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Topic: Reaction Modelling 

Introduction 
The development of new combustion systems for energy conversion is crucial due to recent constraints [1]. 
Global warming has highlighted the need for decarbonized fuels with zero carbon emissions. Hydrogen (H2) and 
ammonia (NH3) have emerged as promising alternatives, but their combustion characteristics, such as laminar 
flame speed, ignition delay times, and pollutant formation (e.g. NOx) must be understood. Kinetic reaction 
mechanisms are essential to comprehensively study the combustion chemistry of these fuels, including the 
breakdown of fuel molecules, formation of intermediate species, and production of combustion products like 
nitrogen and water when NH3 is used as fuel. 
Accurate speciation measurements of NH3 and H2 in the combustion system are of great importance as they 
directly impact combustion performance by providing crucial radicals that either accelerate or decelerate the 
combustion process. Ensuring a low level of residual NH3 at the combustion exit is a crucial requirement to 
consider in the development of new combustion systems. A study conducted by Hayakawa et al. [2] determined 
that the optimal equivalence ratio for achieving a simultaneous reduction in unburned ammonia and NOx at the 
combustor exit is 1.2. Furthermore, when dealing with the fuel blend 70/30 vol% NH3/H2 in air, the ratio of final 
to initial mole fractions of NH3is high, but this ratio decreases with increasing H2 concentration [3]. Consequently, 
the primary objective of the present study is to analyse the performance of 70 different kinetic reaction 
mechanisms in estimating the mole fraction of unburned NH3 at the combustion exit. Moreover, the study aims 
to identify the most accurate and reliable model by employing the symmetric mean absolute percentage error 
(SMAPE) formula as a quantitative metric. This evaluation will be conducted across various equivalence ratios (ϕ) 
to encompass a comprehensive range of operating conditions. 

Kinetic modelling 
In this study, 70 kinetic reaction mechanisms sourced from the literature were analyzed under atmospheric 
conditions to assess their performance in predicting the mole fraction of unburned NH3 for a volumetric fuel 
mixture consisting of 70% NH3 and 30% H2 (Table 1). To conduct these analyses, a burner-stabilized stagnation 
flame model provided by ANSYS Chemkin-PRO 2022 R2 software was utilized. All numerical simulations were 
implemented in a one-dimensional computational model with a length of 2 cm, which closely mimicked the 
experimental setup used in previous studies (specifically, the distance between the nozzle burner and the top 
plate). Experimental measurements for validation purposes were obtained from [2], where identical fuel 
mixtures and operating conditions were employed. A stagnation flame configuration was chosen in the 
experimental setup to ensure accurate measurements and avoid issues with flame stabilization. To 
quantitatively determine the most accurate model that could faithfully reproduce the experimental 
measurements, a symmetric mean absolute percentage error (SMAPE) formula was employed as a metric. This 
formula allowed for a comprehensive evaluation of the models' performance and facilitated the identification of 
the model with the highest accuracy in predicting the mole fraction of unburned NH3. 
 



  

 

 

Table 1: Kinetic reaction mechanisms adopted in the present study. 
NO. Kinetic mechanism No. of Reactions No. of species Ref NO. Kinetic mechanism No. of Reactions No. of species Ref 

1 (Bertolino et al., 2021) 264 38 [4] 36 (Dagaut et al., 2008) 250 41 [5] 

2 (Mei, Ma, et al., 2021) 264 38 [6] 37 (Gregory P. Smith et al., 2000) 325 53 [7] 

3 (Han et al., 2021) 298 36 [8] 38 (Coda Zabetta & Hupa, 2008) 371 60 [9] 

4 (Mei, Zhang, et al., 2021) 257 40 [10] 39 (Alzueta MU, 2016) 654 131 [11] 
5 (Gotama et al., 2022) 119 26 [12] 40 (Shmakov et al., 2010) 1207 127 [13] 

6 (Shrestha et al., 2021) 1099 125 [14] 41 (Esarte et al., 2011) 536 79 [15] 

7 (Z. Wang et al., 2021) 444 91 [16] 42 (Abian et al., 2015) 201 31 [17] 

8 (X. Zhang et al., 2021) 263 38 [18] 43 (T. Wang et al., 2018) 925 81 [19] 

9 (Arunthanayothin et al., 2021) 2444 157 [20] 44 (T. Faravelli, 2017) 158 29 [21] 

10 (Stagni et al., 2020) 203 31 [22] 45 (POLIMI, 2014) 155 29 [23] 

11 (Han et al., 2019) 177 35 [24] 46 (Marques et al., 2073) 318 61 [25] 

12 (De Persis et al., 2020) 647 103 [26] 47 (Aranda et al., 2013) 566 95 [27] 

13 (Mei et al., 2019) 265 38 [28] 48 (Jiang et al., 2020) 60 19 [29] 

14 (Li et al., 2019) 957 128 [30] 49 (Sun et al., 2022) 486 66 [31] 

15 (Okafor et al., 2019) 356 59 [32] 50 (Song et al., 2019) 158 29 [33] 

16 (Glarborg et al., 2018) 231 39 [34] 51 (Mével et al., 2009) 203 32 [35] 
17 (Shrestha et al., 2018) 1081 124 [36] 52 (Da Rocha-Mathiue et al., 2019) 66 22 [37] 

18 (Otomo et al., 2018) 213 32 [3] 53 (Da Rocha-Otomoet al., 2019) 51 21 [37] 

19 (U. Mechanism, 2018) 41 20 [38] 54 (Da Rocha-Okafor et al., 2019) 70 24 [37] 

20 (Klippenstein et al., 2018) 211 33 [39] 55 (Kovaleva et al., 2022) 354 59 [40] 

21 (Nakamura et al., 2017) 232 33 [41] 56 (Houshfar et al., 2012) Midd temp 91 26 [42] 

22 (Y. Zhang et al., 2017) 251 44 [43] 57 (Houshfar et al., 2012) High temp 430 52 [42] 

23 (Lamoureux et al., 2016) 934 123 [44] 58 (Houshfar et al., 2012) Low temp 198 35 [42] 

24 (Xiao et al., 2017) 276 55 [45] 59 (Capriolo et al., 2021) 2300 201 [46] 

25 (Song et al., 2016) 204 32 [47] 60 (Xu et al., 2023) 389 69 [48] 

26 (Nozari & Karabeyoʇlu, 2015) 91 21 [49] 61 (Thomas et al., 2022) 1099 125 [50] 

27 (Mathieu & Petersen, 2015) 278 54 [51] 62 (Kovács et al., 2020) 214 34 [52] 
28 (Duynslaegher et al., 2012) 80 19 [53] 63 (Kovács et al., 2021) 537 70 [54] 

29 (Klippenstein et al., 2011) 202 31 [55] 64 (Saxena & Williams, 2007) 288 59 [56] 

30 (K. Zhang et al., 2011) 701 88 [57] 65 (Valkó et al., 2022) 537 70 [58] 

31 (Lamoureux et al., 2010) 883 119 [59] 66 (Alzueta et al., 2001) 464 65 [60] 

32 (Konnov, 2009) 1207 127 [61] 67 (Nakamura & Shindo, 2019) 485 66 [62] 

33 (Mendiara & Glarborg, 2009) 779 79 [63] 68 (Glarborg, 2022) 270 41 [64] 

34 (Tian et al., 2009) 703 84 [65] 69 (Tang et al. 2022) 211 35 [66] 

35 (Singh et al. 2022) 259 32 [67] 70 (Marshall et al. 2023) 228 34 [68] 

Results and Discussions 

The primary findings of the SMAPE investigations reveal that the 
performance of the Lamoureux et al. mechanism [59] is satisfactory, 
displaying an error estimation range of 4% to 7% when considering the ϕ 
values between 1 and 1.2. However, its accuracy diminishes when 
estimating the mole fraction of NH3 at ϕ of 1.4, resulting in 
underestimation. In contrast, the Stagni et al. mechanism [22] proves to 
be more precise in predicting the mole fraction of unburned NH3 under 
highly rich conditions (ϕ=1.4). 
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N2H3+NH2 ⇌ H2NN+NH3 
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Fig. 1. Rate of formation of NH3 at ϕ =1.4 

Fig. 2. Rate of consumption of NH3 at ϕ =1.4 

The conducted sensitivity analysis underscores the significance of specific reaction steps, such as NH+O ⇌ 
NO+H, NH3+M ⇌ NH2+H+M, and NH+OH ⇌ HNO+H, in enhancing the reactivity of the system by facilitating the 
production of crucial radicals, notably H, which play a vital role in sustaining the reaction process. Moreover, the 
reaction flow analysis highlights the importance of reactions including HNO+NH2 ⇌ NO+NH3, 2NH2 ⇌ NH3+NH, 
and NH3+M ⇌ NH2+H+M, as they contribute significantly to the formation of NH3, Fig.1. Notably, the reactivity of 
reaction steps 2NH2 ⇌ NH3+N and NH3+M ⇌ NH2+H+M demonstrates an increase with higher ϕ values, while 
reaction HNO+NH2 ⇌ NO+NH3 exhibits a decrease. Furthermore, the consumption of NH3 is predominantly 

governed by reaction steps NH3+OH ⇌ NH2+H2O, NH3+H ⇌ NH2+H2, and 
NH3+O ⇌ NH2+OH, which are the reactions of NH3 with the most reactive 
radicals such as OH, H, and O, Fig.2. These reactions heavily influence the 
depletion of NH3 within the system. 

Conclusions 
This study investigated 70 kinetic reaction models to assess their accuracy in reproducing NH3 speciation at the 

combustion exit zone. Differences in reaction steps and rate parameters were observed among the tested 

mechanisms. The Lamoureux model provided reliable estimates of unburned NH3 within the ϕ range of 1-1.2, 

but its accuracy declined near 1.4. NH3 was primarily converted to NH2 radicals through OH reactions across all 

temperatures, with secondary involvement of O radicals at low-intermediate temperatures. NH3 

dehydrogenation also occurred via H radicals through the NH3+H ⇌ NH2+H2 reaction at higher temperatures. 

Additionally, NH3 regeneration at the combustion exit was predominantly driven by the NH3 ⇌ NH2+H reaction 

at T=504 K. 
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