
Citation: Tuson, M.; Harper, P.;

Gartner, D.; Behrens, D.

Understanding the Impact of Social

Networks on the Spread of Obesity.

Int. J. Environ. Res. Public Health 2023,

20, 6451. https://doi.org/10.3390/

ijerph20156451

Academic Editor: Jean-Claude Thill

Received: 24 March 2023

Revised: 6 July 2023

Accepted: 18 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Understanding the Impact of Social Networks on the Spread
of Obesity
Mark Tuson 1,* , Paul Harper 1 , Daniel Gartner 1,2 and Doris Behrens 3,4

1 School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK; harper@cardiff.ac.uk (P.H.)
2 Aneurin Bevan Continuous Improvement, Aneurin Bevan University Health Board, Caerleon NP18 3XQ, UK
3 Employee Wellbeing Service, Aneurin Bevan University Health Board, Cwmbran NP44 8YN, UK
4 Department of Economy and Health, University of Continuing Education Krems,

3500 Krems an der Donau, Austria; doris.behrens@donau-uni.ac.at
* Correspondence: tusonm@cardiff.ac.uk

Abstract: Previous research has highlighted the significant role social networks play in the spread of
non-communicable chronic diseases. In our research, we seek to explore the impact of these networks
in more detail and gain insight into the mechanisms that drive this. We use obesity as a case study.
To achieve this, we develop a generalisable hybrid simulation and optimisation approach aimed
at gaining qualitative and quantitative insights into the effect of social networks on the spread of
obesity. Our simulation model has two components. Firstly, an agent-based component mimics the
dynamic structure of the social network within which individuals are situated. Secondly, a system
dynamics component replicates the relevant behaviours of those individuals. The parameters from the
combined model are refined and optimised using longitudinal data from the United Kingdom. The
simulation produces projections of Body Mass Index broken down by different age groups and gender
over a 10-year period. These projections are used to explore a range of scenarios in a computational
study designed to address our research aims. The study reveals that, for the youngest population sub-
groups, the network acts to magnify the impact of external and social factors on changes in obesity,
whereas, for older sub-groups, the network mitigates the impact of these factors. The magnitude of
that impact is inversely correlated with age. Our approach can be used by public health decision
makers as well as managers in adult weight management services to enhance initiatives and strategies
intended to reduce obesity. Our approach is generalisable to understand the impact of social networks
on similar non-communicable diseases.

Keywords: social networks; hybrid simulation; health care; behavioural OR; obesity; hyper-parameter
optimisation

1. Introduction

In 2020, the World Heath Organisation estimated that non-communicable chronic dis-
eases (NCDs) accounted for 41 million potentially preventable deaths worldwide [1]. These
included deaths from drug abuse, excessive consumption of food or alcohol, avoidance of
exercise, and smoking. The explanations offered to account for individuals continuing to
indulge in these behaviours include physical addiction, behavioural economics, environ-
mental, cultural, and social factors, as well as inheritance and genetics. All of these factors
are relevant in the case of obesity [2].

Similarly, the headlines from the World Health Organisation’s World Obesity Atlas [3]
suggest that, in 2019, over 160 million years of healthy living were lost due to high BMI,
more than 20% of all the lost years caused by NCDs. They predict that, by 2030, 1 in
5 women and 1 in 7 men across the planet will be living with obesity,

The Atlas also suggests that the greatest number of people with obesity now live in
low- and middle-income countries, where they share a double burden of malnutrition and
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systems that are severely under-prepared and ill-equipped to effectively address obesity
and its consequences.

The role played by social networks in the spread of obesity was highlighted by Chris-
takis and Fowler [4] using longitudinal data from the Framingham Heart Study [5]. They
demonstrated that obesity appeared to spread in a contagious fashion through social net-
works. The authors speculated that the spread might involve two mechanisms: firstly,
homophily (the tendency of individuals to associate with others with whom they share
similar traits), and, secondly, a change in individuals’ perceptions of what constitutes
acceptable norms in terms of weight and obesity.

In this research, we explore the impact of social networks on the spread of obesity
through a hybrid simulation (HS) in which the social network is replicated using an agent-
based model (ABM) and individual health behaviour is modelled using a system dynamics
(SD) approach. These are integrated in a single coherent framework and parameterised
using longitudinal data from Health Survey England (HSE) in conjunction with a simulta-
neous perturbation stochastic approximation (SPSA) algorithm [6].

Our findings suggest that homophily and varying ‘norms’ are indeed factors in the
spreading mechanism, as postulated in [4], and that, for the youngest population sub-
groups, the network acts to magnify the impact of the external environment, whereas,
for older sub-groups, it acts to reduce its impact. The magnitude of the network effect is
inversely correlated with age. The simulated population proved surprisingly insensitive to
significant changes in the external environment.

Our work contributes to the growing body of work in behavioural operational research,
as reviewed and discussed in [7], building on and extending previous work in this area
(e.g., [8,9]), and is novel in that it uses hybrid simulation to address a problem involving
individual-health-related behaviour within the context of a social network. Other novel
elements include simulating the social network using an emergent ABM based on social
paradigms in order to create a stable but dynamic network. Optimisation/calibration of the
HS is achieved with a stochastic approximation algorithm. We have also generated insights
to inform the implementation of future obesity interventions.

The paper is organised as follows. Section 2 summarises our review of related work
and provides the rationale for our approach. Section 3 describes the two key components of
our model, and Section 4 details the hyper-parameter optimisation process used to verify,
refine, and optimise the model’s parameters. This is followed by the key experimental
results in Section 5. Section 6 provides discussions and conclusions.

An overview of the methodologies used to deliver our results is provided in Appendix A.

2. Related Work
2.1. Social Network Models in Health Care

Modelling social contact networks is often perceived as challenging. Bernstein and
O’Brien [10] state the problem succinctly in their paper describing a stochastic ABM repli-
cating a social network:

“Researchers face a trilemma of inadequate data from real world datasets, statistical
simulation models, and agent-based simulation models. Large-scale real world data sets
are expensive to collect and difficult to obtain high fidelity ground truth for. Statistical
models, such as Erdös–Renyi, Chung–Lu, and blockmodels, have parameters that are
easy to specify and allow for simple replication of large-scale data sets. What is often
missing, however, is the ability to encode narratives into the data because there is no sense
of individual agents, just interactions between nodes.”

In addition, social contact networks vary considerably in topology according to type.
Newman and Park [11] compare a scientific collaboration network with that of a board
of directors and obtain a variation of 58% in assortativity values. Anyone attempting to
model a social network in the context of obesity must address a number of issues; apart
from the studies already referenced, there is little or no information on the topology of



Int. J. Environ. Res. Public Health 2023, 20, 6451 3 of 22

‘obesity’ networks; they may vary significantly in terms of that topology from other types
of contact networks, and there may be significant variance amongst ‘obesity’ networks.

A review of 43 social network models used in modelling NCDs and the spread of
disease identified three approaches: data-driven models, graphical models, and emergent
models. The vast majority of these focused on contact networks rather than those enabled
by electronic media.

Where real-world panel or longitudinal data exist, then using that data is perhaps the
most credible option, but it does still raise a number of issues. The original research [4]
used network data originally collected in relation to a study of heart disease. Each person
was asked for the names of a maximum of four individuals who they would turn to for
‘advice’. These data were re-purposed to define a social network, creating at best a partial
view of the actual network under consideration.

Graphical modelling approaches were the most popular (20). Three approaches
were identified: Erdös–Renyi, Watts–Strogatz, and scale-free. They also have the ability to
replicate the multiplexity (two individuals interacting with each other in different networks)
inherent in social networks [12,13]. However they also share a number of issues when
realising social networks over an extended timeframe:

• They require data to accurately represent the social network topography and multiplexity.
• The ’realisation’ mechanism bears little relation to the social network constructs that

create and maintain networks [10]. In these models, typically, a node’s tendency to
form connections is based on probability and distance and does not take account of
constructs such as homophily and propinquity.

• There is no obvious mechanism for exhibiting the dynamic behaviour that social
networks exhibit over time, with individual connections being made and broken and
sometimes remade. The only strategy identified was randomly ‘re-wiring’ connections.

These points are significant in the context of obesity because dynamic behaviour over
extended timeframes (decades) is identified as a key element in the modelling process [14].
Additionally, our data were collected at the national level, and, thus, we have no specific
data on network topography or the incidence of multiplexity. In the context of our research
and the data we have available, graph models have less face validity and are perhaps best
suited to applications where the time periods are relatively short.

Emergent models offer the most flexibility in simulating complex networks for disease
modelling [15]. They are also able to deliver the required dynamic behaviour, usually
using utility functions or stochastic rules. Reference [16] uses social theory to develop a
model of disease spread in biological populations. Reference [17] takes this further in an
exploration of social network stability. A set of homogeneous agents are given a set of
behaviours and parameters that reflect the relevant social constructs, combining them to
deliver a topographically stable network, which nonetheless exhibits the characteristic
dynamic behaviour of ‘individuals’ within the network.

2.2. Hybrid Simulation in Health Care

Nianogo and Orah [18] identify the issues that may attend the use of hybrid models
like ours, suggesting that the need for large data sets and significant computing power
may prove problematic and that the models may be of potentially limited use elsewhere.
Both [18,19] suggest that verification and validation are likely to be problematic.

2.3. Modelling Individual Behaviour

Achieving the research aims required an appropriate behavioural paradigm for the
NCD, which could be operationalised in a simulation. A number of such paradigms were
identified in the articles reviewed, and these are discussed below in the context of obesity.

The medical perspective on models of addiction addresses the behavioural patterns
of obese individuals suffering from bulimia nervosa and binge eating disorder, although
these represent a small percentage of obese individuals. It is less effective at describing the
behaviours of the remainder of the population [20,21].
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Behavioural economics (using utility or cost functions) and the theory of rational
addiction are hindered by their implicit assumptions of rationality and logical process [22],
often failing to consider the imperfect abilities and perceptions of the people to whom they
are applied.

Navarro-Barrientos et al. [23] implement Ajzen’s Theory of Planned Behaviour [24]
(TPB) in a dynamic (fluid flow) model to model simple weight loss scenarios. Aside from a
range of health care applications [25–27], it has also been used for a wide range of other
behavioural applications, from investigating academic dishonesty amongst business school
students [28], through modelling consumer behaviour with respect to plastic waste [29], to
investigating binge drinking behaviour amongst young adults [30].

Information as a dynamic parameter is another credible approach, with multiple
examples in the literature and a strong body of current research primarily driven by
investigation of diffusion and cascade processes in social media (e.g., [31–33]). These are
effective where the main interest is the level of impact of the behaviour and require data to
realise them. Where qualitative insights into the behaviour are also required or data are
unavailable, then their value is reduced.

2.4. Conclusion and Contributions of This Paper

The models proposed in this paper can be categorised into and differentiated from the
literature as follows. Simulation of social networks in health care modelling has previously
used collected (actual) data, graph models, or geographical models. Of these, graph
models are by far the most popular. In our research, we have chosen a novel emergent
model to replicate and sustain the social network. The approach allows us to more closely
replicate the social paradigms that drive and characterise social networks. This provides
the opportunity for qualitative as well as quantitative analysis. Our approach also allows
us to model a network that can be set or tuned to deliver a topography whose metrics
match those of other observed social networks, is stable over an extended period, and
exhibits the dynamic behaviour that is a critical element in the network effect when it
comes to modelling the spread of obesity [4]. Our modelling is based on TPB, which is
a well-established model for health behaviour applications. By extending the approach
used by Navarro-Barrientos et al. [23], and implementing it as an SD model, we are able
to embed it within a network model as part of an HS. This novel approach provides the
potential for further qualitative insights [34].

Furthermore, our SPSA algorithm for optimising the simulation is in line with the
recommendations of [35]. However, its use to define the model parameter set as part of the
model development process is an extension of this approach. Our model is developed using
a general-purpose programming language that enables a novel approach to calibration
using a simulation optimisation approach. In doing so, computational overheads are
reduced while promoting scalability and generalisability of the model.

3. The Hybrid Social Network and System Dynamics Model

In reality, individuals belong to a wide range of social networks. These can be face-
to-face or facilitated by other communication modes, including social media. Moreover,
two individuals can be contacts in a range of contexts (e.g., work, social, sport) and varying
roles. This phenomenon (multiplexity) means that the network developed in the simulation
represents an aggregate, combining elements from each of the networks that have an
impact on obesity-related behaviour. This will be described in Section 3.1, followed by
the description of the SD component in Section 3.2. The latter represents the internal
decision processes of each individual within the network in relation to calorie consumption
internalised within each agent.

3.1. The Social Network Model

Our social network model uses the emergent behaviour from an ABM. Each agent
represents an individual situated in a broader social network having immediate neigh-
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bours within that network (network neighbourhood). This combination of stability and
dynamicism is viewed as critical to the modelling of obesity-related social networks [14,34].

Our social network extends the work of Erbach-Schoenberg et al. [17] by adding agent
heterogeneity and defined time parameters and further developing the social network
constructs. Table 1 provides an overview of the sets, indices, and network parameters.

Table 1. Social network parameters and sets.

Parameter Description

Ra Social range between agents (propinquity).
S Maximum number of invitations accepted in each time slot (social resource).
M A ‘memory’ network parameter in history of interactions.
Z Network parameter describing the maximum value of p.x & p.y
H Boolean variable (1, 0) describing whether a relationship can or cannot exist between 2 agents (homophily).
P The set of agents currently active in the network.
p.x & p.y Characteristic variable: randomly allocated x and y axis positions for agent p.
p.bmi Characteristic variable: current BMI value for agent p.
p.age Characteristic variable: current age of agent p.
p.gender Characteristic describing gender of agent p, 0, 1.
P a′ted

p The set of agent offers (p′ ⊂ P) accepted by an agent (p).
P a′tees

p The set of agents (p′ ⊂ P) accepting an agent(p’s) offers.
P lc

p The list of agents (p′ ⊂ P) interacting with agent p in current time slot; may include repetitions.
Pnn

p The set of agents (p′ ⊂ P) with which agent p is currently connected (network neighbourhood).
P r

p The set of agents (p′ ⊂ P) whose distance from p is less than Ra.
Ph

p The set of agents (p′ ⊂ P) for which H(p, p′) = 1.
R Set of tuples (p,P range

p ),P range
p is the set of agents (p′ ∈ P) within social range of p.

H Set of tuples (p,PH
p ),PH

p is the set of agents(p′ ∈ P) who share affinity with p.

J prob
p

A set of tuples (p′π , p) ∈ J prob
p with agent p′ ∈ P and probability π ∈ R[0,1] describing the likelihood of

accepting an offer from agent p ∈ P . J prob
p (p′) returns the value π associated with p′.

J edge
p

A set of tuples (p′, α) ∈ J edge
p with agent p′ ∈ P and edge weight α ∈ R+ describing the edge weight

between p and p′ over the time period M (α = (no.of contacts in time H)/H). J edge
p (p′)returns the value α

associated with p′

J hist
p

A set of tuples (β, Plc
p ) with β ∈ Z, and P lc

p ∈ P , describing the history of interactions of agent p with other
agents p′ ∈ P . Jhist

p (β) returns the set P lc
p associated with β.

In the initialisation phase, agents are randomly allocated individual sets of characteris-
tic variables from the data. An initial contact history is generated, and, in addition, each
agent is randomly allocated a fixed position in a square two-dimensional ‘map’. The warm-
up and simulation phases share an identical process (described below). The simulation
phase includes processes for initialising new (adolescent) agents to add to the simulation
and for removing ‘dead’ agents at the appropriate rates. Each iteration represents a month
of model time. At each time step, each individual agent offers to link up with a number of
other agents. Acceptance of these offers is contingent on:

1. Propinquity—the tendency of individuals to form links with those whom they interact
with frequently or are closest to.

2. Homophily—the tendency of an individual to form links with those with whom they
share some commonality.

3. Memory—a stochastic probability defined by the number of times that an individual
has previously linked with that individual.

4. Each agent can only accept a fixed number of offers, defining the amount of ‘interac-
tion time’ available for the agents.

Multiplexity is another feature of social networking; individuals belong to several
networks, with potentially differing roles and expectations in each and with varying
methods of interaction (face-to-face or electronic). However, within the context of disease
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modelling, there are little or no data with which to operationalize the concept. Our
approach was to treat the model network as a proxy, representing the combined effect of
these multiple networks and methods of interaction.

Figure 1 provides an example of the network at the end of a model run (10 years).
Individuals with a healthy BMI of less than 25, overweight with a BMI greater than 25,
strongly overweight with a BMI greater than 30, and morbidly obese individuals (with a
BMI greater than 40) are represented by green, orange, red, and black nodes, respectively.

Figure 1. Social network model output.

The process used to deliver the model is described in detail using pseudocode in
Appendix B.

3.2. The System Dynamics Model

Figure 2 provides an overview of the behavioural model logic. The upper element uses
a simplified version of the Theory of Planned Behaviour as first proposed in [24]. In the
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model, a decision to restrict calorie intake is triggered when the ‘Behaviour’ stock reaches
a threshold; this in turn is driven by the ‘activation’ flow from the ‘Intention’ stock. Both
the ‘Behaviour’ and ‘Intention’ stocks are subject to decay. The ‘activation’ flow is also
potentially subject to a lag, the duration of which is one of the parameters explored in the
optimisation process.

Intention

BMI

Behaviour

educational level

'norms'

'attitude'

'pbc'

network 
neighbourhood

physical
activity level

'weight_in'

alpha beta

energy
intake

gamma height

total energy 
expenditure

energy
balance

external
factors

'intention_decay'

'behavioural_decay''activation'

Figure 2. SD model.

‘Intention’ is driven by three flows: ‘attitudes’, ‘norms’, and ‘pbc’ (perceived be-
havioural control):

• Attitudes—these are the sum of our knowledge, attitudes, and prejudices and re-
sult in the cognitive decision making processes described by [36], which in turn are
moderated by the education level attained by the individual.

• Norms—are driven by input from the individual’s network neighbourhood, subject to
it exceeding the satisficing value (θsv). In our model, the individual uses the average
BMI of the members of its network neighbourhood of the same gender, weighted
according to the age of that individual.

• Perceived behavioural control (PBC)—is assigned a default value that is subsequently
modified by the individual’s success or otherwise in losing weight.

The individual (agent) can take one of two states. State 1 represents the ‘normal’
situation in which consumption of calories is not limited. In State 2, calorie consumption is
restricted (dieting). The transition from State 1 to State 2 is triggered once the threshold
value for the ‘behaviour’ stock is reached and the agent perceives themselves as significantly
overweight in relation to their immediate contacts in the network (network neighbourhood).
The time spent in State 2 before transitioning back to State 1 is defined by a parameterised
stochastic value and potentially further modified by individual success (or otherwise) in
losing weight whilst in State 2.

The lower section of the model shown in Figure 2 shows weight change calculations.
Weight change is influenced by ‘external factors’, such as advertising, cost of food, food
availability and accessibility, social norms, representation in the media, etc. These are
represented by a proxy, the national Average Per Capita Calorie Consumption (APCCC),
as reported by the WHO, for each year of the simulation. Dietary reference values for
the population taking into account age, weight, height, levels of activity, gender, and
physiological state were obtained from the UK Scientific Advisory Council on Nutrition
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(SACN) [37]. The model uses these values to calculate an individual’s basal metabolic rate
(BMR), and, in conjunction with data on physical activity levels (PAL), the person’s total
energy expenditure (TEE). We have [38]:

TEE = PAL× BMR (1)

BMR = α + (β× height) + (γ× weight) (2)

where α, β, and γ are coefficients that vary with age and gender.
Two additional elements are captured in the behavioural component of the model.

Thomas et al. [39] point out that a conscious decision to reduce calorie intake (diet) is often
only intermittently adhered to, resulting in the cyclical weight loss patterns and plateaus
observed in practice. Hammond and Ornstein [40] also introduce the concept of ‘Satisficing
Behaviour’, describing the behaviour whereby an individual will only acknowledge a
difference in BMI, and, hence, an imperative to act, if their BMI and the target BMI are
separated by a value greater than some specified amount (satisficing value).

4. Hyper-Parameter Optimisation

Enns and Brandeau emphasise the importance of modelling the underlying contact
structure (network structure) and dynamics when modelling the spread of a disease [41].
To achieve this, our model development phase used an optimisation algorithm to find the
combination of network parameter values (that in turn define that structure) and popula-
tion sub-groups to provide the most accurate forecast compared to real-world data. The
possibility of large numbers of parameters, stochastic outputs, an undefined gradient func-
tion, and a computationally ‘expensive’ simulation presented a number of challenges. After
some consideration, these were addressed using a simultaneous perturbation stochastic ap-
proximation algorithm (SPSA) [35] in conjunction with an appropriate loss function. SPSA
is an iterative estimated gradient descent method, where, at each iteration, every parameter
is modified simultaneously using a random perturbation vector, the gradient of the loss
function is then estimated, and the parameters amended accordingly. The algorithm is
recursive and takes the general form [42]:

θ̂k+1 = θ̂k − ak ĝk(θ̂k) (3)

where θ̂k is a vector of parameters, ak represents a scalar gain coefficient, ĝk represents the
gradient approximation, and k is the iteration count. This takes the general form:

g(θ̂) ≡ δL(θ)

δθ
(4)

where L(θ) represents a loss function. This uses the sum of squared errors and is calculated
using the projected median and mean BMI for each gender and age group for each year
and comparing them with the actual values for that time period.

The gradient function is calculated using the simultaneous random perturbation vector
∆k, and we use c as a scalar coefficient.

ĝk(θ̂k) =
L(θ̂k + ck∆k)− L(θ̂k − ck∆k)

2ck
[∆−1

k1 , ∆−1
k2 , . . . ∆−1

kp , ] (5)

The scalar coefficients are updated after each iteration:

ak =
a

(A + k + 1)α
(6)

ck =
c

(k + 1)γ
(7)



Int. J. Environ. Res. Public Health 2023, 20, 6451 9 of 22

Following the recommendations in [35], we used the following parameters: a = 0.16,
A = 100, c = 0.1, α = 0.602, and γ = 0.101. Each implementation consists of 3000 iterations.
A binomial distribution (1,−1) was used to realise the simultaneous perturbation vector ∆k.

4.1. Model Development

In total, three sets of data from the publicly available data published by HSE were
used to develop the model. Two sets (2004–13, 2003–12) were used during the training
process, an initial set to create the ‘base’ model and a development set to further refine
it. The third data set (2002–11) was used for testing. These timeframes were chosen to
maximise the data available for this process (the level of detail in the data published by
HSE was subsequently reduced).

To reduce the impact of stochasticity, the initial population (for the training and
development sets) used a fixed set of 1000 individuals (balanced for age, gender, and BMI)
randomly selected from a data set of 4000. Thereafter, individuals were added randomly
from a pool of randomly selected 16-year-olds from data for the correct year at an overall
rate of 12 per year. ‘Deaths’ occurred at an overall rate of 7 per year (replicating the relevant
birth and death rates from the period).

To further reduce the stochasticity of the model output, the final values for the parameters
and loss scores in the training and development runs were determined by taking the median
value of the last 100 iterations. The output from the initial descent run is provided in Figure 3.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

Iterations

Lo
ss

Sc
or

e

Figure 3. Loss score from initial descent run.

After each descent run, the revised model was tested using the parameters generated
by that run. For each iteration of the test, a random population was selected from a data set
of 4000 agents for the start year (reflecting the relevant age and gender ratios within the
population for that year). It was run for 10 years. This was repeated 1000 times, with a new
population selected for each iteration. The results were then combined to produce a single
set of data, which was compared with the real data for that 10-year period. The loss scores
were also combined to provide a single representative value using median values.

In each run, we also examined the topographic structure of the social network.
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4.2. Parameter Verification

The initial parameter set consisted of a set of single values representing each of the
model parameters; in order to refine this, a ‘cascade’ strategy was implemented. After
the initial training run (see Figure 3), each run involved examining the results from the
previous run in conjunction with theory (on both social networks and TPB) in order to
ascertain what parameter modifications might further improve the model. Modification
was limited to splitting parameters by gender, age group, or both. These modifications
were then implemented using the descent algorithm, and the resulting parameter values
were then re-tested. Where the test results indicated a reduction in the loss function, the
parameter changes were retained and implemented in subsequent descent runs.

The development process was also used to test the hypothesis that homophily (based
on BMI) played a role in the formation of the network. The development process was
carried out on two parallel tracks. In the first set of runs (‘Homophily’), BMI difference
was allowed to affect the formation of the agents’ network neighbourhood; in the second
(‘No Homophily’), it was not; otherwise, both used exactly the same parameter set. The
results from each track were compared. Figure 4 provides the results, suggesting that
incorporating homophily based on BMI leads to a more realistic model.

0 1 2 3 4 5 6
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

Run no.

Lo
ss

Sc
or

e

Homophily
No Homophily

Figure 4. Test loss scores.

The parameters from this model were then further refined using the cascade process
until the test score began to indicate over-fitting, at which point the parameter set was
finalised. See Table 2.

The cascade process also highlighted the influence of agent gender. In the best-
performing model, influence from an individual’s network neighbourhood was limited to
those of the same gender as the individual.
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Table 2. Final parameter set.

Parameter Component Moderates Split

θnorms SD ‘norms’ flow Split by age groups (6) and gender
θpbc SD ‘pbc’ flow Single global value

θattitude SD ‘attitudes’ flow Single global value
θextFactor SD APCCC Split by age groups (6) and gender

θsv SD Satisficing value for ‘norms’ flow Single global value
θlag SD Lag between behaviour and Intention stocks Single global value

θdietTime SD Mean diet time for agents Single global value

θtrigger ABM Threshold value for impact of BMI difference
on homophily Single global value

θBMIadj ABM Impact of BMI on homophily male→male, male→ female,
female→ female, female→male.

θmem ABM M Single global value
θrange ABM Ra Single global value

4.3. Model Validation

To validate the model, the BMI figures (means and medians) generated by the final
parameter set were compared with the actual figures for the same time period (2004–2013).
The results are provided in Table 3. The negative values in the table indicate an issue where
the model is forecasting values that are lower than the actual figures, whereas the positive
values indicate that the forecasted values were higher.

Table 3. Model validation results; each data point represents the difference between actual BMI and
forecast BMI.

Male 16–20 Male 21–30 Male 31–45 Male 46–60 Male 61–75 Male 76+
Year Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

1 −0.015 −0.022 −0.040 −0.046 0.001 0.016 −0.012 −0.008 −0.002 −0.009 0.022 0.019
2 −0.673 −1.554 −0.605 −0.866 0.594 0.963 0.214 0.291 0.428 0.209 1.156 0.780
3 −0.527 −0.635 −1.483 −1.659 0.164 0.477 −0.137 0.271 0.256 0.265 1.103 0.934
4 −1.189 −1.399 −1.474 −1.719 0.134 0.592 −0.096 0.162 0.015 0.050 1.047 0.931
5 −0.725 0.281 −1.005 −0.925 0.297 0.542 −0.173 0.067 0.304 0.501 1.093 0.941
6 −0.287 0.498 −1.463 −1.678 0.015 0.014 0.066 0.237 0.133 0.387 1.075 0.853
7 −0.779 −0.100 −1.387 −1.805 0.241 0.135 0.084 0.314 0.470 0.689 1.241 0.753
8 −0.445 0.722 −2.254 −2.263 −0.330 −0.426 0.101 0.400 0.283 0.643 0.907 0.580
9 −0.352 0.478 −1.929 −2.182 −0.310 −0.342 0.058 0.634 0.444 0.772 1.005 0.735
10 −1.482 0.040 −2.088 −2.329 −0.804 −0.692 0.280 0.738 0.646 0.967 1.403 1.281

Female 16–20 Female 21–30 Female 31–45 Female 46–60 Female 61–75 Female 76+
Year Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

1 −0.719 −0.743 −0.986 −0.809 0.060 −0.079 0.285 0.259 0.103 −0.267 −0.094 −0.421
2 −1.944 −1.377 −0.208 −0.183 −0.068 −0.328 0.331 0.419 −0.122 −0.585 0.707 0.463
3 −2.173 −1.155 −0.565 −0.562 0.030 0.084 0.377 0.409 0.255 −0.160 0.685 0.495
4 −1.473 −1.047 −0.316 −0.409 0.366 0.204 0.662 0.587 0.205 0.078 0.897 0.487
5 −0.580 −0.429 −0.759 −0.782 0.578 0.653 0.715 0.517 0.574 0.203 1.458 1.380
6 −0.475 −0.426 −0.445 −0.396 0.086 0.103 0.636 0.385 0.590 0.425 1.350 1.199
7 −0.904 −1.536 −1.125 −0.729 0.218 0.357 0.559 0.450 0.556 0.746 1.673 1.259
8 −0.068 −0.408 −1.327 −1.046 −0.123 −0.201 0.626 0.506 0.583 0.441 1.391 1.311
9 −0.803 −0.537 −0.967 −0.573 −0.216 −0.091 0.700 0.537 1.111 1.195 1.303 0.889
10 −0.408 −0.626 −1.525 −0.908 0.122 0.244 0.808 0.697 1.469 1.585 2.095 1.732

The values show that there is some variation in the results for the highest and lowest
age groups, where weight change models are generally less accurate. There is under-
forecasting in the 21–30 age range for both genders, particularly for males.
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5. Experimental Results
5.1. Scenarios

The experimental scenarios focused on investigating the impact of adolescent obesity
and pressure from environmental factors (EF), the two factors deemed to have the most
impact on individual changes in BMI. These were represented by the mean BMI of 16-year-
olds joining the simulation as it runs and changes in the value of APCCC. To obtain realistic
rates of change for both factors, the historical data were scanned to identify the fastest
period of sustained growth, and this became the default rate of change in both the growth
and decline scenarios for both factors. The different permutations for the initial scenarios
are described in Table 4.

Table 4. Scenario list: adolescent BMI versus environmental influence.

Scenarios: 1 2 3 4 5 6 7 8 9

Falling EF * * *
Static EF * * *
Rising EF * * *

Falling Adolescent BMI * * *
Static Adolescent BMI * * *
Rising Adolescent BMI * * *

The asterisks (*) for Static EF and Static Adolescent BMI in Scenario 1 mean that we incorporated both settings in
this scenario.

Furthermore, by comparing scenarios (2, 9) with the output from Scenario 1 under
different conditions, we were able to gain qualitative insights into the relative impact of
these factors. The striking feature of the results was how little impact variation the two
factors had (typically less than 0.5%). Two additional scenarios were run, doubling the
rates of change and comparing rising and falling adolescent BMI and rising and falling
pressure from environmental factors. Apart from the obvious impact on the youngest age
group of rapid growth/decline in adolescent BMI, the impact was still small, with minimal
changes in mean BMI for all age groups and maximum changes in median BMI of less
than 1%.

5.2. The Network Effect

A set of counterfactual comparisons were made to assess the level of impact of the
network on individuals using Scenarios 1, 4, and 7. These were re-run with the network
effect removed, and the results were compared with the original outputs. This created a
complex picture: the Scenario 1 comparison suggested a broadly similar impact across
the genders and age ranges, with none of the figures representing variations of more than
0.5%. The Scenario 4 comparison (falling adolescent BMI and pressure from environmental
factors) provides a much clearer picture, with removal of the network effect reducing BMI
across the board for the older female population and to a lesser extent the male population.
However, the maximum gain in BMI is still less than 1% compared to the case with static
adolescent BMI and levels of environmental influence. Conversely, for the two youngest
age groups in each gender, there is an increasingly strong negative effect, with a maximum
impact of 6%. This effect is almost precisely reversed with Scenario 9 (rising adolescent
BMI and APCC), with figures of similar magnitude.

In summary, the network effect is most apparent in a dynamic rather than a static situ-
ation. For much of the population, the network effect seems to be relatively low (consistent
with the inelasticity of the network already commented on) and acts to maintain the ‘status
quo’ by mitigating changes in obesity levels, caused by rising or falling adolescent BMI and
environmental factors. This effect seems to be reversed for the youngest age group, where
the effect is to amplify the impact of BMI and environmental factors.
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5.3. The Topography of an ‘Obesity’ Network

Table 5 provides the data for the proxy network generated in the best-fit model. The
metrics describing the network generated by our model (clustering coefficient, transitivity,
degree assortativity, and average degree) are broadly consistent with data collected from
other social networks [11]. However, on further examination, the network model does ex-
hibit some unusual features. BMI assortativity is positively correlated with age, while BMI
and network neighbourhood size are inversely correlated. Although the mechanism is not
clear, it seems that the magnitude of the network effect on an agent is inversely correlated
with the level of BMI assortativity exhibited by that individual’s network neighbourhood.

Table 5. Topography of an ‘Obesity’ network.

Metrics Median Mean Std. Deviation Definition

Clustering 0.67 0.67 0.01 The ratio of links (edges) in that node’s (agent’s) neighbourhood to the
total possible links in that neighbourhood

Transitivity 0.63 0.63 0.01 The ratio between the observed number of closed triplets in the network
and the maximum possible number of closed triplets.

Assortativity 0.34 0.34 0.05 The tendency of nodes to form connections between nodes of
similar degree

Average Degree 9.35 9.35 0.19 Average number of connections for each node

External Factors

The values derived from the parameters also suggest that, as age increases, the impact
of environmental factors such as food availability, advertising, and so on decreases for
males. They also indicate that the impact of such environmental factors is higher on males
than females. See Table 6.

Table 6. BMI factor parameter values.

Age Range: 16–20 21–30 31–45 46–60 61–75 76+

Male 0.29 0.31 0.24 0.256 0.22 0.22
Female 0.20 0.22 0.22 0.20 0.21 0.20

5.4. Theory of Planned Behaviour

There were a number of parameters associated with the SD element of the model that
delivered TPB.

Whilst there was a great deal of individual variation, the contributions of ‘norms’
and ‘attitude’ to the growth in the Intention stock were of the same order. The absolute
contribution of ‘pbc’ was more difficult to interpret, but it was notable that the feedback
loop that drives it had very little impact on the model.

The ‘norms’ flow is of particular interest since it partially defines the impact of the
network neighbourhood on the individual. It is also affected by the satisficing number
parameter; this acts as a threshold value (varying with the individual’s BMI) that, once
exceeded, will trigger the norms flow. The final parameter value implied a satisficing
number of 0 for an individual whose BMI is 20, rising to 1 for an individual whose BMI is
30 and 4 for an individual with BMI 40, implying that a person whose BMI is 40 would not
recognise a difference in BMI until the difference was greater than 4 (36 or 44).

The values for θnorms themselves were clearly higher for the youngest two female
age groups compared to their male counterparts, suggesting greater susceptibility to the
‘network effect’. For older age groups, the picture was less consistent (Table 7).
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Table 7. Norm parameter values.

Age Range: 16–20 21–30 31–45 46–60 61–75 76+

Male 1.95 1.87 4.91 2.99 3.69 1.52
Female 2.84 3.85 1.02 4.99 0.87 3.725

5.5. Interpreting the Results

Our results suggest that homophily (based on BMI) plays a role in the spread of obesity
through social networks. They also reveal that younger adults tend to have larger networks
with little BMI-based assortativity, whereas older adults tend to have smaller networks
with greater BMI assortativity. For the former, this creates local networks that are more
amenable to the diffusion of information; for the latter, this is likely to be reduced. These
findings support the speculation in the original research [4].

Our model performed best with gender-specific networks, that is, males being influ-
enced by other males and females by other females. It also suggests that the influence of the
network itself might be greater for some sub-groups than for others and that older males
may also be less susceptible to external factors, such as food availability, advertising, and
so on. The fact that obesity is correlated with age may also be relevant.

One can envisage a number of ways in which these effects could combine to form
the ‘mechanism’ whereby social networks act to spread obesity. However, a detailed and
credible hypothesis will require further research.

6. Discussion and Conclusions

In order to gain insight into the nature and level of impact of social networks on
the spread of NCDs, we selected obesity as a study subject and built a hybrid simulation
model incorporating appropriate social network and behavioural theory to model the effect.
We used detailed public data to parameterise and validate the model. We ran a range of
scenarios to develop the insights we have described.

Our key message is that the impact of social networks on NCDs varies by both age and
gender, and that, in all likelihood, as the way we interact with our networks evolves, the
impact too will evolve. Two obvious factors that will affect that impact are the increasing
use of social media and the changes in face-to-face networking imposed by COVID-19
lockdowns.

6.1. Bias and Limitations

If the results were to be used in a practical forum, COVID-19 lockdowns and the
continuing evolution in social media usage mean that the parameters of the network model
used in our studies would have to be re-visited.

The behavioural model used here (TPB) may not be suitable for other NCDs, and the sim-
ulation may have to be modified with a different model used in the behavioural component.

To quote from George Box, ‘All models are wrong but some are useful’. Our research has
identified a set of parameter values that have not been experimentally verified; rather, they
define a model that can achieve a certain level of accuracy in forecasting obesity and that is
likely to represent many of the key relationships amongst the parameters.

The study has limitations. Translating social theory into mathematical relationships
is always challenging, and, whilst the TPB has been widely applied in the literature and
found to be a valid predictor of behaviour, there was very little information available on
which to base the initial parameter settings, or with which to operationalise the model. The
issue of variability in dieting behaviour is a complex one: it may be that the method chosen
in the SD component to represent it was not sufficiently flexible to model the behaviours
of the population as a whole. The data set available for the 16–20 age group was small in
comparison to the remainder and suggested large variations in BMI. It is likely that this
reflects the actual situation but could also be a consequence of the small size of the data
set and collection issues. The PAL data used in the model are taken from (https://www.

https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
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gov.uk/government/publications/sacn-dietary-reference-values-for-energy) (accessed on
1 March 2023). They involve taking one of three values dependent on BMI and age. This
probably fails to adequately represent the variation in individual physical activity/exercise that
is likely to occur within the network population. The simulation had issues with projections
for the 21–30 age group. The 10-year projection for the final version was within 0.5 BMI
(average error) for both genders in the remaining age groups.

More generally, the definition of an ‘obesity’ network is problematic. The multiple
networks that an individual belongs to, their varying impact (conscious and unconscious)
on the issue at hand, the diffuse boundaries of those networks, and the fact of constant
evolution make it extremely challenging to define an obesity-specific network precisely.
Instead, this research has identified a proxy network that approximates the impact of these
in a single un-directed network. Thus, the network parameters derived from the model
do not represent a single network but an amalgam of several different networks. This
proxy network approximates the overall impact of the different elements of that amalgam
during the timeframe used by the training/testing phases. The projections assume that
this approximation remains valid for the period of the forecast. Over the lifetimes of the
individuals represented in the simulation (and in the relevant literature), the process of
building and maintaining such networks has changed radically. Much of the original
research in this area used directed networks; the approach has necessitated the use of an
un-directed network, making comparison of results complex.

6.2. A Generalisable Model

Generalisability can be considered in two domains: could this modelling approach be
applied to other countries/regions to explore similar research objectives, and could this
modelling approach be applied to explore the impact of social networks on other NCDs?

Regarding the first, there is no evidence to suggest that TPB is specific to a single
culture or population segment, although it is likely that the relative impact of the parameter
inputs may well vary with cultural differences. Given this, the optimisation process will
ensure that the relevant parameters are ‘tuned’ appropriately. Similarly, for the network
element, the topography may well vary according to location and culture, but, again, the
optimisation process can address that. The critical issue with this level of generalisation is
ensuring that there are enough data with which to train the model.

The second domain is more complex. The network component remains viable (given
enough data to facilitate the optimisation process). The choice in paradigm for the be-
havioural/decision making component would have to be reviewed. For issues like smoking,
drug use, and certain types of eating disorders, the model is unlikely to be the best option.
In these circumstances, generalisability depends on the type of behavioural model best able
to model the issue and its suitability for incorporation in an HS.

6.3. Managerial and Theoretical Insights

Historically, whilst there has been a great deal of concern about the rise in adolescent
obesity levels [43], in the United Kingdom, the National Health Service workload has
primarily come from the older population. The data from the model suggest that, even if
the current situation does not worsen, the workload from the younger male population is
likely to increase significantly. The apparent greater susceptibility of the male population
(particularly the younger age groups) to external factors may provide both an explanation
of the effect and a lever to help mitigate the issue.

The model proved surprisingly inelastic in the presence of global interventions (falling
adolescent BMI or a more supportive external environment) at what were designed to be the
maximum realistic values for the population. Even when these rates were doubled, the impact
was not great. This may at first seem to contradict the projections associated with initiatives
such as a sugar tax [44,45], where significantly greater reductions in population BMI are ex-
pected. However, it is worth recalling that these initiatives anticipate much higher reductions
in calorie intake and are focused on specific elements of the population. The levels used in

https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
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the model are based on historical levels and thus could be considered realistic/achievable.
This suggests that delivering whole-population initiatives may be challenging and it might be
more productive to focus on specific issues and segments of the population.

One of the more striking effects was the relative impact of the network on the youngest
age groups (24% of the total network population) and the more general influence of gender.
When implementing weight loss strategies targeted at that age group, consideration could be
afforded to leveraging these two effects to amplify the impact of the strategies. Valente [46]
identifies four strategies in relation to network interventions in health care settings:

• Individual—identifying champions or opinion leaders.
• Segmentation—identifying cliques or groups on which to focus attention.
• Induction—deliberately creating interactions to spread information.
• Modification—adding new elements into the network or ‘re-wiring’ them to deliver

the objectives.

The first three strategies increase the impact of a network on the individual. The last
can be used either to reduce or increase the network impact and perhaps has more relevance
to the older portion of the population. Given that an effect in the older populations was of a
much smaller degree, initiatives focused on those age groups will have to consider whether
the effort involved in manipulating the network is consistent with the expected return.

More fundamentally, this research suggests a variation in the network’s impact across
the age groups that was not recognised in previous research. Previous research in this area
used either the Framingham data [5] or the Longitudinal Study on Adolescent Health [47].
In both cases, the data either pre-date the existence of social media or fail to consider it in
the collection methodology. The two data sets recorded information from two different
age groups. Reference [47] recorded the data of adolescents between the ages of 14 and 19;
Reference [5] recorded data for those over the age of 21. Unsurprisingly, their models
use a single population model of network interaction. This research was able to address
both issues and suggests that the nature of the network effect, the scale of impact, and
the structure of the social network may differ significantly for different elements of that
network. The key determinant seems to be age. A hypothesis consistent with this and the
data used in the initial studies would be that the advent of social media has changed, and
is perhaps continuing to change, the nature and impact of the ‘obesity’ network, and that
this effect varies amongst the different sub-groups that make up the population.

6.4. Implementation and Future Research

An approach for implementing findings from health care simulations into policy is
described by Araz et al. [48] in which the outputs of a simulation tool are used to develop
a tabletop exercise that policymakers could use to design and refine effective policies. A
similar approach would be an effective way to implement the findings from this research.

As previously discussed, multiplexity is a feature of social networking. However, the
concept remains unacknowledged in any of the articles reviewed. Further research into this
concept and alternative approaches would add value. Network realisations using emergent
behaviour clearly have the potential to deliver sophisticated social network simulations
but are relatively rare. Again, further research in this area would add value.

Focusing on examining the network effect as it applies to adolescents and young adults
is an area where further research has the potential to add significant value. The findings
suggest that this may have the potential for a significant impact and that the behaviour and
level of impact may well have changed since the initial research was conducted.

Our findings also suggest that the impact of external factors varies across different age
groups and genders. This has implications both for health behavioural models and more
generally. Research to confirm the findings and quantify the level of impact would add
value in the design of future health care interventions.
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Appendix A. Model Methodology Overview

A number of interconnected methodologies were used in the research; these are
described below.

• Model

– The model takes the form of a hybrid simulation with two components and runs
over a 10-year period in monthly intervals.

– The first component is an emergent agent-based model used to simulate a so-
cial network using appropriate social constructs; critically, the network is both
dynamic and topographically stable (Section 3.1).

– The second component is a system dynamics model implementing the theory of
planned action in the context of individual decisions to reduce food intake. Each
of the ‘individuals’ within the network incorporates a version of this model with
individual parameters (age, gender, BMI, height) taken from real data (Section 3.2).

• Model Development

– The simultaneous perturbation stochastic approximation algorithm (Section 4) was
used in conjunction with an appropriate loss function to optimise parameter values.

https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/#past-publications
https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/#past-publications
https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
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– In order to identify the most effective subset of the parameters, a progressive
‘cascade’ strategy was implemented (Section 4.2).

– The utility of the homophily parameter was assessed as part of the ‘cascade’
process (Section 4.2).

• Model validation was achieved by comparing the model projections over 10 years
with actual data for the same period (Section 4.3).

• Computational study used a range of scenarios to explore the impact and working of
the network (Section 5).

Appendix B. Social Network Implementation (Pseudocode)

The process for updating the network at each time step (t ∈ T ) is initiated in Algorithm A1.
Algorithms A5 and A6 are used to update each agent’s contact history (Jhist

p ) and to derive a set
of network neighbours for each agent. With the exception of the set recording the history of
each agent’s interactions (J hist), the sets are re-calculated for each time step; hence, the first step
of the update process is to clear those ready for the algorithms that follow. The set of network
neighbours (Pnn) enables the broader simulation by providing the set of network neighbours
or current contacts for each agent used in the first (behavioural) component.

Algorithm A1 Update Accepted Offers for each Agent

1: procedure UPDATEACCEPTED(Agent p)
2: updateProbabilities(p) . Algorithm A2
3: for all Agent p′ ∈ J prob

p do
4: for (int i = 0; i < 20; i ++) do
5: if (Randu(0, 1) ≤ J prob

p (p′)) ∧ (p′ /∈ P a′ted
p ) ∧ (P a′ted

p ≤ S)) then
6: P a′ted

p ← p′

7: end if
8: end for
9: end for

10: return P a′ted
p

11: end procedure

The algorithm is initiated by calling Algorithm A2 to update the probabilities that
describe the likelihood of each of those agents accepting an offer from the others. These
probabilities are then used stochastically by each agent to accept an ‘offer’ from different
agents (max. S offers).

Algorithm A2 Update Probabilities for each Agent

1: procedure UPDATEPROBABILITIES(Agent p)
2: updateEdgeweights(p) . Algorithm A3
3: int total = 0
4: for all Agent p′ ∈ Jedge

p do
5: if (H(p, p′) = true ∧ Range(p, p′) = true) then . Homophily and Range
6: total+ = J edge

p (p′)
7: end if
8: end for
9: for Agent p′ ∈ J edge

p do

10: J prob
p ← (p′,J ew

p (p′)/total)
11: end for
12: return J prob

p
13: end procedure
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When updating the probabilities for an agent, the algorithm first updates the edge
weights for that agent and iterates through them for each agent with whom it has been con-
nected in the last M time steps. This is then normalised to create a probability distribution.

Algorithm A3 Update the Edge Weights of each Agent

1: procedure UPDATEEDGEWEIGHTS(Agent p)
2: for Agent p′ ∈ P do
3: if p 6= p′ then
4: double count = contactsInM(p, p′) . Algorithm A4
5: if |p.bmi− p′.bmi| < θtrigger then

6: J edge
p ← (p′, count/H)

7: else
8: J edge

p ← (p′, count/H)θBMIadj
9: end if

10: end if
11: end for
12: return J edge

p
13: end procedure

The edge weights for an agent are calculated by counting the number of times that
agent has been connected to each of the other agents within the last M time steps using
Algorithm A4. In the final model, a second operation then compares the BMIs of the
respective agents; if the value is greater than parameter θtrigger, then the value is further
modified by parameter θBMIadj.

Algorithm A4 Contacts in History Timeframe (M)

1: procedure CONTACTSINM(Agent p, Agent p′)
2: int count = 0
3: for Agent p′′ ∈ J hist

p do
4: if p′ == p′′ then
5: count+ = 1
6: end if
7: end for
8: return count
9: end procedure

This function counts the number of times two agents have been connected within the
time span defined by M.

Algorithm A5 Update list of those accepting each Agent’s offer

1: procedure UPDATEACCEPTEES(Agent p)
2: for Agent p′ ∈ P do
3: if p ∈ Pa′ted

p′ then

4: Pa′tees
p ← p′

5: end if
6: end for
7: return J a′tees

p
8: end procedure

Algorithm A5 creates a list of agents that have accepted an offer from that agent.
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Algorithm A6 Update Latest Contacts for each Agent

1: procedure UPDATELATESTCONTACTS(Agent p)
2: P lc

p ← P a′ted
p

3: for all Agent p′ ∈ Pa′ted
p do

4: P lc
p ← P a′tees

p′

5: P lc
p remove p

6: end for
7: return P lc

p
8: end procedure

For each agent, Algorithm A6 combines the list of invitations that it has accepted P a′ted
p

with the list of other agents that also accepted those invitations P a′tees
p′ to create a list of the

latest (current) contacts.

Algorithm A7 Update Agent History

1: procedure UPDATEHISTORY(Agent p)
2: for (int i = M; i > 0; i−−) do
3: J hist

p (i)← J hist
p (i− 1)

4: J hist
p (0)← P lc

p )
5: end for
6: return J hist

p
7: end procedure

This simply updates the history data set by removing the oldest entry and adding P lc
p

as the newest entry.
Algorithm A8 creates a set of network neighbours (Pnn

p ) from the current history set.

Algorithm A8 Update Network Neighbours for each Agent

1: procedure UPDATENETWORKNEIGHBOURS(Agent p)
2: for (int i = 0; i < M; i ++) do
3: for all p′ ∈ J hist

p (i) do
4: if (p 6= p′ ∧ p′ /∈ Pnn

p ) then
5: Pnn

p ← p′

6: end if
7: end for
8: end for
9: return Pnn

p
10: end procedure

References
1. WHO. WHO Package of Essential Noncommunicable (PEN) Disease Interventions for Primary Health Care; WHO: Geneva, Switzer-

land, 2020.
2. Finegood, D.; Merth, T.; Rutter, H. Implications of the foresight obesity system map for solutions to childhood obesity. Obesity 2010,

18, S13–S16. [CrossRef] [PubMed]
3. World Obesity Atlas 2022. 2022. Available online: https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_

2022_WEB.pdf (accessed on 1 July 2023).
4. Christakis, N.; Fowler, J. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 2007, 357, 370–379.

[CrossRef] [PubMed]
5. Dawber, T.; Meadors, G.; Moore, F., Jr. Epidemiological approaches to heart disease: The Framingham Study. Am. J. Public Health

1951, 41, 279–281. [CrossRef] [PubMed]
6. Li, Z.; Spall, J. Discrete Stochastic Optimization for Public Health Interventions with Constraints. Oper. Res. Forum 2022, 3, 68.

[CrossRef]

http://doi.org/10.1038/oby.2009.426
http://www.ncbi.nlm.nih.gov/pubmed/20107455
https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_2022_WEB.pdf
https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_2022_WEB.pdf
http://dx.doi.org/10.1056/NEJMsa066082
http://www.ncbi.nlm.nih.gov/pubmed/17652652
http://dx.doi.org/10.2105/AJPH.41.3.279
http://www.ncbi.nlm.nih.gov/pubmed/14819398
http://dx.doi.org/10.1007/s43069-022-00176-2


Int. J. Environ. Res. Public Health 2023, 20, 6451 21 of 22

7. Kunc, M.; Harper, P.; Katsikopoulos, K. A review of implementation of behavioural aspects in the application of OR in healthcare.
J. Oper. Res. Soc. 2020, 71, 1055–1072. [CrossRef]

8. Fetta, A.; Harper, P.; Knight, V.; Williams, J. Predicting adolescent social networks to stop smoking in secondary schools. Eur. J.
Oper. Res. 2018, 265, 263–276. [CrossRef]

9. Viana, J.; Brailsford, S.; Harindra, V.; Harper, P. Combining discrete-event simulation and system dynamics in a healthcare setting:
A composite model for Chlamydia infection. Eur. J. Oper. Res. 2014, 237, 196–206. [CrossRef]

10. Bernstein, G.; O’Brien, K. Stochastic agent-based simulations of social networks. 2013, 45, 33–40.
11. Newman, M.; Park, J. Why social networks are different from other types of networks. Phys. Rev. E—Stat. Phys. Plasmas Fluids

Relat. Interdiscip. Top. 2003, 68, 8. [CrossRef]
12. Nunner, H.; Buskens, V.; Teslya, A.; Kretzschmar, M. Health behavior homophily can mitigate the spread of infectious diseases in

small-world networks. Soc. Sci. Med. 2022, 312, 115350. [CrossRef]
13. Young, L.; Mayaud, J.; Suen, S.C.; Tambe, M.; Rice, E. Modeling the dynamism of HIV information diffusion in multiplex

networks of homeless youth. Soc. Netw. 2020, 63, 112–121. [CrossRef]
14. Fowler, J.; Christakis, N. Estimating peer effects on health in social networks: A response to Cohen-Cole and Fletcher; and

Trogdon, Nonnemaker, and Pais. J. Health Econ. 2008, 27, 1400–1405. [CrossRef]
15. Eden, M.; Castonguay, R.; Munkhbat, B.; Balasubramanian, H.; Gopalappa, C. Agent-based evolving network modeling: A new

simulation method for modeling low prevalence infectious diseases. Health Care Manag. Sci. 2021, 24, 623–639. [CrossRef]
16. Noble, J.; Silverman, E.; Bijak, J.; Rossiter, S.; Evandrou, M.; Bullock, S.; Vlachantoni, A.; Falkingham, J. Linked lives: The utility

of an agent-based approach to modeling partnership and household formation in the context of social care. In Proceedings of the
2012 Winter Simulation Conference (WSC), Berlin, Germany, 9–12 December 2012. [CrossRef]

17. Erbach-Schoenberg, E.; Bullock, S.; Brailsford, S. A Model of Spatially Constrained Social Network Dynamics. Soc. Sci. Comput.
Rev. 2014, 32, 373–392. [CrossRef]

18. Nianogo, R.; Arah, O. Agent-based modeling of noncommunicable diseases: A systematic review. Am. J. Public Health 2015,
105, e20–e31. [CrossRef]

19. Brailsford, S.; Eldabi, T.; Kunc, M.; Mustafee, N.; Osorio, A. Hybrid simulation modelling in operational research: A state-of-the-art
review. Eur. J. Oper. Res. 2019, 278, 721–737. [CrossRef]

20. Wilson, G. Eating disorders, obesity and addiction. Eur. Eat. Disord. Rev. 2010, 18, 341–351. [CrossRef]
21. Ziauddeen, H.; Farooqi, I.; Fletcher, P. Obesity and the brain: How convincing is the addiction model? Nat. Rev. Neurosci. 2012,

13, 279–286. [CrossRef]
22. Baddeley, M. Behavioural Economics and Finance; Routledge: Abingdon, UK, 2013; pp. 1–310. [CrossRef]
23. Navarro-Barrientos, J.E.; Rivera, D.E.; Collins, L.M. A dynamical model for describing behavioural interventions for weight loss

and body composition change. Math. Comput. Model. Dyn. Syst. 2011, 17, 183–203. [CrossRef]
24. Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [CrossRef]
25. Teng, L.; Dai, Y.; Peng, T.; Su, Y.; Pan, L.; Li, Y. Explaining the intention and behaviours of interinstitutional collaboration in

chronic disease management among health care personnel: A cross-sectional study from Fujian Province, China. BMC Health
Serv. Res. 2023, 23, 477. [CrossRef]

26. Masonbrink, A.R.; Hurley, E.A.; Schuetz, N.; Rodean, J.; Rupe, E.; Lewis, K.; Boncoeur, M.D.; Miller, M.K. Sexual behaviors,
contraception use and barriers among adolescents and young adults in rural Haiti. BMC Women’s Health 2023, 23, 137. [CrossRef]
[PubMed]

27. Ramos, M.D. Exploring the relationship between planned behavior and self-determination theory on health-seeking behavior
among older adults with hearing impairment. Geriatr. Nurs. 2023, 52, 1–7. [CrossRef] [PubMed]

28. Hendy, N.; Montargot, N. Understanding Academic dishonesty among business school students in France using the theory of
planned behavior. Int. J. Manag. Educ. 2019, 17, 85–93. [CrossRef]

29. Khan, F.; Ahmed, W.; Najmi, A. Understanding consumers’ behavior intentions towards dealing with the plastic waste: Perspective
of a developing country. Resour. Conserv. Recycl. 2019, 142, 49–58. [CrossRef]

30. Lawental, M.; Kipnis, A.; Rigg, K. Binge drinking among young adults in Israel: Application of the theory of planned behavior.
Psychol. Health Med. 2018, 23, 1060–1068. [CrossRef]

31. Kumar, A.; Aggarwal, N.; Kumar, S. SIRA: A model for propagation and rumor control with epidemic spreading and immuniza-
tion for healthcare 5.0. Soft Comput. 2023, 27, 4307–4320. [CrossRef]

32. Centola, D. The spread of behavior in an online social network experiment. Science 2010, 329, 1194–1197. [CrossRef]
33. Centola, D.; van de Rijt, A. Choosing your network: Social preferences in an online health community. Soc. Sci. Med. 2015,

125, 19–31. [CrossRef]
34. Christakis, N.; Fowler, J. Social contagion theory: Examining dynamic social networks and humanbehavior. Stat. Med. 2013,

32, 556–577. [CrossRef]
35. Spall, J. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron.

Syst. 1998, 34, 817–823. [CrossRef]
36. Cutler, D.; Lleras-Muney, A. Understanding differences in health behaviors by education. J. Health Econ. 2010, 29, 1–28. [CrossRef]

[PubMed]
37. SACN Dietary Reference Values for Energy—GOV.UK. 2022. Available online: https://www.gov.uk/government/publications/

sacn-dietary-reference-values-for-energy (accessed on 11 May 2019)
38. Henry, C. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005,

8, 1133–1152. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/01605682.2018.1489355
http://dx.doi.org/10.1016/j.ejor.2017.07.039
http://dx.doi.org/10.1016/j.ejor.2014.02.052
http://dx.doi.org/10.1103/PhysRevE.68.036122
http://dx.doi.org/10.1016/j.socscimed.2022.115350
http://dx.doi.org/10.1016/j.socnet.2020.06.001
http://dx.doi.org/10.1016/j.jhealeco.2008.07.001
http://dx.doi.org/10.1007/s10729-021-09558-0
http://dx.doi.org/10.1109/WSC.2012.6465264
http://dx.doi.org/10.1177/0894439313511934
http://dx.doi.org/10.2105/AJPH.2014.302426
http://dx.doi.org/10.1016/j.ejor.2018.10.025
http://dx.doi.org/10.1002/erv.1048
http://dx.doi.org/10.1038/nrn3212
http://dx.doi.org/10.4324/9780203104514
http://dx.doi.org/10.1080/13873954.2010.520409
http://dx.doi.org/10.1016/0749-5978(91)90020-T
http://dx.doi.org/10.1186/s12913-023-09453-0
http://dx.doi.org/10.1186/s12905-023-02268-5
http://www.ncbi.nlm.nih.gov/pubmed/36973773
http://dx.doi.org/10.1016/j.gerinurse.2023.05.001
http://www.ncbi.nlm.nih.gov/pubmed/37187141
http://dx.doi.org/10.1016/j.ijme.2018.12.003
http://dx.doi.org/10.1016/j.resconrec.2018.11.020
http://dx.doi.org/10.1080/13548506.2018.1467025
http://dx.doi.org/10.1007/s00500-022-07397-x
http://dx.doi.org/10.1126/science.1185231
http://dx.doi.org/10.1016/j.socscimed.2014.05.019
http://dx.doi.org/10.1002/sim.5408
http://dx.doi.org/10.1109/7.705889
http://dx.doi.org/10.1016/j.jhealeco.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19963292
https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
http://dx.doi.org/10.1079/PHN2005801
http://www.ncbi.nlm.nih.gov/pubmed/16277825


Int. J. Environ. Res. Public Health 2023, 20, 6451 22 of 22

39. Thomas, D.; Martin, C.; Redman, L.; Heymsfield, S.; Lettieri, S.; Levine, J.; Bouchard, C.; Schoeller, D. Effect of dietary adherence
on the body weight plateau: A mathematical model incorporating intermittent compliance with energy intake prescription. Am. J.
Clin. Nutr. 2014, 100, 787–795. [CrossRef] [PubMed]

40. Hammond, R.; Ornstein, J. A model of social influence on body mass index. Ann. N. Y. Acad. Sci. 2014, 1331, 34–42. [CrossRef]
41. Enns, E.A.; Brandeau, M.L. Inferring model parameters in network-based disease simulation. Health Care Manag. Sci. 2011,

14, 174–188. [CrossRef]
42. Kleinman, N.; Spall, J.; Naiman, D. Simulation-based optimization with stochastic approximation using common random

numbers. Manag. Sci. 1999, 45, 1570–1578. [CrossRef]
43. Viner, R.; Kinra, S.; Nicholls, D.; Cole, T.; Kessel, A.; Christie, D.; White, B.; Croker, H.; Wong, I.; Saxena, S. Burden of child and

adolescent obesity on health services in England. Arch. Dis. Child. 2018, 103, 247–254. [CrossRef]
44. Briggs, A.; Mytton, O.; Kehlbacher, A.; Tiffin, R.; Rayner, M.; Scarborough, P. Overall and income specific effect on prevalence of

overweight and obesity of 20% sugar sweetened drink tax in UK: Econometric and comparative risk assessment modelling study.
BMJ 2013, 347, f6189. [CrossRef]

45. Manyema, M.; Veerman, L.; Chola, L.; Tugendhaft, A.; Sartorius, B.; Labadarios, D.; Hofman, K. The potential impact of a 20% tax
on sugar-sweetened beverages on obesity in South African adults: A mathematical model. PLoS ONE 2014, 9, e105287. [CrossRef]

46. Valente, T. Network interventions. Science 2012, 336, 49–53. [CrossRef]
47. Klein, J. The national longitudinal study on adolescent health: Preliminary results: Great expectations. J. Am. Med. Assoc. 1997,

278, 864–865. [CrossRef]
48. Araz, O.; Lant, T.; Fowler, J.; Jehn, M. Simulation modeling for pandemic decision making: A case study with bi-criteria analysis

on school closures. Decis. Support Syst. 2013, 55, 564–575. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3945/ajcn.113.079822
http://www.ncbi.nlm.nih.gov/pubmed/25080458
http://dx.doi.org/10.1111/nyas.12344
http://dx.doi.org/10.1007/s10729-011-9150-2
http://dx.doi.org/10.1287/mnsc.45.11.1570
http://dx.doi.org/10.1136/archdischild-2017-313009
http://dx.doi.org/10.1136/bmj.f6189
http://dx.doi.org/10.1371/journal.pone.0105287
http://dx.doi.org/10.1126/science.1217330
http://dx.doi.org/10.1001/jama.1997.03550100090045
http://dx.doi.org/10.1016/j.dss.2012.10.013

	Introduction
	Related Work
	Social Network Models in Health Care
	Hybrid Simulation in Health Care
	Modelling Individual Behaviour
	Conclusion and Contributions of This Paper

	The Hybrid Social Network and System Dynamics Model
	The Social Network Model
	The System Dynamics Model

	Hyper-Parameter Optimisation
	Model Development
	Parameter Verification
	Model Validation

	Experimental Results
	Scenarios
	The Network Effect 
	The Topography of an `Obesity' Network
	Theory of Planned Behaviour
	Interpreting the Results

	Discussion and Conclusions
	Bias and Limitations
	A Generalisable Model
	Managerial and Theoretical Insights
	Implementation and Future Research

	Model Methodology Overview
	Social Network Implementation (Pseudocode)
	References

