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Heme oxygenase 1 is a key enzyme in the management of heme in humans. A GT(n) repeat length in the heme
oxygenase 1 gene (HMOX1) has been widely associated with a variety of phenotypes, including susceptibility
to and outcomes in diabetes, cancer, infections, and neonatal jaundice. However, studies have generally been
small and results inconsistent. In this study, we imputed the GT(n) repeat length in participants from 2 UK cohort
studies (the UK Biobank study (n = 463,005; recruited in 2006–2010) and the Avon Longitudinal Study of Parents
and Children (ALSPAC; n = 937; recruited in 1990–1991)), with the reliability of imputation tested in other cohorts
(1000 Genomes Project, Human Genome Diversity Project, and Personal Genome Project UK). Subsequently,
we measured the relationship between repeat length and previously identified associations (diabetes, chronic
obstructive pulmonary disease, pneumonia, and infection-related mortality in the UK Biobank; neonatal jaundice
in ALSPAC) and performed a phenomewide association study in the UK Biobank. Despite high-quality imputation
(correlation between true repeat length and imputed repeat length > 0.9 in test cohorts), clinical associations
were not identified in either the phenomewide association study or specific association studies. These findings
were robust to definitions of repeat length and sensitivity analyses. Despite multiple smaller studies identifying
associations across a variety of clinical settings, we could not replicate or identify any relevant phenotypic
associations with the HMOX1 GT(n) repeat.

ALSPAC; Avon Longitudinal Study of Parents and Children; heme oxygenase 1; HMOX1; phenomewide
association studies; UK Biobank

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; COPD, chronic obstructive pulmonary
disease; eMERGE, Electronic Medical Records and Genomics; HGDP, Human Genome Diversity Project; HMOX1, heme
oxygenase 1 gene; MAF, minor allele frequency; PheWAS, phenomewide association study; PGP, Personal Genome Project
UK; SNP, single-nucleotide polymorphism; STR, short tandem repeat; WGS, whole-genome sequencing..

The heme oxygenase 1 gene (HMOX1), which encodes
for the protein heme oxygenase 1, is a critical component of
life. Heme oxygenase 1 is a key enzyme in the heme break-
down pathway, and it catalyzes the breakdown of heme,
an iron-containing porphyrin ring, into biliverdin, ferrous
iron (Fe2+), and carbon monoxide. Because heme is such
a critical component of multiple biological systems, with
a particularly key role in maintaining cellular stress alter-
ations, it is suspected that this gene’s function has significant
clinical manifestations (1).

In support of this hypothesis, HMOX1 missense and non-
sense mutations in humans are remarkably rare, with fewer

than 10 cases reported across the literature, all of which had
dramatic phenotypic associations with an increased inflam-
matory state, liver dysfunction, and marked iron dysregula-
tion (2). A wide range of laboratory and animal work has
identified the importance of HMOX1, with animal studies
suggesting that up- and/or down-regulation of this gene has
significant impacts on conditions as diverse as malaria (3,
4), sepsis (5), and diabetes (6).

More than 30 years ago, researchers identified a GT(n)
repeat in a putative regulatory noncoding region of HMOX1
that varies in length from about 15 copies to 40 copies.
Multiple studies have identified clinical manifestations
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associated with the length of this repeat (last reviewed in
2004 by Exner et al. (1)). Although not all studies have
identified robust associations, meta-analyses have identified
associations in a variety of conditions, such as diabetes (7),
chronic obstructive pulmonary disease (COPD) (8), and
neonatal jaundice (9). With regard to cancer, 2 meta-analyses
suggested a potential role for the HMOX1 GT(n) repeat in
cancer susceptibility among Asian populations (10, 11).

Further laboratory work has evaluated the functionality
of this repeat, with most but not all studies finding that
this repeat alters the inducible expression of HMOX1 (12–
18). Therefore, in this study, we aimed to identify pheno-
typic associations with the HMOX1 repeat in 2 UK cohort
studies—the UK Biobank study and the Avon Longitudi-
nal Study of Parents and Children (ALSPAC)—by using a
recently developed imputation reference panel including this
repeat (19).

In particular, we performed 3 specific analyses: First,
we searched for any phenotypic associations across the UK
Biobank in a phenomewide association analysis (PheWAS);
then we focused on 2 previously reported associations: infec-
tions and neonatal jaundice.

METHODS

UK Biobank access, genetic data, and quality control

The UK Biobank is a population-based health research
resource consisting of approximately 500,000 people aged
38–73 years who were recruited from across the United
Kingdom between 2006 and 2010 (20). The project is par-
ticularly focused on identifying determinants of human dis-
eases in middle-aged and older individuals. Participants
provided a range of information (such as demographic char-
acteristics, health status, lifestyle measures, cognitive test-
ing, personality self-reports, and physical and mental health
measures) via questionnaires and interviews; anthropomet-
ric measurements, blood pressure readings, and samples
of blood, urine, and saliva were also taken (data available
at www.ukbiobank.ac.uk). The study design, participants,
and quality control methods have been described in detail
previously (20, 21).

The UK Biobank study received ethical approval from the
North West Multi-Centre Research Ethics Committee.

Genotyping and imputation The full data release contains
the cohort of participants with successfully genotyped
samples (n = 488,377). A total of 49,979 individuals were
genotyped using the Applied Biosystems UK BiLEVE
Axiom Array (Thermo Fisher Scientific, Inc., Waltham,
Massachusetts), and 438,398 were genotyped using the
UK Biobank Axiom Array (Thermo Fisher Scientific).
Preimputation quality control, phasing, and imputation
are described elsewhere (20). In brief, prior to phasing,
multiallelic single-nucleotide polymorphisms (SNPs) or
those with minor allele frequency (MAF) ≤ 1% were
removed. Phasing of genotype data was performed using
a modified version of the SHAPEIT2 algorithm (22).
Genotype imputation to a reference set combining the
UK10K haplotype and Haplotype Reference Consortium
reference panels (23) was performed using IMPUTE2

algorithms (24). The analyses presented here were restricted
to autosomal variants using graded filtering with varying
imputation quality for different allele frequency ranges.
Therefore, rarer genetic variants were required to have a
higher imputation quality information (INFO) score (INFO
> 0.3 for MAF > 3%, INFO > 0.6 for MAF 1%–3%, INFO
> 0.8 for MAF 0.5%–1%, and INFO > 0.9 for MAF 0.1%–
0.5%), with MAF and INFO scores having been recalculated
on an in-house–derived “European” subset (21).

Data quality control Individuals with mismatched sex data
(derived by comparing genetic sex with reported sex) or sex
chromosome aneuploidy were excluded from the analysis
(n = 814). Individuals who were outliers in heterozygosity
and missing rates (n = 968) were also excluded.

We restricted the sample to persons of “European” ances-
try as defined by an in-house k-means cluster analysis per-
formed using the first 4 principal components provided by
the UK Biobank in the statistical software environment R (R
Foundation for Statistical Computing, Vienna, Austria). The
current study included the largest cluster from this analysis
(n = 464,708).

Avon Longitudinal Study of Parents and Children

ALSPAC is a longitudinal birth cohort study in which
14,541 pregnant women resident in Avon, United Kingdom,
with expected dates of delivery between April 1, 1991, and
December 3, 1992, were recruited. Of these initial preg-
nancies, there were a total of 14,676 fetuses, resulting in
14,062 live births and 13,988 children who were alive at
1 year of age. The children and their mothers have been
followed up through postal questionnaires and at clinics (25,
26). The study’s website contains details on all the data that
are available through a fully searchable data dictionary and
variable search tool (27). Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Committee and
local research ethics committees.

ALSPAC children were genotyped using the Illumina
HumanHap550 QuadChip (Illumina, Inc., San Diego,
California) genotyping platform, and genotypes were called
with Illumina GenomeStudio (Illumina, Inc.). Imputation
was performed using the Michigan Imputation Server (Uni-
versity of Michigan, Ann Arbor, Michigan) with phasing via
Shape-IT (28). SNP-level quality control removed variants
with more than 5% missingness or P values for Hardy-
Weinberg equilibrium smaller than 1 × 10−6. Participant-
level quality control removed variants with uncertain X
chromosome heterozygosity, extreme autosomal heterozy-
gosity, or more than 5% overall missingness. Next, mul-
tidimensional scaling of genomewide data was performed
including reference data from HapMap populations (29).
Samples which clustered outside the CEU population
(Northern Europeans from Utah) were removed. We limited
SNPs to those with an INFO score greater than 0.8.

Other cohorts

For testing the robustness of the imputation, whole-genome
and SNP array data were downloaded from 3 additional
data sets: the Human Genome Diversity Project (HGDP)
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(30), the Personal Genome Project UK (PGP) (31), and the
1000 Genomes Project (32). All of these data sets are freely
available without prior ethical approval.

Imputation approach

Although we briefly describe the imputation approach
here, a fuller description of the imputation approach and
metrics is provided in the Web Appendix (available at https://
doi.org/10.1093/aje/kwad154).

An imputation reference panel for short tandem repeats
has previously been developed for use with SNP array data
(19). This was developed using linked SNP array/whole-
genome sequencing (WGS) data from 2 cohorts (Simons
Simplex Collection and 1000 Genomes). The HIPStR tool
(33) was used to call repeat length from WGS data, and
then a reference panel was developed for use in downstream
imputation.

For this study, genomic data for a 2-Mb region on either
side of HMOX1 were extracted from the above data sets and
lifted over to the GRCh37 reference, if not on it already.
Alleles were conformed using the conform-gt program (34)
to ensure they were the same as the reference genome,
and then Beagle 5.2 (35) was used with standard settings
with a window of 2 Mb to impute the HMOX1 short tan-
dem repeat (STR), using the previously developed reference
panel (19). Only high-quality SNPs (INFO > 0.8) were
included.

Allelic calling and genotyping Because the repeat length
varies in a linear fashion, the main analysis was conducted
using the sum of both allelic lengths as a linear predictor
of phenotypes. The length was calculated from the number
of full GT repeats. We chose to include the repeat as a
linear approach (as opposed to looking at each individual’s
haplotype) because 1) prior associations at this repeat have
always been linear and 2) nearly all previously published
STR associations have been linear (1, 36).

For sensitivity analyses, various allelic definitions were
tested, including an allelic model (where each allele was
analyzed separately) and a model using repeat length cut-
offs to define alleles. There is significant variation in the
literature around what defines an appropriate cutoff, with
both binary (short vs. long) and ternary (short, medium, and
long) models, with a wide variety of cutoffs used across prior
studies. Given this variation, and with no empirical evidence
to support previous definitions, we chose to simply quartile
the alleles and include them in the model (37).

Imputation quality control We tested the imputation quality
in 4 discrete data sets (UK Biobank, PGP, HGDP, and 1000
Genomes) with combined high-quality (>20× coverage)
WGS data and SNP array data available for the same sample.
For the WGS data, the locus was called directly from the
binary alignment map (BAM) files using HIPStR version
0.6.2 with standard settings (38). Subsequently, standard
filtration to remove low-quality calls was performed as per
HIPStR standard settings, and only samples with a posterior
probability of the correct genotype greater than 0.9 were
kept. Full details on the imputation quality control and

testing are given in the Web Appendix (Web Tables 1–3, Web
Figures 1–4).

Quality control was not performed on the imputed data,
since initial experimentation identification found that the
posterior probability of genotype calling was not predictive
of accuracy (Web Appendix).

The quality of imputation using the haplotype reference
panel has previously been reported to be good at this locus,
particularly in European populations (39). Three imputation
metrics were calculated: the concordance (the fraction that
exactly matched the allele length across both data sets);
Pearson’s correlation coefficient (R), calculated on the sum
across both alleles; and the fraction concordant to within 2
repeats, since most previous analyses have suggested a linear
relationship between STR length and outcomes (36). As a
final test of imputation, we imputed the AC promoter repeat
in the protein requiring fifty three 1 homolog gene (RFT1) in
the UK Biobank. This repeat has been previously associated
with height in the Electronic Medical Records and Genomics
(eMERGE) cohort (36).

UK Biobank PheWAS

Using the above genotypes for HMOX1, we performed
a PheWAS across the UK Biobank participants for a wide
variety of traits using established software (PHESANT)
(40). Traits analyzed included algorithmically defined health
outcomes extracted from electronic health record data (e.g.,
diagnoses), anthropometric traits, biological sample traits
(e.g., protein levels), health questionnaires, and mortality
data. In total, 7,901 traits were included. Full details on
the pipeline are available in the original publication (40),
but briefly, for linear traits, linear regression was used; for
binary traits, logistic regression was performed; for ordered
categorical traits, ordinal logistic regression was used; and
for unordered traits, multinomial regression was used. The
analysis was carried out using age, sex, genetic chip, and the
first 10 principal components as covariates. A complete-case
analysis was performed for each trait (i.e., no imputation).

As a sensitivity analysis, the analysis was conducted
without any covariates and using repeat length split into
equal groups to explore any nonlinear effects. Previous
studies have used a variety of cutoffs, with no clear evidence
to support any particular allelic definition. Therefore, we
simply quartiled the exposure and reran the analysis.

UK Biobank infection-specific analyses

Because HMOX1 is a stress response gene, it is plausible
that any genetic variation has an impact only in the presence
of cellular stress; so, in a cohort type analysis, no signal
of variation would be identified, despite a signal during
cellular stress. In particular, infection has been suggested as
a particular cellular stressor, and severe infection is known
to highly up-regulate HMOX1, while knockout models of
HMOX1 in animals show markedly worse outcomes with
infection.

Therefore, we extracted cases of infection from the UK
Biobank and used Cox regression to estimate hazards for
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Table 1. Overall Performance of a Recently Developed Imputation Reference Panel Including the HMOX1 GT(n)
Repeat Across 4 Test Data Setsa

Study Pearson’s R
Concordance

No. of Cases

Exact Within 2 Repeats

Overall 0.907 0.455 0.837 2,916

1000 Genomes Project 0.914 0.460 0.835 2,133

Human Genetic Diversity Project 0.876 0.426 0.848 656

Personal Genome Project 0.900 0.469 0.771 83

UK Biobank 0.936 0.590 0.932 44

a Data were obtained from the 1000 Genomes Project, the Human Genetic Diversity Project, the Personal
Genome Project, and the UK Biobank.

28-day mortality, with HMOX1 allele length as a predictor.
Definitions of infection were developed by an infectious
disease specialist (F.H.) using International Classification of
Diseases, Tenth Revision, coding, and cases were extracted
from the UK Biobank–linked electronic health record data
(41). Codes for each infection are available in Web Table 4.
Cox regression was performed using the “survival” package
in R (42), both unadjusted and adjusted for age and sex.

Because patients often had multiple episodes of infection,
only the latest infection was taken for this analysis, to avoid
immortal time bias.

ALSPAC neonatal jaundice

Because HMOX1 promoter variation has been shown
to influence rates of neonatal hyperbilirubinemia, data
on bilirubin levels around birth and the date of sampling
were extracted for 937 ALSPAC participants. Definitions
of neonatal jaundice vary between governing bodies, with
both the time since birth (in hours) and the level of the
bilirubin result influencing case definitions. For ALSPAC
participants, we had the highest recorded bilirubin result,
and the day after birth on which this result had occurred.

Therefore, we took 2 approaches. First, we used the
National Institute for Health and Care Excellence nomogram
for bilirubin levels to generate cases of neonatal hyperbiliru-
binemia, and then we performed a case-control analysis
with the HMOX1 promoter genotype as a predictor of case
status (43). Because numbers of neonatal jaundice cases
were expected to be low in this birth cohort, we subsequently
developed a z score for each participant for the given day
on which the sample was taken, so each participant with a
result had a z score for the bilirubin result for a given day.
The repeat length of the HMOX1’s STR was then tested as a
predictor of z score, in a linear fashion.

RESULTS

Imputation quality

The quality of the imputation was tested across 4 discrete
data sets (1000 Genomes, HGDP, PGP, and UK Biobank;

Table 1, Web Figure 5), all of which had both SNP array
data and high-quality WGS data. In particular, we compared
Pearson’s R values for total repeat length across both alleles
and the exact concordance (both alleles exactly correct).

Overall, the correlation between the summed lengths of
both alleles was excellent, with a Pearson’s R of 0.91 in the
whole cohort. However, concordance—where both alleles
were correctly called to the exact repeat—was much weaker,
with a summary concordance of 0.45. Importantly, however,
more than 80% of all called lengths were accurate to within
2 repeats, and more than 90% across the UK Biobank,
our main cohort. The median absolute difference in repeat
lengths was 1 (interquartile range, 0–2), and there was no
evidence of systemic positive or negative bias in imputing
(mean difference between imputed and true repeat length =
−0.0013 repeats). Web Figure 6 shows the median absolute
difference in total repeat length across the 4 cohorts.

Because there might have been evidence that imputation
quality differed between populations, given the different
reference haplotypes across populations, we calculated the
imputation quality for populations, where this was reported
in HGDP and 1000 Genomes (Web Appendix). Since both
the PGP and the UK Biobank are entirely based in the
United Kingdom, this analysis was not undertaken for those
2 cohorts. Overall, there was some evidence that impu-
tation quality differed between populations, with slightly
worse performance in the HGDP superpopulations Africa
(n = 50, r = 0.73), East Asia (n = 158, r = 0.84) and
Oceania (n = 21). Importantly for this study, there was high
correlation between the true repeat length and the imputed
repeat length in populations with British ancestry, indicating
that the imputation was of high quality, with correlations
above 0.9 for the UK Biobank, the PGP, and GBR (British
from England and Scotland) populations in 1000 Genomes
and HGDP.

As a final test of imputation in the UK Biobank, we
imputed an AC repeat in RFT1 as a positive control, since it
had a known association with height in prior analyses (36).
In the study by Fotsing et al. (44), this repeat was imputed
in the eMERGE cohort, where a robust positive associa-
tion with height was identified (P = 0.00328; β = 0.010;
n = 6,393, for each AC repeat copy).
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Table 2. Previously Identified Associations Between Specific Health Conditions and the HMOX1
Promoter, UK Biobank, United Kingdom, 2006–2010

Diagnosis No. of Cases β 95% CI P Value

Diabetes mellitus

Type 2 35,917 0.01 0, 0.02 0.088

Type 1 4,407 0.01 −0.02, 0.04 0.417

COPD 20,539 −0.01 −0.02, 0.01 0.278

Pneumonia 31,893 0.00 −0.01, 0.01 0.628

Abbreviations: CI, confidence interval; COPD, chronic obstructive pulmonary disease; HMOX1,
heme oxygenase 1 gene.

We replicated this analysis in the UK Biobank, with
441,832 participants who had both genotype and standing
height data available for analysis. Reassuringly, we found
almost the exact same effect size (β = 0.011, P < 1 ×
10−16; Web Figure 7), showing a small increase in height
with increasing repeat length.

In summary, imputation at the HMOX1 locus in the UK
Biobank was reliable (Pearson’s R > 0.9 in British popula-
tions), and we were able to replicate other STR-phenotype
associations from other cohorts.

UK Biobank imputation metrics

After quality control and filtering (described above and in
Mitchell et al. (21)), 463,005 individuals were included in
the imputation pipeline. Because we performed no filtering
postimputation (see Web Appendix for reasoning), we called
HMOX1 repeat length on 463,005 samples. Web Figure 8
shows the logged distribution of the allele lengths for 1)
individual alleles and 2) summed repeat length across both
alleles. We performed a χ2 test to compare proportions of
homozygotes and heterozygotes at each allele length; the test
showed that Hardy-Weinberg equilibrium was not exceeded
(P = 0.265).

As has been shown previously, the HMOX1 polymor-
phism has a trimodal distribution, with major peaks at 25,
32, and 39 repeat lengths (1), although in this analysis the
longer repeat length is much rarer, with 32 being by far the
most common repeat length.

PheWAS analysis

For the main PheWAS analysis, we tested 7,901 vari-
ables, using previously described software (PHESANT),
and taking HMOX1 repeat length as a linear variable (40).
The quantile-quantile plot is shown in Web Figure 9; the
figure shows limited deviation only at the extreme end.
No associations met either a Bonferroni-adjusted or false-
discovery-rate–corrected P value.

In our sensitivity analyses, we performed the PheWAS
without adjustment for principal components or UK
Biobank assessment center and quartiled the exposure, to
ensure that our definition of the exposure (summed repeat

length) did not alter the results (Web Figure 10). For the
latter 2 models, we had results similar to those of the main
model, while in the former model (without adjustment),
we identified associations with some sociodemographic
variables (e.g., place of birth, month of visiting the
assessment center) but did not identify any clinically relevant
associations.

Specific associations

Because pneumonia, COPD, and diabetes have all pre-
viously been identified as having an association with the
HMOX1 promoter repeat, we extracted data on these clinical
variables from the PheWAS analysis. None showed evidence
of an association with HMOX1 repeat length (Table 2).

Mortality within infection analyses

Because the impact of HMOX1 repeat polymorphisms
might only be present in specific environmental associations
such as those involving severe cellular stress, and because
there is some evidence that HMOX1 polymorphisms alter
survival from severe infection (14, 45), we undertook a
survival analysis for 11 coded infections within the UK
Biobank (Table 3).

Infections with a low 28-day mortality were excluded
from the analysis, and only 3 infections were taken forward
for formal modeling (endocarditis, pneumonia, and sepsis).
In both unadjusted and adjusted (for age and sex) models,
there was no association between HMOX1 repeat length and
hazard of 28-day death (Table 4).

Neonatal jaundice

Previous systematic reviews have identified an association
between the HMOX1 promoter and neonatal jaundice (9).
In ALSPAC, a proportion of children had (clinically driven)
bilirubin testing during their postnatal care. In total, 937
children had a bilirubin level recorded within 14 days of birth
and were successfully genotyped for the HMOX1 promoter
repeat, using the same pipeline as above. Web Figure 11
shows the sample distribution, with most samples taken in
the first 72 hours of life.

Am J Epidemiol. 2024;193(5):718–726

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/193/5/718/7220701 by guest on 05 June 2024



Phenotypic Associations With the HMOX1 GT(n) Repeat 723

Table 3. Infections Exhibiting an Association Between the HMOX1
Promoter and 28-Day Mortality, UK Biobank, United Kingdom, 2006–
2010

Diagnosis No. of Cases 28-Day Mortality, %

LRTI 61,864 1.66

URTI 51,143 0.07

SSTI 49,369 0.70

Pneumonia 35,299 13.63

Gastroenteritis 32,389 2.07

UTI 17,488 0.14

Sepsis 14,841 16.78

Appendicitis 10,265 0.13

Osteomyelitis 7,793 1.03

Cholecystitis 5,974 1.00

Endocarditis 1,411 14.17

Abbreviations: HMOX1, heme oxygenase 1 gene; LRTI, lower
respiratory tract infection; SSTI, skin and soft tissue infection; URTI,
upper respiratory tract infection; UTI, urinary tract infection.

Using the National Institute for Health and Care Excel-
lence definition of jaundice requiring phototherapy, we cal-
culated the number of cases of neonatal jaundice across
our sample. ALSPAC only reports the date of the maximal
bilirubin level, so each child had a single result attached to
a single day (43).

In total, 47 cases of hyperbilirubinemia were identified,
with the vast majority identified on day 2 (7 cases), 3
(19 cases) or 4 (17 cases) of life. In a logistic regression
model, there was no association between total repeat length
and neonatal jaundice (odds ratio = 1.01, 95% confidence

Table 4. Hazard Ratios for 28-Day Mortality From Specific Health
Conditions With Increasing HMOX1 GT(n) Repeat Length, UK
Biobank, United Kingdom, 2006–2010a

Diagnosis HR 95% CI P Value

Endocarditis 1.004 0.977, 1.030 0.76

Unadjusted

Adjusted 1.004 0.977, 1.030 0.75

Pneumonia 1.003 0.997, 1.010 0.29

Unadjusted

Adjusted 1.003 0.997, 1.010 0.36

Sepsis 1.001 0.993, 1.010 0.87

Unadjusted

Adjusted 1.001 0.993, 1.010 0.83

Abbreviations: CI, confidence interval; HR, hazard ratio; HMOX1,
heme oxygenase 1 gene.

a Adjusted results were adjusted for age and sex.

interval: 0.88, 1.14) and no difference in average repeat
length between cases and controls (mean repeats 27.3 for
each group).

Given the low number of cases, we next performed an
analysis using a z score for each individual result within each
day (e.g., each day was treated individually, given the known
association between postnatal age and bilirubin level). An
association of the z scores with repeat length was tested
by linear regression (Web Figure 12). Again, we failed to
identify an association between z score and HMOX1 repeat
length (β < 0.01, P = 0.97).

In summary, we could not identify any association
between the repeat length polymorphism and either clinical
jaundice or an increase in bilirubin levels in neonates,
contrary to previous reports.

DISCUSSION

In this study, we imputed the HMOX1 repeat polymor-
phism in 2 well-described cohorts, the UK Biobank and
ALSPAC. Imputation accuracy was assessed using external
cohorts with high-quality WGS data and was generally
found to be high (Pearson’s R was approximately 0.9 for
imputed repeat length), although concordance with the exact
length was lower (around 45%). Using these imputed geno-
types, we performed a PheWAS (in the UK Biobank) and
tested 4 specific associations from the literature (pneumonia,
COPD, diabetes, and neonatal jaundice). Notably, we found
that the HMOX1 repeat length was not associated with
survival from 3 important infections (pneumonia, sepsis, and
endocarditis). Further, while the authors of a meta-analysis
of smaller studies (7–9) reported associations with COPD,
diabetes, and neonatal jaundice, we found no associations.

Strengths

The major strength of this study was the size of the cohort
(for the UK Biobank especially), with well-characterized
clinical metadata. We performed extensive external testing
of the imputation approach in 4 differing cohorts and found
that the imputation accuracy was reliable, particularly in
European populations, lending weight to our results. Addi-
tionally, we tested other identified associations with a repeat
promoter in RTF1 and were able to replicate others’ results,
suggesting our imputation approach was robust.

Weaknesses

There were 3 main weaknesses of this study. The first is
that genotypes were imputed, not directly called. However,
this is true for many SNPs in most genetic studies, and we
confirmed the reliability of this imputation in 4 separate data
sets, while other published data support the reliability of the
imputation (19). Although the imputed repeat length was
highly correlated with true repeat length, it was much less
reliable at calling the exact allele length (approximately 45%
correct). This was partly due to a large number of potential
alleles (64 potential repeat lengths), with a smaller number
of common alleles, making imputation technically difficult.
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Although this technical limitation should be recognized, it is
important to note that all prior associations with this repeat
have been with repeat length, with no data that we are aware
of suggesting the effect is related to a particular allele rather
than the total length of the repeat (1, 7–10, 14, 16, 45, 46).

Second, a genomewide analysis of 2,060 expression short
tandem repeats found linear associations to be the most
common association between STRs and gene expression—a
finding also identified in other studies of human STRs (36,
47–49). We therefore suggest that the lack of association
with repeat length and multiple phenotypic outcomes in this
analysis is valid.

Finally, in common with all cohort analyses, we were
limited by the sampling frame of the study population,
which does not represent the wider UK population, and
were limited in the outcomes that were recorded, which
were largely algorithmically defined from linked electronic
health data or obtained via self-report. However, the quality
of linked electronic data in the UK Biobank is excellent,
and UK Biobank data have been used widely in PheWAS
analyses (50).

Comparison with previous literature

It is worth exploring the discrepancy between our results
and others, particularly in neonatal jaundice and in diabetes,
where the strongest prior evidence for an association has
been identified. There are multiple possible explanations
which are not all mutually exclusive. The simplest expla-
nation is that the null result is correct. The previous studies
were all much smaller, with most studies comprising under
1,000 patients, with potential biases due to selection of
controls, definition of alleles, or the genotyping process, and
the evidence for any effect is only present in meta-analyses.
It is well established that genetic effects are generally small,
and this may simply reflect the common phenomenon of
larger studies’ identifying null results while smaller, earlier
studies suggest an association.

However, other possible explanations are plausible. First,
nearly all previous studies have classified alleles into short,
medium, or long, based on a variety of classification sys-
tems. In a previous review of HMOX1 polymorphisms and
infection, we showed that this classification was incon-
sistent and that misclassification creates a significant risk
of bias (45). For example, in the previous meta-analysis
on type 2 diabetes, one study was excluded because the
allelic definition was too different from the other studies;
the authors defined short alleles as under 25–27 repeats and
long alleles as 25–27 repeats (7). However, given that 1) the
trimodal distribution peaks at 27 repeats, 2) definitions of
repeat length vary, and 3) there are generally small errors
and variability in genotyping by fragment length polymor-
phism, these definitions are highly questionable and are at
significant risk of biasing studies. It may be that through
selection of allelic definitions, artificial associations were
identified.

Second, our study was performed entirely in a European
population, whereas many of the previous positive studies
have been performed in other populations, particularly in

East Asia and Africa. Because the HMOX1 repeat associ-
ation may be not causal but simply coincident with a local
SNP haplotype, it may be that there is an association between
certain SNPs in the HMOX1 promoter and outcomes that
are simply not present at a sufficiently high frequency in
a European population. Recent studies have suggested that
variable number tandem repeats have differing effects on
differing haplotypic backgrounds, although this has not been
shown for HMOX1 (51). This underscores the importance
of further genetic research in non-European populations to
increase our understanding of effects of genetic variation on
complex traits.

Third, although we tested our imputation approach exten-
sively and are confident of its accuracy to within 2 repeats, it
may be that the imputation method is biased with respect to
important outcomes. This may be particularly relevant if, for
example, a set of SNPs that are causal for the outcomes and
are usually coincident with an increased repeat length are
systematically imputed incorrectly. Although this associa-
tion is possible, it would have been extremely unlikely here;
given the number of cases in the UK Biobank, we would
have had ample statistical power to detect even attenuated
exposures, if the “true” effect size was similar to that in
previous studies.

Fourth, it is possible that the repeat length has insuffi-
cient functional impact on the regulation of HMOX1 expres-
sion. Further experimental studies are required to rigorously
assess the functional role, if any, of the repeat length direct-
ing or altering the expression of HMOX1. Our findings in
this report challenge the accepted view that the repeat length
affects the biological role of HMOX1.

Finally, although we were able to rule out associations
between HMOX1 repeat length and incident conditions such
as diabetes, we could not easily explore the association
between an inducible stress response gene and relevant
outcomes (e.g., infection outcomes) in a biobank analy-
sis. In previous in vitro analyses, the baseline expression
of HMOX1 was unchanged with differing repeat lengths.
However, inducible expression is highly varied in some (but
not all) in vitro work (12, 14, 16, 52). This suggests that
the effect of HMOX1 repeat polymorphisms may only be
present under certain phenotypic conditions (e.g., cellular
stress secondary to inflammation or infection). Even given
the size of the UK Biobank cohort, it is difficult to explore
these potential interactions.

For example, if HMOX1 repeat length only has phenotypic
implications in the critically unwell patients with infection,
we are limited to those patients in the UK Biobank who
develop critical infection—an extremely heterogenous con-
dition—while the only outcome measure we can reliably
record is mortality.

Summary

In summary, we did not identify any associations between
the HMOX1 repeat length polymorphism and any clinical
outcomes in 2 well-characterized European cohorts. Recon-
ciling this work with previous work is difficult, suggesting
either no association or a more complex gene-environment
interaction for the HMOX1 repeat.
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Conclusion

In this study, the HMOX1 GT(n) repeat was not asso-
ciated with any phenotypes in the UK Biobank. Previous
associations with diabetes, COPD, and pneumonia were not
replicated. In a separate analysis, HMOX1 GT(n) repeat
length was also not associated with neonatal jaundice in
a longitudinal cohort study, failing to replicate previous
findings.
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