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A UNIFORM ERGODIC THEOREM FOR DEGENERATE FLOWS ON THE

ANNULUS

JONATHAN BEN-ARTZI AND BAPTISTE MORISSE

Abstract. Motivated by the well-known phase-space portrait of the nonlinear pendulum, the

purpose of this paper is to obtain convergence rates in the ergodic theorem for flows in the
plane that have arbitrarily slow trajectories. Considering bounded periodic trajectories near the

heteroclinic orbits, it is shown that despite lacking a spectral gap, there exists a functional space

(which is a strict subset of L2) on which time averages converge uniformly to spatial averages
(with an explicit rate). The main ingredient of the proof is an estimate of the density of the

spectrum of the generator of the flow near zero.

1. Introduction

The nonlinear pendulum is a fundamental dynamical system, its phase portrait described qual-
itatively in Figure 1. All solutions are periodic with the exception of the heteroclinic orbits con-
necting the unstable equilibria. These orbits separate bounded solutions (for which the pendulum
does not complete a full revolution) from the unbounded solutions (where the pendulum always
revolves in one direction, never stopping). This provides a decomposition into distinct invariant
sets. See [10] for further details.

Figure 1. Qualitative description of the phase-space of the nonlinear pendulum. The
shaded region has an outer boundary comprised of two heteroclinic orbits, and a small
bounded periodic solution as an inner boundary.

Let Φ : R × R2 → R2 be the associated evolution function, satisfying the standard group
structure: Φ(0, x) = x, and Φ(t2,Φ(t1, x)) = Φ(t2 + t1, x). The mean ergodic theorem [13] states

that for any f ∈ L2(R2), the time average 1
2T

∫ T
−T f(Φ(t, ·)) dt converges, as T → +∞, to the

projection onto the invariant subspace, i.e. functions constant along each trajectory. Since this
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2 JONATHAN BEN-ARTZI AND BAPTISTE MORISSE

system has no spectral gap, this convergence lacks a rate in L2. The purpose of this paper is to
seek subspaces X ⊂ L2(R2) on which there is a rate (and find the rate).

The absence of a spectral gap makes this problem challenging. Let us mention three distinct dif-
ficulties. The first comes from the small amplitude solutions around the steady equilibria (‘centers’)
where Φ has a fixed point. The second comes from the unbounded solutions which are infinitely
long. Lastly, the third difficulty is due to the bounded solutions near the heteroclinic orbits which
become arbitrarily slow. These three types of trajectories have one thing in common: they all
contribute to the spectrum of the infinitesimal generator of the flow near 0, thereby denying it of
a spectral gap.

In this paper we concentrate on the third aforementioned difficulty: bounded solutions that
become arbitrarily slow. These solutions are highlighted in the shaded region in Figure 1: the flow
becomes arbitrarily slow near the heteroclinic orbits which lie on the outer boundary (though the
speed along each trajectory isn’t constant). We simplify the geometry by considering a circular
annulus A = [0, 1]m×Sθ where near one of the boundaries the flow becomes arbitrarily slow (and,
for simplicity, constant along each trajectory). Here m ∈ [0, 1] parametrizes the radial variable,
where m = 0 corresponds to the heteroclinic (infinitely slow) orbit, and θ ∈ S = [0, 1]per is the
angular variable. For convenience, we reverse the direction of the flow, so that we consider the
operator d

dθ rather than − d
dθ . The speed of the flow is given by ϕ(m) ≥ 0 which is assumed to

satisfy ϕ(m)→ 0 as m→ 0 (see Figure 2).

ϕ(m)

m = 1

m = 0

A

Figure 2. The annulus A = [0, 1]m × Sθ. The steady circular flow has speed ϕ(m) ≥ 0,
depending on the radial variable m, which tends to 0 as m→ 0.

The infinitesimal generator of the flow is given by the self-adjoint operator

(1.1) A = −iϕ(m)
∂

∂θ
acting in L2(A).

The corresponding time averages are defined as

PT f :=
1

2T

∫ T

−T
eitAf dt =

1

2T

∫ T

−T
f(m, θ + tϕ(m)) dt

and the spatial average is defined as (noting that, without loss of generality, the lengths of all
trajectories are normalized to 1)

Pf :=

∫
S
f(m, θ) dθ.

In Theorem 1.3 below we identify a functional subspace X ⊂ L2(A) on which ‖PT−P‖X→L2(A) → 0
as T → +∞ with an explicit rate. To state this theorem precisely, we must first introduce some
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functional spaces in order to define the subspace X . We write L2(A) = L2
(
[0, 1];L2(S)

)
and hence

represent elements as

f =

∫ ⊕
[0,1]

fm dm with fm ∈ L2(S).

We define the Fourier modes of each fiber fm as

f̂m(k) :=

∫ 1

0

fm(θ)e−2πikθ dθ, k ∈ Z.

Let L2
0(S) ⊂ L2(S) be the subspace of functions with zero average: L2

0(S) =
{
g ∈ L2(S) : ĝ(0) = 0

}
.

The standard homogeneous Sobolev spaces on L2
0(S) are defined as:

Ḣγ :=

{
g ∈ L2

0(S) : ‖g‖2
Ḣγ

:=
∑
k∈Z
|k|2γ |ĝ(k)|2 < +∞

}
, γ ≥ 0.

Turning to regularity in the m variable, we define for s ∈ (0, 1) and γ ≥ 0 the space

Ḣs,γ := W s,2
(

[0, 1]; Ḣγ
)

=

{
f ∈ L2

(
[0, 1]; Ḣγ

)
:

∫ 1

0

∫ 1

0

‖fm − fm′‖2
Ḣγ

|m−m′|1+2s
dm dm′ < +∞

}
.

We endow this space with the norm

‖f‖2s,γ := ‖f‖2
L2([0,1];Ḣγ) +

∫ 1

0

∫ 1

0

‖fm − fm′‖2
Ḣγ

|m−m′|1+2s
dm dm′.

For further discussion of these spaces we refer to [9, Theorem 10.2] and [12, Corollary 26]. We
can finally define our main functional space:

Definition 1.1 (The functional space Ḣs,γ0 ). Let s > 1/2 and γ ≥ 0. We define the subspace

Ḣs,γ0 ⊂ Ḣs,γ to be the set of functions that vanish along {m = 0}:

Ḣs,γ0 :=
{
f ∈ Ḣs,γ : f0 = 0

}
.

We equip this subspace with the norm ‖·‖s,γ .

We are now ready to state our main result, starting with the assumption that the flow degen-
erates near m = 0.

Assumption 1.2. There exist m0, c, α > 0 such that ϕ(m) = cmα on [0,m0) and ϕ is continuous
and bounded uniformly away from 0 on [m0, 1].

Theorem 1.3. Let Assumption 1.2 hold. Then there exist s > 1/2 and γ ≥ 0 satisfying

(1.2) γ +
s

α
>

1

2
and a constant C > 0 such that the following uniform rate holds:

‖PT ‖Ḣs,γ0 →L2(A) ≤ CT
−`/2, ∀T > 1,

where ` = min{ 2sα − ε, 2} for any ε > 0 and where C does not depend on T .

Remark 1.4. Observe that the subspace Ḣs,γ0 includes only functions with average zero along any

fiber, so that P is trivial on this subspace: Pf = 0 for any f ∈ Ḣs,γ0 . Therefore ‖PT ‖Ḣs,γ0 →L2(A) =

‖PT − P‖Ḣs,γ0 →L2(A).

Remark 1.5. Assumption 1.2 can be weakened, as only the behavior of ϕ near its zeros is im-
portant. For instance, all our arguments below could be modified to handle a case where ϕ has
several zeros where it vanishes like |m −mi|αi for some αi > 0 near each zero mi. Furthermore,
the requirement that ϕ be continuous can also be weakened. However these are technicalities that
we do not pursue here.
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For any self-adjoint operator A : D(A) ⊂ H → H acting in a separable Hilbert space H, von
Neumann’s ergodic theorem [13] guarantees the strong convergence (i.e without a rate) PT → P
in H. Von Neumann’s idea was to use the spectral theorem to write A =

∫
R λ dE(λ), where

{E(λ)}λ∈R is the resolution of the identity of A. This leads to

(PT − P )f =
1

2T

∫ T

−T
eitAf dt− Pf =

1

2T

∫ T

−T

∫
R
eitλ dE(λ)f dt− Pf

=
1

2T

∫ T

−T

∫
R\{0}

eitλ dE(λ)f dt =

∫
R\{0}

sinTλ

Tλ
dE(λ)f.

(1.3)

The last expression tends to 0 as T → +∞. It is a simple consequence that a spectral gap leads to
a rate of convergence of T−1. However, as we prove in Corollary 3.4 below, the operator A defined
in (1.1) has no spectral gap due to Assumption 1.2.

We overcome this difficulty by using the results of [4], where it is shown that even when there’s
no spectral gap, one can still extract a rate (albeit perhaps slower and only on a subspace) if the
density of the spectrum near 0 is bounded. More precisely, if there exists a subspace X ⊂ L2(A)
and some r > 0 such that the density of states (DoS) of A has a bound of the form

(1.4)

∣∣∣∣ d

dλ
(E(λ)f, g)L2(A)

∣∣∣∣ ≤ ψ(λ)‖f‖X ‖g‖X , ∀f, g ∈ X , ∀λ ∈ (−r, r) \ {0},

where ψ ∈ L1(−r, r) is strictly positive a.e. on (−r, r). This then allows one to replace the

integration dE(λ) in (1.3) with dE(λ)
dλ dλ and to apply the estimate (1.4) near λ = 0. Therefore,

to prove Theorem 1.3 the main task is to obtain an estimate of the form (1.4), which involves
identifying an appropriate subspace X . This is achieved thanks to the observation that the operator
A is unitarily equivalent to the multiplication operator ϕk via a Fourier transform in θ (where
k ∈ Z is the Fourier conjugate of θ). It is worthwhile mentioning that the result [4] has been
further refined recently in [6, 7].

To obtain an estimate of the DoS as in (1.4), the first step is to understand the structure of the
spectrum. Here we take the point of view that A is fibered in m, composed of the one-dimensional
operators

A(m) = −iϕ(m)
d

dθ
∀m ∈ [0, 1],

acting on the circle S. This point of view is common in the context of the Euler equations, see
[5] for instance. The main difficulty is now evident: the spectrum of each fiber A(m) is discrete,
while the spectrum of A may have discrete, absolutely continuous and singular continuous parts.

This approach has proven useful in a similar context before, where in [2] a rate of convergence
was obtained for shear flows. The result [2] treats unbounded flows which are of a similar nature
to the unbounded solutions appearing in Figure 1. As already mentioned, the pendulum is a fun-
damental dynamical system, and gaining a better understanding has many applications, cf. [3]
for a brief discussion on the relationship to kinetic theory. With our present result, a full under-
standing of convergence rates for the ergodic theorem associated to the pendulum is only lacking
an understanding of the contribution of the center. Finally, we note that a closely related (though
not the same) problem is that of mixing, which has seen a flurry of activity in recent years. We
point out [14] as one example.

In Section 2 we discuss properties of fibered self-adjoint operators. Then, in Section 3 we turn
our attention to the flow in an annulus, first proving a bound on the DoS (Proposition 3.5) and
subsequently obtaining a rate for the associated ergodic theorem, proving Theorem 1.3.

2. Spectral analysis of fibered operators

In this section we recall some properties of self-adjoint operators and of self-adjoint fibered op-
erators, and prove some results which are not always readily available in the standard literature.
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We also discuss a simple illustrative example where we estimate the DoS. This shall prove useful
later, when we prove Theorem 1.3. Our discussion in this section remains as general as possible,
working with abstract self-adjoint operators in abstract Hilbert spaces.

2.1. Spectral Theory and Fibered Operators. Since the spectral theorem plays an essential
role in our proof, it is worthwhile recalling the definition of the resolution of the identity of a self-
adjoint operator. Let H be a separable Hilbert space, and let H : D(H) ⊂ H → H be a self-adjoint
operator. Its associated spectral family {E(λ)}λ∈R is a family of projection operators in H with
the property that, for each λ ∈ R, the subspace Hλ = E(λ)H is the largest closed subspace such
that

(1) Hλ reduces H, namely, HE(λ)g = E(λ)Hg for every g ∈ D(H). In particular, if g ∈ D(H)
then also E(λ)g ∈ D(H).

(2) (Hu, u)H ≤ λ(u, u)H for every u ∈ Hλ ∩D(H).

Given any f, g ∈ H the spectral family defines a complex function of bounded variation on the
real line, given by

R 3 λ 7→ (E(λ)f, g)H ∈ C.
It is well-known that such a function gives rise to a complex measure (depending on f, g) called
the spectral measure. Recall the following useful fact:

Proposition 2.1 ([8, X-§1.2, Theorem 1.5]). Let U ⊂ R be open. The set of f, g ∈ H for which
the spectral measure is absolutely continuous in U with respect to the Lebesgue measure forms a
closed subspace ACU ⊂ H. This subspace is referred to as the absolutely continuous subspace of
H on U .

We can go even further, and try to differentiate the spectral measure. Let ACU ⊂ H be the
absolutely continuous subspace of H on U and let λ ∈ U . Suppose that there exists a subspace
X ⊂ ACU equipped with a stronger norm such that the bilinear form d

dλ (E(λ)·, ·)H : X × X → C
is bounded. Then this bilinear form is called the density of states (DoS) of H at λ. It obviously
depends on the choice of subspace X . In the context of Schrödinger operators, common examples
of such subspaces include weighted-L2 spaces and Lp spaces, cf. [4]. In physics, the DoS represents
the number possible states a system can attain at the energy level λ. It is worthwhile noting that
an alternative approach for estimating the DoS is via the so-called limiting absorption principle,
see the classical result [1] for instance.

We are now ready to discuss fibered operators. We follow the notation of [11, p. 283]. Let H′
be a Hilbert space and let (M,dµ) be a measure space. Let A(·) : M → Ls.a.(H′) be a measurable
function taking values in the space of self-adjoint operators (not necessarily bounded) on H′ (with
appropriate domains). Let

(2.1) H =

∫ ⊕
M

H′ and A =

∫ ⊕
M

A(m)dµ(m).

It is well-known that since all A(m) are self-adjoint, so is A. Given an element f ∈ H, we denote
its fibers as fm ∈ H′ so that

(2.2) f =

∫ ⊕
M

fm dµ(m).

We denote the resolution of the identity of A by {E(λ)}λ∈R and of A(m) by {Em(λ)}λ∈R.

Lemma 2.2. The resolutions of the identity satisfy the natural decomposition

E(λ) =

∫ ⊕
M

Em(λ) dµ(m).
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Proof. By standard functional calculus, we apply the characteristic function 1(−∞,λ0] to

∫
R
λ dE(λ) = A =

∫ ⊕
M

A(m) dµ(m) =

∫ ⊕
M

∫
R
λ dEm(λ) dµ(m)

to obtain the assertion of the lemma (at the point λ0). �

The spectrum σ(A) is characterized as follows:

(2.3) λ ∈ σ(A) ⇔ ∀ε > 0, µ ({m : σ(A(m)) ∩ (λ− ε, λ+ ε) 6= ∅}) > 0.

An immediate consequence of this is:

(2.4) σ(A) ⊂
⋃
m

σ(A(m)).

The following characterization of eigenvalues follows:

(2.5) µ ({m : λ is an eigenvalue of A(m)}) > 0 ⇒ λ is an eigenvalue of A.

Proposition 2.3. Assume that the measure dµ is the Borel measure associated to some given
topology and that M is compact. Assume that Σ : M → clos(R) = {closed subsets in R} given
by Σ(m) = σ(A(m)) is continuous (we take the Hausdorff distance on clos(R)). Then σ(A) =
∪mσ(A(m)).

Proof. Since M is compact and Σ is continuous, we have that ∪mσ(A(m)) = ∪mσ(A(m)). Hence,
considering (2.4) we only need to prove that σ(A) ⊃ ∪mσ(A(m)). Suppose that λ ∈ ∪mσ(A(m)) =
∪mΣ(m). In particular there exists some m0 ∈ M such that λ ∈ Σ(m0). By the continuity of Σ,
for each ε > 0 there exists an open neighborhood U of m0 such that Σ(m) ∩ (λ− ε, λ+ ε) 6= ∅ for
all m ∈ U , which, by (2.3), implies that λ ∈ σ(A) (note that U has positive measure). �

2.2. Illustrative example. The proof of Theorem 1.3 will rely on the ideas contained in the
following discussion, and in particular in the proof of Proposition 2.8. Specifically, here we
study how the DoS of a fibered operator A depends upon the behavior of eigenvalues of the
fibers A(m) when there are finitely-many contributing eigenvalues. In the proof of Theorem
1.3 there will be infinitely-many such eigenvalues. Consider the following fibered problem. Let

(M, dµ) = ([0, 1],dm) (Lebesgue measure) with the usual Borel σ-algebra, let H =
∫ ⊕
[0,1]
H′ and

A =
∫ ⊕
[0,1]

A(m)dm, and assume that (see Figure 3 for an illustration):

Assumption 2.4. For all m ∈ [0, 1] the spectrum of A(m) in the energy band I := (a, b) ⊂ R is
given by a single eigenvalue E(m) (with multiplicity 1) depending on m. Moreover, the function
E : [0, 1]→ I is measurable.

It is well-known that σ(A)∩I = ess ran(E) and if E is continuous then ess ran may be replaced by
ran (see Proposition 2.3). Moreover, if E is constant on some open set U and equal to E there, then
E is an eigenvalue of A (see (2.5)). These two statements combined indicate that one can easily
construct examples with eigenvalues embedded in the essential spectrum (or at its boundary).
Hence even in this simple example, the absolute continuity of the spectrum of A depends on the
nature of the function E . Let us assume that there are no embedded eigenvalues:

Assumption 2.5. E(m) is C1 and is not constant on sets of positive measure.
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0 1

a

b

E(m)

m

λ

Figure 3. In this illustrative example, for each fiber m, there is one eigenvalue in the
energy band I = (a, b): σ(A(m)) ∩ (a, b) = E(m). Outside of this energy band there are
no conditions on the spectrum.

Definition 2.6. Let λ ∈ ran(E) and denote Mλ := E−1(λ) ⊂ [0, 1]. We say that λ is a regular
value if for any m ∈Mλ, E ′(m) 6= 0. We also define the set

σreg,I(A) := {λ ∈ I : λ ∈ ran(E) is a regular value} .

Lemma 2.7. σreg,I(A) is an open subset of I.

Proof. The claim is almost trivial, as the condition of being a regular value is an open condition.
We only note that any point in the set I ∩ ∂(ran(E)) cannot be a regular value since I is open. �

Proposition 2.8. Let H and A be as in (2.1) with (M, dµ) = ([0, 1],dm). Suppose that E satisfies
Assumptions 2.4 and 2.5. Let λ ∈ σreg,I(A). Then the DoS of A at λ satisfies the estimate

(2.6)

∣∣∣∣ d

dλ
(E(λ)f, g)H

∣∣∣∣ ≤
( ∑
m∈Mλ

1

|E ′(m)|

)
‖f‖H‖g‖H, ∀f, g ∈ H.

Proof. Since M = [0, 1] is compact, E ∈ C1, and λ is a regular value, Mλ is a finite set and we
denote its elements Mλ = {m1, . . . ,mk}. If E(m) ≤ λ then the projection operator Em(λ) may
be represented as Pm(E(m)) +Em(a) where Pm(E(m)) is the projection onto the eigenspace in H′
(the mth “copy”) corresponding to the eigenvalue E(m). If E(m) > λ then the projection operator
Em(λ) is equal to the projection operator Em(a). Letting f, g ∈ H, with fibers fm, gm ∈ H′ (as in
(2.2)), we therefore have

(E(λ)f, g)H =

∫
[0,1]

(Em(λ)fm, gm)H′ dm

=

∫
{m : E(m)≤λ}

(Pm(E(m))fm, gm)H′ dm+

∫
[0,1]

(Em(a)fm, gm)H′ dm.

Upon differentiation in λ the second term on the right hand side is eliminated, and one is left with

d

dλ
(E(λ)f, g)H = lim

h↓0

[
1

h

∫
{m : λ<E(m)≤λ+h}

(Pm(E(m))fm, gm)H′ dm

]

=
∑

i, E′(mi)>0

lim
h↓0

[
1

h

∫
(mi,mi+

h
E′(mi)

]

(Pm(E(m))fm, gm)H′ dm

]
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+
∑

i, E′(mi)<0

lim
h↓0

[
1

h

∫
(mi+

h
E′(mi)

,mi]

(Pm(E(m))fm, gm)H′ dm

]
.

Making the change of variables ηi = h
|E′(mi)| we have

d

dλ
(E(λ)f, g)H =

∑
i, E′(mi)>0

1

E ′(mi)
lim
ηi↓0

[
1

ηi

∫
(mi,mi+ηi]

(Pm(E(m))fm, gm)H′ dm

]

+
∑

i, E′(mi)<0

1

|E ′(mi)|
lim
ηi↓0

[
1

ηi

∫
(mi−ηi,mi]

(Pm(E(m))fm, gm)H′ dm

]

=

k∑
i=1

1

|E ′(mi)|
(Pmi(E(mi))fmi , gmi)H′ .

Note that one must be careful if one of the mi is 0 (resp. 1) and E ′(0) < 0 (resp. E ′(1) > 0)
as then the above argument requires a slight adjustment. However the same conclusion holds. A
simple use of the Cauchy-Schwartz inequality and the orthogonality properties of the projection
operators leads to the desired estimate (2.6). �

3. Proof of the Main Theorem

The proof of Theorem 1.3 follows by first obtaining an estimate on the Density of States (DoS)
of A (Proposition 3.5), and then invoking a result from [4] on the relationship between the DoS
near 0 and the rate of convergence in the ergodic theorem (Proposition 3.7). We begin with a few
results concerning our functional spaces.

Proposition 3.1 ([12, Corollary 26]). Let s > 1/2 and γ ≥ 0. Any f ∈ Ḣs,γ is (s− 1/2)-Hölder
continuous with respect to the m variable. That is, there is a constant C(s) such that for any

f ∈ Ḣs,γ and any m,m′ ∈ [0, 1]

(3.1) ‖fm − fm′‖Ḣγ ≤ C(s) ‖f‖s,γ |m−m
′|s−1/2

where C(s) depends neither on γ nor on f .

Consequently, it follows that for all f ∈ Ḣs,γ0

(3.2) ‖fm‖Ḣγ ≤ C(s) ‖f‖s,γm
s−1/2, ∀m ∈ [0, 1],

since f0 = 0. Next, we state a result on the Hölder regularity of the Fourier coefficients of functions
in Ḣs,γ , which is just a corollary of the Hölder continuity of f stated in Proposition 3.1:

Lemma 3.2. For any f ∈ Ḣs,γ0 , there holds

(3.3)
∣∣∣f̂m(k)− f̂m′(k)

∣∣∣ ≤ C‖f‖s,γ |k|−γ |m−m′|s−1/2, ∀m,m′ ∈ [0, 1], ∀k ∈ Z,

where the constant C > 0 does not depend on f , k or m.

Proof. We readily compute∣∣∣f̂m(k)− f̂m′(k)
∣∣∣2 = |k|−2γ |k|2γ

∣∣∣f̂m(k)− f̂m′(k)
∣∣∣2

≤ |k|−2γ
∑
k′∈Z
|k′|2γ

∣∣∣f̂m(k′)− f̂m′(k′)
∣∣∣2 ≤ |k|−2γ‖fm − fm′‖2

Ḣγ
.

By the Hölder continuity (3.1) of fm in the Ḣγ norm, we obtain (3.3). �
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We can now return to our operator A = −iϕ ∂
∂θ which we recall has the following fiber decom-

position:

−iϕ ∂

∂θ
= A =

∫ ⊕
[0,1]

A(m) dm = −i
∫ ⊕
[0,1]

ϕ(m)
d

dθ
dm.

The spectrum of each fiber is clearly discrete:

Lemma 3.3. The spectrum of each fiber A(m) is given by

(3.4) σ(A(m)) = ϕ(m)Z.

Proof. This is trivially true, due to the unitary equivalence between the operator −i ∂∂θ and the
multiplication operator k (that is, the operator that multiplies by k) where k ∈ Z. �

But the spectrum of A contains (at least some) continuous parts:

Corollary 3.4. A has no spectral gap. That is, there is r > 0 such that (−r, r) ⊂ σ(A).

Proof. This follows immediately from Proposition 2.3 and Lemma 3.3, due to Assumption 1.2.
Note also that 0 is always an eigenvalue (any function that is constant along trajectories lies in
the kernel of A). �

It is important to note that to each energy λ ∈ σ(A) correspond infinitely many fibers. Indeed,
contributions to the spectrum at energy level λ will come from all m ∈ (0, 1] for which there exists
k ∈ Z such that λ = kϕ(m). In particular, considering Assumption 1.2 and (3.4), each fiber
m ∈ (0,m0] will contribute to the energy levels

(3.5) λm,k = ckmα, k ∈ Z.

Conversely, each energy λ ∈ R will be in the spectrum of any fiber m ∈ (0,m0] for which there
exists k ∈ Z such that

m =

(
λ

ck

)1/α

.

These observations highlight the fact that the following result, which provides a bound on the
density of the spectrum is by no means trivial: this is a continuous spectrum generated from an
accumulation of eigenvalues belonging to uncountably many fibers.

Proposition 3.5. Let A = −iϕ(m) ∂∂θ satisfy Assumption 1.2. Assume that s > 1/2 and γ ≥ 0
satisfy the constraint (1.2). Then there exists r > 0 such that the DoS of A satisfies∣∣∣∣ d

dλ
(E(λ)f, g)L2(A)

∣∣∣∣ ≤ C|λ| 2sα −1 ‖f‖s,γ ‖g‖s,γ , ∀λ ∈ (−r, r) \ {0}, ∀f, g ∈ Ḣs,γ0 ,

where C > 0 does not depend on f , g or λ.

Remark 3.6. In the case α ≤ 1 the constraint (1.2) is satisfied for all s > 1/2 with γ = 0. This

means that for α ≤ 1, the subspace Ḣs,00 is sufficient to get the estimate of the DoS. In the case

α > 1 however, the constraint (1.2) is stronger and working in the subspace Ḣs,00 is not sufficient
to obtain estimates of the DoS. This is mainly due to the fact that the eigenvalues λm,k = ckmα

concentrate at 0 faster as m → 0 and k → +∞ (see Figure 4). To balance that effect, more
regularity in the θ variable is required.
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m
0

α < 1

m
0

α > 1

Figure 4. The behavior of mα near m = 0 for α < 1 and for α > 1 is very different,
leading to different functional spaces in both cases.

Proof of Proposition 3.5. Without loss of generality we take λ > 0. All arguments can be repeated
with minimal (obvious) changes for λ < 0, so we omit this here. Using Lemma 2.2 we write

(E(λ)f, g)L2(A) =

∫
[0,1]

(Em(λ)fm, gm)L2(S) dm

=

∫
[0,1]

∑
k∈N

λm,k≤λ

(Pm(λm,k)fm, gm)L2(S) dm

where Pm(λm,k) is the projection on the Fourier coefficient f̂m(k) of fm (see (3.5) for the definition
of λm,k). Defining the energy band

B(λ,m, h) = {k ∈ N : λ < ckmα ≤ λ+ h}

we can express the finite difference

∆hE(λ) :=
1

h

{
(E(λ+ h)f, g)L2(A) − (E(λ)f, g)L2(A)

}
=

1

h

∫
[0,1]

∑
k∈B(λ,m,h)

(Pm(λm,k)fm, gm)L2(S) dm

=
1

h

∫
[0,1]

∑
k∈B(λ,m,h)

f̂m(k)ĝm(k) dm.

We would now like to commute the integration and summation, to obtain the sum of integrals over
small subintervals of [0, 1], in order to then take the limit h → 0. However, for fixed h the sets
B(λ,m, h) will contain arbitrarily many elements as m→ 0. Moreover, as m→ 0 the preimages of
λ < ckmα ≤ λ + h in m ∈ [0, 1] are no longer disjoint, resulting in many redundant integrations.
Indeed, intervals

(
λ

cmα ,
λ+h
cmα

]
are of size larger than one if m < (h/c)1/α, and then may contain

more than one integer. Our strategy is to split the previous integral into two parts

1

h

∫
[0,1]

∑
k∈B(λ,m,h)

f̂m(k)ĝm(k) dm = I(h) +R(h)

where

R(h) =
1

h

∫
[0,(h/c)1/α)

∑
k∈B(λ,m,h)

f̂m(k)ĝm(k) dm

is the part where the energy bands B might contain more than one integer, and

I(h) =
1

h

∫
[(h/c)1/α,1]

∑
k∈B(λ,m,h)

f̂m(k)ĝm(k) dm
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is the part where the energy bands can contain at most one integer. We now estimate these two
integrals separately.

1. The term R(h). We claim that limh→0R(h) = 0. First, observe that we can bound∣∣∣∣∣∣
∑

k∈B(λ,m,h)

f̂m(k)ĝm(k)

∣∣∣∣∣∣ ≤
∑

k∈B(λ,m,h)

∣∣∣f̂m(k)ĝm(k)
∣∣∣ ≤ ∑

k>λ/(cmα)

∣∣∣f̂m(k)ĝm(k)
∣∣∣ .

Taking f, g ∈ Ḣs,γ0 , we using Hölder’s inequality, and the inequality (3.2), we obtain

|R(h)| ≤ 1

h

∫
[0,(h/c)1/α)

∑
k>λ/(cmα)

|k|−2γ
(
|k|γ

∣∣∣f̂m(k)
∣∣∣) (|k|γ ∣∣∣ĝm(k)

∣∣∣) dm

≤ 1

h

∫
[0,(h/c)1/α)

sup
k>λ/(cmα)

(
|k|−2γ

)
‖fm‖Ḣγ ‖gm‖Ḣγ dm

≤ 1

h

∫
[0,(h/c)1/α)

(
λ

cmα

)−2γ
‖fm‖Ḣγ ‖gm‖Ḣγ dm

≤ C ‖f‖s,γ ‖g‖s,γ
λ−2γ

h

∫
[0,(h/c)1/α)

m2αγ+2(s−1/2) dm

= C‖f‖s,γ ‖g‖s,γ λ−2γh2γ+2s/α−1.

As soon as the constraint (1.2) on s and γ is satisfied there holds limh→0R(h) = 0.

2. The term I(h). As the integration in this term is over m ∈ [(h/c)1/α, 1], the energy band
B(λ,m, h) contains at most one integer. For B(λ,m, h) to contain one integer, by definition m has

to be in an interval of the form (
(
λ
ck

)1/α
,
(
λ+h
ck

)1/α
] for some k ∈ N. As m ∈ [(h/c)1/α, 1], this

implies for the bounds of such an interval that(
h

c

)1/α

≤
(
λ

ck

)1/α

and

(
λ+ h

ck

)1/α

≤ 1.

The integer k ≥ 1 has to satisfy the bounds

k0 := max(1, bλ/cc) ≤ k ≤ bλ/hc =: N(λ, h)

Then we have

I(h) =
1

h

∫
[(h/c)1/α,1]

∑
k∈B(λ,m,h)

f̂m(k)ĝm(k) dm

=
1

h

∑
k0≤k≤N(λ,h)

∫
(( λ
ck )

1/α
,(λ+hck )

1/α
]

f̂m(k)ĝm(k) dm.

Next, we use the same kind of computation as in the proof of Proposition 2.8, where the
prefactor 1

E′(m) appears. In the current computation, the function E(m) becomes kϕ(m) = ckmα

so that E ′(m) becomes ckαmα−1. Substituting
(
λ
ck

)1/α
for m we find that the prefactor should

be 1
ckα

(
λ
ck

)1/α−1
. Furthermore, we use Lemma 3.2 which ensures some uniform regularity for the

Fourier coefficients and allows us to make pointwise (in m) evaluations. This leads to

lim
h→0

1

h

∫
(( λ
ck )

1/α
,(λ+hck )

1/α
]

f̂m(k)ĝm(k) dm =
1

ckα

(
λ

ck

)1/α−1

f̂( λck )1/α
(k)ĝ( λck )1/α

(k).

Using the fact that limh→0N(λ, h) = +∞, we get

lim
h→0
I(h) =

∑
k≥k0

1

cαk

(
λ

ck

)1/α−1

f̂( λck )1/α
(k) ĝ( λck )1/α

(k)
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by uniform boundedness. Using the inequality (3.3) and the fact that f0 = 0, we have∣∣∣∣ limh→0
I(h)

∣∣∣∣ =
1

cα

∣∣∣∣∣∣
∑
k≥k0

1

k

(
λ

ck

)1/α−1

f̂( λck )1/α
(k) ĝ( λck )1/α

(k)

∣∣∣∣∣∣
≤ C ‖f‖s,γ‖g‖s,γλ1/α−1

∑
k≥k0

k−1/α−2γ
(
λ

ck

)2(s−1/2)/α

≤ C ‖f‖s,γ‖g‖s,γλ2s/α−1
∑
k≥k0

k−(1/α+2γ+2(s−1/2)/α)

≤ C ‖f‖s,γ‖g‖s,γλ2s/α−1
∑
k≥1

k−(2γ+2s/α)

where we use the fact that k0 ≥ 1 in the last inequality. The series is finite if the constraint (1.2)
on s and γ is satisfied. This completes the proof. �

To prove Theorem 1.3 we recall the following result from [4]:

Proposition 3.7 (Corollary 1.8 in [4]). Let A : D(A) ⊂ H → H be self-adjoint and assume that
there exist a Banach subspace X ⊂ H which is dense in H in the topology of H that is continuously
embedded in H (and therefore the norm ‖ · ‖X is stronger than the norm ‖ · ‖H), and positive
numbers C, p, r > 0 such that:∣∣∣∣ d

dλ
(E(λ)f, g)H

∣∣∣∣ ≤ C|λ|p−1‖f‖X ‖g‖X , ∀f, g ∈ X , ∀λ ∈ (−r, r) \ {0}.

Then PT f := 1
2T

∫ T
−T e

itAf dt converges to the orthogonal projection of H onto kerA (denoted P )
uniformly:

‖PT − P‖X→H ≤ C(p)T−`/2, ∀T > 1,

where ` = min{p− ε, 2} for any ε > 0.

This result readily allows us to prove our main theorem:

Proof of Theorem 1.3. From Proposition 3.5 we know that d
dλE(λ) has the bound |λ| 2sα −1 in the

subspace Ḣs,γ0 in a punctured neighborhood of λ = 0. From Proposition 3.7 we know that this
implies that

‖PT ‖Ḣs,γ0 →L2(A) = ‖PT − P‖Ḣs,γ0 →L2(A) ≤ CT
−`/2, ∀T > 1,

where ` = min{ 2sα − ε, 2} for any ε > 0. This completes the proof. �
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