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Preface

Laser interferometry is a technique where beams of light, created by a laser source, are
superimposed to produce interference. By analysing the interfering light, perturbations
that were imparted on the light beams as they travelled can be measured. The aim of
the work in this dissertation is to measure thus perturbations from physical phenomena
that have never been observed before.

This dissertation is a collection of work that develops, analyses, and demonstrates the
use of laser interferometry to investigate the fundamental laws of Nature. It is far from a
comprehensive collection; rather the subjects included became so for reasons of curiosity
and opportunity. Their commonalities are arguably their relevance in fundamental
physics, and consequently their planned investigation in a laser interferometry experiment
being commissioned at Cardiff University.

Part of the work for this PhD at Cardiff University comprised contributions to the
design and commissioning of this laser interferometry experiment, known as ‘QUEST’,
and this is described in the first chapter. The phenomena we seek to measure with laser
interferometry, in this context, are Quantum Gravity, Dark Matter, and Gravitational
Waves, and each is discussed in a separate chapter of this thesis.

Much of the work covered in this dissertation has been published (or will soon be
published) as articles in the literature. An overview of these articles is given below:

• Vermeulen, S. M. et al. “An experiment for observing quantum gravity phenomena using
twin table-top 3D interferometers”. Classical and Quantum Gravity 38, 085008. issn:
0264-9381, 1361-6382 (Apr. 2021)

• Vermeulen, S. M. et al. “Direct limits for scalar field dark matter from a gravitational-wave
detector”. Nature 600. issn: 1476-4687 (Dec. 2021)

• Aiello, L. et al. “Constraints on Scalar Field Dark Matter from Colocated Michelson
Interferometers”. Phys. Rev. Lett. 128, 121101 (12 Mar. 2022)

• Ejlli, A. et al. “Probing dark matter with polarimetry techniques”. arXiv:2211.09922,
accepted for publication in Phys. Rev. D. Nov. 2022

• Stegmann, J. & Vermeulen, S. M. “Detecting the heterodyning of gravitational waves”.
arXiv:2301.02672, to be submitted to a journal. Jan. 2023
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Summary

Laser interferometry is an experimental technique that has been developed over the past
decades to achieve superlative sensitivity to changes in optical path length. This disser-
tation discusses the use of laser interferometers to detect quantum gravity phenomena,
dark matter, and gravitational waves.

In the first chapter, the laser interferometry experiment known as QUEST is discussed,
which consists of twin co-located table-top interferometers. The experiment will be
sensitive to displacements of the order 10−19 m/

√
Hz between 1-250 MHz. Emphasis is

given to the development and testing of the FPGA-based high-frequency data acquisition
system that performs cross-correlation and averaging of the data.

In the second chapter, the detection of quantum space-time fluctuations with laser
interferometers is discussed. Contemporary literature on holographic quantum space-
time fluctuations is reviewed. A basic model for computing interferometric signals from
quantum space-time fluctuations is formulated, and prospects of detecting a signal with
QUEST are analysed.

In the third chapter, we demonstrate the use of laser interferometry to search for scalar
field dark matter. Analysis of the data from the GEO600 gravitational-wave detector
and the Fermilab Holometer for the presence of dark matter signals was performed; no
signals were detected, and constraints are placed on dark matter coupling strengths
that exceed previous constraints by orders of magnitude. A polarimetric experiment to
search for scalar and pseudoscalar dark matter is proposed, and we discuss prospective
dark matter searches with QUEST.

In the fourth chapter, we present a new approach for detecting gravitational waves
using existing and future detectors that exploits the mixing, or heterodyning, of grav-
itational waves. We show that this method could allow gravitational-wave detectors
such as LISA to detect low-frequency gravitational waves outside of their designed band-
width using the same infrastructure. We also comment on the prospects of detecting
high-frequency (MHz) gravitational waves with QUEST.
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1: The QUEST Experiment

In this chapter, the QUEST experiment is discussed. The QUEST experiment
consists of two identical table-top laser interferometers, with the primary purpose
of detecting the noise produced by holographic quantum space-time fluctuations.
The experiment will be sensitive to displacements of the order 10−19 m/

√
Hz in

the MHz band (1-250 MHz), and will also be used to search for high-frequency
gravitational waves and certain kinds of dark matter. The laser interferometers are
built using technologies originally developed for the construction of gravitational-
wave detectors. Cross-correlation of signals from the two co-located interferometers
will be used to significantly enhance the sensitivity of the experiment.
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The QUEST Experiment

Contributions to published work in this chapter
Sections 1.2.3, 1.2.4, 1.3, 1.5 of this chapter are based on parts of the article

• Vermeulen, S. M. et al. “An experiment for observing quantum gravity phenomena
using twin table-top 3D interferometers”. Classical and Quantum Gravity 38,
085008. issn: 0264-9381, 1361-6382 (Apr. 2021).

S.M.V. lead the writing of that manuscript, and produced the majority of the content
and text of the manuscript, with the exception of sections 5.1, 6, and a part of section 7
therein [1].
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The QUEST Experiment 1.1. Introduction: The QUEST Experiment

1.1 Introduction: The QUEST Experiment
Laser interferometers were extensively developed in the decades-long effort to develop a
gravitational-wave detector. This effort produced interferometers that are sensitive to
displacements on the order of 10−19 m, significantly exceeding other methods of measuring
lengths, and enabling length measurements with a relative uncertainty better than one
part in 1023[6]. The highly sensitive interferometers built by the LIGO collaboration
made the first detection of gravitational waves in 2015 [7].

It was realised by many that such sensitive instrumentation could potentially be
applied to measure other physical phenomena with unprecedented sensitivity. This
requires the phenomenon to interact with the light in the interferometer and hence
perturb the interference pattern such that a signal is produced. The QUEST experiment,
which comprises a pair of table-top laser interferometers, was motivated in particular by
proposals to use laser interferometry to observe quantum fluctuations of space-time [8–11].
Additionally, the experiment will be used to search for certain proposed kinds of dark
matter [12, 13] with unprecedented sensitivity. By design, the QUEST experiment will
be the most sensitive gravitational-wave detector in its respective frequency band [14, 15],
and will therefore also allow the detection or exclusion of the presence of high-frequency
(MHz) gravitational waves above a certain amplitude.

A quantitative understanding of the coupling between the phenomenon of interest
and the laser interferometer is required to assess the scientific potential of an experiment,
to inform the exact design of the interferometer, and to interpret the measurements
produced by the instrument. In this thesis, the last sections of the next chapters
(i.e. 2.4, 3.6, and 4.3) explicate the scientific prospects of the QUEST experiment for
detecting the fundamental physical phenomena of interest.

1.1.1 History of the QUEST Experiment
The QUEST experiment was conceived primarily as a follow-up to the Fermilab Holome-
ter [16], a pair of co-located and co-aligned laser interferometers with 40-m arms. The
Holometer was built to look for an exotic form of noise hypothesised to arise due to the
holographic quantum nature of gravity [17] (see Chapter 2). No such signals were found
in the initial phase of the Holometer programme [18]. It was then postulated that the
holographic quantum gravity noise could only be detected in a configuration where the
arms of the interferometer do not extend purely radially from the beamsplitter [19, 20].
The Fermilab Holometer was therefore reconfigured with a ‘bent’ arm [21], and more
measurements were performed. Again, no signal was found [21] and the experiment has
now been decommissioned.

It was argued by the Holometer collaboration that a table-top experiment, with
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The QUEST Experiment 1.1. Introduction: The QUEST Experiment

improved sensitivity, would be suited to continue a search for signatures of quantum
gravity. The QUEST experiment initially planned for an arm design similar (but shorter
by a factor 10) to that of the Holometer, where one arm of each interferometer is ‘bent’
at 90 degrees by a mirror halfway along the arm (see Fig. 2.3). However, after reviewing
the developing literature [8, 22], this author argued that the interferometers should not
use bent arms, and that a design with straight arms where the angle between the arms
can be reconfigured (see Sec. 1.2.2) was better motivated.

1.1.2 Improvements over the Fermilab Holometer
The individual interferometers of the Holometer have reached a sensitivity to displace-
ments of the order of 10−18 m/

√
Hz at frequencies between 1 and 25 MHz, limited by

photon shot noise. The main improvements to the design that will allow QUEST to
surpass the displacement sensitivity of the Holometer are the inclusion of optical mode
cleaners, higher optical input power, and the injection of squeezed states of light, which
all will allow for the mitigation of photon shot noise (see Secs. 1.2, and 1.3). The
displacement sensitivity of the individual interferometers of QUEST is projected to be
better than that of the Holometer by an order of magnitude, and the projected sensitive
frequency band of QUEST, between 1 and 250 MHz, is also greater by an order of
magnitude (see Sec 1.5).

The compact table-top design allows the experiment to be built on a single vibration-
isolated optical bench in a laboratory under stable environmental conditions. This will
mitigate environmental noise to enhance sensitivity at lower frequencies, and help keep
the interferometer at its operating point (reducing the occurrence of ‘lock loss’), which
improves the experiment’s duty cycle.

Moreover, the small scale of QUEST will allow the above-mentioned reconfiguration
of the interferometer geometry, e.g. a change of the angle between the arms at the
beamsplitter.

For comparison, the main experimental parameters for both the Holometer and the
QUEST experiment are summarised in Table 1.1.

1.1.3 Present and Future of the QUEST experiment
At the time of writing, the QUEST experiment is being commissioned and is expected
to start its measurement campaign within the coming year. It is expected that the
accuracy of the measurements will be limited by random noise (specifically quantum
shot noise, see Sec. 1.3.1).

The observable of primary interest in the QUEST experiment is the cross-correlation
of length changes in the two interferometers; all physical phenomena of interest (quantun
space-time fluctuations, dark matter, and gravitational waves) are hypothesised to
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The QUEST Experiment 1.1. Introduction: The QUEST Experiment

Table 1.1. The main experimental parameters for both the Fermilab Holometer and the
QUEST experiment are summarised. Here, ‘Effective CD’ is the effective contrast defect, defined
as the ratio of the power as measured on the photodetector and the circulating power at the
beamsplitter on a minimum of the interference pattern. This is different from the more
conventional definition of the CD in Sec. 1.3, which would not allow for a direct comparison of
the CD due to the absence of an OMC in the Fermilab Holometer. Detected SQZ is the level of
light squeezing as detected at the output (see Sec. 1.3.1); squeezing is not employed in the
Fermilab Holometer.

Parameter Fermilab QUEST (planned)

Optical path length 40 m 3 m
Input power 2 W 10 W
Circulating power 2 kW 10 kW
Bandwidth 25 MHz 250 MHz
Effective CD 2 · 10−5 < 10−6

Detected SQZ (initial/final target) – 6/10 dB

produce correlated signals in the two interferometers [1]. As with any measurement
that is limited by a random error, the accuracy of the measurement can be improved by
acquiring more data and taking the average, whereby statistically the accuracy improves
with the square root of the number of measurements. Therefore, the average cross-
correlation can be measured with an accuracy that increases as more data is collected,
and phenomena that produce correlated signals can be resolved over time (see Sec. 1.2.1).

For the QUEST experiment, the plan is to initially accumulate data for a total time
of 106 s. Given that QUEST’s interferometers perform as designed (see Sec. 1.5), this
amount of data will provide an effective integrated sensitivity that exceeds that of the
Fermilab Holometer, enabling the possible detection of new physics.
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The QUEST Experiment 1.2. Overview of the Experimental Design

1.2 Overview of the Experimental Design
The QUEST experiment comprises two sensitive laser interferometers that incorporate
many of the technologies developed for the construction of gravitational-wave detectors.
In this section, we give an overview on the experimental strategy and design of the
QUEST experiment.

1.2.1 Cross-correlation of Twin Interferometers
The sensitivity of the QUEST experiment to quantum space-time fluctuations, gravita-
tional waves, and dark matter will be achieved through cross-correlation of the signals
from two interferometers. A custom-designed FPGA-based data acquisition system will
sample the signals from the interferometers at fs = 500 MHz and perform real-time
cross-correlation and integration of the data, as detailed in Sec. 1.4.

This cross-correlation approach exploits the fact that given a signal that is correlated
between two detectors, and given noise that is not, the cross-spectrum converges to
the correlated signal over time. As shot noise is expected to be the dominant in the
interferometer outputs (see Sec. 1.3), this uncorrelated noise can be averaged down
significantly over time to reveal underlying correlated signals. Specifically, the sensitivity,
defined as the magnitude of the noise cross power spectral density (CSD), is the geometric
mean of the noise auto power spectral densities of the individual interferometers (PSD1,
PSD2), and scales with the inverse square root of the total measurement time Ttot in
the absence of correlations [16, 23], i.e.

|CSD(f)| =
√

PSD1(f) · PSD2(f)
Nspec

∝
√

1
Ttot

, (1.1)

where Nspec is the number of measured spectra.
Unlike uncorrelated noise, correlated noise cannot be averaged down as in Eq. 1.1,

and will manifest as an irreducible noise floor in the cross-spectrum. A primary concern
in achieving high sensitivity will be the reduction of noise that is correlated between the
interferometers. The elimination of such noise comes down to perfecting the isolation
between the instruments and removing external noise sources that are coherent on scales
greater than the separation between the instruments.

While it can be shown that the time-averaged CSD does not provide more statistical
power than the two time-averaged auto-spectra from the individual interferometers
(PSD1, PSD2) combined [24], there are significant practical advantages to analysing
the former data product. To discern an unknown signal from quantum space-time
fluctuations in the time-averaged PSDs, one could look for excess (unexplained) spectral
power in these auto-spectra. To do this, all known sources of noise would need to
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be accurately subtracted from the mean auto-PSDs, such that the residual PSD can
be confidently attributed to the unknown signal. In other words, if the error on the
estimation of the known noise auto-PSD is greater than the signal, the signal can never
be identified. As the signal of interest is predicted to be ≳ 3 orders of magnitude
smaller than the expected shot noise, the known noise would have to be quantified
with an uncertainty much less than 1/103 = 0.1% to be accurately subtracted from
the mean. This would also require calibration of the experiment to that accuracy. In
addition, any non-stationarity of the interferometer noise would need to be quantified
and accounted for when analysing the auto-PSDs. No subtractions have to be performed
on the cross-spectrum, which drastically simplifies the experiment (as there is no need
for extremely accurate calibration) and the data analysis.

1.2.2 Reconfigurable Geometry
The initial stage of the QUEST experiment will use twin co-located interferometers with
a 1.8-m arm length. The angle between the arms γ can be varied, which will allow the
experiment to test theories that predict a characteristic angular correlation pattern of
quantum gravity fluctuations (see Sec. 2.2.5). The reconfiguration of the inter-arm angle
can in theory be done without having to replace any components (with the exception
of the beamsplitter). The central vacuum chambers that house the beamsplitter and
power-recycling mirrors have been designed with a large number of flanges around
their circumference to facilitate reconfiguration; the flanges are spaced such that the
inter-arm angle γ can be set to seven angles between 10◦ and 170◦. To further facilitate
reconfiguration of the interferometer arms, the injection optics (laser, amplifier, mode-
matching telescope, etc.), the detection optics (optical mode cleaner, photodiodes, etc.),
and the squeezed light sources, are all placed on their own breadboards that can easily
be moved across the optical bench.

A future stage of the experiment may feature a 3D geometry with arms that include
a radial and a non-radial segment to introduce a sensitivity to transverse quantum
space-time fluctuations (see Sec. 2.3).

1.2.3 Optics
An overview of the optical layout of a single interferometer of QUEST is shown in Fig. 1.2.
The input light for each interferometer will be provided by a tunable continuous-wave laser
(Coherent Mephisto), with a maximum optical output power of 0.5 W at a wavelength
of 1064 nm. A total input power of up to 20 W will be achieved through the use
of optical amplification stages (neoLASE). The addition of an input mode cleaner to
suppress non-resonant optical modes and provide temporal filtering of the input beam
is being considered. A beamsplitter with one reflective and one anti-reflective surface
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𝛾 𝛾

Figure 1.1. The initial geometrical configuration of QUEST’s twin co-located interferometers
(left) and a top view of the design of the central vacuum chambers that house the beamsplitters
(right). The arms will comprise a single radial segment with a length of 1.8 m, and the inter-arm
angle γ can be varied between 10◦ and 170◦ by using different flanges around the circumference
of the central vacuum chamber for the arms and the input and output beams. The diagram of
the central vacuum chamber shows the mounts for the beamsplitter and the power-recycling
mirror in the interior, which would need to be reconfigured when changing the inter-arm angle.

will split and recombine the light into and from the arms with a 50:50 ratio. The
co-located interferometers are designed to operate with circulating optical powers of
roughly 10 kW by using a power-recycling configuration [25]. The power-recycling cavity
of each interferometer will be compounded by the interferometer arms, delimited by two
concave end mirrors and a single flat power-recycling mirror. The spatial mode and
frequency of the input light will be tuned to the power-recycling cavity so that resonant
build-up of the light occurs. The interference pattern produced by light from the two
arms will be imaged on a photodetector in the output channel. Between the beamsplitter
and the photodetector, an optical mode cleaner (OMC) will be installed to suppress
higher-order spatial modes of light in the output channel. In addition, squeezed vacuum
states of light, produced using a dedicated setup known as a squeezer [26, 27], will be
injected into the optical paths of the interferometers through a Faraday rotator, which
will allow quantum noise to be reduced (see Sec. 1.3.1). Signals will be obtained using
DC-readout [28, 29].
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The QUEST Experiment 1.2. Overview of the Experimental Design

1.2.4 Vacuum System
The twin interferometers will each be built in independent but identical vacuum systems
that will contain the optics from the power-recycling mirrors to the end mirrors. The
rest of the optics, such as the output (and input) mode cleaners, injection optics, and
squeezers, will be built in air, to allow for easier manipulation. Each of the twin vacuum
systems will consist of three cylindrical vacuum chambers. A single, larger chamber will
house the power-recycling mirror and beamsplitter, and two slightly smaller chambers will
accommodate the end mirrors. To connect the vacuum chambers and allow for alignment,
stainless steel vacuum tubes with short bellows at the ends will be used, which connect
with adjoining vacuum chambers through manual gate valves. To maximise the options
for intervention and adjustment, each vacuum chamber will have its own mechanical
(turbo-molecular) pumps, pressure gauges, and valves for vacuum isolation. This feature
will contribute to the fast reconfigurability of the geometry of the interferometers.
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The QUEST Experiment 1.2. Overview of the Experimental Design

Figure 1.2. Simplified optical layout of a single power-recycled interferometer of the QUEST
experiment. Up to 20 W of input power will be provided by a 1064 nm laser and optical
amplifiers. The frequency and spatial mode of the input laser beam will be tuned to be resonant
with the power-recycling cavity, causing a build-up of circulating optical power of ∼ 10 kW. The
power-recycling cavity is delimited by the flat power-recycling mirror (PRM) and the concave
end mirrors (EMX,Y). A 50:50 low-absorption beamsplitter will split and recombine the light in
the two arms. The angle between the arms γ can be varied. At the output of the interferometer,
an optical squeezer will be used to inject squeezed vacuum states of light into the interferometer
through a Faraday rotator (FI) to reduce quantum noise. An output mode cleaner (OMC) will
suppress higher-order optical modes in the output channel. Shaded areas represent vacuum
chambers.
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The QUEST Experiment 1.3. Mitigation of Noise

1.3 Mitigation of Noise
As can be seen in Eq. 1.1, the cross-correlated sensitivity is linear in the geometric
mean of the interferometer auto-PSDs, and inversely proportional to the square root
of the measurement time. Decreasing the level of uncorrelated stochastic noise in each
interferometer is therefore a primary strategy towards increasing the sensitivity in the
integrated cross-spectrum. In this section, the sources of different kinds of noise and the
strategies for their mitigation are discussed, as summarised in Table 1.2.

Noise Source Mitigation Strategy

Shot noise
High input power, power recycling,
squeezed states of light

Additional shot noise due to contrast defect
High-performance optics and alignment,
output mode cleaner

Seismic and acoustic noise
Vibration-isolated optical bench,
quiet cleanroom environment

Residual gas noise Ultra-high-vacuum system
Noise from stray light Baffles in vacuum tubes (optional)
Thermal noise No mitigation needed

Table 1.2. Relevant sources of noise and strategies for their mitigation.

1.3.1 Shot Noise

Shot noise at the Standard Quantum Limit
It is evident in similar state-of-the-art interferometry experiments, specifically gravita-
tional wave interferometers and the Fermilab Holometer, that the maximum experimen-
tally attainable sensitivity in the MHz range is currently limited by photon shot noise
with a magnitude that is given by the standard quantum limit for optical interferometers
[30].

The origin of this type of noise is the Heisenberg uncertainty relation for the particle
number and phase observables of an optical state,

∆Nγ ∆ϕ ≥ 1, (1.2)

where ∆Nγ and ∆ϕ are the root mean square (RMS) uncertainty of the number of
photons Nγ and the phase ϕ. The uncertainty of the phase, which is the observable
measured through interference at the beamsplitter, is equivalent to an uncertainty in
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the length measured with the interferometer:

∆L = λ∆ϕ
2π (1.3)

The RMS uncertainty of the number of photons is described by Poisson statistics, and is
related to the power of the optical state P as

∆Nγ =
√
Nγ =

√
PBSτ

ℏω
, (1.4)

where τ is the total measurement time, ω the angular frequency of the light, and we
consider the optical state at the beamsplitter with power P = PBS . For a coherent optical
state, the Heisenberg uncertainty relation (1.2) is an exact equality i.e. ∆Nγ = 1/∆ϕ.
Thus, combining the two equations above, there is a lower limit on the uncertainty of
measured length

∆L = λ∆ϕ
2π = λ

2π∆Nγ
=
√

cℏλ
2πPBSτ

, (1.5)

where we used that ω = (2πc)/λ. This lower limit on interferometric length measurements
is known as the standard quantum limit (SQL)[30]. Given a series of length measurements
each of duration τ = 1/fs, one can compute the corresponding RMS amplitude spectral
density S∆L(f) of the apparent displacements ∆L using that by definition [31]:∫ fs

0
S∆L(f)df = ∆L√

2
. (1.6)

If the noise is assumed to be constant at all frequencies (white), the shot noise amplitude
spectral density is thus [30, 32]

SSQL
∆L (f) =

√
cℏλ

4πPBS
. (1.7)

It can be seen that the RMS amplitude of the shot noise depends inversely on the
circulating power at the beamsplitter PBS.

Measured shot noise at the photodetector
The SQL (Eq. 1.7) represents a fundamental lower limit on the displacement noise for
an interferometric measurement on a coherent state. In practice, the measured photon
shot noise is often greater. The measured shot noise manifests as fluctuations of the
current produced by a photodetector at the output of the interferometer; these current
fluctuations can equivalently be described as fluctuations of the optical power of the
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light at the output. Power fluctuations ∆P can be expressed in terms of fluctuations of
the number of photons and can be shown to be proportional to the square root of the
power:

∆P = ∆Nγℏω
τ

=
√

ℏωP
τ

, =⇒ ∆P ∝
√
P , (1.8)

where we used Eq. 1.4 for the second equality.
To calculate the total amount of shot noise in terms of power fluctuations, we

consider the output power Pout in a realistic interferometer that uses DC-readout, where
a deliberate offset from the dark fringe Φoff is used [28]. We further consider a small
differential optical phase between the arms φ to exist, which could be due to e.g. a
signal. Lastly, we take into account the existence of differential imperfections between
the interferometer arms, which yields different amounts of light in each arm. Because of
this, the contrast of the interference pattern is imperfect and an amount of extra power
PCD = PBS · CD (where CD is the dimensionless contrast defect, see below) is present
at the output that does not depend on the differential optical path length between the
arms. The output power is thus [33]

Pout = PBS sin2(φ+ Φoff) + PCD (1.9)
≈ PBS (φ+ Φoff)2 + PCD (1.10)

≈ PBS

(
2φΦoff + Φ2

off + CD
)

= Pφ + Poff + PCD, (1.11)

where we used the small angle approximation and neglect terms O(φ2); Pφ = 2PBSφΦoff ,
and Poff = PBSΦ2

off . The total RMS power fluctuation at the photodetector, i.e. the
measured shot noise, is then

∆Pout =
√

(∆Pφ)2 + (∆Poff)2 + (∆PCD)2 ∝
√
PBS

√
2φΦoff + Φ2

off + CD, (1.12)

where we add fluctuations in quadrature and we used Eq. 1.8. Moreover, we evaluate
the signal-to-shot-noise ratio (SNR)

SNR = Pφ

∆Pout
∝ 2φΦoff

√
PBS√

2φΦoff + Φ2
off + CD

, (1.13)

which can thus be seen to increase with the square of the power at the beamsplitter,
and to decrease due to the contrast defect.

We note that a measured change in output power Pφ corresponds to a measured
differential displacement

δL = λPφ

4πΦoffPBS
. (1.14)
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If we set the differential phase between the arms equal to the minimum phase uncertainty
of a coherent optical state in this equation, i.e. φ = ∆ϕ = 1/∆Nγ and plug in Eq. 1.4,
we recover the minimum displacement uncertainty as given by the standard quantum
limit (i.e. Eq. 1.5 with ∆L = δL).

To increase the signal-to-shot-noise ratio, the QUEST experiment will employ power
recycling to reach high circulating optical powers, which thus allows the effective mitiga-
tion of shot noise according to Eqs. 1.5 and 1.12 [34]. In order to improve the detector
sensitivity beyond the standard quantum limit for coherent states (Eq. 1.7), squeezed
states of light will be used [27]. Independent or entangled squeezed vacuum states will
be injected into the anti-symmetric ports of the interferometers [35]. The initial target
is to reach a level of detected squeezing of around 6 dB (this level has recently been
reached in GEO 600 [36], and is double that currently used in Advanced LIGO [37]). A
goal for a future stage will be to achieve 10 dB of detected squeezing.

Contrast defect and higher order modes
As mentioned above, in a realistic interferometer the light power in the two arms is not
equal, and perfect destructive interference cannot occur which produces excess output
power. We focus here on the contrast defect due to the imperfect destructive interference
of higher order optical modes (HOMs)1 at the beamsplitter, which is expected to be
the dominant contribution to the CD[1]. HOM light at the anti-symmetric port is
a significant part of the CD in state-of-the-art interferometry experiments, such as
gravitational wave detectors and the Fermilab Holometer. These interferometers use
DC-readout, and as such operate at a small offset from the dark fringe [28, 29]. Ideally,
the magnitude of the offset is chosen such that the CD represents an insignificant fraction
of the power incident on the photodetector compared to the TEM00 light due to this
intentional dark fringe offset. If there is a significant amount of HOM light at the output,
this would require operating at a large offset, which has the disadvantage that noise
from other sources is more strongly coupled to the output [28, 29]. In addition, a large
offset to dominate significant amounts of HOM light would entail high power incident on
the photodetector, which is undesirable, as high-bandwidth photodetectors are subject
to technical limitations at high incident power. This therefore effectively constrains
the circulating power that can be used in the interferometers, which in turn limits the
shot-noise mitigation that can be achieved.

The QUEST experiment will be designed with a target of attaining a CD due to
TEM00 light < 10−6, and a CD due to HOM light < 10−5. As a reference, the lowest

1The fundamental Gaussian optical mode (TEM00) is the lowest order solution of the paraxial wave
equation. An infinite number of higher-order solutions exist which are referred to as higher-order modes
[38].
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CD reported in the Fermilab Holometer was about 2 · 10−5 [39]. The latter requirement
is less stringent, as the contribution of HOM light will be reduced by at least an order
of magnitude at the output by including an optical mode cleaner (OMC) in the output
channel of each interferometer (see Fig. 1.2), with the target of suppressing HOM power
by at least an order of magnitude (OMCs are also employed in gravitational wave
detectors, but not in the Fermilab Holometer). The addition of the OMCs will reduce
the amount of HOM light incident on the photodetectors, thereby facilitating the use of
a smaller dark fringe offset. The OMCs will thus not only improve the shot-noise-limited
sensitivity directly by suppressing the HOM power, but also by allowing higher circulating
power within the interferometers. The relevant parameters for the suppression of HOM
light using an OMC are summarised in Table 1.3.

Table 1.3. Experimental parameters concerning the suppression of shot noise due to contrast
defect from higher order optical modes using an optical mode cleaner. The CD is the ratio of
the circulating power and the power at the ant-symmetric port as measured on a dark fringe,
before the OMC. The OMC will suppress HOM light by at least an order of magnitude to yield
an effective CD at the output of < 10−6 such that the experiment will be limited by shot noise
due to vacuum fluctuations.

Parameter Value

CD target (TEM00/HOM light) <10−6/<10−5

OMC HOM power suppression factor ≥ 10
OMC Finesse > 11
OMC bandwidth 200 MHz
OMC round-trip length < 13.5 cm

1.3.2 Seismic Noise, Residual Gas Noise, & Scattered light
Seismic vibrations, air turbulence, and acoustic noise cause the most problematic low-
frequency noise in interferometry, as these sources produce phase noise through various
coupling mechanisms. Seismic noise is filtered at higher frequencies by the vibration-
isolated optical bench that the QUEST experiment will be placed on. Therefore, the effect
of seismic noise on the displacement amplitude spectral density of the interferometer at
frequencies above 1 MHz is expected to be below that of the shot noise by more than an
order of magnitude. Environmental noise on the input beam due to air turbulence and
dust will be mitigated by placing the whole apparatus in a quiet Class 10000 cleanroom
with an air circulation and filtration system.

Fluctuations in the density of the residual gas in the vacuum system causes fluc-
tuations of the absolute phase of the light which will manifest as phase noise in the
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fundamental optical output mode. It was found [1] that the residual gas displacement
noise as estimated using the results in [40] for a vacuum pressure < 10−6 mbar will
be less than the displacement shot noise by more than one order of magnitude at all
frequencies. Another mechanism through which residual gas degrades the sensitivity is
the absorption of light by hydrocarbons deposited onto optical surfaces. The deposition
rate depends linearly on the residual gas pressure, as detailed in [39]. To increase the
time needed to deposit a single hydrocarbon monolayer on an optical surface to six
months, which corresponds to an increment of the coating absorption of 20 ppm, a
vacuum with a pressure of ≤ 10−7 mbar will be used.

Another non-negligible source of noise is stray light produced by specular and diffuse
reflections of light by dust or imperfections on the optical components. Specifically, it
was found in gravitational-wave detectors that the coupling of seismic noise to vibrational
excitations of interferometer components leading to phase modulation of stray light was a
significant source of noise [41]. The QUEST experiment will be sensitive at much higher
frequencies than ground-based gravitational wave detectors such as LIGO. Therefore,
we expect the contribution of noise due to stray light modulated by seismic noise to be
negligible. However, in case significant noise from stray light is present, this may be
suppressed by installing baffles in the vacuum tubes that connect the chambers that
house the mirrors.

The thermal excitation of atoms, or Brownian motion, excites the mechanical vibra-
tion modes of optical elements and as a consequence generates displacement fluctuations
of the reflective surfaces. Given the dimensions and material properties of the optical
elements, it is expected that the fundamental vibration mode and its harmonics lie at
≈ 477 kHz and multiples thereof. As this part of the thermal noise, which is expected
to exceed the shot noise, consist of a number of narrow resonance peaks, it need not
be mitigated. These peaks can be excluded in the data analysis with at the cost of a
small reduction in useful signal bandwidth. It is expected that the thermal noise from
Brownian motion in the optical coatings lies more than an order of magnitude below the
shot noise level.
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1.4 High-Frequency Data Acquisition System
This section describes the design and implementation of the high-frequency data ac-
quisition system (HF-DAQ) for the QUEST experiment. The HF-DAQ digitises the
output signals of the interferometers at 500 MHz, and performs FPGA-based real-time
cross-correlation and averaging on the data.

1.4.1 Scientific Design Requirements
The primary signal of interest for the QUEST experiment is that produced by hypo-
thetical holographic quantum fluctuations of space-time (Sec. 2.2). The time-domain
correlation length of such a signal is predicted to be given by the light-crossing time
of the interferometer, L/c. Correspondingly, the frequency-domain signal is predicted
to be strongest on the order of the light-crossing frequency, c/L. The signal is also
predicted to be relatively broadband (see Sec. 2.4). In order to fully resolve the desired
signal in the output of the interferometer, data must therefore be collected with a time
resolution higher than the light-crossing time. More practically, this means the electronic
signal from the photodiodes at the output of the interferometer must be sampled and
digitised at a frequency greater than twice the light-crossing frequency, 2c/L (according
to the Nyquist-Shannon sampling theorem), which is roughly 300 MHz for the current
configuration of the QUEST experiment. In addition, acquiring data over a greater
frequency band is desirable, as it allows one to search a larger part of the parameter
space of possible signals from parametrically modelled sources, e.g. dark matter and
gravitational waves.

The design of the QUEST experiment uses twin co-located interferometers under the
assumption that any signal of interest will be common to both instruments. The output
signals of the interferometers are predicted to be dominated by shot noise; the correlated
signals of interest superposed on this noise are predicted to have an amplitude several
(≳ 3) orders of magnitude smaller than that of the noise. To filter out a common signal
from the noise-dominated interferometer signals, cross-correlation has to be performed.
To make optimal use of time and avoid the need for dedicated processing time after
acquisition, cross-correlation has to be done at the same rate as data is acquired (i.e.
real-time). As the signal from quantum space-time fluctuations is predicted to be time-
invariant (stationary), the data may be averaged over time to improve the signal-to-noise
ratio. This averaging would also compress the data, preventing the need for large
amounts of data to be stored.

Given the requirement on the acquisition frequency, the necessarily high resolution
of the data points, and the aim to perform real-time cross-correlation and averaging on
the data, significant processing performance is required of the data acquisition system.

17



The QUEST Experiment 1.4. High-Frequency Data Acquisition System

PSD1

PSD2

CSD

Data Rate out:
(Data Rate in)/Navg
≲ 1 MB/s

Input 1

Input 2
Digitisers

Coprocessor

Averaging

FFT

FFT

Averaging

Cross-
correlation 

PXI chassis

IFO A

IFO B

Data Rate in:
500 MS/s
~ 1 GB/s

Averaging

on FPGA

Po
st

-p
ro

ce
ss

in
g

Server 
computer

Figure 1.3. Diagram of the high-frequency data acquisition system of the QUEST experiment.
Analog electronic signals from the photodetectors of each of the two interferometers (IFO A,
IFO B) are sampled and digitised at a rate of 500 MSamples/s by digitisers, producing two raw
data streams with a combined data rate of ∼ 1 GB/s (red lines). The data is transformed to the
frequency domain through an FFT implemented on the digitisers’ on-board FPGAs. The
spectral data is then sent from the digitisers to the coprocessor across the backplane of the PXI
chassis that houses the digitisers and coprocessor. Next, cross-correlation of the data is
performed on the coprocessor’s FPGA, producing three data streams that correspond to the two
auto-spectra (PSD1, PSD2) and one cross-spectrum (CSD) of the two inputs. Averaging on the
coprocessor’s FPGA reduces the data rate by a factor equal to the chosen number of averages
(Navg = 103 − 106), producing an output data rate of ≲ 1 MB/s (orange lines). A server
computer controls the digitisers and coprocessor and post-processes and stores the final data.

1.4.2 Design and Configuration

Hardware
The requirements above motivate the use of high-frequency high-resolution analog-
to-digital converters (ADC). The HF-DAQ contains two identical 500-MS/s, 16-bit, 4-
channel digitisers (NI PXIe-5763), one for each interferometer. The data is transformed to
the frequency domain on the digitisers’ on-board Xilinx Kintex UltraScale KU035 FPGAs.
To perform real-time cross-correlation and averaging, we use an FPGA coprocessor
module that contains a Xilinx Kintex UltraScale KU060 FPGA (NI PXIe-7915). The
averaging reduces the data rate by a configurable factor of 103 − 106. The digitisers
and coprocessor are housed in a PXI chassis (NI PXIe-1092) connected to a server
computer (Dell PowerEdge R7525), which receives the processed data and controls the
digitisers and coprocessor. Communications between the PXI chassis and the server are
implemented using a PXI remote control module (NI PXIe-8398).
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Processing algorithm
The analog voltage signals from interferometers A and B are sampled by the digitisers
with constant frequency fs, which produces a stream of discrete data points

xA,B
n , n = 0, 1, . . . , Ntot − 1, (1.15)

where the time interval between points is ts = 1/fs, and the total number of points is
Ntot = ⌊Ttotfs⌋, where Ttot is the total measurement time. Successive segments of LFT
data points are subjected to a discrete Fourier transform (DFT) to yield the spectra

SA,B
kl =

(l+1)LFT−1∑
n=lLF T

xA,B
n · e−2πi kn

LFT , (1.16)

where k = 0, 1, . . . , LFT −1 denotes the frequency bin number, and l = 0, 1, . . . , Nspec −1,
where Nspec = Ntot/LFT. As the voltage measurements xn are real,

SA,B
(LFT−k) l = SA,B

kl ∈ C, (1.17)

and therefore the DFT transforms LFT real time-domain data points into (LFT/2) + 1
unique complex frequency-domain data points. Almost half of the frequency bins are
therefore redundant, and the non-redundant bins correspond to the frequencies

fk = k
fs

LFT
, k = 0, 1, . . . , LFT

2 − 1, (1.18)

such that Sk = S(fk) is the Fourier coefficient at frequency fk, and the frequency
resolution is ∆f = fs/LFT. The cross-spectrum of interferometers A and B, which fully
captures cross-correlations encoded in the time-domain data, is computed as

SAB
k = SA

k (SB
k )∗ ∈ C. (1.19)

The auto power spectra are also computed for each interferometer:

SAA
k = SA

k (SA
k )∗ ∈ R, SBB

k = SB
k (SB

k )∗ ∈ R. (1.20)

We add together consecutive batches of Navg < Nspec spectra to create the averaged
spectra

S̄AA
k (τj) = 1

Navg

(j+1)Navg−1∑
l=jNavg

SAA
kl ,

S̄BB
k (τj) = 1

Navg

(j+1)Navg−1∑
l=jNavg

SB
kl, (1.21)

S̄AB
k (τj) = 1

Navg

(j+1)Navg−1∑
l=jNavg

SAB
kl .
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These time-averaged spectra represent the data integrated for the measurement time
interval t ∈ [τj , τj + Tframe], where

τj = j Tframe = j
NavgLFT

fs
, j = 0, 1, . . . , Nframe, (1.22)

where Nframe = ⌊Nspec
Navg

− 1⌋. The spectra can be normalised as power spectral densities
to give the spectral estimates in the conventional units of variance per unit of frequency:

PSD1(τj) = CPSD · S̄AA
k (τj),

PSD2(τj) = CPSD · S̄BB
k (τj), (1.23)

CSD(τj) = CPSD · S̄AB
k (τj),

where CPSD = 2/(fsLFT). We call the data {PSD1(τj),PSD2(τj),CSD(τj)} for a certain
j a ‘frame’. These frames are each written to file and thus collectively represent the full
frequency-domain data of both interferometers with time resolution Tavg and frequency
resolution ∆f . This data has units of voltage (V2/Hz) and calibration is needed to
convert them to units of optical path length difference (m2/Hz), which is the physical
quantity measured with the interferometers. A cumulative average of each of these
spectral densities is continuously accumulated over time:

⟨PSD1⟩T =Ttot
=

Nframe∑
j=0

PSD1(τj),

⟨PSD2⟩T =Ttot
=

Nframe∑
j=0

PSD2(τj), (1.24)

⟨CSD⟩T =Ttot
=

Nframe∑
j=0

CSD(τj).

These cumulatively averaged spectra can then be used to look for stationary signals,
such as the one predicted to be produced by quantum space-time fluctuations.

Implementation and programming
The processing algorithm above, up to and including the averaging of spectra, is performed
on FPGAs programmed using the labVIEW FPGA module [42]. The LabVIEW FPGA
module provides a graphical programming tool and a compiler for NI FPGA hardware.
Using this module, a labVIEW FPGA programme can be compiled into files that are
input to the Xilinx compilation tools. These compilation tools then produce an FPGA
bitfile, which encodes the configuration of the logic gates of the FPGA to form the
desired custom logical circuits. Note that this latter compilation process is not fully
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deterministic; the allocation of the available logic gates on the FPGA is somewhat
random; a random seed is used to select the starting point on the FPGA for allocating
resources. This means that the compilation of programmes that require highly optimised
configurations of the FPGA to be successfully implemented (e.g. those that require
many sequential operations to be performed within a certain amount of time) often
needs multiple attempts to be successful.

All operations performed on the data streams are implemented using labVIEW’s
so-called Single-Cycle Timed Loops (SCTL). This programming structure forces a set
of operations to be completed once per FPGA clock cycle. An SCTL can therefore be
implemented straightforwardly and efficiently on a set of connected logic gates driven by
a single clock signal on the FPGA (known as a clock domain). The number of sequential
operations that can be performed in an SCTL is necessarily subject to timing constraints;
all sequential operations must complete within one clock cycle. The number of parallel
operations that can be performed in one SCTL is limited by the number of resources on
the FPGA. The processes of Fourier transforming (Eq. 1.16), cross-correlation (Eq. 1.19),
and averaging (1.21) are each performed in a dedicated SCTL; the labVIEW code for
these is shown in Fig. 1.7.

1.4.3 Testing using Simulated Signals

Methods
To test the performance of the HF-DAQ and identify spurious correlated noises inherent
to the system, simulated signals were input to the digitisers and cross-correlation and
averaging was performed on these signals for up to Tint = Ttot = 106 s.

Given continuous measurements of two independent realisations of random station-
ary noise, the magnitude of the cumulatively averaged cross-spectral density of these
measurements scales down with the square root of the measurement time over the full
bandwidth (see Eq. 1.1). In the presence of underlying cross-correlated noise, the average
CSD will asymptotically converge to the power spectral density of this underlying cross-
correlated noise. To test this scaling with integration time and identify cross-correlations
between the two channels of the HF-DAQ, simulated uncorrelated white Gaussian noise
signals were input to the two digitisers. These signals were produced using waveform
generators, specifically two KeySight 33600A and two Liquid Instruments Moku:Pro,
in various configurations. Cross-correlation measurements were also performed with
nothing connected to the input to quantify the correlated ADC noise floor.

Results
Initial tests were done using a single KeySight 33600A waveform generator (WFG), set
up to produce two independent realisations of Gaussian white noise over a bandwidth
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of 80 MHz on its two output channels, which were then connected to the inputs of
the two digitisers; the integration time for these measurements was Tint = 105 s. A
second measurement was performed using two KeySight 33600A waveform generators
powered from different wall sockets; each WFG was set up to produce Gaussian white
noise over a bandwidth of 60 MHz and connected to a digitiser. The integration time
for these measurements was Tint = 106 s. The variance of the simulated noise for both
measurements was chosen to approximately match the expected power spectral density
corresponding to the expected shot noise measured at the interferometers’ photodiodes
(see Sec. 1.5). The magnitudes of the cumulative average CSDs (Eq. 1.24) are plotted in
Fig. 1.4.
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Figure 1.4. Power spectral densities of simulated signals produced by KeySight waveform
generators cross-correlated and averaged using the HF-DAQ. The injected simulated noise
auto-PSDs are shown together with the cumulative average CSDs.

A second set of measurements were performed using two Liquid Instruments Moku:Pro
(Moku) devices configured as waveform generators producing independent noise with a
power spectral density ∼ 10−12 V2/Hz over a bandwidth of 250 MHz. Measurements
were performed using two independent channels of one Moku, and using two separate
Mokus (connected to a common power socket), respectively. The cumulative average
CSDs for these measurements, using integration times of Tint = 105 and Tint = 106 s,
respectively, are plotted in Fig. 1.5.

For all measurements described above, the median of the magnitude of the CSD,
taken over the bandwidth of the injected noise, was computed for each data frame
(Eq. 1.23). The time series of the medians of the CSDs thus obtained are plotted in
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Figure 1.5. Power spectral densities of simulated signals produced by Moku:Pro waveform
generators cross-correlated and averaged using the HF-DAQ. The injected simulated noise
auto-PSDs are shown together with the cumulative average CSDs.

Fig. 1.6.
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Figure 1.6. The median of the CSD of simulated noise signals cross-correlated and averaged by
the HF-DAQ as a function of the cross-correlation time (Tint) is plotted. The plot on the right
shows the median normalised to the injected noise auto-PSD.
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Discussion & conclusion
A discrepancy between the observed scaling of the CSD with integration time and
the theoretical scaling (∝ 1/

√
Ttot) is evidence for the presence of correlations. Such

discrepancies are present in all measurements at certain parts of the frequency band,
and shows that spurious correlations are created at some point in the signal path that
starts at the waveform generator and ends at the output of the digitisers’ ADCs. If these
correlations are created downstream from the waveform generators, they are likely to
affect the final sensitivity of measurements with the QUEST experiment with integration
times on the order 106 s or greater. It should be noted that spurious correlations of
some magnitude will always be present due to unavoidable imperfections of the isolation
between the two instruments and signal paths. The maximum integration time that
can be achieved without encountering a cross-correlated noise floor is therefore always
limited in any real measurement.

For the test with the Keysight waveform generators, the noise within the injection
bandwidth scales down as would be expected in the absence of correlations (see Fig. 1.6),
and reaches a level more than five orders of magnitude below the injected noise. It
can be seen that correlations are present at frequencies above 50 MHz; the averaged
CSDs show peaks between ≈ 70 and 90 MHz, which indicates underlying correlated
noise (Fig. 1.4). In addition, it can be seen that the CSD for the measurement using two
WFGs appears to converge to the underlying correlated ADC noise floor above 100 MHz,
which suggests the correlations in this frequency range are created at the digitisers and
are inherent to the HF-DAQ.

The measurements with the Moku:Pro waveform generators used injected noise with a
smaller PSD than those with the Keysight waveform generators, which means underlying
cross-correlated noise of a certain magnitude is resolved with shorter integration times.
It can be seen that the cumulative average CSDs of these measurements do not have the
same shape as the injected noise (Fig. 1.5); the spectra contain well-resolved features
due to correlations, in particular above frequencies of 100 MHz. Correspondingly, the
observed scaling of the median CSDs over time (Fig. 1.6) shows a discrepancy with the
theoretical scaling for uncorrelated noise. The shape of the CSDs at frequencies above
100 MHz is different for the measurements using one and two Mokus, respectively. This
suggests the correlations observed here depend on the configuration of the Mokus or the
connections to the HF-DAQ and are created upstream of the digitisers.

In conclusion, the level of correlated noise inherent to the HF-DAQ at frequencies
below 50 MHz was found to be smaller than ∼ 10−16 V2/Hz. Given the expected shot
noise PSD measured by the photodiodes, and assuming no correlations will be produced
in the interferometers, the photodiodes, or the electronics between the photodiodes and
the HF-DAQ, the QUEST experiment can reach a sensitivity at least five orders of
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magnitude in power below the shot noise level through cross-correlation in this frequency
range. At frequencies above 100 MHz, there are indications of correlated noise inherent
to the HF-DAQ at a level of ∼ 10−19 V2/Hz. These correlations might be produced
through the electrical connection between the two digitisers established by the chassis
that houses both, or could be due to crosstalk via another path. These correlations would
limit the sensitivity of the QUEST experiment at frequencies above 100 MHz. However,
the main signal of interest, that of quantum space-time fluctuations, is expected to be
peaked at around f = c/4L ≈ 40 MHz (for the current 1.8-m arm length, see Sec. 2.4).

Further cross-correlation measurements using more of the electronic components
that will comprise the final signal paths of the QUEST experiment will be performed to
search for correlated noises across the full bandwidth. In case it is found that correlated
noise inherent to the HF-DAQ limits the sensitivity, the HF-DAQ could be reconfigured
to electronically isolate the two digitisers by placing them in separate chassis, thereby
reducing cross-talk. In this case, the data from one digitiser could be streamed via a
fibre-optic connection to the other chassis that houses the coprocessor.
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LabVIEW FPGA code

Figure 1.7. The labVIEW FPGA code implemented on the HF-DAQ of the QUEST experiment. The
three main Single-Cycle Timed Loops (SCTL) that perform Fourier transformation, cross-correlation,
and averaging, respectively, are shown. The top SCTL runs on the digitisers, and receives data from the
back end of the ADCs. The data is subjected to an FFT and sent to the coprocessor over the PXI
chassis backplane using a peer-to-peer stream. The middle SCTL receives spectral data from both
digitisers and computes the real auto-power spectra and complex cross-spectra. The data is then sent to
another clock domain on the coprocessor, where the bottom SCTL is executed. The bottom SCTL
performs iterative summation of the incoming spectral data, and sends the cumulative sum to the server
computer for post-processing every (Navg)th cycle.
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1.5 Projected Sensitivity
The sensitivity of the QUEST experiment is designed to be limited by photon shot
noise. All other sources of noise, except for thermal noise peaks from the optics, will be
mitigated to below this shot noise floor as detailed in Sec. 1.3. Based on Eq. 1.7 and using
the target circulating power PBS = 10 kW, the estimated shot-noise-limited displacement
amplitude spectral density (or shot noise level, SNL for short) for a single interferometer
is 5.17 · 10−19 m/

√
Hz without squeezing. The estimated shot-noise-limited displacement

noise amplitude spectral density is plotted in Fig. 1.8 for different levels of squeezing.

Figure 1.8. Comparision of the shot-noise-limited displacement noise amplitude spectral
densities (SNL) of a single Fermilab Holometer interferometer and the projected SNL of a single
QUEST interferometer using different levels of squeezing. Curves plotted are the reported final
single interferometer SNL of the Fermilab Holometer (solid red line), projected single
interferometer SNL for the QUEST experiment using 10 kW of circulating power with no
squeezing (solid blue line), 6 dB of squeezing (dashed blue line), and 10 dB of squeezing (dotted
blue line). In addition, the projected inverse sensitivity to harmonic arm length changes without
squeezing is shown (dash-dotted cyan curve), assuming a interferometer arm length of 3 m (as
was the original design).

27



The QUEST Experiment 1.5. Projected Sensitivity

In addition, a curve generated using FINESSE [43] is plotted in Fig. 1.8 that shows
the inverse shot-noise-limited sensitivity to phenomena that harmonically modulate the
length of the arms, as gravitational waves do. It can be seen that the sensitivity decreases
at every multiple of the round-trip frequency c/(2L), for an arm length L = 3 m (as
in the original design). This is because the measured length change will be zero if an
oscillatory signal changes phase by kπ (k ∈ Z) within a single light-crossing time L/c.
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2: Quantum Gravity

In this chapter, we discuss detecting quantum gravity phenomena with laser
interferometers. It is argued that the description of gravity in concordance with
quantum mechanics must include the existence of yet unobserved fluctuations in the
measurements of distances. In theories that invoke the holographic principle, the
magnitude of such quantum space-time fluctuations is predicted to be observably
large. We review contemporary literature on holographic space-time fluctuations,
and formulate a basic model to derive interferometric signals due to fluctuations of
the space-time metric. We also discuss the prospects of detecting these quantum
gravity phenomena with the QUEST experiment.
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Contributions to published work in this chapter
Section 2.3 of this chapter is based on part of the article
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2.1 Introduction: The Pursuit of Quantum
Gravity

2.1.1 The Need for Quantum Space-Time
The pursuit of physics is the accurate description of the dynamics of Nature. While
arguably current physics already provides very accurate descriptions of matter, radiation,
and their interactions for the majority of Natural systems, some systems cannot yet
be described completely and consistently. While the scientific problem therein is only
manifest for a limited number of observable systems (such as black holes), the theoretical
problems of incompleteness and inconsistency are cause for dissatisfaction on their own
and suggest a better description of Nature is to be pursued. The root cause of many
of the problems in physics is the lack of understanding of the interplay of space-time
described by general relativity and mass-energy described by quantum mechanics; a full
understanding thereof would be the essence of a theory of Quantum Gravity.

The Einstein equations of general relativity describe how the curvature of the space-
time manifold, which manifests as the phenomenon of gravity, depends on the distribution
of mass-energy. The space-time manifold is a geometrical description of the conflation of
space and time and defines the succession of causes and effects, the essence of propagation
and dynamics. It is therefore apparent that any accurate and unequivocal description
of dynamics requires a precise and unambiguous space-time manifold. It is exactly
this requirement that proves problematic when one tries to compute dynamics using
the Einstein equations while using a quantum mechanical description of the state of
the mass-energy. In quantum mechanics, the mass-energy can exist in, for example, a
superposition state of two individual states with well-defined mass-energy distributions.
The superposition state however, does not have a well-defined distribution of mass-energy,
and hence the space-time manifold is curved in an indeterminate way. No agreed upon or
consistent way exists to account for such superposition states in the Einstein equations,
and hence no unequivocal description of the dynamics can be made [44, 45].

Extensive efforts have been made to circumvent such issues by describing gravity not
as the curvature of a space-time manifold but as a force that propagates on an uncurved
space-time manifold. Following the successful description of other interactions as due to
the exchange of force carriers that propagate on a flat space-time background, it was
thought gravity could be described likewise. Such approaches however seem to disregard
the fact that General Relativity is conceived as a logical consequence of the Equivalence
Principle, and its inevitable implication that gravity is not a force that propagates
causally, but is an alteration of causal propagation. It could therefore be argued
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conversely that approaches to gravity that do not incorporate this aspect are destined to
violate the Equivalence Principle, and therefore sure to fail. Examples of such approaches
include effective field theory [46, 47], but also include the popular String Theory [48],
which aims to describe gravity in direct conjunction with the other interactions. An
example of a theory that does not require a background space-time is Loop Quantum
Gravity, which furnishes its own description of space and time; however this version
of space-time might not be consistent with General Relativity [49]. Scientifically, the
problem of quantum gravity can not be considered solved until a consistent theory has
been formulated and experimentally tested.

2.1.2 The search for Quantum Gravity Phenomena
It has long been believed that the problem of quantum gravity must be approached
through mathematical reasoning towards a theoretical description. Many decades of
such theoretical work has so far proven unsuccessful in formulating a consistent theory
of quantum gravity. There is another option; the nature of quantum gravity could
be gleaned empirically. To do this would require the observation of quantum gravity
phenomena: physical effects that only exist for certain hypothetical combinations of
quantum mechanics and gravity. Most of the proposed partial quantum-gravity theories,
e.g. string theory and loop quantum gravity, state that such phenomena cannot yet
be observed experimentally, as the effects are too slight (their magnitude would be on
the Planck scale). However, semi-formal heuristic (i.e. without a complete underlying
theory) arguments exist that predict the existence of quantum gravity phenomena of
observable magnitude. Broadly speaking, the underlying consideration of these is that
if gravity is geometrical, and if gravity is quantum mechanical, geometry must exhibit
quantum mechanical properties, specifically quantum fluctuations.

A thought experiment
We consider here a thought experiment that illustrates such predictions. The origins of
this thought experiment and the arguments that predict quantum gravity phenomena
of observable magnitude go back to work by Wigner and Salecker [50, 51] in the 1950s,
were also developed by Karolyhazy [52] in 1966, and by Ng and Van Dam [53] and
Amelino-Camelia [54] in the 1990s (among others).

Consider the measurement of a distance L using the following method: a clock is
placed at one end of L and a mirror is placed at the other; a photon is sent from the
clock to the mirror and back. The time between emission and reception of the photon
t is recorded with the clock, and using the known speed of light c, the distance can
be inferred as L = ct/2. We now ask the question of how accurately this distance can
possibly be measured. If we apply the laws of quantum mechanics to the experiment,

32



Quantum Gravity 2.1. Introduction: The Pursuit of Quantum Gravity

we find that the clock cannot be absolutely stationary; its momentum is uncertain by an
amount ∆p that is conjugate to the uncertainty of its position ∆x:

∆x∆p ≥ ℏ/2, (2.1)

where ℏ is the reduced Planck constant. Due to this uncertainty in the positions of the
clock at the times of emission and reception, the measurement of the length L becomes
uncertain by an amount

δL = ∆x(t0) + ∆x(t) = ∆x(t0) + ∆pt
M

= ∆x(t0) + ℏL
∆x(t0)Mc

, (2.2)

where M is the mass of the clock. If one minimises this uncertainty as a function of
∆x(t0), the resulting minimal uncertainty of the length measurement that can be found
is

δLQM ≥

√
ℏL
Mc

, (2.3)

which also corresponds to the Standard Quantum Limit encountered in laser interfero-
metric measurements [30] (see also Sec. 1.3.1). It can be seen that this uncertainty can
be made arbitrarily small by increasing the mass of the clock by an arbitrary amount.

So far, the argument has proceeded using the laws of quantum mechanics without
considering gravity. However, we know that mass produces gravity and that this affects
distances and the propagation of light. The heuristic combination of gravity and quantum
mechanics in thought experiments like these can proceed in various ways and lead to
different consequences. It seems reasonable to postulate that the uncertain position
of the centre of mass of the clock in space is associated with an uncertainty in the
gravitational field (the curvature of space-time), which in turn produces an uncertainty
in the propagation of the photon. It might also be imagined that the clock is in a
superposition of position eigenstates, and propose that the space-time would exist in
a superposition state of two well-defined space-time manifolds (attempts to describe
space-time as such have proven problematic [44]). Lastly, one could also consider the
clock to exhibit quantum fluctuations of its mass-energy, and argue that this produces
fluctuations of the space-time metric (note that the derivations of holographic quantum-
space fluctuations Sec. 2.2 use a concrete consideration of an argument roughly analogous
to this).

At the very least, General Relativity dictates that we cannot make the mass of the
clock arbitrarily large; increasing the mass of the clock would perturb the space-time
curvature and in the extreme case a black hole would be formed. It is thus argued for
the present thought experiment, following [52, 53], that the uncertainty of the length
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measurement cannot be smaller than the gravitational Schwarzschild radius rs of the
clock:

δLGR > rs = GM

c2 , (2.4)

where G is the gravitational constant. This implies that it is required that

M <
δLc2

G
. (2.5)

If one combines this gravitational requirement with the uncertainty in length mea-
surements due to the Standard Quantum Limit (Eq. 2.3), a fundamental uncertainty in
the measurement of lengths from the combination of General Relativity and quantum
mechanics is derived:

δL ≥ (lP)
2
3 (L)

1
3 , (2.6)

where lP =
√
ℏG/c3. This result is notable for two reasons. First, the uncertainty

is found to depend on the Planck length, but due to this constant being raised to
the power 2/3, it is much greater than the ‘conventional’ estimates (e.g. those from
string theory and loop quantum gravity) for the magnitude of the effects. Second, the
uncertainty scales with the distance L that is measured. These two aspects could mean
the measurement uncertainty is observably large.

The argument defined by Eq. 2.4 is not a rigorous one, as no consistent theory
exists to describe the uncertainty in space-time given by uncertain mass-energy dis-
tributions. However, heuristic arguments that combine the basic concepts of gravity
and quantum mechanics almost invariably find that there should be an irreducible
variance of measurement of lengths that scales with the length measured. We refer
to the underlying quantum-gravitational uncertainties that produce this variance as
quantum space-time (QST) fluctuations. The different predictions for the magnitude of
the root-mean-square uncertainty of the length measurement due to QST fluctuations
can be expressed parameterically as [55]

δL ∝ (lP)α (L)1−α , (2.7)

where α is a constant specific to each model of quantum gravity. Models that predict
α = 1/2 are often categorised as ‘random walk models’ [9, 56], and this value for α has
been predicted more recently in theoretical work that invokes the holographic principle
[8, 11]. Other, older theories predict α = 2/3, and it has been argued that it is this
value of α that is in concordance with the holographic principle [10, 52, 57]. Finally,
conventional bottom-up approaches to quantum gravity such as string theory and loop
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quantum gravity predict no accumulation of fluctuations over distance, which implies
α = 1 [58–60].

As the models with α = 1/2 predict a length fluctuation of magnitude δL ∼
√
lPL,

which might be observable with laser interferometers, and as these models based on the
holographic principle have seen active development in recent years [8, 61–64], we focus
on these theoretical predictions in this work.
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2.2 Review of Holographic Quantum Space-Time
Fluctuations

2.2.1 History
The proposal that fluctuations of space-time according to the holographic principle could
be observed with interferometers, was first formulated in work by Ng and Van Dam [10].
However, the length fluctuations hypothesised there predicted a relatively small mag-
nitude of the fluctuation of δL ∼ l

2/3
P L1/3 (corresponding to α = 2/3 in Eq. 2.7).

Fluctuations of length measurements with a magnitude that scale with the square root
of the measured length (α = 1/2) as a consequence of the holographic principle were
first proposed by Hogan [65]. Hogan made several attempts to formulate a theory
to provide a mechanistic description of the quantum space-time (QST) fluctuations
responsible for this phenomenology, but the proposed theories were not consistent with
experimental constraints on Lorentz invariance and quantum mechanics [11, 17, 66].
This work nonetheless attracted significant interest when excess noise was observed
in the GEO600 gravitational-wave detector, and it was speculated that this could be
due to holographic quantum space-time fluctuations as proposed by Hogan. However,
the noise was soon after found to have a different origin. Different and more precise
phenomenological descriptions of holographic quantum space-time fluctuations have
since been formulated by Hogan and Kwon [20, 67, 68].

More recently, in 2019, Verlinde and Zurek formulated an explicit mathematical model
for holographic quantum vacuum space-time fluctuations, and showed this model pro-
duced the phenomenology given by Eq 2.7 for α = 1/2. Further work by Verlinde, Zurek,
Banks, and others, has developed this model in different theoretical frameworks [61–63,
69, 70].

2.2.2 The Holographic Principle
The holographic principle relates the geometry of space-time to the entropy it contains.
Informally, it states that the amount of information that can be contained in volumes
of space-time is limited by the area of an appropriate surface that is a boundary of
the volume. Specifically, it states that, in d-dimensional space-time, given a (d − 2)-
dimensional spatial surface H with area AH , the entropy SC that can be contained in a
(d− 1)-dimensional hypersurface C bounded by H is limited:

SC ≤ AH

4G , (2.8)
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where the hypersurface C is the causal development of H known as its light-sheet. This
limit is known as the covariant entropy bound [71]. It is generally accepted that this
bound is saturated in the case that H is the event horizon of a black hole [72].

The covariant entropy bound has profound implications for physics. The entropy is
proportional to the number of degrees of freedom Nd.o.f. in a physical system, i.e.

S ∝ Nd.o.f.. (2.9)

Conventional field theories state that the number of degrees of freedom is proportional
to the volume of the system, as they are based on the postulate that a field comprises a
harmonic oscillator at every point in space. The covariant entropy bound says this is
false, as it states the entropy and therefore Nd.o.f. is proportional not to the volume of a
system but to the area of a surface that bounds this volume. This means field theories,
if not wrong, at least overcount the number of degrees of freedom and give a description
of Nature that contains unnecessary redundancies.

2.2.3 Heuristic Derivation of Holographic QST Fluctuations
Here we show in a hand-waving manner that the application of the covariant entropy
bound to an interferometric measurement, supplemented with some additional assump-
tions, produces fluctuations of measured length δL ∝

√
lPL. While this derivation is not

rigorous, it captures the underlying reasoning of recent formal theoretical work, e.g. by
Verlinde and Zurek [8, 61, 63].

We start by considering an interferometric measurement in Minkowski space-time
using an interferometer with arms of length L (see Fig. 2.1). Input light is split at a
beamsplitter, which starts the measurement. The light propagates in the interometer
arms along null geodesics. After reflection off the arms’ end mirrors, the light returns
along null geodesics and is recombined at the beamsplitter where it interferes, completing
the measurement. The intersection (or overlap) of the future light cone of the start of
the measurement and the past light cone of the end of the measurement uniquely define
a causally connected space-time volume known as a causal diamond (C). The boundary
of the causal diamond is a causal horizon that can be described as a Rindler horizon or
a conformal Killing horizon.

At any fixed time during the measurement (i.e. on any Cauchy surface), the outside
boundary of the causal diamond is a two-dimensional space-like sphere. In the past half
of the causal diamond, this surface grows at the speed of light as time progresses, reaching
a radius of L, before shrinking back to a point in the future half of the causal diamond.
This growth and shrinking of the space-like surface is thus the causal development of
the boundary surface; i.e. it is the light sheet of the spherical surface with radius L.
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This identification allows us to apply the covariant entropy bound to the interferometric
measurement.

Sander M. Vermeulen

space

space

space

space

time

space

Figure 2.1. left: A diagram of an interferometer in three spatial dimensions. Light (red lines)
from a laser is injected to the beamsplitter where it is split into two arms that are terminated by
mirrors that return the light to the beamsplitter, where the light from the two arms is
recombined. The interference of the light is measured at the output port of the interferometer
using a photodetector. The green dashed sphere has a radius equal to the arm length of the
interferometers, and is the space-like holographic boundary of the interferometric measurement.
In applications of the holographic principle the area of this sphere bounds the entropy of the
measurement. right: Space-time diagram of an interferometric measurement. The splitting of
light at the start of the measurement and the recombination at the end of the measurement are
events that uniquely define a causal diamond (blue shaded area). The light-sheet or causal
development of the boundary of the causal diamond, also identifiable as a Rindler horizon or
conformal Killing horizon, is shown by blue dashed lines. The holographic space-like boundary
of the causal diamond is represented by the green dashed circle, which corresponds to the green
dashed sphere shown on the left.

We assume that the covariant entropy bound is saturated for the causal diamond C,
and that the entropy of the causal diamond is thus given by the area of a two-dimensional
sphere of radius L:

SC = AH

4G = 8πL2

(lP)2 . (2.10)

This implies that the number of degrees of freedom that describe physics inside the
causal diamond are limited, and scale with the surface area of the horizon in concordance

38



Quantum Gravity 2.2. Review of Holographic Quantum Space-Time Fluctuations

with the holographic principle:

Nd.o.f. ∝ SC ∝ L2

(lP)2 . (2.11)

We further assume that these degrees of freedom are quantum mechanical, and exhibit
quantum fluctuations of the total energy carried by these degrees of freedom E. We also
assume the fluctuations obey Poisson statistics; i.e. we assume the magnitude of the
fluctuation δE is proportional to the square root of the number of degrees of freedom.
This gives

δE

E
∝

√
Nd.o.f.
Nd.o.f.

. (2.12)

Finally, we consider the scaling of the magnitude of strain fluctuations (δL/L) of the
metric of the causal diamond produced by energy fluctuations according to General
Relativity, which gives(

δL

L

)2
∝ δE

E
, (2.13)

(cf. the strain produced by a gravitational wave that carries energy E)[73]. Combining
the three equations above, we find

δL ∝
√
lPL. (2.14)

2.2.4 Models of Holographic QST Fluctuations by Verlinde & Zurek et
al.

Verlinde & Zurek et al. have used various approaches to describe holographic quantum
space-time fluctuations in different theoretical settings. These arguments generally start
from the assumption that the covariant entropy bound (Eq. 2.10) gives the number of
quantum mechanical degrees of freedom in the causal diamond defined by an interfero-
metric measurement, and it is assumed that these degrees of freedom fluctuate. The
magnitude of the energy fluctuations of these degrees of freedom are also conjectured
to be given by the entropy bound, and their hypothetical gravitational effect on an
interferometric measurement is then computed using different methods. Below, we
summarise their work describing quantum vacuum fluctuations of holographic degrees of
freedom and their effect on interferometric measurements in flat space-time [8, 61, 63].

Modular Hamiltonian fluctuations
Verlinde and Zurek mainly consider energy fluctuations described in terms of the modular
Hamiltonian K, which is defined via the density matrix that describes the quantum
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state of the inside of the causal diamond

ρ = e−K

Z
with Z = tr

(
e−K

)
. (2.15)

One can in general associate an entropy Sent = − tr(ρ log ρ) [74] to this density matrix,
and if this entropy is given by the area of the boundary of the causal diamond, saturating
the covariant entropy bound, i.e.

Sent = S = AH

4G , (2.16)

it is found that the fluctuations of the modular Hamiltonian ∆K = K −
〈
K
〉

obey [62]

〈
∆K2〉 = AH

4G . (2.17)

‘Pixellon’ fluctuations
More recently, Zurek has proposed a more explicit model of the holographic degrees of
freedom, where the quantum mechanical excitations of the degrees of freedom are called
‘pixellons’. It is proposed that their vacuum state is described by a thermal density
matrix:

ρpix = 1
Z

exp
[
−β

∫
d3p

(2π)3 (ϵp − µ) a†
pap

]
, (2.18)

with partition function

Z =
∏
p

1
1 − e−β(ϵp−µ) (2.19)

where ϵp is the energy of pixellons with momentum p, µ is the chemical potential, a†
p, ap

are the creation and annihilation operators of the pixellons, and β = 1/T is the inverse
temperature of the system. The occupation number of the pixellon states is assumed to
be (see [63])

σpix (p) = 1
eβω(p) − 1

= a

lpω(p) , (2.20)

where ω(p) = (ϵp − µ). Thermodynamic energy fluctuations of the pixellons are then
calculated from this model.
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Gravitational effect on interferometric measurements
The quantum mechanical energy fluctuations above are assumed to produce a gravita-
tional effect that affects the propagation of light in an interferometer. One approach
considered the energy fluctuations to produce a series of gravitational shockwaves that
affect the light as it propagates [62]. In another article [61] Zurek et al. compute the
gravitational effect of the quantum fluctuations on the interferometric measurement using
the Feynman-Vernon influence functional, which allows one to compute the influence
of one quantum system (the holographic quantum degrees of freedom) on another (the
mirror of the interferometer). A more recent approach computes the time delay of light
in the arms due to holographic quantum fluctuations directly via the metric [63].

2.2.5 Angular Correlations of Holographic QST Fluctuations
It has been proposed that holographic quantum space-time fluctuations exhibit a certain
pattern of correlations. In particular, in space-time regions bounded by horizons (e.g.
causal diamonds), the fluctuations are thought to be correlated at points separated
in directions transverse to the light sheet, or equivalently directions tangent to the
space-like horizon. For a causal diamond defined by an interferometric measurement, the
correlations in length fluctuations are thus described with a non-zero angular two-point
correlation function

g(γγγ) =
〈
δL(ϑϑϑ)δL(ϑϑϑ+ γγγ)

〉
, (2.21)

where γγγ is the angular separation of two points on the spherical boundary of a causal dia-
mond and ϑϑϑ = (θ, ϕ) represents the angular coordinates in a spherical coordinate system
centred on the beamsplitter. For an interferometric measurement, a non-constant two-
point function implies that the signal depends on the angle between the interferometer’s
arms γ = |γγγ|.

Verlinde & Zurek propose that the boundary of the causal diamond responds gravi-
tationally to the holographic quantum fluctuations according to a Green’s function of a
modified Laplacian on a two-dimensional sphere [8]. This function can be expanded into
the spherical harmonics Yl,m(ϑϑϑ) which gives

g(γγγ) = ⟨δL(ϑϑϑ)δL(ϑϑϑ+ γγγ)⟩ = lPL

(4π)2

∑
l,m

Yl,m(ϑϑϑ)Yl,m(ϑϑϑ+ γγγ)
l2 + l + 1 (2.22)

Before this relation was published in work by Verlinde & Zurek, ’t Hooft proposed
that black holes can obey unitarity if the quantum fluctuations at the horizon (e.g.
Hawking radiation) are antipodally entangled [22]. This work by ’t Hooft finds almost
identical predictions for the angular two-point correlation function of the fluctuations [8,
75, 76].
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The decomposition of the correlations into spherical harmonics Yl,m above has most of
its power in low l modes, which motivates the prediction that the transverse correlations
extend over macroscopic angular separations. Importantly, macroscopic transverse
correlations imply that fluctuations are coherent over the typical diameter of a laser
beam or telescope aperture. If this is the case, astrophysical constraints set on quantum
space-time fluctuations by evaluating the blurring or degrading of images of distant
objects [56, 77, 78] might not apply (see Sec. 2.2.8).

Moreover, it has been suggested that the angular power spectrum of the temperature
fluctuations in the CMB can also be described by the angular two-point correlation
function of holographic QST fluctuations on an inflationary horizon [79, 80].

2.2.6 Models of Holographic QST Fluctuations by Hogan & Kwon
Hogan and Kwon have proposed several phenomenological descriptions of holographic
QST fluctuations, that all predict length fluctuations δL ∝

√
lPL. Mechanistic theoretical

descriptions of the fluctuations by Hogan violated Lorentz invariance and were since
abandoned [17]. Statistical models of the fluctuations were formulated, which yielded
the first frequency-domain descriptions of signals from holographic QST fluctuations in
interferometers [20, 67, 68].

After the Fermilab Holometer failed to detect a signal from holographic QST fluc-
tuations (see Sec. 2.2.8), Hogan & Kwon hypothesised additional phenomenological
aspects of the fluctuations [19]. Specifically, this work posits that holographic QST
fluctuations may affect lengths in directions transverse to light-sheets, or equivalently in
directions tangent to the space-like boundary of the causal diamond. Such ‘rotational’
fluctuations would not be observable when measuring lengths along radial directions as
is done with interferometer arms that only extend radially from the beamsplitter (the
radial direction is defined here by the spherical symmetry of the causal diamond defined
by the measurement). Moreover, it was proposed that radial QST fluctuations might
not be observable [64].

These theories motivate the consideration of interferometer designs with radial and
non-radial arm segments (see Sec. 2.3 and Fig. 2.3).

2.2.7 Strain PSDs from Holographic QST Fluctuations
Verlinde & Zurek et al. and Hogan & Kwon have recently computed the strain power-
spectral density (PSD) that holographic QST fluctuations would produce in interferome-
ter signals using their respective models [63, 64]. In both cases, it is predicted that the
majority of the spectral power of the signal exists at frequencies on the order of the
light-crossing frequency c/L. Both also predict a peak strain amplitude spectral density
on the order of 10−23 Hz−1/2. The predicted spectra are shown in Fig. 2.2.
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Figure 2.2. Theoretical predictions for the strain amplitude spectral densities due to
holographic quantum space-time fluctuations as measured with an interferometer are shown.
These signal spectra for the models by Zurek et al. and Kwon et al. are taken from [63], and
[64], respectively. The frequency axis is normalised to the light-crossing frequency of the
interferometer.

2.2.8 Experimental Constraints on QST Fluctuations
There is no experimental evidence for the existence of holographic QST fluctuations,
but using interferometric and astronomical observations, some tentative constraints on
the phenomenology can be set.

Constraints from astronomical observations
Given the general phenomenology of length fluctuations that scale with distance as
described by Eq. 2.7, it has been argued that images of distant astronomical objects
should appear blurred as the phase front of the light is distorted by the QST fluctuations.
By analysing astronomical data from a variety of telescopes operating at different
wavelengths, constraints were set on the parameter α < 0.72, subject to important
caveats [56, 77, 78]. Moreover, if the angular correlations of the fluctuations are
macroscopic as implied by Eq. 2.22, no distortion of the phase front of light from distant
sources is expected and the constraints do not apply.
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Constraints from gravitational-wave detectors
If the QST fluctuations are transversely correlated over distances on the order of the
diameter of typical laser beams, the resulting length fluctuations could be observable in
interferometers, as they compare the phase fronts of two light beams that are separated
by a large angle. Specifically, if the angular correlation length of the fluctuations is
greater than the beam diameter (i.e. the width of the phase front) but smaller than
the angular separation between the arms, the wavefronts in either arm are coherently
perturbed, and the two arms undergo different perturbations. In this case, the perturbed
light from the two arms interferes constructively at the output port of the beamsplitter
and a signal is produced.

The gravitational-wave detectors used by the LIGO-Virgo-KAGRA collaboration [81]
are currently the most sensitive interferometers in terms of strain sensitivity. To estimate
their sensitivity to QST fluctuations, the expected signal power in the sensitive frequency
range of these interferometers must be considered. Gravitational-wave detectors have
in general a reduced sensitivity at higher frequencies due to the frequency response of
optical cavities included in the interferometer design [82]. In addition, the output signals
of the interferometers are currently sampled at frequencies less than twice the light-
crossing frequency 2c/L, and therefore signals on the order of 2c/L cannot be resolved.
However, although the spectrum of the signal from holographic QST fluctuations is
strongly suppressed at frequencies below f ∼ c/L (the signal PSD scales as ∝ f2 or even
∝ f4 at low frequencies), some constraints may still be set, as shown in [63].

It should be noted that it has not been conclusively established how the signal
from holographic QST fluctuations as measured in an interferometer is affected by the
inclusion of Fabry–Pérot cavities in the arms. It has been argued that the cavities
reduce the signal [8, 83] by a factor on the order of the cavity’s Finesse (∼ 102 for
the arm cavities in gravitational-wave detectors), but more recently the opposite has
been claimed [63]. Work is ongoing [84] on a model that describes the effect of QST
fluctuations on propagating light that incorporates a more complete description of the
optical states, which may resolve the conundrum.

Constraints from the Fermilab Holometer
The Fermilab Holometer consists of a pair of 40-m laser interferometers specifically de-
signed to detect holographic QST fluctuations (see Sec. 1.1.2). Contrary to gravitational-
wave interferometers, the Holometer’s arms did not include optical cavities and the
instrument was designed to be sensitive at the light-crossing frequency and above. Con-
straints were set on the magnitude of QST fluctuations parallel to the light sheet [18],
as in the models by Verlinde & Zurek and the earlier models by Hogan, and fluctuations
transverse to the light sheet [21], as in the later models by Hogan & Kwon (see also
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Fig. 2.6). The reported constraints from the Fermilab Holometer are contingent on the
assumption that the length fluctuations are fully correlated between the two instruments
(which are separated by 0.9 m).
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2.3 Basic Model of Quantum Space-Time
Fluctuations in an Interferometer

In this section, a basic model of the coupling between quantum space-time fluctuations
and laser interferometers is formulated and then used to derive a frequency-domain
signal of the quantum space-time fluctuations in a 3D interferometer. We note that when
this model was developed, much of the literature discussed in the previous section and
in particular the concrete and precise frequency-domain signals discussed in Sec. 2.2.7
were not yet published.

2.3.1 Model of Fluctuations of Measured Length
Consider an interferometer as in Fig. 2.3 where the two arms X and Y, intersecting at
the beamsplitter BS, are at an angle γ with respect to each other. The inner, radial,
section of both arms has a length LI. Mirrors MMX,Y are placed at the end of the first
section to reflect the beams of either arm at an angle β into an outer, non-radial arm
section with length LO. The light in both arms is returned along the same path by end
mirrors EMX,Y.

To model the signal due to quantum space-time fluctuations that might be detected in
such an experiment, it is assumed the experiment is done in flat (Minkowski) space-time
ηij , where quantum geometrical fluctuations manifest as small perturbations hij of the
metric;

gij = ηij + hij , (2.23)

where roman indices denote spatial components. We choose a gauge in which the metric
perturbations are purely spatial, and therefore only consider the spatial part of the
metric.

Let a photon traverse an arm from beamsplitter to end mirror once. The arm length
that is measured at a time t by comparing the phase of such a photon to a stable
reference is given by the proper distance between beamsplitter and end mirror [8, 85,
86]:

L(t) =
∫ t

0

√
gij λi′λj′ ds, (2.24)

where gij(s) is the metric, λi(s) is a parameterisation of the photon’s path, and λi′(s) =
dλi

ds is the tangent vector, repeated indices are to be summed over, and L(t) is the
measured length of the arm at any time. Natural units are used unless specified
otherwise.
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ω
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Time
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Figure 2.3. left: Schematic of the interferometer geometry in three spatial dimensions. The
two arms A and B (red) consist of a radial and non-radial segment with lengths LI and LO

respectively. The angle between the two arms at the beamsplitter BS is γ, and the angles
between the two segments in either arm are βX and βY respectively. ω is the angle between the
two planes that contain each interferometer arm as measured when γ = 0. θ and ϕ are the polar
and azimuthal angle, where the θ = 0 plane is the plane defined by the two radial segments, and
the ϕ = 0 is the plane orthogonal to the θ = 0 plane that contains the non-radial segment of arm
X. The outer solid sphere with radius L = LI + LO is a two-dimensional space-like boundary of
a (3+1)-dimensional causal diamond defined by the experiment. right: Space-time diagram of
two photons traversing both interferometer arms from beamsplitter to end mirror and back. The
photon paths are projected onto the radial spatial direction, and the two transverse spatial
directions are suppressed. The top and bottom vertices of the solid square correspond to the
photons leaving and returning to the beamsplitter and define a causal diamond. The boundary
of this causal diamond is the space-like circle around the origin, which represents the same
surface as the solid sphere in the diagram on the left.

Using Eq. 2.23 in a Taylor expansion of Eq. 2.24, the measured length change due to
quantum space-time fluctuations to first order can be written as [73]

δL(t) = 1
2

∫ t

0
hij λ

i′λj′ ds. (2.25)

Note that this expression entails an integral of the fluctuations over a trajectory in the
space-time volume of a causal diamond. In a full holographic theory, an integral of
such a geodesic would require bulk reconstruction [69, 87]. Eq. 2.25 is to be seen as a
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simplified model of how a length change due to quantum space-time fluctuations might
arise.

2.3.2 Model of Statistics of Fluctuations
To be able to model the frequency domain signal that would be obtained if the phase
of many photons successively traversing the arm once is measured, some assumptions
about the statistics of the fluctuations hij(s) need to be made. In the case that the
fluctuations behave like homogeneous and isotropic white noise with a variance on the
order of the Planck length, i.e. [8]〈

hij(s1)hkl(s2 − τ)
〉

= A2lPδ(s1 − s2 + τ)δikδjl, (2.26)

the two-time correlation function of length measurements of any photon path is:

〈
δL(t1)δL(t2)

〉
= 1

4

〈∫ t1

0

∫ t2

τ
hij λ

i′λj′hkl λ
k′λl′ ds1 ds2

〉
= A2lPLΛ(τ), (2.27)

where angular brackets denote expectation values, A is some constant of order one,
τ = t2 − t1, and Λ(τ) is a triangle function defined as [20]

Λ(τ) =

1 − |τ |/L 0 < τ < L

0 otherwise.
(2.28)

Eq. 2.27 does not allow all the phenomenologies of fluctuations of measured distance
proposed in theory to be modelled. Specifically, it can be seen that the case that the
space-time fluctuations behave like uncorrelated white noise with Planckian variance as
in Eq. 2.26 leads to a scaling of length fluctuations as in Eq. 2.7 with α = 1/2.

To reproduce all the different phenomenological predictions parmeterised by α for the
scaling of measured length changes summarised in Eq. 2.7, to account for homogeneous
but anisotropic quantum space-time fluctuations [67], and to allow the modelling of
different arm geometries, it might be assumed that in general

〈
δL(t1)δL(t2)

〉
= 1

4

〈∫ t1

0

∫ t2

τ
hijλ

i′λj′ hklλ
k′λl′ ds1ds2

〉
(2.29)

=
(〈
λm′λn′〉Amn

)2 (lP)2α(L)2(1−α)Λ(τ), (2.30)

where Amn ≡
〈
|hmn|

〉
. The expectation value of the magnitude of the length fluctuations,

〈
|δL(t)|

〉
≈
√〈

δL(t)δL(t)
〉
, (2.31)
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thus scales according to the phenomenological predictions in Eq. 2.7 as desired:

〈
|δL(t)|

〉
= 1

2

〈 ∣∣∣∣∫ t

0
hij λ

i′λj′ ds

∣∣∣∣
〉

≈
〈
λi′λj′〉Aij(lP)α(L)1−α. (2.32)

Setting α = 1/2 and Aij = Aδij in this expression corresponds to the case of homogeneous
isotropic white noise. Eq. 2.30 represents a generalisation of the phenomenology of the
quantum space-time fluctuations. Note that for α ≠ 1/2, Eq. 2.30 implicitly assumes
a two-point correlation function for quantum space-time fluctuations different from
Eq. 2.26.

2.3.3 Geometrical Coupling Factors of 3D Interferometer Arms
The sensitivity to non-radial quantum space-time fluctuations depends on the geometry
of the arms. Therefore, to inform the geometrical design of the interferometers, it is
worthwhile to asses this dependency quantitatively. Eq. 2.32 can be evaluated for an
interferometer arm geometry as in Fig. 2.3 in a spherical basis (i ∈ {r, θ, ϕ}):

〈
|δL(t)|

〉
= 1

2

〈∫ tI

0
λ′

rIhrr dsI +
∫ tO

0
hij λ

i′
Oλ

j′
O dsO

〉
(2.33)

= Arr(lP)α(LI)1−α +
〈
λi′

Oλ
j′
O
〉
Aij(lP)α(LO)1−α, (2.34)

where the subscripts I,O refer to the inner and outer arm segments, such that LI,O are
the expectation values of the lengths of the inner and outer arm segment, respectively,
and t = tI + tO. It can be seen from this expression that the inner arm segment is
only sensitive to radial fluctuations (hrr), which are those along light-sheets (transverse
to boundaries of causal diamonds). The outer arm segment is in general sensitive to
fluctuations in any direction, including those transverse to light-sheets (hθθ and hϕϕ,
along boundaries of causal diamonds). Specifically, the response of the outer arm segment
to quantum space-time fluctuations depends on the geometrical coupling factors

Gij
O(βX,Y , R) =

〈
λi′

Oλ
j′
O
〉
(LO)1−α, (2.35)

where R = LI/LO. To evaluate this expression, we consider a parameterisation of the
photon path in the arms:

λi = λi
I + λi

O = r(s)r̂i + θ(s)θ̂i + ϕ(s)ϕ̂i (2.36)

For both arms X and Y the inner radial segment can be trivially parameterised as

λi
I = sr̂i. (2.37)
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For the outer, non-radial segment,

λi
O = rO(s)r̂i + θO(s)θ̂i + ϕO(s)ϕ̂i. (2.38)

For arm X,

rX
O (s) =

√
s2 + L2

O − 2sLO cosβX , (2.39)

θX
O (s) = arcsin

 s sin(βX)√
s2 + L2

O − 2sLO cosβX

, (2.40)

ϕX
O (s) = 0. (2.41)

For arm Y, the parameterisation can be obtained by performing a rotation on the
parmaterisation of the X-arm by an angle ω (see Fig. 2.3).

Using this parameterisation, and taking for the expectation value of λi′λj′ the mean
tangent vector over the photon path

〈
λi′λ′j〉 ≡ λi′λ′j = 1

t

∫ t

0
λi′λj′ds, (2.42)

the geometrical coupling factors Grr
O and Gθθ

O were evaluated numerically as functions
of βX,Y and R = LI/LO, and the results are plotted in Figs. 2.4. This shows that the
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Figure 2.4. Geometrical coupling factors Grr
O (left), and Gθθ

O (right), which define the
geometrical coupling of the light path in the non-radial interferometer arm segment to
longitudinal and transverse quantum gravity fluctuations, respectively.

sensitivity to transverse fluctuations hθθ can be maximised for a bend angle of the arms
βX,Y ≈ 60◦ and R ≈ 1 (such that LI ≈ LO).
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2.3.4 Frequency Domain Signal
The frequency domain signal produced by the quantum space-time fluctuations, specifi-
cally the power spectral density of the length fluctuations, can be found by taking the
Fourier transform of the two-time correlation function in Eq. 2.29:

Pxx(f) =
∫ ∞

−∞

〈
δL(t1)δL(t2)

〉
e−2πifτ dτ, (2.43)

which gives,

Pxx(f) = l2α
P
c

(
Arr(LI)( 3

2 −α)sinc
(
πLIf

c

)
+
(〈
λi′

Oλ
j′
O
〉
A2

ij

) 1
2 (LO)( 3

2 −α)sinc
(
πLOf

c

))2
,

(2.44)

in SI units (m2/Hz), and the amplitude spectral density is the square root of Pxx(f).
When evaluated for α = 1/2, Eq. 2.44 has the same form as previous results for quantised
space-time signals in interferometers that consider the case α = 1/2 [8, 20, 67].

2.3.5 Cross-Spectral Density Signal in Co-Located Interferometers
In theory, the signal described by Eq. 2.44 is detectable in a single instrument [8].
However, theories of quantum space-time fluctuations based on the holographic principle
suggests that measurements within the same causally connected volume of space-time
are correlated [88](see Sec. 2.2). Therefore, the signal due to quantum space-time
fluctuations in a single instrument should be coherent to some degree with the signal in
an identical interferometer in the same volume of space-time. As dominant sources of
noise are expected to have limited coherence between the interferometers, it is expected
that the common signal from quantum space-time fluctuations can be resolved in the
time-integrated cross-spectral density of co-located instruments. This approach has
significant practical advantages over the use of a single instrument, as explained in
Sec. 1.2.1.

In a simple holographic scenario, it may be expected that the strength of the
correlations of these measurements is proportional to the overlapping volume of the
causal diamonds defined by the respective measurements (see Fig. 2.5) [20, 89]. In
the unrealistic approximation that the interferometers are truly co-located, the causal
diamonds defined by the two interferometers overlap fully, and the cross-spectral signal
is equal to the auto-spectral signal (Eq. 2.44). The overlap of the individual causal
diamond is itself a causal diamond of size 2L− d, where d is the separation between the
interferometers and 2L is the size of causal diamonds defined by a single interferometer
[90]. Imperfections of the identicality of the twin interferometers, specifically in the
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lengths and angles, may also decrease the overlap of the causal diamonds, but these
geometrical imperfections can easily be limited such that their effect is much smaller than
the effect of the separation between the interferometers. The signal in the cross-spectrum
is thus expected to decrease as ∼ 2d/L to first order for inter-instrument separations
that are small compared to the spatial radii of the individual causal diamonds.

d

2L - d

d

2L - d Space

Time

Figure 2.5. left: Schematic of the two identical co-located interferometers with
three-dimensional arms of total optical path length L. The interferometers are separated by a
distance d. The spheres are the boundaries of causal diamonds defined by the experiment.
right: Space-time diagram of four photons traversing both arms in both interferometers from
beamsplitter to end mirror and back. The photon paths are projected onto the radial spatial
direction, and the two transverse spatial directions are suppressed. The solid and dashed squares
are the causal diamonds defined by the departure and return of the photons from the
beamsplitters in either interferometer. The boundaries of these causal diamonds are the solid
and dashed space-like circles, which represent the same surfaces as the solid and dashed spheres
in the diagram on the left. The blue rectangle is the overlap of these two causal diamonds,
which is also a causal diamond of size 2L− d.

2.3.6 Conclusions and Future Work
A simple model for the measured length changes of an interferometer arm due to
quantum-space time fluctuations has been formulated. The model translates the estab-
lished qualitative phenomenological predictions (Eq. 2.7) for the variance of distance
measurements into a quantitative frequency domain signal as a function of the scaling of
the fluctuations α and the geometry of the arm.
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The model does not yet capture some important aspects of both the theorised quantum
space-time fluctuations and the laser interferometers. Specifically, the model does not
capture the proposed angular correlations [8] of the fluctuations. More importantly,
the model does not incorporate the propagation of coherent states of light and their
interaction with metric fluctuations. It also does not capture the interference of light
at a beamsplitter and the measurement of the output state at the output port of
the interferometer using a photodiode. The model also cannot accurately describe
correlations between co-located interferometers. Work is ongoing on a more sophisticated
model that addresses these issues [84].
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2.4 Prospects for Detecting Quantum Gravity
Phenomena with QUEST

Given the expected sensitivity of the QUEST experiment (Sec. 1.5), the prospects for
detecting signals from holographic quantum space-time fluctuations can be evaluated.
In Fig. 2.6, we show projected instantaneous and cross-correlated sensitivities of the
QUEST experiment in terms of the strain noise amplitude spectral density, plotted as
a function of frequency normalised to the interferometer arm light-crossing frequency
(c/L). We also show the instantaneous and the time-integrated sensitivities achieved
by the Fermilab Holometer [18]. The predicted signal spectra of holographic quantum
space-time fluctuations [63, 64] are shown as well.

0 0.5 1 1.5

fL=c (frequency/(light-crossing frequency))

10!24

10!22

10!20

10!18

10!16

S
tr
a
in
A
S
D
(H
z!

1 2
)

QUEST proj. auto-ASD
QUEST proj. CSD (Tint = 1 year)
Holometer auto-ASD
Holometer CSD (Tint = 2:5 " 10

6 s)
QG .uct. signal (Zurek et al.)
QG .uct. signal (Kwon et al.)

Figure 2.6. The projected sensitivity of the QUEST experiment is shown compared to the
sensitivity of the Fermilab Holometer and the predicted signals due to holographic quantum
space-time fluctuations. The projections for the QUEST experiment assume a shot-noise-limited
sensitivity between 1 and 250 MHz with 6 dB of squeezing (See Sec. 1.5). The sensitivity of the
Holometer is taken from [18]. The signal spectra for the models by Zurek et al. and Kwon et al.
are taken from [63], and [64], respectively (see also Sec. 2.2).

It is thus estimated that a cross-correlation time on the order of a year is needed to
reach a cross-spectral sensitivity on the order of the predicted magnitude of the quantum
space-time time signal. The data can then be used to test the models of quantum
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space-time fluctuations in literature, and may provide the first observation of quantum
gravity phenomena.
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3: Dark Matter

In this chapter, we demonstrate the use of laser interferometers to search for scalar
field dark matter. We did not detect any signals from such dark matter, and
could therefore place constraints on its properties. These constraints improve over
those set by purpose-built dark matter detectors by orders of magnitude. We
also present a design for a table-top polarimetric dark matter detector that could
be used to test scalar and pseudoscalar dark matter models with unprecedented
sensitivity.

We also comment on the prospects for searches for dark matter with the QUEST
experiment.
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3.1 Introduction: History and Current State of
the Concept of Dark Matter

Dark matter is a concept that was introduced to explain several astronomical observations;
it is also an essential part of cosmological theories. In this section, we expand on its
inception, the current state of the field, and the use of laser interferometers in dark
matter searches.

In general, it is assumed that General Relativity accurately describes the gravitational
dynamics of astronomical objects and the Universe as a whole, according to the Einstein
equations:

Gµν + Λgµν = Tµν . (3.1)

The energy-momentum tensor Tµν accounts for sources of gravity (e.g. mass) that curve
the space-time manifold (described by the Einstein tensor Gµν) and thus give rise to
certain dynamics. Using observations of light emitted by an astrophysical system, the
energy-momentum tensor can be estimated under the assumption that the distribution
of mass in the astrophysical system is related to the amount of electromagnetic radiation
detected. If the expected dynamics of astronomical objects are then calculated from the
Einstein equations under this assumption, a significant discrepancy is found with the
observed dynamics. Examples of such discrepancies include the rotation speed of galaxy
clusters [91], the rotation speed of individual galaxies [92], and gravitational lensing by
galaxies [93].

Given these discrepancies, it is often concluded that the second assumption—the
proportionality between light emitted by the system and the mass-energy in the system—
must be false, rather than the first assumption (the validity of General Relativity). This
then leads to the postulate that there exists unobserved mass-energy in the astrophysical
system—specifically ‘dark’ matter that does not emit light—that needs to be added to
the energy-momentum tensor on the right-hand side of Eq. 3.1 to restore the validity of
General Relativity. Similarly, in cosmology, models that seek to describe the structure
and expansion of the Universe according to General Relativity incorporate a parameter
for the total amount of dark matter, the value of which is then fit to observations. These
dark matter postulates mostly leave open the question what the nature of this dark
matter is.

There are different approaches to the reconciliation of astronomical observations
with theory that do not postulate the existence of dark matter. Instead of adding source
terms to the right-hand side of Eq. 3.1, one could modify the left-hand side; these
approaches are known as ‘modified gravity’. A third solution can be imagined, where a
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supersession of General Relativity, for example by a theory of quantum gravity, provides
a new law of gravitation to supplant the Einstein equations. These solutions have always
been regarded as less simple and therefore less scientific, but as some observations seem
increasingly incompatible with the postulate of dark matter [94–97], this could change.

Around the time that the dark matter postulate gained popularity, contemporary
physics was very successful in describing all known matter as a set of interacting
quantum fields, collectively known as the Standard Model. It is within this particle
physics paradigm that the nature of dark matter seemed readily explicable as just
another quantum field, yet to be detected directly and yet to be included in the Standard
Model. Moreover, aesthetic considerations, often called ‘naturalness’ or ‘fine-tuning’
problems, motivated the conjecture that additional undiscovered fields with certain
properties should exist, i.e. supersymmetry. Some of these fields were conjectured,
coincidentally, to have properties such that they would manifest as an energy density
that would correspond to the energy density attributed to dark matter.

It was this apparent coincidence that drove the search for weakly-interacting particles
with masses between ∼ 10 GeV and 1 TeV, known as WIMPs. Experiments sought
to detect WIMPs by first creating them using particle colliders, or by looking for the
scattering of WIMPs naturally present throughout our galaxy off atomic nuclei. None of
the experimental searches for WIMPs have been successful so far, and therefore most
of the original theories of such dark matter particles are falsified. Another more recent
example of a particle dark matter theory largely motivated by ‘fine-tuning problems’ is
that of the axion, which has likewise not been detected to date.

However, altogether undeterred or perhaps motivated by these failures, a large
number of new theories of particle dark matter were formulated and continue to be
formulated to this day. This theoretical work is undoubtedly enabled by the success
of the Standard Model—which does not preclude the addition of new fields—and the
utility of quantum field theory as a general framework to produce theoretical predictions.
Dark matter particles contrived using this machinery often follow generic routines: an
unobserved symmetry of Nature is presumed to exist and be broken, a Lagrangian is
formulated, and parameterised couplings to the known fields of the Standard Model
are added; these couplings are usually such that they are weak enough for the particle
to have evaded detection thus far, strong enough to make the theory experimentally
testable in the future, but otherwise entirely unconstrained. The theories of dark matter
particles so produced therefore contain several free parameters (i.e. the mass of the field
and strength of the various couplings) that can span tens of orders of magnitude.

The multitude of particle dark matter models and their lack of specificity poses
a problem for experimental physics. The abundance and continuous production of
predictions that are equally falsifiable (and all equally subjective in their motivation)
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removes much of the incentive for a targeted long-term experimental effort. However,
the discrepancies between theory and observation attributed to dark matter remain,
and their reconciliation is undeniably a necessary pursuit of physical research. It has
been argued that in the search for dark matter, “no stone should be left unturned”, and
“we should look for dark matter not only where theoretical predictions dictate that we
‘must’, but wherever we can” [98].

Laser interferometers provide a tool with which to do the latter. The instruments
discussed in this chapter have been developed with the primary goals of detecting
gravitational waves and signatures of quantum gravity, and we demonstrate their use
in testing theories of particle dark matter. Our efforts represent searches for dark
matter without the need for dedicated experiments, and moreover, these searches even
outperform purpose-built dark matter detectors.

Several ideas have been put forward as to how different hypothetical forms of dark
matter can couple to laser interferometers and produce a signal. Macroscopic dark matter
candidates that couple with interferometers gravitationally, nongravitationally, or both,
have been considered in the literature. One category of such scenarios entails detectable
local stochastic interactions between ‘clumpy’ DM and interferometer components [99–
101]. Primordial black holes are also macroscopic dark matter candidates, and their
existence can be probed through searching for the high-frequency gravitational waves
emitted during their coalescence.

Most proposals for couplings between dark matter and laser interferometers concern
undiscovered weakly interacting, low-mass (sub-eV) fields. For example, undiscovered
vector bosons (sometimes called dark photons) could exert an oscillatory force on
interferometer components, producing an oscillatory signal at a frequency determined by
the boson’s mass [13]. In addition, undiscovered low-mass fields could form topological
defects, which could produce a transient signal through the interaction between the
interferometer and a passing defect [102]. Axion-like particles could be indirectly detected
through the detection of gravitational-waves emitted from black hole superradiance [103].

The focus of the work presented here is a subclass of low-mass dark matter theories
that postulates non-gravitational couplings of light scalar or pseudo-scalar fields to the
electromagnetic field and fermions, whereby fundamental constants oscillate. This causes
the size of interferometer components to oscillate, producing a signal at a frequency set
by the mass of the field.

In this chapter we present the first ever direct search for scalar field dark matter with
a gravitational wave-detector (the GEO 600 interferometer, see Sec. 3.3), a search for
scalar field dark matter with the Fermilab Holometer (Sec. 3.4), and a proposed design
for a polarisation interferometer (polarimeter) to search for scalar and pseudo-scalar
dark matter (Sec. 3.5). We also discuss the prospects for searching for dark matter using
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the QUEST experiment in Sec. 3.6.
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3.2 Theory of Low-Mass Scalar and Pseudoscalar
Dark Matter

3.2.1 Scalar Field Dark Matter

Equation of motion and coupling to the Standard Model
Models of weakly coupled low-mass (≪ 1 eV) scalar fields predict that such particles
could be produced in the early Universe through a vacuum misalignment mechanism,
and would manifest as a coherently oscillating field [104, 105],

ϕ(t, r⃗) = ϕ0 cos
(
ωϕt− k⃗ϕ · r⃗

)
, (3.2)

where ωϕ = (mϕc
2)/ℏ is the angular Compton frequency, and k⃗ϕ = (mϕv⃗obs)/ℏ is the

wave vector, with mϕ the mass of the field and v⃗obs the velocity relative to the observer.
The amplitude of the field can be set as ϕ0 = (ℏ

√
2ρlocal)/(mϕc), under the assumption

that this scalar field constitutes the local dark matter (DM) density ρlocal [106].
These models predict such DM would be trapped and virialised in gravitational

potentials, leading to a Maxwell-Boltzmann-like distribution of velocities v⃗obs relative to
an observer. Non-zero velocities produce a Doppler-shift, giving an observed DM field
frequency

ωobs = ωϕ + mϕv⃗
2
obs

2ℏ . (3.3)

This virialisation therefore results in the DM field having a finite coherence time or,
equivalently, a spread in observed frequency (linewidth) ∆ωobs ≈ 1/τcoh [13, 107].
The linewidth is determined by the virial velocity, which is given by the depth of the
gravitational potential. For DM trapped in the gravity potential of the Milky Way, as
in the standard galactic DM halo model, the expected linewidth is ∆ωobs/ωϕ ∼ 10−6

and correspondingly the expected coherence time τcoh ≈ 106/ωϕ. The observed DM
frequency is further modulated by the motion of the Earth with respect to the local DM’s
centre of mass. Note that the spatial frequency of the field is given by the De Broglie
wavelength of the particle, λϕ = 2π/|⃗kϕ|, which depends on the kinetic energy, and for
dark matter in a galactic halo, this wavelength is around a thousand times larger than
the field’s Compton wavelength [107].

Scalar field DM could couple to the fields of the Standard Model (SM) in numerous
ways. Such a coupling, sometimes called a ‘portal’, is modelled by the addition of
a parameterised interaction term to the SM Lagrangian [108, 109]. In this work, we
consider linear interaction terms with the electron rest mass me and the electromagnetic
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Figure 3.1. The spectrum of ultra-light dark matter trapped and virialised in a gravitational
potential. The field would be observed with a frequency roughly equal to the Compton
frequency of the particles (ωϕ), where the deviation is a Doppler-shift due to the particles’
nonzero kinetic energy. As the particles would have a Maxwell-Boltzmann-like distribution of
kinetic energies, the spectrum resembles this distribution. The width of the distribution ∆ωobs
is set by the depth of the gravitational potential that the field is trapped in, where for a
conventional galactic dark matter halo ∆ωobs/ωϕ ≈ 10−6.

field tensor Fµν :

Lint ⊃ ϕ

Λγ

FµνF
µν

4 − ϕ

Λe
meψ̄eψe, (3.4)

where ψe, ψ̄e are the SM electron field and its Dirac conjugate, and Λγ , Λe parameterise
the coupling. It has been argued that the scalar field should obey parity symmetry
(Z2 symmetry), or invariance of the Lagrangian under the transformation ϕ → −ϕ. In
that case linear couplings would not exist, and the simplest couplings would be terms
quadratic in ϕ. As such scenarios entail additional assumptions about dark matter, we
will not consider higher-order couplings.

The addition of extra terms to the SM Lagrangian necessarily changes the dynamics
described by it. The presence of an oscillating DM field interacting with the SM fields
gives rise to apparent oscillations of the fundamental constants at the frequency of the
DM field. For the coupling given by Eq. 3.4, the electron rest mass me and the fine
structure constant α will vary as [12, 105]

me → me

(
1 + ϕ

Λe

)
, α → α

(
1 + ϕ

Λγ

)
. (3.5)
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Scalar field dark matter scenarios
A variety of specific scalar field dark matter models with linear couplings to the elec-
tromagnetic sector of the SM exist. These include the hypothetical moduli and dilaton
fields motivated by string theory, which have couplings to the QCD part of the SM as
well [110–112]. These other couplings make such undiscovered massive scalars subject to
additional experimental constraints, although the predicted phenomenology due to the
electromagnetic coupling terms (Eq. 3.4) remains unchanged. Relaxions are non-dilatonic
scalars which couple to the standard model by mixing with the Higgs field [113]; however,
their coupling to the electromagnetic sector can be effectively described by Eq. 3.4 and
thus relaxion DM would produce the same variation of the fundamental constants. In
addition, relaxion DM [113, 114] may form gravitationally bound objects and be captured
in the gravitational potential of the Earth or Sun, producing a local DM overdensity
where the field has a much narrower linewidth [115] than DM that forms a galactic
halo. A relaxion halo centred on Earth for example, would entail a DM field with a
linewidth smaller than that of galactic halo DM by three orders of magnitude, and a
density greater by up to 19 orders of magnitude [114].

Given the large number of different scalar field dark matter models (which are not
necessarily mutually exclusive) that can be tested with interferometers, we have to restrict
the scope of our DM searches to a subset of scenarios for the nature and abundance
of scalar field dark matter. Using contemporary literature as precedent provides a
subjective preference for certain scenarios, of which we choose three to investigate with
interferometers:

1. Basic Scalar : The scalar field DM is assumed to interact with the SM as given by
the terms in 3.4, and is further assumed to be homogeneously distributed over the
solar system with a density of ρGH = 0.4 GeV/cm3, as in the standard galactic
DM halo model [106].

2. Dilaton/Modulus: In addition to the coupling to the electromagnetic sector as
in Eq. 3.4, the field is assumed to have couplings to the QCD sector, and the
coupling to the gluon field is assumed to be dominant [110–112, 116]. The local
DM density is taken to be ρGH. Compared to the Basic Scalar, this scenario is
subject to additional limits from tests of the equivalence principle, but is equally
constrained by our result and those of other direct searches.

3. Relaxion Halo: In this scenario, the scalar field effectively couples to the SM as
in the Dilaton/Modulus scenario, but these couplings arise through mixing with
the Higgs boson [113, 114]. The local DM density in this scenario is taken to
be dominated by a relaxion halo gravitationally bound to earth, which leads to
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a local overdensity that depends on the field’s mass and reaches values of up to
ρlocal/ρGH = 1019 for the mass range constrained in this work [115].

For all scenario’s, we consider the electron and photon couplings (Eq. 3.4) to give rise to
the dominant interferometric signal. While signals might arise due to couplings to other
parts of the SM, the relative amplitude of these will be several orders of magnitude
smaller than that from the electromagnetic couplings [117]. We consider a range of
field masses mϕ corresponding to the sensitive frequency range of the interferometer in
question.

Coupling to interferometers
The addition of the terms in Eq. 3.4 to the SM Lagrangian entails changes of the fine
structure constant α and the electron rest mass me [102, 104]. The size of a solid is
proportional to the atomic Bohr radius, i.e l ∝ aB = 1/(meα) [118], where α is the
fine structure constant and me is the electron mass. The apparent variation of these
fundamental constants therefore changes the lattice spacing of a solid, driving changes
of its size l:

δl

l
=
(

−δα

α
− δme

me

)(∣∣∣∣∣1 −
ω2

ϕ

ω2
0

∣∣∣∣∣
)−1

, (3.6)

where δx denotes a change of the parameter x: x → x+ δx; ω0 is the angular frequency
of the fundamental longitudinal vibrational mode of the solid driven by the scalar field,
and we consider a strongly underdamped system. The refractive index depends on the
electronic resonances of the solid. If we only consider frequencies far away from the
nearest electronic resonance ωϕ ≪ ωe, the index of refraction is approximately inversely
proportional to the electronic resonance of the solid, i.e. 1/n ∝ ωe ∝ meα

2, and so

δn

n
= Cdisp

(
2δα
α

+ δme

me

)
, (3.7)

where Cdisp = ω/n · ∂n/∂ω takes into account the chromatic dispersion of the solid. For
a more careful consideration of the approximations used in deriving Eqs. 3.6, 3.7, see
[12].

The thin cylindrical beamsplitter in a laser interferometer interacts asymmetrically
with light from the two arms, as the front surface has a 50% reflectivity and the back
surface has an anti-reflective coating. Therefore, a change in the size (δl) and index of
refraction (δn) of the beamsplitter affects the two arms differently, and produces an
effective difference in the optical path lengths of the arms Lx,y

δ(Lx − Ly) ≈
√

2
[(
n− 1

2

)
δl + lδn

]
1, (3.8)

65



Dark Matter 3.2. Theory of Low-Mass Scalar and Pseudoscalar Dark Matter

The two terms in this equation correspond to the increase in the optical path length of
the x-arm due to the increased thickness of the beamsplitter, and the increased optical
path length of the x-arm due to the increased refractive index of the beamsplitter,
respectively. The mirrors in the arms of interferometers would also undergo changes in
their size and index of refraction, but as the wavelength of the DM field is much greater
than the distance between the arm mirrors (λϕ/L ≳ 103) for all frequencies of interest
here, and because the mirrors have roughly the same thickness, the effect is almost equal
in both arms and thus does not produce a dominant signal.

To find the expected DM signal in a Michelson interferometer, we plug Eq. 3.5 into
Eqs. 3.6 and 3.21; we then plug these equations into Eq. 3.8. Thus, it follows that the
coupling of an oscillating scalar dark matter field to the beamsplitter of a Michelson
interferometer is expected to produce a Doppler-shifted and -broadened signal of the
form [3]

δ(Lx − Ly) ≈
(

2 c√
ρlocal
ωϕ

)
· cos(ωϕt) ·

[
sinc

(
ωϕL

c

)]−1
(3.9)

· l ·


(
n− 1

2

)
·
(∣∣∣∣∣1 −

ω2
ϕ

ω2
0

∣∣∣∣∣
)−1

·
(

1
Λγ

+ 1
Λe

)
+ nCdisp

(
2

Λγ
+ 1

Λe

) ,
where the first two terms describe the oscillating dark matter field (with the dark matter
amplitude set by the local dark matter density), and the sinc function describes the
modulation of the signal due to the periodic frequency response of an interferometer
with arms of length L. The terms on the second line of Eq. 3.9 describe the magnitude
of the coupling of the dark matter field to the beamsplitter of the interferometer.

3.2.2 Pseudoscalar Dark Matter
Light pseudoscalar fields, including the axion and other axion-like particles, manifest
themselves as an oscillating classical field, analogous to the scalar case [119–123]:

a(t, r⃗) = a0 cos
(
ωat− k⃗ϕ · r⃗

)
, (3.10)

where ωa = (mac
2)/ℏ is the angular Compton frequency for a pseudoscalar field mass

ma, the amplitude a0 = (ℏ
√

2ρlocal)/(mac), and the other variables are the same as for
Eq. 3.2. We consider the coupling of the axion-like to the photon field parameterised by
gaγ [124]

Lint = a

gaγ

FµνF̃
µν

4 , (3.11)

1This expression includes a correction to Eq. 17 in [12]. In addition, a geometrical correction (≈ 6.4%)
from Snell’s law is applied to Eqs. 3.8 for calculating the results in this work.
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DM field crest

DM field trough

Figure 3.2. The geometry of light (red) incident on a beamsplitter in an interferometer.
Wave-like low-mass scalar field dark matter changes the size and index of refraction of the
beamsplitter in an oscillatory fashion. The size increase shifts the front surface (with a
reflectivity R = 50%) w.r.t. the beamsplitter’s centre of mass, producing a difference in the
optical path length of the two arms. The change of the index of refraction of the bulk of the
beamsplitter also produces an optical path length difference. The back surface of the
beamsplitter has an anti-reflective coating.

where gaγ is the axion-photon coupling constant, F̃µν = ϵµνρσFρσ, and ϵµνρσ is the
Levi-Civita symbol. Due to this coupling of photons with the axion-like field, there
would be a difference in the phase velocity of right- and left-handed circularly polarized
light [125]:

v⟳,⟲ ≈ 1 ± gaγ ȧ

2k (3.12)

Therefore, the right- and left-hand circular polarisation components of light accumulate
a relative phase difference, which produces a rotation of the plane of polarisation of
linearly polarized light by an angle [126]

ρ(t, τ) = gaγ

2 [a(t) − a(t− τ)] , (3.13)

for light propagating between times t− τ and t. For propagation times τ ≪ 1/ωa, we
have

ρ(ωa, τ, t) ≈ gaγa0ωaτ sin(ωat), (3.14)

to first order. This rotation of the polarisation of light is not readily detectable in a
Michelson interferometer with arms of length L, as the effect in both arms will be equal
for dark matter wavelengths λϕ ≫ L, which is the case in the sensitive frequency band of
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most laser interferometers. In Sec. 3.5, we propose a design for a polarimetric experiment
that would be sensitive to pseudoscalar dark matter.
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3.3 Search for Scalar Field Dark Matter with
GEO600

3.3.1 Introduction
The interferometer most sensitive to potential DM signals is the GEO 600 detector [127],
as it has the highest sensitivity to optical phase differences between the two arms as
evaluated at the beamsplitter. Although other GW detectors (LIGO/Virgo) are more
sensitive to gravitational waves through the use of Fabry-Pérot cavities in the arms,
these do not boost their sensitivity to signals induced at the beamsplitter, so their
relative sensitivity to scalar DM is lower [12]. The GEO 600 interferometer has been in
joint observing runs with the Advanced LIGO detectors since 2015, primarily to look for
gravitational waves.

From Eq. 3.9 it follows that an oscillating scalar dark matter field is expected to
produce a Doppler-shifted and -broadened signal in the GEO 600 interferometer. We
can simplify this equation for signals that would be found in the data of GEO 600 by
considering the properties of the instrument and the calibration of the data. Firstly, as
the mechanical resonance frequency of the GEO 600 beamsplitter is much higher than
any signal frequency captured by the data, we consider the adiabatic limit for the dark
matter-driven size changes of the beamsplitter [12, 111, 128]. Secondly, we neglect the
contribution of the refractive index changes to the signal, as it would be three orders of
magnitude smaller than that of the size changes. Finally, the frequency response of the
interferometer is already incorporated in the calibration of the data [129], so we omit
the sinc function. A dark matter signal would thus have the following form in the data
of the GEO 600 interferometer:

δ(Lx − Ly) ≈
(

1
Λγ

+ 1
Λe

)(
n l ℏ

√
2 ρlocal

mϕ c

)
cos (ωobst) , (3.15)

Given this prediction, we can examine the data from the interferometer for the presence
of such oscillatory signals, and if none are found, place upper limits on the mass and
coupling constants of scalar field DM.

3.3.2 Methods

Spectral analysis
We performed spectral analysis on seven T ∼ 105 s segments of strain data from the
GEO 600 interferometer [127] (acquired in 2016 and 2019) using a modified version of
the LPSD (Logarithmic Power Spectral Density) technique [130]. This technique is
designed to produce spectral estimates with logarithmically spaced frequency bins, and
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thus allows for the production of spectral estimates with a frequency-dependent bin
width; i.e. it is used to perform discrete Fourier transforms (DFT) with a frequency
dependent length. This method was used to create spectra in which each frequency bin
has a width equal to the expected linewidth of the DM signal; this approach yields the
maximum attainable signal-to-noise ratio (SNR) given a certain amount of data (see
Fig. 3.4). Using a modified version of the LPSD algorithm, we subdivided the ∼ 105 s
data segments into

Nf =
⌊
T − τcoh(f)
τcoh(f)(1 − ξ) + 1

⌋
(3.16)

smaller overlapping subsegments Sk
f (t) with a length equal to the expected coherence

time τcoh(f) of the signal at a frequency f (where ξ ∈ [0, 1] is the fractional overlap of
the subsegments, and k ∈ [1, Nf ]). As the expected coherence time and linewidth is
frequency dependent, this subdivision is unique for every frequency of interest.

After subdivision, the subsegments were multiplied with a window function Wf (t) to
suppress spectral leakage and subjected to a DFT at a single frequency:

ak(f) =
TDFT∑
t=0

Wf (t)Sk
f (t) e2πift, (3.17)

with TDFT = τcoh(f), where ak(f) is thus the complex spectral estimate at frequency f
for the kth subsegment. The absolute squared magnitudes |ak(f)|2 are then averaged
over the subsegments to obtain the power spectrum

P (f) = C

Nf

Nf∑
k=1

|ak(f)|2, (3.18)

where C is a normalisation factor. The amplitude spectrum A(f) =
√
P (f) created in

this way comprises ≈ 5 · 106 frequency bins between 50 Hz and 6 kHz. Computation
times are ∼ 10 s per frequency bin for each ∼ 105 s data set, or ∼ 104 CPU hours per
spectrum.

As each frequency bin can be made to have a width equal to the DM signal’s
Doppler-broadened linewidth, this method yields in theory the maximum attainable
signal-to-noise ratio (SNR) given a certain amount of data (see Sec. 3.3.2.4) [107, 131]. A
matched filtering approach is not feasible as the phase of the signal varies stochastically.

Candidate signal search
We analysed the amplitude spectra of all seven strain data segments for the presence
of DM signals by looking for significant peaks in the underlying noise. Peaks were
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Figure 3.3. A typical amplitude spectrum (black) of the GEO600 detector produced with
frequency bins that are tuned to the expected dark matter linewidth using the modified LPSD
technique. The noise spectrum was estimated at each frequency bin from neighbouring bins to
yield the local noise median (blue) and 95% confidence level (green). Peaks (red) above this
confidence level were considered candidates for DM signals and subjected to follow-up analysis.

considered candidates when there is a less than 1% probability that the local maximum
is due to noise, where we compensated for the look-elsewhere effect using a trial factor
equal to the number of bins (≈ 5 · 106). To determine this probability for every peak,
the noise was assumed to be Gaussian with a frequency-dependent expectation value
and variance. The local noise parameters were estimated at every frequency bin from
w = 5 · 104 neighbouring bins. This method allows the underlying noise distribution to
be estimated in a way that is independent of narrow (≪ w) spectral features (such as
those due to mechanical excitation of the mirror suspensions), under the assumption
that the underlying noise spectrum is locally flat (that is, the auto-correlation length of
the noise spectrum is assumed to be ≫ w). The choice of w thus represents a trade-off
between erroneously assuming instrumental spectral artefacts or signals to be features
of the underlying noise spectrum versus erroneously assuming features of the underlying
noise spectrum to be instrumental spectral artefacts or signals.
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This analysis found ∼ 104 peaks above the 95% confidence level (≳ 5.6σ), where the
total error includes a 10% amplitude calibration error inherent to GEO 600 data [132].
The frequency and amplitude stability of the peaks in time was then evaluated by
cross-checking all candidates between spectra. Candidate peaks were rejected if their
centre frequency differed between spectra by more than the Doppler shift expected from
the earth’s motion around the sun [133]. Peaks were also rejected if their amplitude
changed significantly (≳ 5σ) between spectra.

Using this procedure, we eliminated all but 14 candidate peaks, where the vast
majority (> 99%) of peaks was rejected because they did not appear in all data sets
within the centre frequency tolerance.

Follow-up analysis of candidates
These 14 candidate peaks were subjected to further analysis to investigate if their
properties matched that of a DM signal. 13 of the peaks were found to have insufficient
width to be caused by DM (∆fpeak/∆fDM ≲ 10). Additional work revealed these 13
candidate peaks were not present in spectra created using the same data and the same
LPSD algorithm implemented in a different programming language, whereas the noise
floor and other spectral features were reproduced identically. These peaks are therefore
likely artefacts of the numerical implementation of the LPSD technique. These peaks
were therefore rejected as candidates for DM signals, as DM signals should appear as
consistent peaks in the data, and as these peaks appear to have their origin in erroneous
numerical processing.

The remaining candidate peak had sufficient frequency spread to be due to DM,
but additional analysis showed this signal has a coherence time much greater than that
expected for a galactic halo DM signal of that frequency (τpeak

c /τGH
c > 10. This leaves

open the possibility of the signal being due to scalar DM gravitationally bound to Earth,
such as in a relaxion halo. The coherence time of the single remaining candidate peak
was probed by evaluating its height in the amplitude spectrum as a function of the
DFT length (see below). The height of the peak did not decrease for DFT lengths more
than an order of magnitude greater than the expected DM coherence time, evidencing
a coherence time much greater than that expected for a galactic DM signal of that
frequency. To find the origin of the signal, and to check whether it could be due to
the theoretically more coherent Relaxion Halo DM, we performed spectral analysis on
data acquired on an auxiliary data acquisition system. The signal was not present in
this data, whereas both noise and other signals from the interferometer were. This
fact, in combination with high-resolution (∆f/f ∼ 10−7) spectra revealing that the
frequency at which the peak occurs is very close to and indistinguishable from an integer
(fpeak = 224 ± (2 · 10−5) Hz), implies the signal is most likely an artefact of a timing
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signal in the main data acquisition electronics.

Validation of methods
To validate several aspects of our analysis methods, we simulated DM signals and injected
them into sets of real and simulated data. The DM signals were created by superposing
∼ 102 sinusoids at frequencies linearly spaced around a centre frequency (the simulated
Doppler-shifted DM Compton frequency), where the amplitude of each sinusoid is given
by the quasi-Maxwellian DM line shape proposed in [107] scaled by a simulated DM
coupling constant; the relative phases of the sinusoids are randomised to capture the
thermalisation of the scalar field DM.

To test the spectral estimation, signal search, and candidate rejection, a blind
injection of simulated DM signals into several GEO 600 data sets was performed, where
the frequency, amplitude, and number of signals was masked to the authors. All injected
signals were recovered at their centre frequency and at an amplitude corresponding to the
hypothetical coupling constant, and were subsequently identified through cross-checks
between spectra as persistent candidate DM signals.

The formerly proposed [13, 107] and herein utilised condition of setting the frequency
bin widths equal to the expected DM line width for attaining optimal SNR was tested
using simulated DM signals as well. Mock DM signals and monochromatic sine signals
were injected into real GEO 600 data and Gaussian noise, and spectra were made for
which the width of the frequency bins ∆fbin (and correspondingly the length of the DFTs
TDFT) was varied over four orders of magnitude. The recovered amplitude of signals
injected into GEO 600 data in spectra created using the LPSD algorithm is plotted in
Fig. 3.4 (left). This shows that the recovered amplitude of signals starts to decrease as
the DFT length exceeds the coherence time (a monochromatic sine has infinite coherence
time), and validates the rejection of the remaining candidate signal above as its amplitude
was found to be roughly constant for TDFT/τc > 10. The recovered SNR of signals
injected into Gaussian noise in spectra created using Welch’s method [134] is plotted in
Fig. 3.4 (right), which confirms that the SNR is maximal when the frequency bin width
is roughly equal to the full-width at half-maximum ∆fDM of the spectral line shape of
the signal. This is a consequence of the aforementioned decrease in recovered amplitude
for smaller bin widths and the scaling of white Gaussian noise.

3.3.3 Results
Having determined that all significant peaks in the amplitude spectrum are not caused
by scalar field DM, we can set constraints on the parameters of such dark matter at a
95% confidence level (corresponding to 5.6σ above the noise floor), using Eq. 3.15. We
apply our results to three different scalar DM scenarios considered in literature: Basic
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Figure 3.4. The spectral amplitude (left) and signal-to-noise ratio (SNR, right) of a simulated
DM signal (blue) and monochromatic sine wave (red) as recovered from spectra created using
different frequency bin widths (∆fbin = 1/TDFT). The plotted recovered amplitude is
normalised by the injected amplitude. The SNR (nσ) is measured as the difference between the
signal amplitude and the noise amplitude divided by the standard deviation of the noise. The
appearance of a maximum for the SNR as shown on the right is a direct consequence of both the
decrease of the recovered amplitude of signals with limited coherence (as shown on the left) and
the scaling of white Gaussian noise with increasing integration time. The plot on the left was
produced by injecting a simulated dark matter signal and a perfect sine into a segment of
GEO 600 data and creating spectra using the modified LPSD technique described above. The
plot on the right was made by injecting the same signals into white Gaussian noise and creating
spectra using Welch’s method. Note that for any single bin and for equal TDFT the spectral
estimate obtained with the LPSD method (Eq. 3.17) is mathematically equal to that obtained
with Welch’s method.

Scalar, Dilaton/Moduli, and Relaxion Halo (see Sec. 3.2).
For each scenario, we set constraints on the electron and photon coupling parameters

Λe, Λγ , as a function of the field’s mass mϕ (where for each coupling constant we assume
the other to be zero); the constraints are plotted in Figs. 3.5 and 3.6 together with
previous upper limits. For the Relaxion Halo scenario, we assumed a mass-dependent
halo density as described in [115].

Constraints from other direct experimental DM searches include those from various
atomic spectroscopy experiments [135–138], a search using an optical cavity [139], and a
resonant mass detector [140]. Tests of the equivalence principle (EP) using e.g. torsion
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balances [116, 141, 142] have also been used to set constraints on the parameters of
undiscovered scalar fields; these bounds assume the scalar field manifests as a ‘fifth force’
(FF), and is sourced by a test mass (e.g. the Earth) [109, 143, 144]. This detection
method therefore assumes that the coupling terms in Eq. 3.4 are time-reversible; i.e.
that a DM particle can be produced by electrons and photons. Moreover, the constraints
on scalar fields inferred from these experiments depend in general on the composition
and topography of the test masses and are independent of the local dark matter density.
Therefore, constraints from such FF searches are not equivalent and are weaker than
constraints from direct searches as they rely on a number of consequential additional
assumptions.

3.3.4 Conclusions
In this work, we presented the first search for signals of scalar field dark matter in the
data of a gravitational-wave detector. Scalar field dark matter would cause oscillations
of the fine structure constant and electron mass, which in turn drive oscillations of the
size and index of refraction of the beamsplitter in an interferometer. This would thus
produce an oscillatory signal in a gravitational-wave detector at a frequency set by the
mass of the dark matter particle.

As exquisite classical noise mitigation is employed in gravitational-wave detectors,
quantum technologies such as squeezed light can provide a major increase in sensitivity.
Such technologies facilitate measurements beyond the shot-noise quantum limit, and
yield unprecedented sensitivity to scalar field dark matter in a wide mass range.

In addition, by tuning the frequency bin widths to the expected dark matter linewidth,
our spectral analysis method improves on the analyses used in previous work that set
constraints on dark photons using data from gravitational-wave detectors, and other
searches for scalar fields in frequency space. In contrast to these other efforts, the
spectral analysis presented here yields the optimal signal-to-noise ratio for potential
dark matter signals across the full frequency range.

We excluded the presence of such signals in the data of the GEO 600 gravitational-
wave detector, thereby setting new lower limits on dark matter couplings at up to
Λe,Λγ = 3 · 1019 GeV for dark matter masses between 10−13 and 10−11 eV. The new
constraints improve upon the current limits in this mass range obtained with atomic
spectroscopy experiments by more than six orders of magnitude, and are up to four
orders of magnitude more stringent than previous bounds from tests of the equivalence
principle for some dark matter scenarios.

Tighter constraints on scalar field dark matter in various mass ranges can be set in the
future using new yet-to-be-built gravitational-wave detectors or other similar precision
interferometers. Using the same methods as in this work these instruments would allow
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Figure 3.5. Constraints on the coupling parameters Λγ , Λe as a function of the field’s mass mϕ,
for scalar field DM as in the Basic Scalar scenario (see text). Dashed lines represent constraints
on the electron coupling Λe and dotted lines represent constraints on the photon coupling Λγ , at
the 95% confidence level. The green region denotes the parameter space excluded in the current
study through the spectral analysis of data from the GEO 600 gravitational-wave detector.
Other coloured regions indicate parameter space excluded through previous direct experimental
searches; to wit, Hees et al [136] (blue), Van Tilburg et al [135] (yellow),
Kennedy et al [145] (brown), Aharony et al [137] (magenta), Branca et al [140] (purple),
Savalle et al [139] (cyan), and Antypas et al [138] (red)). The black curves and grey regions
correspond to previous constraints from ‘fifth-force’ (FF) searches/tests of the equivalence
principle (EP); to wit, the most stringent such constraints for this DM scenario are from the
MICROSCOPE experiment [143, 144] (lower curves at low mass), and the Cu/Pb torsion
pendulum experiment performed by the Eöt-Wash group [109, 116, 141] (at higher masses).

new limits to be set across their characteristic sensitive frequency range. Moreover, by
slightly modifying the optics in such interferometers, e.g. by using mirrors of different
thicknesses in each interferometer arm, their sensitivity to scalar field dark matter could
be improved even further [12]. Through the reduction of losses, quantum technologies
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Figure 3.6. Constraints on the coupling parameters Λγ , Λe as a function of the field’s mass
mϕ, for scalar field DM as in the Dilaton/Modulus scenario (left) and the Relaxion Halo
scenario (right). Dashed lines represent constraints on the electron coupling Λe and dotted lines
represent constraints on the photon coupling Λγ , at the 95% confidence level. The green region
denotes the parameter space excluded in the current study through the spectral analysis of data
from the GEO 600 gravitational-wave detector. Other coloured regions indicate parameter space
excluded through previous direct experimental searches ([135–138, 140, 145, 146], see caption of
Fig. 3.5). The black lines and grey regions correspond to previous constraints from ‘fifth-force’
(FF) searches/tests of the equivalence principle (EP); to wit, the most stringent such constraints
for this DM scenario are from the MICROSCOPE experiment [109, 143] (lower curves at low
mass), and the Be/Ti torsion pendulum experiment performed by the Eöt-Wash group [109,
142] (at higher masses). The constraints for the Relaxion Halo scenario from direct experimental
searches have been obtained by rescaling the originally reported constraints to account for the
mass-dependent local overdensities as proposed in [115]. This produces novel constraints not
reported before for Relaxion Halo DM from the results of [135–137, 140, 145]. The FF/EP
constraints are independent of the local DM density and are thus unchanged.

such as squeezed light are also expected to improve, allowing for ever-increasing noise
mitigation [35]. These and other forthcoming technological advances make precision
interferometers operating beyond quantum limits indispensable tools for dark matter
detection and fundamental physics in general.
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3.4 Search for Scalar Field Dark Matter with the
Holometer

3.4.1 Introduction
The Fermilab Holometer, which has been constructed to search for exotic quantum space-
time correlations [16] (see Sec. 2.2.8), consists of two independent power-recycled Michel-
son interferometers with 40-metre arms, coaligned and separated by 0.9 m beamsplitter-
to-beamsplitter. As the spatial coherence length of light scalar field dark matter
(λϕ = 2π/|⃗kϕ| see Eq. 3.2) is much greater than the separation of the interferometers,
possible DM signals in the two intstruments would appear in phase at any time. As
dominant sources of noise (i.e. photon shot noise) are incoherent between the two
systems, we can take a coherent average of the cross-spectrum over time to increase
the signal-to-noise ratio for potential DM signals, which then increases with the square
root of the total measurement time. Specifically, the coherently averaged cross-spectral
sensitivity lies five orders of magnitude below the single-instrument noise floor for the
current data set.

3.4.2 Methods
The magnitude of the expected signal due to scalar field dark matter in the cross-
spectrum is given by Eq. 3.9, where Cdisp ≈ 5 · 10−3 for the Holometer’s fused silica
beamsplitter. The fundamental longitudinal vibration mode of the beamsplitter has an
angular frequency ω0 = 2π · 226 kHz [16]. The mechanical mounting of the beamsplitter
has a very minor effect on this resonance: a basic model of the vibrational modes of
a simple cylinder, with dimensions and material matching the beamsplitter, predicts
a fundamental planar mode frequency of 225 kHz; i.e. the mount structure causes a
frequency shift of less than 0.5%. A detailed description of this effect is reported in
section 6.5.1 of [16].

Spectral analysis
We performed our analysis on a 704-hr dataset acquired between July 2015 and February
2016 [18, 147]. During the data taking, the photodetector signals of the two inter-
ferometers were sampled at 50 MHz. A high-frequency data acquisition system then
performed Fourier transforms, cross-correlation, and averaging of batches of spectra
in real time. A detailed description of the Holometer’s data acquisition system can
be found in section 5.3 of [16]. Unlike the potential DM signal in data from GEO 600,
a cross-correlated DM signal as could be found in data from the Holometer would
effectively have infinite coherence, removing the advantage of using the modified LPSD
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method used for GEO 600. We therefore took a coherent average of the full data set of
cross-spectra to yield maximum sensitivity to potential dark matter signals.

Candidate signal search
We searched for significant peaks relative to the background noise in the cross-spectral
magnitude. A peak was considered a possible candidate when there was less than
5% probability that it was due to noise. This probability was determined under the
assumption that the noise was Rayleigh-distributed and stationary (as the real and
imaginary parts of the CSD, taken individually, are Gaussian-distributed and stationary
[16]). The median of the local noise distribution of the time-averaged cross-spectrum was
estimated at each frequency bin, using a moving average over neighbouring frequency
bins. Different values for the number of neighbouring bins in the moving window (N)
were used for different frequency regions. The choice of N represents a trade-off between
erroneously assuming instrumental spectral artefacts or signals to be features of the
underlying noise spectrum versus erroneously assuming features of the underlying noise
spectrum to be instrumental spectral artefacts or signals. In other words, N has to be
chosen such that the auto-correlation length of the noise spectrum is much greater than
N. We used different window sizes N in five frequency regions, i.e. N=500 (840 kHz - 25
MHz), N=250 (650 - 840 kHz), N= 70 (250 - 650 kHz), N=20 (14 - 250 kHz) and N=4
(381 Hz - 14 kHz).

The frequency-dependent noise variance was estimated directly as the sample variance
of all DFTs taken over time. The total error σ also includes a calibration error inherent
to the apparatus [16]. The look-elsewhere effect was compensated with the application
of a trial factor of approximately ∼ 6 · 104 to account for the number of bins in the
cross-spectrum. The performed analysis resulted in the identification of two possible
candidates above the 95% confidence level, i.e. > 5.31σ, as shown in Figure 3.7.

These two peaks were then subjected to further analysis to investigate if either was a
DM signal. Both the identified relevant peaks in the amplitude spectrum were related to
known harmonic sources inherent to the experiment. The first, at ∼13 MHz, is injected
for diagnostic monitoring of the readout system by a LED placed directly in front of the
photodetectors. The second peak, at ∼ 20.5 MHz, is the RF control sideband used to
phase lock the lasers to the resonant interferometer cavities [148].

3.4.3 Results
Having ruled out the presence of signals due to scalar field DM, we set new constraints
on the DM parameters at the 95% confidence level using Eq. 3.9, applying our analysis
to the three different DM scenarios. The electron and photon coupling parameters, Λe

and Λγ , respectively, are constrained for each scenario as a function of the field’s mass
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Figure 3.7. The amplitude auto-spectrum of the single interferometers (black and green) and
the cross-spectrum magnitude (blue) obtained from the Holometer’s coherently averaged data.
At frequencies above ≈ 1 MHz the spectrum is dominated by photon shot noise; below ≈ 1 MHz
environmental (mechanical) and laser noise dominate [16]. In particular, below 500 kHz the
dominant noises are laser amplitude and phase noise - for a detailed description of their
characterisation, see sections 6.4.1 and 6.4.2 of [16]. For each frequency bin, the local noise
median (cyan) was estimated from its neighbouring bins. The 95% confidence level (red) was
then computed assuming the noise to be Rayleigh distributed. Peaks (red) above the 95%
confidence level were considered possible DM candidates and were investigated further.

mϕ, assuming for each coupling parameter the other to be zero. The new constraints
obtained from our analysis, together with previously published upper limits, are plotted
in Figs. 3.8 and 3.9. The feature at 226 kHz is due to the mechanical resonance of the
beamsplitter, where the apparent depth of the minimum is limited by the frequency
resolution (the Q-factor of the beamsplitter is more than an order of magnitude greater
than the plotted amplitude enhancement).

3.4.4 Conclusions
In this work we have looked for signals of scalar field DM in the cross-spectrum of
co-located interferometers, which constitutes the first direct search of scalar DM using
correlated interferometry. Our analysis excluded the presence of scalar field DM signals
in the data, placing lower limits on the DM coupling parameters for DM masses between
1.6·10−12 eV and 1.0·10−7 eV. These limits improve over previous direct experimental
bounds in several subranges: we set limits in the previously unconstrained mass range
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Figure 3.8. Computed constraints on the coupling parameters Λe (left) and Λγ (right) as a
function of the field’s mass mϕ for scalar field DM as in the Basic Scalar scenario. Electron and
photon coupling constraints are at the 95% confidence level. The region coloured in red
indicates the parameter space for the coupling parameters excluded by our analysis of the
Holometer data. Other coloured regions mark the parameter space excluded by other direct
searches [137–139], including the AURIGA experiment [140] and the GEO 600 interferometer [2].
The grey regions denoted by the black curves are constraints on general fifth-forces and tests of
the equivalence principle [144]. These come from the space-based MICROSCOPE experiment
[143], and the Cu/Pb and the Be/Ti torsion pendulum experiments performed by the Eöt-Wash
group [116, 141, 142]. For the Relaxion Halo scenario, a mass-dependent DM halo density as
described in [115] has been assumed. The constraints obtained for this scenario from direct
experimental searches have been obtained by rescaling the original ones to account for this
dependence. Constraints from fifth-force and equivalence principle tests do not depend on the
local DM density and are thus the same as in the Dilaton/Modulus scenario.
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Figure 3.9. Computed constraints on the coupling parameters Λe (left) and Λγ (right) as a
function of the field’s mass mϕ for scalar field DM as in the Basic Scalar scenario (top), the
Dilaton/Modulus scenario (top) and the Relaxion Halo scenario bottom). See caption of Fig. 3.8.
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between 2.4 · 10−11 and 4.3 · 10−11 eV, and improve over the existing constraints [138] in
the mass range 8.2 · 10−9 − 6.2 · 10−8 eV by up to three orders of magnitude.

Better constraints on scalar field DM can be achieved through upgrades of current
experiments [138], by increasing the measurement time of correlated instruments, or
from new, more sensitive experiments (e.g. [2]).
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3.5 Polarimetry Experiments to Search for Scalar
and Pseudoscalar DM

3.5.1 Introduction
In this section, we present a new way to use high-sensitivity polarimetry to identify
potential couplings of scalar field DM and axion-like particles. In 1979, E. Iacopini
and E. Zavattini published seminal work outlining how to detect vacuum magnetic
birefringence [149, 150] with polarimetry [151]. Unlike Michelson interferometry, which
looks for the relative phase difference between light in two orthogonal arms, polarimetry
is sensitive to the relative phase variation of two orthogonal polarisation components.
Polarimetry is still being used for measuring minute amounts of birefringence [152], and
it provides the highest sensitivity for measuring the vacuum magnetic birefringence [153].

In the polarimetry setup proposed here, an oscillating scalar or pseudoscalar DM
field is expected to produce a relative phase modulation between the two orthogonal
polarisations at the same frequency as the DM field oscillation, which could be detected.
Low-mass bosonic dark matter is assumed to have a long coherence length (relative to
the measurement apparatus’ dimensions), such that two identical polarimeters close
together would measure the same signal and may be cross-correlated in a search for these
dark-matter fields, in much the same way as done with two Michelson interferometers
before (as detailed in Sec. 3.4).

3.5.2 Coupling of Scalar Field DM to a Polarimeter
We first show through an analytical calculation how thickness variations of a birefringent
optical element, induced by scalar field DM, would produce a measurable phase difference
between orthogonal polarisation components of laser light in a polarimeter.

The size and refractive properties of solids depend on the fine structure constant and
the electron mass (see Sec. 3.2). We consider the effect of scalar field DM on the optical
parameter

β = 2πd∆n
λ

, (3.19)

which is the difference in the accumulated phase between orthogonal polarisations
in radians, where d is the path length inside the solid, ∆n = ne − no is the intrinsic
birefringence of the solid (i.e. the difference of the refractive indices for the two orthogonal
polarisations) and λ is the wavelength of light. As described in Sec. 3.2, scalar field
dark matter would induce variations of the size and index of refraction of a solid, which
would in turn produce changes in the parameter β. Relative changes in β are the sum of
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relative changes in d and ∆n
δβ

β
= δd

d
+ δ∆n

∆n , (3.20)

to first order. The DM-induced changes in the thickness of the solid can be described by
substituting l → d in Eq. 3.6. The DM-induced changes in the birefringence of the solid
δ∆n can be found using Eq. 3.7, which gives

δ∆n
n

≈ Cdisp

(
2δα
α

+ δme

me

)
. (3.21)

We thus expect that in the presence of an oscillating scalar field ϕ (Eq. 3.2), there will
be oscillatory changes of the parameter β:

δβ

β
= ϕ0 cos

(
ωϕt− k⃗ϕ · r⃗

)( 1
Λγ

+ 1
Λe

)(∣∣∣∣∣1 −
ω2

ϕ

ω2
0

∣∣∣∣∣
)−1

+ Cdisp

(
1

Λe
+ 2

Λγ

) . (3.22)

Ellipticity modulator

Polariser

Analyser

M1 M2 PDT

PDE

Laser

Birefringent medium

Figure 3.10. The proposed polarimetry experiment for searching for scalar field dark matter,
which uses a birefringent medium in a Fabry-Pérot cavity. M1/M2 are mirrors that delimit the
Fabry-Pérot cavity, and PDT, PDE are the photodiodes in the transmission and in the
extinction port of the analyser, respectively.

We consider a polarimeter configured as in Fig. 3.10. To find the effect of the changes
δβ/β in the birefringent medium on the optical output of the polarimeter, we use the
Jones matrix formalism. After passing through a polariser, the input laser light will be
in the following state:

E = E0 e
−i(kz−ωt) ·

(
1
0

)
, (3.23)

where E0 is the electric field’s initial magnitude. The Jones matrix of a birefringent
solid with an optic axis oriented at an angle ϕ relative to the input polarisation is:

B(β, ϕ) = O(ϕ) ·
(
e

1
2 iβ 0
0 e− 1

2 iβ

)
· O(−ϕ), (3.24)
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where O(ϕ) is the rotation matrix:

O(ϕ) =
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
. (3.25)

The experiment is configured such that the optic axis of the birefringent solid is oriented at
an angle of ϕ = π/4. The total phase difference between polarisation components induced
by the solid is β = nπ + δβ, n ∈ Z, where δβ ≪ 1 represents the phase modulation due
to DM-induced solid thickness and refractive index variation. A photoelastic modulator
(PEM) and an analyser are represented by the Jones matrices H and A, respectively,

H =
(

1 iη

iη 1

)
, A =

(
1 0
0 1

)
. (3.26)

We compute the output electric field after multiple reflections in the Fabry-Pérot cavity
as follows:

Eout =
(
Eout,0
Eout,⊥

)

= Te
iφ
2

∞∑
n=0

[
Reiφ B2(β, π4 )

]n

· B(β, π4 ) · E (3.27)

= Te
iφ
2

[
I −Reiφ B2(β, π4 )

]−1
· B(β, π4 ) · E ,

where φ is the round-trip phase shift of light propagating between the two-cavity mirrors,
R is the reflectance of the mirrors, T is the transmittance of the mirrors, and I represents
the identity matrix.

We then use the heterodyne method to read out the polarimetric signal in the output
field of the polarimeter, which involves placing a photoelastic modulator (PEM) next to
an analyser oriented at 45◦ with respect to the input polarisation (see Fig. 3.10). The
electric field at the extinguished port of the analyser is:

Eext = A · H · Eout. (3.28)

The extuinguished intensity Iext = |Eext|2, normalised by the intensity of the input light
I0, is

Iext

I0
= T 2

1 − 2R cosφ+R2

(
σ2 + η2 + η δβ

(
1 −R2)

1 − 2R cosφ+R2 + O
[
(δβ)2

])
, (3.29)

where δβ represents the phase difference due to the birefringent solid thickness and
refractive index variations, η(t) = η0 cos(2πνPEMt) describes the modulation imparted
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by the PEM, and σ2 is the extinction ratio of the crossed polarisers. The term linear in
η(t) is the heterodyne signal, which is used to detect the effect of interest. Furthermore,
we must consider that the Fabry-Pérot cavity operates as a low-pass first-order filter for
a time-dependent signal such as the one induced by scalar field DM. Specifically, the
transfer function of a Fabry-Pérot cavity for a time-dependent ellipticity signal is [154]

hT(ν) = T√
1 +R2 − 2R cos 2πντ

, ϕT(ν) = arctan
[

R sin 2πντ
1 −R cos 2πντ

]
, (3.30)

where ν is the frequency of the signal, τ = 2/c
∫ L

0 ndL is one round-trip time in the
cavity, and n, L, and c are the refractive index, the length of the cavity, and the speed
of light, respectively.

The input laser light should be kept resonant in the Fabry-Pérot cavity, such that
φ = 0, using e.g. the Pound-Drever-Hall method. The signal from the photodiode at the
extinguished port can be demodulated at the frequency νPEM, and the RMS magnitude
of the phase shift |δβ| can then be inferred:

|δβ(ν)| = Iext(ν)
NI0η0hT(ν) , (3.31)

where N = 2/(1 − R) is the cavity buildup and Iext is the demodulated signal of the
extinguished intensity at frequency νPEM.

3.5.3 Coupling of Pseudoscalar DM to a Polarimeter
We now consider the case of pseudoscalar axion-like DM, which produces a rotation of
the polarisation of light according to Eq. 3.14. We derive below how a pseudoscalar field
may produce an observable signal in a polarimeter as configured in Fig. 3.11.

Ellipticity modulator

Polariser

Analyser

M1 M2QWP1 QWP2 PDT

PDE

Laser

Figure 3.11. The proposed polarimetry experiment for searching for axion-like pseudoscalar
fields, which uses a Fabry-Pérot cavity and two quarter-wave plates (QWP1 and QWP2). PDT,
PDE are the photodiodes in the transmission and in the extinction port of the analyser,
respectively, and M1/M2 are mirrors that delimit the Fabry-Pérot cavity.
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The Jones matrix (on a linear basis) for the propagation of light that parameterises
the rotation of its plane of polarisation in the presence of an axion-like field is given by

Aγ(t, τ) ≈
(

1 −ρ(t, τ)/2
ρ(t, τ)/2 1

)
, (3.32)

for angles ρ ≪ 1.
We first consider a setup where polarized laser light is injected into an empty

Fabry-Pérot cavity, without any optical elements inside. The rotation of the plane of
polarisation of the light inside the cavity due to an axion-like field is

Eout =
∞∑

n=0

[
eiφ (Aγ(ρ) · M)2

]n
· Teiφ/2 Aγ(ρ) · E

= Teiφ/2

(1 −Reiφ) Aγ(ρ) · E , (3.33)

to first order, where M =
(

−r 0
0 r

)
is the Jones matrix representing the reflection

of a mirror for normal incidence and φ is the round-trip phase shift. Note that over
a round trip the element (Aγ(t, τ) · M)2 = R I, where R = r2 is the reflectance of the
mirror and I is the identity matrix. Therefore, when the light is resonant with the cavity,
the DM-induced polarisation rotation, also known as dichroism, cancels out over round
trips.

To counteract this cancellation effect, two quarter-wave plates (QWPs) can be placed
next to the mirrors at either end of the cavity, as shown in Fig. 3.11. This is similar
to the approaches in [124, 126]. In this configuration, the polarisation rotation due to
the axion-like field will accumulate over multiple round trips. A quarter-wave plate
with its fast axis aligned with the incident polarisation is represented by the matrix
Q = B(π/2, 0). The quarter-wave plate converts any rotation of the polarisation of the
light to ellipticity:

Q · Aγ · Q · E = Ẽ0

(
1

− iρ
2

)
, (3.34)

where Ẽ0 = E0e
−iζ is the amplitude of the electric field with an overall phase ζ. The

electric field at the exit of the Fabry-Pérot cavity including the QWPs is:

Eout = Te
iφ
2

∞∑
n=0

[
eiφ (Q · Aγ(ρ) · Q · M)2

]n
· Q · Aγ(ρ) · Q · E

= Te
iφ
2
[
I − eiφ (Q · Aγ(ρ) · Q · M)2

]−1
· Q · Aγ(ρ) · Q · E (3.35)
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Using heterodyne readout, the intensity of the output light at the extinguished port
(relative to the input intensity) is

Iext

I0
(ρ) ≈ σ2 + η2 − 2Nηρ2 +O

[
ρ2
]
. (3.36)

When the frequency response of the Fabry-Pérot cavity (see Eq. 3.30) is taken into
consideration, the RMS magnitude of the pseudoscalar-induced phase shift can be
inferred as

|ρ(ν)| = Iext(ν)
NhT(ν)I0η0

. (3.37)

This expression shows that with the addition of the two quarter-wave plates, the phase
shift between orthogonal polarisations induced by an axion-like field builds over multiple
cavity trips N . The approach presented here shares similarities with the method
described in Nagano et al. [125] for detecting axion dark matter using interferometric
gravitational wave detectors. However, our method differs in the use of quarter-wave
plates to accumulate the rotation induced by axion-like pseudoscalar dark matter over
multiple round trips and subsequently convert it into ellipticity for detection through
polarimetry [124].

Eqs. 3.31 and 3.37 show that a polarimeter can be used for a direct search for both
scalar and pseudoscalar dark matter, by configuring the device either as in Fig. 3.10 or
as in Fig. 3.11, respectively.

3.5.4 Noise budget
We carried out an inventory of expected noises that can limit the performance of the
proposed polarimetry experiments. Specifically we considered photon shot noise, seismic
(environmental) noise, relative laser intensity noise (RIN), and electronic noise. These
noises produce fluctuations in the (demodulated) extinguished intensity Iext with an
RMS variation amplitude SIext . Such intensity fluctuations are equivalent to polarimetric
phase noise with RMS amplitude

SP = SIext

I0η0
. (3.38)

which determines the sensitivity of the experiment, as DM signals manifest as the
polarimetric phase variations given in Eqs. 3.31, 3.37. The different noises add together
in quadrature to yield an equivalent total phase RMS amplitude

S
(tot)
P ≈

√
S

(shot)
P

2
+ S

(seismic)
P

2
+ S

(RIN)
P

2
+ S

(elec)
P

2
. (3.39)
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Given a set of proposed operating parameters (see Table 3.1), the shot noise in terms
of polarimetric phase is estimated to be S(shot)

P ≈ 6 × 10−10 rad/
√

Hz [4], corresponding
to shot noise levels encountered in existing polarimeters [153]. We estimate that this
shot noise level will be at least an order of magnitude above the contributions from RIN
and electronic noise at all frequencies of interest [4].

Input power I0 1 W
Extinction ratio σ2 2 × 10−7

Modulation amplitude η0 1.5 × 10−3

Modulation frequency νPEM 50 kHz
Seismic noise coupling γ 0.1

Cavity build-up N 20 000
Solid/QWP wedge θ 1 µrad
Yttrium vanadate Cdisp 12 × 10−3

Sapphire Cdisp 6.6 × 10−3

Table 3.1. Relevant characteristics of the proposed polarimetry setups

Seismic noise
Seismic noise will be significant in the polarimeter configuration for detecting scalar field
DM (Fig. 3.10) if the back and front surfaces of the birefringent crystal are not parallel
and the point of incidence of the laser beam on the solid varies. In this situation, the
laser light will traverse a time-varying distance through the solid, thereby generating
unwanted polarisation phase noise. If the optical components of the polarimeter are
installed on a perfectly rigid platform, the seismic disturbance should have no effect on
their relative position, and the point of incidence of the laser light on the solid will be
constant. Nevertheless, the coherence length of seismic noise above 1.5 Hz can be as
little as 1 − 16 m [155], which would mean the cavity mirrors experience a differential
displacement. To estimate the coupling of seismic noise into the polarimeter, we consider
our birefringent solid to have uniform birefringence and a small wedge, θ. We assume
the solid’s transverse position relative to the incidence of the laser beam is randomly
modulated by seismic noise with displacement amplitude spectral density δr. Further, we
assume that the seismic noise is broadband and has the same magnitude in all directions.
The coupling of the seismic noise to birefringence noise in the polarimeter can then be
calculated using the wedge angle θ as follows:

S
(seismic)
P = 2πN δr θ

λ
∆n [1 − γ(L, f)] (3.40)
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Here, ∆n is the birefringence of the solid, N is the cavity build-up, and the coupling
parameter γ(L, f) represents the two-point correlation of the seismic noise between the
laser and the solid, which are separated by a distance L, as a function of frequency. The
expected displacement amplitude noise spectral density due to seismic noise is estimated
from data taken at the advanced Laser Interferometer Gravitational-Wave Observatory
(aLIGO) [156, 157]. We use measurements of the seismic displacement noise as mitigated
through a two-stage seismic isolation platform and a single silica pendulum suspension,
which is only part of the multi-stage seismic isolation and suspension system used at
LIGO. Similar seismic isolation can be employed for the proposed polarimetry setup.

In Fig. 3.12 we show the projected total phase noise S(tot)
P . It can be seen that

the shot noise is expected to be the dominant contribution to the total noise at high
frequencies; at lower frequencies, it is expected that seismic noise will be dominant. The
other noise contributions are estimated have a relative contribution to the total noise of
≲ 10% [4].
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Figure 3.12. A projection of phase noise expected in the proposed polarimetry experiment is
shown. The total expected noise is expected to be dominated by shot noise and seismic noise.
For calculating the curves in this plot, we used Eq. 3.40, and the parameters in Table 3.1. The
seismic phase noise amplitude plotted in blue corresponds to the noise as mitigated through a
two-stage seismic isolation platform and a single silica pendulum suspension, which is part of the
seismic isolation and suspension system used at the advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) [156, 157].
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3.5.5 Prospects for DM searches

Scalar field DM
In the proposed polarimeter setup for detecting scalar field DM, the sensitivity is defined
by the observable relative phase variations δβ(ν)/β at frequency ν. From the noise
budget above, we find that the condition where the shot noise readout phase is the
dominant noise, i.e. δβnoise = S

(tot)
P ≈ 6 × 10−10 /

√
Hz can be achieved. The sensitivity

to scalar field DM can be improved by increasing β = 2πd∆n/λ, where the effective
path length in the solid in a Fabry-Pérot cavity d = d0N , i.e. the product of the solid
thickness d0 and the average number of round trips in the cavity N . We assume that
absorption is the main loss, limiting the number of round trips, i.e. P ≫ T , which would
be the case for this experiment. The total losses in the cavity P will likely be dominated
by those due to imperfections in the AR coating PAR and the solid’s bulk absorption
loss P = PAR +µd (where µ is the linear absorption coefficient of the bulk). We evaluate
the frequency response of the polarimeter given these conditions:

NhT = 2
(T + P )

√
1 + 4

(T +P )2 sin2 πντ
≈ 2√

P 2 + 4 sin2 πντ
. (3.41)

The sensitivity to scalar field DM can be defined by a signal-to-noise ratio (SNR) equal to
one, which means the magnitude of the signal of interest as observed in the extinguished
intensity is equal to the magnitude of the noise-induced fluctuations in the extuinguished
intensity:

Iext(ν) = SIext(ν), (3.42)

or

Stot
P (ν) = NhT δβ(ν), (3.43)

which gives,

δβ(ν)
β

= S
(tot)
P λ

√
P 2 + 4 sin2 πντ

2πd∆n . (3.44)

This shows that the sensitivity depends on the performance of the polarimeter, parame-
terised by S(tot)

P , the properties of the solid, and the frequency response of the cavity.
Specifically, the sensitivity scales linearly with the differential optical path length d∆n
and the total absorption caused by the solid P .

As a consequence of this, if coating loss is the dominant effect, the sensitivity will
increase linearly with both the intrinsic birefringence of the solid and its thickness. If,
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Figure 3.13. Left: sensitivity of the polarimeter (Eq. 3.44) as a function of the crystal
thickness for sapphire (∆n = 0.008) and pure yttrium vanadate (∆n = 0.208) with absorption of
P = 100 ppm/cm. Right: sensitivity of the polarimeter (Eq. 3.44) using yttrium vanadate
(YVO4) or sapphire crystals as a function of frequency for a d = 5-cm-thick crystal.

on the other hand, the bulk absorption contributes the majority of the total loss, the
sensitivity will not improve with increased thickness. Therefore, the cross-over point
between sensitivity gain due to increased thickness and sensitivity loss due to bulk
absorption will be the most important consideration when choosing the optimal solid
thickness. Fig. 3.13 shows the expected δβ/β sensitivity as a function of crystal thickness
and frequency for two types of birefringent crystals: sapphire (∆n = 0.008) and pure
yttrium vanadate (∆n = 0.208) crystals. These calculations were made using a linear
bulk absorption coefficient of 100 ppm/cm [158], and an AR coating loss of 25 ppm
per incidence. We have used a Fabry-Pérot cavity length of 30 cm and a thickness of
5 cm for the birefringent solid. Because bulk absorption increases linearly with crystal
thickness, a crystal thicker than 5 cm would not yield a meaningful improvement.

Absorption of light in the birefringent solid will heat up the material. This could
produce thermal lensing and thermo-elastic deformation, which could produce additional
noise at the extinguished port of the output analyser and limit the resonant cavity
build-up. It was estimated that these thermal effects could be compensated for in the
experiment by using a specialised thermal actuator, such as a CO2 laser projector or
ring heater [4, 159].

Given the expected sensitivity in terms of δβ/β, we use Eq. 3.22 to estimate the
sensitivity of the proposed experiment in terms of the DM coupling constants Λγ ,Λe,
which are shown in Fig. 3.14. These projections were made for a setup that uses a
5-cm-thick yttrium vanadate crystal. The black dashed lines represent the sensitivity
that would be attained after measuring for a time equal to the coherence time of the
DM, while the red dashed lines represent the sensitivty for cross-spectral integration
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Figure 3.14. Prospects for sensitivity to scalar field dark matter using polarimetry with a
30-centimeter-long Fabry-Pérot cavity and a 5-centimeter-thick yttrium vanadate birefringent
crystal are shown; the lines give the upper sensitivity in terms of the electron coupling constant
(left) and photon coupling constant (right), as a function of scalar field mass. The black
dashed/dotted-dashed lines represent the integrated sensitivity over the coherence time of dark
matter, while the red dashed/dotted-dashed lines represent one year of integration using twin
polarimetry and cross-correlation. Existing constraints from other interferometry experiments [2,
3, 139, 160] are also shown.

using twin cross-correlated polarimeters for a total of one year. Existing constraints
from other interferometry experiments [2, 3, 139, 160] are shown for comparison.

Pseudoscalar DM
To calculate the sensitivity to pseudoscalar DM, we must estimate the sensitivity of a
polarimeter configured as in Fig. 3.11, including two thin quarter-wave plates inside the
Fabry-Pérot cavity. Following a similar argument as for scalar DM, we find that the
DM-induced polarisation rotation angle we can expect to observe with a signal-to-noise
ratio equal to one is

|ρ(ν)| = S
(tot)
P

NhT(ν) (3.45)

≈ S
(tot)
P

√
P 2

AR + 4 sin2 πντ

2 (3.46)

where we have made the approximation that the total losses are dominated by the losses
in the AR coatings of the quarter-wave plates PAR.2 Any thermal effects due to the

2A quarter wave plate, constructed as a zero-order wave plate (where the relative phase retardation
is π/2 rather than an integer multiple thereof) can be very thin, so bulk absorption can be assumed to
be less than 10 ppm. Thus, the losses caused by the AR coating of the two wave plates will be the most
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small absorption in the wave plates could be easily compensated for using a thermal
actuator [4].

Using Using Eq. 3.14, we can compute the projected sensitivity in terms of the DM
coupling constant gaγ :

gaγ = S
(tot)
P
2τ

√
P 2

AR + 4 sin2 (πωaτ)
2ρlocal

, (3.47)

where τ is the cavity round-trip travel time. Fig. 3.15 shows the sensitivity for a
polarimeter configured as in Fig. 3.11 for two scenarios: the black solid line shows
the sensitivity for an integration time up to the coherence time of the axion-like field
(tint = 106/ωa), and the red dashed line shows the senstivity given two co-located
identical polarimeters with a one-year cross-correlation time. For these estimates, we
assumed a 5-meter cavity length. Existing constraints from the solar CERN Axion Solar
Telescope (CAST) [161], the design sensitivity for Any Light Particle Search (ALPS II)
[162], and an interferometric experiment being built in Birmingham [126] are shown for
comparison.

3.5.6 Conclusion
In this section we proposed the use of polarimetry for direct searches for low-mass
axion-like pseudoscalar and scalar dark matter. The experimental design outlined in
this work represents, to our knowledge, the first table-top experiment that can be used
to search for both scalar and pseudoscalar DM, with minimal reconfiguration.

We showed that scalar field DM interacting with a highly birefringent crystal (yttrium
vanadate or sapphire) drives thickness and refractive index variation of the crystal at
the frequency of the scalar field. This, in turn, produces differential phase oscillations
between orthogonal polarisation components of light traversing the crystal. If the
birefringent crystal is placed in a Fabry-Pérot cavity, these differential phase oscillations
between polarisation components can be measured with a polarimeter at high sensitivity
using a heterodyne readout technique. The amplification of the signal by the Fabry-Pérot
cavity is limited by absorption in the birefringent crystal. Regardless, with a 5 cm-thick
birefringent yttrium vanadate crystal, a polarimeter could probe a large region of the
scalar field DM parameter space, with DM masses ranging from

(
10−15 − 10−9) eV and

frequencies of 1 Hz to 200 kHz, beyond existing constraints [2, 3, 160]. As the sensitivity
scales linearly with the solid bulk absorption, potential technological advances that allow

significant effect. With 25 ppm loss per surface, two quarter-wave plates will cause a total of 100 ppm
loss per light crossing. Given that the losses far exceed the mirrors’ transmittance, e.g. P ≫ T , the
losses that occur in the cavity are P = PAR + µd ≈ PAR
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Figure 3.15. Sensitivity of the proposed experiment to the axion-photon coupling coefficient
for time integration up to the ALPs coherence time (black solid curve) and using twin
polarimeters with a one-year integration time (red dashed curve). We evaluated the sensitivity
of the proposed polarimetry experiment with two quarter-wave plates near the mirrors of a
5-meter-long cavity, with 20 kW circulating power and limited by shot-noise. For comparison,
the existing constraints from CAST [161] (blue line) and the design sensitivity for ALPS II [162]
(green line) and the interferometric detector being built in Birmingham [126] (dotted dashed
line) are shown.

the production of purer crystals with less absorption could significantly improve the
sensitivity of the proposed polarimetry method.

The same polarimetry setup, reconfigured with two quarter-wave plates placed near
the mirrors instead of a thick birefringent solid, could be used to search for axion-like
particles with masses ranging from

(
10−15 − 10−8) eV and frequencies ranging from 1 Hz

to 2.5 MHz. Such axion-like particles may be present in a galactic DM halo; if so, they
will manifest themselves by annihilating and producing photons in a polarimeter. This
would result in a phase oscillation between the orthogonal polarisations of light. For the
axion-like field, the sensitivity will be limited by the AR coating of the QWPs, which
will limit the amplification factor of the Fabry-Pérot cavity. A 5-m-cavity polarimeter
has the potential to surpass the sensitivity of CAST [161] in the ALPs mass range of
10−15 eV all the way up to 10−9 eV. The sensitivity can be improved by using a longer
cavity. This would improve the signal-to-noise ratio at low frequencies but would limit
the sensitive bandwidth, thus decreasing the sensitivity to high axion masses.
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3.6 Prospects for Dark Matter Searches with
QUEST

The QUEST experiment could be used to search for light scalar field dark matter
analogous to how the Fermilab Holometer was used to search for scalar field dark matter
(Sec. 3.4). QUEST will similarly use twin co-located interferometers, and a light scalar
field would couple to the beamsplitters of both interferometers and produce correlated
oscillations in the size and index of refractions of both beamsplitters according to Eq. 3.9,
allowing for a cross-correlation search.

The projected sensitivity of the QUEST experiment is shown in Fig. 3.16 (green lines),
calculated using Eq. 3.9, assuming shot-noise-limited single interferometer sensitivities
with 6 dB of squeezing in the frequency range 1 − 250 MHz (see Fig. 1.8) and a cross-
correlation time of ∼ 106 s. Although the magnitude of the expected noise at lower
frequencies is largely uncertain, given the measured sensitivity of e.g. the Fermilab
Holometer, it is likely that competitive constraints can be set using QUEST at frequencies
below 1 MHz as well.

Given the table-top design of the experiment, it would be relatively easy to modify
the interferometers to enhance their sensitivity to scalar field dark matter. For example,
mirrors of different thicknesses can be used as end mirrors of the arms. As the size
changes in response to scalar field dark matter are proportional to the thickness of the
optical substrates, having unequal end mirror thicknesses would produce a differential
optical path length between the arms. Given a thickness difference of the mirrors ∆d,
a signal is then expected equal in magnitude to that produced by a beamsplitter with
a thickness l = ∆d in an adiabatic approximation. The thicknesses and substrate
materials could be chosen such that the mechanical frequency response of the mirrors
(which depends on the thickness and substrate material) is such that the experiment
provides sensitivity in a desired part of the parameter space. For example, several sets
of mirrors with different fundamental vibrational frequencies could be used in separate
measurements to sensitively probe for resonant interactions between dark matter and
the optics and thus explore different narrow regions of the parameter space.
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Figure 3.16. Part of the parameter space and constraints therein for light scalar field dark
matter in the Basic Scalar scenario coupling to the beamsplitter. The green lines shows the
projected time-integrated sensitivity of the QUEST experiment in terms of the dark matter
coupling coefficients Λγ ,Λe as a function of the field’s mass mϕ. This estimate assumes a
cross-correlation time of 106 s, shot-noise-limited sensitivity between 1 and 250 MHz with 6 dB
of squeezing, and is for a signal-to-noise ratio of one. The grey shaded areas are constraints from
fifth-force searches and equivalence principle tests [116, 141–144]. The yellow shaded areas
indicate constraints from direct experimental searches [137, 140, 146, 160]. The red and blue
coloured regions are constraints set using GEO600 [2] (Sec. 3.3) and the Fermilab Holometer [3]
(Sec. 3.4), respectively. In magenta, we show the projected constraints for the polarimetric
experiment proposed in Sec. 3.5 [4].
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4: Gravitational Waves

In this chapter, we present a new approach for detecting gravitational waves
using existing and future detectors. Gravitational waves modulate the apparent
frequencies of other periodic signals, and modulations due to low-frequency gravita-
tional waves would therefore appear in the signals of higher-frequency gravitational
waves. We outline an analysis method to systematically search for undetected
gravitational waves in the background of well-resolved gravitational waves by
looking for correlated frequency modulations of the latter. We show here that
this method could allow gravitational-wave detectors to detect gravitational waves
at frequencies outside of their designed bandwidth using the same infrastructure.
This has the potential to open up unexplored and otherwise inaccessible parts of
the gravitational wave spectrum.

We also comment on the prospects of detecting high-frequency (MHz) gravita-
tional waves with the QUEST experiment.
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4.1 Introduction: Gravitational Wave Detectors
across the Spectrum

The field of gravitational-wave astronomy, as established with the first direct detection
of gravitational waves (GWs) [7], is still in its infancy. So far, only GWs with frequencies
between ∼ 10−500 Hz produced by the coalescence of black holes and neutron stars with
masses ∼ 1 − 100 times the mass of our Sun have been detected [163]. New detectors and
techniques are being developed to probe different regions of the GW frequency spectrum
and to investigate numerous other potential GW sources; e.g., rotating neutron stars
[164], binary white dwarfs (BWDs) [165], intermediate-mass and super-massive binary
black holes (SMBBHs) [166], a background of primordial GWs [167], and dark matter
[168, 169].

The sensitive bandwidth of laser interferometers (the only proven type of GW detec-
tor), is typically limited at low frequencies by spurious accelerations of the test masses,
and at high frequencies by quantum uncertainty in the optical state and an intrinsically
decreased response to GWs with wavelengths shorter than the interferometer’s arms.
Laser interferometers can be very sensitive at higher frequencies (∼ 1 − 100 MHz),
using cross-correlation and shorter arms, such as in the QUEST experiment [1] and the
Fermilab Holometer [16]. Increasing the sensitivity at lower frequencies is not straight-
forward, and even a space-based instrument such as LISA [170], subject to greatly
reduced environmental noise compared to Earth-based instruments, will not be sensitive
to GWs below ∼ 10−5 Hz. While marginal gains have been made in understanding
and addressing the complex amalgam of low-frequency noise contributions encountered
in laser interferometers (which include fundamental quantum limits) [171], it seems
unlikely that their bandwidth will expand into lower frequencies by more than an order
of magnitude in the coming decades.

Other detection techniques to probe new areas of the GW spectrum have been
proposed and some have been tried; none have proven successful in detecting GWs so far.
At high frequencies (kHz – GHz) these include techniques that exploit graviton-to-photon
conversion (known as the inverse Gertsenshtein effect) [172, 173], optically levitated
sensors, resonant mass detectors [174], and more [175].

At low frequencies, currently the only competitive method to search for GWs is using
sets of time-resolved observations of pulsars, known as Pulsar Timing Arrays (PTAs),
which are sensitive in the nHz – µHz range [176–185]. GWs incident on the pulsar and/or
the detector produce deviations of the apparent frequency or equivalently the arrival
time of the radio pulses that are correlated between different pulsars. This detection
technique thus exploits the interplay of electromagnetic pulses with GWs which results
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in a modulation of the pulse frequency. So far, after observing for ∼ 10 yr, PTAs have
not detected GWs [186–189].

102



Gravitational Waves 4.2. Detecting the Heterodyning of Gravitational Waves

4.2 Detecting the Heterodyning of Gravitational
Waves

4.2.1 Introduction
In this section we propose a new method for detecting (low-frequency) GWs using
interactions between GWs of different frequencies. The basis of the method is the
gravitational red- and blueshift induced by one GW onto the other. This mechanism
can also be viewed as one GW perturbing the space-time along the direction of travel
of the other GW, and thus modulating the arrival times of peaks and troughs of the
other GW. Mathematically, the effect can be described as a multiplication or mixing of
two GWs. From this description, it can be shown that the resulting GW signal contains
Fourier components at the sum and difference of the frequencies of the two waves, with
an amplitude proportional to the product of the amplitudes of the individual GWs.
This elementary result of the mixing of two waves, also known as heterodyning, has
been used in the processing of electromagnetic signals for over a century. Heterodyning
effectively produces a frequency-shifted copy of one signal (known as a sideband) in the
frequency range of a readily detectable second signal. As we show in this paper, this
mechanism can be used in GW astronomy, where GW signals detectable with, e.g., laser
interferometers can be used to detect low-frequency background GWs. This method
of searching for low-frequency GWs is conceptually similar to the technique used by
PTAs, with the crucial difference that instead of looking for disturbances in the periodic
electromagnetic signal of pulsars, we look for disturbances in a periodic GW signal. The
idea of looking for GW sidebands was recently independently proposed by Bustamante
et al. [190], when our paper was in preparation, but their analysis and projections differ
significantly from ours.

Our proposed method allows one to expand the sensitive bandwidth of GW detectors
into low-frequency regimes using the detectors’ existing infrastructures. Moreover, this
method could enable a sensitivity to GWs in a bandwidth where no other detection
methods exist, e.g., in the µHz regime where the frequency ranges of space-based laser
interferometers and PTAs leave a gap.

Although our method is applicable to general periodic GW signals, we focus here on
the example of future space-based laser-interferometric GW detectors, i.e., LISA [170]
and DECIGO [191], which are expected to be able to observe large numbers of GW
signals from BWDs and binary neutron stars (BNSs). Using projected parameters of
the detector and signals for these instruments, we show that cross-correlation of many
well-resolved GW signals can provide sensitivity to secondary low-frequency GWs.
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This section is structured as follows: in subsection 4.2.2 we derive the frequency
domain signature of modulation of a primary carrier GW by a secondary low-frequency
GW in the background of the carrier. In subsection 4.2.3, we present the proposed analysis
method for detecting such background signals in GW detector data. In subsection 4.2.4,
we construct a simulated data set of BWD carrier signals observed by LISA, and use
this to make projections of the sensitivity that could be obtained with the proposed
method. In subsection 4.2.5, we discuss possible limitations of our method and the
assumptions made in estimating the achievable sensitivity. We formulate conclusions in
subsection 4.2.6.

4.2.2 Theory: Gravitational Modulation of GW Signals
We consider a set of N ≫ 1 periodic GW sources which could be simultaneously observed
for a long time (e.g., BWDs in our Galaxy that could be individually resolved by LISA
[170]). We further assume that these sources emit quasi-monochromatic GWs, i.e., that
their frequency does not significantly change within the observation time T (see Sec. 4.2.5
for discussion of the implications of relaxing this assumption). In that case we can write
the GW signal (in units of strain) from the α-th periodic source at distance dα as

hα(t) = aα cos[2πfαt+ φα], (α = 1, 2, . . . , N), (4.1)

with constant frequency fα, amplitude aα, and initial phase φα. We refer to these GWs
as carrier signals and to their sources as carrier sources.

If there is an incident GW from a secondary, more distant source, this GW will
perturb the space-time at the location of the carrier sources and at the location of
the observer. As a consequence, the frequency of the GW carrier signals are no longer
constant but are modulated in time. For a secondary GW emitted by a distant point
source in the direction N̂ this frequency modulation of the carrier signal is given by
[192],

fα − fα(t)
fα

= ni
αn

j
α

2(1 + N̂ · n̂α)

[
HTT

ij (t, FL) −HTT
ij (tα, FD,α)

]
, (4.2)

where n̂α and ni
α is the unit vector from the observer to the α-th carrier source and its

components, respectively, and tα = t− dα(1 + N̂ · n̂α)/c is the retarded time coordinate
that accounts for the propagation of the carrier wave. HTT

ij (t, FL) = A cos[2πFLt+ ΦL]
and HTT

ij (tα, FD,α) = A cos[2πFD,αtα + ΦD,α] correspond to the metric perturbation
with Fourier frequencies FL, FD,α, amplitude A, and phases ΦL, FD,α due to the incident
GW at the space-time locations of the observer and the carrier source, respectively
(in the terminology of Pulsar Timing Arrays (PTAs) [176, 178], the former is usually
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referred to as the ‘Earth term’ and the latter as the ‘pulsar term’). We will from now
on refer to the lower-frequency GW of interest that modulates the carrier signal as the
background GW.

It can be shown that the single-sided frequency spectrum of the modulated signal
can be written as [190]

h̃α(f) ≃ aαe
iφαδ(fα − f)

+ 1
2aαAIα,Le

i(φα+ΦL)δ(f − fα + FL)

+ 1
2aαAIα,Le

−i(φα+ΦL)δ(f − fα − FL)

+ 1
2aαAIα,De

i(φα+Φα,D)δ(f − fα + FD,α)

+ 1
2aαAIα,De

−i(φα+Φα,D)δ(f − fα − FD,α), (4.3)

where Iα,L,D = (FL,D/fα)K(N̂ , n̂α, H
TT
ij , dα), and K is a purely geometrical factor of

order unity that accounts for the polarisation, propagation direction, and propagation
distance of the background and carrier GWs. The first term in the spectrum given by
Eq. 4.3 is the Fourier component corresponding to the carrier signal at the frequency
f = fα. The modulation due to the background GW at the location of the observer
manifests as two Fourier components with frequencies f = fα ± FL (second and third
term in Eq. 4.3), which we will refer to as the ’local’ sideband terms. Similarly, the
modulation of the carrier signal due to the background GW at the location of the carrier
source produces sidebands with frequencies f = fα ±FD,α (fourth and fifth term), which
we will refer to as the ‘distant’ sideband terms. Note that the frequency and phase
offsets, FL, ΦL, of the ‘local’ terms are independent of the carrier (they are equal to the
frequency and phase of the modulating GW at the location of the observer), whereas
the ’distant’ terms have frequency and phase offsets FD,α,ΦD,α, which depend on the
location of the carrier source.

This mechanism, a sort of ‘GW heterodyning’ could allow the indirect detection of low-
frequency GWs that may otherwise be undetectable when a GW detector is not sensitive
to signals down to a frequency F , but is sensitive at much higher frequencies fα+F . Using
this method, the upconverted background signal amplitude is Asideband = AaαKF/fα.
For example, if we take the carrier signal to be the GWs emitted by a typical BWD
(such as the BWDs that LISA aims to detect), with frequency fα ∼ 10−2 Hz, and we
take the background signal to be GWs emitted by a SMBBH with amplitude A ∼ 10−12

and frequency FL ∼ 10−8 Hz, the background sideband signal appears at an amplitude
aαAIα,L ∼ aα10−6.

The suppression relative to the carrier would mean the background signal amplitude
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is below the typical noise level of the detector. In the following section, we propose a
method to amplify the signal which utilises the coherence of the modulation of multiple
carrier signals. To this end, we construct and add Np = N(N − 1)/2 ≫ 1 different
cross-spectra (one for each pair of carrier sources) such that the sideband terms sum up
coherently to exceed the incoherent random noise.

4.2.3 Cross-Correlation of Carrier Signals
We propose a cross-correlation method for detecting a background gravitational wave
signal that produces phase modulation of carrier GW signals. We will later use this
method to make quantitative estimates of the expected signal-to-noise ratio that can be
obtained for potential astrophysical GW sources using planned GW detectors.

We consider the time-domain output signal of the GW detector s(t) to be given by
the sum of N carrier signals, all modulated by a single background GW signal with
frequency F corresponding to either the ‘local’ (F = FL) or the ‘distant’ (F = FD) term,
and noise n(t) characteristic of the detector

s(t) =
N∑

α=1
hα(t) + n(t). (4.4)

For any carrier, we can apply a demodulation and phase-shift to the time-domain detector
output and normalise it by the carrier amplitude and the constant Iα,

sα(t) =
√

2
aαIα

e−i(2πfαt+φα) s(t). (4.5)

This demodulation shifts the frequency of all Fourier components in the output by an
amount fα, such that all sideband (heterodyne) signals are frequency shifted to the
frequency ±F of the modulating background GW that produces them. Moreover, any
heterodyne signals from background GWs will now appear with a Fourier amplitude
equal to the background GW strain amplitude that produces them. In general, the
demodulation frequency need not be constant in time, but could be adjusted over
time to account for time-dependent changes in the carrier frequency. Specifically, the
demodulation frequency and phase could be varied according to a predetermined carrier
signal model, or they could be fit to the data post hoc (e.g., through maximising the
demodulated carrier amplitude) when the frequency evolution is unknown a priori. After
this frequency and phase shift, we can apply an appropriate low-pass filter to the data
such that other terms, as long as they are well-separated from the carrier and modulation
sideband, need not be considered 1.

1The sidebands due to the local modulation can be considered well-separated in the frequency domain
from the sidebands due to the distant modulation (pulsar/distant term) when |FL − FD| ≫ 1/T . We
also assume all carrier signals are well-separated from each other (|fα − fβ | ≫ 1/T ∀ α, β).
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We consider the case where the time-domain detector output is discretised with
a constant sampling frequency fs for a total observation time T . Next, we take the
single-sided discrete Fourier transform of the detector output, which yields a discrete
complex amplitude spectrum Sj

α for each carrier signal, which will have the form

Sj
α = AeiΦαδjl(F ) +

√
2

aαIα

√
ρj

α

T
eiηj

α , (4.6)

where the index j = 1, 2, . . . , T fs/2 runs over the frequency bins, l(F ) 2 is the index of
the bin that contains the background signal (δjl is the Kronecker delta), ρj

α is the noise
power spectral density of the detector, and ηj

α are the random noise phases (where both
noise parameters have undergone the frequency and phase shift described by Eq. 4.5).
The spectrum Sj

α is unique for each carrier signal. As background GWs would modulate
all carrier signals coherently (i.e., the sideband phase is deterministic), whereas the noise
has a random phase, cross-correlating different carrier signals is advantageous. For each
pair of carrier signals (αβ), a cross-spectrum Sj

αβ = Sj
αS

j∗
β , can be constructed which

has the form

Sj
αβ = A2ei(Φα−Φβ)δjl(F ) + 2

aαaβIαIβ

√
ρj

αρ
j
β

T
ei
(

ηj
α−ηj

β

)
, (4.7)

where Φα − Φβ = Φαβ is the phase difference of the modulating signal between the two
carrier signals. Here, we neglect cross-terms between the sideband and the noise, as these
are expected to be smaller than the pure noise terms. From this expression it can be seen
that Φab is deterministic, and ηj

α − ηj
β = ηj

αβ is random (the neglected sideband-noise
cross-terms would likewise have random phases). Therefore, we can add up signal terms
from different cross-spectra coherently, and the noise will average out. If we have N
individually resolved carriers at our disposal we can construct Np = N(N−1)/2 different
cross spectra and take a coherent weighted average of them

Sj =
∑Np

(αβ) λ
j
αβS

j
αβ e

−iΦαβ∑Np

(αβ) λ
j
αβ

, (4.8)

where λj
αβ are the weights of each cross-spectrum. Performing this coherent summation

is possible as long as the relative modulation sideband phase Φαβ can be determined
for each carrier pair (αβ). For the modulation produced by the background GW at the
detector (‘local’ term), Φαβ = 0 ∀αβ. For the sideband due to the modulation produced
at the source of the carrier GW signal (‘distant’ term), Φαβ is a function of the relative

2l(F ) = ⌈F T + 1
2 ⌉
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positions of the background GW source and the carrier signal sources. In this case, Φab

can be taken as free parameters that are fit to the data by maximising the total SNR for
a particular sideband frequency, which would yield an upper estimate of the maximum
background GW signal power at a certain frequency. Alternatively, a hypothetical
background source position and frequency could be assumed, which prescribes a certain
set of Φαβ given the geometry of the source positions, which would then yield an upper
limit of the estimated background GW strain at that frequency and sky position.

Note that the coherent average is constructed such that the expected real part of the
signal bin is E

[
Re[Sl(F )]

]
= A2. The squared signal-to-noise ratio can thus be defined

for each bin

(SNRj)2 =
(
Re[Sj ]

)2
Var (Re[Sj ]) . (4.9)

It can be shown that an optimal signal-to-noise ratio is found by taking the weights
[193]

λj
αβ =

Np∑
(γδ)

([Cj ]−1)αβ,γδ ≃

 1
σj

ασ
j
β

2

= (aαaβIαIβ)2T 2

4ρj
αρ

j
β

, (4.10)

where Cj
αβ,δγ is the pair-wise cross-covariance matrix of the cross-spectra Sj

αβ, S
j
δγ ,

and σj
α,β are the variances of frequency bin j in each carrier spectrum (Eq. 4.6); the

approximation holds in the weak-signal limit [193]. The SNR of a modulating background
GW with frequency F and amplitude A can now be evaluated

(SNRl(F ))2 ≃ A4

2
∑Np

(αβ)

 1
σ

l(F )
α σ

l(F )
β

2

. (4.11)

4.2.4 Sensitivity Projections using Simulated Carrier GW Signals

Simulating carrier GW signals
The GW detector LISA is expected to observe a large number of continuous, periodic GW
signals from BWDs in our Galaxy [165, 170, 194–199]. These BWDs could potentially
serve as carrier sources that allow for the detection of low-frequency background GWs
as described above.

The total number and properties of Galactic BWDs is subject to large uncertainty.
To obtain a quantitative projection for the number, frequency, and amplitude of BWD
GW signals that may be detected with LISA, we use an observationally driven parametric
model of the Galactic white dwarf population, constructed by Korol et al. [199]. This
model builds upon the spectroscopic samples of single white dwarfs and BWDs from
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Table 4.1. Input parameters used for generating synthetic populations of Galactic binary white
dwarfs. The parameters ρKorol

WD,⊙, fKorol
BWD,4 AU, fKorol

BWD,amax
, and αKorol are used as input for the

algorithm described by [199] to model the sets of BWD carrier signals. These parameters
represent the local WD density, the fraction of binaries with semi-major axes < 4 AU, the
fraction of binaries with semi-major axes less than the maximum separation detectable with
LISA (amax), and a power-law index specifying the BWD semi-major axis distribution,
respectively (see [199] for details). The values of these parameters were chosen to correspond to
upper (Optimistic), median (Moderate), and lower (Pessimistic) observational limits. We
chose observation times T between 1.0 and 10.0 yr. N indicates the resulting number of BWDs
which are individually resolvable with LISA.

Model Pessimistic Moderate Optimistic

ρKorol
WD,⊙ [10−3 pc−3] 4.11 4.49 4.87

fKorol
BWD,4 AU 0.112 0.095 0.078
fKorol

BWD,amax
0.008 0.009 0.010

αKorol −1.18 −1.30 −1.45
T [yr] 1.0 4.0 10.0
N 7.0 × 104 1.1 × 105 1.9 × 105

the Sloan Digital Sky Survey (SDSS) and the Supernova Ia Progenitor surveY (SPY) to
produce a synthetic population of Galactic BWDs which are specified by their component
masses, orbital frequencies, sky positions, and orientations. These source parameters are
then used to calculate the GW signals of each BWD in the population. Part of the BWDs
would emit GWs at low frequencies f ≲ 3 mHz and are predicted to be so numerous
that they are not individually resolvable but constitute a confusion-limited foreground
noise [196]. The rest, an estimated number of ∼ O(103 – 105) BWDs emit GWs at higher
frequencies and are expected to be sufficiently loud that they are individually resolvable;
these are the BWDs which can be used as carrier sources in our method.

We consider three models with different carrier source and observation parameters,
Pessimistic, Moderate, and Optimistic. For these models, we synthesised three BWD
populations using different input parameters for the model of [199]; specifically we vary
the local WD density ρKorol

WD,⊙, the WD binary fraction fKorol
BWD , and the power-law index

αKorol, which describes the BWD semi-major axis distribution (see [199]). On the
observation side we use three different values for the LISA mission lifetime T = 1.0,
4.0, and 10.0 yr, which sets the length of observation. To get an upper and lower limit
for the resulting sensitivity to background GWs, we choose the model parameters such
that Pessimistic and Optimistic models yield the lowest and highest number of

109



Gravitational Waves 4.2. Detecting the Heterodyning of Gravitational Waves

BWDs within the current observational uncertainty while Moderate model corresponds
to median values. The parameter values of the three different models are summarised in
Table 4.1.

Figure 4.1. Amplitude spectral densities aα

√
T of gravitational wave signals from individually

resolvable binary white dwarfs (BWDs) in three different models [199] as a function of their
frequency f = fα. The solid line indicates the root of the projected noise power spectral density
√
ρ of LISA [199, 200]. BWDs are assumed to be individually resolvable if aα

√
T/ρα > 7.

In Figure 4.1, we show the amplitude spectral density (ASD) of the BWD carriers
for each model together with LISA’s projected detector noise amplitude spectral density,
as in [200], modified to account for the confusion noise due to unresolved BWDs derived
by [199]. Throughout this work we assume a BWD to be individually resolvable if
aα

√
T/ρα > 7, although the precise threshold does not affect the resulting sensitivity

due to the dominant contribution of loud sources (see Sec. 4.2.5).

Sensitivity projections
We estimate the sensitivity to background gravitational waves for the three models
using our method, as in Eq. (4.11). Figure 4.2 shows the amplitude A versus frequency
F of a background GW that could be detected with SNR = 2, corresponding to a
≃ 95 % detection probability. The differences between the Pessimistic and Optimistic
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models are less than one order of magnitude in A. Our method is sensitive to GWs
with frequencies as low as F ∼ 10−8 Hz. GWs of these frequencies could be present in
our Universe, e.g., as part of a (stochastic) background of GWs emitted by numerous
individual sources [201]. At a frequency of F ≃ 10−8 Hz our method would be sensitive
to amplitudes A ≳ 10−10; GWs of that amplitude at that frequency could, e.g., be
emitted by a very massive SMBBH with a chirp mass of several ∼ 1010 M⊙ at a distance
D = 10 Mpc, which is the order of magnitude of the distance to the Virgo cluster.

Figure 4.2. Sensitivity to low-frequency gravitational waves (GWs) that can be obtained by
searching for correlated modulations in a set of well-resolved GW signals from binary white
dwarfs (BWDs), as expected to be detected with LISA. For reference, we show the expected GW
amplitudes of super-massive binary black holes with chirp masses ranging from 108 to 1011 M⊙
at a fiducial distance D = 10 Mpc. We also show sensitivity curves from Pulsar Timing Arrays
(PPTA [186]; EPTA [188]; NANOGrav [202]). The detection threshold (SNR = 2) is chosen to
allow a consistent comparison to reported PTA sensitivities. In practice, we expect our method
to show a reduction in sensitivity around F ≃ 1/yr ≃ 32 nHz as seen for PTAs, where it would
be difficult to distinguish a background GW from the Doppler modulation due the annual
motion of LISA around the sun. The sensitivity of our method is limited to frequencies F ≳ 1/T
(e.g., 32 nHz in the Pessimistic model), below which the sensitivity is limited by the finite
width of the frequency bins.

We also consider the more general case of a number of carrier GW signals observed
with any GW detector. For this case we assume that all N carrier signals have a similar
frequency and are detected with the same SNR ∼ aα

√
T/ρα = const. In Figure 4.3, we

show the correlated background GW amplitude that can be detected at an SNR of one,
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as a function of the number and individual SNR of the carrier signals.

Figure 4.3. Order-of-magnitude estimate for the sensitivity to background gravitational waves
(GWs) by cross-correlating a generic set of a number of GW signals N that are each detected
with a certain SNR (‘Carrier SNR’). The sensitivity (given by the colour scale) is expressed as
the product of the background amplitude A times the typical frequency ratio of the background
and carrier signals fα/F , where the detection threshold corresponds to an SNR equal to one.
Furthermore, we indicate the sensitivity that could be obtained using a set of GW signals in the
dHz regime from binary neutron stars as carriers, which could be done using data from
DECIGO [203], and similarly the sensitivity using carrier signals detected using ET and CE
[204]. We also show the sensitivity that could be obtained using the average SNR of binary
white dwarf signals detected by LISA (in the Moderate model), as explicated in Fig. 4.2. For
these detectors we assume typical carrier frequencies of fα ≃ 0.1 Hz (DECIGO), 10 Hz (ET/CE),
and 10−3 Hz (LISA). For reference, we show contour lines that correspond to GW amplitudes
from super-massive binary black holes with chirp masses ranging from 109 to 1011 M⊙ at a
fiducial distance D = 10 Mpc, with a background frequency F = 10−8 Hz, and a carrier
frequency fα = 0.1 Hz.

We can apply this result to a proposed next-generation GW detector such as DECIGO
[203, 205, 206], which operates in the dHz regime and is expected to observe GWs from
a large number of compact binary stars. Assuming DECIGO observes GW signals from
a population of N = 105 binary neutron stars (BNSs) each observed with an SNR
of ∼ 104 [203] at a typical frequency of fα = 0.1 Hz, it would be possible to detect
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background GWs from SMBBHs with chirp masses of about ∼ 109 M⊙ (at a fiducial
distance D = 10 Mpc and frequency F = 10−8 Hz). This would make the sensitivity of
DECIGO to low-frequency GWs competitive with that of current PTAs (cf. Figure 4.2).

For reference, we also indicate in Figure 4.3 the sensitivity that could be obtained
using ∼ 105 carrier signals with an SNR ∼ 102 from compact binary coalescences, as
expected to be detected using both Einstein Telescope (ET) and Cosmic Explorer (CE)
[204]. These carrier signals would have frequencies between 10 and 103 Hz and could be
observed for a duration T ≲ 103 s, which means the minimum detectable background
GW frequency using our method is F ∼ 10−3 Hz. Coherent background GW signals
may be searched for using non-coincident carrier signals with a slight modification of the
method described in Sec. 4.2.3; a frequency-dependent phase correction (ϕcorr = 2πTdiffF )
must be applied to each carrier’s demodulated spectrum (Eq. 4.6), for a time difference
between the signals Tdiff . In case the background GW signal has a coherence time much
shorter than the total observation time for all signals (i.e., the detector’s lifetime), only
coincident carrier signals can be cross-correlated to gain sensitivity.

The sensitivity of our method is fundamentally limited to frequencies F ≳ 1/T , as
for lower frequencies the background signal cannot be distinguished from the carrier
[190]. The same low-frequency limit due to observation time exists for PTAs. The
high-frequency limit of our method is set by the Nyquist frequency of the detector output
sampling, fs/2, where for LISA fs ∼ 1 Hz [190]. PTAs have a much smaller sensitive
bandwidth due to the low observation cadence of radio telescopes (once every several
days or less).

4.2.5 Discussion
There are several effects that could in practice degrade the sensitivity that would be
obtained using our method.

We first consider stochastic effects due to which the carrier signal cannot be considered
to be monochromatic, and their impact on the analysis. Of particular concern is phase
noise imparted by the data acquisition system of the gravitational-wave detector. As
this noise would appear as modulations of the carrier signal, it would obfuscate any
background GWs that produce the same effect. Phase noise in the data acquisition
system, due to, e.g., timing jitter of the sampling clocks, would produce irreducible
correlated noise in the demodulated cross-spectra of different carriers. This effect
might only be reduced by cross-correlating data obtained with different uncorrelated
oscillators. Similarly, stochastic phase noise intrinsic to the carrier GW signal would
reduce sensitivity to background GWs. In this case the effect on the sensitivity is limited
as this noise will be uncorrelated between carriers and will be reduced in the average
cross-spectrum (Eq. 4.8). However, uncertainty of the frequency of the carrier (due to
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noise) would also lead to an uncertainty in the correct demodulation frequency, and
this would lead to a sub-optimal (i.e. not fully coherent) addition of sidebands. A
quantitative assessment of the impact on the sensitvity of our method due to these effects
could performed using e.g. the Fisher information (if all noise sources are quantified),
which we leave for future work.

Figure 4.4. Timescale f/ḟ = (5/96)(c3/GMc)5/3(πf)−8/3 at which the frequency f of a
compact binary with chirp mass Mc significantly increases due to energy loss through
gravitational-wave emission. Coloured boxes indicate the parameter regions of background
super-massive binary black holes (SMBBHs), LISA binary white dwarfs (BWDs), and DECIGO
binary neutron stars (BNSs). This shows that LISA BWDs and most of the SMBBHs would not
undergo significant frequency changes within the observation time T ≃ 1 – 10 yr, whereas most
DECIGO BNSs would. The inset shows whether the SMBBHs would exhibit significant
frequency changes within typical light travel times between a carrier source and the observer,
i.e., whether ‘local’ and ‘distant’ sidebands overlap or not. For this figure we take the maximum
GW frequency emitted by SMBBHs to correspond to the Innermost Stable Circular Orbit
f ≲ 1 kHz (M⊙/Mc) evaluated for equal-mass binaries [73], which causes the diagonal cut-off.

In addition to these effective stochastic fluctuations of the carrier signal, there could
be deterministic frequency changes of the carrier and background GWs. If the frequency
of the background GWs changes significantly over the measurement time, i.e., if the GW
background power spectral density is non-stationary, the coherent signal power would
be spread over multiple frequency bins, leading to a lower SNR in each bin. An SMBBH
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background source might undergo a significant frequency evolution as its orbital period
decays due to energy loss by GW emission. Figure 4.4 shows that this frequency change
Ḟ (‘chirp’) would not not be significant for SMBBHs (Mc ≳ 109) over the duration
of observation T ≃ 1 – 10 yr. Figure 4.4 also shows the expected frequency changes
of the LISA and DECIGO carrier signals. In particular, it shows that most DECIGO
BNSs undergo significant frequency evolution over the duration of the detected signal.
As discussed in Sec. 4.2.3, these frequency changes could be compensated for at the
demodulation stage.

Non-stationarity of the background GW PSD has another effect; the frequency change
over a time equal to the typical light travel time between the carrier source and observer
determines the frequency-space separation of the ‘local’ and ‘distant’ sideband terms,
i.e., |FL − FD| ∝ dαḞ /c. If these terms are not separated in the spectrum, i.e., when
|FL − FD| ≲ 1/T , coherent summation of the ‘local’ terms of different cross-spectra is
still possible but the ‘distant’ terms would add a small incoherent noise-like contribution
to any signal bin. The inset of Figure 4.4 shows that given typical light travel times
between BWDs and the LISA detector of dα/c ≃ 10−1 – 101 kpc/c [198], both separated
and non-separated sidebands could be observed for background SMBBH GW sources.
On the other hand, DECIGO will observe carrier signals from BNSs at much larger
distances, e.g., dα ≃ 104 kpc for a GW170817-like event [207], and therefore ‘local’ and
’distant’ sidebands produced by a background SMBBH source (Mc ≳ 109 M⊙) would be
well-separated in DECIGO data.

We note that for the sensitivity projections for LISA, the number N of individually
resolvable BWDs in our models (see Table 4.1) is larger by a factor up to ∼ 10 compared
to previous estimates from Galaxy models combined with a binary population model
[165, 196, 198, 208, 209] which reflects the large uncertainty of current predictions about
the detectable BWD population. However, the exact total number of BWDs does not
significantly affect the estimated sensitivity because the ∼ O(103) loudest BWDs signals
provide the dominant contribution to the sensitivity. This is shown in Figure 4.5; where
we plot the normalised cumulative contribution of BWDs to the total SNR. It can be
seen that several 102 to 103 BWDs are enough to achieve similar sensitivities to the
total BWD population.

4.2.6 Conclusion
In this work, we have outlined a method to use a set of carrier gravitational wave sources
to search for correlated frequency modulations caused by low-frequency background
gravitational waves. In this method demodulated cross-spectra of carrier sources are
added coherently and with optimal weights such that any modulation common to the
carrier sources is amplified with respect to random detector noise.
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Figure 4.5. Cumulative SNR of a background gravitational wave signal as a function of the n
loudest binary white dwarfs (BWDs) in the set of carrier signals. Stars at the end of each line
indicate the total number N of binaries in each model. In any model several 102 to 103 of the
loudest BWDs are enough to achieve sensitivities similar to the entire sample.

We considered the case of using our method to search for low-frequency GWs in data
from LISA, which is expected to detect GWs from a large number of Galactic binary
white dwarfs. The projected sensitivity that could thus be obtained (Figure 4.2) ranges
from strain amplitudes of A ∼ 10−10 at F ∼ 10−8 Hz to ∼ 10−7 at ∼ 10−5 Hz, and
would cover a part of the GW spectrum where no other detection methods are currently
available.

This sensitivity could potentially enable the detection of very massive SMBBHs with
a chirp mass of several 1010 M⊙ at a distance of D = 10 Mpc, if such systems exist.
Single super-massive BHs of several ∼ 1010 M⊙ would be close to theoretical mass upper
limits above which they cannot grow through luminous gas accretion [210], and so far
candidates have only been observed at distances of more than several ∼ 100 Mpc [211,
212].

Our results show that an even better sensitivity could be achieved using GW signals
from compact binary stars detectable with next-generation GW detectors that operate
in the dHz regime. In particular, using signals of binary neutron stars expected to be
detected with DECIGO would yield a sensitivity competitive with that of current pulsar
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timing arrays.
Our results show that future detectors designed to detect GW signals in a higher

frequency range could be used to indirectly probe GWs down to the frequencies given by
the inverse instrument lifetime. Conveniently, this could be achieved without modification
of the detector designs and with the same data outputs. This method could therefore
prove a valuable tool in the exploration of the gravitational-wave spectrum and the
development of gravitational-wave astronomy in general.
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4.3 Prospects for Detecting Gravitational Waves
with QUEST

Gravitational Waves (GWs) are predicted to exist at virtually all frequencies. The
QUEST experiment will be uniquely sensitive to GWs in the MHz band.

The QUEST experiment is designed to allow for long measurement times over which
data of the twin co-located interferometers can be continuously cross-correlated. The
sensitivity to transient GW signals, such as those detected from the coalescence of
compact binary objects of the kind detected so far [6], does not benefit greatly from this
approach; the gain in sensitivity compared to a single detector for a transient signal is
limited to a factor

√
2. On the other hand, for continuous gravitational wave signals,

such as the set of signals that collectively form a stochastic background, cross-correlation
will yield a sensitivity in the cross-spectrum that increases with the square root of the
measurement time. While in theory the same statistical sensitivity (up to a factor

√
2)

can obtained using a single interferometer, this is not be feasible in practice, and a
cross-correlation approach is preferred (see Sec. 1.2.1). To use this cross-correlation
method, the GW signals are required to have a coherence length greater than the
separation between the two interferometers. Given the large separation between the
LIGO/Virgo detectors, a cross-correlation approach with those detectors only works for
much more coherent signals. QUEST could thus provide a gravitational wave strain
sensitivity in the MHz band that approaches that of the LIGO/Virgo detectors in the
102 − 103 Hz range for measurement times on the order of months.

In Fig. 4.6, we show the projected cross-correlated sensitivity to gravitational waves
of the QUEST experiment compared to that of the Fermilab Holometer. The integrated
strain sensitivity of the Holometer is taken as given in [18], where the integration time
was 2.5 · 106 s. The projection of the sensitivity of the QUEST experiment assumes
an equal cross-correlation time. The sensitivity is defined by a signal-to-noise ratio
equal to one, and is computed for a GW incident perpendicular to the plane of the
interferometer arms (as is conventional). The peaks in the sensitivity curves are due
to the null response of interferometers to GW periods equal to twice the light-crossing
time 2L/c (for normal incidence) [33]. We note that the constraints set on MHz GWs
using the Fermilab Holometer in [14] erroneously assume a flat frequency response of
the instrument. To correctly show the sensitivity to isotropic GW sources, such as a
stochastic background, a sky-averaged antenna pattern needs to be used, such as done
for LISA sensitivity curves (see e.g. Fig. 4.1).

Continuous MHz gravitational waves are predicted to be emitted by various astro-
physical sources. Specifically, high-frequency GWs are likely present in an unresolved
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Figure 4.6. Projected sensitivity of the QUEST experiment (with 1.8-m arms) to
gravitational-waves assuming a shot-noise-limited instrument with 6 dB of squeezing (see
Sec. 1.5), compared to that attained with the Fermilab Holometer (with 40-m arms) for an equal
cross-correlation time of 2.5 · 106 s [18], measured in strain noise amplitude cross-spectral density.
The pattern of repeating peaks is due to the frequency response of a Michelson interferometer to
gravitational waves incident perpendicular to the plane of the interferometer arms.

stochastic background [15], as they may be produced by e.g. primordial black holes
[213, 214], cosmic strings [215], anisotropic inflation [216], and other sources in the early
universe [217]. The merging of binary primordial black holes that exist to this day may
also produce high-frequency GWs [14, 218]. In addition, it has been theorised that
superradiant instabilities of rotating black holes due to undiscovered low-mass fields (e.g.
dark matter) can be a source of monochromatic gravitational waves [219, 220], and the
experiment would be sensitive to these GWs for certain parameter ranges.

While detections are not very likely, it seems worthwhile to explore this frequency
range and develop the interferometer technology to unprecedented sensitivity [175, 221].
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5: Conclusion

Through extensive development in the campaign to detect gravitational waves, laser
interferometery has achieved a superlative sensitivity to optical path length changes; the
technique now allows measurements of length variations on the order of 10−19 m. In
this thesis, we have demonstrated how laser interferometry can be applied to measure
fundamental physical phenomena with unrivalled sensitivity, specifically quantum space-
time fluctuations, dark matter, and gravitational waves.

The QUEST experiment comprises a pair a pair of co-located laser interferometers
with 3-m arms currently being commissioned at Cardiff University, and is expected to
be sensitive to displacements ∼ 1019 m/

√
Hz in a frequency band between 1 and 250

MHz, surpassing previous experiments. To achieve this sensitivity, the experiment uses a
custom high-frequency data acquisition system that samples the output signals from the
interferometers at 500 MHz and performs real-time Fourier transforms, cross-correlation,
and averaging. We have expanded on the design, configuration, and performance of this
FPGA-based system.

No theory exists that provides a description of the phenomenon of gravity consistent
with the laws of quantum mechanics. It has been argued that space-time, inherent to
General Relativity’s geometrical description of gravity, must have quantum mechanical
properties. More specifically it has been proposed that, if gravity is geometrical, and
if gravity is quantum mechanical, geometry must be quantum mechanical, and hence
lengths must exhibit quantum fluctuations. Partial theories of quantum gravity predict
that if the covariant entropy bound holds for causal diamonds (in concordance with
the holographic principle), and if there are quantum fluctuations associated with the
bounding horizon of the causal diamond, length fluctuations of the order of the square
root of the Planck length occur in laser interferometric measurements. If true, the
QUEST experiment could measure these fluctuations in the length of its arms after
∼ 1 year of measurement time and provide the first observation of a quantum gravity
phenomenon.

Dark matter is a concept that was conceived to reconcile astronomical observations
with General Relativity. A great number of different theoretical descriptions of dark
matter exist, and despite extensive efforts to detect dark matter, its nature remains
unclear. A class of theories posits that dark matter is made up of a low-mass (≪ 1 eV)
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scalar field that interacts weakly with electrons and photons. This interaction would
lead to oscillations of the size and index of refraction of solids. The optics in laser
interferometers would thus exhibit such oscillations, and this would produce a signal
in the output at the Compton frequency of the dark matter. We have demonstrated a
novel optimised analysis method to search for such signals in data from the GEO600
gravitational-wave detector. Having ruled out the presence of scalar field dark matter
signals at frequencies within the sensitive band of GEO600, we set upper limits on the
strength of the coupling of dark matter to the electron and the photon for possible
dark matter masses between 10−13 and 10−11 eV. These constraints improve on previous
constraints set by purpose-built dark matter detectors by six orders of magnitude. We
also performed a search for dark matter using cross-correlated measurements from the
twin interferometers of the Fermilab Holometer, and set new bounds on the interaction
strength for possible dark matter masses between 10−12 and 10−7 eV.

Laser interferometers are the only proven means of detecting gravitational waves
to date, but the frequency range in which they are sensitive is intrinsically limited.
While interferometers with shorter arms can offer sensitivity at very high frequencies
(e.g. QUEST will be sensitive at frequencies up to 250 MHz), current and planned laser
interferometers, including the space-based LISA detector, have very limited sensitivity at
low frequencies (≲ 10−5 Hz) due to an amalgam of instrumental and environmental noise.
We proposed a new method to indirectly detect low-frequency gravitational waves by
looking for the modulations they impart on well-resolved higher frequency gravitational
wave signals. We consider that a low-frequency background gravitational wave will
impart a periodic gravitational red- and blueshift on a higher-frequency gravitational
wave signal; this effectively produces gravitational waves with an amplitude linear in the
amplitudes of both the original waves at frequencies equal to the sum and difference of
the original frequencies (i.e., frequency modulation sidebands are created). We showed
that by cross-correlating the gravitational-wave signals from the large number of binary
white dwarfs expected to be observed with LISA, this method would enable the detection
of background gravitational waves with a strain amplitude of, e.g., A ∼ 10−10 at a
frequency F ∼ 10−8 Hz, which may be emitted by a binary system of supermassible
black holes.
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158. Marchiò, M., Leonardi, M., Bazzan, M. & Flaminio, R. “3D characterization of low optical
absorption structures in large crystalline sapphire substrates for gravitational wave detectors”.
Sci. Rep. 11, 2654 (2021).

159. Aiello, L. et al. “Thermal compensation system in advanced and third generation gravitational
wave interferometric detectors”. Journal of Physics: Conference Series 1226, 012019 (May 2019).

160. Tretiak, O. et al. “Improved Bounds on Ultralight Scalar Dark Matter in the Radio-Frequency
Range”. Phys. Rev. Lett. 129, 031301 (3 July 2022).

161. Anastassopoulos, V. et al. “New CAST limit on the axion-photon interaction”. Nature Physics
13, 584–590 (2017).

162. Bähre, R. et al. “Any light particle search II — Technical Design Report”. Journal of Instrumen-
tation 8, T09001 (Sept. 2013).

163. Abbott, R. et al. “Population of Merging Compact Binaries Inferred Using Gravitational Waves
through GWTC-3”. Physical Review X 13, 011048 (Mar. 29, 2023).

164. Owen, B. J. et al. “Gravitational waves from hot young rapidly rotating neutron stars”. Physical
Review D 58, 084020 (Oct. 1998).

165. Nelemans, G., Yungelson, L. R. & Portegies Zwart, S. F. “The gravitational wave signal from the
Galactic disk population of binaries containing two compact objects”. Astronomy & Astrophysics
375, 890–898 (Sept. 2001).

131

http://dx.doi.org/10.1088/1361-6382/aba669
http://dx.doi.org/10.1007/BF01493898
http://dx.doi.org/10.1038/190025a0
http://dx.doi.org/10.1016/0370-2693(79)90797-4
http://dx.doi.org/10.1016/0370-2693(79)90797-4
http://dx.doi.org/10.1140/epjc/s10052-016-4139-0
http://dx.doi.org/10.1140/epjc/s10052-016-4139-0
http://dx.doi.org/10.1016/j.physrep.2020.06.001
http://dx.doi.org/10.1016/j.physrep.2020.06.001
http://dx.doi.org/10.1007/s00340-018-6891-3
http://dx.doi.org/10.1007/s00340-018-6891-3
http://dx.doi.org/10.1088/1361-6382/ac92b7
http://dx.doi.org/10.1088/1361-6382/ac92b7
http://dx.doi.org/10.1088/1361-6382/abbc8c
http://dx.doi.org/10.3390/galaxies10010036
http://dx.doi.org/10.3390/galaxies10010036
http://dx.doi.org/10.1038/s41598-020-80313-1
http://dx.doi.org/10.1038/s41598-020-80313-1
http://dx.doi.org/10.1088/1742-6596/1226/1/012019
http://dx.doi.org/10.1088/1742-6596/1226/1/012019
http://dx.doi.org/10.1103/PhysRevLett.129.031301
http://dx.doi.org/10.1103/PhysRevLett.129.031301
http://dx.doi.org/10.1038/nphys4109
http://dx.doi.org/10.1088/1748-0221/8/09/T09001
http://dx.doi.org/10.1103/PhysRevX.13.011048
http://dx.doi.org/10.1103/PhysRevX.13.011048
http://dx.doi.org/10.1103/PhysRevD.58.084020
http://dx.doi.org/10.1051/0004-6361:20010683
http://dx.doi.org/10.1051/0004-6361:20010683


166. Klein, A. et al. “Science with the space-based interferometer eLISA: Supermassive black hole
binaries”. Physical Review D 93, 024003 (Jan. 2016).

167. Mandic, V. & Buonanno, A. “Accessibility of the pre-big-bang models to LIGO”. Physical Review
D 73, 063008 (Mar. 2006).

168. Carr, B., Kühnel, F. & Sandstad, M. “Primordial black holes as dark matter”. Physical Review D
94, 083504 (Oct. 2016).

169. Brito, R. et al. “Gravitational wave searches for ultralight bosons with LIGO and LISA”. Physical
Review D 96. arXiv: 1706.06311. issn: 2470-0010, 2470-0029 (Sept. 2017).

170. P. Amaro-Seoane et al. “Laser Interferometer Space Antenna”. arXiv:1702.00786. Feb. 2017.

171. A. Buikema et al. “Sensitivity and performance of the Advanced LIGO detectors in the third
observing run”. Physical Review D 102, 062003. issn: 2470-0010, 2470-0029 (Sept. 2020).

172. Gertsenshtein, M. E. “Wave resonance of light and gravitional waves”. Sov Phys JETP 14, 84–85
(1962).

173. Ejlli, A., Ejlli, D., Cruise, A. M., Pisano, G. & Grote, H. “Upper limits on the amplitude of
ultra-high-frequency gravitational waves from graviton to photon conversion”. The European
Physical Journal C 79, 1032. issn: 1434-6052 (Dec. 2019).

174. Goryachev, M. & Tobar, M. E. “Gravitational wave detection with high frequency phonon trapping
acoustic cavities”. Physical Review D 90, 102005 (Nov. 2014).

175. Aggarwal, N. et al. “Challenges and opportunities of gravitational-wave searches at MHz to GHz
frequencies”. Living Reviews in Relativity 24, 4. issn: 2367-3613, 1433-8351 (Dec. 2021).

176. Detweiler, S. “Pulsar timing measurements and the search for gravitational waves”. The Astro-
physical Journal 234, 1100–1104 (Dec. 1979).

177. Hobbs, G. et al. “TEMPO2: a new pulsar timing package - III. Gravitational wave simulation”.
Monthly Notices of the Royal Astronomical Society 394, 1945–1955 (Apr. 2009).

178. Sazhin, M. V. “Opportunities for detecting ultralong gravitational waves”. Sov. Astron. 22, 36–38
(Feb. 1978).

179. Mashhoon, B. “On the contribution of a stochastic background of gravitationnal radiation to the
timing noise of pulsars.” Monthly Notices of the Royal Astronomical Society 199, 659–666 (May
1982).

180. Bertotti, B., Carr, B. J. & Rees, M. J. “Limits from the timing of pulsars on the cosmic gravitational
wave background.” Monthly Notices of the Royal Astronomical Society 203, 945–954 (June 1983).

181. Hellings, R. W. & Downs, G. S. “Upper limits on the isotropic gravitational radiation background
from pulsar timing analysis.” The Astrophysical Journal Letters 265, L39–L42 (Feb. 1983).

182. Foster, R. S. & Backer, D. C. “Constructing a Pulsar Timing Array”. The Astrophysical Journal
361, 300 (Sept. 1990).

183. Kaspi, V. M., Taylor, J. H. & Ryba, M. F. “High-Precision Timing of Millisecond Pulsars. III.
Long-Term Monitoring of PSRs B1855+09 and B1937+21”. The Astrophysical Journal 428, 713
(June 1994).

184. Jenet, F. A., Hobbs, G. B., Lee, K. J. & Manchester, R. N. “Detecting the Stochastic Gravitational
Wave Background Using Pulsar Timing”. The Astrophysical Journal Letters 625, L123–L126
(June 2005).

132

http://dx.doi.org/10.1103/PhysRevD.93.024003
http://dx.doi.org/10.1103/PhysRevD.93.024003
http://dx.doi.org/10.1103/PhysRevD.73.063008
http://dx.doi.org/10.1103/PhysRevD.94.083504
http://dx.doi.org/10.1103/PhysRevD.96.064050
http://dx.doi.org/10.1103/PhysRevD.102.062003
http://dx.doi.org/10.1103/PhysRevD.102.062003
http://dx.doi.org/10.1140/epjc/s10052-019-7542-5
http://dx.doi.org/10.1140/epjc/s10052-019-7542-5
http://dx.doi.org/10.1103/PhysRevD.90.102005
http://dx.doi.org/10.1103/PhysRevD.90.102005
http://dx.doi.org/10.1007/s41114-021-00032-5
http://dx.doi.org/10.1007/s41114-021-00032-5
http://dx.doi.org/10.1086/157593
http://dx.doi.org/10.1111/j.1365-2966.2009.14391.x
http://dx.doi.org/10.1093/mnras/199.3.659
http://dx.doi.org/10.1093/mnras/199.3.659
http://dx.doi.org/10.1093/mnras/203.4.945
http://dx.doi.org/10.1093/mnras/203.4.945
http://dx.doi.org/10.1086/183954
http://dx.doi.org/10.1086/183954
http://dx.doi.org/10.1086/169195
http://dx.doi.org/10.1086/174280
http://dx.doi.org/10.1086/174280
http://dx.doi.org/10.1086/431220
http://dx.doi.org/10.1086/431220


185. Jenet, F. A. et al. “Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Back-
ground from Pulsar Timing Observations: Current Limits and Future Prospects”. The Astrophysical
Journal 653, 1571–1576 (Dec. 2006).

186. Yardley, D. R. B. et al. “The sensitivity of the Parkes Pulsar Timing Array to individual sources
of gravitational waves”. Monthly Notices of the Royal Astronomical Society 407, 669–680 (Sept.
2010).

187. J. P. W. Verbiest et al. “The International Pulsar Timing Array: First data release”. Monthly
Notices of the Royal Astronomical Society 458, 1267–1288 (May 2016).

188. S. Babak et al. “European Pulsar Timing Array limits on continuous gravitational waves from
individual supermassive black hole binaries”. Monthly Notices of the Royal Astronomical Society
455, 1665–1679 (Jan. 2016).

189. Z. Arzoumanian et al. “The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic
Gravitational-wave Background”. The Astrophysical Journal Letters 905, L34 (Dec. 2020).

190. Bustamante-Rosell, M. J., Meyers, J., Pearson, N., Trendafilova, C. & Zimmerman, A. “Gravita-
tional wave timing array”. Physical Review D 105, 044005 (Feb. 2022).

191. S. Kawamura et al. “The Japanese space gravitational wave antenna: DECIGO”. Classical and
Quantum Gravity 28, 094011 (May 2011).

192. Maggiore, M. “Gravitational Waves: Volume 2: Astrophysics and Cosmology”. isbn: 0198570899
(Oxford, 2018).

193. Romano, J. D., Hazboun, J. S., Siemens, X. & Archibald, A. M. “Common-spectrum process
versus cross-correlation for gravitational-wave searches using pulsar timing arrays”. Phys. Rev. D
103, 063027 (6 Mar. 2021).

194. Hils, D., Bender, P. L. & Webbink, R. F. “Gravitational Radiation from the Galaxy”. The
Astrophysical Journal 360, 75 (Sept. 1990).

195. Ruiter, A. J., Belczynski, K., Benacquista, M. & Holley-Bockelmann, K. “The Contribution of
Halo White Dwarf Binaries to the Laser Interferometer Space Antenna Signal”. The Astrophysical
Journal 693, 383–387 (Mar. 2009).

196. Ruiter, A. J., Belczynski, K., Benacquista, M., Larson, S. L. & Williams, G. “The LISA Gravi-
tational Wave Foreground: A Study of Double White Dwarfs”. The Astrophysical Journal 717,
1006–1021 (July 2010).

197. Toonen, S., Nelemans, G. & Portegies Zwart, S. “Supernova Type Ia progenitors from merging
double white dwarfs. Using a new population synthesis model”. Astronomy & Astrophysics 546,
A70 (Oct. 2012).

198. Lamberts, A. et al. “Predicting the LISA white dwarf binary population in the Milky Way with
cosmological simulations”. Monthly Notices of the Royal Astronomical Society 490, 5888–5903
(Dec. 2019).

199. Korol, V., Hallakoun, N., Toonen, S. & Karnesis, N. “Observationally driven Galactic double white
dwarf population for LISA”. Monthly Notices of the Royal Astronomical Society 511, 5936–5947
(Apr. 2022).

200. Robson, T., Cornish, N. J. & Liu, C. “The construction and use of LISA sensitivity curves”.
Classical and Quantum Gravity 36, 105011 (May 2019).

133

http://dx.doi.org/10.1086/508702
http://dx.doi.org/10.1086/508702
http://dx.doi.org/10.1111/j.1365-2966.2010.16949.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16949.x
http://dx.doi.org/10.1093/mnras/stw347
http://dx.doi.org/10.1093/mnras/stv2092
http://dx.doi.org/10.1093/mnras/stv2092
http://dx.doi.org/10.3847/2041-8213/abd401
http://dx.doi.org/10.3847/2041-8213/abd401
http://dx.doi.org/10.1103/PhysRevD.105.044005
http://dx.doi.org/10.1103/PhysRevD.105.044005
http://dx.doi.org/10.1088/0264-9381/28/9/094011
http://dx.doi.org/10.1103/PhysRevD.103.063027
http://dx.doi.org/10.1103/PhysRevD.103.063027
http://dx.doi.org/10.1086/169098
http://dx.doi.org/10.1088/0004-637X/693/1/383
http://dx.doi.org/10.1088/0004-637X/693/1/383
http://dx.doi.org/10.1088/0004-637X/717/2/1006
http://dx.doi.org/10.1088/0004-637X/717/2/1006
http://dx.doi.org/10.1051/0004-6361/201218966
http://dx.doi.org/10.1051/0004-6361/201218966
http://dx.doi.org/10.1093/mnras/stz2834
http://dx.doi.org/10.1093/mnras/stz2834
http://dx.doi.org/10.1093/mnras/stac415
http://dx.doi.org/10.1093/mnras/stac415
http://dx.doi.org/10.1088/1361-6382/ab1101


201. Sesana, A., Vecchio, A. & Colacino, C. N. “The stochastic gravitational-wave background from
massive black hole binary systems: implications for observations with Pulsar Timing Arrays”.
Monthly Notices of the Royal Astronomical Society 390, 192–209 (Oct. 2008).

202. K. Aggarwal et al. “The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from
Individual Supermassive Black Hole Binaries”. The Astrophysical Journal 880, 116 (Aug. 2019).

203. Seto, N., Kawamura, S. & Nakamura, T. “Possibility of Direct Measurement of the Acceleration
of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space”.
PRL 87, 221103 (Nov. 2001).

204. Maggiore, M. et al. “Science case for the Einstein telescope”. Journal of Cosmology and Astropar-
ticle Physics 2020, 050 (Mar. 2020).

205. Yagi, K. & Seto, N. “Detector configuration of DECIGO/BBO and identification of cosmological
neutron-star binaries”. Physical Review D 83, 044011 (Feb. 2011).

206. Isoyama, S., Nakano, H. & Nakamura, T. “Multiband gravitational-wave astronomy: Observing
binary inspirals with a decihertz detector, B-DECIGO”. Progress of Theoretical and Experimental
Physics 2018, 073E01 (July 2018).

207. Abbott, B. P. et al. “Multi-messenger Observations of a Binary Neutron Star Merger”. The
Astrophysical Journal Letters 848, L12 (Oct. 2017).

208. Nelemans, G., Portegies Zwart, S. F., Verbunt, F. & Yungelson, L. R. “Population synthesis for
double white dwarfs. II. Semi-detached systems: AM CVn stars”. Astronomy & Astrophysics 368,
939–949 (Mar. 2001).

209. Nissanke, S., Vallisneri, M., Nelemans, G. & Prince, T. A. “Gravitational-wave Emission from
Compact Galactic Binaries”. The Astrophysical Journal 758, 131 (Oct. 2012).

210. King, A. “How big can a black hole grow?” Monthly Notices of the Royal Astronomical Society
456, L109–L112 (Feb. 2016).

211. Dullo, B. T., Graham, A. W. & Knapen, J. H. “A remarkably large depleted core in the Abell
2029 BCG IC 1101”. Monthly Notices of the Royal Astronomical Society 471, 2321–2333 (Oct.
2017).

212. Dullo, B. T. “The Most Massive Galaxies with Large Depleted Cores: Structural Parameter
Relations and Black Hole Masses”. The Astrophysical Journal 886, 80 (Dec. 2019).

213. Wang, S., Wang, Y.-F., Huang, Q.-G. & Li, T. G. F. “Constraints on the Primordial Black Hole
Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-
Wave Background”. Physical Review Letters 120. arXiv: 1610.08725, 191102. issn: 0031-9007,
1079-7114 (May 2018).

214. Carr, B. J. & Hawking, S. W. “Black holes in the early Universe”. Monthly Notices of the Royal
Astronomical Society 168, 399–416. issn: 0035-8711 (Aug. 1974).

215. Siemens, X., Mandic, V. & Creighton, J. “Gravitational-Wave Stochastic Background from Cosmic
Strings”. Physical Review Letters 98, 111101 (Mar. 2007).

216. Ito, A. & Soda, J. “MHz Gravitational Waves from Short-term Anisotropic Inflation”. Journal of
Cosmology and Astroparticle Physics 2016. arXiv: 1603.00602, 035–035. issn: 1475-7516 (Apr.
2016).

134

http://dx.doi.org/10.1111/j.1365-2966.2008.13682.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13682.x
http://dx.doi.org/10.3847/1538-4357/ab2236
http://dx.doi.org/10.3847/1538-4357/ab2236
http://dx.doi.org/10.1103/PhysRevLett.87.221103
http://dx.doi.org/10.1103/PhysRevLett.87.221103
http://dx.doi.org/10.1088/1475-7516/2020/03/050
http://dx.doi.org/10.1103/PhysRevD.83.044011
http://dx.doi.org/10.1103/PhysRevD.83.044011
http://dx.doi.org/10.1093/ptep/pty078
http://dx.doi.org/10.1093/ptep/pty078
http://dx.doi.org/10.3847/2041-8213/aa91c9
http://dx.doi.org/10.1051/0004-6361:20010049
http://dx.doi.org/10.1051/0004-6361:20010049
http://dx.doi.org/10.1088/0004-637X/758/2/131
http://dx.doi.org/10.1088/0004-637X/758/2/131
http://dx.doi.org/10.1093/mnrasl/slv186
http://dx.doi.org/10.1093/mnras/stx1635
http://dx.doi.org/10.1093/mnras/stx1635
http://dx.doi.org/10.3847/1538-4357/ab4d4f
http://dx.doi.org/10.3847/1538-4357/ab4d4f
http://dx.doi.org/10.1103/PhysRevLett.120.191102
http://dx.doi.org/10.1103/PhysRevLett.120.191102
http://dx.doi.org/10.1103/PhysRevLett.120.191102
http://dx.doi.org/10.1093/mnras/168.2.399
http://dx.doi.org/10.1103/PhysRevLett.98.111101
http://dx.doi.org/10.1103/PhysRevLett.98.111101
http://dx.doi.org/10.1088/1475-7516/2016/04/035


217. Bisnovatyi-Kogan, G. S. & Rudenko, V. N. “Very high frequency gravitational wave background
in the universe”. Classical and Quantum Gravity 21, 3347–3359. issn: 0264-9381, 1361-6382 (July
2004).
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