

u1 (L, σ2) ≥ u1 (M, σ2) if x1 ≤ x∗ (4)

u1 (L, σ2) ≥ u1 (H , σ2) if x1 ≤ x∗ (5)

u1 (M, σ2) ≥ u1 (L, σ2) if x1 > x∗ (6)

u1 (M, σ2) ≥ u1 (H , σ2) if x1 > x∗ (7)

It is now easy to state and prove our first proposition of this subsection, using the
above lemma.
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Proposition 1 For any L, M and H satisfying (i) L < 1
2 , (ii) L + 1

2 ≤ M < 3
4 + L

2 ,
and (iii) H ≥ 3

4 + M
2 + 2M−1

8(1+L−M)
, the partition strategy σ 3P1 , with x∗ = 2M−1

2(1+L−M)
,

constitutes a symmetric pooling equilibrium of G0
3; seller’s expected revenue from

such an equilibrium is maximized when L∗ = 1/4, M∗ = 3/4 and H∗ ≥ 5/4, with
x∗ = 1/2 and R3P∗

1 = 5/8.

Consider our second pooling partition strategy profile (σ 3P2 , σ 3P2), where,

σ 3P2 =
{
L if x ≤ x∗
H if x > x∗

In this partition strategy, the bid levelM is not used. Such (consistent in equilibrium)
beliefs could emerge naturally if M and H are sufficiently close to one another, thus
rendering dropping out at M rather useless (in terms of expected payoffs) compared
to the alternative of dropping out at H (and ending the auction); or when L and M are
sufficiently close, again rendering dropping out at M ineffective (in terms of expected
payoffs) vis-a-vis L.

Lemma 2 In G0
3, the partition strategy σ 3P2 (with some x∗) is a symmetric pooling

equilibrium if and only if all of the following conditions are satisfied:

u1 (L, σ2)|x1=x∗ = u1 (H , σ2)|x1=x∗ (8)

u1 (L, σ2)|x1=0 ≥ 0[participation constraint] (9)

0 < x∗ < 1 (10)

u1 (L, σ2) ≥ u1 (M, σ2) if x1 ≤ x∗ (11)

u1 (L, σ2) ≥ u1 (H , σ2) if x1 ≤ x∗ (12)

u1 (H , σ2) ≥ u1 (L, σ2) if x1 > x∗ (13)

u1 (H , σ2) ≥ u1 (M, σ2) if x1 > x∗ (14)

Proposition 2 For any L, M and H satisfying (i) L < 1/2, (ii) H > 1/2, (iii)
1−2H+4L2+4L+4LH

8L ≤ M < 3
4 + L

2 , and (iv) M ≥ 2L+2H−1
4 , the partition strategy

σ 3P2 , with x∗ = 2H−1
2(1+L+H−2M)

, constitutes a symmetric pooling equilibrium of G0
3;

seller’s expected revenue from such an equilibrium is maximized when L∗ = 1/4 and
M∗ = 9/8 − H∗/2, yielding x∗ = 1/2 and R3P∗

2 = 5/8.

Finally, we consider the following pooling partition strategy:

σ 3P3 =
{
M if x ≤ x∗
H if x > x∗

In this pooling strategy the bid level L is not used. This could be portrayed as a
belief (which is consistent in equilibrium) that dropping out at L is unlikely to occur
because the next best alternative—M—is better from an expected payoff viewpoint.
For instance, this may occur when L and M are fairly close to one another or when L
is particularly low and M is somewhat distant from it.
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Lemma 3 In G0
3, the partition strategy σ 3P3 (with some x∗) is a symmetric pooling

equilibrium if and only if all of the following conditions are satisfied:

u1 (M, σ2)|x1=x∗ = u1 (H , σ2)|x1=x∗ (15)

u1 (M, σ2)|x1=0 ≥ 0[participation constraint] (16)

0 < x∗ < 1 (17)

u1 (M, σ2) ≥ u1 (H , σ2) if x1 ≤ x∗ (18)

u1 (M, σ2) ≥ u1 (L, σ2) if x1 ≤ x∗ (19)

u1 (H , σ2) ≥ u1 (M, σ2) if x1 > x∗ (20)

u1 (H , σ2) ≥ u1 (L, σ2) if x1 > x∗ (21)

Proposition 3 For any L, M and H satisfying (i) 1/2 < H < 1 and (ii) 2H − 3/2 <

M ≤ H − 1/2, the partition strategy σ 3P3 , with x∗ = 2H−1
2(1+M−H)

, constitutes a

symmetric pooling partition equilibrium of G0
3; seller’s expected revenue from such

an equilibrium is maximized when M∗ = 1/4 and H∗ = 3/4, with any L < 1/4,
yielding x∗ = 1/2 and R3P∗

3 = 5/8.

These multiple equilibria emerge because of the interplay between beliefs and the
bid levels themselves. Observe that R3P∗

1 = R3P∗
2 = R3P∗

3 = R2 S∗
. Also, note that

pooling equilibria 3P1 and 3P3 are analogous to equilibrium 2S in the two bid level
case (Sect. 3.1): in either of those two equilibria, one of the ‘extreme’ bid levels (either
the highest bid level in equilibrium 3P1 or the lowest bid level in equilibrium 3P3) is
not played in equilibrium. Therefore, notice that the expression for x∗ in both those
equilibria is very similar to that obtained for equilibrium 2S (with two bid levels).

One may illustrate the above three propositions using a graphical analysis. A closer
look at the pooling equilibrium conditions of Propositions 1, 2 and 3 allows us to
identify, graphically, parameter regions for these equilibria to hold. Figure2 displays,
for three values of L—L = 1/10, L = 1/4 and L = 2/5—the boundaries of the range
of values for M and H that support each pooling equilibrium. In the first panel, we
identify the expressions in Propositions 1, 2 and 3 that correspond to each boundary.

Given the results of this subsection, note that the revenue-maximizing bid levels
may not coincide with the values of L we have considered in each plot and, naturally,
will not appear in all the plots of Fig. 2. Pooling equilibrium 1 (σ 3P1) holds for values
of M and H in the area bounded by the green/light brown lines in Fig. 2; the light
brown line is the revenue maximizing bid level choice for this equilibrium which,
as Proposition 1 points out, involves having L = 1/4. For this reason, the revenue-
maximizing choice of pooling equilibrium 1 only appears in the second panel (where
L = 1/4), and not in the other two panels. Pooling equilibrium 2 (σ 3P2) holds in the
area bounded by the black/red lines; the red line is the revenue maximizing bid level
choice for this equilibrium. As Proposition 2 shows, this revenue-maximizing choice
occurs when L = 1/4; therefore, it only appears in the second panel, with L = 1/4.
Finally, pooling equilibrium 3 (σ 3P3 ) holds in the area inside the blue triangle; the
brown point is the revenue maximizing bid level choice of this equilibrium and, as
Proposition 3 demonstrates, this requires L < 1/4. Out of the three values of L for
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Fig. 2 Equilibrium areas for pooling equilibria and revenue-maximizing choices for L = 1/10, L = 1/4
and L = 2/5

which we have plotted the equilibria regions in Fig. 2, only L = 1/10 satisfies this
condition and, therefore, this revenue-maximizing bid level choice only appears in the
first panel (where L = 1/10).

Analytically, it is possible to find values of the bid levels such that both pooling
equilibria σ 3P1 and σ 3P2 exist simultaneously, as well as σ 3P2 and σ 3P3, as inspection
of Fig. 2 confirms. Consider the first case: suppose L = 0.1, M = 0.7 and H = 1.5.
On the one hand, these bid levels may induce beliefs consistent with σ 3P1, because H
is very distant from M, thus making it plausible to believe that H may not be played
in equilibrium (and this belief is indeed consistent with σ 3P1). On the other hand, M
is closer to L than it is to H , thus making it plausible that bidders believe dropping
out at M to be less appealing (in terms of expected payoffs) than dropping out at either
L or H . We close this subsection with the following example in which two pooling
equilibria exist.

Example 1 Take aG0
3 with L = 1/4,M = 4/5 and H = 3/2, satisfying the conditions

of Proposition 1 aswell as of Proposition 2. In this game,we have two different pooling
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equilibria, σ 3P1 and σ 3P2 , characterized by two different cutoffs, respectively, 2/3 and
20/23. First, in the symmetric pooling partition equilibria σ 3P1 , each bidder is active
at L (but not at M or H ) when the signal is less than or equal to 2/3 and active at M
when the signal is larger than 2/3. Bidder i’s payoff, ui , from this equilibrium strategy
profile is given by ui = 1

3 xi + 1
36 if xi ≤ 2/3 (in which case bidder i plays L) and

ui = 5
6 xi − 1

36 if xi > 2/3 (in which case bidder i plays M). Second, in the symmetric
pooling partition equilibria σ 3P2 , each bidder is active at L (but not at M or H ) when
the signal is less than or equal to 20/23 and active at H when the signal is larger
than 20/23. Bidder i’s payoff, ui , from this equilibrium strategy profile is given by by
ui = 10

23 xi + 85
1058 if xi ≤ 20/23 (in which case bidder i plays L) and ui = 43

46 xi − 375
1058

if xi > 20/23 (in which case bidder i plays H ). Onemay compare these two equilibria
by their ex-ante expected payoffs (for each bidder i) that are respectively 2

9 (= 0.222)
for σ 3P1 and 639

2116 (= 0.302) for σ 3P2 ; hence, the equilibrium σ 3P2 is better for the
bidders.

3.3 Separating equilibria in G0
3

One may be interested in constructing a separating equilibrium for any given G0
3.

Following Definition 1 and Lemma 0, a separating strategy for G0
3 with three bid

levels, L , M and H can be written using two cutoffs x∗ (= x∗
1 ) and y∗ (= x∗

2 )
as (we use the superscript ‘3S’ to identify the number of discrete bid levels in the
game—‘3’—and ‘S’ to denote separating equilibrium):

σ 3S =
⎧
⎨

⎩

L if x ≤ x∗
M if x∗ < x ≤ y∗

H if x > y∗

From Lemma 0, we can construct a symmetric separating equilibrium using the
above strategy. However, this computation needs to be carried out numerically, as no
analytical solution can be found. We proceed in the following way. For given values
of L , M and H , we simulate, numerically, the equilibrium values of x∗ and y∗, for
three levels of L: L = 1/10, L = 1/4 and L = 2/5. For a given level of L, we
then (iteratively) assume values for the other two bid levels, such that L < M < H ,
and find the equilibrium values of x∗ and y∗. The simulation is carried out in 0.025
increments for values of M and H above L and below 2 such that L < M < H .
Figure3displays the parameter region for a separating equilibrium to exist. This is
given by the shaded area. In other words, when we fix the level of L and then vary
M and H (in such a way that L < M < H), the shaded area depicts the bid level
combinations that satisfy all equilibrium conditions.

An interesting special case is that of ‘equally distanced bids’. This may have two
differentmeanings: (i) three equally distanced bid levels that partition the [0, 2] interval
in 4 equally sized segments; or (ii) three equally spaced bid levels that partition the
[0,2] interval in less than 4 equally sized segments. The only possible bid levels that
satisfy (i) are L = 1/2, M = 1 and H = 3/2. Several bid level combinations satisfy
(ii): for example, L = 1/3, M = 2/3 and H = 1 (which generates 3 equally sized
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Fig. 3 Equilibrium (shaded) area of the separating equilibrium for L = 1/10, L = 1/4 and L = 2/5

segments in the [0, 2] interval) or L = 2/5, M = 3/5 and H = 4/5 (which generates
2 equally sized segments in the [0, 2] interval). With respect to (i), it is straightforward
to confirm that these bid levels do not generate a pooling equilibrium, as they do not
satisfy the conditions put forward by Propositions 1, 2 and 3. Inspection of Fig. 3
shows that a separating equilibrium does not exist for these bid levels either.

Consider case (ii) now. Suppose the difference between all bid levels is a constant
δ, that is, H − M = M − L = δ. We have plotted these bid levels in Fig. 3 as a
straight line segment which we define as ‘equally distanced bids’. Note that for all
three cases in Fig. 3, a range of values for δ supports a separating equilibrium. In fact,
we found that whenever 1/2 < δ < 3/4, there always exists a range of values of L
which supports a separating equilibrium. For instance, when δ = 0.6, we found that
any L < 3/10 supports a separating equilibrium; therefore, the ‘equally distanced
bids’ line crosses the shaded area in the first and second panels of Fig. 3 (L = 1/10
and L = 1/4), but not in the third panel (where L = 4/10, in which case M = 1 and
H = 1.6 would be the bid levels consistent with δ = 0.6).

Note that the separating equilibrium is supported by bid levels that also support
pooling equilibria 1 and 2 (intersection of the shaded area, the area bounded by the
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Fig. 4 Revenue levels for
revenue-maximizing choices of
M and H (for a given L) in each
of the equilibria

green/light brown lines and the area bounded by the black/red lines) or only pooling
equilibrium 2. For low values of L (e.g., L = 1/10), the separating equilibrium
support region also overlaps partially with that of pooling equilibrium 3. In other
words, whenever the separating equilibrium exists, it coexists with at least one pooling
equilibrium. The reverse, however, is not true: there exist bid levels which support at
least one pooling equilibrium, but not a separating equilibrium.

It is not possible to analytically find the revenue maximizing choice of bid levels
for the auctioneer. However, through our simulations, we uncover a novel result. First,
assume that the auctioneer cannot freely choose one of the bid levels. For simplicity,
assume that L is, for some reason, fixed. Under those circumstances, one can obtain the
revenuemaximizing choices ofM and H for each of the (three) pooling and (multiple)
separating equilibria, that is, the choice of M and H (for a given L) that satisfies all
equilibrium conditions and that yields the maximum revenue. Figure4 displays the
maximum revenue levels that can be obtained in each of the three pooling equilibria
as well as among the multiple separating equilibria for a given L .

Interestingly, note that for a given L (that by our assumption the auctioneer cannot
freely change), the separating equilibrium generates a higher revenue than any of the
pooling equilibria. In other words, although restricted in his choice (because L cannot
be freely chosen), the auctioneer strictly prefers to choose bid levels for M and H
that elicit a separating equilibrium. It is also important to note, however, that these
revenue-maximizing bid levels in the separating equilibrium are located in a region in
Fig. 3 where both pooling equilibrium 2 and the separating equilibrium can coexist (as
well as pooling equilibrium 3 for relatively low values of L). Therefore, a “multiple-
equilibria” problem arises and actual revenue will depend on which equilibrium will
be played.
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If the auctioneer had no such restrictions on the choice of bid levels, then Fig. 4
also shows the absolute maximum revenue that can be attained in the separating equi-
librium, which, naturally, is higher than the maximum revenue attainable in any of
the pooling equilibria. This is achieved when L � 0.16665, M � 0.499975 and
H � 1.055525. Revenue is approximately 0.648. This value can be compared with
the maximum possible revenue under any of the pooling equilibria with three bid
levels or the separating equilibrium with two bid levels (0.625) and the maximum
revenue under a JEA with continuous bid increments (2/3 � 0.667; see Avery and
Kagel 1997). Therefore, the highest possible revenue is obtained through a JEA with
continuous bid increments, followed by a separating equilibrium with three bid levels
and the lowest revenue is obtained through any of the pooling equilibria with three bid
levels or the separating equilibriumwith two bid levels. In a nutshell, we obtain a result
that is similar to that of Rothkopf and Harstad (1994, Proposition, p. 575) in a private
values setting, insofar as the revenue from a discrete bid level auction is lower than its
continuous counterpart. However, the ‘lost revenue’ compared to the continuous case
JEA is significantly lower if the auctioneer can elicit a separating equilibrium.

It is perhaps intuitive that a separating equilibrium generates the highest expected
revenue, as it is consistent with the ideas that, in equilibrium, (i) more information
is better (no information is disregarded) and (ii) a bidder’s (consistent) belief is that
their opponent is using all the available information. In the face of this, we conjecture
that more discrete bid levels (and therefore a finer partition) may lead to even higher
expected revenues in a separating equilibrium, thus approaching the continuous JEA.

4 Conclusion

In a JEA for the wallet game with continuous bid levels, we have shown that a parti-
tion equilibrium based on cutoffs in signals exists where the bidders use only weakly
increasing partition strategies.We have characterized these equilibria that can be pool-
ing or separating. We illustrated a few such equilibria with two and three discrete bid
levels. Under our partition equilibrium, seller’s expected revenue is strictly lower than
that of the continuous JEA; the seller can, however, optimally choose the bid levels
to maximize the expected revenue. In this second best solution, the ‘loss of revenue’
compared to the JEA with continuous bid increments is not very high in percentage
terms and it is the lowest under a separating equilibrium. Our paper thus provides
some understanding of how bid levels could be optimally chosen by the seller, having
fixed the number of bid levels.

The rationale behind our result is relatively straightforward: given discrete bid lev-
els, the partition equilibrium leads the players to bid up to the lowest discrete bid level
‘too’ often, and that reduces the expected revenue compared to the continuous bidding
JEA. With continuous bid levels, the players can easily infer (from the equilibrium
strategies) their opponent’s signal and thus accurately calculate their payoff. However,
with discrete bid levels, such an accurate inference is no longer possible and bidding
up to the low bid level more often provides a ‘safety net’ under such “uncertainty”.

Our construction of equilibrium is somewhat similar to the recent work by Ettinger
and Michelucci (2016a) and Hernando-Veciana and Michelucci (2018) in a different
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environment: these results are all related to a type of bunching which is endogenously
determined (in their papers, by jump bids or by the choice of a 2-stage mechanism
while in our work by the choice of the bid levels). Also, Ettinger and Michelucci
(2016b) analyze a simple example in which partitions can be induced by jump bidding
(Proposition 4 in their paper).

Needless to add, it is certainly an interesting question whether a general result for
the set of equilibria can be obtained in the games analyzed in this paper for more
than three bid levels. Future research could characterize the set of all such partition
equilibria for any number of discrete bids and other (non-partition) equilibria, if any.
However, our framework suggests that this is inherently a rather complex task and the
nature of the results that could emerge from such an endeavor could be well captured
by our model with three exogenous and discrete bid levels.

JEA with discrete bids may present other advantages to the auctioneer or to the
bidders, such as reducing the duration or an easier understanding of the rules, issues
that are particularly important in online auctions. Thus, it may very well be the case
that it becomes an even more attractive auction format in the future, in which case
more analysis should be devoted to this format than its continuous bid counterpart.

Whether our partition equilibria are played is also a question well-suited for
experimental testing. In a very simple set-up, with two or three discrete bid lev-
els, although multiple (separating or pooling) equilibria exist, our analysis provides
helpful indications regarding equilibrium selection.

Finally, our discrete JEA setup diverges to a significant extent from the concept
of a second-price auction: whilst in a continuous JEA, the final auction price would
be approximately equal to the drop-out price of the second highest bidder, that is not
the case in our discrete JEA. Therefore, an interesting research question is whether
in a common value discrete bid second-price sealed bid auction we can also find
equilibria, pooling or separating, that are similar in nature to those we obtain for the
discrete JEA.10 This line of research would extend to a common value environment
the work of Mathews and Sengupta (2008) and Sandoval (2014) in a private values
setting. These are likely to be the next steps in our future research.
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Appendix (Proofs)

We collect the proofs of our results in this section.

10 We thank Marek Weretka (Associate Editor) for this suggestion.
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Proof of Lemma 0 As the game is symmetric and we are considering symmetric strat-
egy profiles only, it is enough to show the equilibrium conditions (for BNE) for one of
the players (bidders). We thus consider bidder 1 and prove that for each signal (type),
the corresponding separating bidding strategy is indeed the best response, against the
given σ2, if and only if the conditions in the Lemma 0 are met. These conditions are:
i . indifference at the cutoffs, i i . incentive constraints for each partition, i i i . activation
constraint (active at a1) which implies the participation constraint (at the beginning of
the auction) and iv. feasibility constraints for the cutoff points.

(i) u1
(
a j , σ2

)∣
∣
x1=x∗

j
= u1

(
a j+1, σ2

)∣
∣
x1=x∗

j
, j = 1, . . . , k−1: this is the indiffer-

ence condition at any cutoff point x∗
j ; when the signal (type) of bidder 1 is x

∗
j , bidder

1 must be indifferent between choosing a j and a j+1.
(i i) u1 (a1, σ2) > u1 (ah, σ2) if x1 ≤ x∗

1 , h > 1 is the incentive constraint for the
first partition, below x∗

1 ; when the signal (type) of bidder 1 is any x1 ≤ x∗
1 , bidder

1 prefers a1 to any other ah , h > 1. Similarly, (i i i) u1 (ak, σ2) > u1 (ah, σ2) if
x1 > x∗

k−1, h < k, is the incentive constraint for the last partition, above x∗
k−1; when

the signal (type) of bidder 1 is any x1 > x∗
k−1, bidder 1 prefersak to any otherah , h < k.

We also need (iv) u1
(
a j , σ2

)
> u1 (ah, σ2) if x∗

j−1 < x1 ≤ x∗
j , j = 2, . . . , k − 1,

h �= j which is the incentive constraint for any other partitions and, obviously, it’s
needed only for k > 2.

(v) u1 (a1, σ2) ≥ u1 (0, σ2) = 0 if x1 ≤ x∗
1 is simply the activation constraint,

implying u1 (a1, σ2)|x1=0 ≥ 0 which is the participation constraint. Finally, (vi) 0 <

x∗
1 < · · · < x∗

k−1 < 1 provide the feasibility constraints. Hence the lemma.

Proof of Proposition 0 First note that there are only two potential candidate profiles
which are based on two signal-independent strategies of staying active until L or H
regardless of the signal. We denote these profiles by (L, L) and (H , H).

Suppose H < 1/2.The condition x1 > H−1/2 is required in order for u1(H , H)−
u1(L, H) > 0. This implies that for any H < 1/2, playing H is a best response to
H for any x1. Therefore, whenever H < 1/2, playing H is a signal-independent
equilibrium of the auction game.

Now suppose H > 3
4 + L

2 . In particular, suppose that H = 3/4 + L/2 + ε, with
ε > 0. In this case, L is a best response when x1 < 1 − 2(3/4 + L/2 − H), which is
equivalent to x1 < 1+ 2ε. As ε > 0, this is always true, which means that for any x1,
L is a signal-independent equilibrium for both players.

Consider now L and H , satisfying L < 1
2 and L + 1

2 < H < 3
4 + L

2 . In this case, to
prove that (L, L) cannot be an equilibrium, we note that there are realizations of x1 for
bidder 1 forwhich bidding L is not a best response against L . To see this, take 1 > x1 >

1−2( 34+ L
2 −H). In this case, u1 (H , L)−u1 (L, L) = (x1+ 1

2−H)− 1
2 (x1+ 1

2−L) >

0 (as, under the assumed bid level restrictions, 1 − 2( 34 + L
2 − H) < 1). Similarly,

we prove that (H , H) cannot be an equilibrium by showing that there are realizations
of x1 for bidder 1 for which bidding H is not a best response against H . To see this,
take 0 < x1 < H − 1/2. Here, u1 (L, H) − u1 (H , H) = 1

2 (H − 1
2 − x1) > 0.

Now we show that σ 2S constitutes an equilibrium. We first compute the (expected)
payoffs for a bidder from the partition strategy profile; without loss of generality,
we consider bidder 1. When bidder 2 has a signal x2 ≤ x∗ and bids L, using
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the uniform distribution, bidder 1 expects bidder 2 to have a signal realization
equal to x∗/2; similarly, when bidder 2 has a signal x2 > x∗ and bids H , bid-
der 1 expects bidder 2 to have a signal realization equal to (1 + x∗) /2. Bidder 1’s
expected payoffs thus are given by: u1

(
L, σ 2 S

) = x∗. 12 (x1 + x∗
2 − L) + (1 − x∗).0

and u1
(
H , σ 2 S

) = x∗.(x1 + x∗
2 − H) + (1 − x∗) . 12 .(x1 + 1+x∗

2 − H). Setting
the indifference condition (as in Lemma 0) u1

(
L, σ 2 S

) = u1
(
H , σ 2 S

)
, we get

x∗ = 2x1+1−2H
2(H−L)

, which implies that when x1 = x∗, u1
(
L, σ 2 S

) = u1
(
H , σ 2 S

)

provided x∗ = 2H−1
2(1+L−H)

. Substituting this cutoff x∗ in the expected payoffs, we

obtain u1
(
L, σ 2 S

) − u1
(
H , σ 2 S

) = 1
4
2H−1−2x1(1+L−H)

1+L−H = 1
2 (x∗ − x1).

Hence, for bidder 1, if x1 > x∗, we have u1
(
H , σ 2 S

)
> u1

(
L, σ 2 S

)
, that is, with

a high signal realization (above x∗), bidder 1 prefers to bid H , and when x1 ≤ x∗,
we have u1

(
L, σ 2 S

)
> u1

(
H , σ 2 S

)
, that is, with a low signal realization (below x∗),

bidder 1 prefers to bid L , which confirms the desired equilibrium condition (incentive
constraint as in Lemma 0).

We now have to confirm the feasibility constraint that x∗ ∈ (0, 1); this is guaranteed
because x∗ > 0 ⇔ H > 1/2 and x∗ < 1 ⇔ H < 3

4 + L
2 .

Finally, we need to check the activation (and thus the participation) constraint that
the payoffs cannot be negative (otherwise bidders would prefer not to be active) at L .
As u1

(
L, σ 2S

)
is increasing in x1, we just need to ensure that u1

(
L, σ 2 S

)∣
∣
x1=0 =

(1−2H)(1+2L)(2L+1−H)

16(H−L−1)2
> 0. The above is indeed true; the denominator is always

positive and for the numerator to be positive we must have either H < 1/2 and
H < L + 1/2, which we disregard because it would not yield a positive cutoff x∗,
or we must have H > 1/2 and H > L + 1/2, which is guaranteed by the parameter
range.

The expected revenue for the seller from this equilibrium comes from L when
both players play L (occurs with probability (x∗)2) and H in all other cases (i.e.,
when at least one bidder bids H). Thus the seller’s expected revenue (R2S) is:
R2 S = (x∗) (x∗) L + (x∗) (1 − x∗) H + (1 − x∗) (x∗) H + (1 − x∗) (1 − x∗) H =
L+4LH−4LH2+3H−4H2+4HL2

4(1+L−H)2
. Now, to obtain the revenue-maximizing values of L and

H , we need to solve the following optimization problem (rearranging the inequality
restrictions):

maxL,H R2 S = L+4LH−4LH2+3H−4H2+4HL2

4(1+L−H)2
subject to 1/2 − L ≥ 0, H − L −

1/2 ≥ 0, 3/4 + L/2 − H ≥ 0, L ≥ 0 and H ≥ 0.
Wenowset up theLagrangian: Z = L+4LH−4LH2+3H−4H2+4HL2

4(1+L−H)2
+y1 (1/2 − L)+

y2 (H − L − 1/2)+y3 (3/4 + L/2 − H), with yi ’s as themultipliers.We then use the
Kuhn-Tucker conditions for the above Lagrangian. First, as we are looking for L∗ > 0
and H∗ > 0, we have ∂Z

∂L = 0 and ∂Z
∂H = 0. Now, when ∂Z

∂ y2
= H − L −1/2 = 0 (that

is, when H = L+1/2), we have y2 > 0 and the expected revenue is a concave function
of L. This implies ∂Z

∂ y1
= 1/2 − L > 0 and also ∂Z

∂ y3
= 3/4 + L/2 − H > 0, thereby

y1 = 0 and y3 = 0. Thus we have three equations, namely, ∂Z
∂L = 0, ∂Z

∂H = 0 and
∂Z
∂ y2

= 0 that we can solve with respect to L , H and y2. Solving these, we get L∗ = 1/4
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and H∗ = 3/4 (with y∗
2 = 3/4). Finally, substituting these values into x∗ = 2H−1

2(1+L−H)

and into R2S we obtain x∗ = 1/2 and R2S∗ = 5/8, proving Proposition 0.

Proof of Proposition 1 Start with Eq. (1). Bidder 1’s expected payoff under the cutoff
strategy profile is:

u1 (L; σ2) = x∗ 1
2

(

x1 + x∗

2
− L

)

(22)

u1 (M; σ2) = x∗
(

x1 + x∗

2
− M

)

+ (
1 − x∗) 1

2

(

x1 + 1 + x∗

2
− M

)

(23)

Setting u1 (L; σ2) = u1 (M; σ2), we obtain x∗ = 2x1+1−2M
2(M−L)

, that is, when x1 = x∗,
the two payoffs are equal provided x∗ = 2M−1

2(1+L−M)
.

In order to have x∗ ∈ (0, 1) (Eq. (3)), we must have:

x∗ > 0 ⇔ M > 1/2 and M < L + 1 (24)

x∗ < 1 ⇔ M <
3

4
+ L

2
(25)

The second condition on M (M < 3
4 + L

2 ) is more stringent than the first one
(M < L+1), that is, the first condition is always satisfied when the second one holds.
In addition, payoffs cannot be negative (otherwise bidder 1 would prefer not to bid),
that is, the participation constraint must be satisfied (Eq. (2)). Because u1 (L; σ2) is
increasing in x1, we need to ensure that:

u1 (L; σ2)|x1=0 = (1 − 2M) (1 + 2L) (2L + 1 − 2M)

16 (M − L − 1)2
≥ 0 (26)

The denominator is always positive. For the numerator to be positive we must have
M < 1/2 and M < L + 1/2. The former is more stringent and would need to hold
for the participation constraint to be satisfied, but in that case (M < 1/2), the cutoff
x∗ would be negative. Therefore, we disregard this condition. Alternatively, we must
have M > 1/2 and M > L + 1/2, with this latter condition being more stringent
than the former. Combining this condition with the earlier restrictions, we must have
L + 1/2 ≤ M < 3

4 + L
2 . In addition, in order for this range to be positive, L < 1/2.

Using this cutoff x∗, we thus obtain:

u1 (L; σ2) − u1 (M; σ2) = 1

4

2M − 1 − 2x1 (1 + L − M)

1 + L − M

= 1

2

(
x∗ − x1

)
(27)

If, for bidder 1, x1 > x∗, we have u1 (L; σ2)− u1 (M; σ2) < 0, that is, with a high
signal realization (above x∗), bidder 1 prefers to bid M, and when x1 ≤ x∗, we have
u1 (L; σ2) ≥ u1 (M; σ2) , that is, with a low signal realization (below x∗), bidder 1
prefers to bid L. Therefore, Eqs. (4) and (6) are satisfied.
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Also, bidder 1 cannot prefer to deviate and play H when bidder 2 plays σ2 (Eq. (7)).
That is, the following must hold: u1 (M; σ2) − u1 (H ; σ2) ≥ 0, or equivalently
1
4 (1 − x∗) (4H − x∗ − 2M − 1 − 2x1) ≥ 0. This expression is decreasing with x1,
whichmeans that it must be positive when x1 = 1 (the highest possible signal). Setting
x1 = 1 and substituting x∗ = 2M−1

2(1+L−M)
we obtain:

H ≥ 3

4
+ M

2
+ 2M − 1

8 (1 + L − M)
(28)

From Eq. (5), we obtain:

u1 (L, σ2)−u1 (H , σ2) = x1

(
1

2
x∗ − 1

)

+x∗
(
1

4
x∗ − L

2
+ M − H

)

+H−1

2
(29)

This expression is decreasing in x1, which means that it must be positive when
x1 = x∗ in order for Eq. (5) to be satisfied. The necessary condition is:

H ≥ 2L + 4ML + 8M − 4M2 − 1

8 (1 + L − M)
(30)

This condition, in Eq. (30), is less stringent than Eq. (28) and, therefore, it is always
satisfied when Eq. (28) holds.

The seller’s revenue from the equilibrium (σ 3P1 , σ 3P1) is given by:
R3P1 = x∗x∗L + 2x∗(1 − x∗)M + (1 − x∗)(1 − x∗)M =

L+4LM−4LM2+3M−4M2+4ML2

4(1+L−M)2
. Recall that in this symmetric pooling equilibrium,

each player stays active until L with probability x∗ and active until M with probability
(1− x∗). To obtain the revenue-maximizing values of L, M and H ,we therefore need
to solve the following optimization problem (rearranging the equilibrium inequality
restrictions):

max
L,M,H

R3P1 = L + 4LM − 4LM2 + 3M − 4M2 + 4ML2

4 (1 + L − M)2

subject to 1/2−L ≥ 0, 3/4+L/2−M ≥ 0,M−L−1/2 ≥ 0, H− 3
4−M

2 − 2M−1
8(1+L−M)

≥
0, M − L ≥ 0 and H − M ≥ 0.

We set up the Lagrangian as below, where yi ’s are the multipliers:

Z = L + 4LM − 4LM2 + 3M − 4M2 + 4ML2

4 (1 + L − M)2
+

+y1 (1/2 − L) + y2 (3/4 + L/2 − M) + y3 (M − L − 1/2) +
+y4

(

H − 3

4
− M

2
− 2M − 1

8 (1 + L − M)

)

+ y5 (M − L) + y6 (H − M) (31)

We are now going to use the Kuhn-Tucker conditions for the above Lagrangian.
First, note that as we are looking for L∗ > 0, M∗ > 0 and H∗ > 0, we must have
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∂Z
∂L = 0, ∂Z

∂M = 0 and ∂Z
∂H = 0. These expressions are lengthy and we omit them from

the proof.
Recall from Proposition 1 that in equilibrium we must have L < 1/2 and M <

3
4 + L

2 . This implies that y1 = y2 = 0.Also, by definition, M > L and H > M,which
implies that y5 = y6 = 0.Assume for now that the condition H− 3

4− M
2 − 2M−1

8(1+L−M)
≥

0 does not bind, that is, that H − 3
4 − M

2 − 2M−1
8(1+L−M)

> 0, in which case we have
y4 = 0. Also assume that the third restriction binds, which implies that y3 > 0 and
∂Z
∂ y3

= M − L − 1/2 = 0, which is equivalent to M = L + 1/2.11 This also implies

that ∂Z
∂H = 0. Substituting M = L + 1/2 in the remaining two first-order conditions

(which we had omitted thus far)—∂Z/∂L and ∂Z/∂M—, we obtain:

∂Z

∂L
= 12L2 − y3 = 0 (32)

∂Z

∂M
= 1 − 4L − 12L2 + y3 = 0 (33)

From these two equations we obtain L∗ = 1/4. Substituting into M = L + 1/2
we obtain M∗ = 3/4. Condition H − 3

4 − M
2 − 2M−1

8(1+L−M)
was assumed not to bind,

which implies that H∗ > 5/4.
When H − 3

4 − M
2 − 2M−1

8(1+L−M)
is assumed to bind, we obtain a unique solution:

L∗ = 1/4, M∗ = 3/4 and H∗ = 5/4. Therefore, revenue is maximized when L∗ =
1/4, M∗ = 3/4 and H∗ ≥ 5/4. Finally, substituting these values into x∗ = 2M−1

2(1+L−M)

and into R3P1 we obtain x∗ = 1/2 and R3P1 = 5/8.

Proof of Proposition 2 Start with Eq. (8). Setting u1 (L, σ2)|x1=x∗ = u1 (H , σ2)|x1=x∗
we obtain x∗ = 2H−1

2(1+L+H−2M)
.

In order to have x∗ ∈ (0, 1) (Eq. (10)), we must have:

x∗ > 0 ⇔ H > 1/2 and M <
1 + L + H

2
(34)

x∗ < 1 ⇔ M <
3

4
+ L

2
(35)

The second condition on M (M < 3
4 + L

2 ) is more stringent than the first one
(M < 1+L+H

2 ) when H > 1/2, that is, provided H > 1/2, the first condition is
always satisfied when the second one holds. In addition, payoffs cannot be negative
(otherwise bidder 1 would prefer not to bid), that is, the participation constraint must
be satisfied (Eq. (9)). Because u1 (L; σ2) is increasing in x1, we need to ensure that:

u1 (L; σ2)|x1=0 = (2H − 1)
(
2H − 1 − 4L − 4L2 + 8LM − 4LH

)

16 (1 + L + H − 2M)2
≥ 0 (36)

11 If this restriction does not bind, all multipliers are equal to 0 and there are no values positive values of
L, M and H that satisfy ∂Z

∂L = 0, ∂Z
∂M = 0 and ∂Z

∂H = 0. Therefore, optimality requires this constraint to
bind.
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The denominator is always positive. For the numerator to be positive we must
have H > 1/2 and 1−2H+4L2+4L+4LH

8L ≤ M . In addition, in order for the range
1−2H+4L2+4L+4LH

8L ≤ M < 3
4 + L

2 to be positive, L < 1/2. When x∗ =
2H−1

2(1+L+H−2M)
, it is straightforward to show that Eqs. (12) and (13) are satisfied,

because:

u1 (L, σ2) − u1 (H , σ2) = 1

2

⎛

⎜
⎜
⎜
⎝

x∗
︷ ︸︸ ︷

2H − 1

2 (1 + L + H − 2M)
− x1

⎞

⎟
⎟
⎟
⎠

(37)

Turning our attention to Eq. (11), we obtain:

u1 (L, σ2) − u1 (M, σ2) = x∗
(

−1

2
x1 − 1

4
x∗ − 1

2
L + M

)

(38)

This expression is decreasing in x1, which means that in order for Eq. (11) to
be satisfied, it must be positive when x1 = x∗. Substituting x∗ = 2H−1

2(1+L+H−2M)
,

this implies that, in addition to other necessary constraints (namely H > 1/2 and
M < 3

4 + L
2 ), M ≥ 2L+2H−1

4 . Whenever this inequality holds, Eq. (14) is also
satisfied.

The seller’s revenue from the equilibrium (σ 3P2 , σ 3P2) is given by:
R3P2 = x∗x∗L + 2x∗(1 − x∗)M + (1 − x∗)(1 − x∗)H =

L+8LH+4LH2−6M−4LM+8M2−12MH−8HLM+9H+4HL2

4(1+L+H−2M)2
. Recall that in this symmet-

ric pooling equilibrium, each player stays active until L with probability x∗ and active
until H with probability (1− x∗). Therefore, with probability 2x∗(1− x∗), one player
will drop out at M whilst the other is still active, leading the auction to end at that
price. In order to obtain the revenue-maximizing values of L, M and H , we need
to solve the following optimization problem (rearranging the equilibrium inequality
restrictions):

max
L,M,H

R3P2 = L + 8LH + 4LH2 − 6M − 4LM + 8M2 − 12MH − 8HLM + 9H + 4HL2

4 (1 + L + H − 2M)2

subject to 1/2 − L ≥ 0, 3/4 + L/2 − M ≥ 0, M − 1−2H+4L2+4L+4LH
8L ≥ 0,

H − 1/2 ≥ 0, M − 2L+2H−1
4 ≥ 0, M − L ≥ 0 and H − M ≥ 0.

We set up the Lagrangian as below, where yi ’s are the multipliers:

Z = L + 8LH + 4LH2 − 6M − 4LM + 8M2 − 12MH − 8HLM + 9H + 4HL2

4 (1 + L + H − 2M)2
+

+y1 (1/2 − L) + y2 (3/4 + L/2 − M) + y3

(

M − 1 − 2H + 4L2 + 4L + 4LH

8L

)

+

+y4 (H − 1/2) + y5

(

M − 2L + 2H − 1

4

)

+ y6 (M − L) + y7 (H − M) (39)
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We are now going to use the Kuhn-Tucker conditions for the above Lagrangian.
First, note that as we are looking for L∗ > 0, M∗ > 0 and H∗ > 0, we must have
∂Z
∂L = 0, ∂Z

∂M = 0 and ∂Z
∂H = 0. These expressions are lengthy and we omit them from

the proof.
Recall from Proposition 2 that in equilibrium we must have L < 1/2, M < 3

4 + L
2

and H > 1/2. This implies that y1 = y2 = y4 = 0. Also, by definition, M > L
and H > M, which implies that y6 = y7 = 0. Assume for now that the condition
M− 2L+2H−1

4 ≥ 0does not bind, that is, thatM− 2L+2H−1
4 > 0, inwhich casewehave

y5 = 0.12 Also assume the third restriction binds, which implies that y3 > 0 and ∂Z
∂ y3

=
M − 1−2H+4L2+4L+4LH

8L = 0 which is equivalent to M = 1−2H+4L2+4L+4LH
8L .13

Substituting this expression in the remaining three first-order conditions (which we
had omitted thus far)—∂Z/∂L, ∂Z/∂M and ∂Z/∂H—, we obtain:

∂Z

∂L
= −4y3H2 + 4y3H − 8y3HL2 + 32L3H − y3 + 192L5 − 16L3 + 4y3L2 − 32L4

8L2 (2H − 1)
= 0

(40)
∂Z

∂M
= 2y3H + 8L2 − y3 − 48L3

2H − 1
= 0 (41)

∂Z

∂H
=

(1 − 2L)
(
2y3H + 8L2 − y3 − 48L3

)

4L (2H − 1)
= 0 (42)

Looking at Eqs. (41) and (42), we find that they are satisfied provided y3 =
8L2(6L−1)

2H−1 . Substituting this expression in Eq. (40), we obtain L∗ = 1/4. Then sub-

stituting this in ∂Z
∂ y3

= M − 1−2H+4L2+4L+4LH
8L = 0, we obtain M∗ = 9/8 − H∗/2.

Finally, substituting these values into x∗ = 2H−1
2(1+L+H−2M)

and into R3P2 we obtain

x∗ = 1/2 and R3P2 = 5/8.

Proof of Proposition 3 Start with Eq. (15). Setting u1 (M, σ2)|x1=x∗ =
u1 (H , σ2)|x1=x∗ we obtain x∗ = 2H−1

2(1+M−H)
.

In order to have x∗ ∈ (0, 1) (Eq. (17)), we must have:

x∗ > 0 ⇔ H > 1/2 and M > H − 1 (43)

x∗ < 1 ⇔ M > 2H − 3/2 (44)

The second condition on M (M > 2H − 3/2) is more stringent than the first one
(M > H−1), that is, the first condition is always satisfied when the second one holds.
In addition, payoffs cannot be negative (otherwise bidder 1 would prefer not to bid),
that is, the participation constraint must be satisfied (Eq. (16)). Because u1 (M; σ2) is

12 When this condition binds, we obtain a unique solution: L∗ = 1/4, M∗ = 1/2 and H∗ = 5/4. Note,
however, that this solution is consistent with the bid levels obtained when the condition does not bind:
L∗ = 1/4 and M∗ = 9/8 − 1/2H∗.

13 If this restriction does not bind, all multipliers are equal to 0 and there are no values positive values of
L, M and H that satisfy ∂Z

∂L = 0, ∂Z
∂M = 0 and ∂Z

∂H = 0. Therefore, optimality requires this constraint to
bind.
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increasing in x1, we need to ensure that:

u1 (M; σ2)|x1=0 = (2H − 1) (2M + 1) (2H − 2M − 1)

16 (1 + M − H)2
≥ 0 (45)

The denominator is always positive. For the numerator to be positive we have H >

1/2 and M ≤ H −1/2. In addition, in order for the range 2H −3/2 < M < H −1/2
to be positive, H < 1. When x∗ = 2H−1

2(1+M−H)
, it is straightforward to show that

Eqs. (18) and (20) are satisfied:

u1 (H , σ2) − u1 (M, σ2) = 1

2

⎛

⎜
⎜
⎜
⎝
x1 −

x∗
︷ ︸︸ ︷

2H − 1

2 (1 + M − H)

⎞

⎟
⎟
⎟
⎠

(46)

Also, provided M ≤ H − 1/2, Eq. (19) is also satisfied. Turning our attention to
Eq. (21), we obtain:

u1 (H , σ2) − u1 (L, σ2) = 1

2

[

x1
(
x∗ + 1

) + x∗
(
1

2
x∗ − H

)

+
(
1

2
− H

)]

(47)

This expression is increasing with x1, which means that in order for Eq. (21) to be
satisfied, it must be (weakly) positive when x1 = x∗. Substituting x∗ = 2H−1

2(1+M−H)
,

this implies that H ≥ 3+4M+4M2

6+4M . Whenever M ≤ H − 1/2 or, equivalently, when
H ≥ M + 1/2, this condition is always satisfied.

The seller’s revenue from the equilibrium (σ 3P3 , σ 3P3) is given by:
R3P3 = x∗x∗M + 2x∗(1 − x∗)H + (1 − x∗)(1 − x∗)H =

M+4MH−4MH2−4H2+3H+4M2H
4(1+M−H)2

. Recall that in this symmetric pooling equilibrium,

each player stays active untilM with probability x∗ and active until H with probability
(1− x∗). In order to obtain the revenue-maximizing values of L, M and H , we need
to solve the following optimization problem (rearranging the equilibrium inequality
restrictions):

max
L,M,H

R3P3 = M + 4MH − 4MH2 − 4H2 + 3H + 4M2H

4 (1 + M − H)2

subject to H − 1/2 ≥ 0, 1 − H ≥ 0, M − 2H + 3/2 ≥ 0, H − 1/2 − M ≥ 0,
M − L ≥ 0 and H − M ≥ 0.

We set up the Lagrangian as below, where yi ’s are the multipliers:

Z = M + 4MH − 4MH2 − 4H2 + 3H + 4M2H

4 (1 + M − H)2
+

+y1 (H − 1/2) + y2 (1 − H) + y3 (M − 2H + 3/2) +
+y4 (H − 1/2 − M) + y5 (M − L) + y6 (H − M) (48)
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We are now going to use the Kuhn-Tucker conditions for the above Lagrangian.
First, note that as we are looking for L∗ > 0, M∗ > 0 and H∗ > 0, we must have
∂Z
∂L = 0, ∂Z

∂M = 0 and ∂Z
∂H = 0. These expressions are lengthy and we omit them from

the proof.
Recall from Proposition 3 that in equilibrium we must have 1/2 < H < 1 and

2H − 3/2 < M . This implies that y1 = y2 = y3 = 0. Also, by definition, M > L
and H > M, which implies that y5 = y6 = 0. Assume the fourth restriction binds,
which implies that y4 > 0 and ∂Z

∂ y4
= H − 1/2 − M = 0, which is equivalent to

H = M + 1/2.14 This also implies that ∂Z
∂L = 0. Substituting H = M + 1/2 in the

remaining two first-order conditions (which we had omitted thus far)—∂Z/∂M and
∂Z/∂H—, we obtain:

∂Z

∂M
= 12M2 − y4 = 0 (49)

∂Z

∂H
= 1 − 4M − 12M2 + y4 = 0 (50)

From these two equations we obtain M∗ = 1/4. Substituting into H = M + 1/2
we obtain H∗ = 3/4.Because, by definition, M > L , we have that L∗ < 1/4. Finally,
substituting these values into x∗ = 2H−1

2(1+M−H)
and into R3P3 we obtain x∗ = 1/2 and

R3P3 = 5/8, proving this proposition.
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